Loading...
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39unsigned long hugepages_treat_as_movable;
40
41int hugetlb_max_hstate __read_mostly;
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44
45__initdata LIST_HEAD(huge_boot_pages);
46
47/* for command line parsing */
48static struct hstate * __initdata parsed_hstate;
49static unsigned long __initdata default_hstate_max_huge_pages;
50static unsigned long __initdata default_hstate_size;
51
52/*
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
55 */
56DEFINE_SPINLOCK(hugetlb_lock);
57
58/*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62static int num_fault_mutexes;
63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66{
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75}
76
77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78{
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91}
92
93void hugepage_put_subpool(struct hugepage_subpool *spool)
94{
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99}
100
101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103{
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118}
119
120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122{
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131}
132
133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134{
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136}
137
138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139{
140 return subpool_inode(file_inode(vma->vm_file));
141}
142
143/*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
146 *
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
149 */
150struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154};
155
156static long region_add(struct resv_map *resv, long f, long t)
157{
158 struct list_head *head = &resv->regions;
159 struct file_region *rg, *nrg, *trg;
160
161 spin_lock(&resv->lock);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
191 spin_unlock(&resv->lock);
192 return 0;
193}
194
195static long region_chg(struct resv_map *resv, long f, long t)
196{
197 struct list_head *head = &resv->regions;
198 struct file_region *rg, *nrg = NULL;
199 long chg = 0;
200
201retry:
202 spin_lock(&resv->lock);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
223
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
239 goto out;
240
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
250
251out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256out_nrg:
257 spin_unlock(&resv->lock);
258 return chg;
259}
260
261static long region_truncate(struct resv_map *resv, long end)
262{
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *trg;
265 long chg = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
273 goto out;
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
290
291out:
292 spin_unlock(&resv->lock);
293 return chg;
294}
295
296static long region_count(struct resv_map *resv, long f, long t)
297{
298 struct list_head *head = &resv->regions;
299 struct file_region *rg;
300 long chg = 0;
301
302 spin_lock(&resv->lock);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
305 long seg_from;
306 long seg_to;
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
318 spin_unlock(&resv->lock);
319
320 return chg;
321}
322
323/*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
327static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
329{
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
332}
333
334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336{
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338}
339
340/*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345{
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
353 return 1UL << huge_page_shift(hstate);
354}
355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357/*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363#ifndef vma_mmu_pagesize
364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365{
366 return vma_kernel_pagesize(vma);
367}
368#endif
369
370/*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375#define HPAGE_RESV_OWNER (1UL << 0)
376#define HPAGE_RESV_UNMAPPED (1UL << 1)
377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379/*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
397 */
398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399{
400 return (unsigned long)vma->vm_private_data;
401}
402
403static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405{
406 vma->vm_private_data = (void *)value;
407}
408
409struct resv_map *resv_map_alloc(void)
410{
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
416 spin_lock_init(&resv_map->lock);
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420}
421
422void resv_map_release(struct kref *ref)
423{
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map, 0);
428 kfree(resv_map);
429}
430
431static inline struct resv_map *inode_resv_map(struct inode *inode)
432{
433 return inode->i_mapping->private_data;
434}
435
436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437{
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
448 }
449}
450
451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452{
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
458}
459
460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461{
462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466}
467
468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469{
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472 return (get_vma_private_data(vma) & flag) != 0;
473}
474
475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477{
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 if (!(vma->vm_flags & VM_MAYSHARE))
480 vma->vm_private_data = (void *)0;
481}
482
483/* Returns true if the VMA has associated reserve pages */
484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485{
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
501
502 /* Shared mappings always use reserves */
503 if (vma->vm_flags & VM_MAYSHARE)
504 return 1;
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
512
513 return 0;
514}
515
516static void enqueue_huge_page(struct hstate *h, struct page *page)
517{
518 int nid = page_to_nid(page);
519 list_move(&page->lru, &h->hugepage_freelists[nid]);
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
522}
523
524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525{
526 struct page *page;
527
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
536 return NULL;
537 list_move(&page->lru, &h->hugepage_activelist);
538 set_page_refcounted(page);
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542}
543
544/* Movability of hugepages depends on migration support. */
545static inline gfp_t htlb_alloc_mask(struct hstate *h)
546{
547 if (hugepages_treat_as_movable || hugepage_migration_support(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551}
552
553static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
555 unsigned long address, int avoid_reserve,
556 long chg)
557{
558 struct page *page = NULL;
559 struct mempolicy *mpol;
560 nodemask_t *nodemask;
561 struct zonelist *zonelist;
562 struct zone *zone;
563 struct zoneref *z;
564 unsigned int cpuset_mems_cookie;
565
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
571 if (!vma_has_reserves(vma, chg) &&
572 h->free_huge_pages - h->resv_huge_pages == 0)
573 goto err;
574
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 goto err;
578
579retry_cpuset:
580 cpuset_mems_cookie = read_mems_allowed_begin();
581 zonelist = huge_zonelist(vma, address,
582 htlb_alloc_mask(h), &mpol, &nodemask);
583
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
594 SetPagePrivate(page);
595 h->resv_huge_pages--;
596 break;
597 }
598 }
599 }
600
601 mpol_cond_put(mpol);
602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 goto retry_cpuset;
604 return page;
605
606err:
607 return NULL;
608}
609
610static void update_and_free_page(struct hstate *h, struct page *page)
611{
612 int i;
613
614 VM_BUG_ON(h->order >= MAX_ORDER);
615
616 h->nr_huge_pages--;
617 h->nr_huge_pages_node[page_to_nid(page)]--;
618 for (i = 0; i < pages_per_huge_page(h); i++) {
619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_dirty |
621 1 << PG_active | 1 << PG_reserved |
622 1 << PG_private | 1 << PG_writeback);
623 }
624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625 set_compound_page_dtor(page, NULL);
626 set_page_refcounted(page);
627 arch_release_hugepage(page);
628 __free_pages(page, huge_page_order(h));
629}
630
631struct hstate *size_to_hstate(unsigned long size)
632{
633 struct hstate *h;
634
635 for_each_hstate(h) {
636 if (huge_page_size(h) == size)
637 return h;
638 }
639 return NULL;
640}
641
642static void free_huge_page(struct page *page)
643{
644 /*
645 * Can't pass hstate in here because it is called from the
646 * compound page destructor.
647 */
648 struct hstate *h = page_hstate(page);
649 int nid = page_to_nid(page);
650 struct hugepage_subpool *spool =
651 (struct hugepage_subpool *)page_private(page);
652 bool restore_reserve;
653
654 set_page_private(page, 0);
655 page->mapping = NULL;
656 BUG_ON(page_count(page));
657 BUG_ON(page_mapcount(page));
658 restore_reserve = PagePrivate(page);
659 ClearPagePrivate(page);
660
661 spin_lock(&hugetlb_lock);
662 hugetlb_cgroup_uncharge_page(hstate_index(h),
663 pages_per_huge_page(h), page);
664 if (restore_reserve)
665 h->resv_huge_pages++;
666
667 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668 /* remove the page from active list */
669 list_del(&page->lru);
670 update_and_free_page(h, page);
671 h->surplus_huge_pages--;
672 h->surplus_huge_pages_node[nid]--;
673 } else {
674 arch_clear_hugepage_flags(page);
675 enqueue_huge_page(h, page);
676 }
677 spin_unlock(&hugetlb_lock);
678 hugepage_subpool_put_pages(spool, 1);
679}
680
681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682{
683 INIT_LIST_HEAD(&page->lru);
684 set_compound_page_dtor(page, free_huge_page);
685 spin_lock(&hugetlb_lock);
686 set_hugetlb_cgroup(page, NULL);
687 h->nr_huge_pages++;
688 h->nr_huge_pages_node[nid]++;
689 spin_unlock(&hugetlb_lock);
690 put_page(page); /* free it into the hugepage allocator */
691}
692
693static void __init prep_compound_gigantic_page(struct page *page,
694 unsigned long order)
695{
696 int i;
697 int nr_pages = 1 << order;
698 struct page *p = page + 1;
699
700 /* we rely on prep_new_huge_page to set the destructor */
701 set_compound_order(page, order);
702 __SetPageHead(page);
703 __ClearPageReserved(page);
704 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705 __SetPageTail(p);
706 /*
707 * For gigantic hugepages allocated through bootmem at
708 * boot, it's safer to be consistent with the not-gigantic
709 * hugepages and clear the PG_reserved bit from all tail pages
710 * too. Otherwse drivers using get_user_pages() to access tail
711 * pages may get the reference counting wrong if they see
712 * PG_reserved set on a tail page (despite the head page not
713 * having PG_reserved set). Enforcing this consistency between
714 * head and tail pages allows drivers to optimize away a check
715 * on the head page when they need know if put_page() is needed
716 * after get_user_pages().
717 */
718 __ClearPageReserved(p);
719 set_page_count(p, 0);
720 p->first_page = page;
721 }
722}
723
724/*
725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726 * transparent huge pages. See the PageTransHuge() documentation for more
727 * details.
728 */
729int PageHuge(struct page *page)
730{
731 if (!PageCompound(page))
732 return 0;
733
734 page = compound_head(page);
735 return get_compound_page_dtor(page) == free_huge_page;
736}
737EXPORT_SYMBOL_GPL(PageHuge);
738
739/*
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
742 */
743int PageHeadHuge(struct page *page_head)
744{
745 if (!PageHead(page_head))
746 return 0;
747
748 return get_compound_page_dtor(page_head) == free_huge_page;
749}
750
751pgoff_t __basepage_index(struct page *page)
752{
753 struct page *page_head = compound_head(page);
754 pgoff_t index = page_index(page_head);
755 unsigned long compound_idx;
756
757 if (!PageHuge(page_head))
758 return page_index(page);
759
760 if (compound_order(page_head) >= MAX_ORDER)
761 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762 else
763 compound_idx = page - page_head;
764
765 return (index << compound_order(page_head)) + compound_idx;
766}
767
768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769{
770 struct page *page;
771
772 if (h->order >= MAX_ORDER)
773 return NULL;
774
775 page = alloc_pages_exact_node(nid,
776 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777 __GFP_REPEAT|__GFP_NOWARN,
778 huge_page_order(h));
779 if (page) {
780 if (arch_prepare_hugepage(page)) {
781 __free_pages(page, huge_page_order(h));
782 return NULL;
783 }
784 prep_new_huge_page(h, page, nid);
785 }
786
787 return page;
788}
789
790/*
791 * common helper functions for hstate_next_node_to_{alloc|free}.
792 * We may have allocated or freed a huge page based on a different
793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794 * be outside of *nodes_allowed. Ensure that we use an allowed
795 * node for alloc or free.
796 */
797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798{
799 nid = next_node(nid, *nodes_allowed);
800 if (nid == MAX_NUMNODES)
801 nid = first_node(*nodes_allowed);
802 VM_BUG_ON(nid >= MAX_NUMNODES);
803
804 return nid;
805}
806
807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808{
809 if (!node_isset(nid, *nodes_allowed))
810 nid = next_node_allowed(nid, nodes_allowed);
811 return nid;
812}
813
814/*
815 * returns the previously saved node ["this node"] from which to
816 * allocate a persistent huge page for the pool and advance the
817 * next node from which to allocate, handling wrap at end of node
818 * mask.
819 */
820static int hstate_next_node_to_alloc(struct hstate *h,
821 nodemask_t *nodes_allowed)
822{
823 int nid;
824
825 VM_BUG_ON(!nodes_allowed);
826
827 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830 return nid;
831}
832
833/*
834 * helper for free_pool_huge_page() - return the previously saved
835 * node ["this node"] from which to free a huge page. Advance the
836 * next node id whether or not we find a free huge page to free so
837 * that the next attempt to free addresses the next node.
838 */
839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840{
841 int nid;
842
843 VM_BUG_ON(!nodes_allowed);
844
845 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848 return nid;
849}
850
851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
852 for (nr_nodes = nodes_weight(*mask); \
853 nr_nodes > 0 && \
854 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
855 nr_nodes--)
856
857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
858 for (nr_nodes = nodes_weight(*mask); \
859 nr_nodes > 0 && \
860 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
861 nr_nodes--)
862
863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864{
865 struct page *page;
866 int nr_nodes, node;
867 int ret = 0;
868
869 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870 page = alloc_fresh_huge_page_node(h, node);
871 if (page) {
872 ret = 1;
873 break;
874 }
875 }
876
877 if (ret)
878 count_vm_event(HTLB_BUDDY_PGALLOC);
879 else
880 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882 return ret;
883}
884
885/*
886 * Free huge page from pool from next node to free.
887 * Attempt to keep persistent huge pages more or less
888 * balanced over allowed nodes.
889 * Called with hugetlb_lock locked.
890 */
891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892 bool acct_surplus)
893{
894 int nr_nodes, node;
895 int ret = 0;
896
897 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898 /*
899 * If we're returning unused surplus pages, only examine
900 * nodes with surplus pages.
901 */
902 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903 !list_empty(&h->hugepage_freelists[node])) {
904 struct page *page =
905 list_entry(h->hugepage_freelists[node].next,
906 struct page, lru);
907 list_del(&page->lru);
908 h->free_huge_pages--;
909 h->free_huge_pages_node[node]--;
910 if (acct_surplus) {
911 h->surplus_huge_pages--;
912 h->surplus_huge_pages_node[node]--;
913 }
914 update_and_free_page(h, page);
915 ret = 1;
916 break;
917 }
918 }
919
920 return ret;
921}
922
923/*
924 * Dissolve a given free hugepage into free buddy pages. This function does
925 * nothing for in-use (including surplus) hugepages.
926 */
927static void dissolve_free_huge_page(struct page *page)
928{
929 spin_lock(&hugetlb_lock);
930 if (PageHuge(page) && !page_count(page)) {
931 struct hstate *h = page_hstate(page);
932 int nid = page_to_nid(page);
933 list_del(&page->lru);
934 h->free_huge_pages--;
935 h->free_huge_pages_node[nid]--;
936 update_and_free_page(h, page);
937 }
938 spin_unlock(&hugetlb_lock);
939}
940
941/*
942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943 * make specified memory blocks removable from the system.
944 * Note that start_pfn should aligned with (minimum) hugepage size.
945 */
946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947{
948 unsigned int order = 8 * sizeof(void *);
949 unsigned long pfn;
950 struct hstate *h;
951
952 /* Set scan step to minimum hugepage size */
953 for_each_hstate(h)
954 if (order > huge_page_order(h))
955 order = huge_page_order(h);
956 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958 dissolve_free_huge_page(pfn_to_page(pfn));
959}
960
961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962{
963 struct page *page;
964 unsigned int r_nid;
965
966 if (h->order >= MAX_ORDER)
967 return NULL;
968
969 /*
970 * Assume we will successfully allocate the surplus page to
971 * prevent racing processes from causing the surplus to exceed
972 * overcommit
973 *
974 * This however introduces a different race, where a process B
975 * tries to grow the static hugepage pool while alloc_pages() is
976 * called by process A. B will only examine the per-node
977 * counters in determining if surplus huge pages can be
978 * converted to normal huge pages in adjust_pool_surplus(). A
979 * won't be able to increment the per-node counter, until the
980 * lock is dropped by B, but B doesn't drop hugetlb_lock until
981 * no more huge pages can be converted from surplus to normal
982 * state (and doesn't try to convert again). Thus, we have a
983 * case where a surplus huge page exists, the pool is grown, and
984 * the surplus huge page still exists after, even though it
985 * should just have been converted to a normal huge page. This
986 * does not leak memory, though, as the hugepage will be freed
987 * once it is out of use. It also does not allow the counters to
988 * go out of whack in adjust_pool_surplus() as we don't modify
989 * the node values until we've gotten the hugepage and only the
990 * per-node value is checked there.
991 */
992 spin_lock(&hugetlb_lock);
993 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994 spin_unlock(&hugetlb_lock);
995 return NULL;
996 } else {
997 h->nr_huge_pages++;
998 h->surplus_huge_pages++;
999 }
1000 spin_unlock(&hugetlb_lock);
1001
1002 if (nid == NUMA_NO_NODE)
1003 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004 __GFP_REPEAT|__GFP_NOWARN,
1005 huge_page_order(h));
1006 else
1007 page = alloc_pages_exact_node(nid,
1008 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011 if (page && arch_prepare_hugepage(page)) {
1012 __free_pages(page, huge_page_order(h));
1013 page = NULL;
1014 }
1015
1016 spin_lock(&hugetlb_lock);
1017 if (page) {
1018 INIT_LIST_HEAD(&page->lru);
1019 r_nid = page_to_nid(page);
1020 set_compound_page_dtor(page, free_huge_page);
1021 set_hugetlb_cgroup(page, NULL);
1022 /*
1023 * We incremented the global counters already
1024 */
1025 h->nr_huge_pages_node[r_nid]++;
1026 h->surplus_huge_pages_node[r_nid]++;
1027 __count_vm_event(HTLB_BUDDY_PGALLOC);
1028 } else {
1029 h->nr_huge_pages--;
1030 h->surplus_huge_pages--;
1031 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032 }
1033 spin_unlock(&hugetlb_lock);
1034
1035 return page;
1036}
1037
1038/*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
1045 struct page *page = NULL;
1046
1047 spin_lock(&hugetlb_lock);
1048 if (h->free_huge_pages - h->resv_huge_pages > 0)
1049 page = dequeue_huge_page_node(h, nid);
1050 spin_unlock(&hugetlb_lock);
1051
1052 if (!page)
1053 page = alloc_buddy_huge_page(h, nid);
1054
1055 return page;
1056}
1057
1058/*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062static int gather_surplus_pages(struct hstate *h, int delta)
1063{
1064 struct list_head surplus_list;
1065 struct page *page, *tmp;
1066 int ret, i;
1067 int needed, allocated;
1068 bool alloc_ok = true;
1069
1070 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071 if (needed <= 0) {
1072 h->resv_huge_pages += delta;
1073 return 0;
1074 }
1075
1076 allocated = 0;
1077 INIT_LIST_HEAD(&surplus_list);
1078
1079 ret = -ENOMEM;
1080retry:
1081 spin_unlock(&hugetlb_lock);
1082 for (i = 0; i < needed; i++) {
1083 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084 if (!page) {
1085 alloc_ok = false;
1086 break;
1087 }
1088 list_add(&page->lru, &surplus_list);
1089 }
1090 allocated += i;
1091
1092 /*
1093 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094 * because either resv_huge_pages or free_huge_pages may have changed.
1095 */
1096 spin_lock(&hugetlb_lock);
1097 needed = (h->resv_huge_pages + delta) -
1098 (h->free_huge_pages + allocated);
1099 if (needed > 0) {
1100 if (alloc_ok)
1101 goto retry;
1102 /*
1103 * We were not able to allocate enough pages to
1104 * satisfy the entire reservation so we free what
1105 * we've allocated so far.
1106 */
1107 goto free;
1108 }
1109 /*
1110 * The surplus_list now contains _at_least_ the number of extra pages
1111 * needed to accommodate the reservation. Add the appropriate number
1112 * of pages to the hugetlb pool and free the extras back to the buddy
1113 * allocator. Commit the entire reservation here to prevent another
1114 * process from stealing the pages as they are added to the pool but
1115 * before they are reserved.
1116 */
1117 needed += allocated;
1118 h->resv_huge_pages += delta;
1119 ret = 0;
1120
1121 /* Free the needed pages to the hugetlb pool */
1122 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123 if ((--needed) < 0)
1124 break;
1125 /*
1126 * This page is now managed by the hugetlb allocator and has
1127 * no users -- drop the buddy allocator's reference.
1128 */
1129 put_page_testzero(page);
1130 VM_BUG_ON_PAGE(page_count(page), page);
1131 enqueue_huge_page(h, page);
1132 }
1133free:
1134 spin_unlock(&hugetlb_lock);
1135
1136 /* Free unnecessary surplus pages to the buddy allocator */
1137 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138 put_page(page);
1139 spin_lock(&hugetlb_lock);
1140
1141 return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
1149 */
1150static void return_unused_surplus_pages(struct hstate *h,
1151 unsigned long unused_resv_pages)
1152{
1153 unsigned long nr_pages;
1154
1155 /* Uncommit the reservation */
1156 h->resv_huge_pages -= unused_resv_pages;
1157
1158 /* Cannot return gigantic pages currently */
1159 if (h->order >= MAX_ORDER)
1160 return;
1161
1162 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164 /*
1165 * We want to release as many surplus pages as possible, spread
1166 * evenly across all nodes with memory. Iterate across these nodes
1167 * until we can no longer free unreserved surplus pages. This occurs
1168 * when the nodes with surplus pages have no free pages.
1169 * free_pool_huge_page() will balance the the freed pages across the
1170 * on-line nodes with memory and will handle the hstate accounting.
1171 */
1172 while (nr_pages--) {
1173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174 break;
1175 cond_resched_lock(&hugetlb_lock);
1176 }
1177}
1178
1179/*
1180 * Determine if the huge page at addr within the vma has an associated
1181 * reservation. Where it does not we will need to logically increase
1182 * reservation and actually increase subpool usage before an allocation
1183 * can occur. Where any new reservation would be required the
1184 * reservation change is prepared, but not committed. Once the page
1185 * has been allocated from the subpool and instantiated the change should
1186 * be committed via vma_commit_reservation. No action is required on
1187 * failure.
1188 */
1189static long vma_needs_reservation(struct hstate *h,
1190 struct vm_area_struct *vma, unsigned long addr)
1191{
1192 struct resv_map *resv;
1193 pgoff_t idx;
1194 long chg;
1195
1196 resv = vma_resv_map(vma);
1197 if (!resv)
1198 return 1;
1199
1200 idx = vma_hugecache_offset(h, vma, addr);
1201 chg = region_chg(resv, idx, idx + 1);
1202
1203 if (vma->vm_flags & VM_MAYSHARE)
1204 return chg;
1205 else
1206 return chg < 0 ? chg : 0;
1207}
1208static void vma_commit_reservation(struct hstate *h,
1209 struct vm_area_struct *vma, unsigned long addr)
1210{
1211 struct resv_map *resv;
1212 pgoff_t idx;
1213
1214 resv = vma_resv_map(vma);
1215 if (!resv)
1216 return;
1217
1218 idx = vma_hugecache_offset(h, vma, addr);
1219 region_add(resv, idx, idx + 1);
1220}
1221
1222static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223 unsigned long addr, int avoid_reserve)
1224{
1225 struct hugepage_subpool *spool = subpool_vma(vma);
1226 struct hstate *h = hstate_vma(vma);
1227 struct page *page;
1228 long chg;
1229 int ret, idx;
1230 struct hugetlb_cgroup *h_cg;
1231
1232 idx = hstate_index(h);
1233 /*
1234 * Processes that did not create the mapping will have no
1235 * reserves and will not have accounted against subpool
1236 * limit. Check that the subpool limit can be made before
1237 * satisfying the allocation MAP_NORESERVE mappings may also
1238 * need pages and subpool limit allocated allocated if no reserve
1239 * mapping overlaps.
1240 */
1241 chg = vma_needs_reservation(h, vma, addr);
1242 if (chg < 0)
1243 return ERR_PTR(-ENOMEM);
1244 if (chg || avoid_reserve)
1245 if (hugepage_subpool_get_pages(spool, 1))
1246 return ERR_PTR(-ENOSPC);
1247
1248 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249 if (ret) {
1250 if (chg || avoid_reserve)
1251 hugepage_subpool_put_pages(spool, 1);
1252 return ERR_PTR(-ENOSPC);
1253 }
1254 spin_lock(&hugetlb_lock);
1255 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1256 if (!page) {
1257 spin_unlock(&hugetlb_lock);
1258 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259 if (!page) {
1260 hugetlb_cgroup_uncharge_cgroup(idx,
1261 pages_per_huge_page(h),
1262 h_cg);
1263 if (chg || avoid_reserve)
1264 hugepage_subpool_put_pages(spool, 1);
1265 return ERR_PTR(-ENOSPC);
1266 }
1267 spin_lock(&hugetlb_lock);
1268 list_move(&page->lru, &h->hugepage_activelist);
1269 /* Fall through */
1270 }
1271 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272 spin_unlock(&hugetlb_lock);
1273
1274 set_page_private(page, (unsigned long)spool);
1275
1276 vma_commit_reservation(h, vma, addr);
1277 return page;
1278}
1279
1280/*
1281 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283 * where no ERR_VALUE is expected to be returned.
1284 */
1285struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286 unsigned long addr, int avoid_reserve)
1287{
1288 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289 if (IS_ERR(page))
1290 page = NULL;
1291 return page;
1292}
1293
1294int __weak alloc_bootmem_huge_page(struct hstate *h)
1295{
1296 struct huge_bootmem_page *m;
1297 int nr_nodes, node;
1298
1299 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300 void *addr;
1301
1302 addr = memblock_virt_alloc_try_nid_nopanic(
1303 huge_page_size(h), huge_page_size(h),
1304 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305 if (addr) {
1306 /*
1307 * Use the beginning of the huge page to store the
1308 * huge_bootmem_page struct (until gather_bootmem
1309 * puts them into the mem_map).
1310 */
1311 m = addr;
1312 goto found;
1313 }
1314 }
1315 return 0;
1316
1317found:
1318 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319 /* Put them into a private list first because mem_map is not up yet */
1320 list_add(&m->list, &huge_boot_pages);
1321 m->hstate = h;
1322 return 1;
1323}
1324
1325static void __init prep_compound_huge_page(struct page *page, int order)
1326{
1327 if (unlikely(order > (MAX_ORDER - 1)))
1328 prep_compound_gigantic_page(page, order);
1329 else
1330 prep_compound_page(page, order);
1331}
1332
1333/* Put bootmem huge pages into the standard lists after mem_map is up */
1334static void __init gather_bootmem_prealloc(void)
1335{
1336 struct huge_bootmem_page *m;
1337
1338 list_for_each_entry(m, &huge_boot_pages, list) {
1339 struct hstate *h = m->hstate;
1340 struct page *page;
1341
1342#ifdef CONFIG_HIGHMEM
1343 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344 memblock_free_late(__pa(m),
1345 sizeof(struct huge_bootmem_page));
1346#else
1347 page = virt_to_page(m);
1348#endif
1349 WARN_ON(page_count(page) != 1);
1350 prep_compound_huge_page(page, h->order);
1351 WARN_ON(PageReserved(page));
1352 prep_new_huge_page(h, page, page_to_nid(page));
1353 /*
1354 * If we had gigantic hugepages allocated at boot time, we need
1355 * to restore the 'stolen' pages to totalram_pages in order to
1356 * fix confusing memory reports from free(1) and another
1357 * side-effects, like CommitLimit going negative.
1358 */
1359 if (h->order > (MAX_ORDER - 1))
1360 adjust_managed_page_count(page, 1 << h->order);
1361 }
1362}
1363
1364static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365{
1366 unsigned long i;
1367
1368 for (i = 0; i < h->max_huge_pages; ++i) {
1369 if (h->order >= MAX_ORDER) {
1370 if (!alloc_bootmem_huge_page(h))
1371 break;
1372 } else if (!alloc_fresh_huge_page(h,
1373 &node_states[N_MEMORY]))
1374 break;
1375 }
1376 h->max_huge_pages = i;
1377}
1378
1379static void __init hugetlb_init_hstates(void)
1380{
1381 struct hstate *h;
1382
1383 for_each_hstate(h) {
1384 /* oversize hugepages were init'ed in early boot */
1385 if (h->order < MAX_ORDER)
1386 hugetlb_hstate_alloc_pages(h);
1387 }
1388}
1389
1390static char * __init memfmt(char *buf, unsigned long n)
1391{
1392 if (n >= (1UL << 30))
1393 sprintf(buf, "%lu GB", n >> 30);
1394 else if (n >= (1UL << 20))
1395 sprintf(buf, "%lu MB", n >> 20);
1396 else
1397 sprintf(buf, "%lu KB", n >> 10);
1398 return buf;
1399}
1400
1401static void __init report_hugepages(void)
1402{
1403 struct hstate *h;
1404
1405 for_each_hstate(h) {
1406 char buf[32];
1407 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408 memfmt(buf, huge_page_size(h)),
1409 h->free_huge_pages);
1410 }
1411}
1412
1413#ifdef CONFIG_HIGHMEM
1414static void try_to_free_low(struct hstate *h, unsigned long count,
1415 nodemask_t *nodes_allowed)
1416{
1417 int i;
1418
1419 if (h->order >= MAX_ORDER)
1420 return;
1421
1422 for_each_node_mask(i, *nodes_allowed) {
1423 struct page *page, *next;
1424 struct list_head *freel = &h->hugepage_freelists[i];
1425 list_for_each_entry_safe(page, next, freel, lru) {
1426 if (count >= h->nr_huge_pages)
1427 return;
1428 if (PageHighMem(page))
1429 continue;
1430 list_del(&page->lru);
1431 update_and_free_page(h, page);
1432 h->free_huge_pages--;
1433 h->free_huge_pages_node[page_to_nid(page)]--;
1434 }
1435 }
1436}
1437#else
1438static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439 nodemask_t *nodes_allowed)
1440{
1441}
1442#endif
1443
1444/*
1445 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1446 * balanced by operating on them in a round-robin fashion.
1447 * Returns 1 if an adjustment was made.
1448 */
1449static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450 int delta)
1451{
1452 int nr_nodes, node;
1453
1454 VM_BUG_ON(delta != -1 && delta != 1);
1455
1456 if (delta < 0) {
1457 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458 if (h->surplus_huge_pages_node[node])
1459 goto found;
1460 }
1461 } else {
1462 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463 if (h->surplus_huge_pages_node[node] <
1464 h->nr_huge_pages_node[node])
1465 goto found;
1466 }
1467 }
1468 return 0;
1469
1470found:
1471 h->surplus_huge_pages += delta;
1472 h->surplus_huge_pages_node[node] += delta;
1473 return 1;
1474}
1475
1476#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478 nodemask_t *nodes_allowed)
1479{
1480 unsigned long min_count, ret;
1481
1482 if (h->order >= MAX_ORDER)
1483 return h->max_huge_pages;
1484
1485 /*
1486 * Increase the pool size
1487 * First take pages out of surplus state. Then make up the
1488 * remaining difference by allocating fresh huge pages.
1489 *
1490 * We might race with alloc_buddy_huge_page() here and be unable
1491 * to convert a surplus huge page to a normal huge page. That is
1492 * not critical, though, it just means the overall size of the
1493 * pool might be one hugepage larger than it needs to be, but
1494 * within all the constraints specified by the sysctls.
1495 */
1496 spin_lock(&hugetlb_lock);
1497 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499 break;
1500 }
1501
1502 while (count > persistent_huge_pages(h)) {
1503 /*
1504 * If this allocation races such that we no longer need the
1505 * page, free_huge_page will handle it by freeing the page
1506 * and reducing the surplus.
1507 */
1508 spin_unlock(&hugetlb_lock);
1509 ret = alloc_fresh_huge_page(h, nodes_allowed);
1510 spin_lock(&hugetlb_lock);
1511 if (!ret)
1512 goto out;
1513
1514 /* Bail for signals. Probably ctrl-c from user */
1515 if (signal_pending(current))
1516 goto out;
1517 }
1518
1519 /*
1520 * Decrease the pool size
1521 * First return free pages to the buddy allocator (being careful
1522 * to keep enough around to satisfy reservations). Then place
1523 * pages into surplus state as needed so the pool will shrink
1524 * to the desired size as pages become free.
1525 *
1526 * By placing pages into the surplus state independent of the
1527 * overcommit value, we are allowing the surplus pool size to
1528 * exceed overcommit. There are few sane options here. Since
1529 * alloc_buddy_huge_page() is checking the global counter,
1530 * though, we'll note that we're not allowed to exceed surplus
1531 * and won't grow the pool anywhere else. Not until one of the
1532 * sysctls are changed, or the surplus pages go out of use.
1533 */
1534 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535 min_count = max(count, min_count);
1536 try_to_free_low(h, min_count, nodes_allowed);
1537 while (min_count < persistent_huge_pages(h)) {
1538 if (!free_pool_huge_page(h, nodes_allowed, 0))
1539 break;
1540 cond_resched_lock(&hugetlb_lock);
1541 }
1542 while (count < persistent_huge_pages(h)) {
1543 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544 break;
1545 }
1546out:
1547 ret = persistent_huge_pages(h);
1548 spin_unlock(&hugetlb_lock);
1549 return ret;
1550}
1551
1552#define HSTATE_ATTR_RO(_name) \
1553 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555#define HSTATE_ATTR(_name) \
1556 static struct kobj_attribute _name##_attr = \
1557 __ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559static struct kobject *hugepages_kobj;
1560static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565{
1566 int i;
1567
1568 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569 if (hstate_kobjs[i] == kobj) {
1570 if (nidp)
1571 *nidp = NUMA_NO_NODE;
1572 return &hstates[i];
1573 }
1574
1575 return kobj_to_node_hstate(kobj, nidp);
1576}
1577
1578static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579 struct kobj_attribute *attr, char *buf)
1580{
1581 struct hstate *h;
1582 unsigned long nr_huge_pages;
1583 int nid;
1584
1585 h = kobj_to_hstate(kobj, &nid);
1586 if (nid == NUMA_NO_NODE)
1587 nr_huge_pages = h->nr_huge_pages;
1588 else
1589 nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591 return sprintf(buf, "%lu\n", nr_huge_pages);
1592}
1593
1594static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595 struct kobject *kobj, struct kobj_attribute *attr,
1596 const char *buf, size_t len)
1597{
1598 int err;
1599 int nid;
1600 unsigned long count;
1601 struct hstate *h;
1602 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604 err = kstrtoul(buf, 10, &count);
1605 if (err)
1606 goto out;
1607
1608 h = kobj_to_hstate(kobj, &nid);
1609 if (h->order >= MAX_ORDER) {
1610 err = -EINVAL;
1611 goto out;
1612 }
1613
1614 if (nid == NUMA_NO_NODE) {
1615 /*
1616 * global hstate attribute
1617 */
1618 if (!(obey_mempolicy &&
1619 init_nodemask_of_mempolicy(nodes_allowed))) {
1620 NODEMASK_FREE(nodes_allowed);
1621 nodes_allowed = &node_states[N_MEMORY];
1622 }
1623 } else if (nodes_allowed) {
1624 /*
1625 * per node hstate attribute: adjust count to global,
1626 * but restrict alloc/free to the specified node.
1627 */
1628 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629 init_nodemask_of_node(nodes_allowed, nid);
1630 } else
1631 nodes_allowed = &node_states[N_MEMORY];
1632
1633 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1634
1635 if (nodes_allowed != &node_states[N_MEMORY])
1636 NODEMASK_FREE(nodes_allowed);
1637
1638 return len;
1639out:
1640 NODEMASK_FREE(nodes_allowed);
1641 return err;
1642}
1643
1644static ssize_t nr_hugepages_show(struct kobject *kobj,
1645 struct kobj_attribute *attr, char *buf)
1646{
1647 return nr_hugepages_show_common(kobj, attr, buf);
1648}
1649
1650static ssize_t nr_hugepages_store(struct kobject *kobj,
1651 struct kobj_attribute *attr, const char *buf, size_t len)
1652{
1653 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654}
1655HSTATE_ATTR(nr_hugepages);
1656
1657#ifdef CONFIG_NUMA
1658
1659/*
1660 * hstate attribute for optionally mempolicy-based constraint on persistent
1661 * huge page alloc/free.
1662 */
1663static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664 struct kobj_attribute *attr, char *buf)
1665{
1666 return nr_hugepages_show_common(kobj, attr, buf);
1667}
1668
1669static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670 struct kobj_attribute *attr, const char *buf, size_t len)
1671{
1672 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673}
1674HSTATE_ATTR(nr_hugepages_mempolicy);
1675#endif
1676
1677
1678static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679 struct kobj_attribute *attr, char *buf)
1680{
1681 struct hstate *h = kobj_to_hstate(kobj, NULL);
1682 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683}
1684
1685static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686 struct kobj_attribute *attr, const char *buf, size_t count)
1687{
1688 int err;
1689 unsigned long input;
1690 struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692 if (h->order >= MAX_ORDER)
1693 return -EINVAL;
1694
1695 err = kstrtoul(buf, 10, &input);
1696 if (err)
1697 return err;
1698
1699 spin_lock(&hugetlb_lock);
1700 h->nr_overcommit_huge_pages = input;
1701 spin_unlock(&hugetlb_lock);
1702
1703 return count;
1704}
1705HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707static ssize_t free_hugepages_show(struct kobject *kobj,
1708 struct kobj_attribute *attr, char *buf)
1709{
1710 struct hstate *h;
1711 unsigned long free_huge_pages;
1712 int nid;
1713
1714 h = kobj_to_hstate(kobj, &nid);
1715 if (nid == NUMA_NO_NODE)
1716 free_huge_pages = h->free_huge_pages;
1717 else
1718 free_huge_pages = h->free_huge_pages_node[nid];
1719
1720 return sprintf(buf, "%lu\n", free_huge_pages);
1721}
1722HSTATE_ATTR_RO(free_hugepages);
1723
1724static ssize_t resv_hugepages_show(struct kobject *kobj,
1725 struct kobj_attribute *attr, char *buf)
1726{
1727 struct hstate *h = kobj_to_hstate(kobj, NULL);
1728 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729}
1730HSTATE_ATTR_RO(resv_hugepages);
1731
1732static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733 struct kobj_attribute *attr, char *buf)
1734{
1735 struct hstate *h;
1736 unsigned long surplus_huge_pages;
1737 int nid;
1738
1739 h = kobj_to_hstate(kobj, &nid);
1740 if (nid == NUMA_NO_NODE)
1741 surplus_huge_pages = h->surplus_huge_pages;
1742 else
1743 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745 return sprintf(buf, "%lu\n", surplus_huge_pages);
1746}
1747HSTATE_ATTR_RO(surplus_hugepages);
1748
1749static struct attribute *hstate_attrs[] = {
1750 &nr_hugepages_attr.attr,
1751 &nr_overcommit_hugepages_attr.attr,
1752 &free_hugepages_attr.attr,
1753 &resv_hugepages_attr.attr,
1754 &surplus_hugepages_attr.attr,
1755#ifdef CONFIG_NUMA
1756 &nr_hugepages_mempolicy_attr.attr,
1757#endif
1758 NULL,
1759};
1760
1761static struct attribute_group hstate_attr_group = {
1762 .attrs = hstate_attrs,
1763};
1764
1765static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766 struct kobject **hstate_kobjs,
1767 struct attribute_group *hstate_attr_group)
1768{
1769 int retval;
1770 int hi = hstate_index(h);
1771
1772 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773 if (!hstate_kobjs[hi])
1774 return -ENOMEM;
1775
1776 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777 if (retval)
1778 kobject_put(hstate_kobjs[hi]);
1779
1780 return retval;
1781}
1782
1783static void __init hugetlb_sysfs_init(void)
1784{
1785 struct hstate *h;
1786 int err;
1787
1788 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789 if (!hugepages_kobj)
1790 return;
1791
1792 for_each_hstate(h) {
1793 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794 hstate_kobjs, &hstate_attr_group);
1795 if (err)
1796 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797 }
1798}
1799
1800#ifdef CONFIG_NUMA
1801
1802/*
1803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804 * with node devices in node_devices[] using a parallel array. The array
1805 * index of a node device or _hstate == node id.
1806 * This is here to avoid any static dependency of the node device driver, in
1807 * the base kernel, on the hugetlb module.
1808 */
1809struct node_hstate {
1810 struct kobject *hugepages_kobj;
1811 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1812};
1813struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815/*
1816 * A subset of global hstate attributes for node devices
1817 */
1818static struct attribute *per_node_hstate_attrs[] = {
1819 &nr_hugepages_attr.attr,
1820 &free_hugepages_attr.attr,
1821 &surplus_hugepages_attr.attr,
1822 NULL,
1823};
1824
1825static struct attribute_group per_node_hstate_attr_group = {
1826 .attrs = per_node_hstate_attrs,
1827};
1828
1829/*
1830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831 * Returns node id via non-NULL nidp.
1832 */
1833static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834{
1835 int nid;
1836
1837 for (nid = 0; nid < nr_node_ids; nid++) {
1838 struct node_hstate *nhs = &node_hstates[nid];
1839 int i;
1840 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841 if (nhs->hstate_kobjs[i] == kobj) {
1842 if (nidp)
1843 *nidp = nid;
1844 return &hstates[i];
1845 }
1846 }
1847
1848 BUG();
1849 return NULL;
1850}
1851
1852/*
1853 * Unregister hstate attributes from a single node device.
1854 * No-op if no hstate attributes attached.
1855 */
1856static void hugetlb_unregister_node(struct node *node)
1857{
1858 struct hstate *h;
1859 struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861 if (!nhs->hugepages_kobj)
1862 return; /* no hstate attributes */
1863
1864 for_each_hstate(h) {
1865 int idx = hstate_index(h);
1866 if (nhs->hstate_kobjs[idx]) {
1867 kobject_put(nhs->hstate_kobjs[idx]);
1868 nhs->hstate_kobjs[idx] = NULL;
1869 }
1870 }
1871
1872 kobject_put(nhs->hugepages_kobj);
1873 nhs->hugepages_kobj = NULL;
1874}
1875
1876/*
1877 * hugetlb module exit: unregister hstate attributes from node devices
1878 * that have them.
1879 */
1880static void hugetlb_unregister_all_nodes(void)
1881{
1882 int nid;
1883
1884 /*
1885 * disable node device registrations.
1886 */
1887 register_hugetlbfs_with_node(NULL, NULL);
1888
1889 /*
1890 * remove hstate attributes from any nodes that have them.
1891 */
1892 for (nid = 0; nid < nr_node_ids; nid++)
1893 hugetlb_unregister_node(node_devices[nid]);
1894}
1895
1896/*
1897 * Register hstate attributes for a single node device.
1898 * No-op if attributes already registered.
1899 */
1900static void hugetlb_register_node(struct node *node)
1901{
1902 struct hstate *h;
1903 struct node_hstate *nhs = &node_hstates[node->dev.id];
1904 int err;
1905
1906 if (nhs->hugepages_kobj)
1907 return; /* already allocated */
1908
1909 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910 &node->dev.kobj);
1911 if (!nhs->hugepages_kobj)
1912 return;
1913
1914 for_each_hstate(h) {
1915 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916 nhs->hstate_kobjs,
1917 &per_node_hstate_attr_group);
1918 if (err) {
1919 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920 h->name, node->dev.id);
1921 hugetlb_unregister_node(node);
1922 break;
1923 }
1924 }
1925}
1926
1927/*
1928 * hugetlb init time: register hstate attributes for all registered node
1929 * devices of nodes that have memory. All on-line nodes should have
1930 * registered their associated device by this time.
1931 */
1932static void hugetlb_register_all_nodes(void)
1933{
1934 int nid;
1935
1936 for_each_node_state(nid, N_MEMORY) {
1937 struct node *node = node_devices[nid];
1938 if (node->dev.id == nid)
1939 hugetlb_register_node(node);
1940 }
1941
1942 /*
1943 * Let the node device driver know we're here so it can
1944 * [un]register hstate attributes on node hotplug.
1945 */
1946 register_hugetlbfs_with_node(hugetlb_register_node,
1947 hugetlb_unregister_node);
1948}
1949#else /* !CONFIG_NUMA */
1950
1951static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952{
1953 BUG();
1954 if (nidp)
1955 *nidp = -1;
1956 return NULL;
1957}
1958
1959static void hugetlb_unregister_all_nodes(void) { }
1960
1961static void hugetlb_register_all_nodes(void) { }
1962
1963#endif
1964
1965static void __exit hugetlb_exit(void)
1966{
1967 struct hstate *h;
1968
1969 hugetlb_unregister_all_nodes();
1970
1971 for_each_hstate(h) {
1972 kobject_put(hstate_kobjs[hstate_index(h)]);
1973 }
1974
1975 kobject_put(hugepages_kobj);
1976 kfree(htlb_fault_mutex_table);
1977}
1978module_exit(hugetlb_exit);
1979
1980static int __init hugetlb_init(void)
1981{
1982 int i;
1983
1984 if (!hugepages_supported())
1985 return 0;
1986
1987 if (!size_to_hstate(default_hstate_size)) {
1988 default_hstate_size = HPAGE_SIZE;
1989 if (!size_to_hstate(default_hstate_size))
1990 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991 }
1992 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993 if (default_hstate_max_huge_pages)
1994 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1995
1996 hugetlb_init_hstates();
1997 gather_bootmem_prealloc();
1998 report_hugepages();
1999
2000 hugetlb_sysfs_init();
2001 hugetlb_register_all_nodes();
2002 hugetlb_cgroup_file_init();
2003
2004#ifdef CONFIG_SMP
2005 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006#else
2007 num_fault_mutexes = 1;
2008#endif
2009 htlb_fault_mutex_table =
2010 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011 BUG_ON(!htlb_fault_mutex_table);
2012
2013 for (i = 0; i < num_fault_mutexes; i++)
2014 mutex_init(&htlb_fault_mutex_table[i]);
2015 return 0;
2016}
2017module_init(hugetlb_init);
2018
2019/* Should be called on processing a hugepagesz=... option */
2020void __init hugetlb_add_hstate(unsigned order)
2021{
2022 struct hstate *h;
2023 unsigned long i;
2024
2025 if (size_to_hstate(PAGE_SIZE << order)) {
2026 pr_warning("hugepagesz= specified twice, ignoring\n");
2027 return;
2028 }
2029 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030 BUG_ON(order == 0);
2031 h = &hstates[hugetlb_max_hstate++];
2032 h->order = order;
2033 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034 h->nr_huge_pages = 0;
2035 h->free_huge_pages = 0;
2036 for (i = 0; i < MAX_NUMNODES; ++i)
2037 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038 INIT_LIST_HEAD(&h->hugepage_activelist);
2039 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042 huge_page_size(h)/1024);
2043
2044 parsed_hstate = h;
2045}
2046
2047static int __init hugetlb_nrpages_setup(char *s)
2048{
2049 unsigned long *mhp;
2050 static unsigned long *last_mhp;
2051
2052 /*
2053 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054 * so this hugepages= parameter goes to the "default hstate".
2055 */
2056 if (!hugetlb_max_hstate)
2057 mhp = &default_hstate_max_huge_pages;
2058 else
2059 mhp = &parsed_hstate->max_huge_pages;
2060
2061 if (mhp == last_mhp) {
2062 pr_warning("hugepages= specified twice without "
2063 "interleaving hugepagesz=, ignoring\n");
2064 return 1;
2065 }
2066
2067 if (sscanf(s, "%lu", mhp) <= 0)
2068 *mhp = 0;
2069
2070 /*
2071 * Global state is always initialized later in hugetlb_init.
2072 * But we need to allocate >= MAX_ORDER hstates here early to still
2073 * use the bootmem allocator.
2074 */
2075 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076 hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078 last_mhp = mhp;
2079
2080 return 1;
2081}
2082__setup("hugepages=", hugetlb_nrpages_setup);
2083
2084static int __init hugetlb_default_setup(char *s)
2085{
2086 default_hstate_size = memparse(s, &s);
2087 return 1;
2088}
2089__setup("default_hugepagesz=", hugetlb_default_setup);
2090
2091static unsigned int cpuset_mems_nr(unsigned int *array)
2092{
2093 int node;
2094 unsigned int nr = 0;
2095
2096 for_each_node_mask(node, cpuset_current_mems_allowed)
2097 nr += array[node];
2098
2099 return nr;
2100}
2101
2102#ifdef CONFIG_SYSCTL
2103static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104 struct ctl_table *table, int write,
2105 void __user *buffer, size_t *length, loff_t *ppos)
2106{
2107 struct hstate *h = &default_hstate;
2108 unsigned long tmp;
2109 int ret;
2110
2111 if (!hugepages_supported())
2112 return -ENOTSUPP;
2113
2114 tmp = h->max_huge_pages;
2115
2116 if (write && h->order >= MAX_ORDER)
2117 return -EINVAL;
2118
2119 table->data = &tmp;
2120 table->maxlen = sizeof(unsigned long);
2121 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122 if (ret)
2123 goto out;
2124
2125 if (write) {
2126 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127 GFP_KERNEL | __GFP_NORETRY);
2128 if (!(obey_mempolicy &&
2129 init_nodemask_of_mempolicy(nodes_allowed))) {
2130 NODEMASK_FREE(nodes_allowed);
2131 nodes_allowed = &node_states[N_MEMORY];
2132 }
2133 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135 if (nodes_allowed != &node_states[N_MEMORY])
2136 NODEMASK_FREE(nodes_allowed);
2137 }
2138out:
2139 return ret;
2140}
2141
2142int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143 void __user *buffer, size_t *length, loff_t *ppos)
2144{
2145
2146 return hugetlb_sysctl_handler_common(false, table, write,
2147 buffer, length, ppos);
2148}
2149
2150#ifdef CONFIG_NUMA
2151int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152 void __user *buffer, size_t *length, loff_t *ppos)
2153{
2154 return hugetlb_sysctl_handler_common(true, table, write,
2155 buffer, length, ppos);
2156}
2157#endif /* CONFIG_NUMA */
2158
2159int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160 void __user *buffer,
2161 size_t *length, loff_t *ppos)
2162{
2163 struct hstate *h = &default_hstate;
2164 unsigned long tmp;
2165 int ret;
2166
2167 if (!hugepages_supported())
2168 return -ENOTSUPP;
2169
2170 tmp = h->nr_overcommit_huge_pages;
2171
2172 if (write && h->order >= MAX_ORDER)
2173 return -EINVAL;
2174
2175 table->data = &tmp;
2176 table->maxlen = sizeof(unsigned long);
2177 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2178 if (ret)
2179 goto out;
2180
2181 if (write) {
2182 spin_lock(&hugetlb_lock);
2183 h->nr_overcommit_huge_pages = tmp;
2184 spin_unlock(&hugetlb_lock);
2185 }
2186out:
2187 return ret;
2188}
2189
2190#endif /* CONFIG_SYSCTL */
2191
2192void hugetlb_report_meminfo(struct seq_file *m)
2193{
2194 struct hstate *h = &default_hstate;
2195 if (!hugepages_supported())
2196 return;
2197 seq_printf(m,
2198 "HugePages_Total: %5lu\n"
2199 "HugePages_Free: %5lu\n"
2200 "HugePages_Rsvd: %5lu\n"
2201 "HugePages_Surp: %5lu\n"
2202 "Hugepagesize: %8lu kB\n",
2203 h->nr_huge_pages,
2204 h->free_huge_pages,
2205 h->resv_huge_pages,
2206 h->surplus_huge_pages,
2207 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2208}
2209
2210int hugetlb_report_node_meminfo(int nid, char *buf)
2211{
2212 struct hstate *h = &default_hstate;
2213 if (!hugepages_supported())
2214 return 0;
2215 return sprintf(buf,
2216 "Node %d HugePages_Total: %5u\n"
2217 "Node %d HugePages_Free: %5u\n"
2218 "Node %d HugePages_Surp: %5u\n",
2219 nid, h->nr_huge_pages_node[nid],
2220 nid, h->free_huge_pages_node[nid],
2221 nid, h->surplus_huge_pages_node[nid]);
2222}
2223
2224void hugetlb_show_meminfo(void)
2225{
2226 struct hstate *h;
2227 int nid;
2228
2229 if (!hugepages_supported())
2230 return;
2231
2232 for_each_node_state(nid, N_MEMORY)
2233 for_each_hstate(h)
2234 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2235 nid,
2236 h->nr_huge_pages_node[nid],
2237 h->free_huge_pages_node[nid],
2238 h->surplus_huge_pages_node[nid],
2239 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2240}
2241
2242/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2243unsigned long hugetlb_total_pages(void)
2244{
2245 struct hstate *h;
2246 unsigned long nr_total_pages = 0;
2247
2248 for_each_hstate(h)
2249 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2250 return nr_total_pages;
2251}
2252
2253static int hugetlb_acct_memory(struct hstate *h, long delta)
2254{
2255 int ret = -ENOMEM;
2256
2257 spin_lock(&hugetlb_lock);
2258 /*
2259 * When cpuset is configured, it breaks the strict hugetlb page
2260 * reservation as the accounting is done on a global variable. Such
2261 * reservation is completely rubbish in the presence of cpuset because
2262 * the reservation is not checked against page availability for the
2263 * current cpuset. Application can still potentially OOM'ed by kernel
2264 * with lack of free htlb page in cpuset that the task is in.
2265 * Attempt to enforce strict accounting with cpuset is almost
2266 * impossible (or too ugly) because cpuset is too fluid that
2267 * task or memory node can be dynamically moved between cpusets.
2268 *
2269 * The change of semantics for shared hugetlb mapping with cpuset is
2270 * undesirable. However, in order to preserve some of the semantics,
2271 * we fall back to check against current free page availability as
2272 * a best attempt and hopefully to minimize the impact of changing
2273 * semantics that cpuset has.
2274 */
2275 if (delta > 0) {
2276 if (gather_surplus_pages(h, delta) < 0)
2277 goto out;
2278
2279 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2280 return_unused_surplus_pages(h, delta);
2281 goto out;
2282 }
2283 }
2284
2285 ret = 0;
2286 if (delta < 0)
2287 return_unused_surplus_pages(h, (unsigned long) -delta);
2288
2289out:
2290 spin_unlock(&hugetlb_lock);
2291 return ret;
2292}
2293
2294static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2295{
2296 struct resv_map *resv = vma_resv_map(vma);
2297
2298 /*
2299 * This new VMA should share its siblings reservation map if present.
2300 * The VMA will only ever have a valid reservation map pointer where
2301 * it is being copied for another still existing VMA. As that VMA
2302 * has a reference to the reservation map it cannot disappear until
2303 * after this open call completes. It is therefore safe to take a
2304 * new reference here without additional locking.
2305 */
2306 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307 kref_get(&resv->refs);
2308}
2309
2310static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2311{
2312 struct hstate *h = hstate_vma(vma);
2313 struct resv_map *resv = vma_resv_map(vma);
2314 struct hugepage_subpool *spool = subpool_vma(vma);
2315 unsigned long reserve, start, end;
2316
2317 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2318 return;
2319
2320 start = vma_hugecache_offset(h, vma, vma->vm_start);
2321 end = vma_hugecache_offset(h, vma, vma->vm_end);
2322
2323 reserve = (end - start) - region_count(resv, start, end);
2324
2325 kref_put(&resv->refs, resv_map_release);
2326
2327 if (reserve) {
2328 hugetlb_acct_memory(h, -reserve);
2329 hugepage_subpool_put_pages(spool, reserve);
2330 }
2331}
2332
2333/*
2334 * We cannot handle pagefaults against hugetlb pages at all. They cause
2335 * handle_mm_fault() to try to instantiate regular-sized pages in the
2336 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2337 * this far.
2338 */
2339static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2340{
2341 BUG();
2342 return 0;
2343}
2344
2345const struct vm_operations_struct hugetlb_vm_ops = {
2346 .fault = hugetlb_vm_op_fault,
2347 .open = hugetlb_vm_op_open,
2348 .close = hugetlb_vm_op_close,
2349};
2350
2351static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2352 int writable)
2353{
2354 pte_t entry;
2355
2356 if (writable) {
2357 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2358 vma->vm_page_prot)));
2359 } else {
2360 entry = huge_pte_wrprotect(mk_huge_pte(page,
2361 vma->vm_page_prot));
2362 }
2363 entry = pte_mkyoung(entry);
2364 entry = pte_mkhuge(entry);
2365 entry = arch_make_huge_pte(entry, vma, page, writable);
2366
2367 return entry;
2368}
2369
2370static void set_huge_ptep_writable(struct vm_area_struct *vma,
2371 unsigned long address, pte_t *ptep)
2372{
2373 pte_t entry;
2374
2375 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2376 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2377 update_mmu_cache(vma, address, ptep);
2378}
2379
2380
2381int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2382 struct vm_area_struct *vma)
2383{
2384 pte_t *src_pte, *dst_pte, entry;
2385 struct page *ptepage;
2386 unsigned long addr;
2387 int cow;
2388 struct hstate *h = hstate_vma(vma);
2389 unsigned long sz = huge_page_size(h);
2390 unsigned long mmun_start; /* For mmu_notifiers */
2391 unsigned long mmun_end; /* For mmu_notifiers */
2392 int ret = 0;
2393
2394 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395
2396 mmun_start = vma->vm_start;
2397 mmun_end = vma->vm_end;
2398 if (cow)
2399 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2400
2401 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2402 spinlock_t *src_ptl, *dst_ptl;
2403 src_pte = huge_pte_offset(src, addr);
2404 if (!src_pte)
2405 continue;
2406 dst_pte = huge_pte_alloc(dst, addr, sz);
2407 if (!dst_pte) {
2408 ret = -ENOMEM;
2409 break;
2410 }
2411
2412 /* If the pagetables are shared don't copy or take references */
2413 if (dst_pte == src_pte)
2414 continue;
2415
2416 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2417 src_ptl = huge_pte_lockptr(h, src, src_pte);
2418 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2419 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2420 if (cow)
2421 huge_ptep_set_wrprotect(src, addr, src_pte);
2422 entry = huge_ptep_get(src_pte);
2423 ptepage = pte_page(entry);
2424 get_page(ptepage);
2425 page_dup_rmap(ptepage);
2426 set_huge_pte_at(dst, addr, dst_pte, entry);
2427 }
2428 spin_unlock(src_ptl);
2429 spin_unlock(dst_ptl);
2430 }
2431
2432 if (cow)
2433 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2434
2435 return ret;
2436}
2437
2438static int is_hugetlb_entry_migration(pte_t pte)
2439{
2440 swp_entry_t swp;
2441
2442 if (huge_pte_none(pte) || pte_present(pte))
2443 return 0;
2444 swp = pte_to_swp_entry(pte);
2445 if (non_swap_entry(swp) && is_migration_entry(swp))
2446 return 1;
2447 else
2448 return 0;
2449}
2450
2451static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2452{
2453 swp_entry_t swp;
2454
2455 if (huge_pte_none(pte) || pte_present(pte))
2456 return 0;
2457 swp = pte_to_swp_entry(pte);
2458 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2459 return 1;
2460 else
2461 return 0;
2462}
2463
2464void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2465 unsigned long start, unsigned long end,
2466 struct page *ref_page)
2467{
2468 int force_flush = 0;
2469 struct mm_struct *mm = vma->vm_mm;
2470 unsigned long address;
2471 pte_t *ptep;
2472 pte_t pte;
2473 spinlock_t *ptl;
2474 struct page *page;
2475 struct hstate *h = hstate_vma(vma);
2476 unsigned long sz = huge_page_size(h);
2477 const unsigned long mmun_start = start; /* For mmu_notifiers */
2478 const unsigned long mmun_end = end; /* For mmu_notifiers */
2479
2480 WARN_ON(!is_vm_hugetlb_page(vma));
2481 BUG_ON(start & ~huge_page_mask(h));
2482 BUG_ON(end & ~huge_page_mask(h));
2483
2484 tlb_start_vma(tlb, vma);
2485 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486again:
2487 for (address = start; address < end; address += sz) {
2488 ptep = huge_pte_offset(mm, address);
2489 if (!ptep)
2490 continue;
2491
2492 ptl = huge_pte_lock(h, mm, ptep);
2493 if (huge_pmd_unshare(mm, &address, ptep))
2494 goto unlock;
2495
2496 pte = huge_ptep_get(ptep);
2497 if (huge_pte_none(pte))
2498 goto unlock;
2499
2500 /*
2501 * HWPoisoned hugepage is already unmapped and dropped reference
2502 */
2503 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2504 huge_pte_clear(mm, address, ptep);
2505 goto unlock;
2506 }
2507
2508 page = pte_page(pte);
2509 /*
2510 * If a reference page is supplied, it is because a specific
2511 * page is being unmapped, not a range. Ensure the page we
2512 * are about to unmap is the actual page of interest.
2513 */
2514 if (ref_page) {
2515 if (page != ref_page)
2516 goto unlock;
2517
2518 /*
2519 * Mark the VMA as having unmapped its page so that
2520 * future faults in this VMA will fail rather than
2521 * looking like data was lost
2522 */
2523 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2524 }
2525
2526 pte = huge_ptep_get_and_clear(mm, address, ptep);
2527 tlb_remove_tlb_entry(tlb, ptep, address);
2528 if (huge_pte_dirty(pte))
2529 set_page_dirty(page);
2530
2531 page_remove_rmap(page);
2532 force_flush = !__tlb_remove_page(tlb, page);
2533 if (force_flush) {
2534 spin_unlock(ptl);
2535 break;
2536 }
2537 /* Bail out after unmapping reference page if supplied */
2538 if (ref_page) {
2539 spin_unlock(ptl);
2540 break;
2541 }
2542unlock:
2543 spin_unlock(ptl);
2544 }
2545 /*
2546 * mmu_gather ran out of room to batch pages, we break out of
2547 * the PTE lock to avoid doing the potential expensive TLB invalidate
2548 * and page-free while holding it.
2549 */
2550 if (force_flush) {
2551 force_flush = 0;
2552 tlb_flush_mmu(tlb);
2553 if (address < end && !ref_page)
2554 goto again;
2555 }
2556 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2557 tlb_end_vma(tlb, vma);
2558}
2559
2560void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2561 struct vm_area_struct *vma, unsigned long start,
2562 unsigned long end, struct page *ref_page)
2563{
2564 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2565
2566 /*
2567 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2568 * test will fail on a vma being torn down, and not grab a page table
2569 * on its way out. We're lucky that the flag has such an appropriate
2570 * name, and can in fact be safely cleared here. We could clear it
2571 * before the __unmap_hugepage_range above, but all that's necessary
2572 * is to clear it before releasing the i_mmap_mutex. This works
2573 * because in the context this is called, the VMA is about to be
2574 * destroyed and the i_mmap_mutex is held.
2575 */
2576 vma->vm_flags &= ~VM_MAYSHARE;
2577}
2578
2579void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2580 unsigned long end, struct page *ref_page)
2581{
2582 struct mm_struct *mm;
2583 struct mmu_gather tlb;
2584
2585 mm = vma->vm_mm;
2586
2587 tlb_gather_mmu(&tlb, mm, start, end);
2588 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2589 tlb_finish_mmu(&tlb, start, end);
2590}
2591
2592/*
2593 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2594 * mappping it owns the reserve page for. The intention is to unmap the page
2595 * from other VMAs and let the children be SIGKILLed if they are faulting the
2596 * same region.
2597 */
2598static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2599 struct page *page, unsigned long address)
2600{
2601 struct hstate *h = hstate_vma(vma);
2602 struct vm_area_struct *iter_vma;
2603 struct address_space *mapping;
2604 pgoff_t pgoff;
2605
2606 /*
2607 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2608 * from page cache lookup which is in HPAGE_SIZE units.
2609 */
2610 address = address & huge_page_mask(h);
2611 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2612 vma->vm_pgoff;
2613 mapping = file_inode(vma->vm_file)->i_mapping;
2614
2615 /*
2616 * Take the mapping lock for the duration of the table walk. As
2617 * this mapping should be shared between all the VMAs,
2618 * __unmap_hugepage_range() is called as the lock is already held
2619 */
2620 mutex_lock(&mapping->i_mmap_mutex);
2621 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2622 /* Do not unmap the current VMA */
2623 if (iter_vma == vma)
2624 continue;
2625
2626 /*
2627 * Unmap the page from other VMAs without their own reserves.
2628 * They get marked to be SIGKILLed if they fault in these
2629 * areas. This is because a future no-page fault on this VMA
2630 * could insert a zeroed page instead of the data existing
2631 * from the time of fork. This would look like data corruption
2632 */
2633 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2634 unmap_hugepage_range(iter_vma, address,
2635 address + huge_page_size(h), page);
2636 }
2637 mutex_unlock(&mapping->i_mmap_mutex);
2638
2639 return 1;
2640}
2641
2642/*
2643 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2644 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2645 * cannot race with other handlers or page migration.
2646 * Keep the pte_same checks anyway to make transition from the mutex easier.
2647 */
2648static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2649 unsigned long address, pte_t *ptep, pte_t pte,
2650 struct page *pagecache_page, spinlock_t *ptl)
2651{
2652 struct hstate *h = hstate_vma(vma);
2653 struct page *old_page, *new_page;
2654 int outside_reserve = 0;
2655 unsigned long mmun_start; /* For mmu_notifiers */
2656 unsigned long mmun_end; /* For mmu_notifiers */
2657
2658 old_page = pte_page(pte);
2659
2660retry_avoidcopy:
2661 /* If no-one else is actually using this page, avoid the copy
2662 * and just make the page writable */
2663 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2664 page_move_anon_rmap(old_page, vma, address);
2665 set_huge_ptep_writable(vma, address, ptep);
2666 return 0;
2667 }
2668
2669 /*
2670 * If the process that created a MAP_PRIVATE mapping is about to
2671 * perform a COW due to a shared page count, attempt to satisfy
2672 * the allocation without using the existing reserves. The pagecache
2673 * page is used to determine if the reserve at this address was
2674 * consumed or not. If reserves were used, a partial faulted mapping
2675 * at the time of fork() could consume its reserves on COW instead
2676 * of the full address range.
2677 */
2678 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2679 old_page != pagecache_page)
2680 outside_reserve = 1;
2681
2682 page_cache_get(old_page);
2683
2684 /* Drop page table lock as buddy allocator may be called */
2685 spin_unlock(ptl);
2686 new_page = alloc_huge_page(vma, address, outside_reserve);
2687
2688 if (IS_ERR(new_page)) {
2689 long err = PTR_ERR(new_page);
2690 page_cache_release(old_page);
2691
2692 /*
2693 * If a process owning a MAP_PRIVATE mapping fails to COW,
2694 * it is due to references held by a child and an insufficient
2695 * huge page pool. To guarantee the original mappers
2696 * reliability, unmap the page from child processes. The child
2697 * may get SIGKILLed if it later faults.
2698 */
2699 if (outside_reserve) {
2700 BUG_ON(huge_pte_none(pte));
2701 if (unmap_ref_private(mm, vma, old_page, address)) {
2702 BUG_ON(huge_pte_none(pte));
2703 spin_lock(ptl);
2704 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2705 if (likely(ptep &&
2706 pte_same(huge_ptep_get(ptep), pte)))
2707 goto retry_avoidcopy;
2708 /*
2709 * race occurs while re-acquiring page table
2710 * lock, and our job is done.
2711 */
2712 return 0;
2713 }
2714 WARN_ON_ONCE(1);
2715 }
2716
2717 /* Caller expects lock to be held */
2718 spin_lock(ptl);
2719 if (err == -ENOMEM)
2720 return VM_FAULT_OOM;
2721 else
2722 return VM_FAULT_SIGBUS;
2723 }
2724
2725 /*
2726 * When the original hugepage is shared one, it does not have
2727 * anon_vma prepared.
2728 */
2729 if (unlikely(anon_vma_prepare(vma))) {
2730 page_cache_release(new_page);
2731 page_cache_release(old_page);
2732 /* Caller expects lock to be held */
2733 spin_lock(ptl);
2734 return VM_FAULT_OOM;
2735 }
2736
2737 copy_user_huge_page(new_page, old_page, address, vma,
2738 pages_per_huge_page(h));
2739 __SetPageUptodate(new_page);
2740
2741 mmun_start = address & huge_page_mask(h);
2742 mmun_end = mmun_start + huge_page_size(h);
2743 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2744 /*
2745 * Retake the page table lock to check for racing updates
2746 * before the page tables are altered
2747 */
2748 spin_lock(ptl);
2749 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2750 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2751 ClearPagePrivate(new_page);
2752
2753 /* Break COW */
2754 huge_ptep_clear_flush(vma, address, ptep);
2755 set_huge_pte_at(mm, address, ptep,
2756 make_huge_pte(vma, new_page, 1));
2757 page_remove_rmap(old_page);
2758 hugepage_add_new_anon_rmap(new_page, vma, address);
2759 /* Make the old page be freed below */
2760 new_page = old_page;
2761 }
2762 spin_unlock(ptl);
2763 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764 page_cache_release(new_page);
2765 page_cache_release(old_page);
2766
2767 /* Caller expects lock to be held */
2768 spin_lock(ptl);
2769 return 0;
2770}
2771
2772/* Return the pagecache page at a given address within a VMA */
2773static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2774 struct vm_area_struct *vma, unsigned long address)
2775{
2776 struct address_space *mapping;
2777 pgoff_t idx;
2778
2779 mapping = vma->vm_file->f_mapping;
2780 idx = vma_hugecache_offset(h, vma, address);
2781
2782 return find_lock_page(mapping, idx);
2783}
2784
2785/*
2786 * Return whether there is a pagecache page to back given address within VMA.
2787 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2788 */
2789static bool hugetlbfs_pagecache_present(struct hstate *h,
2790 struct vm_area_struct *vma, unsigned long address)
2791{
2792 struct address_space *mapping;
2793 pgoff_t idx;
2794 struct page *page;
2795
2796 mapping = vma->vm_file->f_mapping;
2797 idx = vma_hugecache_offset(h, vma, address);
2798
2799 page = find_get_page(mapping, idx);
2800 if (page)
2801 put_page(page);
2802 return page != NULL;
2803}
2804
2805static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2806 struct address_space *mapping, pgoff_t idx,
2807 unsigned long address, pte_t *ptep, unsigned int flags)
2808{
2809 struct hstate *h = hstate_vma(vma);
2810 int ret = VM_FAULT_SIGBUS;
2811 int anon_rmap = 0;
2812 unsigned long size;
2813 struct page *page;
2814 pte_t new_pte;
2815 spinlock_t *ptl;
2816
2817 /*
2818 * Currently, we are forced to kill the process in the event the
2819 * original mapper has unmapped pages from the child due to a failed
2820 * COW. Warn that such a situation has occurred as it may not be obvious
2821 */
2822 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2823 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2824 current->pid);
2825 return ret;
2826 }
2827
2828 /*
2829 * Use page lock to guard against racing truncation
2830 * before we get page_table_lock.
2831 */
2832retry:
2833 page = find_lock_page(mapping, idx);
2834 if (!page) {
2835 size = i_size_read(mapping->host) >> huge_page_shift(h);
2836 if (idx >= size)
2837 goto out;
2838 page = alloc_huge_page(vma, address, 0);
2839 if (IS_ERR(page)) {
2840 ret = PTR_ERR(page);
2841 if (ret == -ENOMEM)
2842 ret = VM_FAULT_OOM;
2843 else
2844 ret = VM_FAULT_SIGBUS;
2845 goto out;
2846 }
2847 clear_huge_page(page, address, pages_per_huge_page(h));
2848 __SetPageUptodate(page);
2849
2850 if (vma->vm_flags & VM_MAYSHARE) {
2851 int err;
2852 struct inode *inode = mapping->host;
2853
2854 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2855 if (err) {
2856 put_page(page);
2857 if (err == -EEXIST)
2858 goto retry;
2859 goto out;
2860 }
2861 ClearPagePrivate(page);
2862
2863 spin_lock(&inode->i_lock);
2864 inode->i_blocks += blocks_per_huge_page(h);
2865 spin_unlock(&inode->i_lock);
2866 } else {
2867 lock_page(page);
2868 if (unlikely(anon_vma_prepare(vma))) {
2869 ret = VM_FAULT_OOM;
2870 goto backout_unlocked;
2871 }
2872 anon_rmap = 1;
2873 }
2874 } else {
2875 /*
2876 * If memory error occurs between mmap() and fault, some process
2877 * don't have hwpoisoned swap entry for errored virtual address.
2878 * So we need to block hugepage fault by PG_hwpoison bit check.
2879 */
2880 if (unlikely(PageHWPoison(page))) {
2881 ret = VM_FAULT_HWPOISON |
2882 VM_FAULT_SET_HINDEX(hstate_index(h));
2883 goto backout_unlocked;
2884 }
2885 }
2886
2887 /*
2888 * If we are going to COW a private mapping later, we examine the
2889 * pending reservations for this page now. This will ensure that
2890 * any allocations necessary to record that reservation occur outside
2891 * the spinlock.
2892 */
2893 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2894 if (vma_needs_reservation(h, vma, address) < 0) {
2895 ret = VM_FAULT_OOM;
2896 goto backout_unlocked;
2897 }
2898
2899 ptl = huge_pte_lockptr(h, mm, ptep);
2900 spin_lock(ptl);
2901 size = i_size_read(mapping->host) >> huge_page_shift(h);
2902 if (idx >= size)
2903 goto backout;
2904
2905 ret = 0;
2906 if (!huge_pte_none(huge_ptep_get(ptep)))
2907 goto backout;
2908
2909 if (anon_rmap) {
2910 ClearPagePrivate(page);
2911 hugepage_add_new_anon_rmap(page, vma, address);
2912 } else
2913 page_dup_rmap(page);
2914 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2915 && (vma->vm_flags & VM_SHARED)));
2916 set_huge_pte_at(mm, address, ptep, new_pte);
2917
2918 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2919 /* Optimization, do the COW without a second fault */
2920 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2921 }
2922
2923 spin_unlock(ptl);
2924 unlock_page(page);
2925out:
2926 return ret;
2927
2928backout:
2929 spin_unlock(ptl);
2930backout_unlocked:
2931 unlock_page(page);
2932 put_page(page);
2933 goto out;
2934}
2935
2936#ifdef CONFIG_SMP
2937static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2938 struct vm_area_struct *vma,
2939 struct address_space *mapping,
2940 pgoff_t idx, unsigned long address)
2941{
2942 unsigned long key[2];
2943 u32 hash;
2944
2945 if (vma->vm_flags & VM_SHARED) {
2946 key[0] = (unsigned long) mapping;
2947 key[1] = idx;
2948 } else {
2949 key[0] = (unsigned long) mm;
2950 key[1] = address >> huge_page_shift(h);
2951 }
2952
2953 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2954
2955 return hash & (num_fault_mutexes - 1);
2956}
2957#else
2958/*
2959 * For uniprocesor systems we always use a single mutex, so just
2960 * return 0 and avoid the hashing overhead.
2961 */
2962static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2963 struct vm_area_struct *vma,
2964 struct address_space *mapping,
2965 pgoff_t idx, unsigned long address)
2966{
2967 return 0;
2968}
2969#endif
2970
2971int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972 unsigned long address, unsigned int flags)
2973{
2974 pte_t *ptep, entry;
2975 spinlock_t *ptl;
2976 int ret;
2977 u32 hash;
2978 pgoff_t idx;
2979 struct page *page = NULL;
2980 struct page *pagecache_page = NULL;
2981 struct hstate *h = hstate_vma(vma);
2982 struct address_space *mapping;
2983
2984 address &= huge_page_mask(h);
2985
2986 ptep = huge_pte_offset(mm, address);
2987 if (ptep) {
2988 entry = huge_ptep_get(ptep);
2989 if (unlikely(is_hugetlb_entry_migration(entry))) {
2990 migration_entry_wait_huge(vma, mm, ptep);
2991 return 0;
2992 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2993 return VM_FAULT_HWPOISON_LARGE |
2994 VM_FAULT_SET_HINDEX(hstate_index(h));
2995 }
2996
2997 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2998 if (!ptep)
2999 return VM_FAULT_OOM;
3000
3001 mapping = vma->vm_file->f_mapping;
3002 idx = vma_hugecache_offset(h, vma, address);
3003
3004 /*
3005 * Serialize hugepage allocation and instantiation, so that we don't
3006 * get spurious allocation failures if two CPUs race to instantiate
3007 * the same page in the page cache.
3008 */
3009 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3010 mutex_lock(&htlb_fault_mutex_table[hash]);
3011
3012 entry = huge_ptep_get(ptep);
3013 if (huge_pte_none(entry)) {
3014 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3015 goto out_mutex;
3016 }
3017
3018 ret = 0;
3019
3020 /*
3021 * If we are going to COW the mapping later, we examine the pending
3022 * reservations for this page now. This will ensure that any
3023 * allocations necessary to record that reservation occur outside the
3024 * spinlock. For private mappings, we also lookup the pagecache
3025 * page now as it is used to determine if a reservation has been
3026 * consumed.
3027 */
3028 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3029 if (vma_needs_reservation(h, vma, address) < 0) {
3030 ret = VM_FAULT_OOM;
3031 goto out_mutex;
3032 }
3033
3034 if (!(vma->vm_flags & VM_MAYSHARE))
3035 pagecache_page = hugetlbfs_pagecache_page(h,
3036 vma, address);
3037 }
3038
3039 /*
3040 * hugetlb_cow() requires page locks of pte_page(entry) and
3041 * pagecache_page, so here we need take the former one
3042 * when page != pagecache_page or !pagecache_page.
3043 * Note that locking order is always pagecache_page -> page,
3044 * so no worry about deadlock.
3045 */
3046 page = pte_page(entry);
3047 get_page(page);
3048 if (page != pagecache_page)
3049 lock_page(page);
3050
3051 ptl = huge_pte_lockptr(h, mm, ptep);
3052 spin_lock(ptl);
3053 /* Check for a racing update before calling hugetlb_cow */
3054 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3055 goto out_ptl;
3056
3057
3058 if (flags & FAULT_FLAG_WRITE) {
3059 if (!huge_pte_write(entry)) {
3060 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3061 pagecache_page, ptl);
3062 goto out_ptl;
3063 }
3064 entry = huge_pte_mkdirty(entry);
3065 }
3066 entry = pte_mkyoung(entry);
3067 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3068 flags & FAULT_FLAG_WRITE))
3069 update_mmu_cache(vma, address, ptep);
3070
3071out_ptl:
3072 spin_unlock(ptl);
3073
3074 if (pagecache_page) {
3075 unlock_page(pagecache_page);
3076 put_page(pagecache_page);
3077 }
3078 if (page != pagecache_page)
3079 unlock_page(page);
3080 put_page(page);
3081
3082out_mutex:
3083 mutex_unlock(&htlb_fault_mutex_table[hash]);
3084 return ret;
3085}
3086
3087long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3088 struct page **pages, struct vm_area_struct **vmas,
3089 unsigned long *position, unsigned long *nr_pages,
3090 long i, unsigned int flags)
3091{
3092 unsigned long pfn_offset;
3093 unsigned long vaddr = *position;
3094 unsigned long remainder = *nr_pages;
3095 struct hstate *h = hstate_vma(vma);
3096
3097 while (vaddr < vma->vm_end && remainder) {
3098 pte_t *pte;
3099 spinlock_t *ptl = NULL;
3100 int absent;
3101 struct page *page;
3102
3103 /*
3104 * Some archs (sparc64, sh*) have multiple pte_ts to
3105 * each hugepage. We have to make sure we get the
3106 * first, for the page indexing below to work.
3107 *
3108 * Note that page table lock is not held when pte is null.
3109 */
3110 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3111 if (pte)
3112 ptl = huge_pte_lock(h, mm, pte);
3113 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3114
3115 /*
3116 * When coredumping, it suits get_dump_page if we just return
3117 * an error where there's an empty slot with no huge pagecache
3118 * to back it. This way, we avoid allocating a hugepage, and
3119 * the sparse dumpfile avoids allocating disk blocks, but its
3120 * huge holes still show up with zeroes where they need to be.
3121 */
3122 if (absent && (flags & FOLL_DUMP) &&
3123 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3124 if (pte)
3125 spin_unlock(ptl);
3126 remainder = 0;
3127 break;
3128 }
3129
3130 /*
3131 * We need call hugetlb_fault for both hugepages under migration
3132 * (in which case hugetlb_fault waits for the migration,) and
3133 * hwpoisoned hugepages (in which case we need to prevent the
3134 * caller from accessing to them.) In order to do this, we use
3135 * here is_swap_pte instead of is_hugetlb_entry_migration and
3136 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3137 * both cases, and because we can't follow correct pages
3138 * directly from any kind of swap entries.
3139 */
3140 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3141 ((flags & FOLL_WRITE) &&
3142 !huge_pte_write(huge_ptep_get(pte)))) {
3143 int ret;
3144
3145 if (pte)
3146 spin_unlock(ptl);
3147 ret = hugetlb_fault(mm, vma, vaddr,
3148 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3149 if (!(ret & VM_FAULT_ERROR))
3150 continue;
3151
3152 remainder = 0;
3153 break;
3154 }
3155
3156 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3157 page = pte_page(huge_ptep_get(pte));
3158same_page:
3159 if (pages) {
3160 pages[i] = mem_map_offset(page, pfn_offset);
3161 get_page_foll(pages[i]);
3162 }
3163
3164 if (vmas)
3165 vmas[i] = vma;
3166
3167 vaddr += PAGE_SIZE;
3168 ++pfn_offset;
3169 --remainder;
3170 ++i;
3171 if (vaddr < vma->vm_end && remainder &&
3172 pfn_offset < pages_per_huge_page(h)) {
3173 /*
3174 * We use pfn_offset to avoid touching the pageframes
3175 * of this compound page.
3176 */
3177 goto same_page;
3178 }
3179 spin_unlock(ptl);
3180 }
3181 *nr_pages = remainder;
3182 *position = vaddr;
3183
3184 return i ? i : -EFAULT;
3185}
3186
3187unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3188 unsigned long address, unsigned long end, pgprot_t newprot)
3189{
3190 struct mm_struct *mm = vma->vm_mm;
3191 unsigned long start = address;
3192 pte_t *ptep;
3193 pte_t pte;
3194 struct hstate *h = hstate_vma(vma);
3195 unsigned long pages = 0;
3196
3197 BUG_ON(address >= end);
3198 flush_cache_range(vma, address, end);
3199
3200 mmu_notifier_invalidate_range_start(mm, start, end);
3201 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3202 for (; address < end; address += huge_page_size(h)) {
3203 spinlock_t *ptl;
3204 ptep = huge_pte_offset(mm, address);
3205 if (!ptep)
3206 continue;
3207 ptl = huge_pte_lock(h, mm, ptep);
3208 if (huge_pmd_unshare(mm, &address, ptep)) {
3209 pages++;
3210 spin_unlock(ptl);
3211 continue;
3212 }
3213 if (!huge_pte_none(huge_ptep_get(ptep))) {
3214 pte = huge_ptep_get_and_clear(mm, address, ptep);
3215 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3216 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3217 set_huge_pte_at(mm, address, ptep, pte);
3218 pages++;
3219 }
3220 spin_unlock(ptl);
3221 }
3222 /*
3223 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3224 * may have cleared our pud entry and done put_page on the page table:
3225 * once we release i_mmap_mutex, another task can do the final put_page
3226 * and that page table be reused and filled with junk.
3227 */
3228 flush_tlb_range(vma, start, end);
3229 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3230 mmu_notifier_invalidate_range_end(mm, start, end);
3231
3232 return pages << h->order;
3233}
3234
3235int hugetlb_reserve_pages(struct inode *inode,
3236 long from, long to,
3237 struct vm_area_struct *vma,
3238 vm_flags_t vm_flags)
3239{
3240 long ret, chg;
3241 struct hstate *h = hstate_inode(inode);
3242 struct hugepage_subpool *spool = subpool_inode(inode);
3243 struct resv_map *resv_map;
3244
3245 /*
3246 * Only apply hugepage reservation if asked. At fault time, an
3247 * attempt will be made for VM_NORESERVE to allocate a page
3248 * without using reserves
3249 */
3250 if (vm_flags & VM_NORESERVE)
3251 return 0;
3252
3253 /*
3254 * Shared mappings base their reservation on the number of pages that
3255 * are already allocated on behalf of the file. Private mappings need
3256 * to reserve the full area even if read-only as mprotect() may be
3257 * called to make the mapping read-write. Assume !vma is a shm mapping
3258 */
3259 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3260 resv_map = inode_resv_map(inode);
3261
3262 chg = region_chg(resv_map, from, to);
3263
3264 } else {
3265 resv_map = resv_map_alloc();
3266 if (!resv_map)
3267 return -ENOMEM;
3268
3269 chg = to - from;
3270
3271 set_vma_resv_map(vma, resv_map);
3272 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3273 }
3274
3275 if (chg < 0) {
3276 ret = chg;
3277 goto out_err;
3278 }
3279
3280 /* There must be enough pages in the subpool for the mapping */
3281 if (hugepage_subpool_get_pages(spool, chg)) {
3282 ret = -ENOSPC;
3283 goto out_err;
3284 }
3285
3286 /*
3287 * Check enough hugepages are available for the reservation.
3288 * Hand the pages back to the subpool if there are not
3289 */
3290 ret = hugetlb_acct_memory(h, chg);
3291 if (ret < 0) {
3292 hugepage_subpool_put_pages(spool, chg);
3293 goto out_err;
3294 }
3295
3296 /*
3297 * Account for the reservations made. Shared mappings record regions
3298 * that have reservations as they are shared by multiple VMAs.
3299 * When the last VMA disappears, the region map says how much
3300 * the reservation was and the page cache tells how much of
3301 * the reservation was consumed. Private mappings are per-VMA and
3302 * only the consumed reservations are tracked. When the VMA
3303 * disappears, the original reservation is the VMA size and the
3304 * consumed reservations are stored in the map. Hence, nothing
3305 * else has to be done for private mappings here
3306 */
3307 if (!vma || vma->vm_flags & VM_MAYSHARE)
3308 region_add(resv_map, from, to);
3309 return 0;
3310out_err:
3311 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3312 kref_put(&resv_map->refs, resv_map_release);
3313 return ret;
3314}
3315
3316void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3317{
3318 struct hstate *h = hstate_inode(inode);
3319 struct resv_map *resv_map = inode_resv_map(inode);
3320 long chg = 0;
3321 struct hugepage_subpool *spool = subpool_inode(inode);
3322
3323 if (resv_map)
3324 chg = region_truncate(resv_map, offset);
3325 spin_lock(&inode->i_lock);
3326 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3327 spin_unlock(&inode->i_lock);
3328
3329 hugepage_subpool_put_pages(spool, (chg - freed));
3330 hugetlb_acct_memory(h, -(chg - freed));
3331}
3332
3333#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3334static unsigned long page_table_shareable(struct vm_area_struct *svma,
3335 struct vm_area_struct *vma,
3336 unsigned long addr, pgoff_t idx)
3337{
3338 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3339 svma->vm_start;
3340 unsigned long sbase = saddr & PUD_MASK;
3341 unsigned long s_end = sbase + PUD_SIZE;
3342
3343 /* Allow segments to share if only one is marked locked */
3344 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3345 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3346
3347 /*
3348 * match the virtual addresses, permission and the alignment of the
3349 * page table page.
3350 */
3351 if (pmd_index(addr) != pmd_index(saddr) ||
3352 vm_flags != svm_flags ||
3353 sbase < svma->vm_start || svma->vm_end < s_end)
3354 return 0;
3355
3356 return saddr;
3357}
3358
3359static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3360{
3361 unsigned long base = addr & PUD_MASK;
3362 unsigned long end = base + PUD_SIZE;
3363
3364 /*
3365 * check on proper vm_flags and page table alignment
3366 */
3367 if (vma->vm_flags & VM_MAYSHARE &&
3368 vma->vm_start <= base && end <= vma->vm_end)
3369 return 1;
3370 return 0;
3371}
3372
3373/*
3374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3375 * and returns the corresponding pte. While this is not necessary for the
3376 * !shared pmd case because we can allocate the pmd later as well, it makes the
3377 * code much cleaner. pmd allocation is essential for the shared case because
3378 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3380 * bad pmd for sharing.
3381 */
3382pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3383{
3384 struct vm_area_struct *vma = find_vma(mm, addr);
3385 struct address_space *mapping = vma->vm_file->f_mapping;
3386 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3387 vma->vm_pgoff;
3388 struct vm_area_struct *svma;
3389 unsigned long saddr;
3390 pte_t *spte = NULL;
3391 pte_t *pte;
3392 spinlock_t *ptl;
3393
3394 if (!vma_shareable(vma, addr))
3395 return (pte_t *)pmd_alloc(mm, pud, addr);
3396
3397 mutex_lock(&mapping->i_mmap_mutex);
3398 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3399 if (svma == vma)
3400 continue;
3401
3402 saddr = page_table_shareable(svma, vma, addr, idx);
3403 if (saddr) {
3404 spte = huge_pte_offset(svma->vm_mm, saddr);
3405 if (spte) {
3406 get_page(virt_to_page(spte));
3407 break;
3408 }
3409 }
3410 }
3411
3412 if (!spte)
3413 goto out;
3414
3415 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3416 spin_lock(ptl);
3417 if (pud_none(*pud))
3418 pud_populate(mm, pud,
3419 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3420 else
3421 put_page(virt_to_page(spte));
3422 spin_unlock(ptl);
3423out:
3424 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3425 mutex_unlock(&mapping->i_mmap_mutex);
3426 return pte;
3427}
3428
3429/*
3430 * unmap huge page backed by shared pte.
3431 *
3432 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3433 * indicated by page_count > 1, unmap is achieved by clearing pud and
3434 * decrementing the ref count. If count == 1, the pte page is not shared.
3435 *
3436 * called with page table lock held.
3437 *
3438 * returns: 1 successfully unmapped a shared pte page
3439 * 0 the underlying pte page is not shared, or it is the last user
3440 */
3441int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3442{
3443 pgd_t *pgd = pgd_offset(mm, *addr);
3444 pud_t *pud = pud_offset(pgd, *addr);
3445
3446 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3447 if (page_count(virt_to_page(ptep)) == 1)
3448 return 0;
3449
3450 pud_clear(pud);
3451 put_page(virt_to_page(ptep));
3452 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3453 return 1;
3454}
3455#define want_pmd_share() (1)
3456#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3457pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3458{
3459 return NULL;
3460}
3461#define want_pmd_share() (0)
3462#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3463
3464#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3465pte_t *huge_pte_alloc(struct mm_struct *mm,
3466 unsigned long addr, unsigned long sz)
3467{
3468 pgd_t *pgd;
3469 pud_t *pud;
3470 pte_t *pte = NULL;
3471
3472 pgd = pgd_offset(mm, addr);
3473 pud = pud_alloc(mm, pgd, addr);
3474 if (pud) {
3475 if (sz == PUD_SIZE) {
3476 pte = (pte_t *)pud;
3477 } else {
3478 BUG_ON(sz != PMD_SIZE);
3479 if (want_pmd_share() && pud_none(*pud))
3480 pte = huge_pmd_share(mm, addr, pud);
3481 else
3482 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3483 }
3484 }
3485 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3486
3487 return pte;
3488}
3489
3490pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3491{
3492 pgd_t *pgd;
3493 pud_t *pud;
3494 pmd_t *pmd = NULL;
3495
3496 pgd = pgd_offset(mm, addr);
3497 if (pgd_present(*pgd)) {
3498 pud = pud_offset(pgd, addr);
3499 if (pud_present(*pud)) {
3500 if (pud_huge(*pud))
3501 return (pte_t *)pud;
3502 pmd = pmd_offset(pud, addr);
3503 }
3504 }
3505 return (pte_t *) pmd;
3506}
3507
3508struct page *
3509follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3510 pmd_t *pmd, int write)
3511{
3512 struct page *page;
3513
3514 page = pte_page(*(pte_t *)pmd);
3515 if (page)
3516 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3517 return page;
3518}
3519
3520struct page *
3521follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522 pud_t *pud, int write)
3523{
3524 struct page *page;
3525
3526 page = pte_page(*(pte_t *)pud);
3527 if (page)
3528 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3529 return page;
3530}
3531
3532#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
3534/* Can be overriden by architectures */
3535struct page * __weak
3536follow_huge_pud(struct mm_struct *mm, unsigned long address,
3537 pud_t *pud, int write)
3538{
3539 BUG();
3540 return NULL;
3541}
3542
3543#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3544
3545#ifdef CONFIG_MEMORY_FAILURE
3546
3547/* Should be called in hugetlb_lock */
3548static int is_hugepage_on_freelist(struct page *hpage)
3549{
3550 struct page *page;
3551 struct page *tmp;
3552 struct hstate *h = page_hstate(hpage);
3553 int nid = page_to_nid(hpage);
3554
3555 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3556 if (page == hpage)
3557 return 1;
3558 return 0;
3559}
3560
3561/*
3562 * This function is called from memory failure code.
3563 * Assume the caller holds page lock of the head page.
3564 */
3565int dequeue_hwpoisoned_huge_page(struct page *hpage)
3566{
3567 struct hstate *h = page_hstate(hpage);
3568 int nid = page_to_nid(hpage);
3569 int ret = -EBUSY;
3570
3571 spin_lock(&hugetlb_lock);
3572 if (is_hugepage_on_freelist(hpage)) {
3573 /*
3574 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3575 * but dangling hpage->lru can trigger list-debug warnings
3576 * (this happens when we call unpoison_memory() on it),
3577 * so let it point to itself with list_del_init().
3578 */
3579 list_del_init(&hpage->lru);
3580 set_page_refcounted(hpage);
3581 h->free_huge_pages--;
3582 h->free_huge_pages_node[nid]--;
3583 ret = 0;
3584 }
3585 spin_unlock(&hugetlb_lock);
3586 return ret;
3587}
3588#endif
3589
3590bool isolate_huge_page(struct page *page, struct list_head *list)
3591{
3592 VM_BUG_ON_PAGE(!PageHead(page), page);
3593 if (!get_page_unless_zero(page))
3594 return false;
3595 spin_lock(&hugetlb_lock);
3596 list_move_tail(&page->lru, list);
3597 spin_unlock(&hugetlb_lock);
3598 return true;
3599}
3600
3601void putback_active_hugepage(struct page *page)
3602{
3603 VM_BUG_ON_PAGE(!PageHead(page), page);
3604 spin_lock(&hugetlb_lock);
3605 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3606 spin_unlock(&hugetlb_lock);
3607 put_page(page);
3608}
3609
3610bool is_hugepage_active(struct page *page)
3611{
3612 VM_BUG_ON_PAGE(!PageHuge(page), page);
3613 /*
3614 * This function can be called for a tail page because the caller,
3615 * scan_movable_pages, scans through a given pfn-range which typically
3616 * covers one memory block. In systems using gigantic hugepage (1GB
3617 * for x86_64,) a hugepage is larger than a memory block, and we don't
3618 * support migrating such large hugepages for now, so return false
3619 * when called for tail pages.
3620 */
3621 if (PageTail(page))
3622 return false;
3623 /*
3624 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3625 * so we should return false for them.
3626 */
3627 if (unlikely(PageHWPoison(page)))
3628 return false;
3629 return page_count(page) > 0;
3630}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38#include <linux/padata.h>
39
40#include <asm/page.h>
41#include <asm/pgalloc.h>
42#include <asm/tlb.h>
43
44#include <linux/io.h>
45#include <linux/hugetlb.h>
46#include <linux/hugetlb_cgroup.h>
47#include <linux/node.h>
48#include <linux/page_owner.h>
49#include "internal.h"
50#include "hugetlb_vmemmap.h"
51
52int hugetlb_max_hstate __read_mostly;
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
55
56#ifdef CONFIG_CMA
57static struct cma *hugetlb_cma[MAX_NUMNODES];
58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60{
61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 1 << order);
63}
64#else
65static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66{
67 return false;
68}
69#endif
70static unsigned long hugetlb_cma_size __initdata;
71
72__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74/* for command line parsing */
75static struct hstate * __initdata parsed_hstate;
76static unsigned long __initdata default_hstate_max_huge_pages;
77static bool __initdata parsed_valid_hugepagesz = true;
78static bool __initdata parsed_default_hugepagesz;
79static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81/*
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
84 */
85DEFINE_SPINLOCK(hugetlb_lock);
86
87/*
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 */
91static int num_fault_mutexes;
92struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94/* Forward declaration */
95static int hugetlb_acct_memory(struct hstate *h, long delta);
96static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
101static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103static inline bool subpool_is_free(struct hugepage_subpool *spool)
104{
105 if (spool->count)
106 return false;
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
111
112 return true;
113}
114
115static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
117{
118 spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120 /* If no pages are used, and no other handles to the subpool
121 * remain, give up any reservations based on minimum size and
122 * free the subpool */
123 if (subpool_is_free(spool)) {
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
126 -spool->min_hpages);
127 kfree(spool);
128 }
129}
130
131struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 long min_hpages)
133{
134 struct hugepage_subpool *spool;
135
136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 if (!spool)
138 return NULL;
139
140 spin_lock_init(&spool->lock);
141 spool->count = 1;
142 spool->max_hpages = max_hpages;
143 spool->hstate = h;
144 spool->min_hpages = min_hpages;
145
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 kfree(spool);
148 return NULL;
149 }
150 spool->rsv_hpages = min_hpages;
151
152 return spool;
153}
154
155void hugepage_put_subpool(struct hugepage_subpool *spool)
156{
157 unsigned long flags;
158
159 spin_lock_irqsave(&spool->lock, flags);
160 BUG_ON(!spool->count);
161 spool->count--;
162 unlock_or_release_subpool(spool, flags);
163}
164
165/*
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request. Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 long delta)
175{
176 long ret = delta;
177
178 if (!spool)
179 return ret;
180
181 spin_lock_irq(&spool->lock);
182
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
186 else {
187 ret = -ENOMEM;
188 goto unlock_ret;
189 }
190 }
191
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 if (delta > spool->rsv_hpages) {
195 /*
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
198 */
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
201 } else {
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
204 }
205 }
206
207unlock_ret:
208 spin_unlock_irq(&spool->lock);
209 return ret;
210}
211
212/*
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
217 */
218static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 long delta)
220{
221 long ret = delta;
222 unsigned long flags;
223
224 if (!spool)
225 return delta;
226
227 spin_lock_irqsave(&spool->lock, flags);
228
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
231
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
235 ret = 0;
236 else
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
242 }
243
244 /*
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
247 */
248 unlock_or_release_subpool(spool, flags);
249
250 return ret;
251}
252
253static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254{
255 return HUGETLBFS_SB(inode->i_sb)->spool;
256}
257
258static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259{
260 return subpool_inode(file_inode(vma->vm_file));
261}
262
263/*
264 * hugetlb vma_lock helper routines
265 */
266void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267{
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271 down_read(&vma_lock->rw_sema);
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
274
275 down_read(&resv_map->rw_sema);
276 }
277}
278
279void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280{
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284 up_read(&vma_lock->rw_sema);
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
287
288 up_read(&resv_map->rw_sema);
289 }
290}
291
292void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293{
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297 down_write(&vma_lock->rw_sema);
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
300
301 down_write(&resv_map->rw_sema);
302 }
303}
304
305void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306{
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310 up_write(&vma_lock->rw_sema);
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
313
314 up_write(&resv_map->rw_sema);
315 }
316}
317
318int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319{
320
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
327
328 return down_write_trylock(&resv_map->rw_sema);
329 }
330
331 return 1;
332}
333
334void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335{
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339 lockdep_assert_held(&vma_lock->rw_sema);
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
342
343 lockdep_assert_held(&resv_map->rw_sema);
344 }
345}
346
347void hugetlb_vma_lock_release(struct kref *kref)
348{
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
351
352 kfree(vma_lock);
353}
354
355static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356{
357 struct vm_area_struct *vma = vma_lock->vma;
358
359 /*
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
363 */
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368}
369
370static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371{
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375 __hugetlb_vma_unlock_write_put(vma_lock);
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
378
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
381 }
382}
383
384static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385{
386 /*
387 * Only present in sharable vmas.
388 */
389 if (!vma || !__vma_shareable_lock(vma))
390 return;
391
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
397 }
398}
399
400static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401{
402 struct hugetlb_vma_lock *vma_lock;
403
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 return;
407
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
410 return;
411
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 if (!vma_lock) {
414 /*
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
423 */
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 return;
426 }
427
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
430 vma_lock->vma = vma;
431 vma->vm_private_data = vma_lock;
432}
433
434/* Helper that removes a struct file_region from the resv_map cache and returns
435 * it for use.
436 */
437static struct file_region *
438get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439{
440 struct file_region *nrg;
441
442 VM_BUG_ON(resv->region_cache_count <= 0);
443
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 list_del(&nrg->link);
447
448 nrg->from = from;
449 nrg->to = to;
450
451 return nrg;
452}
453
454static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
456{
457#ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
459 nrg->css = rg->css;
460 if (rg->css)
461 css_get(rg->css);
462#endif
463}
464
465/* Helper that records hugetlb_cgroup uncharge info. */
466static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 struct hstate *h,
468 struct resv_map *resv,
469 struct file_region *nrg)
470{
471#ifdef CONFIG_CGROUP_HUGETLB
472 if (h_cg) {
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
476 /*
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
484 * untouched.
485 */
486 css_get(&h_cg->css);
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
490 * a resv_map.
491 */
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 } else {
494 nrg->reservation_counter = NULL;
495 nrg->css = NULL;
496 }
497#endif
498}
499
500static void put_uncharge_info(struct file_region *rg)
501{
502#ifdef CONFIG_CGROUP_HUGETLB
503 if (rg->css)
504 css_put(rg->css);
505#endif
506}
507
508static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
510{
511#ifdef CONFIG_CGROUP_HUGETLB
512 return rg->reservation_counter == org->reservation_counter &&
513 rg->css == org->css;
514
515#else
516 return true;
517#endif
518}
519
520static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521{
522 struct file_region *nrg, *prg;
523
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
527 prg->to = rg->to;
528
529 list_del(&rg->link);
530 put_uncharge_info(rg);
531 kfree(rg);
532
533 rg = prg;
534 }
535
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
540
541 list_del(&rg->link);
542 put_uncharge_info(rg);
543 kfree(rg);
544 }
545}
546
547static inline long
548hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
551{
552 struct file_region *nrg;
553
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 list_add(&nrg->link, rg);
558 coalesce_file_region(map, nrg);
559 } else
560 *regions_needed += 1;
561
562 return to - from;
563}
564
565/*
566 * Must be called with resv->lock held.
567 *
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
572 */
573static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 struct hugetlb_cgroup *h_cg,
575 struct hstate *h, long *regions_needed)
576{
577 long add = 0;
578 struct list_head *head = &resv->regions;
579 long last_accounted_offset = f;
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
582
583 if (regions_needed)
584 *regions_needed = 0;
585
586 /* In this loop, we essentially handle an entry for the range
587 * [last_accounted_offset, iter->from), at every iteration, with some
588 * bounds checking.
589 */
590 list_for_each_entry_safe(iter, trg, head, link) {
591 /* Skip irrelevant regions that start before our range. */
592 if (iter->from < f) {
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
595 */
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
598 continue;
599 }
600
601 /* When we find a region that starts beyond our range, we've
602 * finished.
603 */
604 if (iter->from >= t) {
605 rg = iter->link.prev;
606 break;
607 }
608
609 /* Add an entry for last_accounted_offset -> iter->from, and
610 * update last_accounted_offset.
611 */
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
614 last_accounted_offset,
615 iter->from, h, h_cg,
616 regions_needed);
617
618 last_accounted_offset = iter->to;
619 }
620
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
623 */
624 if (!rg)
625 rg = head->prev;
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
629
630 return add;
631}
632
633/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 */
635static int allocate_file_region_entries(struct resv_map *resv,
636 int regions_needed)
637 __must_hold(&resv->lock)
638{
639 LIST_HEAD(allocated_regions);
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
642
643 VM_BUG_ON(regions_needed < 0);
644
645 /*
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
648 *
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
653 */
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
658
659 /* At this point, we should have enough entries in the cache
660 * for all the existing adds_in_progress. We should only be
661 * needing to allocate for regions_needed.
662 */
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 if (!trg)
669 goto out_of_memory;
670 list_add(&trg->link, &allocated_regions);
671 }
672
673 spin_lock(&resv->lock);
674
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
677 }
678
679 return 0;
680
681out_of_memory:
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 list_del(&rg->link);
684 kfree(rg);
685 }
686 return -ENOMEM;
687}
688
689/*
690 * Add the huge page range represented by [f, t) to the reserve
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
696 *
697 * regions_needed is the out value provided by a previous call to region_chg.
698 *
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
705 */
706static long region_add(struct resv_map *resv, long f, long t,
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
709{
710 long add = 0, actual_regions_needed = 0;
711
712 spin_lock(&resv->lock);
713retry:
714
715 /* Count how many regions are actually needed to execute this add. */
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
718
719 /*
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
726 * operation.
727 */
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
734 */
735 VM_BUG_ON(t - f <= 1);
736
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
739 return -ENOMEM;
740 }
741
742 goto retry;
743 }
744
745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747 resv->adds_in_progress -= in_regions_needed;
748
749 spin_unlock(&resv->lock);
750 return add;
751}
752
753/*
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
763 *
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
767 *
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
772 */
773static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
775{
776 long chg = 0;
777
778 spin_lock(&resv->lock);
779
780 /* Count how many hugepages in this range are NOT represented. */
781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 out_regions_needed);
783
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
786
787 if (allocate_file_region_entries(resv, *out_regions_needed))
788 return -ENOMEM;
789
790 resv->adds_in_progress += *out_regions_needed;
791
792 spin_unlock(&resv->lock);
793 return chg;
794}
795
796/*
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
804 *
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
808 */
809static void region_abort(struct resv_map *resv, long f, long t,
810 long regions_needed)
811{
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
814 resv->adds_in_progress -= regions_needed;
815 spin_unlock(&resv->lock);
816}
817
818/*
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
823 *
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
831 */
832static long region_del(struct resv_map *resv, long f, long t)
833{
834 struct list_head *head = &resv->regions;
835 struct file_region *rg, *trg;
836 struct file_region *nrg = NULL;
837 long del = 0;
838
839retry:
840 spin_lock(&resv->lock);
841 list_for_each_entry_safe(rg, trg, head, link) {
842 /*
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
848 */
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 continue;
851
852 if (rg->from >= t)
853 break;
854
855 if (f > rg->from && t < rg->to) { /* Must split region */
856 /*
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
859 */
860 if (!nrg &&
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
863 struct file_region,
864 link);
865 list_del(&nrg->link);
866 resv->region_cache_count--;
867 }
868
869 if (!nrg) {
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 if (!nrg)
873 return -ENOMEM;
874 goto retry;
875 }
876
877 del += t - f;
878 hugetlb_cgroup_uncharge_file_region(
879 resv, rg, t - f, false);
880
881 /* New entry for end of split region */
882 nrg->from = t;
883 nrg->to = rg->to;
884
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887 INIT_LIST_HEAD(&nrg->link);
888
889 /* Original entry is trimmed */
890 rg->to = f;
891
892 list_add(&nrg->link, &rg->link);
893 nrg = NULL;
894 break;
895 }
896
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
899 hugetlb_cgroup_uncharge_file_region(resv, rg,
900 rg->to - rg->from, true);
901 list_del(&rg->link);
902 kfree(rg);
903 continue;
904 }
905
906 if (f <= rg->from) { /* Trim beginning of region */
907 hugetlb_cgroup_uncharge_file_region(resv, rg,
908 t - rg->from, false);
909
910 del += t - rg->from;
911 rg->from = t;
912 } else { /* Trim end of region */
913 hugetlb_cgroup_uncharge_file_region(resv, rg,
914 rg->to - f, false);
915
916 del += rg->to - f;
917 rg->to = f;
918 }
919 }
920
921 spin_unlock(&resv->lock);
922 kfree(nrg);
923 return del;
924}
925
926/*
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
933 * counts.
934 */
935void hugetlb_fix_reserve_counts(struct inode *inode)
936{
937 struct hugepage_subpool *spool = subpool_inode(inode);
938 long rsv_adjust;
939 bool reserved = false;
940
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 if (rsv_adjust > 0) {
943 struct hstate *h = hstate_inode(inode);
944
945 if (!hugetlb_acct_memory(h, 1))
946 reserved = true;
947 } else if (!rsv_adjust) {
948 reserved = true;
949 }
950
951 if (!reserved)
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953}
954
955/*
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
958 */
959static long region_count(struct resv_map *resv, long f, long t)
960{
961 struct list_head *head = &resv->regions;
962 struct file_region *rg;
963 long chg = 0;
964
965 spin_lock(&resv->lock);
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
968 long seg_from;
969 long seg_to;
970
971 if (rg->to <= f)
972 continue;
973 if (rg->from >= t)
974 break;
975
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
978
979 chg += seg_to - seg_from;
980 }
981 spin_unlock(&resv->lock);
982
983 return chg;
984}
985
986/*
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
989 */
990static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
992{
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
995}
996
997/**
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1000 *
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1003 *
1004 * Return: The default size of the folios allocated when backing a VMA.
1005 */
1006unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007{
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1010 return PAGE_SIZE;
1011}
1012EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014/*
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1019 */
1020__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021{
1022 return vma_kernel_pagesize(vma);
1023}
1024
1025/*
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1028 * alignment.
1029 */
1030#define HPAGE_RESV_OWNER (1UL << 0)
1031#define HPAGE_RESV_UNMAPPED (1UL << 1)
1032#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034/*
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1038 *
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1043 *
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1052 */
1053static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054{
1055 return (unsigned long)vma->vm_private_data;
1056}
1057
1058static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1060{
1061 vma->vm_private_data = (void *)value;
1062}
1063
1064static void
1065resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1067 struct hstate *h)
1068{
1069#ifdef CONFIG_CGROUP_HUGETLB
1070 if (!h_cg || !h) {
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1074 } else {
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1079 }
1080#endif
1081}
1082
1083struct resv_map *resv_map_alloc(void)
1084{
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088 if (!resv_map || !rg) {
1089 kfree(resv_map);
1090 kfree(rg);
1091 return NULL;
1092 }
1093
1094 kref_init(&resv_map->refs);
1095 spin_lock_init(&resv_map->lock);
1096 INIT_LIST_HEAD(&resv_map->regions);
1097 init_rwsem(&resv_map->rw_sema);
1098
1099 resv_map->adds_in_progress = 0;
1100 /*
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1105 */
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1111
1112 return resv_map;
1113}
1114
1115void resv_map_release(struct kref *ref)
1116{
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
1120
1121 /* Clear out any active regions before we release the map. */
1122 region_del(resv_map, 0, LONG_MAX);
1123
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1127 kfree(rg);
1128 }
1129
1130 VM_BUG_ON(resv_map->adds_in_progress);
1131
1132 kfree(resv_map);
1133}
1134
1135static inline struct resv_map *inode_resv_map(struct inode *inode)
1136{
1137 /*
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1144 */
1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
1146}
1147
1148static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149{
1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1154
1155 return inode_resv_map(inode);
1156
1157 } else {
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1159 ~HPAGE_RESV_MASK);
1160 }
1161}
1162
1163static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164{
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168 set_vma_private_data(vma, (unsigned long)map);
1169}
1170
1171static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172{
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177}
1178
1179static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180{
1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183 return (get_vma_private_data(vma) & flag) != 0;
1184}
1185
1186bool __vma_private_lock(struct vm_area_struct *vma)
1187{
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191}
1192
1193void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194{
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 /*
1197 * Clear vm_private_data
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
1207 */
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1213 } else
1214 vma->vm_private_data = NULL;
1215}
1216
1217/*
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1222 * reservation.
1223 */
1224void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225{
1226 /*
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1229 *
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1237 */
1238 struct resv_map *reservations = vma_resv_map(vma);
1239
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 kref_put(&reservations->refs, resv_map_release);
1243 }
1244
1245 hugetlb_dup_vma_private(vma);
1246}
1247
1248/* Returns true if the VMA has associated reserve pages */
1249static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250{
1251 if (vma->vm_flags & VM_NORESERVE) {
1252 /*
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1260 */
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 return true;
1263 else
1264 return false;
1265 }
1266
1267 /* Shared mappings always use reserves */
1268 if (vma->vm_flags & VM_MAYSHARE) {
1269 /*
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
1273 * fallocate. In this case, there really are no reserves to
1274 * use. This situation is indicated if chg != 0.
1275 */
1276 if (chg)
1277 return false;
1278 else
1279 return true;
1280 }
1281
1282 /*
1283 * Only the process that called mmap() has reserves for
1284 * private mappings.
1285 */
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 /*
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1301 */
1302 if (chg)
1303 return false;
1304 else
1305 return true;
1306 }
1307
1308 return false;
1309}
1310
1311static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312{
1313 int nid = folio_nid(folio);
1314
1315 lockdep_assert_held(&hugetlb_lock);
1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
1321 folio_set_hugetlb_freed(folio);
1322}
1323
1324static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 int nid)
1326{
1327 struct folio *folio;
1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330 lockdep_assert_held(&hugetlb_lock);
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
1333 continue;
1334
1335 if (folio_test_hwpoison(folio))
1336 continue;
1337
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
1343 return folio;
1344 }
1345
1346 return NULL;
1347}
1348
1349static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
1351{
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1354 struct zone *zone;
1355 struct zoneref *z;
1356 int node = NUMA_NO_NODE;
1357
1358 zonelist = node_zonelist(nid, gfp_mask);
1359
1360retry_cpuset:
1361 cpuset_mems_cookie = read_mems_allowed_begin();
1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 struct folio *folio;
1364
1365 if (!cpuset_zone_allowed(zone, gfp_mask))
1366 continue;
1367 /*
1368 * no need to ask again on the same node. Pool is node rather than
1369 * zone aware
1370 */
1371 if (zone_to_nid(zone) == node)
1372 continue;
1373 node = zone_to_nid(zone);
1374
1375 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 if (folio)
1377 return folio;
1378 }
1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 goto retry_cpuset;
1381
1382 return NULL;
1383}
1384
1385static unsigned long available_huge_pages(struct hstate *h)
1386{
1387 return h->free_huge_pages - h->resv_huge_pages;
1388}
1389
1390static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 struct vm_area_struct *vma,
1392 unsigned long address, int avoid_reserve,
1393 long chg)
1394{
1395 struct folio *folio = NULL;
1396 struct mempolicy *mpol;
1397 gfp_t gfp_mask;
1398 nodemask_t *nodemask;
1399 int nid;
1400
1401 /*
1402 * A child process with MAP_PRIVATE mappings created by their parent
1403 * have no page reserves. This check ensures that reservations are
1404 * not "stolen". The child may still get SIGKILLed
1405 */
1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407 goto err;
1408
1409 /* If reserves cannot be used, ensure enough pages are in the pool */
1410 if (avoid_reserve && !available_huge_pages(h))
1411 goto err;
1412
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416 if (mpol_is_preferred_many(mpol)) {
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 nid, nodemask);
1419
1420 /* Fallback to all nodes if page==NULL */
1421 nodemask = NULL;
1422 }
1423
1424 if (!folio)
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 nid, nodemask);
1427
1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
1430 h->resv_huge_pages--;
1431 }
1432
1433 mpol_cond_put(mpol);
1434 return folio;
1435
1436err:
1437 return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449 nid = next_node_in(nid, *nodes_allowed);
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452 return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1459 return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469 nodemask_t *nodes_allowed)
1470{
1471 int nid;
1472
1473 VM_BUG_ON(!nodes_allowed);
1474
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478 return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489 int nid;
1490
1491 VM_BUG_ON(!nodes_allowed);
1492
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496 return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1500 for (nr_nodes = nodes_weight(*mask); \
1501 nr_nodes > 0 && \
1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1503 nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511/* used to demote non-gigantic_huge pages as well */
1512static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 unsigned int order, bool demote)
1514{
1515 int i;
1516 int nr_pages = 1 << order;
1517 struct page *p;
1518
1519 atomic_set(&folio->_entire_mapcount, 0);
1520 atomic_set(&folio->_nr_pages_mapped, 0);
1521 atomic_set(&folio->_pincount, 0);
1522
1523 for (i = 1; i < nr_pages; i++) {
1524 p = folio_page(folio, i);
1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 p->mapping = NULL;
1527 clear_compound_head(p);
1528 if (!demote)
1529 set_page_refcounted(p);
1530 }
1531
1532 __folio_clear_head(folio);
1533}
1534
1535static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536 unsigned int order)
1537{
1538 __destroy_compound_gigantic_folio(folio, order, true);
1539}
1540
1541#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542static void destroy_compound_gigantic_folio(struct folio *folio,
1543 unsigned int order)
1544{
1545 __destroy_compound_gigantic_folio(folio, order, false);
1546}
1547
1548static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549{
1550 /*
1551 * If the page isn't allocated using the cma allocator,
1552 * cma_release() returns false.
1553 */
1554#ifdef CONFIG_CMA
1555 int nid = folio_nid(folio);
1556
1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558 return;
1559#endif
1560
1561 free_contig_range(folio_pfn(folio), 1 << order);
1562}
1563
1564#ifdef CONFIG_CONTIG_ALLOC
1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 int nid, nodemask_t *nodemask)
1567{
1568 struct page *page;
1569 unsigned long nr_pages = pages_per_huge_page(h);
1570 if (nid == NUMA_NO_NODE)
1571 nid = numa_mem_id();
1572
1573#ifdef CONFIG_CMA
1574 {
1575 int node;
1576
1577 if (hugetlb_cma[nid]) {
1578 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 huge_page_order(h), true);
1580 if (page)
1581 return page_folio(page);
1582 }
1583
1584 if (!(gfp_mask & __GFP_THISNODE)) {
1585 for_each_node_mask(node, *nodemask) {
1586 if (node == nid || !hugetlb_cma[node])
1587 continue;
1588
1589 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 huge_page_order(h), true);
1591 if (page)
1592 return page_folio(page);
1593 }
1594 }
1595 }
1596#endif
1597
1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 return page ? page_folio(page) : NULL;
1600}
1601
1602#else /* !CONFIG_CONTIG_ALLOC */
1603static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 int nid, nodemask_t *nodemask)
1605{
1606 return NULL;
1607}
1608#endif /* CONFIG_CONTIG_ALLOC */
1609
1610#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 int nid, nodemask_t *nodemask)
1613{
1614 return NULL;
1615}
1616static inline void free_gigantic_folio(struct folio *folio,
1617 unsigned int order) { }
1618static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 unsigned int order) { }
1620#endif
1621
1622static inline void __clear_hugetlb_destructor(struct hstate *h,
1623 struct folio *folio)
1624{
1625 lockdep_assert_held(&hugetlb_lock);
1626
1627 __folio_clear_hugetlb(folio);
1628}
1629
1630/*
1631 * Remove hugetlb folio from lists.
1632 * If vmemmap exists for the folio, update dtor so that the folio appears
1633 * as just a compound page. Otherwise, wait until after allocating vmemmap
1634 * to update dtor.
1635 *
1636 * A reference is held on the folio, except in the case of demote.
1637 *
1638 * Must be called with hugetlb lock held.
1639 */
1640static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641 bool adjust_surplus,
1642 bool demote)
1643{
1644 int nid = folio_nid(folio);
1645
1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648
1649 lockdep_assert_held(&hugetlb_lock);
1650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651 return;
1652
1653 list_del(&folio->lru);
1654
1655 if (folio_test_hugetlb_freed(folio)) {
1656 h->free_huge_pages--;
1657 h->free_huge_pages_node[nid]--;
1658 }
1659 if (adjust_surplus) {
1660 h->surplus_huge_pages--;
1661 h->surplus_huge_pages_node[nid]--;
1662 }
1663
1664 /*
1665 * We can only clear the hugetlb destructor after allocating vmemmap
1666 * pages. Otherwise, someone (memory error handling) may try to write
1667 * to tail struct pages.
1668 */
1669 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670 __clear_hugetlb_destructor(h, folio);
1671
1672 /*
1673 * In the case of demote we do not ref count the page as it will soon
1674 * be turned into a page of smaller size.
1675 */
1676 if (!demote)
1677 folio_ref_unfreeze(folio, 1);
1678
1679 h->nr_huge_pages--;
1680 h->nr_huge_pages_node[nid]--;
1681}
1682
1683static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684 bool adjust_surplus)
1685{
1686 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687}
1688
1689static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1691{
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693}
1694
1695static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1697{
1698 int zeroed;
1699 int nid = folio_nid(folio);
1700
1701 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702
1703 lockdep_assert_held(&hugetlb_lock);
1704
1705 INIT_LIST_HEAD(&folio->lru);
1706 h->nr_huge_pages++;
1707 h->nr_huge_pages_node[nid]++;
1708
1709 if (adjust_surplus) {
1710 h->surplus_huge_pages++;
1711 h->surplus_huge_pages_node[nid]++;
1712 }
1713
1714 __folio_set_hugetlb(folio);
1715 folio_change_private(folio, NULL);
1716 /*
1717 * We have to set hugetlb_vmemmap_optimized again as above
1718 * folio_change_private(folio, NULL) cleared it.
1719 */
1720 folio_set_hugetlb_vmemmap_optimized(folio);
1721
1722 /*
1723 * This folio is about to be managed by the hugetlb allocator and
1724 * should have no users. Drop our reference, and check for others
1725 * just in case.
1726 */
1727 zeroed = folio_put_testzero(folio);
1728 if (unlikely(!zeroed))
1729 /*
1730 * It is VERY unlikely soneone else has taken a ref
1731 * on the folio. In this case, we simply return as
1732 * free_huge_folio() will be called when this other ref
1733 * is dropped.
1734 */
1735 return;
1736
1737 arch_clear_hugepage_flags(&folio->page);
1738 enqueue_hugetlb_folio(h, folio);
1739}
1740
1741static void __update_and_free_hugetlb_folio(struct hstate *h,
1742 struct folio *folio)
1743{
1744 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745
1746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747 return;
1748
1749 /*
1750 * If we don't know which subpages are hwpoisoned, we can't free
1751 * the hugepage, so it's leaked intentionally.
1752 */
1753 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754 return;
1755
1756 /*
1757 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1759 * can only be passed hugetlb pages and will BUG otherwise.
1760 */
1761 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762 spin_lock_irq(&hugetlb_lock);
1763 /*
1764 * If we cannot allocate vmemmap pages, just refuse to free the
1765 * page and put the page back on the hugetlb free list and treat
1766 * as a surplus page.
1767 */
1768 add_hugetlb_folio(h, folio, true);
1769 spin_unlock_irq(&hugetlb_lock);
1770 return;
1771 }
1772
1773 /*
1774 * Move PageHWPoison flag from head page to the raw error pages,
1775 * which makes any healthy subpages reusable.
1776 */
1777 if (unlikely(folio_test_hwpoison(folio)))
1778 folio_clear_hugetlb_hwpoison(folio);
1779
1780 /*
1781 * If vmemmap pages were allocated above, then we need to clear the
1782 * hugetlb destructor under the hugetlb lock.
1783 */
1784 if (folio_test_hugetlb(folio)) {
1785 spin_lock_irq(&hugetlb_lock);
1786 __clear_hugetlb_destructor(h, folio);
1787 spin_unlock_irq(&hugetlb_lock);
1788 }
1789
1790 /*
1791 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792 * need to be given back to CMA in free_gigantic_folio.
1793 */
1794 if (hstate_is_gigantic(h) ||
1795 hugetlb_cma_folio(folio, huge_page_order(h))) {
1796 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797 free_gigantic_folio(folio, huge_page_order(h));
1798 } else {
1799 __free_pages(&folio->page, huge_page_order(h));
1800 }
1801}
1802
1803/*
1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807 * the vmemmap pages.
1808 *
1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810 * freed and frees them one-by-one. As the page->mapping pointer is going
1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812 * structure of a lockless linked list of huge pages to be freed.
1813 */
1814static LLIST_HEAD(hpage_freelist);
1815
1816static void free_hpage_workfn(struct work_struct *work)
1817{
1818 struct llist_node *node;
1819
1820 node = llist_del_all(&hpage_freelist);
1821
1822 while (node) {
1823 struct folio *folio;
1824 struct hstate *h;
1825
1826 folio = container_of((struct address_space **)node,
1827 struct folio, mapping);
1828 node = node->next;
1829 folio->mapping = NULL;
1830 /*
1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 * folio_hstate() is going to trigger because a previous call to
1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 * not use folio_hstate() directly.
1835 */
1836 h = size_to_hstate(folio_size(folio));
1837
1838 __update_and_free_hugetlb_folio(h, folio);
1839
1840 cond_resched();
1841 }
1842}
1843static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844
1845static inline void flush_free_hpage_work(struct hstate *h)
1846{
1847 if (hugetlb_vmemmap_optimizable(h))
1848 flush_work(&free_hpage_work);
1849}
1850
1851static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 bool atomic)
1853{
1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 __update_and_free_hugetlb_folio(h, folio);
1856 return;
1857 }
1858
1859 /*
1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 *
1862 * Only call schedule_work() if hpage_freelist is previously
1863 * empty. Otherwise, schedule_work() had been called but the workfn
1864 * hasn't retrieved the list yet.
1865 */
1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 schedule_work(&free_hpage_work);
1868}
1869
1870static void bulk_vmemmap_restore_error(struct hstate *h,
1871 struct list_head *folio_list,
1872 struct list_head *non_hvo_folios)
1873{
1874 struct folio *folio, *t_folio;
1875
1876 if (!list_empty(non_hvo_folios)) {
1877 /*
1878 * Free any restored hugetlb pages so that restore of the
1879 * entire list can be retried.
1880 * The idea is that in the common case of ENOMEM errors freeing
1881 * hugetlb pages with vmemmap we will free up memory so that we
1882 * can allocate vmemmap for more hugetlb pages.
1883 */
1884 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885 list_del(&folio->lru);
1886 spin_lock_irq(&hugetlb_lock);
1887 __clear_hugetlb_destructor(h, folio);
1888 spin_unlock_irq(&hugetlb_lock);
1889 update_and_free_hugetlb_folio(h, folio, false);
1890 cond_resched();
1891 }
1892 } else {
1893 /*
1894 * In the case where there are no folios which can be
1895 * immediately freed, we loop through the list trying to restore
1896 * vmemmap individually in the hope that someone elsewhere may
1897 * have done something to cause success (such as freeing some
1898 * memory). If unable to restore a hugetlb page, the hugetlb
1899 * page is made a surplus page and removed from the list.
1900 * If are able to restore vmemmap and free one hugetlb page, we
1901 * quit processing the list to retry the bulk operation.
1902 */
1903 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905 list_del(&folio->lru);
1906 spin_lock_irq(&hugetlb_lock);
1907 add_hugetlb_folio(h, folio, true);
1908 spin_unlock_irq(&hugetlb_lock);
1909 } else {
1910 list_del(&folio->lru);
1911 spin_lock_irq(&hugetlb_lock);
1912 __clear_hugetlb_destructor(h, folio);
1913 spin_unlock_irq(&hugetlb_lock);
1914 update_and_free_hugetlb_folio(h, folio, false);
1915 cond_resched();
1916 break;
1917 }
1918 }
1919}
1920
1921static void update_and_free_pages_bulk(struct hstate *h,
1922 struct list_head *folio_list)
1923{
1924 long ret;
1925 struct folio *folio, *t_folio;
1926 LIST_HEAD(non_hvo_folios);
1927
1928 /*
1929 * First allocate required vmemmmap (if necessary) for all folios.
1930 * Carefully handle errors and free up any available hugetlb pages
1931 * in an effort to make forward progress.
1932 */
1933retry:
1934 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935 if (ret < 0) {
1936 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937 goto retry;
1938 }
1939
1940 /*
1941 * At this point, list should be empty, ret should be >= 0 and there
1942 * should only be pages on the non_hvo_folios list.
1943 * Do note that the non_hvo_folios list could be empty.
1944 * Without HVO enabled, ret will be 0 and there is no need to call
1945 * __clear_hugetlb_destructor as this was done previously.
1946 */
1947 VM_WARN_ON(!list_empty(folio_list));
1948 VM_WARN_ON(ret < 0);
1949 if (!list_empty(&non_hvo_folios) && ret) {
1950 spin_lock_irq(&hugetlb_lock);
1951 list_for_each_entry(folio, &non_hvo_folios, lru)
1952 __clear_hugetlb_destructor(h, folio);
1953 spin_unlock_irq(&hugetlb_lock);
1954 }
1955
1956 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957 update_and_free_hugetlb_folio(h, folio, false);
1958 cond_resched();
1959 }
1960}
1961
1962struct hstate *size_to_hstate(unsigned long size)
1963{
1964 struct hstate *h;
1965
1966 for_each_hstate(h) {
1967 if (huge_page_size(h) == size)
1968 return h;
1969 }
1970 return NULL;
1971}
1972
1973void free_huge_folio(struct folio *folio)
1974{
1975 /*
1976 * Can't pass hstate in here because it is called from the
1977 * compound page destructor.
1978 */
1979 struct hstate *h = folio_hstate(folio);
1980 int nid = folio_nid(folio);
1981 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982 bool restore_reserve;
1983 unsigned long flags;
1984
1985 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987
1988 hugetlb_set_folio_subpool(folio, NULL);
1989 if (folio_test_anon(folio))
1990 __ClearPageAnonExclusive(&folio->page);
1991 folio->mapping = NULL;
1992 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993 folio_clear_hugetlb_restore_reserve(folio);
1994
1995 /*
1996 * If HPageRestoreReserve was set on page, page allocation consumed a
1997 * reservation. If the page was associated with a subpool, there
1998 * would have been a page reserved in the subpool before allocation
1999 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
2000 * reservation, do not call hugepage_subpool_put_pages() as this will
2001 * remove the reserved page from the subpool.
2002 */
2003 if (!restore_reserve) {
2004 /*
2005 * A return code of zero implies that the subpool will be
2006 * under its minimum size if the reservation is not restored
2007 * after page is free. Therefore, force restore_reserve
2008 * operation.
2009 */
2010 if (hugepage_subpool_put_pages(spool, 1) == 0)
2011 restore_reserve = true;
2012 }
2013
2014 spin_lock_irqsave(&hugetlb_lock, flags);
2015 folio_clear_hugetlb_migratable(folio);
2016 hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017 pages_per_huge_page(h), folio);
2018 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019 pages_per_huge_page(h), folio);
2020 mem_cgroup_uncharge(folio);
2021 if (restore_reserve)
2022 h->resv_huge_pages++;
2023
2024 if (folio_test_hugetlb_temporary(folio)) {
2025 remove_hugetlb_folio(h, folio, false);
2026 spin_unlock_irqrestore(&hugetlb_lock, flags);
2027 update_and_free_hugetlb_folio(h, folio, true);
2028 } else if (h->surplus_huge_pages_node[nid]) {
2029 /* remove the page from active list */
2030 remove_hugetlb_folio(h, folio, true);
2031 spin_unlock_irqrestore(&hugetlb_lock, flags);
2032 update_and_free_hugetlb_folio(h, folio, true);
2033 } else {
2034 arch_clear_hugepage_flags(&folio->page);
2035 enqueue_hugetlb_folio(h, folio);
2036 spin_unlock_irqrestore(&hugetlb_lock, flags);
2037 }
2038}
2039
2040/*
2041 * Must be called with the hugetlb lock held
2042 */
2043static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044{
2045 lockdep_assert_held(&hugetlb_lock);
2046 h->nr_huge_pages++;
2047 h->nr_huge_pages_node[nid]++;
2048}
2049
2050static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051{
2052 __folio_set_hugetlb(folio);
2053 INIT_LIST_HEAD(&folio->lru);
2054 hugetlb_set_folio_subpool(folio, NULL);
2055 set_hugetlb_cgroup(folio, NULL);
2056 set_hugetlb_cgroup_rsvd(folio, NULL);
2057}
2058
2059static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060{
2061 init_new_hugetlb_folio(h, folio);
2062 hugetlb_vmemmap_optimize_folio(h, folio);
2063}
2064
2065static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066{
2067 __prep_new_hugetlb_folio(h, folio);
2068 spin_lock_irq(&hugetlb_lock);
2069 __prep_account_new_huge_page(h, nid);
2070 spin_unlock_irq(&hugetlb_lock);
2071}
2072
2073static bool __prep_compound_gigantic_folio(struct folio *folio,
2074 unsigned int order, bool demote)
2075{
2076 int i, j;
2077 int nr_pages = 1 << order;
2078 struct page *p;
2079
2080 __folio_clear_reserved(folio);
2081 for (i = 0; i < nr_pages; i++) {
2082 p = folio_page(folio, i);
2083
2084 /*
2085 * For gigantic hugepages allocated through bootmem at
2086 * boot, it's safer to be consistent with the not-gigantic
2087 * hugepages and clear the PG_reserved bit from all tail pages
2088 * too. Otherwise drivers using get_user_pages() to access tail
2089 * pages may get the reference counting wrong if they see
2090 * PG_reserved set on a tail page (despite the head page not
2091 * having PG_reserved set). Enforcing this consistency between
2092 * head and tail pages allows drivers to optimize away a check
2093 * on the head page when they need know if put_page() is needed
2094 * after get_user_pages().
2095 */
2096 if (i != 0) /* head page cleared above */
2097 __ClearPageReserved(p);
2098 /*
2099 * Subtle and very unlikely
2100 *
2101 * Gigantic 'page allocators' such as memblock or cma will
2102 * return a set of pages with each page ref counted. We need
2103 * to turn this set of pages into a compound page with tail
2104 * page ref counts set to zero. Code such as speculative page
2105 * cache adding could take a ref on a 'to be' tail page.
2106 * We need to respect any increased ref count, and only set
2107 * the ref count to zero if count is currently 1. If count
2108 * is not 1, we return an error. An error return indicates
2109 * the set of pages can not be converted to a gigantic page.
2110 * The caller who allocated the pages should then discard the
2111 * pages using the appropriate free interface.
2112 *
2113 * In the case of demote, the ref count will be zero.
2114 */
2115 if (!demote) {
2116 if (!page_ref_freeze(p, 1)) {
2117 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118 goto out_error;
2119 }
2120 } else {
2121 VM_BUG_ON_PAGE(page_count(p), p);
2122 }
2123 if (i != 0)
2124 set_compound_head(p, &folio->page);
2125 }
2126 __folio_set_head(folio);
2127 /* we rely on prep_new_hugetlb_folio to set the destructor */
2128 folio_set_order(folio, order);
2129 atomic_set(&folio->_entire_mapcount, -1);
2130 atomic_set(&folio->_nr_pages_mapped, 0);
2131 atomic_set(&folio->_pincount, 0);
2132 return true;
2133
2134out_error:
2135 /* undo page modifications made above */
2136 for (j = 0; j < i; j++) {
2137 p = folio_page(folio, j);
2138 if (j != 0)
2139 clear_compound_head(p);
2140 set_page_refcounted(p);
2141 }
2142 /* need to clear PG_reserved on remaining tail pages */
2143 for (; j < nr_pages; j++) {
2144 p = folio_page(folio, j);
2145 __ClearPageReserved(p);
2146 }
2147 return false;
2148}
2149
2150static bool prep_compound_gigantic_folio(struct folio *folio,
2151 unsigned int order)
2152{
2153 return __prep_compound_gigantic_folio(folio, order, false);
2154}
2155
2156static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157 unsigned int order)
2158{
2159 return __prep_compound_gigantic_folio(folio, order, true);
2160}
2161
2162/*
2163 * Find and lock address space (mapping) in write mode.
2164 *
2165 * Upon entry, the page is locked which means that page_mapping() is
2166 * stable. Due to locking order, we can only trylock_write. If we can
2167 * not get the lock, simply return NULL to caller.
2168 */
2169struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2170{
2171 struct address_space *mapping = page_mapping(hpage);
2172
2173 if (!mapping)
2174 return mapping;
2175
2176 if (i_mmap_trylock_write(mapping))
2177 return mapping;
2178
2179 return NULL;
2180}
2181
2182static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2183 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2184 nodemask_t *node_alloc_noretry)
2185{
2186 int order = huge_page_order(h);
2187 struct page *page;
2188 bool alloc_try_hard = true;
2189 bool retry = true;
2190
2191 /*
2192 * By default we always try hard to allocate the page with
2193 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2194 * a loop (to adjust global huge page counts) and previous allocation
2195 * failed, do not continue to try hard on the same node. Use the
2196 * node_alloc_noretry bitmap to manage this state information.
2197 */
2198 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2199 alloc_try_hard = false;
2200 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2201 if (alloc_try_hard)
2202 gfp_mask |= __GFP_RETRY_MAYFAIL;
2203 if (nid == NUMA_NO_NODE)
2204 nid = numa_mem_id();
2205retry:
2206 page = __alloc_pages(gfp_mask, order, nid, nmask);
2207
2208 /* Freeze head page */
2209 if (page && !page_ref_freeze(page, 1)) {
2210 __free_pages(page, order);
2211 if (retry) { /* retry once */
2212 retry = false;
2213 goto retry;
2214 }
2215 /* WOW! twice in a row. */
2216 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2217 page = NULL;
2218 }
2219
2220 /*
2221 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2222 * indicates an overall state change. Clear bit so that we resume
2223 * normal 'try hard' allocations.
2224 */
2225 if (node_alloc_noretry && page && !alloc_try_hard)
2226 node_clear(nid, *node_alloc_noretry);
2227
2228 /*
2229 * If we tried hard to get a page but failed, set bit so that
2230 * subsequent attempts will not try as hard until there is an
2231 * overall state change.
2232 */
2233 if (node_alloc_noretry && !page && alloc_try_hard)
2234 node_set(nid, *node_alloc_noretry);
2235
2236 if (!page) {
2237 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2238 return NULL;
2239 }
2240
2241 __count_vm_event(HTLB_BUDDY_PGALLOC);
2242 return page_folio(page);
2243}
2244
2245static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2246 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2247 nodemask_t *node_alloc_noretry)
2248{
2249 struct folio *folio;
2250 bool retry = false;
2251
2252retry:
2253 if (hstate_is_gigantic(h))
2254 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2255 else
2256 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2257 nid, nmask, node_alloc_noretry);
2258 if (!folio)
2259 return NULL;
2260
2261 if (hstate_is_gigantic(h)) {
2262 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2263 /*
2264 * Rare failure to convert pages to compound page.
2265 * Free pages and try again - ONCE!
2266 */
2267 free_gigantic_folio(folio, huge_page_order(h));
2268 if (!retry) {
2269 retry = true;
2270 goto retry;
2271 }
2272 return NULL;
2273 }
2274 }
2275
2276 return folio;
2277}
2278
2279static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2280 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2281 nodemask_t *node_alloc_noretry)
2282{
2283 struct folio *folio;
2284
2285 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2286 node_alloc_noretry);
2287 if (folio)
2288 init_new_hugetlb_folio(h, folio);
2289 return folio;
2290}
2291
2292/*
2293 * Common helper to allocate a fresh hugetlb page. All specific allocators
2294 * should use this function to get new hugetlb pages
2295 *
2296 * Note that returned page is 'frozen': ref count of head page and all tail
2297 * pages is zero.
2298 */
2299static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2300 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2301 nodemask_t *node_alloc_noretry)
2302{
2303 struct folio *folio;
2304
2305 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2306 node_alloc_noretry);
2307 if (!folio)
2308 return NULL;
2309
2310 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2311 return folio;
2312}
2313
2314static void prep_and_add_allocated_folios(struct hstate *h,
2315 struct list_head *folio_list)
2316{
2317 unsigned long flags;
2318 struct folio *folio, *tmp_f;
2319
2320 /* Send list for bulk vmemmap optimization processing */
2321 hugetlb_vmemmap_optimize_folios(h, folio_list);
2322
2323 /* Add all new pool pages to free lists in one lock cycle */
2324 spin_lock_irqsave(&hugetlb_lock, flags);
2325 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2326 __prep_account_new_huge_page(h, folio_nid(folio));
2327 enqueue_hugetlb_folio(h, folio);
2328 }
2329 spin_unlock_irqrestore(&hugetlb_lock, flags);
2330}
2331
2332/*
2333 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2334 * will later be added to the appropriate hugetlb pool.
2335 */
2336static struct folio *alloc_pool_huge_folio(struct hstate *h,
2337 nodemask_t *nodes_allowed,
2338 nodemask_t *node_alloc_noretry,
2339 int *next_node)
2340{
2341 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2342 int nr_nodes, node;
2343
2344 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2345 struct folio *folio;
2346
2347 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2348 nodes_allowed, node_alloc_noretry);
2349 if (folio)
2350 return folio;
2351 }
2352
2353 return NULL;
2354}
2355
2356/*
2357 * Remove huge page from pool from next node to free. Attempt to keep
2358 * persistent huge pages more or less balanced over allowed nodes.
2359 * This routine only 'removes' the hugetlb page. The caller must make
2360 * an additional call to free the page to low level allocators.
2361 * Called with hugetlb_lock locked.
2362 */
2363static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2364 nodemask_t *nodes_allowed, bool acct_surplus)
2365{
2366 int nr_nodes, node;
2367 struct folio *folio = NULL;
2368
2369 lockdep_assert_held(&hugetlb_lock);
2370 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2371 /*
2372 * If we're returning unused surplus pages, only examine
2373 * nodes with surplus pages.
2374 */
2375 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2376 !list_empty(&h->hugepage_freelists[node])) {
2377 folio = list_entry(h->hugepage_freelists[node].next,
2378 struct folio, lru);
2379 remove_hugetlb_folio(h, folio, acct_surplus);
2380 break;
2381 }
2382 }
2383
2384 return folio;
2385}
2386
2387/*
2388 * Dissolve a given free hugepage into free buddy pages. This function does
2389 * nothing for in-use hugepages and non-hugepages.
2390 * This function returns values like below:
2391 *
2392 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2393 * when the system is under memory pressure and the feature of
2394 * freeing unused vmemmap pages associated with each hugetlb page
2395 * is enabled.
2396 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2397 * (allocated or reserved.)
2398 * 0: successfully dissolved free hugepages or the page is not a
2399 * hugepage (considered as already dissolved)
2400 */
2401int dissolve_free_huge_page(struct page *page)
2402{
2403 int rc = -EBUSY;
2404 struct folio *folio = page_folio(page);
2405
2406retry:
2407 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2408 if (!folio_test_hugetlb(folio))
2409 return 0;
2410
2411 spin_lock_irq(&hugetlb_lock);
2412 if (!folio_test_hugetlb(folio)) {
2413 rc = 0;
2414 goto out;
2415 }
2416
2417 if (!folio_ref_count(folio)) {
2418 struct hstate *h = folio_hstate(folio);
2419 if (!available_huge_pages(h))
2420 goto out;
2421
2422 /*
2423 * We should make sure that the page is already on the free list
2424 * when it is dissolved.
2425 */
2426 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2427 spin_unlock_irq(&hugetlb_lock);
2428 cond_resched();
2429
2430 /*
2431 * Theoretically, we should return -EBUSY when we
2432 * encounter this race. In fact, we have a chance
2433 * to successfully dissolve the page if we do a
2434 * retry. Because the race window is quite small.
2435 * If we seize this opportunity, it is an optimization
2436 * for increasing the success rate of dissolving page.
2437 */
2438 goto retry;
2439 }
2440
2441 remove_hugetlb_folio(h, folio, false);
2442 h->max_huge_pages--;
2443 spin_unlock_irq(&hugetlb_lock);
2444
2445 /*
2446 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2447 * before freeing the page. update_and_free_hugtlb_folio will fail to
2448 * free the page if it can not allocate required vmemmap. We
2449 * need to adjust max_huge_pages if the page is not freed.
2450 * Attempt to allocate vmemmmap here so that we can take
2451 * appropriate action on failure.
2452 *
2453 * The folio_test_hugetlb check here is because
2454 * remove_hugetlb_folio will clear hugetlb folio flag for
2455 * non-vmemmap optimized hugetlb folios.
2456 */
2457 if (folio_test_hugetlb(folio)) {
2458 rc = hugetlb_vmemmap_restore_folio(h, folio);
2459 if (rc) {
2460 spin_lock_irq(&hugetlb_lock);
2461 add_hugetlb_folio(h, folio, false);
2462 h->max_huge_pages++;
2463 goto out;
2464 }
2465 } else
2466 rc = 0;
2467
2468 update_and_free_hugetlb_folio(h, folio, false);
2469 return rc;
2470 }
2471out:
2472 spin_unlock_irq(&hugetlb_lock);
2473 return rc;
2474}
2475
2476/*
2477 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2478 * make specified memory blocks removable from the system.
2479 * Note that this will dissolve a free gigantic hugepage completely, if any
2480 * part of it lies within the given range.
2481 * Also note that if dissolve_free_huge_page() returns with an error, all
2482 * free hugepages that were dissolved before that error are lost.
2483 */
2484int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2485{
2486 unsigned long pfn;
2487 struct page *page;
2488 int rc = 0;
2489 unsigned int order;
2490 struct hstate *h;
2491
2492 if (!hugepages_supported())
2493 return rc;
2494
2495 order = huge_page_order(&default_hstate);
2496 for_each_hstate(h)
2497 order = min(order, huge_page_order(h));
2498
2499 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2500 page = pfn_to_page(pfn);
2501 rc = dissolve_free_huge_page(page);
2502 if (rc)
2503 break;
2504 }
2505
2506 return rc;
2507}
2508
2509/*
2510 * Allocates a fresh surplus page from the page allocator.
2511 */
2512static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2513 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2514{
2515 struct folio *folio = NULL;
2516
2517 if (hstate_is_gigantic(h))
2518 return NULL;
2519
2520 spin_lock_irq(&hugetlb_lock);
2521 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2522 goto out_unlock;
2523 spin_unlock_irq(&hugetlb_lock);
2524
2525 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2526 if (!folio)
2527 return NULL;
2528
2529 spin_lock_irq(&hugetlb_lock);
2530 /*
2531 * We could have raced with the pool size change.
2532 * Double check that and simply deallocate the new page
2533 * if we would end up overcommiting the surpluses. Abuse
2534 * temporary page to workaround the nasty free_huge_folio
2535 * codeflow
2536 */
2537 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2538 folio_set_hugetlb_temporary(folio);
2539 spin_unlock_irq(&hugetlb_lock);
2540 free_huge_folio(folio);
2541 return NULL;
2542 }
2543
2544 h->surplus_huge_pages++;
2545 h->surplus_huge_pages_node[folio_nid(folio)]++;
2546
2547out_unlock:
2548 spin_unlock_irq(&hugetlb_lock);
2549
2550 return folio;
2551}
2552
2553static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2554 int nid, nodemask_t *nmask)
2555{
2556 struct folio *folio;
2557
2558 if (hstate_is_gigantic(h))
2559 return NULL;
2560
2561 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2562 if (!folio)
2563 return NULL;
2564
2565 /* fresh huge pages are frozen */
2566 folio_ref_unfreeze(folio, 1);
2567 /*
2568 * We do not account these pages as surplus because they are only
2569 * temporary and will be released properly on the last reference
2570 */
2571 folio_set_hugetlb_temporary(folio);
2572
2573 return folio;
2574}
2575
2576/*
2577 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2578 */
2579static
2580struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2581 struct vm_area_struct *vma, unsigned long addr)
2582{
2583 struct folio *folio = NULL;
2584 struct mempolicy *mpol;
2585 gfp_t gfp_mask = htlb_alloc_mask(h);
2586 int nid;
2587 nodemask_t *nodemask;
2588
2589 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2590 if (mpol_is_preferred_many(mpol)) {
2591 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2592
2593 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2594 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2595
2596 /* Fallback to all nodes if page==NULL */
2597 nodemask = NULL;
2598 }
2599
2600 if (!folio)
2601 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2602 mpol_cond_put(mpol);
2603 return folio;
2604}
2605
2606/* folio migration callback function */
2607struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2608 nodemask_t *nmask, gfp_t gfp_mask)
2609{
2610 spin_lock_irq(&hugetlb_lock);
2611 if (available_huge_pages(h)) {
2612 struct folio *folio;
2613
2614 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2615 preferred_nid, nmask);
2616 if (folio) {
2617 spin_unlock_irq(&hugetlb_lock);
2618 return folio;
2619 }
2620 }
2621 spin_unlock_irq(&hugetlb_lock);
2622
2623 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2624}
2625
2626/*
2627 * Increase the hugetlb pool such that it can accommodate a reservation
2628 * of size 'delta'.
2629 */
2630static int gather_surplus_pages(struct hstate *h, long delta)
2631 __must_hold(&hugetlb_lock)
2632{
2633 LIST_HEAD(surplus_list);
2634 struct folio *folio, *tmp;
2635 int ret;
2636 long i;
2637 long needed, allocated;
2638 bool alloc_ok = true;
2639
2640 lockdep_assert_held(&hugetlb_lock);
2641 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2642 if (needed <= 0) {
2643 h->resv_huge_pages += delta;
2644 return 0;
2645 }
2646
2647 allocated = 0;
2648
2649 ret = -ENOMEM;
2650retry:
2651 spin_unlock_irq(&hugetlb_lock);
2652 for (i = 0; i < needed; i++) {
2653 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2654 NUMA_NO_NODE, NULL);
2655 if (!folio) {
2656 alloc_ok = false;
2657 break;
2658 }
2659 list_add(&folio->lru, &surplus_list);
2660 cond_resched();
2661 }
2662 allocated += i;
2663
2664 /*
2665 * After retaking hugetlb_lock, we need to recalculate 'needed'
2666 * because either resv_huge_pages or free_huge_pages may have changed.
2667 */
2668 spin_lock_irq(&hugetlb_lock);
2669 needed = (h->resv_huge_pages + delta) -
2670 (h->free_huge_pages + allocated);
2671 if (needed > 0) {
2672 if (alloc_ok)
2673 goto retry;
2674 /*
2675 * We were not able to allocate enough pages to
2676 * satisfy the entire reservation so we free what
2677 * we've allocated so far.
2678 */
2679 goto free;
2680 }
2681 /*
2682 * The surplus_list now contains _at_least_ the number of extra pages
2683 * needed to accommodate the reservation. Add the appropriate number
2684 * of pages to the hugetlb pool and free the extras back to the buddy
2685 * allocator. Commit the entire reservation here to prevent another
2686 * process from stealing the pages as they are added to the pool but
2687 * before they are reserved.
2688 */
2689 needed += allocated;
2690 h->resv_huge_pages += delta;
2691 ret = 0;
2692
2693 /* Free the needed pages to the hugetlb pool */
2694 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2695 if ((--needed) < 0)
2696 break;
2697 /* Add the page to the hugetlb allocator */
2698 enqueue_hugetlb_folio(h, folio);
2699 }
2700free:
2701 spin_unlock_irq(&hugetlb_lock);
2702
2703 /*
2704 * Free unnecessary surplus pages to the buddy allocator.
2705 * Pages have no ref count, call free_huge_folio directly.
2706 */
2707 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2708 free_huge_folio(folio);
2709 spin_lock_irq(&hugetlb_lock);
2710
2711 return ret;
2712}
2713
2714/*
2715 * This routine has two main purposes:
2716 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2717 * in unused_resv_pages. This corresponds to the prior adjustments made
2718 * to the associated reservation map.
2719 * 2) Free any unused surplus pages that may have been allocated to satisfy
2720 * the reservation. As many as unused_resv_pages may be freed.
2721 */
2722static void return_unused_surplus_pages(struct hstate *h,
2723 unsigned long unused_resv_pages)
2724{
2725 unsigned long nr_pages;
2726 LIST_HEAD(page_list);
2727
2728 lockdep_assert_held(&hugetlb_lock);
2729 /* Uncommit the reservation */
2730 h->resv_huge_pages -= unused_resv_pages;
2731
2732 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2733 goto out;
2734
2735 /*
2736 * Part (or even all) of the reservation could have been backed
2737 * by pre-allocated pages. Only free surplus pages.
2738 */
2739 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2740
2741 /*
2742 * We want to release as many surplus pages as possible, spread
2743 * evenly across all nodes with memory. Iterate across these nodes
2744 * until we can no longer free unreserved surplus pages. This occurs
2745 * when the nodes with surplus pages have no free pages.
2746 * remove_pool_hugetlb_folio() will balance the freed pages across the
2747 * on-line nodes with memory and will handle the hstate accounting.
2748 */
2749 while (nr_pages--) {
2750 struct folio *folio;
2751
2752 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2753 if (!folio)
2754 goto out;
2755
2756 list_add(&folio->lru, &page_list);
2757 }
2758
2759out:
2760 spin_unlock_irq(&hugetlb_lock);
2761 update_and_free_pages_bulk(h, &page_list);
2762 spin_lock_irq(&hugetlb_lock);
2763}
2764
2765
2766/*
2767 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2768 * are used by the huge page allocation routines to manage reservations.
2769 *
2770 * vma_needs_reservation is called to determine if the huge page at addr
2771 * within the vma has an associated reservation. If a reservation is
2772 * needed, the value 1 is returned. The caller is then responsible for
2773 * managing the global reservation and subpool usage counts. After
2774 * the huge page has been allocated, vma_commit_reservation is called
2775 * to add the page to the reservation map. If the page allocation fails,
2776 * the reservation must be ended instead of committed. vma_end_reservation
2777 * is called in such cases.
2778 *
2779 * In the normal case, vma_commit_reservation returns the same value
2780 * as the preceding vma_needs_reservation call. The only time this
2781 * is not the case is if a reserve map was changed between calls. It
2782 * is the responsibility of the caller to notice the difference and
2783 * take appropriate action.
2784 *
2785 * vma_add_reservation is used in error paths where a reservation must
2786 * be restored when a newly allocated huge page must be freed. It is
2787 * to be called after calling vma_needs_reservation to determine if a
2788 * reservation exists.
2789 *
2790 * vma_del_reservation is used in error paths where an entry in the reserve
2791 * map was created during huge page allocation and must be removed. It is to
2792 * be called after calling vma_needs_reservation to determine if a reservation
2793 * exists.
2794 */
2795enum vma_resv_mode {
2796 VMA_NEEDS_RESV,
2797 VMA_COMMIT_RESV,
2798 VMA_END_RESV,
2799 VMA_ADD_RESV,
2800 VMA_DEL_RESV,
2801};
2802static long __vma_reservation_common(struct hstate *h,
2803 struct vm_area_struct *vma, unsigned long addr,
2804 enum vma_resv_mode mode)
2805{
2806 struct resv_map *resv;
2807 pgoff_t idx;
2808 long ret;
2809 long dummy_out_regions_needed;
2810
2811 resv = vma_resv_map(vma);
2812 if (!resv)
2813 return 1;
2814
2815 idx = vma_hugecache_offset(h, vma, addr);
2816 switch (mode) {
2817 case VMA_NEEDS_RESV:
2818 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2819 /* We assume that vma_reservation_* routines always operate on
2820 * 1 page, and that adding to resv map a 1 page entry can only
2821 * ever require 1 region.
2822 */
2823 VM_BUG_ON(dummy_out_regions_needed != 1);
2824 break;
2825 case VMA_COMMIT_RESV:
2826 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2827 /* region_add calls of range 1 should never fail. */
2828 VM_BUG_ON(ret < 0);
2829 break;
2830 case VMA_END_RESV:
2831 region_abort(resv, idx, idx + 1, 1);
2832 ret = 0;
2833 break;
2834 case VMA_ADD_RESV:
2835 if (vma->vm_flags & VM_MAYSHARE) {
2836 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2837 /* region_add calls of range 1 should never fail. */
2838 VM_BUG_ON(ret < 0);
2839 } else {
2840 region_abort(resv, idx, idx + 1, 1);
2841 ret = region_del(resv, idx, idx + 1);
2842 }
2843 break;
2844 case VMA_DEL_RESV:
2845 if (vma->vm_flags & VM_MAYSHARE) {
2846 region_abort(resv, idx, idx + 1, 1);
2847 ret = region_del(resv, idx, idx + 1);
2848 } else {
2849 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2850 /* region_add calls of range 1 should never fail. */
2851 VM_BUG_ON(ret < 0);
2852 }
2853 break;
2854 default:
2855 BUG();
2856 }
2857
2858 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2859 return ret;
2860 /*
2861 * We know private mapping must have HPAGE_RESV_OWNER set.
2862 *
2863 * In most cases, reserves always exist for private mappings.
2864 * However, a file associated with mapping could have been
2865 * hole punched or truncated after reserves were consumed.
2866 * As subsequent fault on such a range will not use reserves.
2867 * Subtle - The reserve map for private mappings has the
2868 * opposite meaning than that of shared mappings. If NO
2869 * entry is in the reserve map, it means a reservation exists.
2870 * If an entry exists in the reserve map, it means the
2871 * reservation has already been consumed. As a result, the
2872 * return value of this routine is the opposite of the
2873 * value returned from reserve map manipulation routines above.
2874 */
2875 if (ret > 0)
2876 return 0;
2877 if (ret == 0)
2878 return 1;
2879 return ret;
2880}
2881
2882static long vma_needs_reservation(struct hstate *h,
2883 struct vm_area_struct *vma, unsigned long addr)
2884{
2885 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2886}
2887
2888static long vma_commit_reservation(struct hstate *h,
2889 struct vm_area_struct *vma, unsigned long addr)
2890{
2891 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2892}
2893
2894static void vma_end_reservation(struct hstate *h,
2895 struct vm_area_struct *vma, unsigned long addr)
2896{
2897 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2898}
2899
2900static long vma_add_reservation(struct hstate *h,
2901 struct vm_area_struct *vma, unsigned long addr)
2902{
2903 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2904}
2905
2906static long vma_del_reservation(struct hstate *h,
2907 struct vm_area_struct *vma, unsigned long addr)
2908{
2909 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2910}
2911
2912/*
2913 * This routine is called to restore reservation information on error paths.
2914 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2915 * and the hugetlb mutex should remain held when calling this routine.
2916 *
2917 * It handles two specific cases:
2918 * 1) A reservation was in place and the folio consumed the reservation.
2919 * hugetlb_restore_reserve is set in the folio.
2920 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2921 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2922 *
2923 * In case 1, free_huge_folio later in the error path will increment the
2924 * global reserve count. But, free_huge_folio does not have enough context
2925 * to adjust the reservation map. This case deals primarily with private
2926 * mappings. Adjust the reserve map here to be consistent with global
2927 * reserve count adjustments to be made by free_huge_folio. Make sure the
2928 * reserve map indicates there is a reservation present.
2929 *
2930 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2931 */
2932void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2933 unsigned long address, struct folio *folio)
2934{
2935 long rc = vma_needs_reservation(h, vma, address);
2936
2937 if (folio_test_hugetlb_restore_reserve(folio)) {
2938 if (unlikely(rc < 0))
2939 /*
2940 * Rare out of memory condition in reserve map
2941 * manipulation. Clear hugetlb_restore_reserve so
2942 * that global reserve count will not be incremented
2943 * by free_huge_folio. This will make it appear
2944 * as though the reservation for this folio was
2945 * consumed. This may prevent the task from
2946 * faulting in the folio at a later time. This
2947 * is better than inconsistent global huge page
2948 * accounting of reserve counts.
2949 */
2950 folio_clear_hugetlb_restore_reserve(folio);
2951 else if (rc)
2952 (void)vma_add_reservation(h, vma, address);
2953 else
2954 vma_end_reservation(h, vma, address);
2955 } else {
2956 if (!rc) {
2957 /*
2958 * This indicates there is an entry in the reserve map
2959 * not added by alloc_hugetlb_folio. We know it was added
2960 * before the alloc_hugetlb_folio call, otherwise
2961 * hugetlb_restore_reserve would be set on the folio.
2962 * Remove the entry so that a subsequent allocation
2963 * does not consume a reservation.
2964 */
2965 rc = vma_del_reservation(h, vma, address);
2966 if (rc < 0)
2967 /*
2968 * VERY rare out of memory condition. Since
2969 * we can not delete the entry, set
2970 * hugetlb_restore_reserve so that the reserve
2971 * count will be incremented when the folio
2972 * is freed. This reserve will be consumed
2973 * on a subsequent allocation.
2974 */
2975 folio_set_hugetlb_restore_reserve(folio);
2976 } else if (rc < 0) {
2977 /*
2978 * Rare out of memory condition from
2979 * vma_needs_reservation call. Memory allocation is
2980 * only attempted if a new entry is needed. Therefore,
2981 * this implies there is not an entry in the
2982 * reserve map.
2983 *
2984 * For shared mappings, no entry in the map indicates
2985 * no reservation. We are done.
2986 */
2987 if (!(vma->vm_flags & VM_MAYSHARE))
2988 /*
2989 * For private mappings, no entry indicates
2990 * a reservation is present. Since we can
2991 * not add an entry, set hugetlb_restore_reserve
2992 * on the folio so reserve count will be
2993 * incremented when freed. This reserve will
2994 * be consumed on a subsequent allocation.
2995 */
2996 folio_set_hugetlb_restore_reserve(folio);
2997 } else
2998 /*
2999 * No reservation present, do nothing
3000 */
3001 vma_end_reservation(h, vma, address);
3002 }
3003}
3004
3005/*
3006 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3007 * the old one
3008 * @h: struct hstate old page belongs to
3009 * @old_folio: Old folio to dissolve
3010 * @list: List to isolate the page in case we need to
3011 * Returns 0 on success, otherwise negated error.
3012 */
3013static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3014 struct folio *old_folio, struct list_head *list)
3015{
3016 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3017 int nid = folio_nid(old_folio);
3018 struct folio *new_folio = NULL;
3019 int ret = 0;
3020
3021retry:
3022 spin_lock_irq(&hugetlb_lock);
3023 if (!folio_test_hugetlb(old_folio)) {
3024 /*
3025 * Freed from under us. Drop new_folio too.
3026 */
3027 goto free_new;
3028 } else if (folio_ref_count(old_folio)) {
3029 bool isolated;
3030
3031 /*
3032 * Someone has grabbed the folio, try to isolate it here.
3033 * Fail with -EBUSY if not possible.
3034 */
3035 spin_unlock_irq(&hugetlb_lock);
3036 isolated = isolate_hugetlb(old_folio, list);
3037 ret = isolated ? 0 : -EBUSY;
3038 spin_lock_irq(&hugetlb_lock);
3039 goto free_new;
3040 } else if (!folio_test_hugetlb_freed(old_folio)) {
3041 /*
3042 * Folio's refcount is 0 but it has not been enqueued in the
3043 * freelist yet. Race window is small, so we can succeed here if
3044 * we retry.
3045 */
3046 spin_unlock_irq(&hugetlb_lock);
3047 cond_resched();
3048 goto retry;
3049 } else {
3050 if (!new_folio) {
3051 spin_unlock_irq(&hugetlb_lock);
3052 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3053 NULL, NULL);
3054 if (!new_folio)
3055 return -ENOMEM;
3056 __prep_new_hugetlb_folio(h, new_folio);
3057 goto retry;
3058 }
3059
3060 /*
3061 * Ok, old_folio is still a genuine free hugepage. Remove it from
3062 * the freelist and decrease the counters. These will be
3063 * incremented again when calling __prep_account_new_huge_page()
3064 * and enqueue_hugetlb_folio() for new_folio. The counters will
3065 * remain stable since this happens under the lock.
3066 */
3067 remove_hugetlb_folio(h, old_folio, false);
3068
3069 /*
3070 * Ref count on new_folio is already zero as it was dropped
3071 * earlier. It can be directly added to the pool free list.
3072 */
3073 __prep_account_new_huge_page(h, nid);
3074 enqueue_hugetlb_folio(h, new_folio);
3075
3076 /*
3077 * Folio has been replaced, we can safely free the old one.
3078 */
3079 spin_unlock_irq(&hugetlb_lock);
3080 update_and_free_hugetlb_folio(h, old_folio, false);
3081 }
3082
3083 return ret;
3084
3085free_new:
3086 spin_unlock_irq(&hugetlb_lock);
3087 if (new_folio) {
3088 /* Folio has a zero ref count, but needs a ref to be freed */
3089 folio_ref_unfreeze(new_folio, 1);
3090 update_and_free_hugetlb_folio(h, new_folio, false);
3091 }
3092
3093 return ret;
3094}
3095
3096int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3097{
3098 struct hstate *h;
3099 struct folio *folio = page_folio(page);
3100 int ret = -EBUSY;
3101
3102 /*
3103 * The page might have been dissolved from under our feet, so make sure
3104 * to carefully check the state under the lock.
3105 * Return success when racing as if we dissolved the page ourselves.
3106 */
3107 spin_lock_irq(&hugetlb_lock);
3108 if (folio_test_hugetlb(folio)) {
3109 h = folio_hstate(folio);
3110 } else {
3111 spin_unlock_irq(&hugetlb_lock);
3112 return 0;
3113 }
3114 spin_unlock_irq(&hugetlb_lock);
3115
3116 /*
3117 * Fence off gigantic pages as there is a cyclic dependency between
3118 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3119 * of bailing out right away without further retrying.
3120 */
3121 if (hstate_is_gigantic(h))
3122 return -ENOMEM;
3123
3124 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3125 ret = 0;
3126 else if (!folio_ref_count(folio))
3127 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3128
3129 return ret;
3130}
3131
3132struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3133 unsigned long addr, int avoid_reserve)
3134{
3135 struct hugepage_subpool *spool = subpool_vma(vma);
3136 struct hstate *h = hstate_vma(vma);
3137 struct folio *folio;
3138 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3139 long gbl_chg;
3140 int memcg_charge_ret, ret, idx;
3141 struct hugetlb_cgroup *h_cg = NULL;
3142 struct mem_cgroup *memcg;
3143 bool deferred_reserve;
3144 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3145
3146 memcg = get_mem_cgroup_from_current();
3147 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3148 if (memcg_charge_ret == -ENOMEM) {
3149 mem_cgroup_put(memcg);
3150 return ERR_PTR(-ENOMEM);
3151 }
3152
3153 idx = hstate_index(h);
3154 /*
3155 * Examine the region/reserve map to determine if the process
3156 * has a reservation for the page to be allocated. A return
3157 * code of zero indicates a reservation exists (no change).
3158 */
3159 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3160 if (map_chg < 0) {
3161 if (!memcg_charge_ret)
3162 mem_cgroup_cancel_charge(memcg, nr_pages);
3163 mem_cgroup_put(memcg);
3164 return ERR_PTR(-ENOMEM);
3165 }
3166
3167 /*
3168 * Processes that did not create the mapping will have no
3169 * reserves as indicated by the region/reserve map. Check
3170 * that the allocation will not exceed the subpool limit.
3171 * Allocations for MAP_NORESERVE mappings also need to be
3172 * checked against any subpool limit.
3173 */
3174 if (map_chg || avoid_reserve) {
3175 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3176 if (gbl_chg < 0)
3177 goto out_end_reservation;
3178
3179 /*
3180 * Even though there was no reservation in the region/reserve
3181 * map, there could be reservations associated with the
3182 * subpool that can be used. This would be indicated if the
3183 * return value of hugepage_subpool_get_pages() is zero.
3184 * However, if avoid_reserve is specified we still avoid even
3185 * the subpool reservations.
3186 */
3187 if (avoid_reserve)
3188 gbl_chg = 1;
3189 }
3190
3191 /* If this allocation is not consuming a reservation, charge it now.
3192 */
3193 deferred_reserve = map_chg || avoid_reserve;
3194 if (deferred_reserve) {
3195 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3196 idx, pages_per_huge_page(h), &h_cg);
3197 if (ret)
3198 goto out_subpool_put;
3199 }
3200
3201 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3202 if (ret)
3203 goto out_uncharge_cgroup_reservation;
3204
3205 spin_lock_irq(&hugetlb_lock);
3206 /*
3207 * glb_chg is passed to indicate whether or not a page must be taken
3208 * from the global free pool (global change). gbl_chg == 0 indicates
3209 * a reservation exists for the allocation.
3210 */
3211 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3212 if (!folio) {
3213 spin_unlock_irq(&hugetlb_lock);
3214 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3215 if (!folio)
3216 goto out_uncharge_cgroup;
3217 spin_lock_irq(&hugetlb_lock);
3218 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3219 folio_set_hugetlb_restore_reserve(folio);
3220 h->resv_huge_pages--;
3221 }
3222 list_add(&folio->lru, &h->hugepage_activelist);
3223 folio_ref_unfreeze(folio, 1);
3224 /* Fall through */
3225 }
3226
3227 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3228 /* If allocation is not consuming a reservation, also store the
3229 * hugetlb_cgroup pointer on the page.
3230 */
3231 if (deferred_reserve) {
3232 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3233 h_cg, folio);
3234 }
3235
3236 spin_unlock_irq(&hugetlb_lock);
3237
3238 hugetlb_set_folio_subpool(folio, spool);
3239
3240 map_commit = vma_commit_reservation(h, vma, addr);
3241 if (unlikely(map_chg > map_commit)) {
3242 /*
3243 * The page was added to the reservation map between
3244 * vma_needs_reservation and vma_commit_reservation.
3245 * This indicates a race with hugetlb_reserve_pages.
3246 * Adjust for the subpool count incremented above AND
3247 * in hugetlb_reserve_pages for the same page. Also,
3248 * the reservation count added in hugetlb_reserve_pages
3249 * no longer applies.
3250 */
3251 long rsv_adjust;
3252
3253 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3254 hugetlb_acct_memory(h, -rsv_adjust);
3255 if (deferred_reserve) {
3256 spin_lock_irq(&hugetlb_lock);
3257 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3258 pages_per_huge_page(h), folio);
3259 spin_unlock_irq(&hugetlb_lock);
3260 }
3261 }
3262
3263 if (!memcg_charge_ret)
3264 mem_cgroup_commit_charge(folio, memcg);
3265 mem_cgroup_put(memcg);
3266
3267 return folio;
3268
3269out_uncharge_cgroup:
3270 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3271out_uncharge_cgroup_reservation:
3272 if (deferred_reserve)
3273 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3274 h_cg);
3275out_subpool_put:
3276 if (map_chg || avoid_reserve)
3277 hugepage_subpool_put_pages(spool, 1);
3278out_end_reservation:
3279 vma_end_reservation(h, vma, addr);
3280 if (!memcg_charge_ret)
3281 mem_cgroup_cancel_charge(memcg, nr_pages);
3282 mem_cgroup_put(memcg);
3283 return ERR_PTR(-ENOSPC);
3284}
3285
3286int alloc_bootmem_huge_page(struct hstate *h, int nid)
3287 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3288int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3289{
3290 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3291 int nr_nodes, node = nid;
3292
3293 /* do node specific alloc */
3294 if (nid != NUMA_NO_NODE) {
3295 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3296 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3297 if (!m)
3298 return 0;
3299 goto found;
3300 }
3301 /* allocate from next node when distributing huge pages */
3302 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3303 m = memblock_alloc_try_nid_raw(
3304 huge_page_size(h), huge_page_size(h),
3305 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3306 /*
3307 * Use the beginning of the huge page to store the
3308 * huge_bootmem_page struct (until gather_bootmem
3309 * puts them into the mem_map).
3310 */
3311 if (!m)
3312 return 0;
3313 goto found;
3314 }
3315
3316found:
3317
3318 /*
3319 * Only initialize the head struct page in memmap_init_reserved_pages,
3320 * rest of the struct pages will be initialized by the HugeTLB
3321 * subsystem itself.
3322 * The head struct page is used to get folio information by the HugeTLB
3323 * subsystem like zone id and node id.
3324 */
3325 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3326 huge_page_size(h) - PAGE_SIZE);
3327 /* Put them into a private list first because mem_map is not up yet */
3328 INIT_LIST_HEAD(&m->list);
3329 list_add(&m->list, &huge_boot_pages[node]);
3330 m->hstate = h;
3331 return 1;
3332}
3333
3334/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3335static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3336 unsigned long start_page_number,
3337 unsigned long end_page_number)
3338{
3339 enum zone_type zone = zone_idx(folio_zone(folio));
3340 int nid = folio_nid(folio);
3341 unsigned long head_pfn = folio_pfn(folio);
3342 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3343 int ret;
3344
3345 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3346 struct page *page = pfn_to_page(pfn);
3347
3348 __init_single_page(page, pfn, zone, nid);
3349 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3350 ret = page_ref_freeze(page, 1);
3351 VM_BUG_ON(!ret);
3352 }
3353}
3354
3355static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3356 struct hstate *h,
3357 unsigned long nr_pages)
3358{
3359 int ret;
3360
3361 /* Prepare folio head */
3362 __folio_clear_reserved(folio);
3363 __folio_set_head(folio);
3364 ret = folio_ref_freeze(folio, 1);
3365 VM_BUG_ON(!ret);
3366 /* Initialize the necessary tail struct pages */
3367 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3368 prep_compound_head((struct page *)folio, huge_page_order(h));
3369}
3370
3371static void __init prep_and_add_bootmem_folios(struct hstate *h,
3372 struct list_head *folio_list)
3373{
3374 unsigned long flags;
3375 struct folio *folio, *tmp_f;
3376
3377 /* Send list for bulk vmemmap optimization processing */
3378 hugetlb_vmemmap_optimize_folios(h, folio_list);
3379
3380 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382 /*
3383 * If HVO fails, initialize all tail struct pages
3384 * We do not worry about potential long lock hold
3385 * time as this is early in boot and there should
3386 * be no contention.
3387 */
3388 hugetlb_folio_init_tail_vmemmap(folio,
3389 HUGETLB_VMEMMAP_RESERVE_PAGES,
3390 pages_per_huge_page(h));
3391 }
3392 /* Subdivide locks to achieve better parallel performance */
3393 spin_lock_irqsave(&hugetlb_lock, flags);
3394 __prep_account_new_huge_page(h, folio_nid(folio));
3395 enqueue_hugetlb_folio(h, folio);
3396 spin_unlock_irqrestore(&hugetlb_lock, flags);
3397 }
3398}
3399
3400/*
3401 * Put bootmem huge pages into the standard lists after mem_map is up.
3402 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3403 */
3404static void __init gather_bootmem_prealloc_node(unsigned long nid)
3405{
3406 LIST_HEAD(folio_list);
3407 struct huge_bootmem_page *m;
3408 struct hstate *h = NULL, *prev_h = NULL;
3409
3410 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3411 struct page *page = virt_to_page(m);
3412 struct folio *folio = (void *)page;
3413
3414 h = m->hstate;
3415 /*
3416 * It is possible to have multiple huge page sizes (hstates)
3417 * in this list. If so, process each size separately.
3418 */
3419 if (h != prev_h && prev_h != NULL)
3420 prep_and_add_bootmem_folios(prev_h, &folio_list);
3421 prev_h = h;
3422
3423 VM_BUG_ON(!hstate_is_gigantic(h));
3424 WARN_ON(folio_ref_count(folio) != 1);
3425
3426 hugetlb_folio_init_vmemmap(folio, h,
3427 HUGETLB_VMEMMAP_RESERVE_PAGES);
3428 init_new_hugetlb_folio(h, folio);
3429 list_add(&folio->lru, &folio_list);
3430
3431 /*
3432 * We need to restore the 'stolen' pages to totalram_pages
3433 * in order to fix confusing memory reports from free(1) and
3434 * other side-effects, like CommitLimit going negative.
3435 */
3436 adjust_managed_page_count(page, pages_per_huge_page(h));
3437 cond_resched();
3438 }
3439
3440 prep_and_add_bootmem_folios(h, &folio_list);
3441}
3442
3443static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3444 unsigned long end, void *arg)
3445{
3446 int nid;
3447
3448 for (nid = start; nid < end; nid++)
3449 gather_bootmem_prealloc_node(nid);
3450}
3451
3452static void __init gather_bootmem_prealloc(void)
3453{
3454 struct padata_mt_job job = {
3455 .thread_fn = gather_bootmem_prealloc_parallel,
3456 .fn_arg = NULL,
3457 .start = 0,
3458 .size = num_node_state(N_MEMORY),
3459 .align = 1,
3460 .min_chunk = 1,
3461 .max_threads = num_node_state(N_MEMORY),
3462 .numa_aware = true,
3463 };
3464
3465 padata_do_multithreaded(&job);
3466}
3467
3468static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3469{
3470 unsigned long i;
3471 char buf[32];
3472
3473 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3474 if (hstate_is_gigantic(h)) {
3475 if (!alloc_bootmem_huge_page(h, nid))
3476 break;
3477 } else {
3478 struct folio *folio;
3479 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3480
3481 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3482 &node_states[N_MEMORY], NULL);
3483 if (!folio)
3484 break;
3485 free_huge_folio(folio); /* free it into the hugepage allocator */
3486 }
3487 cond_resched();
3488 }
3489 if (i == h->max_huge_pages_node[nid])
3490 return;
3491
3492 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3493 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3494 h->max_huge_pages_node[nid], buf, nid, i);
3495 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3496 h->max_huge_pages_node[nid] = i;
3497}
3498
3499static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3500{
3501 int i;
3502 bool node_specific_alloc = false;
3503
3504 for_each_online_node(i) {
3505 if (h->max_huge_pages_node[i] > 0) {
3506 hugetlb_hstate_alloc_pages_onenode(h, i);
3507 node_specific_alloc = true;
3508 }
3509 }
3510
3511 return node_specific_alloc;
3512}
3513
3514static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3515{
3516 if (allocated < h->max_huge_pages) {
3517 char buf[32];
3518
3519 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3520 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3521 h->max_huge_pages, buf, allocated);
3522 h->max_huge_pages = allocated;
3523 }
3524}
3525
3526static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3527{
3528 struct hstate *h = (struct hstate *)arg;
3529 int i, num = end - start;
3530 nodemask_t node_alloc_noretry;
3531 LIST_HEAD(folio_list);
3532 int next_node = first_online_node;
3533
3534 /* Bit mask controlling how hard we retry per-node allocations.*/
3535 nodes_clear(node_alloc_noretry);
3536
3537 for (i = 0; i < num; ++i) {
3538 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3539 &node_alloc_noretry, &next_node);
3540 if (!folio)
3541 break;
3542
3543 list_move(&folio->lru, &folio_list);
3544 cond_resched();
3545 }
3546
3547 prep_and_add_allocated_folios(h, &folio_list);
3548}
3549
3550static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3551{
3552 unsigned long i;
3553
3554 for (i = 0; i < h->max_huge_pages; ++i) {
3555 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3556 break;
3557 cond_resched();
3558 }
3559
3560 return i;
3561}
3562
3563static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3564{
3565 struct padata_mt_job job = {
3566 .fn_arg = h,
3567 .align = 1,
3568 .numa_aware = true
3569 };
3570
3571 job.thread_fn = hugetlb_pages_alloc_boot_node;
3572 job.start = 0;
3573 job.size = h->max_huge_pages;
3574
3575 /*
3576 * job.max_threads is twice the num_node_state(N_MEMORY),
3577 *
3578 * Tests below indicate that a multiplier of 2 significantly improves
3579 * performance, and although larger values also provide improvements,
3580 * the gains are marginal.
3581 *
3582 * Therefore, choosing 2 as the multiplier strikes a good balance between
3583 * enhancing parallel processing capabilities and maintaining efficient
3584 * resource management.
3585 *
3586 * +------------+-------+-------+-------+-------+-------+
3587 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3588 * +------------+-------+-------+-------+-------+-------+
3589 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3590 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3591 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3592 * +------------+-------+-------+-------+-------+-------+
3593 */
3594 job.max_threads = num_node_state(N_MEMORY) * 2;
3595 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3596 padata_do_multithreaded(&job);
3597
3598 return h->nr_huge_pages;
3599}
3600
3601/*
3602 * NOTE: this routine is called in different contexts for gigantic and
3603 * non-gigantic pages.
3604 * - For gigantic pages, this is called early in the boot process and
3605 * pages are allocated from memblock allocated or something similar.
3606 * Gigantic pages are actually added to pools later with the routine
3607 * gather_bootmem_prealloc.
3608 * - For non-gigantic pages, this is called later in the boot process after
3609 * all of mm is up and functional. Pages are allocated from buddy and
3610 * then added to hugetlb pools.
3611 */
3612static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3613{
3614 unsigned long allocated;
3615 static bool initialized __initdata;
3616
3617 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3618 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3619 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3620 return;
3621 }
3622
3623 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3624 if (!initialized) {
3625 int i = 0;
3626
3627 for (i = 0; i < MAX_NUMNODES; i++)
3628 INIT_LIST_HEAD(&huge_boot_pages[i]);
3629 initialized = true;
3630 }
3631
3632 /* do node specific alloc */
3633 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634 return;
3635
3636 /* below will do all node balanced alloc */
3637 if (hstate_is_gigantic(h))
3638 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639 else
3640 allocated = hugetlb_pages_alloc_boot(h);
3641
3642 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643}
3644
3645static void __init hugetlb_init_hstates(void)
3646{
3647 struct hstate *h, *h2;
3648
3649 for_each_hstate(h) {
3650 /* oversize hugepages were init'ed in early boot */
3651 if (!hstate_is_gigantic(h))
3652 hugetlb_hstate_alloc_pages(h);
3653
3654 /*
3655 * Set demote order for each hstate. Note that
3656 * h->demote_order is initially 0.
3657 * - We can not demote gigantic pages if runtime freeing
3658 * is not supported, so skip this.
3659 * - If CMA allocation is possible, we can not demote
3660 * HUGETLB_PAGE_ORDER or smaller size pages.
3661 */
3662 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3663 continue;
3664 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3665 continue;
3666 for_each_hstate(h2) {
3667 if (h2 == h)
3668 continue;
3669 if (h2->order < h->order &&
3670 h2->order > h->demote_order)
3671 h->demote_order = h2->order;
3672 }
3673 }
3674}
3675
3676static void __init report_hugepages(void)
3677{
3678 struct hstate *h;
3679
3680 for_each_hstate(h) {
3681 char buf[32];
3682
3683 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3684 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3685 buf, h->free_huge_pages);
3686 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3687 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3688 }
3689}
3690
3691#ifdef CONFIG_HIGHMEM
3692static void try_to_free_low(struct hstate *h, unsigned long count,
3693 nodemask_t *nodes_allowed)
3694{
3695 int i;
3696 LIST_HEAD(page_list);
3697
3698 lockdep_assert_held(&hugetlb_lock);
3699 if (hstate_is_gigantic(h))
3700 return;
3701
3702 /*
3703 * Collect pages to be freed on a list, and free after dropping lock
3704 */
3705 for_each_node_mask(i, *nodes_allowed) {
3706 struct folio *folio, *next;
3707 struct list_head *freel = &h->hugepage_freelists[i];
3708 list_for_each_entry_safe(folio, next, freel, lru) {
3709 if (count >= h->nr_huge_pages)
3710 goto out;
3711 if (folio_test_highmem(folio))
3712 continue;
3713 remove_hugetlb_folio(h, folio, false);
3714 list_add(&folio->lru, &page_list);
3715 }
3716 }
3717
3718out:
3719 spin_unlock_irq(&hugetlb_lock);
3720 update_and_free_pages_bulk(h, &page_list);
3721 spin_lock_irq(&hugetlb_lock);
3722}
3723#else
3724static inline void try_to_free_low(struct hstate *h, unsigned long count,
3725 nodemask_t *nodes_allowed)
3726{
3727}
3728#endif
3729
3730/*
3731 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3732 * balanced by operating on them in a round-robin fashion.
3733 * Returns 1 if an adjustment was made.
3734 */
3735static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3736 int delta)
3737{
3738 int nr_nodes, node;
3739
3740 lockdep_assert_held(&hugetlb_lock);
3741 VM_BUG_ON(delta != -1 && delta != 1);
3742
3743 if (delta < 0) {
3744 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3745 if (h->surplus_huge_pages_node[node])
3746 goto found;
3747 }
3748 } else {
3749 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3750 if (h->surplus_huge_pages_node[node] <
3751 h->nr_huge_pages_node[node])
3752 goto found;
3753 }
3754 }
3755 return 0;
3756
3757found:
3758 h->surplus_huge_pages += delta;
3759 h->surplus_huge_pages_node[node] += delta;
3760 return 1;
3761}
3762
3763#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3764static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3765 nodemask_t *nodes_allowed)
3766{
3767 unsigned long min_count;
3768 unsigned long allocated;
3769 struct folio *folio;
3770 LIST_HEAD(page_list);
3771 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772
3773 /*
3774 * Bit mask controlling how hard we retry per-node allocations.
3775 * If we can not allocate the bit mask, do not attempt to allocate
3776 * the requested huge pages.
3777 */
3778 if (node_alloc_noretry)
3779 nodes_clear(*node_alloc_noretry);
3780 else
3781 return -ENOMEM;
3782
3783 /*
3784 * resize_lock mutex prevents concurrent adjustments to number of
3785 * pages in hstate via the proc/sysfs interfaces.
3786 */
3787 mutex_lock(&h->resize_lock);
3788 flush_free_hpage_work(h);
3789 spin_lock_irq(&hugetlb_lock);
3790
3791 /*
3792 * Check for a node specific request.
3793 * Changing node specific huge page count may require a corresponding
3794 * change to the global count. In any case, the passed node mask
3795 * (nodes_allowed) will restrict alloc/free to the specified node.
3796 */
3797 if (nid != NUMA_NO_NODE) {
3798 unsigned long old_count = count;
3799
3800 count += persistent_huge_pages(h) -
3801 (h->nr_huge_pages_node[nid] -
3802 h->surplus_huge_pages_node[nid]);
3803 /*
3804 * User may have specified a large count value which caused the
3805 * above calculation to overflow. In this case, they wanted
3806 * to allocate as many huge pages as possible. Set count to
3807 * largest possible value to align with their intention.
3808 */
3809 if (count < old_count)
3810 count = ULONG_MAX;
3811 }
3812
3813 /*
3814 * Gigantic pages runtime allocation depend on the capability for large
3815 * page range allocation.
3816 * If the system does not provide this feature, return an error when
3817 * the user tries to allocate gigantic pages but let the user free the
3818 * boottime allocated gigantic pages.
3819 */
3820 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821 if (count > persistent_huge_pages(h)) {
3822 spin_unlock_irq(&hugetlb_lock);
3823 mutex_unlock(&h->resize_lock);
3824 NODEMASK_FREE(node_alloc_noretry);
3825 return -EINVAL;
3826 }
3827 /* Fall through to decrease pool */
3828 }
3829
3830 /*
3831 * Increase the pool size
3832 * First take pages out of surplus state. Then make up the
3833 * remaining difference by allocating fresh huge pages.
3834 *
3835 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836 * to convert a surplus huge page to a normal huge page. That is
3837 * not critical, though, it just means the overall size of the
3838 * pool might be one hugepage larger than it needs to be, but
3839 * within all the constraints specified by the sysctls.
3840 */
3841 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843 break;
3844 }
3845
3846 allocated = 0;
3847 while (count > (persistent_huge_pages(h) + allocated)) {
3848 /*
3849 * If this allocation races such that we no longer need the
3850 * page, free_huge_folio will handle it by freeing the page
3851 * and reducing the surplus.
3852 */
3853 spin_unlock_irq(&hugetlb_lock);
3854
3855 /* yield cpu to avoid soft lockup */
3856 cond_resched();
3857
3858 folio = alloc_pool_huge_folio(h, nodes_allowed,
3859 node_alloc_noretry,
3860 &h->next_nid_to_alloc);
3861 if (!folio) {
3862 prep_and_add_allocated_folios(h, &page_list);
3863 spin_lock_irq(&hugetlb_lock);
3864 goto out;
3865 }
3866
3867 list_add(&folio->lru, &page_list);
3868 allocated++;
3869
3870 /* Bail for signals. Probably ctrl-c from user */
3871 if (signal_pending(current)) {
3872 prep_and_add_allocated_folios(h, &page_list);
3873 spin_lock_irq(&hugetlb_lock);
3874 goto out;
3875 }
3876
3877 spin_lock_irq(&hugetlb_lock);
3878 }
3879
3880 /* Add allocated pages to the pool */
3881 if (!list_empty(&page_list)) {
3882 spin_unlock_irq(&hugetlb_lock);
3883 prep_and_add_allocated_folios(h, &page_list);
3884 spin_lock_irq(&hugetlb_lock);
3885 }
3886
3887 /*
3888 * Decrease the pool size
3889 * First return free pages to the buddy allocator (being careful
3890 * to keep enough around to satisfy reservations). Then place
3891 * pages into surplus state as needed so the pool will shrink
3892 * to the desired size as pages become free.
3893 *
3894 * By placing pages into the surplus state independent of the
3895 * overcommit value, we are allowing the surplus pool size to
3896 * exceed overcommit. There are few sane options here. Since
3897 * alloc_surplus_hugetlb_folio() is checking the global counter,
3898 * though, we'll note that we're not allowed to exceed surplus
3899 * and won't grow the pool anywhere else. Not until one of the
3900 * sysctls are changed, or the surplus pages go out of use.
3901 */
3902 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3903 min_count = max(count, min_count);
3904 try_to_free_low(h, min_count, nodes_allowed);
3905
3906 /*
3907 * Collect pages to be removed on list without dropping lock
3908 */
3909 while (min_count < persistent_huge_pages(h)) {
3910 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3911 if (!folio)
3912 break;
3913
3914 list_add(&folio->lru, &page_list);
3915 }
3916 /* free the pages after dropping lock */
3917 spin_unlock_irq(&hugetlb_lock);
3918 update_and_free_pages_bulk(h, &page_list);
3919 flush_free_hpage_work(h);
3920 spin_lock_irq(&hugetlb_lock);
3921
3922 while (count < persistent_huge_pages(h)) {
3923 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3924 break;
3925 }
3926out:
3927 h->max_huge_pages = persistent_huge_pages(h);
3928 spin_unlock_irq(&hugetlb_lock);
3929 mutex_unlock(&h->resize_lock);
3930
3931 NODEMASK_FREE(node_alloc_noretry);
3932
3933 return 0;
3934}
3935
3936static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3937{
3938 int i, nid = folio_nid(folio);
3939 struct hstate *target_hstate;
3940 struct page *subpage;
3941 struct folio *inner_folio;
3942 int rc = 0;
3943
3944 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3945
3946 remove_hugetlb_folio_for_demote(h, folio, false);
3947 spin_unlock_irq(&hugetlb_lock);
3948
3949 /*
3950 * If vmemmap already existed for folio, the remove routine above would
3951 * have cleared the hugetlb folio flag. Hence the folio is technically
3952 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
3953 * passed hugetlb folios and will BUG otherwise.
3954 */
3955 if (folio_test_hugetlb(folio)) {
3956 rc = hugetlb_vmemmap_restore_folio(h, folio);
3957 if (rc) {
3958 /* Allocation of vmemmmap failed, we can not demote folio */
3959 spin_lock_irq(&hugetlb_lock);
3960 folio_ref_unfreeze(folio, 1);
3961 add_hugetlb_folio(h, folio, false);
3962 return rc;
3963 }
3964 }
3965
3966 /*
3967 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3968 * sizes as it will not ref count folios.
3969 */
3970 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3971
3972 /*
3973 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3974 * Without the mutex, pages added to target hstate could be marked
3975 * as surplus.
3976 *
3977 * Note that we already hold h->resize_lock. To prevent deadlock,
3978 * use the convention of always taking larger size hstate mutex first.
3979 */
3980 mutex_lock(&target_hstate->resize_lock);
3981 for (i = 0; i < pages_per_huge_page(h);
3982 i += pages_per_huge_page(target_hstate)) {
3983 subpage = folio_page(folio, i);
3984 inner_folio = page_folio(subpage);
3985 if (hstate_is_gigantic(target_hstate))
3986 prep_compound_gigantic_folio_for_demote(inner_folio,
3987 target_hstate->order);
3988 else
3989 prep_compound_page(subpage, target_hstate->order);
3990 folio_change_private(inner_folio, NULL);
3991 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3992 free_huge_folio(inner_folio);
3993 }
3994 mutex_unlock(&target_hstate->resize_lock);
3995
3996 spin_lock_irq(&hugetlb_lock);
3997
3998 /*
3999 * Not absolutely necessary, but for consistency update max_huge_pages
4000 * based on pool changes for the demoted page.
4001 */
4002 h->max_huge_pages--;
4003 target_hstate->max_huge_pages +=
4004 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4005
4006 return rc;
4007}
4008
4009static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4010 __must_hold(&hugetlb_lock)
4011{
4012 int nr_nodes, node;
4013 struct folio *folio;
4014
4015 lockdep_assert_held(&hugetlb_lock);
4016
4017 /* We should never get here if no demote order */
4018 if (!h->demote_order) {
4019 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4020 return -EINVAL; /* internal error */
4021 }
4022
4023 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4024 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4025 if (folio_test_hwpoison(folio))
4026 continue;
4027 return demote_free_hugetlb_folio(h, folio);
4028 }
4029 }
4030
4031 /*
4032 * Only way to get here is if all pages on free lists are poisoned.
4033 * Return -EBUSY so that caller will not retry.
4034 */
4035 return -EBUSY;
4036}
4037
4038#define HSTATE_ATTR_RO(_name) \
4039 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4040
4041#define HSTATE_ATTR_WO(_name) \
4042 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4043
4044#define HSTATE_ATTR(_name) \
4045 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4046
4047static struct kobject *hugepages_kobj;
4048static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049
4050static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4051
4052static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4053{
4054 int i;
4055
4056 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4057 if (hstate_kobjs[i] == kobj) {
4058 if (nidp)
4059 *nidp = NUMA_NO_NODE;
4060 return &hstates[i];
4061 }
4062
4063 return kobj_to_node_hstate(kobj, nidp);
4064}
4065
4066static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4067 struct kobj_attribute *attr, char *buf)
4068{
4069 struct hstate *h;
4070 unsigned long nr_huge_pages;
4071 int nid;
4072
4073 h = kobj_to_hstate(kobj, &nid);
4074 if (nid == NUMA_NO_NODE)
4075 nr_huge_pages = h->nr_huge_pages;
4076 else
4077 nr_huge_pages = h->nr_huge_pages_node[nid];
4078
4079 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4080}
4081
4082static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4083 struct hstate *h, int nid,
4084 unsigned long count, size_t len)
4085{
4086 int err;
4087 nodemask_t nodes_allowed, *n_mask;
4088
4089 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4090 return -EINVAL;
4091
4092 if (nid == NUMA_NO_NODE) {
4093 /*
4094 * global hstate attribute
4095 */
4096 if (!(obey_mempolicy &&
4097 init_nodemask_of_mempolicy(&nodes_allowed)))
4098 n_mask = &node_states[N_MEMORY];
4099 else
4100 n_mask = &nodes_allowed;
4101 } else {
4102 /*
4103 * Node specific request. count adjustment happens in
4104 * set_max_huge_pages() after acquiring hugetlb_lock.
4105 */
4106 init_nodemask_of_node(&nodes_allowed, nid);
4107 n_mask = &nodes_allowed;
4108 }
4109
4110 err = set_max_huge_pages(h, count, nid, n_mask);
4111
4112 return err ? err : len;
4113}
4114
4115static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4116 struct kobject *kobj, const char *buf,
4117 size_t len)
4118{
4119 struct hstate *h;
4120 unsigned long count;
4121 int nid;
4122 int err;
4123
4124 err = kstrtoul(buf, 10, &count);
4125 if (err)
4126 return err;
4127
4128 h = kobj_to_hstate(kobj, &nid);
4129 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4130}
4131
4132static ssize_t nr_hugepages_show(struct kobject *kobj,
4133 struct kobj_attribute *attr, char *buf)
4134{
4135 return nr_hugepages_show_common(kobj, attr, buf);
4136}
4137
4138static ssize_t nr_hugepages_store(struct kobject *kobj,
4139 struct kobj_attribute *attr, const char *buf, size_t len)
4140{
4141 return nr_hugepages_store_common(false, kobj, buf, len);
4142}
4143HSTATE_ATTR(nr_hugepages);
4144
4145#ifdef CONFIG_NUMA
4146
4147/*
4148 * hstate attribute for optionally mempolicy-based constraint on persistent
4149 * huge page alloc/free.
4150 */
4151static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4152 struct kobj_attribute *attr,
4153 char *buf)
4154{
4155 return nr_hugepages_show_common(kobj, attr, buf);
4156}
4157
4158static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4159 struct kobj_attribute *attr, const char *buf, size_t len)
4160{
4161 return nr_hugepages_store_common(true, kobj, buf, len);
4162}
4163HSTATE_ATTR(nr_hugepages_mempolicy);
4164#endif
4165
4166
4167static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4168 struct kobj_attribute *attr, char *buf)
4169{
4170 struct hstate *h = kobj_to_hstate(kobj, NULL);
4171 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4172}
4173
4174static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4175 struct kobj_attribute *attr, const char *buf, size_t count)
4176{
4177 int err;
4178 unsigned long input;
4179 struct hstate *h = kobj_to_hstate(kobj, NULL);
4180
4181 if (hstate_is_gigantic(h))
4182 return -EINVAL;
4183
4184 err = kstrtoul(buf, 10, &input);
4185 if (err)
4186 return err;
4187
4188 spin_lock_irq(&hugetlb_lock);
4189 h->nr_overcommit_huge_pages = input;
4190 spin_unlock_irq(&hugetlb_lock);
4191
4192 return count;
4193}
4194HSTATE_ATTR(nr_overcommit_hugepages);
4195
4196static ssize_t free_hugepages_show(struct kobject *kobj,
4197 struct kobj_attribute *attr, char *buf)
4198{
4199 struct hstate *h;
4200 unsigned long free_huge_pages;
4201 int nid;
4202
4203 h = kobj_to_hstate(kobj, &nid);
4204 if (nid == NUMA_NO_NODE)
4205 free_huge_pages = h->free_huge_pages;
4206 else
4207 free_huge_pages = h->free_huge_pages_node[nid];
4208
4209 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4210}
4211HSTATE_ATTR_RO(free_hugepages);
4212
4213static ssize_t resv_hugepages_show(struct kobject *kobj,
4214 struct kobj_attribute *attr, char *buf)
4215{
4216 struct hstate *h = kobj_to_hstate(kobj, NULL);
4217 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4218}
4219HSTATE_ATTR_RO(resv_hugepages);
4220
4221static ssize_t surplus_hugepages_show(struct kobject *kobj,
4222 struct kobj_attribute *attr, char *buf)
4223{
4224 struct hstate *h;
4225 unsigned long surplus_huge_pages;
4226 int nid;
4227
4228 h = kobj_to_hstate(kobj, &nid);
4229 if (nid == NUMA_NO_NODE)
4230 surplus_huge_pages = h->surplus_huge_pages;
4231 else
4232 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4233
4234 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4235}
4236HSTATE_ATTR_RO(surplus_hugepages);
4237
4238static ssize_t demote_store(struct kobject *kobj,
4239 struct kobj_attribute *attr, const char *buf, size_t len)
4240{
4241 unsigned long nr_demote;
4242 unsigned long nr_available;
4243 nodemask_t nodes_allowed, *n_mask;
4244 struct hstate *h;
4245 int err;
4246 int nid;
4247
4248 err = kstrtoul(buf, 10, &nr_demote);
4249 if (err)
4250 return err;
4251 h = kobj_to_hstate(kobj, &nid);
4252
4253 if (nid != NUMA_NO_NODE) {
4254 init_nodemask_of_node(&nodes_allowed, nid);
4255 n_mask = &nodes_allowed;
4256 } else {
4257 n_mask = &node_states[N_MEMORY];
4258 }
4259
4260 /* Synchronize with other sysfs operations modifying huge pages */
4261 mutex_lock(&h->resize_lock);
4262 spin_lock_irq(&hugetlb_lock);
4263
4264 while (nr_demote) {
4265 /*
4266 * Check for available pages to demote each time thorough the
4267 * loop as demote_pool_huge_page will drop hugetlb_lock.
4268 */
4269 if (nid != NUMA_NO_NODE)
4270 nr_available = h->free_huge_pages_node[nid];
4271 else
4272 nr_available = h->free_huge_pages;
4273 nr_available -= h->resv_huge_pages;
4274 if (!nr_available)
4275 break;
4276
4277 err = demote_pool_huge_page(h, n_mask);
4278 if (err)
4279 break;
4280
4281 nr_demote--;
4282 }
4283
4284 spin_unlock_irq(&hugetlb_lock);
4285 mutex_unlock(&h->resize_lock);
4286
4287 if (err)
4288 return err;
4289 return len;
4290}
4291HSTATE_ATTR_WO(demote);
4292
4293static ssize_t demote_size_show(struct kobject *kobj,
4294 struct kobj_attribute *attr, char *buf)
4295{
4296 struct hstate *h = kobj_to_hstate(kobj, NULL);
4297 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4298
4299 return sysfs_emit(buf, "%lukB\n", demote_size);
4300}
4301
4302static ssize_t demote_size_store(struct kobject *kobj,
4303 struct kobj_attribute *attr,
4304 const char *buf, size_t count)
4305{
4306 struct hstate *h, *demote_hstate;
4307 unsigned long demote_size;
4308 unsigned int demote_order;
4309
4310 demote_size = (unsigned long)memparse(buf, NULL);
4311
4312 demote_hstate = size_to_hstate(demote_size);
4313 if (!demote_hstate)
4314 return -EINVAL;
4315 demote_order = demote_hstate->order;
4316 if (demote_order < HUGETLB_PAGE_ORDER)
4317 return -EINVAL;
4318
4319 /* demote order must be smaller than hstate order */
4320 h = kobj_to_hstate(kobj, NULL);
4321 if (demote_order >= h->order)
4322 return -EINVAL;
4323
4324 /* resize_lock synchronizes access to demote size and writes */
4325 mutex_lock(&h->resize_lock);
4326 h->demote_order = demote_order;
4327 mutex_unlock(&h->resize_lock);
4328
4329 return count;
4330}
4331HSTATE_ATTR(demote_size);
4332
4333static struct attribute *hstate_attrs[] = {
4334 &nr_hugepages_attr.attr,
4335 &nr_overcommit_hugepages_attr.attr,
4336 &free_hugepages_attr.attr,
4337 &resv_hugepages_attr.attr,
4338 &surplus_hugepages_attr.attr,
4339#ifdef CONFIG_NUMA
4340 &nr_hugepages_mempolicy_attr.attr,
4341#endif
4342 NULL,
4343};
4344
4345static const struct attribute_group hstate_attr_group = {
4346 .attrs = hstate_attrs,
4347};
4348
4349static struct attribute *hstate_demote_attrs[] = {
4350 &demote_size_attr.attr,
4351 &demote_attr.attr,
4352 NULL,
4353};
4354
4355static const struct attribute_group hstate_demote_attr_group = {
4356 .attrs = hstate_demote_attrs,
4357};
4358
4359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4360 struct kobject **hstate_kobjs,
4361 const struct attribute_group *hstate_attr_group)
4362{
4363 int retval;
4364 int hi = hstate_index(h);
4365
4366 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4367 if (!hstate_kobjs[hi])
4368 return -ENOMEM;
4369
4370 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4371 if (retval) {
4372 kobject_put(hstate_kobjs[hi]);
4373 hstate_kobjs[hi] = NULL;
4374 return retval;
4375 }
4376
4377 if (h->demote_order) {
4378 retval = sysfs_create_group(hstate_kobjs[hi],
4379 &hstate_demote_attr_group);
4380 if (retval) {
4381 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4382 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4383 kobject_put(hstate_kobjs[hi]);
4384 hstate_kobjs[hi] = NULL;
4385 return retval;
4386 }
4387 }
4388
4389 return 0;
4390}
4391
4392#ifdef CONFIG_NUMA
4393static bool hugetlb_sysfs_initialized __ro_after_init;
4394
4395/*
4396 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4397 * with node devices in node_devices[] using a parallel array. The array
4398 * index of a node device or _hstate == node id.
4399 * This is here to avoid any static dependency of the node device driver, in
4400 * the base kernel, on the hugetlb module.
4401 */
4402struct node_hstate {
4403 struct kobject *hugepages_kobj;
4404 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4405};
4406static struct node_hstate node_hstates[MAX_NUMNODES];
4407
4408/*
4409 * A subset of global hstate attributes for node devices
4410 */
4411static struct attribute *per_node_hstate_attrs[] = {
4412 &nr_hugepages_attr.attr,
4413 &free_hugepages_attr.attr,
4414 &surplus_hugepages_attr.attr,
4415 NULL,
4416};
4417
4418static const struct attribute_group per_node_hstate_attr_group = {
4419 .attrs = per_node_hstate_attrs,
4420};
4421
4422/*
4423 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4424 * Returns node id via non-NULL nidp.
4425 */
4426static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4427{
4428 int nid;
4429
4430 for (nid = 0; nid < nr_node_ids; nid++) {
4431 struct node_hstate *nhs = &node_hstates[nid];
4432 int i;
4433 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4434 if (nhs->hstate_kobjs[i] == kobj) {
4435 if (nidp)
4436 *nidp = nid;
4437 return &hstates[i];
4438 }
4439 }
4440
4441 BUG();
4442 return NULL;
4443}
4444
4445/*
4446 * Unregister hstate attributes from a single node device.
4447 * No-op if no hstate attributes attached.
4448 */
4449void hugetlb_unregister_node(struct node *node)
4450{
4451 struct hstate *h;
4452 struct node_hstate *nhs = &node_hstates[node->dev.id];
4453
4454 if (!nhs->hugepages_kobj)
4455 return; /* no hstate attributes */
4456
4457 for_each_hstate(h) {
4458 int idx = hstate_index(h);
4459 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4460
4461 if (!hstate_kobj)
4462 continue;
4463 if (h->demote_order)
4464 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4465 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4466 kobject_put(hstate_kobj);
4467 nhs->hstate_kobjs[idx] = NULL;
4468 }
4469
4470 kobject_put(nhs->hugepages_kobj);
4471 nhs->hugepages_kobj = NULL;
4472}
4473
4474
4475/*
4476 * Register hstate attributes for a single node device.
4477 * No-op if attributes already registered.
4478 */
4479void hugetlb_register_node(struct node *node)
4480{
4481 struct hstate *h;
4482 struct node_hstate *nhs = &node_hstates[node->dev.id];
4483 int err;
4484
4485 if (!hugetlb_sysfs_initialized)
4486 return;
4487
4488 if (nhs->hugepages_kobj)
4489 return; /* already allocated */
4490
4491 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4492 &node->dev.kobj);
4493 if (!nhs->hugepages_kobj)
4494 return;
4495
4496 for_each_hstate(h) {
4497 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4498 nhs->hstate_kobjs,
4499 &per_node_hstate_attr_group);
4500 if (err) {
4501 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4502 h->name, node->dev.id);
4503 hugetlb_unregister_node(node);
4504 break;
4505 }
4506 }
4507}
4508
4509/*
4510 * hugetlb init time: register hstate attributes for all registered node
4511 * devices of nodes that have memory. All on-line nodes should have
4512 * registered their associated device by this time.
4513 */
4514static void __init hugetlb_register_all_nodes(void)
4515{
4516 int nid;
4517
4518 for_each_online_node(nid)
4519 hugetlb_register_node(node_devices[nid]);
4520}
4521#else /* !CONFIG_NUMA */
4522
4523static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4524{
4525 BUG();
4526 if (nidp)
4527 *nidp = -1;
4528 return NULL;
4529}
4530
4531static void hugetlb_register_all_nodes(void) { }
4532
4533#endif
4534
4535#ifdef CONFIG_CMA
4536static void __init hugetlb_cma_check(void);
4537#else
4538static inline __init void hugetlb_cma_check(void)
4539{
4540}
4541#endif
4542
4543static void __init hugetlb_sysfs_init(void)
4544{
4545 struct hstate *h;
4546 int err;
4547
4548 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4549 if (!hugepages_kobj)
4550 return;
4551
4552 for_each_hstate(h) {
4553 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4554 hstate_kobjs, &hstate_attr_group);
4555 if (err)
4556 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4557 }
4558
4559#ifdef CONFIG_NUMA
4560 hugetlb_sysfs_initialized = true;
4561#endif
4562 hugetlb_register_all_nodes();
4563}
4564
4565#ifdef CONFIG_SYSCTL
4566static void hugetlb_sysctl_init(void);
4567#else
4568static inline void hugetlb_sysctl_init(void) { }
4569#endif
4570
4571static int __init hugetlb_init(void)
4572{
4573 int i;
4574
4575 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4576 __NR_HPAGEFLAGS);
4577
4578 if (!hugepages_supported()) {
4579 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4580 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4581 return 0;
4582 }
4583
4584 /*
4585 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4586 * architectures depend on setup being done here.
4587 */
4588 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4589 if (!parsed_default_hugepagesz) {
4590 /*
4591 * If we did not parse a default huge page size, set
4592 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4593 * number of huge pages for this default size was implicitly
4594 * specified, set that here as well.
4595 * Note that the implicit setting will overwrite an explicit
4596 * setting. A warning will be printed in this case.
4597 */
4598 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4599 if (default_hstate_max_huge_pages) {
4600 if (default_hstate.max_huge_pages) {
4601 char buf[32];
4602
4603 string_get_size(huge_page_size(&default_hstate),
4604 1, STRING_UNITS_2, buf, 32);
4605 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4606 default_hstate.max_huge_pages, buf);
4607 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4608 default_hstate_max_huge_pages);
4609 }
4610 default_hstate.max_huge_pages =
4611 default_hstate_max_huge_pages;
4612
4613 for_each_online_node(i)
4614 default_hstate.max_huge_pages_node[i] =
4615 default_hugepages_in_node[i];
4616 }
4617 }
4618
4619 hugetlb_cma_check();
4620 hugetlb_init_hstates();
4621 gather_bootmem_prealloc();
4622 report_hugepages();
4623
4624 hugetlb_sysfs_init();
4625 hugetlb_cgroup_file_init();
4626 hugetlb_sysctl_init();
4627
4628#ifdef CONFIG_SMP
4629 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4630#else
4631 num_fault_mutexes = 1;
4632#endif
4633 hugetlb_fault_mutex_table =
4634 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4635 GFP_KERNEL);
4636 BUG_ON(!hugetlb_fault_mutex_table);
4637
4638 for (i = 0; i < num_fault_mutexes; i++)
4639 mutex_init(&hugetlb_fault_mutex_table[i]);
4640 return 0;
4641}
4642subsys_initcall(hugetlb_init);
4643
4644/* Overwritten by architectures with more huge page sizes */
4645bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4646{
4647 return size == HPAGE_SIZE;
4648}
4649
4650void __init hugetlb_add_hstate(unsigned int order)
4651{
4652 struct hstate *h;
4653 unsigned long i;
4654
4655 if (size_to_hstate(PAGE_SIZE << order)) {
4656 return;
4657 }
4658 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4659 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4660 h = &hstates[hugetlb_max_hstate++];
4661 mutex_init(&h->resize_lock);
4662 h->order = order;
4663 h->mask = ~(huge_page_size(h) - 1);
4664 for (i = 0; i < MAX_NUMNODES; ++i)
4665 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4666 INIT_LIST_HEAD(&h->hugepage_activelist);
4667 h->next_nid_to_alloc = first_memory_node;
4668 h->next_nid_to_free = first_memory_node;
4669 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4670 huge_page_size(h)/SZ_1K);
4671
4672 parsed_hstate = h;
4673}
4674
4675bool __init __weak hugetlb_node_alloc_supported(void)
4676{
4677 return true;
4678}
4679
4680static void __init hugepages_clear_pages_in_node(void)
4681{
4682 if (!hugetlb_max_hstate) {
4683 default_hstate_max_huge_pages = 0;
4684 memset(default_hugepages_in_node, 0,
4685 sizeof(default_hugepages_in_node));
4686 } else {
4687 parsed_hstate->max_huge_pages = 0;
4688 memset(parsed_hstate->max_huge_pages_node, 0,
4689 sizeof(parsed_hstate->max_huge_pages_node));
4690 }
4691}
4692
4693/*
4694 * hugepages command line processing
4695 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4696 * specification. If not, ignore the hugepages value. hugepages can also
4697 * be the first huge page command line option in which case it implicitly
4698 * specifies the number of huge pages for the default size.
4699 */
4700static int __init hugepages_setup(char *s)
4701{
4702 unsigned long *mhp;
4703 static unsigned long *last_mhp;
4704 int node = NUMA_NO_NODE;
4705 int count;
4706 unsigned long tmp;
4707 char *p = s;
4708
4709 if (!parsed_valid_hugepagesz) {
4710 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4711 parsed_valid_hugepagesz = true;
4712 return 1;
4713 }
4714
4715 /*
4716 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4717 * yet, so this hugepages= parameter goes to the "default hstate".
4718 * Otherwise, it goes with the previously parsed hugepagesz or
4719 * default_hugepagesz.
4720 */
4721 else if (!hugetlb_max_hstate)
4722 mhp = &default_hstate_max_huge_pages;
4723 else
4724 mhp = &parsed_hstate->max_huge_pages;
4725
4726 if (mhp == last_mhp) {
4727 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4728 return 1;
4729 }
4730
4731 while (*p) {
4732 count = 0;
4733 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734 goto invalid;
4735 /* Parameter is node format */
4736 if (p[count] == ':') {
4737 if (!hugetlb_node_alloc_supported()) {
4738 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4739 return 1;
4740 }
4741 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4742 goto invalid;
4743 node = array_index_nospec(tmp, MAX_NUMNODES);
4744 p += count + 1;
4745 /* Parse hugepages */
4746 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747 goto invalid;
4748 if (!hugetlb_max_hstate)
4749 default_hugepages_in_node[node] = tmp;
4750 else
4751 parsed_hstate->max_huge_pages_node[node] = tmp;
4752 *mhp += tmp;
4753 /* Go to parse next node*/
4754 if (p[count] == ',')
4755 p += count + 1;
4756 else
4757 break;
4758 } else {
4759 if (p != s)
4760 goto invalid;
4761 *mhp = tmp;
4762 break;
4763 }
4764 }
4765
4766 /*
4767 * Global state is always initialized later in hugetlb_init.
4768 * But we need to allocate gigantic hstates here early to still
4769 * use the bootmem allocator.
4770 */
4771 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4772 hugetlb_hstate_alloc_pages(parsed_hstate);
4773
4774 last_mhp = mhp;
4775
4776 return 1;
4777
4778invalid:
4779 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4780 hugepages_clear_pages_in_node();
4781 return 1;
4782}
4783__setup("hugepages=", hugepages_setup);
4784
4785/*
4786 * hugepagesz command line processing
4787 * A specific huge page size can only be specified once with hugepagesz.
4788 * hugepagesz is followed by hugepages on the command line. The global
4789 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4790 * hugepagesz argument was valid.
4791 */
4792static int __init hugepagesz_setup(char *s)
4793{
4794 unsigned long size;
4795 struct hstate *h;
4796
4797 parsed_valid_hugepagesz = false;
4798 size = (unsigned long)memparse(s, NULL);
4799
4800 if (!arch_hugetlb_valid_size(size)) {
4801 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4802 return 1;
4803 }
4804
4805 h = size_to_hstate(size);
4806 if (h) {
4807 /*
4808 * hstate for this size already exists. This is normally
4809 * an error, but is allowed if the existing hstate is the
4810 * default hstate. More specifically, it is only allowed if
4811 * the number of huge pages for the default hstate was not
4812 * previously specified.
4813 */
4814 if (!parsed_default_hugepagesz || h != &default_hstate ||
4815 default_hstate.max_huge_pages) {
4816 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4817 return 1;
4818 }
4819
4820 /*
4821 * No need to call hugetlb_add_hstate() as hstate already
4822 * exists. But, do set parsed_hstate so that a following
4823 * hugepages= parameter will be applied to this hstate.
4824 */
4825 parsed_hstate = h;
4826 parsed_valid_hugepagesz = true;
4827 return 1;
4828 }
4829
4830 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4831 parsed_valid_hugepagesz = true;
4832 return 1;
4833}
4834__setup("hugepagesz=", hugepagesz_setup);
4835
4836/*
4837 * default_hugepagesz command line input
4838 * Only one instance of default_hugepagesz allowed on command line.
4839 */
4840static int __init default_hugepagesz_setup(char *s)
4841{
4842 unsigned long size;
4843 int i;
4844
4845 parsed_valid_hugepagesz = false;
4846 if (parsed_default_hugepagesz) {
4847 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4848 return 1;
4849 }
4850
4851 size = (unsigned long)memparse(s, NULL);
4852
4853 if (!arch_hugetlb_valid_size(size)) {
4854 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4855 return 1;
4856 }
4857
4858 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4859 parsed_valid_hugepagesz = true;
4860 parsed_default_hugepagesz = true;
4861 default_hstate_idx = hstate_index(size_to_hstate(size));
4862
4863 /*
4864 * The number of default huge pages (for this size) could have been
4865 * specified as the first hugetlb parameter: hugepages=X. If so,
4866 * then default_hstate_max_huge_pages is set. If the default huge
4867 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4868 * allocated here from bootmem allocator.
4869 */
4870 if (default_hstate_max_huge_pages) {
4871 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4872 for_each_online_node(i)
4873 default_hstate.max_huge_pages_node[i] =
4874 default_hugepages_in_node[i];
4875 if (hstate_is_gigantic(&default_hstate))
4876 hugetlb_hstate_alloc_pages(&default_hstate);
4877 default_hstate_max_huge_pages = 0;
4878 }
4879
4880 return 1;
4881}
4882__setup("default_hugepagesz=", default_hugepagesz_setup);
4883
4884static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4885{
4886#ifdef CONFIG_NUMA
4887 struct mempolicy *mpol = get_task_policy(current);
4888
4889 /*
4890 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4891 * (from policy_nodemask) specifically for hugetlb case
4892 */
4893 if (mpol->mode == MPOL_BIND &&
4894 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4895 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4896 return &mpol->nodes;
4897#endif
4898 return NULL;
4899}
4900
4901static unsigned int allowed_mems_nr(struct hstate *h)
4902{
4903 int node;
4904 unsigned int nr = 0;
4905 nodemask_t *mbind_nodemask;
4906 unsigned int *array = h->free_huge_pages_node;
4907 gfp_t gfp_mask = htlb_alloc_mask(h);
4908
4909 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4910 for_each_node_mask(node, cpuset_current_mems_allowed) {
4911 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4912 nr += array[node];
4913 }
4914
4915 return nr;
4916}
4917
4918#ifdef CONFIG_SYSCTL
4919static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4920 void *buffer, size_t *length,
4921 loff_t *ppos, unsigned long *out)
4922{
4923 struct ctl_table dup_table;
4924
4925 /*
4926 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4927 * can duplicate the @table and alter the duplicate of it.
4928 */
4929 dup_table = *table;
4930 dup_table.data = out;
4931
4932 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4933}
4934
4935static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4936 struct ctl_table *table, int write,
4937 void *buffer, size_t *length, loff_t *ppos)
4938{
4939 struct hstate *h = &default_hstate;
4940 unsigned long tmp = h->max_huge_pages;
4941 int ret;
4942
4943 if (!hugepages_supported())
4944 return -EOPNOTSUPP;
4945
4946 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947 &tmp);
4948 if (ret)
4949 goto out;
4950
4951 if (write)
4952 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4953 NUMA_NO_NODE, tmp, *length);
4954out:
4955 return ret;
4956}
4957
4958static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4959 void *buffer, size_t *length, loff_t *ppos)
4960{
4961
4962 return hugetlb_sysctl_handler_common(false, table, write,
4963 buffer, length, ppos);
4964}
4965
4966#ifdef CONFIG_NUMA
4967static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4968 void *buffer, size_t *length, loff_t *ppos)
4969{
4970 return hugetlb_sysctl_handler_common(true, table, write,
4971 buffer, length, ppos);
4972}
4973#endif /* CONFIG_NUMA */
4974
4975static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4976 void *buffer, size_t *length, loff_t *ppos)
4977{
4978 struct hstate *h = &default_hstate;
4979 unsigned long tmp;
4980 int ret;
4981
4982 if (!hugepages_supported())
4983 return -EOPNOTSUPP;
4984
4985 tmp = h->nr_overcommit_huge_pages;
4986
4987 if (write && hstate_is_gigantic(h))
4988 return -EINVAL;
4989
4990 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4991 &tmp);
4992 if (ret)
4993 goto out;
4994
4995 if (write) {
4996 spin_lock_irq(&hugetlb_lock);
4997 h->nr_overcommit_huge_pages = tmp;
4998 spin_unlock_irq(&hugetlb_lock);
4999 }
5000out:
5001 return ret;
5002}
5003
5004static struct ctl_table hugetlb_table[] = {
5005 {
5006 .procname = "nr_hugepages",
5007 .data = NULL,
5008 .maxlen = sizeof(unsigned long),
5009 .mode = 0644,
5010 .proc_handler = hugetlb_sysctl_handler,
5011 },
5012#ifdef CONFIG_NUMA
5013 {
5014 .procname = "nr_hugepages_mempolicy",
5015 .data = NULL,
5016 .maxlen = sizeof(unsigned long),
5017 .mode = 0644,
5018 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5019 },
5020#endif
5021 {
5022 .procname = "hugetlb_shm_group",
5023 .data = &sysctl_hugetlb_shm_group,
5024 .maxlen = sizeof(gid_t),
5025 .mode = 0644,
5026 .proc_handler = proc_dointvec,
5027 },
5028 {
5029 .procname = "nr_overcommit_hugepages",
5030 .data = NULL,
5031 .maxlen = sizeof(unsigned long),
5032 .mode = 0644,
5033 .proc_handler = hugetlb_overcommit_handler,
5034 },
5035 { }
5036};
5037
5038static void hugetlb_sysctl_init(void)
5039{
5040 register_sysctl_init("vm", hugetlb_table);
5041}
5042#endif /* CONFIG_SYSCTL */
5043
5044void hugetlb_report_meminfo(struct seq_file *m)
5045{
5046 struct hstate *h;
5047 unsigned long total = 0;
5048
5049 if (!hugepages_supported())
5050 return;
5051
5052 for_each_hstate(h) {
5053 unsigned long count = h->nr_huge_pages;
5054
5055 total += huge_page_size(h) * count;
5056
5057 if (h == &default_hstate)
5058 seq_printf(m,
5059 "HugePages_Total: %5lu\n"
5060 "HugePages_Free: %5lu\n"
5061 "HugePages_Rsvd: %5lu\n"
5062 "HugePages_Surp: %5lu\n"
5063 "Hugepagesize: %8lu kB\n",
5064 count,
5065 h->free_huge_pages,
5066 h->resv_huge_pages,
5067 h->surplus_huge_pages,
5068 huge_page_size(h) / SZ_1K);
5069 }
5070
5071 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5072}
5073
5074int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5075{
5076 struct hstate *h = &default_hstate;
5077
5078 if (!hugepages_supported())
5079 return 0;
5080
5081 return sysfs_emit_at(buf, len,
5082 "Node %d HugePages_Total: %5u\n"
5083 "Node %d HugePages_Free: %5u\n"
5084 "Node %d HugePages_Surp: %5u\n",
5085 nid, h->nr_huge_pages_node[nid],
5086 nid, h->free_huge_pages_node[nid],
5087 nid, h->surplus_huge_pages_node[nid]);
5088}
5089
5090void hugetlb_show_meminfo_node(int nid)
5091{
5092 struct hstate *h;
5093
5094 if (!hugepages_supported())
5095 return;
5096
5097 for_each_hstate(h)
5098 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5099 nid,
5100 h->nr_huge_pages_node[nid],
5101 h->free_huge_pages_node[nid],
5102 h->surplus_huge_pages_node[nid],
5103 huge_page_size(h) / SZ_1K);
5104}
5105
5106void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5107{
5108 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5109 K(atomic_long_read(&mm->hugetlb_usage)));
5110}
5111
5112/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5113unsigned long hugetlb_total_pages(void)
5114{
5115 struct hstate *h;
5116 unsigned long nr_total_pages = 0;
5117
5118 for_each_hstate(h)
5119 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5120 return nr_total_pages;
5121}
5122
5123static int hugetlb_acct_memory(struct hstate *h, long delta)
5124{
5125 int ret = -ENOMEM;
5126
5127 if (!delta)
5128 return 0;
5129
5130 spin_lock_irq(&hugetlb_lock);
5131 /*
5132 * When cpuset is configured, it breaks the strict hugetlb page
5133 * reservation as the accounting is done on a global variable. Such
5134 * reservation is completely rubbish in the presence of cpuset because
5135 * the reservation is not checked against page availability for the
5136 * current cpuset. Application can still potentially OOM'ed by kernel
5137 * with lack of free htlb page in cpuset that the task is in.
5138 * Attempt to enforce strict accounting with cpuset is almost
5139 * impossible (or too ugly) because cpuset is too fluid that
5140 * task or memory node can be dynamically moved between cpusets.
5141 *
5142 * The change of semantics for shared hugetlb mapping with cpuset is
5143 * undesirable. However, in order to preserve some of the semantics,
5144 * we fall back to check against current free page availability as
5145 * a best attempt and hopefully to minimize the impact of changing
5146 * semantics that cpuset has.
5147 *
5148 * Apart from cpuset, we also have memory policy mechanism that
5149 * also determines from which node the kernel will allocate memory
5150 * in a NUMA system. So similar to cpuset, we also should consider
5151 * the memory policy of the current task. Similar to the description
5152 * above.
5153 */
5154 if (delta > 0) {
5155 if (gather_surplus_pages(h, delta) < 0)
5156 goto out;
5157
5158 if (delta > allowed_mems_nr(h)) {
5159 return_unused_surplus_pages(h, delta);
5160 goto out;
5161 }
5162 }
5163
5164 ret = 0;
5165 if (delta < 0)
5166 return_unused_surplus_pages(h, (unsigned long) -delta);
5167
5168out:
5169 spin_unlock_irq(&hugetlb_lock);
5170 return ret;
5171}
5172
5173static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5174{
5175 struct resv_map *resv = vma_resv_map(vma);
5176
5177 /*
5178 * HPAGE_RESV_OWNER indicates a private mapping.
5179 * This new VMA should share its siblings reservation map if present.
5180 * The VMA will only ever have a valid reservation map pointer where
5181 * it is being copied for another still existing VMA. As that VMA
5182 * has a reference to the reservation map it cannot disappear until
5183 * after this open call completes. It is therefore safe to take a
5184 * new reference here without additional locking.
5185 */
5186 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5187 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5188 kref_get(&resv->refs);
5189 }
5190
5191 /*
5192 * vma_lock structure for sharable mappings is vma specific.
5193 * Clear old pointer (if copied via vm_area_dup) and allocate
5194 * new structure. Before clearing, make sure vma_lock is not
5195 * for this vma.
5196 */
5197 if (vma->vm_flags & VM_MAYSHARE) {
5198 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5199
5200 if (vma_lock) {
5201 if (vma_lock->vma != vma) {
5202 vma->vm_private_data = NULL;
5203 hugetlb_vma_lock_alloc(vma);
5204 } else
5205 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5206 } else
5207 hugetlb_vma_lock_alloc(vma);
5208 }
5209}
5210
5211static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5212{
5213 struct hstate *h = hstate_vma(vma);
5214 struct resv_map *resv;
5215 struct hugepage_subpool *spool = subpool_vma(vma);
5216 unsigned long reserve, start, end;
5217 long gbl_reserve;
5218
5219 hugetlb_vma_lock_free(vma);
5220
5221 resv = vma_resv_map(vma);
5222 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223 return;
5224
5225 start = vma_hugecache_offset(h, vma, vma->vm_start);
5226 end = vma_hugecache_offset(h, vma, vma->vm_end);
5227
5228 reserve = (end - start) - region_count(resv, start, end);
5229 hugetlb_cgroup_uncharge_counter(resv, start, end);
5230 if (reserve) {
5231 /*
5232 * Decrement reserve counts. The global reserve count may be
5233 * adjusted if the subpool has a minimum size.
5234 */
5235 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5236 hugetlb_acct_memory(h, -gbl_reserve);
5237 }
5238
5239 kref_put(&resv->refs, resv_map_release);
5240}
5241
5242static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5243{
5244 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5245 return -EINVAL;
5246
5247 /*
5248 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5249 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5250 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5251 */
5252 if (addr & ~PUD_MASK) {
5253 /*
5254 * hugetlb_vm_op_split is called right before we attempt to
5255 * split the VMA. We will need to unshare PMDs in the old and
5256 * new VMAs, so let's unshare before we split.
5257 */
5258 unsigned long floor = addr & PUD_MASK;
5259 unsigned long ceil = floor + PUD_SIZE;
5260
5261 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5262 hugetlb_unshare_pmds(vma, floor, ceil);
5263 }
5264
5265 return 0;
5266}
5267
5268static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5269{
5270 return huge_page_size(hstate_vma(vma));
5271}
5272
5273/*
5274 * We cannot handle pagefaults against hugetlb pages at all. They cause
5275 * handle_mm_fault() to try to instantiate regular-sized pages in the
5276 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5277 * this far.
5278 */
5279static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5280{
5281 BUG();
5282 return 0;
5283}
5284
5285/*
5286 * When a new function is introduced to vm_operations_struct and added
5287 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5288 * This is because under System V memory model, mappings created via
5289 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5290 * their original vm_ops are overwritten with shm_vm_ops.
5291 */
5292const struct vm_operations_struct hugetlb_vm_ops = {
5293 .fault = hugetlb_vm_op_fault,
5294 .open = hugetlb_vm_op_open,
5295 .close = hugetlb_vm_op_close,
5296 .may_split = hugetlb_vm_op_split,
5297 .pagesize = hugetlb_vm_op_pagesize,
5298};
5299
5300static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5301 int writable)
5302{
5303 pte_t entry;
5304 unsigned int shift = huge_page_shift(hstate_vma(vma));
5305
5306 if (writable) {
5307 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5308 vma->vm_page_prot)));
5309 } else {
5310 entry = huge_pte_wrprotect(mk_huge_pte(page,
5311 vma->vm_page_prot));
5312 }
5313 entry = pte_mkyoung(entry);
5314 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5315
5316 return entry;
5317}
5318
5319static void set_huge_ptep_writable(struct vm_area_struct *vma,
5320 unsigned long address, pte_t *ptep)
5321{
5322 pte_t entry;
5323
5324 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5325 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5326 update_mmu_cache(vma, address, ptep);
5327}
5328
5329bool is_hugetlb_entry_migration(pte_t pte)
5330{
5331 swp_entry_t swp;
5332
5333 if (huge_pte_none(pte) || pte_present(pte))
5334 return false;
5335 swp = pte_to_swp_entry(pte);
5336 if (is_migration_entry(swp))
5337 return true;
5338 else
5339 return false;
5340}
5341
5342bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5343{
5344 swp_entry_t swp;
5345
5346 if (huge_pte_none(pte) || pte_present(pte))
5347 return false;
5348 swp = pte_to_swp_entry(pte);
5349 if (is_hwpoison_entry(swp))
5350 return true;
5351 else
5352 return false;
5353}
5354
5355static void
5356hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5357 struct folio *new_folio, pte_t old, unsigned long sz)
5358{
5359 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5360
5361 __folio_mark_uptodate(new_folio);
5362 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5363 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5364 newpte = huge_pte_mkuffd_wp(newpte);
5365 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5366 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5367 folio_set_hugetlb_migratable(new_folio);
5368}
5369
5370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5371 struct vm_area_struct *dst_vma,
5372 struct vm_area_struct *src_vma)
5373{
5374 pte_t *src_pte, *dst_pte, entry;
5375 struct folio *pte_folio;
5376 unsigned long addr;
5377 bool cow = is_cow_mapping(src_vma->vm_flags);
5378 struct hstate *h = hstate_vma(src_vma);
5379 unsigned long sz = huge_page_size(h);
5380 unsigned long npages = pages_per_huge_page(h);
5381 struct mmu_notifier_range range;
5382 unsigned long last_addr_mask;
5383 int ret = 0;
5384
5385 if (cow) {
5386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5387 src_vma->vm_start,
5388 src_vma->vm_end);
5389 mmu_notifier_invalidate_range_start(&range);
5390 vma_assert_write_locked(src_vma);
5391 raw_write_seqcount_begin(&src->write_protect_seq);
5392 } else {
5393 /*
5394 * For shared mappings the vma lock must be held before
5395 * calling hugetlb_walk() in the src vma. Otherwise, the
5396 * returned ptep could go away if part of a shared pmd and
5397 * another thread calls huge_pmd_unshare.
5398 */
5399 hugetlb_vma_lock_read(src_vma);
5400 }
5401
5402 last_addr_mask = hugetlb_mask_last_page(h);
5403 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5404 spinlock_t *src_ptl, *dst_ptl;
5405 src_pte = hugetlb_walk(src_vma, addr, sz);
5406 if (!src_pte) {
5407 addr |= last_addr_mask;
5408 continue;
5409 }
5410 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5411 if (!dst_pte) {
5412 ret = -ENOMEM;
5413 break;
5414 }
5415
5416 /*
5417 * If the pagetables are shared don't copy or take references.
5418 *
5419 * dst_pte == src_pte is the common case of src/dest sharing.
5420 * However, src could have 'unshared' and dst shares with
5421 * another vma. So page_count of ptep page is checked instead
5422 * to reliably determine whether pte is shared.
5423 */
5424 if (page_count(virt_to_page(dst_pte)) > 1) {
5425 addr |= last_addr_mask;
5426 continue;
5427 }
5428
5429 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430 src_ptl = huge_pte_lockptr(h, src, src_pte);
5431 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432 entry = huge_ptep_get(src_pte);
5433again:
5434 if (huge_pte_none(entry)) {
5435 /*
5436 * Skip if src entry none.
5437 */
5438 ;
5439 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5440 if (!userfaultfd_wp(dst_vma))
5441 entry = huge_pte_clear_uffd_wp(entry);
5442 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5443 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5444 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5445 bool uffd_wp = pte_swp_uffd_wp(entry);
5446
5447 if (!is_readable_migration_entry(swp_entry) && cow) {
5448 /*
5449 * COW mappings require pages in both
5450 * parent and child to be set to read.
5451 */
5452 swp_entry = make_readable_migration_entry(
5453 swp_offset(swp_entry));
5454 entry = swp_entry_to_pte(swp_entry);
5455 if (userfaultfd_wp(src_vma) && uffd_wp)
5456 entry = pte_swp_mkuffd_wp(entry);
5457 set_huge_pte_at(src, addr, src_pte, entry, sz);
5458 }
5459 if (!userfaultfd_wp(dst_vma))
5460 entry = huge_pte_clear_uffd_wp(entry);
5461 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5462 } else if (unlikely(is_pte_marker(entry))) {
5463 pte_marker marker = copy_pte_marker(
5464 pte_to_swp_entry(entry), dst_vma);
5465
5466 if (marker)
5467 set_huge_pte_at(dst, addr, dst_pte,
5468 make_pte_marker(marker), sz);
5469 } else {
5470 entry = huge_ptep_get(src_pte);
5471 pte_folio = page_folio(pte_page(entry));
5472 folio_get(pte_folio);
5473
5474 /*
5475 * Failing to duplicate the anon rmap is a rare case
5476 * where we see pinned hugetlb pages while they're
5477 * prone to COW. We need to do the COW earlier during
5478 * fork.
5479 *
5480 * When pre-allocating the page or copying data, we
5481 * need to be without the pgtable locks since we could
5482 * sleep during the process.
5483 */
5484 if (!folio_test_anon(pte_folio)) {
5485 hugetlb_add_file_rmap(pte_folio);
5486 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5487 pte_t src_pte_old = entry;
5488 struct folio *new_folio;
5489
5490 spin_unlock(src_ptl);
5491 spin_unlock(dst_ptl);
5492 /* Do not use reserve as it's private owned */
5493 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5494 if (IS_ERR(new_folio)) {
5495 folio_put(pte_folio);
5496 ret = PTR_ERR(new_folio);
5497 break;
5498 }
5499 ret = copy_user_large_folio(new_folio,
5500 pte_folio,
5501 addr, dst_vma);
5502 folio_put(pte_folio);
5503 if (ret) {
5504 folio_put(new_folio);
5505 break;
5506 }
5507
5508 /* Install the new hugetlb folio if src pte stable */
5509 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5510 src_ptl = huge_pte_lockptr(h, src, src_pte);
5511 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5512 entry = huge_ptep_get(src_pte);
5513 if (!pte_same(src_pte_old, entry)) {
5514 restore_reserve_on_error(h, dst_vma, addr,
5515 new_folio);
5516 folio_put(new_folio);
5517 /* huge_ptep of dst_pte won't change as in child */
5518 goto again;
5519 }
5520 hugetlb_install_folio(dst_vma, dst_pte, addr,
5521 new_folio, src_pte_old, sz);
5522 spin_unlock(src_ptl);
5523 spin_unlock(dst_ptl);
5524 continue;
5525 }
5526
5527 if (cow) {
5528 /*
5529 * No need to notify as we are downgrading page
5530 * table protection not changing it to point
5531 * to a new page.
5532 *
5533 * See Documentation/mm/mmu_notifier.rst
5534 */
5535 huge_ptep_set_wrprotect(src, addr, src_pte);
5536 entry = huge_pte_wrprotect(entry);
5537 }
5538
5539 if (!userfaultfd_wp(dst_vma))
5540 entry = huge_pte_clear_uffd_wp(entry);
5541
5542 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5543 hugetlb_count_add(npages, dst);
5544 }
5545 spin_unlock(src_ptl);
5546 spin_unlock(dst_ptl);
5547 }
5548
5549 if (cow) {
5550 raw_write_seqcount_end(&src->write_protect_seq);
5551 mmu_notifier_invalidate_range_end(&range);
5552 } else {
5553 hugetlb_vma_unlock_read(src_vma);
5554 }
5555
5556 return ret;
5557}
5558
5559static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5560 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5561 unsigned long sz)
5562{
5563 struct hstate *h = hstate_vma(vma);
5564 struct mm_struct *mm = vma->vm_mm;
5565 spinlock_t *src_ptl, *dst_ptl;
5566 pte_t pte;
5567
5568 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5569 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5570
5571 /*
5572 * We don't have to worry about the ordering of src and dst ptlocks
5573 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5574 */
5575 if (src_ptl != dst_ptl)
5576 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5577
5578 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5579 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5580
5581 if (src_ptl != dst_ptl)
5582 spin_unlock(src_ptl);
5583 spin_unlock(dst_ptl);
5584}
5585
5586int move_hugetlb_page_tables(struct vm_area_struct *vma,
5587 struct vm_area_struct *new_vma,
5588 unsigned long old_addr, unsigned long new_addr,
5589 unsigned long len)
5590{
5591 struct hstate *h = hstate_vma(vma);
5592 struct address_space *mapping = vma->vm_file->f_mapping;
5593 unsigned long sz = huge_page_size(h);
5594 struct mm_struct *mm = vma->vm_mm;
5595 unsigned long old_end = old_addr + len;
5596 unsigned long last_addr_mask;
5597 pte_t *src_pte, *dst_pte;
5598 struct mmu_notifier_range range;
5599 bool shared_pmd = false;
5600
5601 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5602 old_end);
5603 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5604 /*
5605 * In case of shared PMDs, we should cover the maximum possible
5606 * range.
5607 */
5608 flush_cache_range(vma, range.start, range.end);
5609
5610 mmu_notifier_invalidate_range_start(&range);
5611 last_addr_mask = hugetlb_mask_last_page(h);
5612 /* Prevent race with file truncation */
5613 hugetlb_vma_lock_write(vma);
5614 i_mmap_lock_write(mapping);
5615 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5616 src_pte = hugetlb_walk(vma, old_addr, sz);
5617 if (!src_pte) {
5618 old_addr |= last_addr_mask;
5619 new_addr |= last_addr_mask;
5620 continue;
5621 }
5622 if (huge_pte_none(huge_ptep_get(src_pte)))
5623 continue;
5624
5625 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5626 shared_pmd = true;
5627 old_addr |= last_addr_mask;
5628 new_addr |= last_addr_mask;
5629 continue;
5630 }
5631
5632 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5633 if (!dst_pte)
5634 break;
5635
5636 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5637 }
5638
5639 if (shared_pmd)
5640 flush_hugetlb_tlb_range(vma, range.start, range.end);
5641 else
5642 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5643 mmu_notifier_invalidate_range_end(&range);
5644 i_mmap_unlock_write(mapping);
5645 hugetlb_vma_unlock_write(vma);
5646
5647 return len + old_addr - old_end;
5648}
5649
5650void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5651 unsigned long start, unsigned long end,
5652 struct page *ref_page, zap_flags_t zap_flags)
5653{
5654 struct mm_struct *mm = vma->vm_mm;
5655 unsigned long address;
5656 pte_t *ptep;
5657 pte_t pte;
5658 spinlock_t *ptl;
5659 struct page *page;
5660 struct hstate *h = hstate_vma(vma);
5661 unsigned long sz = huge_page_size(h);
5662 bool adjust_reservation = false;
5663 unsigned long last_addr_mask;
5664 bool force_flush = false;
5665
5666 WARN_ON(!is_vm_hugetlb_page(vma));
5667 BUG_ON(start & ~huge_page_mask(h));
5668 BUG_ON(end & ~huge_page_mask(h));
5669
5670 /*
5671 * This is a hugetlb vma, all the pte entries should point
5672 * to huge page.
5673 */
5674 tlb_change_page_size(tlb, sz);
5675 tlb_start_vma(tlb, vma);
5676
5677 last_addr_mask = hugetlb_mask_last_page(h);
5678 address = start;
5679 for (; address < end; address += sz) {
5680 ptep = hugetlb_walk(vma, address, sz);
5681 if (!ptep) {
5682 address |= last_addr_mask;
5683 continue;
5684 }
5685
5686 ptl = huge_pte_lock(h, mm, ptep);
5687 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5688 spin_unlock(ptl);
5689 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5690 force_flush = true;
5691 address |= last_addr_mask;
5692 continue;
5693 }
5694
5695 pte = huge_ptep_get(ptep);
5696 if (huge_pte_none(pte)) {
5697 spin_unlock(ptl);
5698 continue;
5699 }
5700
5701 /*
5702 * Migrating hugepage or HWPoisoned hugepage is already
5703 * unmapped and its refcount is dropped, so just clear pte here.
5704 */
5705 if (unlikely(!pte_present(pte))) {
5706 /*
5707 * If the pte was wr-protected by uffd-wp in any of the
5708 * swap forms, meanwhile the caller does not want to
5709 * drop the uffd-wp bit in this zap, then replace the
5710 * pte with a marker.
5711 */
5712 if (pte_swp_uffd_wp_any(pte) &&
5713 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5714 set_huge_pte_at(mm, address, ptep,
5715 make_pte_marker(PTE_MARKER_UFFD_WP),
5716 sz);
5717 else
5718 huge_pte_clear(mm, address, ptep, sz);
5719 spin_unlock(ptl);
5720 continue;
5721 }
5722
5723 page = pte_page(pte);
5724 /*
5725 * If a reference page is supplied, it is because a specific
5726 * page is being unmapped, not a range. Ensure the page we
5727 * are about to unmap is the actual page of interest.
5728 */
5729 if (ref_page) {
5730 if (page != ref_page) {
5731 spin_unlock(ptl);
5732 continue;
5733 }
5734 /*
5735 * Mark the VMA as having unmapped its page so that
5736 * future faults in this VMA will fail rather than
5737 * looking like data was lost
5738 */
5739 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5740 }
5741
5742 pte = huge_ptep_get_and_clear(mm, address, ptep);
5743 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5744 if (huge_pte_dirty(pte))
5745 set_page_dirty(page);
5746 /* Leave a uffd-wp pte marker if needed */
5747 if (huge_pte_uffd_wp(pte) &&
5748 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5749 set_huge_pte_at(mm, address, ptep,
5750 make_pte_marker(PTE_MARKER_UFFD_WP),
5751 sz);
5752 hugetlb_count_sub(pages_per_huge_page(h), mm);
5753 hugetlb_remove_rmap(page_folio(page));
5754
5755 /*
5756 * Restore the reservation for anonymous page, otherwise the
5757 * backing page could be stolen by someone.
5758 * If there we are freeing a surplus, do not set the restore
5759 * reservation bit.
5760 */
5761 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5762 folio_test_anon(page_folio(page))) {
5763 folio_set_hugetlb_restore_reserve(page_folio(page));
5764 /* Reservation to be adjusted after the spin lock */
5765 adjust_reservation = true;
5766 }
5767
5768 spin_unlock(ptl);
5769
5770 /*
5771 * Adjust the reservation for the region that will have the
5772 * reserve restored. Keep in mind that vma_needs_reservation() changes
5773 * resv->adds_in_progress if it succeeds. If this is not done,
5774 * do_exit() will not see it, and will keep the reservation
5775 * forever.
5776 */
5777 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5778 vma_add_reservation(h, vma, address);
5779
5780 tlb_remove_page_size(tlb, page, huge_page_size(h));
5781 /*
5782 * Bail out after unmapping reference page if supplied
5783 */
5784 if (ref_page)
5785 break;
5786 }
5787 tlb_end_vma(tlb, vma);
5788
5789 /*
5790 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5791 * could defer the flush until now, since by holding i_mmap_rwsem we
5792 * guaranteed that the last refernece would not be dropped. But we must
5793 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5794 * dropped and the last reference to the shared PMDs page might be
5795 * dropped as well.
5796 *
5797 * In theory we could defer the freeing of the PMD pages as well, but
5798 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5799 * detect sharing, so we cannot defer the release of the page either.
5800 * Instead, do flush now.
5801 */
5802 if (force_flush)
5803 tlb_flush_mmu_tlbonly(tlb);
5804}
5805
5806void __hugetlb_zap_begin(struct vm_area_struct *vma,
5807 unsigned long *start, unsigned long *end)
5808{
5809 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5810 return;
5811
5812 adjust_range_if_pmd_sharing_possible(vma, start, end);
5813 hugetlb_vma_lock_write(vma);
5814 if (vma->vm_file)
5815 i_mmap_lock_write(vma->vm_file->f_mapping);
5816}
5817
5818void __hugetlb_zap_end(struct vm_area_struct *vma,
5819 struct zap_details *details)
5820{
5821 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5822
5823 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5824 return;
5825
5826 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5827 /*
5828 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5829 * When the vma_lock is freed, this makes the vma ineligible
5830 * for pmd sharing. And, i_mmap_rwsem is required to set up
5831 * pmd sharing. This is important as page tables for this
5832 * unmapped range will be asynchrously deleted. If the page
5833 * tables are shared, there will be issues when accessed by
5834 * someone else.
5835 */
5836 __hugetlb_vma_unlock_write_free(vma);
5837 } else {
5838 hugetlb_vma_unlock_write(vma);
5839 }
5840
5841 if (vma->vm_file)
5842 i_mmap_unlock_write(vma->vm_file->f_mapping);
5843}
5844
5845void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5846 unsigned long end, struct page *ref_page,
5847 zap_flags_t zap_flags)
5848{
5849 struct mmu_notifier_range range;
5850 struct mmu_gather tlb;
5851
5852 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5853 start, end);
5854 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5855 mmu_notifier_invalidate_range_start(&range);
5856 tlb_gather_mmu(&tlb, vma->vm_mm);
5857
5858 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5859
5860 mmu_notifier_invalidate_range_end(&range);
5861 tlb_finish_mmu(&tlb);
5862}
5863
5864/*
5865 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5866 * mapping it owns the reserve page for. The intention is to unmap the page
5867 * from other VMAs and let the children be SIGKILLed if they are faulting the
5868 * same region.
5869 */
5870static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5871 struct page *page, unsigned long address)
5872{
5873 struct hstate *h = hstate_vma(vma);
5874 struct vm_area_struct *iter_vma;
5875 struct address_space *mapping;
5876 pgoff_t pgoff;
5877
5878 /*
5879 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5880 * from page cache lookup which is in HPAGE_SIZE units.
5881 */
5882 address = address & huge_page_mask(h);
5883 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5884 vma->vm_pgoff;
5885 mapping = vma->vm_file->f_mapping;
5886
5887 /*
5888 * Take the mapping lock for the duration of the table walk. As
5889 * this mapping should be shared between all the VMAs,
5890 * __unmap_hugepage_range() is called as the lock is already held
5891 */
5892 i_mmap_lock_write(mapping);
5893 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5894 /* Do not unmap the current VMA */
5895 if (iter_vma == vma)
5896 continue;
5897
5898 /*
5899 * Shared VMAs have their own reserves and do not affect
5900 * MAP_PRIVATE accounting but it is possible that a shared
5901 * VMA is using the same page so check and skip such VMAs.
5902 */
5903 if (iter_vma->vm_flags & VM_MAYSHARE)
5904 continue;
5905
5906 /*
5907 * Unmap the page from other VMAs without their own reserves.
5908 * They get marked to be SIGKILLed if they fault in these
5909 * areas. This is because a future no-page fault on this VMA
5910 * could insert a zeroed page instead of the data existing
5911 * from the time of fork. This would look like data corruption
5912 */
5913 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5914 unmap_hugepage_range(iter_vma, address,
5915 address + huge_page_size(h), page, 0);
5916 }
5917 i_mmap_unlock_write(mapping);
5918}
5919
5920/*
5921 * hugetlb_wp() should be called with page lock of the original hugepage held.
5922 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5923 * cannot race with other handlers or page migration.
5924 * Keep the pte_same checks anyway to make transition from the mutex easier.
5925 */
5926static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5927 unsigned long address, pte_t *ptep, unsigned int flags,
5928 struct folio *pagecache_folio, spinlock_t *ptl,
5929 struct vm_fault *vmf)
5930{
5931 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5932 pte_t pte = huge_ptep_get(ptep);
5933 struct hstate *h = hstate_vma(vma);
5934 struct folio *old_folio;
5935 struct folio *new_folio;
5936 int outside_reserve = 0;
5937 vm_fault_t ret = 0;
5938 unsigned long haddr = address & huge_page_mask(h);
5939 struct mmu_notifier_range range;
5940
5941 /*
5942 * Never handle CoW for uffd-wp protected pages. It should be only
5943 * handled when the uffd-wp protection is removed.
5944 *
5945 * Note that only the CoW optimization path (in hugetlb_no_page())
5946 * can trigger this, because hugetlb_fault() will always resolve
5947 * uffd-wp bit first.
5948 */
5949 if (!unshare && huge_pte_uffd_wp(pte))
5950 return 0;
5951
5952 /*
5953 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5954 * PTE mapped R/O such as maybe_mkwrite() would do.
5955 */
5956 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5957 return VM_FAULT_SIGSEGV;
5958
5959 /* Let's take out MAP_SHARED mappings first. */
5960 if (vma->vm_flags & VM_MAYSHARE) {
5961 set_huge_ptep_writable(vma, haddr, ptep);
5962 return 0;
5963 }
5964
5965 old_folio = page_folio(pte_page(pte));
5966
5967 delayacct_wpcopy_start();
5968
5969retry_avoidcopy:
5970 /*
5971 * If no-one else is actually using this page, we're the exclusive
5972 * owner and can reuse this page.
5973 */
5974 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975 if (!PageAnonExclusive(&old_folio->page)) {
5976 folio_move_anon_rmap(old_folio, vma);
5977 SetPageAnonExclusive(&old_folio->page);
5978 }
5979 if (likely(!unshare))
5980 set_huge_ptep_writable(vma, haddr, ptep);
5981
5982 delayacct_wpcopy_end();
5983 return 0;
5984 }
5985 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986 PageAnonExclusive(&old_folio->page), &old_folio->page);
5987
5988 /*
5989 * If the process that created a MAP_PRIVATE mapping is about to
5990 * perform a COW due to a shared page count, attempt to satisfy
5991 * the allocation without using the existing reserves. The pagecache
5992 * page is used to determine if the reserve at this address was
5993 * consumed or not. If reserves were used, a partial faulted mapping
5994 * at the time of fork() could consume its reserves on COW instead
5995 * of the full address range.
5996 */
5997 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998 old_folio != pagecache_folio)
5999 outside_reserve = 1;
6000
6001 folio_get(old_folio);
6002
6003 /*
6004 * Drop page table lock as buddy allocator may be called. It will
6005 * be acquired again before returning to the caller, as expected.
6006 */
6007 spin_unlock(ptl);
6008 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6009
6010 if (IS_ERR(new_folio)) {
6011 /*
6012 * If a process owning a MAP_PRIVATE mapping fails to COW,
6013 * it is due to references held by a child and an insufficient
6014 * huge page pool. To guarantee the original mappers
6015 * reliability, unmap the page from child processes. The child
6016 * may get SIGKILLed if it later faults.
6017 */
6018 if (outside_reserve) {
6019 struct address_space *mapping = vma->vm_file->f_mapping;
6020 pgoff_t idx;
6021 u32 hash;
6022
6023 folio_put(old_folio);
6024 /*
6025 * Drop hugetlb_fault_mutex and vma_lock before
6026 * unmapping. unmapping needs to hold vma_lock
6027 * in write mode. Dropping vma_lock in read mode
6028 * here is OK as COW mappings do not interact with
6029 * PMD sharing.
6030 *
6031 * Reacquire both after unmap operation.
6032 */
6033 idx = vma_hugecache_offset(h, vma, haddr);
6034 hash = hugetlb_fault_mutex_hash(mapping, idx);
6035 hugetlb_vma_unlock_read(vma);
6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037
6038 unmap_ref_private(mm, vma, &old_folio->page, haddr);
6039
6040 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6041 hugetlb_vma_lock_read(vma);
6042 spin_lock(ptl);
6043 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6044 if (likely(ptep &&
6045 pte_same(huge_ptep_get(ptep), pte)))
6046 goto retry_avoidcopy;
6047 /*
6048 * race occurs while re-acquiring page table
6049 * lock, and our job is done.
6050 */
6051 delayacct_wpcopy_end();
6052 return 0;
6053 }
6054
6055 ret = vmf_error(PTR_ERR(new_folio));
6056 goto out_release_old;
6057 }
6058
6059 /*
6060 * When the original hugepage is shared one, it does not have
6061 * anon_vma prepared.
6062 */
6063 ret = vmf_anon_prepare(vmf);
6064 if (unlikely(ret))
6065 goto out_release_all;
6066
6067 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6068 ret = VM_FAULT_HWPOISON_LARGE;
6069 goto out_release_all;
6070 }
6071 __folio_mark_uptodate(new_folio);
6072
6073 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6074 haddr + huge_page_size(h));
6075 mmu_notifier_invalidate_range_start(&range);
6076
6077 /*
6078 * Retake the page table lock to check for racing updates
6079 * before the page tables are altered
6080 */
6081 spin_lock(ptl);
6082 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6083 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6084 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6085
6086 /* Break COW or unshare */
6087 huge_ptep_clear_flush(vma, haddr, ptep);
6088 hugetlb_remove_rmap(old_folio);
6089 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6090 if (huge_pte_uffd_wp(pte))
6091 newpte = huge_pte_mkuffd_wp(newpte);
6092 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6093 folio_set_hugetlb_migratable(new_folio);
6094 /* Make the old page be freed below */
6095 new_folio = old_folio;
6096 }
6097 spin_unlock(ptl);
6098 mmu_notifier_invalidate_range_end(&range);
6099out_release_all:
6100 /*
6101 * No restore in case of successful pagetable update (Break COW or
6102 * unshare)
6103 */
6104 if (new_folio != old_folio)
6105 restore_reserve_on_error(h, vma, haddr, new_folio);
6106 folio_put(new_folio);
6107out_release_old:
6108 folio_put(old_folio);
6109
6110 spin_lock(ptl); /* Caller expects lock to be held */
6111
6112 delayacct_wpcopy_end();
6113 return ret;
6114}
6115
6116/*
6117 * Return whether there is a pagecache page to back given address within VMA.
6118 */
6119static bool hugetlbfs_pagecache_present(struct hstate *h,
6120 struct vm_area_struct *vma, unsigned long address)
6121{
6122 struct address_space *mapping = vma->vm_file->f_mapping;
6123 pgoff_t idx = linear_page_index(vma, address);
6124 struct folio *folio;
6125
6126 folio = filemap_get_folio(mapping, idx);
6127 if (IS_ERR(folio))
6128 return false;
6129 folio_put(folio);
6130 return true;
6131}
6132
6133int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6134 pgoff_t idx)
6135{
6136 struct inode *inode = mapping->host;
6137 struct hstate *h = hstate_inode(inode);
6138 int err;
6139
6140 idx <<= huge_page_order(h);
6141 __folio_set_locked(folio);
6142 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6143
6144 if (unlikely(err)) {
6145 __folio_clear_locked(folio);
6146 return err;
6147 }
6148 folio_clear_hugetlb_restore_reserve(folio);
6149
6150 /*
6151 * mark folio dirty so that it will not be removed from cache/file
6152 * by non-hugetlbfs specific code paths.
6153 */
6154 folio_mark_dirty(folio);
6155
6156 spin_lock(&inode->i_lock);
6157 inode->i_blocks += blocks_per_huge_page(h);
6158 spin_unlock(&inode->i_lock);
6159 return 0;
6160}
6161
6162static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6163 struct address_space *mapping,
6164 unsigned long reason)
6165{
6166 u32 hash;
6167
6168 /*
6169 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6170 * userfault. Also mmap_lock could be dropped due to handling
6171 * userfault, any vma operation should be careful from here.
6172 */
6173 hugetlb_vma_unlock_read(vmf->vma);
6174 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6175 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176 return handle_userfault(vmf, reason);
6177}
6178
6179/*
6180 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6181 * false if pte changed or is changing.
6182 */
6183static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6184 pte_t *ptep, pte_t old_pte)
6185{
6186 spinlock_t *ptl;
6187 bool same;
6188
6189 ptl = huge_pte_lock(h, mm, ptep);
6190 same = pte_same(huge_ptep_get(ptep), old_pte);
6191 spin_unlock(ptl);
6192
6193 return same;
6194}
6195
6196static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6197 struct vm_area_struct *vma,
6198 struct address_space *mapping, pgoff_t idx,
6199 unsigned long address, pte_t *ptep,
6200 pte_t old_pte, unsigned int flags,
6201 struct vm_fault *vmf)
6202{
6203 struct hstate *h = hstate_vma(vma);
6204 vm_fault_t ret = VM_FAULT_SIGBUS;
6205 int anon_rmap = 0;
6206 unsigned long size;
6207 struct folio *folio;
6208 pte_t new_pte;
6209 spinlock_t *ptl;
6210 unsigned long haddr = address & huge_page_mask(h);
6211 bool new_folio, new_pagecache_folio = false;
6212 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6213
6214 /*
6215 * Currently, we are forced to kill the process in the event the
6216 * original mapper has unmapped pages from the child due to a failed
6217 * COW/unsharing. Warn that such a situation has occurred as it may not
6218 * be obvious.
6219 */
6220 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6221 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6222 current->pid);
6223 goto out;
6224 }
6225
6226 /*
6227 * Use page lock to guard against racing truncation
6228 * before we get page_table_lock.
6229 */
6230 new_folio = false;
6231 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6232 if (IS_ERR(folio)) {
6233 size = i_size_read(mapping->host) >> huge_page_shift(h);
6234 if (idx >= size)
6235 goto out;
6236 /* Check for page in userfault range */
6237 if (userfaultfd_missing(vma)) {
6238 /*
6239 * Since hugetlb_no_page() was examining pte
6240 * without pgtable lock, we need to re-test under
6241 * lock because the pte may not be stable and could
6242 * have changed from under us. Try to detect
6243 * either changed or during-changing ptes and retry
6244 * properly when needed.
6245 *
6246 * Note that userfaultfd is actually fine with
6247 * false positives (e.g. caused by pte changed),
6248 * but not wrong logical events (e.g. caused by
6249 * reading a pte during changing). The latter can
6250 * confuse the userspace, so the strictness is very
6251 * much preferred. E.g., MISSING event should
6252 * never happen on the page after UFFDIO_COPY has
6253 * correctly installed the page and returned.
6254 */
6255 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6256 ret = 0;
6257 goto out;
6258 }
6259
6260 return hugetlb_handle_userfault(vmf, mapping,
6261 VM_UFFD_MISSING);
6262 }
6263
6264 if (!(vma->vm_flags & VM_MAYSHARE)) {
6265 ret = vmf_anon_prepare(vmf);
6266 if (unlikely(ret))
6267 goto out;
6268 }
6269
6270 folio = alloc_hugetlb_folio(vma, haddr, 0);
6271 if (IS_ERR(folio)) {
6272 /*
6273 * Returning error will result in faulting task being
6274 * sent SIGBUS. The hugetlb fault mutex prevents two
6275 * tasks from racing to fault in the same page which
6276 * could result in false unable to allocate errors.
6277 * Page migration does not take the fault mutex, but
6278 * does a clear then write of pte's under page table
6279 * lock. Page fault code could race with migration,
6280 * notice the clear pte and try to allocate a page
6281 * here. Before returning error, get ptl and make
6282 * sure there really is no pte entry.
6283 */
6284 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6285 ret = vmf_error(PTR_ERR(folio));
6286 else
6287 ret = 0;
6288 goto out;
6289 }
6290 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6291 __folio_mark_uptodate(folio);
6292 new_folio = true;
6293
6294 if (vma->vm_flags & VM_MAYSHARE) {
6295 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6296 if (err) {
6297 /*
6298 * err can't be -EEXIST which implies someone
6299 * else consumed the reservation since hugetlb
6300 * fault mutex is held when add a hugetlb page
6301 * to the page cache. So it's safe to call
6302 * restore_reserve_on_error() here.
6303 */
6304 restore_reserve_on_error(h, vma, haddr, folio);
6305 folio_put(folio);
6306 ret = VM_FAULT_SIGBUS;
6307 goto out;
6308 }
6309 new_pagecache_folio = true;
6310 } else {
6311 folio_lock(folio);
6312 anon_rmap = 1;
6313 }
6314 } else {
6315 /*
6316 * If memory error occurs between mmap() and fault, some process
6317 * don't have hwpoisoned swap entry for errored virtual address.
6318 * So we need to block hugepage fault by PG_hwpoison bit check.
6319 */
6320 if (unlikely(folio_test_hwpoison(folio))) {
6321 ret = VM_FAULT_HWPOISON_LARGE |
6322 VM_FAULT_SET_HINDEX(hstate_index(h));
6323 goto backout_unlocked;
6324 }
6325
6326 /* Check for page in userfault range. */
6327 if (userfaultfd_minor(vma)) {
6328 folio_unlock(folio);
6329 folio_put(folio);
6330 /* See comment in userfaultfd_missing() block above */
6331 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6332 ret = 0;
6333 goto out;
6334 }
6335 return hugetlb_handle_userfault(vmf, mapping,
6336 VM_UFFD_MINOR);
6337 }
6338 }
6339
6340 /*
6341 * If we are going to COW a private mapping later, we examine the
6342 * pending reservations for this page now. This will ensure that
6343 * any allocations necessary to record that reservation occur outside
6344 * the spinlock.
6345 */
6346 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6347 if (vma_needs_reservation(h, vma, haddr) < 0) {
6348 ret = VM_FAULT_OOM;
6349 goto backout_unlocked;
6350 }
6351 /* Just decrements count, does not deallocate */
6352 vma_end_reservation(h, vma, haddr);
6353 }
6354
6355 ptl = huge_pte_lock(h, mm, ptep);
6356 ret = 0;
6357 /* If pte changed from under us, retry */
6358 if (!pte_same(huge_ptep_get(ptep), old_pte))
6359 goto backout;
6360
6361 if (anon_rmap)
6362 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6363 else
6364 hugetlb_add_file_rmap(folio);
6365 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6366 && (vma->vm_flags & VM_SHARED)));
6367 /*
6368 * If this pte was previously wr-protected, keep it wr-protected even
6369 * if populated.
6370 */
6371 if (unlikely(pte_marker_uffd_wp(old_pte)))
6372 new_pte = huge_pte_mkuffd_wp(new_pte);
6373 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6374
6375 hugetlb_count_add(pages_per_huge_page(h), mm);
6376 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6377 /* Optimization, do the COW without a second fault */
6378 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6379 }
6380
6381 spin_unlock(ptl);
6382
6383 /*
6384 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6385 * found in the pagecache may not have hugetlb_migratable if they have
6386 * been isolated for migration.
6387 */
6388 if (new_folio)
6389 folio_set_hugetlb_migratable(folio);
6390
6391 folio_unlock(folio);
6392out:
6393 hugetlb_vma_unlock_read(vma);
6394 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6395 return ret;
6396
6397backout:
6398 spin_unlock(ptl);
6399backout_unlocked:
6400 if (new_folio && !new_pagecache_folio)
6401 restore_reserve_on_error(h, vma, haddr, folio);
6402
6403 folio_unlock(folio);
6404 folio_put(folio);
6405 goto out;
6406}
6407
6408#ifdef CONFIG_SMP
6409u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6410{
6411 unsigned long key[2];
6412 u32 hash;
6413
6414 key[0] = (unsigned long) mapping;
6415 key[1] = idx;
6416
6417 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6418
6419 return hash & (num_fault_mutexes - 1);
6420}
6421#else
6422/*
6423 * For uniprocessor systems we always use a single mutex, so just
6424 * return 0 and avoid the hashing overhead.
6425 */
6426u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6427{
6428 return 0;
6429}
6430#endif
6431
6432vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6433 unsigned long address, unsigned int flags)
6434{
6435 pte_t *ptep, entry;
6436 spinlock_t *ptl;
6437 vm_fault_t ret;
6438 u32 hash;
6439 struct folio *folio = NULL;
6440 struct folio *pagecache_folio = NULL;
6441 struct hstate *h = hstate_vma(vma);
6442 struct address_space *mapping;
6443 int need_wait_lock = 0;
6444 unsigned long haddr = address & huge_page_mask(h);
6445 struct vm_fault vmf = {
6446 .vma = vma,
6447 .address = haddr,
6448 .real_address = address,
6449 .flags = flags,
6450 .pgoff = vma_hugecache_offset(h, vma, haddr),
6451 /* TODO: Track hugetlb faults using vm_fault */
6452
6453 /*
6454 * Some fields may not be initialized, be careful as it may
6455 * be hard to debug if called functions make assumptions
6456 */
6457 };
6458
6459 /*
6460 * Serialize hugepage allocation and instantiation, so that we don't
6461 * get spurious allocation failures if two CPUs race to instantiate
6462 * the same page in the page cache.
6463 */
6464 mapping = vma->vm_file->f_mapping;
6465 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467
6468 /*
6469 * Acquire vma lock before calling huge_pte_alloc and hold
6470 * until finished with ptep. This prevents huge_pmd_unshare from
6471 * being called elsewhere and making the ptep no longer valid.
6472 */
6473 hugetlb_vma_lock_read(vma);
6474 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6475 if (!ptep) {
6476 hugetlb_vma_unlock_read(vma);
6477 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478 return VM_FAULT_OOM;
6479 }
6480
6481 entry = huge_ptep_get(ptep);
6482 if (huge_pte_none_mostly(entry)) {
6483 if (is_pte_marker(entry)) {
6484 pte_marker marker =
6485 pte_marker_get(pte_to_swp_entry(entry));
6486
6487 if (marker & PTE_MARKER_POISONED) {
6488 ret = VM_FAULT_HWPOISON_LARGE;
6489 goto out_mutex;
6490 }
6491 }
6492
6493 /*
6494 * Other PTE markers should be handled the same way as none PTE.
6495 *
6496 * hugetlb_no_page will drop vma lock and hugetlb fault
6497 * mutex internally, which make us return immediately.
6498 */
6499 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6500 ptep, entry, flags, &vmf);
6501 }
6502
6503 ret = 0;
6504
6505 /*
6506 * entry could be a migration/hwpoison entry at this point, so this
6507 * check prevents the kernel from going below assuming that we have
6508 * an active hugepage in pagecache. This goto expects the 2nd page
6509 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6510 * properly handle it.
6511 */
6512 if (!pte_present(entry)) {
6513 if (unlikely(is_hugetlb_entry_migration(entry))) {
6514 /*
6515 * Release the hugetlb fault lock now, but retain
6516 * the vma lock, because it is needed to guard the
6517 * huge_pte_lockptr() later in
6518 * migration_entry_wait_huge(). The vma lock will
6519 * be released there.
6520 */
6521 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522 migration_entry_wait_huge(vma, ptep);
6523 return 0;
6524 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6525 ret = VM_FAULT_HWPOISON_LARGE |
6526 VM_FAULT_SET_HINDEX(hstate_index(h));
6527 goto out_mutex;
6528 }
6529
6530 /*
6531 * If we are going to COW/unshare the mapping later, we examine the
6532 * pending reservations for this page now. This will ensure that any
6533 * allocations necessary to record that reservation occur outside the
6534 * spinlock. Also lookup the pagecache page now as it is used to
6535 * determine if a reservation has been consumed.
6536 */
6537 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6539 if (vma_needs_reservation(h, vma, haddr) < 0) {
6540 ret = VM_FAULT_OOM;
6541 goto out_mutex;
6542 }
6543 /* Just decrements count, does not deallocate */
6544 vma_end_reservation(h, vma, haddr);
6545
6546 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547 vmf.pgoff);
6548 if (IS_ERR(pagecache_folio))
6549 pagecache_folio = NULL;
6550 }
6551
6552 ptl = huge_pte_lock(h, mm, ptep);
6553
6554 /* Check for a racing update before calling hugetlb_wp() */
6555 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6556 goto out_ptl;
6557
6558 /* Handle userfault-wp first, before trying to lock more pages */
6559 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6560 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6561 if (!userfaultfd_wp_async(vma)) {
6562 spin_unlock(ptl);
6563 if (pagecache_folio) {
6564 folio_unlock(pagecache_folio);
6565 folio_put(pagecache_folio);
6566 }
6567 hugetlb_vma_unlock_read(vma);
6568 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569 return handle_userfault(&vmf, VM_UFFD_WP);
6570 }
6571
6572 entry = huge_pte_clear_uffd_wp(entry);
6573 set_huge_pte_at(mm, haddr, ptep, entry,
6574 huge_page_size(hstate_vma(vma)));
6575 /* Fallthrough to CoW */
6576 }
6577
6578 /*
6579 * hugetlb_wp() requires page locks of pte_page(entry) and
6580 * pagecache_folio, so here we need take the former one
6581 * when folio != pagecache_folio or !pagecache_folio.
6582 */
6583 folio = page_folio(pte_page(entry));
6584 if (folio != pagecache_folio)
6585 if (!folio_trylock(folio)) {
6586 need_wait_lock = 1;
6587 goto out_ptl;
6588 }
6589
6590 folio_get(folio);
6591
6592 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593 if (!huge_pte_write(entry)) {
6594 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6595 pagecache_folio, ptl, &vmf);
6596 goto out_put_page;
6597 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6598 entry = huge_pte_mkdirty(entry);
6599 }
6600 }
6601 entry = pte_mkyoung(entry);
6602 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6603 flags & FAULT_FLAG_WRITE))
6604 update_mmu_cache(vma, haddr, ptep);
6605out_put_page:
6606 if (folio != pagecache_folio)
6607 folio_unlock(folio);
6608 folio_put(folio);
6609out_ptl:
6610 spin_unlock(ptl);
6611
6612 if (pagecache_folio) {
6613 folio_unlock(pagecache_folio);
6614 folio_put(pagecache_folio);
6615 }
6616out_mutex:
6617 hugetlb_vma_unlock_read(vma);
6618 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6619 /*
6620 * Generally it's safe to hold refcount during waiting page lock. But
6621 * here we just wait to defer the next page fault to avoid busy loop and
6622 * the page is not used after unlocked before returning from the current
6623 * page fault. So we are safe from accessing freed page, even if we wait
6624 * here without taking refcount.
6625 */
6626 if (need_wait_lock)
6627 folio_wait_locked(folio);
6628 return ret;
6629}
6630
6631#ifdef CONFIG_USERFAULTFD
6632/*
6633 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6634 */
6635static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6636 struct vm_area_struct *vma, unsigned long address)
6637{
6638 struct mempolicy *mpol;
6639 nodemask_t *nodemask;
6640 struct folio *folio;
6641 gfp_t gfp_mask;
6642 int node;
6643
6644 gfp_mask = htlb_alloc_mask(h);
6645 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6646 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6647 mpol_cond_put(mpol);
6648
6649 return folio;
6650}
6651
6652/*
6653 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6654 * with modifications for hugetlb pages.
6655 */
6656int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6657 struct vm_area_struct *dst_vma,
6658 unsigned long dst_addr,
6659 unsigned long src_addr,
6660 uffd_flags_t flags,
6661 struct folio **foliop)
6662{
6663 struct mm_struct *dst_mm = dst_vma->vm_mm;
6664 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6665 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6666 struct hstate *h = hstate_vma(dst_vma);
6667 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6668 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6669 unsigned long size;
6670 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6671 pte_t _dst_pte;
6672 spinlock_t *ptl;
6673 int ret = -ENOMEM;
6674 struct folio *folio;
6675 int writable;
6676 bool folio_in_pagecache = false;
6677
6678 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6679 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680
6681 /* Don't overwrite any existing PTEs (even markers) */
6682 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6683 spin_unlock(ptl);
6684 return -EEXIST;
6685 }
6686
6687 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6688 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6689 huge_page_size(h));
6690
6691 /* No need to invalidate - it was non-present before */
6692 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6693
6694 spin_unlock(ptl);
6695 return 0;
6696 }
6697
6698 if (is_continue) {
6699 ret = -EFAULT;
6700 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6701 if (IS_ERR(folio))
6702 goto out;
6703 folio_in_pagecache = true;
6704 } else if (!*foliop) {
6705 /* If a folio already exists, then it's UFFDIO_COPY for
6706 * a non-missing case. Return -EEXIST.
6707 */
6708 if (vm_shared &&
6709 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6710 ret = -EEXIST;
6711 goto out;
6712 }
6713
6714 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6715 if (IS_ERR(folio)) {
6716 ret = -ENOMEM;
6717 goto out;
6718 }
6719
6720 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6721 false);
6722
6723 /* fallback to copy_from_user outside mmap_lock */
6724 if (unlikely(ret)) {
6725 ret = -ENOENT;
6726 /* Free the allocated folio which may have
6727 * consumed a reservation.
6728 */
6729 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6730 folio_put(folio);
6731
6732 /* Allocate a temporary folio to hold the copied
6733 * contents.
6734 */
6735 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6736 if (!folio) {
6737 ret = -ENOMEM;
6738 goto out;
6739 }
6740 *foliop = folio;
6741 /* Set the outparam foliop and return to the caller to
6742 * copy the contents outside the lock. Don't free the
6743 * folio.
6744 */
6745 goto out;
6746 }
6747 } else {
6748 if (vm_shared &&
6749 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6750 folio_put(*foliop);
6751 ret = -EEXIST;
6752 *foliop = NULL;
6753 goto out;
6754 }
6755
6756 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6757 if (IS_ERR(folio)) {
6758 folio_put(*foliop);
6759 ret = -ENOMEM;
6760 *foliop = NULL;
6761 goto out;
6762 }
6763 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6764 folio_put(*foliop);
6765 *foliop = NULL;
6766 if (ret) {
6767 folio_put(folio);
6768 goto out;
6769 }
6770 }
6771
6772 /*
6773 * If we just allocated a new page, we need a memory barrier to ensure
6774 * that preceding stores to the page become visible before the
6775 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6776 * is what we need.
6777 *
6778 * In the case where we have not allocated a new page (is_continue),
6779 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6780 * an earlier smp_wmb() to ensure that prior stores will be visible
6781 * before the set_pte_at() write.
6782 */
6783 if (!is_continue)
6784 __folio_mark_uptodate(folio);
6785 else
6786 WARN_ON_ONCE(!folio_test_uptodate(folio));
6787
6788 /* Add shared, newly allocated pages to the page cache. */
6789 if (vm_shared && !is_continue) {
6790 size = i_size_read(mapping->host) >> huge_page_shift(h);
6791 ret = -EFAULT;
6792 if (idx >= size)
6793 goto out_release_nounlock;
6794
6795 /*
6796 * Serialization between remove_inode_hugepages() and
6797 * hugetlb_add_to_page_cache() below happens through the
6798 * hugetlb_fault_mutex_table that here must be hold by
6799 * the caller.
6800 */
6801 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6802 if (ret)
6803 goto out_release_nounlock;
6804 folio_in_pagecache = true;
6805 }
6806
6807 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6808
6809 ret = -EIO;
6810 if (folio_test_hwpoison(folio))
6811 goto out_release_unlock;
6812
6813 /*
6814 * We allow to overwrite a pte marker: consider when both MISSING|WP
6815 * registered, we firstly wr-protect a none pte which has no page cache
6816 * page backing it, then access the page.
6817 */
6818 ret = -EEXIST;
6819 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6820 goto out_release_unlock;
6821
6822 if (folio_in_pagecache)
6823 hugetlb_add_file_rmap(folio);
6824 else
6825 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6826
6827 /*
6828 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6829 * with wp flag set, don't set pte write bit.
6830 */
6831 if (wp_enabled || (is_continue && !vm_shared))
6832 writable = 0;
6833 else
6834 writable = dst_vma->vm_flags & VM_WRITE;
6835
6836 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6837 /*
6838 * Always mark UFFDIO_COPY page dirty; note that this may not be
6839 * extremely important for hugetlbfs for now since swapping is not
6840 * supported, but we should still be clear in that this page cannot be
6841 * thrown away at will, even if write bit not set.
6842 */
6843 _dst_pte = huge_pte_mkdirty(_dst_pte);
6844 _dst_pte = pte_mkyoung(_dst_pte);
6845
6846 if (wp_enabled)
6847 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6848
6849 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6850
6851 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6852
6853 /* No need to invalidate - it was non-present before */
6854 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6855
6856 spin_unlock(ptl);
6857 if (!is_continue)
6858 folio_set_hugetlb_migratable(folio);
6859 if (vm_shared || is_continue)
6860 folio_unlock(folio);
6861 ret = 0;
6862out:
6863 return ret;
6864out_release_unlock:
6865 spin_unlock(ptl);
6866 if (vm_shared || is_continue)
6867 folio_unlock(folio);
6868out_release_nounlock:
6869 if (!folio_in_pagecache)
6870 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6871 folio_put(folio);
6872 goto out;
6873}
6874#endif /* CONFIG_USERFAULTFD */
6875
6876struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6877 unsigned long address, unsigned int flags,
6878 unsigned int *page_mask)
6879{
6880 struct hstate *h = hstate_vma(vma);
6881 struct mm_struct *mm = vma->vm_mm;
6882 unsigned long haddr = address & huge_page_mask(h);
6883 struct page *page = NULL;
6884 spinlock_t *ptl;
6885 pte_t *pte, entry;
6886 int ret;
6887
6888 hugetlb_vma_lock_read(vma);
6889 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6890 if (!pte)
6891 goto out_unlock;
6892
6893 ptl = huge_pte_lock(h, mm, pte);
6894 entry = huge_ptep_get(pte);
6895 if (pte_present(entry)) {
6896 page = pte_page(entry);
6897
6898 if (!huge_pte_write(entry)) {
6899 if (flags & FOLL_WRITE) {
6900 page = NULL;
6901 goto out;
6902 }
6903
6904 if (gup_must_unshare(vma, flags, page)) {
6905 /* Tell the caller to do unsharing */
6906 page = ERR_PTR(-EMLINK);
6907 goto out;
6908 }
6909 }
6910
6911 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6912
6913 /*
6914 * Note that page may be a sub-page, and with vmemmap
6915 * optimizations the page struct may be read only.
6916 * try_grab_page() will increase the ref count on the
6917 * head page, so this will be OK.
6918 *
6919 * try_grab_page() should always be able to get the page here,
6920 * because we hold the ptl lock and have verified pte_present().
6921 */
6922 ret = try_grab_page(page, flags);
6923
6924 if (WARN_ON_ONCE(ret)) {
6925 page = ERR_PTR(ret);
6926 goto out;
6927 }
6928
6929 *page_mask = (1U << huge_page_order(h)) - 1;
6930 }
6931out:
6932 spin_unlock(ptl);
6933out_unlock:
6934 hugetlb_vma_unlock_read(vma);
6935
6936 /*
6937 * Fixup retval for dump requests: if pagecache doesn't exist,
6938 * don't try to allocate a new page but just skip it.
6939 */
6940 if (!page && (flags & FOLL_DUMP) &&
6941 !hugetlbfs_pagecache_present(h, vma, address))
6942 page = ERR_PTR(-EFAULT);
6943
6944 return page;
6945}
6946
6947long hugetlb_change_protection(struct vm_area_struct *vma,
6948 unsigned long address, unsigned long end,
6949 pgprot_t newprot, unsigned long cp_flags)
6950{
6951 struct mm_struct *mm = vma->vm_mm;
6952 unsigned long start = address;
6953 pte_t *ptep;
6954 pte_t pte;
6955 struct hstate *h = hstate_vma(vma);
6956 long pages = 0, psize = huge_page_size(h);
6957 bool shared_pmd = false;
6958 struct mmu_notifier_range range;
6959 unsigned long last_addr_mask;
6960 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6961 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6962
6963 /*
6964 * In the case of shared PMDs, the area to flush could be beyond
6965 * start/end. Set range.start/range.end to cover the maximum possible
6966 * range if PMD sharing is possible.
6967 */
6968 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6969 0, mm, start, end);
6970 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6971
6972 BUG_ON(address >= end);
6973 flush_cache_range(vma, range.start, range.end);
6974
6975 mmu_notifier_invalidate_range_start(&range);
6976 hugetlb_vma_lock_write(vma);
6977 i_mmap_lock_write(vma->vm_file->f_mapping);
6978 last_addr_mask = hugetlb_mask_last_page(h);
6979 for (; address < end; address += psize) {
6980 spinlock_t *ptl;
6981 ptep = hugetlb_walk(vma, address, psize);
6982 if (!ptep) {
6983 if (!uffd_wp) {
6984 address |= last_addr_mask;
6985 continue;
6986 }
6987 /*
6988 * Userfaultfd wr-protect requires pgtable
6989 * pre-allocations to install pte markers.
6990 */
6991 ptep = huge_pte_alloc(mm, vma, address, psize);
6992 if (!ptep) {
6993 pages = -ENOMEM;
6994 break;
6995 }
6996 }
6997 ptl = huge_pte_lock(h, mm, ptep);
6998 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6999 /*
7000 * When uffd-wp is enabled on the vma, unshare
7001 * shouldn't happen at all. Warn about it if it
7002 * happened due to some reason.
7003 */
7004 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7005 pages++;
7006 spin_unlock(ptl);
7007 shared_pmd = true;
7008 address |= last_addr_mask;
7009 continue;
7010 }
7011 pte = huge_ptep_get(ptep);
7012 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7013 /* Nothing to do. */
7014 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7015 swp_entry_t entry = pte_to_swp_entry(pte);
7016 struct page *page = pfn_swap_entry_to_page(entry);
7017 pte_t newpte = pte;
7018
7019 if (is_writable_migration_entry(entry)) {
7020 if (PageAnon(page))
7021 entry = make_readable_exclusive_migration_entry(
7022 swp_offset(entry));
7023 else
7024 entry = make_readable_migration_entry(
7025 swp_offset(entry));
7026 newpte = swp_entry_to_pte(entry);
7027 pages++;
7028 }
7029
7030 if (uffd_wp)
7031 newpte = pte_swp_mkuffd_wp(newpte);
7032 else if (uffd_wp_resolve)
7033 newpte = pte_swp_clear_uffd_wp(newpte);
7034 if (!pte_same(pte, newpte))
7035 set_huge_pte_at(mm, address, ptep, newpte, psize);
7036 } else if (unlikely(is_pte_marker(pte))) {
7037 /*
7038 * Do nothing on a poison marker; page is
7039 * corrupted, permissons do not apply. Here
7040 * pte_marker_uffd_wp()==true implies !poison
7041 * because they're mutual exclusive.
7042 */
7043 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7044 /* Safe to modify directly (non-present->none). */
7045 huge_pte_clear(mm, address, ptep, psize);
7046 } else if (!huge_pte_none(pte)) {
7047 pte_t old_pte;
7048 unsigned int shift = huge_page_shift(hstate_vma(vma));
7049
7050 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7051 pte = huge_pte_modify(old_pte, newprot);
7052 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7053 if (uffd_wp)
7054 pte = huge_pte_mkuffd_wp(pte);
7055 else if (uffd_wp_resolve)
7056 pte = huge_pte_clear_uffd_wp(pte);
7057 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7058 pages++;
7059 } else {
7060 /* None pte */
7061 if (unlikely(uffd_wp))
7062 /* Safe to modify directly (none->non-present). */
7063 set_huge_pte_at(mm, address, ptep,
7064 make_pte_marker(PTE_MARKER_UFFD_WP),
7065 psize);
7066 }
7067 spin_unlock(ptl);
7068 }
7069 /*
7070 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7071 * may have cleared our pud entry and done put_page on the page table:
7072 * once we release i_mmap_rwsem, another task can do the final put_page
7073 * and that page table be reused and filled with junk. If we actually
7074 * did unshare a page of pmds, flush the range corresponding to the pud.
7075 */
7076 if (shared_pmd)
7077 flush_hugetlb_tlb_range(vma, range.start, range.end);
7078 else
7079 flush_hugetlb_tlb_range(vma, start, end);
7080 /*
7081 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7082 * downgrading page table protection not changing it to point to a new
7083 * page.
7084 *
7085 * See Documentation/mm/mmu_notifier.rst
7086 */
7087 i_mmap_unlock_write(vma->vm_file->f_mapping);
7088 hugetlb_vma_unlock_write(vma);
7089 mmu_notifier_invalidate_range_end(&range);
7090
7091 return pages > 0 ? (pages << h->order) : pages;
7092}
7093
7094/* Return true if reservation was successful, false otherwise. */
7095bool hugetlb_reserve_pages(struct inode *inode,
7096 long from, long to,
7097 struct vm_area_struct *vma,
7098 vm_flags_t vm_flags)
7099{
7100 long chg = -1, add = -1;
7101 struct hstate *h = hstate_inode(inode);
7102 struct hugepage_subpool *spool = subpool_inode(inode);
7103 struct resv_map *resv_map;
7104 struct hugetlb_cgroup *h_cg = NULL;
7105 long gbl_reserve, regions_needed = 0;
7106
7107 /* This should never happen */
7108 if (from > to) {
7109 VM_WARN(1, "%s called with a negative range\n", __func__);
7110 return false;
7111 }
7112
7113 /*
7114 * vma specific semaphore used for pmd sharing and fault/truncation
7115 * synchronization
7116 */
7117 hugetlb_vma_lock_alloc(vma);
7118
7119 /*
7120 * Only apply hugepage reservation if asked. At fault time, an
7121 * attempt will be made for VM_NORESERVE to allocate a page
7122 * without using reserves
7123 */
7124 if (vm_flags & VM_NORESERVE)
7125 return true;
7126
7127 /*
7128 * Shared mappings base their reservation on the number of pages that
7129 * are already allocated on behalf of the file. Private mappings need
7130 * to reserve the full area even if read-only as mprotect() may be
7131 * called to make the mapping read-write. Assume !vma is a shm mapping
7132 */
7133 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7134 /*
7135 * resv_map can not be NULL as hugetlb_reserve_pages is only
7136 * called for inodes for which resv_maps were created (see
7137 * hugetlbfs_get_inode).
7138 */
7139 resv_map = inode_resv_map(inode);
7140
7141 chg = region_chg(resv_map, from, to, ®ions_needed);
7142 } else {
7143 /* Private mapping. */
7144 resv_map = resv_map_alloc();
7145 if (!resv_map)
7146 goto out_err;
7147
7148 chg = to - from;
7149
7150 set_vma_resv_map(vma, resv_map);
7151 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7152 }
7153
7154 if (chg < 0)
7155 goto out_err;
7156
7157 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7158 chg * pages_per_huge_page(h), &h_cg) < 0)
7159 goto out_err;
7160
7161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7163 * of the resv_map.
7164 */
7165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7166 }
7167
7168 /*
7169 * There must be enough pages in the subpool for the mapping. If
7170 * the subpool has a minimum size, there may be some global
7171 * reservations already in place (gbl_reserve).
7172 */
7173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7174 if (gbl_reserve < 0)
7175 goto out_uncharge_cgroup;
7176
7177 /*
7178 * Check enough hugepages are available for the reservation.
7179 * Hand the pages back to the subpool if there are not
7180 */
7181 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7182 goto out_put_pages;
7183
7184 /*
7185 * Account for the reservations made. Shared mappings record regions
7186 * that have reservations as they are shared by multiple VMAs.
7187 * When the last VMA disappears, the region map says how much
7188 * the reservation was and the page cache tells how much of
7189 * the reservation was consumed. Private mappings are per-VMA and
7190 * only the consumed reservations are tracked. When the VMA
7191 * disappears, the original reservation is the VMA size and the
7192 * consumed reservations are stored in the map. Hence, nothing
7193 * else has to be done for private mappings here
7194 */
7195 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7196 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7197
7198 if (unlikely(add < 0)) {
7199 hugetlb_acct_memory(h, -gbl_reserve);
7200 goto out_put_pages;
7201 } else if (unlikely(chg > add)) {
7202 /*
7203 * pages in this range were added to the reserve
7204 * map between region_chg and region_add. This
7205 * indicates a race with alloc_hugetlb_folio. Adjust
7206 * the subpool and reserve counts modified above
7207 * based on the difference.
7208 */
7209 long rsv_adjust;
7210
7211 /*
7212 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7213 * reference to h_cg->css. See comment below for detail.
7214 */
7215 hugetlb_cgroup_uncharge_cgroup_rsvd(
7216 hstate_index(h),
7217 (chg - add) * pages_per_huge_page(h), h_cg);
7218
7219 rsv_adjust = hugepage_subpool_put_pages(spool,
7220 chg - add);
7221 hugetlb_acct_memory(h, -rsv_adjust);
7222 } else if (h_cg) {
7223 /*
7224 * The file_regions will hold their own reference to
7225 * h_cg->css. So we should release the reference held
7226 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7227 * done.
7228 */
7229 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7230 }
7231 }
7232 return true;
7233
7234out_put_pages:
7235 /* put back original number of pages, chg */
7236 (void)hugepage_subpool_put_pages(spool, chg);
7237out_uncharge_cgroup:
7238 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7239 chg * pages_per_huge_page(h), h_cg);
7240out_err:
7241 hugetlb_vma_lock_free(vma);
7242 if (!vma || vma->vm_flags & VM_MAYSHARE)
7243 /* Only call region_abort if the region_chg succeeded but the
7244 * region_add failed or didn't run.
7245 */
7246 if (chg >= 0 && add < 0)
7247 region_abort(resv_map, from, to, regions_needed);
7248 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7249 kref_put(&resv_map->refs, resv_map_release);
7250 set_vma_resv_map(vma, NULL);
7251 }
7252 return false;
7253}
7254
7255long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7256 long freed)
7257{
7258 struct hstate *h = hstate_inode(inode);
7259 struct resv_map *resv_map = inode_resv_map(inode);
7260 long chg = 0;
7261 struct hugepage_subpool *spool = subpool_inode(inode);
7262 long gbl_reserve;
7263
7264 /*
7265 * Since this routine can be called in the evict inode path for all
7266 * hugetlbfs inodes, resv_map could be NULL.
7267 */
7268 if (resv_map) {
7269 chg = region_del(resv_map, start, end);
7270 /*
7271 * region_del() can fail in the rare case where a region
7272 * must be split and another region descriptor can not be
7273 * allocated. If end == LONG_MAX, it will not fail.
7274 */
7275 if (chg < 0)
7276 return chg;
7277 }
7278
7279 spin_lock(&inode->i_lock);
7280 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7281 spin_unlock(&inode->i_lock);
7282
7283 /*
7284 * If the subpool has a minimum size, the number of global
7285 * reservations to be released may be adjusted.
7286 *
7287 * Note that !resv_map implies freed == 0. So (chg - freed)
7288 * won't go negative.
7289 */
7290 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7291 hugetlb_acct_memory(h, -gbl_reserve);
7292
7293 return 0;
7294}
7295
7296#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7297static unsigned long page_table_shareable(struct vm_area_struct *svma,
7298 struct vm_area_struct *vma,
7299 unsigned long addr, pgoff_t idx)
7300{
7301 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7302 svma->vm_start;
7303 unsigned long sbase = saddr & PUD_MASK;
7304 unsigned long s_end = sbase + PUD_SIZE;
7305
7306 /* Allow segments to share if only one is marked locked */
7307 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7308 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7309
7310 /*
7311 * match the virtual addresses, permission and the alignment of the
7312 * page table page.
7313 *
7314 * Also, vma_lock (vm_private_data) is required for sharing.
7315 */
7316 if (pmd_index(addr) != pmd_index(saddr) ||
7317 vm_flags != svm_flags ||
7318 !range_in_vma(svma, sbase, s_end) ||
7319 !svma->vm_private_data)
7320 return 0;
7321
7322 return saddr;
7323}
7324
7325bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7326{
7327 unsigned long start = addr & PUD_MASK;
7328 unsigned long end = start + PUD_SIZE;
7329
7330#ifdef CONFIG_USERFAULTFD
7331 if (uffd_disable_huge_pmd_share(vma))
7332 return false;
7333#endif
7334 /*
7335 * check on proper vm_flags and page table alignment
7336 */
7337 if (!(vma->vm_flags & VM_MAYSHARE))
7338 return false;
7339 if (!vma->vm_private_data) /* vma lock required for sharing */
7340 return false;
7341 if (!range_in_vma(vma, start, end))
7342 return false;
7343 return true;
7344}
7345
7346/*
7347 * Determine if start,end range within vma could be mapped by shared pmd.
7348 * If yes, adjust start and end to cover range associated with possible
7349 * shared pmd mappings.
7350 */
7351void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7352 unsigned long *start, unsigned long *end)
7353{
7354 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7355 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7356
7357 /*
7358 * vma needs to span at least one aligned PUD size, and the range
7359 * must be at least partially within in.
7360 */
7361 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7362 (*end <= v_start) || (*start >= v_end))
7363 return;
7364
7365 /* Extend the range to be PUD aligned for a worst case scenario */
7366 if (*start > v_start)
7367 *start = ALIGN_DOWN(*start, PUD_SIZE);
7368
7369 if (*end < v_end)
7370 *end = ALIGN(*end, PUD_SIZE);
7371}
7372
7373/*
7374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7375 * and returns the corresponding pte. While this is not necessary for the
7376 * !shared pmd case because we can allocate the pmd later as well, it makes the
7377 * code much cleaner. pmd allocation is essential for the shared case because
7378 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7380 * bad pmd for sharing.
7381 */
7382pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7383 unsigned long addr, pud_t *pud)
7384{
7385 struct address_space *mapping = vma->vm_file->f_mapping;
7386 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7387 vma->vm_pgoff;
7388 struct vm_area_struct *svma;
7389 unsigned long saddr;
7390 pte_t *spte = NULL;
7391 pte_t *pte;
7392
7393 i_mmap_lock_read(mapping);
7394 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7395 if (svma == vma)
7396 continue;
7397
7398 saddr = page_table_shareable(svma, vma, addr, idx);
7399 if (saddr) {
7400 spte = hugetlb_walk(svma, saddr,
7401 vma_mmu_pagesize(svma));
7402 if (spte) {
7403 get_page(virt_to_page(spte));
7404 break;
7405 }
7406 }
7407 }
7408
7409 if (!spte)
7410 goto out;
7411
7412 spin_lock(&mm->page_table_lock);
7413 if (pud_none(*pud)) {
7414 pud_populate(mm, pud,
7415 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7416 mm_inc_nr_pmds(mm);
7417 } else {
7418 put_page(virt_to_page(spte));
7419 }
7420 spin_unlock(&mm->page_table_lock);
7421out:
7422 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7423 i_mmap_unlock_read(mapping);
7424 return pte;
7425}
7426
7427/*
7428 * unmap huge page backed by shared pte.
7429 *
7430 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7431 * indicated by page_count > 1, unmap is achieved by clearing pud and
7432 * decrementing the ref count. If count == 1, the pte page is not shared.
7433 *
7434 * Called with page table lock held.
7435 *
7436 * returns: 1 successfully unmapped a shared pte page
7437 * 0 the underlying pte page is not shared, or it is the last user
7438 */
7439int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7440 unsigned long addr, pte_t *ptep)
7441{
7442 pgd_t *pgd = pgd_offset(mm, addr);
7443 p4d_t *p4d = p4d_offset(pgd, addr);
7444 pud_t *pud = pud_offset(p4d, addr);
7445
7446 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7447 hugetlb_vma_assert_locked(vma);
7448 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7449 if (page_count(virt_to_page(ptep)) == 1)
7450 return 0;
7451
7452 pud_clear(pud);
7453 put_page(virt_to_page(ptep));
7454 mm_dec_nr_pmds(mm);
7455 return 1;
7456}
7457
7458#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7459
7460pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7461 unsigned long addr, pud_t *pud)
7462{
7463 return NULL;
7464}
7465
7466int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7467 unsigned long addr, pte_t *ptep)
7468{
7469 return 0;
7470}
7471
7472void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7473 unsigned long *start, unsigned long *end)
7474{
7475}
7476
7477bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7478{
7479 return false;
7480}
7481#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7482
7483#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7484pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7485 unsigned long addr, unsigned long sz)
7486{
7487 pgd_t *pgd;
7488 p4d_t *p4d;
7489 pud_t *pud;
7490 pte_t *pte = NULL;
7491
7492 pgd = pgd_offset(mm, addr);
7493 p4d = p4d_alloc(mm, pgd, addr);
7494 if (!p4d)
7495 return NULL;
7496 pud = pud_alloc(mm, p4d, addr);
7497 if (pud) {
7498 if (sz == PUD_SIZE) {
7499 pte = (pte_t *)pud;
7500 } else {
7501 BUG_ON(sz != PMD_SIZE);
7502 if (want_pmd_share(vma, addr) && pud_none(*pud))
7503 pte = huge_pmd_share(mm, vma, addr, pud);
7504 else
7505 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7506 }
7507 }
7508
7509 if (pte) {
7510 pte_t pteval = ptep_get_lockless(pte);
7511
7512 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7513 }
7514
7515 return pte;
7516}
7517
7518/*
7519 * huge_pte_offset() - Walk the page table to resolve the hugepage
7520 * entry at address @addr
7521 *
7522 * Return: Pointer to page table entry (PUD or PMD) for
7523 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7524 * size @sz doesn't match the hugepage size at this level of the page
7525 * table.
7526 */
7527pte_t *huge_pte_offset(struct mm_struct *mm,
7528 unsigned long addr, unsigned long sz)
7529{
7530 pgd_t *pgd;
7531 p4d_t *p4d;
7532 pud_t *pud;
7533 pmd_t *pmd;
7534
7535 pgd = pgd_offset(mm, addr);
7536 if (!pgd_present(*pgd))
7537 return NULL;
7538 p4d = p4d_offset(pgd, addr);
7539 if (!p4d_present(*p4d))
7540 return NULL;
7541
7542 pud = pud_offset(p4d, addr);
7543 if (sz == PUD_SIZE)
7544 /* must be pud huge, non-present or none */
7545 return (pte_t *)pud;
7546 if (!pud_present(*pud))
7547 return NULL;
7548 /* must have a valid entry and size to go further */
7549
7550 pmd = pmd_offset(pud, addr);
7551 /* must be pmd huge, non-present or none */
7552 return (pte_t *)pmd;
7553}
7554
7555/*
7556 * Return a mask that can be used to update an address to the last huge
7557 * page in a page table page mapping size. Used to skip non-present
7558 * page table entries when linearly scanning address ranges. Architectures
7559 * with unique huge page to page table relationships can define their own
7560 * version of this routine.
7561 */
7562unsigned long hugetlb_mask_last_page(struct hstate *h)
7563{
7564 unsigned long hp_size = huge_page_size(h);
7565
7566 if (hp_size == PUD_SIZE)
7567 return P4D_SIZE - PUD_SIZE;
7568 else if (hp_size == PMD_SIZE)
7569 return PUD_SIZE - PMD_SIZE;
7570 else
7571 return 0UL;
7572}
7573
7574#else
7575
7576/* See description above. Architectures can provide their own version. */
7577__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7578{
7579#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7580 if (huge_page_size(h) == PMD_SIZE)
7581 return PUD_SIZE - PMD_SIZE;
7582#endif
7583 return 0UL;
7584}
7585
7586#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7587
7588/*
7589 * These functions are overwritable if your architecture needs its own
7590 * behavior.
7591 */
7592bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7593{
7594 bool ret = true;
7595
7596 spin_lock_irq(&hugetlb_lock);
7597 if (!folio_test_hugetlb(folio) ||
7598 !folio_test_hugetlb_migratable(folio) ||
7599 !folio_try_get(folio)) {
7600 ret = false;
7601 goto unlock;
7602 }
7603 folio_clear_hugetlb_migratable(folio);
7604 list_move_tail(&folio->lru, list);
7605unlock:
7606 spin_unlock_irq(&hugetlb_lock);
7607 return ret;
7608}
7609
7610int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7611{
7612 int ret = 0;
7613
7614 *hugetlb = false;
7615 spin_lock_irq(&hugetlb_lock);
7616 if (folio_test_hugetlb(folio)) {
7617 *hugetlb = true;
7618 if (folio_test_hugetlb_freed(folio))
7619 ret = 0;
7620 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7621 ret = folio_try_get(folio);
7622 else
7623 ret = -EBUSY;
7624 }
7625 spin_unlock_irq(&hugetlb_lock);
7626 return ret;
7627}
7628
7629int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7630 bool *migratable_cleared)
7631{
7632 int ret;
7633
7634 spin_lock_irq(&hugetlb_lock);
7635 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7636 spin_unlock_irq(&hugetlb_lock);
7637 return ret;
7638}
7639
7640void folio_putback_active_hugetlb(struct folio *folio)
7641{
7642 spin_lock_irq(&hugetlb_lock);
7643 folio_set_hugetlb_migratable(folio);
7644 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7645 spin_unlock_irq(&hugetlb_lock);
7646 folio_put(folio);
7647}
7648
7649void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7650{
7651 struct hstate *h = folio_hstate(old_folio);
7652
7653 hugetlb_cgroup_migrate(old_folio, new_folio);
7654 set_page_owner_migrate_reason(&new_folio->page, reason);
7655
7656 /*
7657 * transfer temporary state of the new hugetlb folio. This is
7658 * reverse to other transitions because the newpage is going to
7659 * be final while the old one will be freed so it takes over
7660 * the temporary status.
7661 *
7662 * Also note that we have to transfer the per-node surplus state
7663 * here as well otherwise the global surplus count will not match
7664 * the per-node's.
7665 */
7666 if (folio_test_hugetlb_temporary(new_folio)) {
7667 int old_nid = folio_nid(old_folio);
7668 int new_nid = folio_nid(new_folio);
7669
7670 folio_set_hugetlb_temporary(old_folio);
7671 folio_clear_hugetlb_temporary(new_folio);
7672
7673
7674 /*
7675 * There is no need to transfer the per-node surplus state
7676 * when we do not cross the node.
7677 */
7678 if (new_nid == old_nid)
7679 return;
7680 spin_lock_irq(&hugetlb_lock);
7681 if (h->surplus_huge_pages_node[old_nid]) {
7682 h->surplus_huge_pages_node[old_nid]--;
7683 h->surplus_huge_pages_node[new_nid]++;
7684 }
7685 spin_unlock_irq(&hugetlb_lock);
7686 }
7687}
7688
7689static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7690 unsigned long start,
7691 unsigned long end)
7692{
7693 struct hstate *h = hstate_vma(vma);
7694 unsigned long sz = huge_page_size(h);
7695 struct mm_struct *mm = vma->vm_mm;
7696 struct mmu_notifier_range range;
7697 unsigned long address;
7698 spinlock_t *ptl;
7699 pte_t *ptep;
7700
7701 if (!(vma->vm_flags & VM_MAYSHARE))
7702 return;
7703
7704 if (start >= end)
7705 return;
7706
7707 flush_cache_range(vma, start, end);
7708 /*
7709 * No need to call adjust_range_if_pmd_sharing_possible(), because
7710 * we have already done the PUD_SIZE alignment.
7711 */
7712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7713 start, end);
7714 mmu_notifier_invalidate_range_start(&range);
7715 hugetlb_vma_lock_write(vma);
7716 i_mmap_lock_write(vma->vm_file->f_mapping);
7717 for (address = start; address < end; address += PUD_SIZE) {
7718 ptep = hugetlb_walk(vma, address, sz);
7719 if (!ptep)
7720 continue;
7721 ptl = huge_pte_lock(h, mm, ptep);
7722 huge_pmd_unshare(mm, vma, address, ptep);
7723 spin_unlock(ptl);
7724 }
7725 flush_hugetlb_tlb_range(vma, start, end);
7726 i_mmap_unlock_write(vma->vm_file->f_mapping);
7727 hugetlb_vma_unlock_write(vma);
7728 /*
7729 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7730 * Documentation/mm/mmu_notifier.rst.
7731 */
7732 mmu_notifier_invalidate_range_end(&range);
7733}
7734
7735/*
7736 * This function will unconditionally remove all the shared pmd pgtable entries
7737 * within the specific vma for a hugetlbfs memory range.
7738 */
7739void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7740{
7741 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7742 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7743}
7744
7745#ifdef CONFIG_CMA
7746static bool cma_reserve_called __initdata;
7747
7748static int __init cmdline_parse_hugetlb_cma(char *p)
7749{
7750 int nid, count = 0;
7751 unsigned long tmp;
7752 char *s = p;
7753
7754 while (*s) {
7755 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7756 break;
7757
7758 if (s[count] == ':') {
7759 if (tmp >= MAX_NUMNODES)
7760 break;
7761 nid = array_index_nospec(tmp, MAX_NUMNODES);
7762
7763 s += count + 1;
7764 tmp = memparse(s, &s);
7765 hugetlb_cma_size_in_node[nid] = tmp;
7766 hugetlb_cma_size += tmp;
7767
7768 /*
7769 * Skip the separator if have one, otherwise
7770 * break the parsing.
7771 */
7772 if (*s == ',')
7773 s++;
7774 else
7775 break;
7776 } else {
7777 hugetlb_cma_size = memparse(p, &p);
7778 break;
7779 }
7780 }
7781
7782 return 0;
7783}
7784
7785early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7786
7787void __init hugetlb_cma_reserve(int order)
7788{
7789 unsigned long size, reserved, per_node;
7790 bool node_specific_cma_alloc = false;
7791 int nid;
7792
7793 /*
7794 * HugeTLB CMA reservation is required for gigantic
7795 * huge pages which could not be allocated via the
7796 * page allocator. Just warn if there is any change
7797 * breaking this assumption.
7798 */
7799 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7800 cma_reserve_called = true;
7801
7802 if (!hugetlb_cma_size)
7803 return;
7804
7805 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7806 if (hugetlb_cma_size_in_node[nid] == 0)
7807 continue;
7808
7809 if (!node_online(nid)) {
7810 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7811 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7812 hugetlb_cma_size_in_node[nid] = 0;
7813 continue;
7814 }
7815
7816 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7817 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7818 nid, (PAGE_SIZE << order) / SZ_1M);
7819 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7820 hugetlb_cma_size_in_node[nid] = 0;
7821 } else {
7822 node_specific_cma_alloc = true;
7823 }
7824 }
7825
7826 /* Validate the CMA size again in case some invalid nodes specified. */
7827 if (!hugetlb_cma_size)
7828 return;
7829
7830 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7831 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7832 (PAGE_SIZE << order) / SZ_1M);
7833 hugetlb_cma_size = 0;
7834 return;
7835 }
7836
7837 if (!node_specific_cma_alloc) {
7838 /*
7839 * If 3 GB area is requested on a machine with 4 numa nodes,
7840 * let's allocate 1 GB on first three nodes and ignore the last one.
7841 */
7842 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7843 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7844 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7845 }
7846
7847 reserved = 0;
7848 for_each_online_node(nid) {
7849 int res;
7850 char name[CMA_MAX_NAME];
7851
7852 if (node_specific_cma_alloc) {
7853 if (hugetlb_cma_size_in_node[nid] == 0)
7854 continue;
7855
7856 size = hugetlb_cma_size_in_node[nid];
7857 } else {
7858 size = min(per_node, hugetlb_cma_size - reserved);
7859 }
7860
7861 size = round_up(size, PAGE_SIZE << order);
7862
7863 snprintf(name, sizeof(name), "hugetlb%d", nid);
7864 /*
7865 * Note that 'order per bit' is based on smallest size that
7866 * may be returned to CMA allocator in the case of
7867 * huge page demotion.
7868 */
7869 res = cma_declare_contiguous_nid(0, size, 0,
7870 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7871 0, false, name,
7872 &hugetlb_cma[nid], nid);
7873 if (res) {
7874 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7875 res, nid);
7876 continue;
7877 }
7878
7879 reserved += size;
7880 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7881 size / SZ_1M, nid);
7882
7883 if (reserved >= hugetlb_cma_size)
7884 break;
7885 }
7886
7887 if (!reserved)
7888 /*
7889 * hugetlb_cma_size is used to determine if allocations from
7890 * cma are possible. Set to zero if no cma regions are set up.
7891 */
7892 hugetlb_cma_size = 0;
7893}
7894
7895static void __init hugetlb_cma_check(void)
7896{
7897 if (!hugetlb_cma_size || cma_reserve_called)
7898 return;
7899
7900 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7901}
7902
7903#endif /* CONFIG_CMA */