Linux Audio

Check our new training course

Loading...
v3.15
 
  1/* Kernel thread helper functions.
  2 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
 
  3 *
  4 * Creation is done via kthreadd, so that we get a clean environment
  5 * even if we're invoked from userspace (think modprobe, hotplug cpu,
  6 * etc.).
  7 */
 
 
 
  8#include <linux/sched.h>
 
 
  9#include <linux/kthread.h>
 10#include <linux/completion.h>
 11#include <linux/err.h>
 
 12#include <linux/cpuset.h>
 13#include <linux/unistd.h>
 14#include <linux/file.h>
 15#include <linux/export.h>
 16#include <linux/mutex.h>
 17#include <linux/slab.h>
 18#include <linux/freezer.h>
 19#include <linux/ptrace.h>
 20#include <linux/uaccess.h>
 
 
 21#include <trace/events/sched.h>
 22
 
 23static DEFINE_SPINLOCK(kthread_create_lock);
 24static LIST_HEAD(kthread_create_list);
 25struct task_struct *kthreadd_task;
 26
 27struct kthread_create_info
 28{
 29	/* Information passed to kthread() from kthreadd. */
 
 30	int (*threadfn)(void *data);
 31	void *data;
 32	int node;
 33
 34	/* Result passed back to kthread_create() from kthreadd. */
 35	struct task_struct *result;
 36	struct completion *done;
 37
 38	struct list_head list;
 39};
 40
 41struct kthread {
 42	unsigned long flags;
 43	unsigned int cpu;
 
 
 44	void *data;
 45	struct completion parked;
 46	struct completion exited;
 
 
 
 
 
 47};
 48
 49enum KTHREAD_BITS {
 50	KTHREAD_IS_PER_CPU = 0,
 51	KTHREAD_SHOULD_STOP,
 52	KTHREAD_SHOULD_PARK,
 53	KTHREAD_IS_PARKED,
 54};
 55
 56#define __to_kthread(vfork)	\
 57	container_of(vfork, struct kthread, exited)
 58
 59static inline struct kthread *to_kthread(struct task_struct *k)
 60{
 61	return __to_kthread(k->vfork_done);
 
 62}
 63
 64static struct kthread *to_live_kthread(struct task_struct *k)
 
 
 
 
 
 
 
 
 
 
 
 65{
 66	struct completion *vfork = ACCESS_ONCE(k->vfork_done);
 67	if (likely(vfork))
 68		return __to_kthread(vfork);
 69	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70}
 71
 72/**
 73 * kthread_should_stop - should this kthread return now?
 74 *
 75 * When someone calls kthread_stop() on your kthread, it will be woken
 76 * and this will return true.  You should then return, and your return
 77 * value will be passed through to kthread_stop().
 78 */
 79bool kthread_should_stop(void)
 80{
 81	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 82}
 83EXPORT_SYMBOL(kthread_should_stop);
 84
 
 
 
 
 
 85/**
 86 * kthread_should_park - should this kthread park now?
 87 *
 88 * When someone calls kthread_park() on your kthread, it will be woken
 89 * and this will return true.  You should then do the necessary
 90 * cleanup and call kthread_parkme()
 91 *
 92 * Similar to kthread_should_stop(), but this keeps the thread alive
 93 * and in a park position. kthread_unpark() "restarts" the thread and
 94 * calls the thread function again.
 95 */
 96bool kthread_should_park(void)
 97{
 98	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
 
 
 
 
 
 
 
 
 
 
 
 99}
100
101/**
102 * kthread_freezable_should_stop - should this freezable kthread return now?
103 * @was_frozen: optional out parameter, indicates whether %current was frozen
104 *
105 * kthread_should_stop() for freezable kthreads, which will enter
106 * refrigerator if necessary.  This function is safe from kthread_stop() /
107 * freezer deadlock and freezable kthreads should use this function instead
108 * of calling try_to_freeze() directly.
109 */
110bool kthread_freezable_should_stop(bool *was_frozen)
111{
112	bool frozen = false;
113
114	might_sleep();
115
116	if (unlikely(freezing(current)))
117		frozen = __refrigerator(true);
118
119	if (was_frozen)
120		*was_frozen = frozen;
121
122	return kthread_should_stop();
123}
124EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
125
126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127 * kthread_data - return data value specified on kthread creation
128 * @task: kthread task in question
129 *
130 * Return the data value specified when kthread @task was created.
131 * The caller is responsible for ensuring the validity of @task when
132 * calling this function.
133 */
134void *kthread_data(struct task_struct *task)
135{
136	return to_kthread(task)->data;
137}
 
138
139/**
140 * probe_kthread_data - speculative version of kthread_data()
141 * @task: possible kthread task in question
142 *
143 * @task could be a kthread task.  Return the data value specified when it
144 * was created if accessible.  If @task isn't a kthread task or its data is
145 * inaccessible for any reason, %NULL is returned.  This function requires
146 * that @task itself is safe to dereference.
147 */
148void *probe_kthread_data(struct task_struct *task)
149{
150	struct kthread *kthread = to_kthread(task);
151	void *data = NULL;
152
153	probe_kernel_read(&data, &kthread->data, sizeof(data));
 
154	return data;
155}
156
157static void __kthread_parkme(struct kthread *self)
158{
159	__set_current_state(TASK_PARKED);
160	while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
161		if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
162			complete(&self->parked);
163		schedule();
164		__set_current_state(TASK_PARKED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165	}
166	clear_bit(KTHREAD_IS_PARKED, &self->flags);
167	__set_current_state(TASK_RUNNING);
168}
169
170void kthread_parkme(void)
171{
172	__kthread_parkme(to_kthread(current));
173}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
175static int kthread(void *_create)
176{
 
177	/* Copy data: it's on kthread's stack */
178	struct kthread_create_info *create = _create;
179	int (*threadfn)(void *data) = create->threadfn;
180	void *data = create->data;
181	struct completion *done;
182	struct kthread self;
183	int ret;
184
185	self.flags = 0;
186	self.data = data;
187	init_completion(&self.exited);
188	init_completion(&self.parked);
189	current->vfork_done = &self.exited;
190
191	/* If user was SIGKILLed, I release the structure. */
192	done = xchg(&create->done, NULL);
193	if (!done) {
 
194		kfree(create);
195		do_exit(-EINTR);
196	}
 
 
 
 
 
 
 
 
 
 
 
 
197	/* OK, tell user we're spawned, wait for stop or wakeup */
198	__set_current_state(TASK_UNINTERRUPTIBLE);
199	create->result = current;
 
 
 
 
 
200	complete(done);
201	schedule();
 
202
203	ret = -EINTR;
204
205	if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
206		__kthread_parkme(&self);
207		ret = threadfn(data);
208	}
209	/* we can't just return, we must preserve "self" on stack */
210	do_exit(ret);
211}
212
213/* called from do_fork() to get node information for about to be created task */
214int tsk_fork_get_node(struct task_struct *tsk)
215{
216#ifdef CONFIG_NUMA
217	if (tsk == kthreadd_task)
218		return tsk->pref_node_fork;
219#endif
220	return NUMA_NO_NODE;
221}
222
223static void create_kthread(struct kthread_create_info *create)
224{
225	int pid;
226
227#ifdef CONFIG_NUMA
228	current->pref_node_fork = create->node;
229#endif
230	/* We want our own signal handler (we take no signals by default). */
231	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 
232	if (pid < 0) {
233		/* If user was SIGKILLed, I release the structure. */
234		struct completion *done = xchg(&create->done, NULL);
235
 
236		if (!done) {
237			kfree(create);
238			return;
239		}
240		create->result = ERR_PTR(pid);
241		complete(done);
242	}
243}
244
245/**
246 * kthread_create_on_node - create a kthread.
247 * @threadfn: the function to run until signal_pending(current).
248 * @data: data ptr for @threadfn.
249 * @node: memory node number.
250 * @namefmt: printf-style name for the thread.
251 *
252 * Description: This helper function creates and names a kernel
253 * thread.  The thread will be stopped: use wake_up_process() to start
254 * it.  See also kthread_run().
255 *
256 * If thread is going to be bound on a particular cpu, give its node
257 * in @node, to get NUMA affinity for kthread stack, or else give -1.
258 * When woken, the thread will run @threadfn() with @data as its
259 * argument. @threadfn() can either call do_exit() directly if it is a
260 * standalone thread for which no one will call kthread_stop(), or
261 * return when 'kthread_should_stop()' is true (which means
262 * kthread_stop() has been called).  The return value should be zero
263 * or a negative error number; it will be passed to kthread_stop().
264 *
265 * Returns a task_struct or ERR_PTR(-ENOMEM).
266 */
267struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
268					   void *data, int node,
269					   const char namefmt[],
270					   ...)
271{
272	DECLARE_COMPLETION_ONSTACK(done);
273	struct task_struct *task;
274	struct kthread_create_info *create = kmalloc(sizeof(*create),
275						     GFP_KERNEL);
276
277	if (!create)
278		return ERR_PTR(-ENOMEM);
279	create->threadfn = threadfn;
280	create->data = data;
281	create->node = node;
282	create->done = &done;
 
 
 
 
 
283
284	spin_lock(&kthread_create_lock);
285	list_add_tail(&create->list, &kthread_create_list);
286	spin_unlock(&kthread_create_lock);
287
288	wake_up_process(kthreadd_task);
289	/*
290	 * Wait for completion in killable state, for I might be chosen by
291	 * the OOM killer while kthreadd is trying to allocate memory for
292	 * new kernel thread.
293	 */
294	if (unlikely(wait_for_completion_killable(&done))) {
295		/*
296		 * If I was SIGKILLed before kthreadd (or new kernel thread)
297		 * calls complete(), leave the cleanup of this structure to
298		 * that thread.
299		 */
300		if (xchg(&create->done, NULL))
301			return ERR_PTR(-ENOMEM);
302		/*
303		 * kthreadd (or new kernel thread) will call complete()
304		 * shortly.
305		 */
306		wait_for_completion(&done);
307	}
308	task = create->result;
309	if (!IS_ERR(task)) {
310		static const struct sched_param param = { .sched_priority = 0 };
311		va_list args;
312
313		va_start(args, namefmt);
314		vsnprintf(task->comm, sizeof(task->comm), namefmt, args);
315		va_end(args);
316		/*
317		 * root may have changed our (kthreadd's) priority or CPU mask.
318		 * The kernel thread should not inherit these properties.
319		 */
320		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
321		set_cpus_allowed_ptr(task, cpu_all_mask);
322	}
323	kfree(create);
324	return task;
325}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326EXPORT_SYMBOL(kthread_create_on_node);
327
328static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
329{
330	/* Must have done schedule() in kthread() before we set_task_cpu */
 
331	if (!wait_task_inactive(p, state)) {
332		WARN_ON(1);
333		return;
334	}
 
335	/* It's safe because the task is inactive. */
336	do_set_cpus_allowed(p, cpumask_of(cpu));
 
337	p->flags |= PF_NO_SETAFFINITY;
 
 
 
 
 
 
 
 
 
 
 
338}
339
340/**
341 * kthread_bind - bind a just-created kthread to a cpu.
342 * @p: thread created by kthread_create().
343 * @cpu: cpu (might not be online, must be possible) for @k to run on.
344 *
345 * Description: This function is equivalent to set_cpus_allowed(),
346 * except that @cpu doesn't need to be online, and the thread must be
347 * stopped (i.e., just returned from kthread_create()).
348 */
349void kthread_bind(struct task_struct *p, unsigned int cpu)
350{
351	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
352}
353EXPORT_SYMBOL(kthread_bind);
354
355/**
356 * kthread_create_on_cpu - Create a cpu bound kthread
357 * @threadfn: the function to run until signal_pending(current).
358 * @data: data ptr for @threadfn.
359 * @cpu: The cpu on which the thread should be bound,
360 * @namefmt: printf-style name for the thread. Format is restricted
361 *	     to "name.*%u". Code fills in cpu number.
362 *
363 * Description: This helper function creates and names a kernel thread
364 * The thread will be woken and put into park mode.
365 */
366struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
367					  void *data, unsigned int cpu,
368					  const char *namefmt)
369{
370	struct task_struct *p;
371
372	p = kthread_create_on_node(threadfn, data, cpu_to_mem(cpu), namefmt,
373				   cpu);
374	if (IS_ERR(p))
375		return p;
376	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
 
377	to_kthread(p)->cpu = cpu;
378	/* Park the thread to get it out of TASK_UNINTERRUPTIBLE state */
379	kthread_park(p);
380	return p;
381}
 
382
383static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
384{
385	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
386	/*
387	 * We clear the IS_PARKED bit here as we don't wait
388	 * until the task has left the park code. So if we'd
389	 * park before that happens we'd see the IS_PARKED bit
390	 * which might be about to be cleared.
391	 */
392	if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
393		if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
394			__kthread_bind(k, kthread->cpu, TASK_PARKED);
395		wake_up_state(k, TASK_PARKED);
396	}
 
 
 
 
 
 
 
 
 
 
 
 
397}
398
399/**
400 * kthread_unpark - unpark a thread created by kthread_create().
401 * @k:		thread created by kthread_create().
402 *
403 * Sets kthread_should_park() for @k to return false, wakes it, and
404 * waits for it to return. If the thread is marked percpu then its
405 * bound to the cpu again.
406 */
407void kthread_unpark(struct task_struct *k)
408{
409	struct kthread *kthread = to_live_kthread(k);
410
411	if (kthread)
412		__kthread_unpark(k, kthread);
 
 
 
 
 
 
 
 
 
 
413}
 
414
415/**
416 * kthread_park - park a thread created by kthread_create().
417 * @k: thread created by kthread_create().
418 *
419 * Sets kthread_should_park() for @k to return true, wakes it, and
420 * waits for it to return. This can also be called after kthread_create()
421 * instead of calling wake_up_process(): the thread will park without
422 * calling threadfn().
423 *
424 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
425 * If called by the kthread itself just the park bit is set.
426 */
427int kthread_park(struct task_struct *k)
428{
429	struct kthread *kthread = to_live_kthread(k);
430	int ret = -ENOSYS;
431
432	if (kthread) {
433		if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
434			set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
435			if (k != current) {
436				wake_up_process(k);
437				wait_for_completion(&kthread->parked);
438			}
439		}
440		ret = 0;
 
 
 
 
 
 
 
 
 
 
441	}
442	return ret;
 
443}
 
444
445/**
446 * kthread_stop - stop a thread created by kthread_create().
447 * @k: thread created by kthread_create().
448 *
449 * Sets kthread_should_stop() for @k to return true, wakes it, and
450 * waits for it to exit. This can also be called after kthread_create()
451 * instead of calling wake_up_process(): the thread will exit without
452 * calling threadfn().
453 *
454 * If threadfn() may call do_exit() itself, the caller must ensure
455 * task_struct can't go away.
456 *
457 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
458 * was never called.
459 */
460int kthread_stop(struct task_struct *k)
461{
462	struct kthread *kthread;
463	int ret;
464
465	trace_sched_kthread_stop(k);
466
467	get_task_struct(k);
468	kthread = to_live_kthread(k);
469	if (kthread) {
470		set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
471		__kthread_unpark(k, kthread);
472		wake_up_process(k);
473		wait_for_completion(&kthread->exited);
474	}
475	ret = k->exit_code;
476	put_task_struct(k);
477
478	trace_sched_kthread_stop_ret(ret);
479	return ret;
480}
481EXPORT_SYMBOL(kthread_stop);
482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483int kthreadd(void *unused)
484{
485	struct task_struct *tsk = current;
486
487	/* Setup a clean context for our children to inherit. */
488	set_task_comm(tsk, "kthreadd");
489	ignore_signals(tsk);
490	set_cpus_allowed_ptr(tsk, cpu_all_mask);
491	set_mems_allowed(node_states[N_MEMORY]);
492
493	current->flags |= PF_NOFREEZE;
 
494
495	for (;;) {
496		set_current_state(TASK_INTERRUPTIBLE);
497		if (list_empty(&kthread_create_list))
498			schedule();
499		__set_current_state(TASK_RUNNING);
500
501		spin_lock(&kthread_create_lock);
502		while (!list_empty(&kthread_create_list)) {
503			struct kthread_create_info *create;
504
505			create = list_entry(kthread_create_list.next,
506					    struct kthread_create_info, list);
507			list_del_init(&create->list);
508			spin_unlock(&kthread_create_lock);
509
510			create_kthread(create);
511
512			spin_lock(&kthread_create_lock);
513		}
514		spin_unlock(&kthread_create_lock);
515	}
516
517	return 0;
518}
519
520void __init_kthread_worker(struct kthread_worker *worker,
521				const char *name,
522				struct lock_class_key *key)
523{
524	spin_lock_init(&worker->lock);
 
525	lockdep_set_class_and_name(&worker->lock, key, name);
526	INIT_LIST_HEAD(&worker->work_list);
527	worker->task = NULL;
528}
529EXPORT_SYMBOL_GPL(__init_kthread_worker);
530
531/**
532 * kthread_worker_fn - kthread function to process kthread_worker
533 * @worker_ptr: pointer to initialized kthread_worker
534 *
535 * This function can be used as @threadfn to kthread_create() or
536 * kthread_run() with @worker_ptr argument pointing to an initialized
537 * kthread_worker.  The started kthread will process work_list until
538 * the it is stopped with kthread_stop().  A kthread can also call
539 * this function directly after extra initialization.
540 *
541 * Different kthreads can be used for the same kthread_worker as long
542 * as there's only one kthread attached to it at any given time.  A
543 * kthread_worker without an attached kthread simply collects queued
544 * kthread_works.
545 */
546int kthread_worker_fn(void *worker_ptr)
547{
548	struct kthread_worker *worker = worker_ptr;
549	struct kthread_work *work;
550
551	WARN_ON(worker->task);
 
 
 
 
552	worker->task = current;
 
 
 
 
553repeat:
554	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
555
556	if (kthread_should_stop()) {
557		__set_current_state(TASK_RUNNING);
558		spin_lock_irq(&worker->lock);
559		worker->task = NULL;
560		spin_unlock_irq(&worker->lock);
561		return 0;
562	}
563
564	work = NULL;
565	spin_lock_irq(&worker->lock);
566	if (!list_empty(&worker->work_list)) {
567		work = list_first_entry(&worker->work_list,
568					struct kthread_work, node);
569		list_del_init(&work->node);
570	}
571	worker->current_work = work;
572	spin_unlock_irq(&worker->lock);
573
574	if (work) {
 
575		__set_current_state(TASK_RUNNING);
 
576		work->func(work);
 
 
 
 
 
577	} else if (!freezing(current))
578		schedule();
579
580	try_to_freeze();
 
581	goto repeat;
582}
583EXPORT_SYMBOL_GPL(kthread_worker_fn);
584
585/* insert @work before @pos in @worker */
586static void insert_kthread_work(struct kthread_worker *worker,
587			       struct kthread_work *work,
588			       struct list_head *pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589{
590	lockdep_assert_held(&worker->lock);
591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592	list_add_tail(&work->node, pos);
593	work->worker = worker;
594	if (likely(worker->task))
595		wake_up_process(worker->task);
596}
597
598/**
599 * queue_kthread_work - queue a kthread_work
600 * @worker: target kthread_worker
601 * @work: kthread_work to queue
602 *
603 * Queue @work to work processor @task for async execution.  @task
604 * must have been created with kthread_worker_create().  Returns %true
605 * if @work was successfully queued, %false if it was already pending.
 
 
 
606 */
607bool queue_kthread_work(struct kthread_worker *worker,
608			struct kthread_work *work)
609{
610	bool ret = false;
611	unsigned long flags;
612
613	spin_lock_irqsave(&worker->lock, flags);
614	if (list_empty(&work->node)) {
615		insert_kthread_work(worker, work, &worker->work_list);
616		ret = true;
617	}
618	spin_unlock_irqrestore(&worker->lock, flags);
619	return ret;
620}
621EXPORT_SYMBOL_GPL(queue_kthread_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622
623struct kthread_flush_work {
624	struct kthread_work	work;
625	struct completion	done;
626};
627
628static void kthread_flush_work_fn(struct kthread_work *work)
629{
630	struct kthread_flush_work *fwork =
631		container_of(work, struct kthread_flush_work, work);
632	complete(&fwork->done);
633}
634
635/**
636 * flush_kthread_work - flush a kthread_work
637 * @work: work to flush
638 *
639 * If @work is queued or executing, wait for it to finish execution.
640 */
641void flush_kthread_work(struct kthread_work *work)
642{
643	struct kthread_flush_work fwork = {
644		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
645		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
646	};
647	struct kthread_worker *worker;
648	bool noop = false;
649
650retry:
651	worker = work->worker;
652	if (!worker)
653		return;
654
655	spin_lock_irq(&worker->lock);
656	if (work->worker != worker) {
657		spin_unlock_irq(&worker->lock);
658		goto retry;
659	}
660
661	if (!list_empty(&work->node))
662		insert_kthread_work(worker, &fwork.work, work->node.next);
663	else if (worker->current_work == work)
664		insert_kthread_work(worker, &fwork.work, worker->work_list.next);
 
665	else
666		noop = true;
667
668	spin_unlock_irq(&worker->lock);
669
670	if (!noop)
671		wait_for_completion(&fwork.done);
672}
673EXPORT_SYMBOL_GPL(flush_kthread_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674
675/**
676 * flush_kthread_worker - flush all current works on a kthread_worker
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677 * @worker: worker to flush
678 *
679 * Wait until all currently executing or pending works on @worker are
680 * finished.
681 */
682void flush_kthread_worker(struct kthread_worker *worker)
683{
684	struct kthread_flush_work fwork = {
685		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
686		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
687	};
688
689	queue_kthread_work(worker, &fwork.work);
690	wait_for_completion(&fwork.done);
691}
692EXPORT_SYMBOL_GPL(flush_kthread_worker);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
  41	char *full_name;
  42	int (*threadfn)(void *data);
  43	void *data;
  44	int node;
  45
  46	/* Result passed back to kthread_create() from kthreadd. */
  47	struct task_struct *result;
  48	struct completion *done;
  49
  50	struct list_head list;
  51};
  52
  53struct kthread {
  54	unsigned long flags;
  55	unsigned int cpu;
  56	int result;
  57	int (*threadfn)(void *);
  58	void *data;
  59	struct completion parked;
  60	struct completion exited;
  61#ifdef CONFIG_BLK_CGROUP
  62	struct cgroup_subsys_state *blkcg_css;
  63#endif
  64	/* To store the full name if task comm is truncated. */
  65	char *full_name;
  66};
  67
  68enum KTHREAD_BITS {
  69	KTHREAD_IS_PER_CPU = 0,
  70	KTHREAD_SHOULD_STOP,
  71	KTHREAD_SHOULD_PARK,
 
  72};
  73
 
 
 
  74static inline struct kthread *to_kthread(struct task_struct *k)
  75{
  76	WARN_ON(!(k->flags & PF_KTHREAD));
  77	return k->worker_private;
  78}
  79
  80/*
  81 * Variant of to_kthread() that doesn't assume @p is a kthread.
  82 *
  83 * Per construction; when:
  84 *
  85 *   (p->flags & PF_KTHREAD) && p->worker_private
  86 *
  87 * the task is both a kthread and struct kthread is persistent. However
  88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  89 * begin_new_exec()).
  90 */
  91static inline struct kthread *__to_kthread(struct task_struct *p)
  92{
  93	void *kthread = p->worker_private;
  94	if (kthread && !(p->flags & PF_KTHREAD))
  95		kthread = NULL;
  96	return kthread;
  97}
  98
  99void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
 100{
 101	struct kthread *kthread = to_kthread(tsk);
 102
 103	if (!kthread || !kthread->full_name) {
 104		__get_task_comm(buf, buf_size, tsk);
 105		return;
 106	}
 107
 108	strscpy_pad(buf, kthread->full_name, buf_size);
 109}
 110
 111bool set_kthread_struct(struct task_struct *p)
 112{
 113	struct kthread *kthread;
 114
 115	if (WARN_ON_ONCE(to_kthread(p)))
 116		return false;
 117
 118	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 119	if (!kthread)
 120		return false;
 121
 122	init_completion(&kthread->exited);
 123	init_completion(&kthread->parked);
 124	p->vfork_done = &kthread->exited;
 125
 126	p->worker_private = kthread;
 127	return true;
 128}
 129
 130void free_kthread_struct(struct task_struct *k)
 131{
 132	struct kthread *kthread;
 133
 134	/*
 135	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
 136	 */
 137	kthread = to_kthread(k);
 138	if (!kthread)
 139		return;
 140
 141#ifdef CONFIG_BLK_CGROUP
 142	WARN_ON_ONCE(kthread->blkcg_css);
 143#endif
 144	k->worker_private = NULL;
 145	kfree(kthread->full_name);
 146	kfree(kthread);
 147}
 148
 149/**
 150 * kthread_should_stop - should this kthread return now?
 151 *
 152 * When someone calls kthread_stop() on your kthread, it will be woken
 153 * and this will return true.  You should then return, and your return
 154 * value will be passed through to kthread_stop().
 155 */
 156bool kthread_should_stop(void)
 157{
 158	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 159}
 160EXPORT_SYMBOL(kthread_should_stop);
 161
 162static bool __kthread_should_park(struct task_struct *k)
 163{
 164	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 165}
 166
 167/**
 168 * kthread_should_park - should this kthread park now?
 169 *
 170 * When someone calls kthread_park() on your kthread, it will be woken
 171 * and this will return true.  You should then do the necessary
 172 * cleanup and call kthread_parkme()
 173 *
 174 * Similar to kthread_should_stop(), but this keeps the thread alive
 175 * and in a park position. kthread_unpark() "restarts" the thread and
 176 * calls the thread function again.
 177 */
 178bool kthread_should_park(void)
 179{
 180	return __kthread_should_park(current);
 181}
 182EXPORT_SYMBOL_GPL(kthread_should_park);
 183
 184bool kthread_should_stop_or_park(void)
 185{
 186	struct kthread *kthread = __to_kthread(current);
 187
 188	if (!kthread)
 189		return false;
 190
 191	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
 192}
 193
 194/**
 195 * kthread_freezable_should_stop - should this freezable kthread return now?
 196 * @was_frozen: optional out parameter, indicates whether %current was frozen
 197 *
 198 * kthread_should_stop() for freezable kthreads, which will enter
 199 * refrigerator if necessary.  This function is safe from kthread_stop() /
 200 * freezer deadlock and freezable kthreads should use this function instead
 201 * of calling try_to_freeze() directly.
 202 */
 203bool kthread_freezable_should_stop(bool *was_frozen)
 204{
 205	bool frozen = false;
 206
 207	might_sleep();
 208
 209	if (unlikely(freezing(current)))
 210		frozen = __refrigerator(true);
 211
 212	if (was_frozen)
 213		*was_frozen = frozen;
 214
 215	return kthread_should_stop();
 216}
 217EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 218
 219/**
 220 * kthread_func - return the function specified on kthread creation
 221 * @task: kthread task in question
 222 *
 223 * Returns NULL if the task is not a kthread.
 224 */
 225void *kthread_func(struct task_struct *task)
 226{
 227	struct kthread *kthread = __to_kthread(task);
 228	if (kthread)
 229		return kthread->threadfn;
 230	return NULL;
 231}
 232EXPORT_SYMBOL_GPL(kthread_func);
 233
 234/**
 235 * kthread_data - return data value specified on kthread creation
 236 * @task: kthread task in question
 237 *
 238 * Return the data value specified when kthread @task was created.
 239 * The caller is responsible for ensuring the validity of @task when
 240 * calling this function.
 241 */
 242void *kthread_data(struct task_struct *task)
 243{
 244	return to_kthread(task)->data;
 245}
 246EXPORT_SYMBOL_GPL(kthread_data);
 247
 248/**
 249 * kthread_probe_data - speculative version of kthread_data()
 250 * @task: possible kthread task in question
 251 *
 252 * @task could be a kthread task.  Return the data value specified when it
 253 * was created if accessible.  If @task isn't a kthread task or its data is
 254 * inaccessible for any reason, %NULL is returned.  This function requires
 255 * that @task itself is safe to dereference.
 256 */
 257void *kthread_probe_data(struct task_struct *task)
 258{
 259	struct kthread *kthread = __to_kthread(task);
 260	void *data = NULL;
 261
 262	if (kthread)
 263		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 264	return data;
 265}
 266
 267static void __kthread_parkme(struct kthread *self)
 268{
 269	for (;;) {
 270		/*
 271		 * TASK_PARKED is a special state; we must serialize against
 272		 * possible pending wakeups to avoid store-store collisions on
 273		 * task->state.
 274		 *
 275		 * Such a collision might possibly result in the task state
 276		 * changin from TASK_PARKED and us failing the
 277		 * wait_task_inactive() in kthread_park().
 278		 */
 279		set_special_state(TASK_PARKED);
 280		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 281			break;
 282
 283		/*
 284		 * Thread is going to call schedule(), do not preempt it,
 285		 * or the caller of kthread_park() may spend more time in
 286		 * wait_task_inactive().
 287		 */
 288		preempt_disable();
 289		complete(&self->parked);
 290		schedule_preempt_disabled();
 291		preempt_enable();
 292	}
 
 293	__set_current_state(TASK_RUNNING);
 294}
 295
 296void kthread_parkme(void)
 297{
 298	__kthread_parkme(to_kthread(current));
 299}
 300EXPORT_SYMBOL_GPL(kthread_parkme);
 301
 302/**
 303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
 304 * @result: The integer value to return to kthread_stop().
 305 *
 306 * While kthread_exit can be called directly, it exists so that
 307 * functions which do some additional work in non-modular code such as
 308 * module_put_and_kthread_exit can be implemented.
 309 *
 310 * Does not return.
 311 */
 312void __noreturn kthread_exit(long result)
 313{
 314	struct kthread *kthread = to_kthread(current);
 315	kthread->result = result;
 316	do_exit(0);
 317}
 318
 319/**
 320 * kthread_complete_and_exit - Exit the current kthread.
 321 * @comp: Completion to complete
 322 * @code: The integer value to return to kthread_stop().
 323 *
 324 * If present, complete @comp and then return code to kthread_stop().
 325 *
 326 * A kernel thread whose module may be removed after the completion of
 327 * @comp can use this function to exit safely.
 328 *
 329 * Does not return.
 330 */
 331void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
 332{
 333	if (comp)
 334		complete(comp);
 335
 336	kthread_exit(code);
 337}
 338EXPORT_SYMBOL(kthread_complete_and_exit);
 339
 340static int kthread(void *_create)
 341{
 342	static const struct sched_param param = { .sched_priority = 0 };
 343	/* Copy data: it's on kthread's stack */
 344	struct kthread_create_info *create = _create;
 345	int (*threadfn)(void *data) = create->threadfn;
 346	void *data = create->data;
 347	struct completion *done;
 348	struct kthread *self;
 349	int ret;
 350
 351	self = to_kthread(current);
 
 
 
 
 352
 353	/* Release the structure when caller killed by a fatal signal. */
 354	done = xchg(&create->done, NULL);
 355	if (!done) {
 356		kfree(create->full_name);
 357		kfree(create);
 358		kthread_exit(-EINTR);
 359	}
 360
 361	self->full_name = create->full_name;
 362	self->threadfn = threadfn;
 363	self->data = data;
 364
 365	/*
 366	 * The new thread inherited kthreadd's priority and CPU mask. Reset
 367	 * back to default in case they have been changed.
 368	 */
 369	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
 370	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
 371
 372	/* OK, tell user we're spawned, wait for stop or wakeup */
 373	__set_current_state(TASK_UNINTERRUPTIBLE);
 374	create->result = current;
 375	/*
 376	 * Thread is going to call schedule(), do not preempt it,
 377	 * or the creator may spend more time in wait_task_inactive().
 378	 */
 379	preempt_disable();
 380	complete(done);
 381	schedule_preempt_disabled();
 382	preempt_enable();
 383
 384	ret = -EINTR;
 385	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 386		cgroup_kthread_ready();
 387		__kthread_parkme(self);
 388		ret = threadfn(data);
 389	}
 390	kthread_exit(ret);
 
 391}
 392
 393/* called from kernel_clone() to get node information for about to be created task */
 394int tsk_fork_get_node(struct task_struct *tsk)
 395{
 396#ifdef CONFIG_NUMA
 397	if (tsk == kthreadd_task)
 398		return tsk->pref_node_fork;
 399#endif
 400	return NUMA_NO_NODE;
 401}
 402
 403static void create_kthread(struct kthread_create_info *create)
 404{
 405	int pid;
 406
 407#ifdef CONFIG_NUMA
 408	current->pref_node_fork = create->node;
 409#endif
 410	/* We want our own signal handler (we take no signals by default). */
 411	pid = kernel_thread(kthread, create, create->full_name,
 412			    CLONE_FS | CLONE_FILES | SIGCHLD);
 413	if (pid < 0) {
 414		/* Release the structure when caller killed by a fatal signal. */
 415		struct completion *done = xchg(&create->done, NULL);
 416
 417		kfree(create->full_name);
 418		if (!done) {
 419			kfree(create);
 420			return;
 421		}
 422		create->result = ERR_PTR(pid);
 423		complete(done);
 424	}
 425}
 426
 427static __printf(4, 0)
 428struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 429						    void *data, int node,
 430						    const char namefmt[],
 431						    va_list args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432{
 433	DECLARE_COMPLETION_ONSTACK(done);
 434	struct task_struct *task;
 435	struct kthread_create_info *create = kmalloc(sizeof(*create),
 436						     GFP_KERNEL);
 437
 438	if (!create)
 439		return ERR_PTR(-ENOMEM);
 440	create->threadfn = threadfn;
 441	create->data = data;
 442	create->node = node;
 443	create->done = &done;
 444	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
 445	if (!create->full_name) {
 446		task = ERR_PTR(-ENOMEM);
 447		goto free_create;
 448	}
 449
 450	spin_lock(&kthread_create_lock);
 451	list_add_tail(&create->list, &kthread_create_list);
 452	spin_unlock(&kthread_create_lock);
 453
 454	wake_up_process(kthreadd_task);
 455	/*
 456	 * Wait for completion in killable state, for I might be chosen by
 457	 * the OOM killer while kthreadd is trying to allocate memory for
 458	 * new kernel thread.
 459	 */
 460	if (unlikely(wait_for_completion_killable(&done))) {
 461		/*
 462		 * If I was killed by a fatal signal before kthreadd (or new
 463		 * kernel thread) calls complete(), leave the cleanup of this
 464		 * structure to that thread.
 465		 */
 466		if (xchg(&create->done, NULL))
 467			return ERR_PTR(-EINTR);
 468		/*
 469		 * kthreadd (or new kernel thread) will call complete()
 470		 * shortly.
 471		 */
 472		wait_for_completion(&done);
 473	}
 474	task = create->result;
 475free_create:
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	kfree(create);
 477	return task;
 478}
 479
 480/**
 481 * kthread_create_on_node - create a kthread.
 482 * @threadfn: the function to run until signal_pending(current).
 483 * @data: data ptr for @threadfn.
 484 * @node: task and thread structures for the thread are allocated on this node
 485 * @namefmt: printf-style name for the thread.
 486 *
 487 * Description: This helper function creates and names a kernel
 488 * thread.  The thread will be stopped: use wake_up_process() to start
 489 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 490 * is affine to all CPUs.
 491 *
 492 * If thread is going to be bound on a particular cpu, give its node
 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 494 * When woken, the thread will run @threadfn() with @data as its
 495 * argument. @threadfn() can either return directly if it is a
 496 * standalone thread for which no one will call kthread_stop(), or
 497 * return when 'kthread_should_stop()' is true (which means
 498 * kthread_stop() has been called).  The return value should be zero
 499 * or a negative error number; it will be passed to kthread_stop().
 500 *
 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 502 */
 503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 504					   void *data, int node,
 505					   const char namefmt[],
 506					   ...)
 507{
 508	struct task_struct *task;
 509	va_list args;
 510
 511	va_start(args, namefmt);
 512	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 513	va_end(args);
 514
 515	return task;
 516}
 517EXPORT_SYMBOL(kthread_create_on_node);
 518
 519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 520{
 521	unsigned long flags;
 522
 523	if (!wait_task_inactive(p, state)) {
 524		WARN_ON(1);
 525		return;
 526	}
 527
 528	/* It's safe because the task is inactive. */
 529	raw_spin_lock_irqsave(&p->pi_lock, flags);
 530	do_set_cpus_allowed(p, mask);
 531	p->flags |= PF_NO_SETAFFINITY;
 532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 533}
 534
 535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 536{
 537	__kthread_bind_mask(p, cpumask_of(cpu), state);
 538}
 539
 540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 541{
 542	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 543}
 544
 545/**
 546 * kthread_bind - bind a just-created kthread to a cpu.
 547 * @p: thread created by kthread_create().
 548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 549 *
 550 * Description: This function is equivalent to set_cpus_allowed(),
 551 * except that @cpu doesn't need to be online, and the thread must be
 552 * stopped (i.e., just returned from kthread_create()).
 553 */
 554void kthread_bind(struct task_struct *p, unsigned int cpu)
 555{
 556	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 557}
 558EXPORT_SYMBOL(kthread_bind);
 559
 560/**
 561 * kthread_create_on_cpu - Create a cpu bound kthread
 562 * @threadfn: the function to run until signal_pending(current).
 563 * @data: data ptr for @threadfn.
 564 * @cpu: The cpu on which the thread should be bound,
 565 * @namefmt: printf-style name for the thread. Format is restricted
 566 *	     to "name.*%u". Code fills in cpu number.
 567 *
 568 * Description: This helper function creates and names a kernel thread
 
 569 */
 570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 571					  void *data, unsigned int cpu,
 572					  const char *namefmt)
 573{
 574	struct task_struct *p;
 575
 576	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 577				   cpu);
 578	if (IS_ERR(p))
 579		return p;
 580	kthread_bind(p, cpu);
 581	/* CPU hotplug need to bind once again when unparking the thread. */
 582	to_kthread(p)->cpu = cpu;
 
 
 583	return p;
 584}
 585EXPORT_SYMBOL(kthread_create_on_cpu);
 586
 587void kthread_set_per_cpu(struct task_struct *k, int cpu)
 588{
 589	struct kthread *kthread = to_kthread(k);
 590	if (!kthread)
 591		return;
 592
 593	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 594
 595	if (cpu < 0) {
 596		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 597		return;
 
 
 598	}
 599
 600	kthread->cpu = cpu;
 601	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 602}
 603
 604bool kthread_is_per_cpu(struct task_struct *p)
 605{
 606	struct kthread *kthread = __to_kthread(p);
 607	if (!kthread)
 608		return false;
 609
 610	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 611}
 612
 613/**
 614 * kthread_unpark - unpark a thread created by kthread_create().
 615 * @k:		thread created by kthread_create().
 616 *
 617 * Sets kthread_should_park() for @k to return false, wakes it, and
 618 * waits for it to return. If the thread is marked percpu then its
 619 * bound to the cpu again.
 620 */
 621void kthread_unpark(struct task_struct *k)
 622{
 623	struct kthread *kthread = to_kthread(k);
 624
 625	/*
 626	 * Newly created kthread was parked when the CPU was offline.
 627	 * The binding was lost and we need to set it again.
 628	 */
 629	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 630		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 631
 632	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 633	/*
 634	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 635	 */
 636	wake_up_state(k, TASK_PARKED);
 637}
 638EXPORT_SYMBOL_GPL(kthread_unpark);
 639
 640/**
 641 * kthread_park - park a thread created by kthread_create().
 642 * @k: thread created by kthread_create().
 643 *
 644 * Sets kthread_should_park() for @k to return true, wakes it, and
 645 * waits for it to return. This can also be called after kthread_create()
 646 * instead of calling wake_up_process(): the thread will park without
 647 * calling threadfn().
 648 *
 649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 650 * If called by the kthread itself just the park bit is set.
 651 */
 652int kthread_park(struct task_struct *k)
 653{
 654	struct kthread *kthread = to_kthread(k);
 
 655
 656	if (WARN_ON(k->flags & PF_EXITING))
 657		return -ENOSYS;
 658
 659	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 660		return -EBUSY;
 661
 662	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 663	if (k != current) {
 664		wake_up_process(k);
 665		/*
 666		 * Wait for __kthread_parkme() to complete(), this means we
 667		 * _will_ have TASK_PARKED and are about to call schedule().
 668		 */
 669		wait_for_completion(&kthread->parked);
 670		/*
 671		 * Now wait for that schedule() to complete and the task to
 672		 * get scheduled out.
 673		 */
 674		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 675	}
 676
 677	return 0;
 678}
 679EXPORT_SYMBOL_GPL(kthread_park);
 680
 681/**
 682 * kthread_stop - stop a thread created by kthread_create().
 683 * @k: thread created by kthread_create().
 684 *
 685 * Sets kthread_should_stop() for @k to return true, wakes it, and
 686 * waits for it to exit. This can also be called after kthread_create()
 687 * instead of calling wake_up_process(): the thread will exit without
 688 * calling threadfn().
 689 *
 690 * If threadfn() may call kthread_exit() itself, the caller must ensure
 691 * task_struct can't go away.
 692 *
 693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 694 * was never called.
 695 */
 696int kthread_stop(struct task_struct *k)
 697{
 698	struct kthread *kthread;
 699	int ret;
 700
 701	trace_sched_kthread_stop(k);
 702
 703	get_task_struct(k);
 704	kthread = to_kthread(k);
 705	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 706	kthread_unpark(k);
 707	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
 708	wake_up_process(k);
 709	wait_for_completion(&kthread->exited);
 710	ret = kthread->result;
 
 711	put_task_struct(k);
 712
 713	trace_sched_kthread_stop_ret(ret);
 714	return ret;
 715}
 716EXPORT_SYMBOL(kthread_stop);
 717
 718/**
 719 * kthread_stop_put - stop a thread and put its task struct
 720 * @k: thread created by kthread_create().
 721 *
 722 * Stops a thread created by kthread_create() and put its task_struct.
 723 * Only use when holding an extra task struct reference obtained by
 724 * calling get_task_struct().
 725 */
 726int kthread_stop_put(struct task_struct *k)
 727{
 728	int ret;
 729
 730	ret = kthread_stop(k);
 731	put_task_struct(k);
 732	return ret;
 733}
 734EXPORT_SYMBOL(kthread_stop_put);
 735
 736int kthreadd(void *unused)
 737{
 738	struct task_struct *tsk = current;
 739
 740	/* Setup a clean context for our children to inherit. */
 741	set_task_comm(tsk, "kthreadd");
 742	ignore_signals(tsk);
 743	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
 744	set_mems_allowed(node_states[N_MEMORY]);
 745
 746	current->flags |= PF_NOFREEZE;
 747	cgroup_init_kthreadd();
 748
 749	for (;;) {
 750		set_current_state(TASK_INTERRUPTIBLE);
 751		if (list_empty(&kthread_create_list))
 752			schedule();
 753		__set_current_state(TASK_RUNNING);
 754
 755		spin_lock(&kthread_create_lock);
 756		while (!list_empty(&kthread_create_list)) {
 757			struct kthread_create_info *create;
 758
 759			create = list_entry(kthread_create_list.next,
 760					    struct kthread_create_info, list);
 761			list_del_init(&create->list);
 762			spin_unlock(&kthread_create_lock);
 763
 764			create_kthread(create);
 765
 766			spin_lock(&kthread_create_lock);
 767		}
 768		spin_unlock(&kthread_create_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774void __kthread_init_worker(struct kthread_worker *worker,
 775				const char *name,
 776				struct lock_class_key *key)
 777{
 778	memset(worker, 0, sizeof(struct kthread_worker));
 779	raw_spin_lock_init(&worker->lock);
 780	lockdep_set_class_and_name(&worker->lock, key, name);
 781	INIT_LIST_HEAD(&worker->work_list);
 782	INIT_LIST_HEAD(&worker->delayed_work_list);
 783}
 784EXPORT_SYMBOL_GPL(__kthread_init_worker);
 785
 786/**
 787 * kthread_worker_fn - kthread function to process kthread_worker
 788 * @worker_ptr: pointer to initialized kthread_worker
 789 *
 790 * This function implements the main cycle of kthread worker. It processes
 791 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 792 * is empty.
 793 *
 794 * The works are not allowed to keep any locks, disable preemption or interrupts
 795 * when they finish. There is defined a safe point for freezing when one work
 796 * finishes and before a new one is started.
 797 *
 798 * Also the works must not be handled by more than one worker at the same time,
 799 * see also kthread_queue_work().
 800 */
 801int kthread_worker_fn(void *worker_ptr)
 802{
 803	struct kthread_worker *worker = worker_ptr;
 804	struct kthread_work *work;
 805
 806	/*
 807	 * FIXME: Update the check and remove the assignment when all kthread
 808	 * worker users are created using kthread_create_worker*() functions.
 809	 */
 810	WARN_ON(worker->task && worker->task != current);
 811	worker->task = current;
 812
 813	if (worker->flags & KTW_FREEZABLE)
 814		set_freezable();
 815
 816repeat:
 817	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 818
 819	if (kthread_should_stop()) {
 820		__set_current_state(TASK_RUNNING);
 821		raw_spin_lock_irq(&worker->lock);
 822		worker->task = NULL;
 823		raw_spin_unlock_irq(&worker->lock);
 824		return 0;
 825	}
 826
 827	work = NULL;
 828	raw_spin_lock_irq(&worker->lock);
 829	if (!list_empty(&worker->work_list)) {
 830		work = list_first_entry(&worker->work_list,
 831					struct kthread_work, node);
 832		list_del_init(&work->node);
 833	}
 834	worker->current_work = work;
 835	raw_spin_unlock_irq(&worker->lock);
 836
 837	if (work) {
 838		kthread_work_func_t func = work->func;
 839		__set_current_state(TASK_RUNNING);
 840		trace_sched_kthread_work_execute_start(work);
 841		work->func(work);
 842		/*
 843		 * Avoid dereferencing work after this point.  The trace
 844		 * event only cares about the address.
 845		 */
 846		trace_sched_kthread_work_execute_end(work, func);
 847	} else if (!freezing(current))
 848		schedule();
 849
 850	try_to_freeze();
 851	cond_resched();
 852	goto repeat;
 853}
 854EXPORT_SYMBOL_GPL(kthread_worker_fn);
 855
 856static __printf(3, 0) struct kthread_worker *
 857__kthread_create_worker(int cpu, unsigned int flags,
 858			const char namefmt[], va_list args)
 859{
 860	struct kthread_worker *worker;
 861	struct task_struct *task;
 862	int node = NUMA_NO_NODE;
 863
 864	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 865	if (!worker)
 866		return ERR_PTR(-ENOMEM);
 867
 868	kthread_init_worker(worker);
 869
 870	if (cpu >= 0)
 871		node = cpu_to_node(cpu);
 872
 873	task = __kthread_create_on_node(kthread_worker_fn, worker,
 874						node, namefmt, args);
 875	if (IS_ERR(task))
 876		goto fail_task;
 877
 878	if (cpu >= 0)
 879		kthread_bind(task, cpu);
 880
 881	worker->flags = flags;
 882	worker->task = task;
 883	wake_up_process(task);
 884	return worker;
 885
 886fail_task:
 887	kfree(worker);
 888	return ERR_CAST(task);
 889}
 890
 891/**
 892 * kthread_create_worker - create a kthread worker
 893 * @flags: flags modifying the default behavior of the worker
 894 * @namefmt: printf-style name for the kthread worker (task).
 895 *
 896 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 897 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 898 * when the caller was killed by a fatal signal.
 899 */
 900struct kthread_worker *
 901kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 902{
 903	struct kthread_worker *worker;
 904	va_list args;
 905
 906	va_start(args, namefmt);
 907	worker = __kthread_create_worker(-1, flags, namefmt, args);
 908	va_end(args);
 909
 910	return worker;
 911}
 912EXPORT_SYMBOL(kthread_create_worker);
 913
 914/**
 915 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 916 *	to a given CPU and the associated NUMA node.
 917 * @cpu: CPU number
 918 * @flags: flags modifying the default behavior of the worker
 919 * @namefmt: printf-style name for the kthread worker (task).
 920 *
 921 * Use a valid CPU number if you want to bind the kthread worker
 922 * to the given CPU and the associated NUMA node.
 923 *
 924 * A good practice is to add the cpu number also into the worker name.
 925 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 926 *
 927 * CPU hotplug:
 928 * The kthread worker API is simple and generic. It just provides a way
 929 * to create, use, and destroy workers.
 930 *
 931 * It is up to the API user how to handle CPU hotplug. They have to decide
 932 * how to handle pending work items, prevent queuing new ones, and
 933 * restore the functionality when the CPU goes off and on. There are a
 934 * few catches:
 935 *
 936 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 937 *
 938 *    - The worker might not exist when the CPU was off when the user
 939 *      created the workers.
 940 *
 941 * Good practice is to implement two CPU hotplug callbacks and to
 942 * destroy/create the worker when the CPU goes down/up.
 943 *
 944 * Return:
 945 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 946 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 947 * when the caller was killed by a fatal signal.
 948 */
 949struct kthread_worker *
 950kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 951			     const char namefmt[], ...)
 952{
 953	struct kthread_worker *worker;
 954	va_list args;
 955
 956	va_start(args, namefmt);
 957	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 958	va_end(args);
 959
 960	return worker;
 961}
 962EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 963
 964/*
 965 * Returns true when the work could not be queued at the moment.
 966 * It happens when it is already pending in a worker list
 967 * or when it is being cancelled.
 968 */
 969static inline bool queuing_blocked(struct kthread_worker *worker,
 970				   struct kthread_work *work)
 971{
 972	lockdep_assert_held(&worker->lock);
 973
 974	return !list_empty(&work->node) || work->canceling;
 975}
 976
 977static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 978					     struct kthread_work *work)
 979{
 980	lockdep_assert_held(&worker->lock);
 981	WARN_ON_ONCE(!list_empty(&work->node));
 982	/* Do not use a work with >1 worker, see kthread_queue_work() */
 983	WARN_ON_ONCE(work->worker && work->worker != worker);
 984}
 985
 986/* insert @work before @pos in @worker */
 987static void kthread_insert_work(struct kthread_worker *worker,
 988				struct kthread_work *work,
 989				struct list_head *pos)
 990{
 991	kthread_insert_work_sanity_check(worker, work);
 992
 993	trace_sched_kthread_work_queue_work(worker, work);
 994
 995	list_add_tail(&work->node, pos);
 996	work->worker = worker;
 997	if (!worker->current_work && likely(worker->task))
 998		wake_up_process(worker->task);
 999}
1000
1001/**
1002 * kthread_queue_work - queue a kthread_work
1003 * @worker: target kthread_worker
1004 * @work: kthread_work to queue
1005 *
1006 * Queue @work to work processor @task for async execution.  @task
1007 * must have been created with kthread_worker_create().  Returns %true
1008 * if @work was successfully queued, %false if it was already pending.
1009 *
1010 * Reinitialize the work if it needs to be used by another worker.
1011 * For example, when the worker was stopped and started again.
1012 */
1013bool kthread_queue_work(struct kthread_worker *worker,
1014			struct kthread_work *work)
1015{
1016	bool ret = false;
1017	unsigned long flags;
1018
1019	raw_spin_lock_irqsave(&worker->lock, flags);
1020	if (!queuing_blocked(worker, work)) {
1021		kthread_insert_work(worker, work, &worker->work_list);
1022		ret = true;
1023	}
1024	raw_spin_unlock_irqrestore(&worker->lock, flags);
1025	return ret;
1026}
1027EXPORT_SYMBOL_GPL(kthread_queue_work);
1028
1029/**
1030 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1031 *	delayed work when the timer expires.
1032 * @t: pointer to the expired timer
1033 *
1034 * The format of the function is defined by struct timer_list.
1035 * It should have been called from irqsafe timer with irq already off.
1036 */
1037void kthread_delayed_work_timer_fn(struct timer_list *t)
1038{
1039	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1040	struct kthread_work *work = &dwork->work;
1041	struct kthread_worker *worker = work->worker;
1042	unsigned long flags;
1043
1044	/*
1045	 * This might happen when a pending work is reinitialized.
1046	 * It means that it is used a wrong way.
1047	 */
1048	if (WARN_ON_ONCE(!worker))
1049		return;
1050
1051	raw_spin_lock_irqsave(&worker->lock, flags);
1052	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1053	WARN_ON_ONCE(work->worker != worker);
1054
1055	/* Move the work from worker->delayed_work_list. */
1056	WARN_ON_ONCE(list_empty(&work->node));
1057	list_del_init(&work->node);
1058	if (!work->canceling)
1059		kthread_insert_work(worker, work, &worker->work_list);
1060
1061	raw_spin_unlock_irqrestore(&worker->lock, flags);
1062}
1063EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1064
1065static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1066					 struct kthread_delayed_work *dwork,
1067					 unsigned long delay)
1068{
1069	struct timer_list *timer = &dwork->timer;
1070	struct kthread_work *work = &dwork->work;
1071
1072	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1073
1074	/*
1075	 * If @delay is 0, queue @dwork->work immediately.  This is for
1076	 * both optimization and correctness.  The earliest @timer can
1077	 * expire is on the closest next tick and delayed_work users depend
1078	 * on that there's no such delay when @delay is 0.
1079	 */
1080	if (!delay) {
1081		kthread_insert_work(worker, work, &worker->work_list);
1082		return;
1083	}
1084
1085	/* Be paranoid and try to detect possible races already now. */
1086	kthread_insert_work_sanity_check(worker, work);
1087
1088	list_add(&work->node, &worker->delayed_work_list);
1089	work->worker = worker;
1090	timer->expires = jiffies + delay;
1091	add_timer(timer);
1092}
1093
1094/**
1095 * kthread_queue_delayed_work - queue the associated kthread work
1096 *	after a delay.
1097 * @worker: target kthread_worker
1098 * @dwork: kthread_delayed_work to queue
1099 * @delay: number of jiffies to wait before queuing
1100 *
1101 * If the work has not been pending it starts a timer that will queue
1102 * the work after the given @delay. If @delay is zero, it queues the
1103 * work immediately.
1104 *
1105 * Return: %false if the @work has already been pending. It means that
1106 * either the timer was running or the work was queued. It returns %true
1107 * otherwise.
1108 */
1109bool kthread_queue_delayed_work(struct kthread_worker *worker,
1110				struct kthread_delayed_work *dwork,
1111				unsigned long delay)
1112{
1113	struct kthread_work *work = &dwork->work;
1114	unsigned long flags;
1115	bool ret = false;
1116
1117	raw_spin_lock_irqsave(&worker->lock, flags);
1118
1119	if (!queuing_blocked(worker, work)) {
1120		__kthread_queue_delayed_work(worker, dwork, delay);
1121		ret = true;
1122	}
1123
1124	raw_spin_unlock_irqrestore(&worker->lock, flags);
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1128
1129struct kthread_flush_work {
1130	struct kthread_work	work;
1131	struct completion	done;
1132};
1133
1134static void kthread_flush_work_fn(struct kthread_work *work)
1135{
1136	struct kthread_flush_work *fwork =
1137		container_of(work, struct kthread_flush_work, work);
1138	complete(&fwork->done);
1139}
1140
1141/**
1142 * kthread_flush_work - flush a kthread_work
1143 * @work: work to flush
1144 *
1145 * If @work is queued or executing, wait for it to finish execution.
1146 */
1147void kthread_flush_work(struct kthread_work *work)
1148{
1149	struct kthread_flush_work fwork = {
1150		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1151		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1152	};
1153	struct kthread_worker *worker;
1154	bool noop = false;
1155
 
1156	worker = work->worker;
1157	if (!worker)
1158		return;
1159
1160	raw_spin_lock_irq(&worker->lock);
1161	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1162	WARN_ON_ONCE(work->worker != worker);
 
 
1163
1164	if (!list_empty(&work->node))
1165		kthread_insert_work(worker, &fwork.work, work->node.next);
1166	else if (worker->current_work == work)
1167		kthread_insert_work(worker, &fwork.work,
1168				    worker->work_list.next);
1169	else
1170		noop = true;
1171
1172	raw_spin_unlock_irq(&worker->lock);
1173
1174	if (!noop)
1175		wait_for_completion(&fwork.done);
1176}
1177EXPORT_SYMBOL_GPL(kthread_flush_work);
1178
1179/*
1180 * Make sure that the timer is neither set nor running and could
1181 * not manipulate the work list_head any longer.
1182 *
1183 * The function is called under worker->lock. The lock is temporary
1184 * released but the timer can't be set again in the meantime.
1185 */
1186static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1187					      unsigned long *flags)
1188{
1189	struct kthread_delayed_work *dwork =
1190		container_of(work, struct kthread_delayed_work, work);
1191	struct kthread_worker *worker = work->worker;
1192
1193	/*
1194	 * del_timer_sync() must be called to make sure that the timer
1195	 * callback is not running. The lock must be temporary released
1196	 * to avoid a deadlock with the callback. In the meantime,
1197	 * any queuing is blocked by setting the canceling counter.
1198	 */
1199	work->canceling++;
1200	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1201	del_timer_sync(&dwork->timer);
1202	raw_spin_lock_irqsave(&worker->lock, *flags);
1203	work->canceling--;
1204}
1205
1206/*
1207 * This function removes the work from the worker queue.
1208 *
1209 * It is called under worker->lock. The caller must make sure that
1210 * the timer used by delayed work is not running, e.g. by calling
1211 * kthread_cancel_delayed_work_timer().
1212 *
1213 * The work might still be in use when this function finishes. See the
1214 * current_work proceed by the worker.
1215 *
1216 * Return: %true if @work was pending and successfully canceled,
1217 *	%false if @work was not pending
1218 */
1219static bool __kthread_cancel_work(struct kthread_work *work)
1220{
1221	/*
1222	 * Try to remove the work from a worker list. It might either
1223	 * be from worker->work_list or from worker->delayed_work_list.
1224	 */
1225	if (!list_empty(&work->node)) {
1226		list_del_init(&work->node);
1227		return true;
1228	}
1229
1230	return false;
1231}
1232
1233/**
1234 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1235 * @worker: kthread worker to use
1236 * @dwork: kthread delayed work to queue
1237 * @delay: number of jiffies to wait before queuing
1238 *
1239 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1240 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1241 * @work is guaranteed to be queued immediately.
1242 *
1243 * Return: %false if @dwork was idle and queued, %true otherwise.
1244 *
1245 * A special case is when the work is being canceled in parallel.
1246 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1247 * or yet another kthread_mod_delayed_work() call. We let the other command
1248 * win and return %true here. The return value can be used for reference
1249 * counting and the number of queued works stays the same. Anyway, the caller
1250 * is supposed to synchronize these operations a reasonable way.
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1254 * for details.
1255 */
1256bool kthread_mod_delayed_work(struct kthread_worker *worker,
1257			      struct kthread_delayed_work *dwork,
1258			      unsigned long delay)
1259{
1260	struct kthread_work *work = &dwork->work;
1261	unsigned long flags;
1262	int ret;
1263
1264	raw_spin_lock_irqsave(&worker->lock, flags);
1265
1266	/* Do not bother with canceling when never queued. */
1267	if (!work->worker) {
1268		ret = false;
1269		goto fast_queue;
1270	}
1271
1272	/* Work must not be used with >1 worker, see kthread_queue_work() */
1273	WARN_ON_ONCE(work->worker != worker);
1274
1275	/*
1276	 * Temporary cancel the work but do not fight with another command
1277	 * that is canceling the work as well.
1278	 *
1279	 * It is a bit tricky because of possible races with another
1280	 * mod_delayed_work() and cancel_delayed_work() callers.
1281	 *
1282	 * The timer must be canceled first because worker->lock is released
1283	 * when doing so. But the work can be removed from the queue (list)
1284	 * only when it can be queued again so that the return value can
1285	 * be used for reference counting.
1286	 */
1287	kthread_cancel_delayed_work_timer(work, &flags);
1288	if (work->canceling) {
1289		/* The number of works in the queue does not change. */
1290		ret = true;
1291		goto out;
1292	}
1293	ret = __kthread_cancel_work(work);
1294
1295fast_queue:
1296	__kthread_queue_delayed_work(worker, dwork, delay);
1297out:
1298	raw_spin_unlock_irqrestore(&worker->lock, flags);
1299	return ret;
1300}
1301EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1302
1303static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1304{
1305	struct kthread_worker *worker = work->worker;
1306	unsigned long flags;
1307	int ret = false;
1308
1309	if (!worker)
1310		goto out;
1311
1312	raw_spin_lock_irqsave(&worker->lock, flags);
1313	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1314	WARN_ON_ONCE(work->worker != worker);
1315
1316	if (is_dwork)
1317		kthread_cancel_delayed_work_timer(work, &flags);
1318
1319	ret = __kthread_cancel_work(work);
1320
1321	if (worker->current_work != work)
1322		goto out_fast;
1323
1324	/*
1325	 * The work is in progress and we need to wait with the lock released.
1326	 * In the meantime, block any queuing by setting the canceling counter.
1327	 */
1328	work->canceling++;
1329	raw_spin_unlock_irqrestore(&worker->lock, flags);
1330	kthread_flush_work(work);
1331	raw_spin_lock_irqsave(&worker->lock, flags);
1332	work->canceling--;
1333
1334out_fast:
1335	raw_spin_unlock_irqrestore(&worker->lock, flags);
1336out:
1337	return ret;
1338}
1339
1340/**
1341 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1342 * @work: the kthread work to cancel
1343 *
1344 * Cancel @work and wait for its execution to finish.  This function
1345 * can be used even if the work re-queues itself. On return from this
1346 * function, @work is guaranteed to be not pending or executing on any CPU.
1347 *
1348 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1349 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1350 *
1351 * The caller must ensure that the worker on which @work was last
1352 * queued can't be destroyed before this function returns.
1353 *
1354 * Return: %true if @work was pending, %false otherwise.
1355 */
1356bool kthread_cancel_work_sync(struct kthread_work *work)
1357{
1358	return __kthread_cancel_work_sync(work, false);
1359}
1360EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1361
1362/**
1363 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1364 *	wait for it to finish.
1365 * @dwork: the kthread delayed work to cancel
1366 *
1367 * This is kthread_cancel_work_sync() for delayed works.
1368 *
1369 * Return: %true if @dwork was pending, %false otherwise.
1370 */
1371bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1372{
1373	return __kthread_cancel_work_sync(&dwork->work, true);
1374}
1375EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1376
1377/**
1378 * kthread_flush_worker - flush all current works on a kthread_worker
1379 * @worker: worker to flush
1380 *
1381 * Wait until all currently executing or pending works on @worker are
1382 * finished.
1383 */
1384void kthread_flush_worker(struct kthread_worker *worker)
1385{
1386	struct kthread_flush_work fwork = {
1387		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1388		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1389	};
1390
1391	kthread_queue_work(worker, &fwork.work);
1392	wait_for_completion(&fwork.done);
1393}
1394EXPORT_SYMBOL_GPL(kthread_flush_worker);
1395
1396/**
1397 * kthread_destroy_worker - destroy a kthread worker
1398 * @worker: worker to be destroyed
1399 *
1400 * Flush and destroy @worker.  The simple flush is enough because the kthread
1401 * worker API is used only in trivial scenarios.  There are no multi-step state
1402 * machines needed.
1403 *
1404 * Note that this function is not responsible for handling delayed work, so
1405 * caller should be responsible for queuing or canceling all delayed work items
1406 * before invoke this function.
1407 */
1408void kthread_destroy_worker(struct kthread_worker *worker)
1409{
1410	struct task_struct *task;
1411
1412	task = worker->task;
1413	if (WARN_ON(!task))
1414		return;
1415
1416	kthread_flush_worker(worker);
1417	kthread_stop(task);
1418	WARN_ON(!list_empty(&worker->delayed_work_list));
1419	WARN_ON(!list_empty(&worker->work_list));
1420	kfree(worker);
1421}
1422EXPORT_SYMBOL(kthread_destroy_worker);
1423
1424/**
1425 * kthread_use_mm - make the calling kthread operate on an address space
1426 * @mm: address space to operate on
1427 */
1428void kthread_use_mm(struct mm_struct *mm)
1429{
1430	struct mm_struct *active_mm;
1431	struct task_struct *tsk = current;
1432
1433	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1434	WARN_ON_ONCE(tsk->mm);
1435
1436	/*
1437	 * It is possible for mm to be the same as tsk->active_mm, but
1438	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1439	 * because these references are not equivalent.
1440	 */
1441	mmgrab(mm);
1442
1443	task_lock(tsk);
1444	/* Hold off tlb flush IPIs while switching mm's */
1445	local_irq_disable();
1446	active_mm = tsk->active_mm;
1447	tsk->active_mm = mm;
1448	tsk->mm = mm;
1449	membarrier_update_current_mm(mm);
1450	switch_mm_irqs_off(active_mm, mm, tsk);
1451	local_irq_enable();
1452	task_unlock(tsk);
1453#ifdef finish_arch_post_lock_switch
1454	finish_arch_post_lock_switch();
1455#endif
1456
1457	/*
1458	 * When a kthread starts operating on an address space, the loop
1459	 * in membarrier_{private,global}_expedited() may not observe
1460	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1461	 * memory barrier after storing to tsk->mm, before accessing
1462	 * user-space memory. A full memory barrier for membarrier
1463	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1464	 * mmdrop_lazy_tlb().
1465	 */
1466	mmdrop_lazy_tlb(active_mm);
1467}
1468EXPORT_SYMBOL_GPL(kthread_use_mm);
1469
1470/**
1471 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1472 * @mm: address space to operate on
1473 */
1474void kthread_unuse_mm(struct mm_struct *mm)
1475{
1476	struct task_struct *tsk = current;
1477
1478	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1479	WARN_ON_ONCE(!tsk->mm);
1480
1481	task_lock(tsk);
1482	/*
1483	 * When a kthread stops operating on an address space, the loop
1484	 * in membarrier_{private,global}_expedited() may not observe
1485	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1486	 * memory barrier after accessing user-space memory, before
1487	 * clearing tsk->mm.
1488	 */
1489	smp_mb__after_spinlock();
1490	local_irq_disable();
1491	tsk->mm = NULL;
1492	membarrier_update_current_mm(NULL);
1493	mmgrab_lazy_tlb(mm);
1494	/* active_mm is still 'mm' */
1495	enter_lazy_tlb(mm, tsk);
1496	local_irq_enable();
1497	task_unlock(tsk);
1498
1499	mmdrop(mm);
1500}
1501EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1502
1503#ifdef CONFIG_BLK_CGROUP
1504/**
1505 * kthread_associate_blkcg - associate blkcg to current kthread
1506 * @css: the cgroup info
1507 *
1508 * Current thread must be a kthread. The thread is running jobs on behalf of
1509 * other threads. In some cases, we expect the jobs attach cgroup info of
1510 * original threads instead of that of current thread. This function stores
1511 * original thread's cgroup info in current kthread context for later
1512 * retrieval.
1513 */
1514void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1515{
1516	struct kthread *kthread;
1517
1518	if (!(current->flags & PF_KTHREAD))
1519		return;
1520	kthread = to_kthread(current);
1521	if (!kthread)
1522		return;
1523
1524	if (kthread->blkcg_css) {
1525		css_put(kthread->blkcg_css);
1526		kthread->blkcg_css = NULL;
1527	}
1528	if (css) {
1529		css_get(css);
1530		kthread->blkcg_css = css;
1531	}
1532}
1533EXPORT_SYMBOL(kthread_associate_blkcg);
1534
1535/**
1536 * kthread_blkcg - get associated blkcg css of current kthread
1537 *
1538 * Current thread must be a kthread.
1539 */
1540struct cgroup_subsys_state *kthread_blkcg(void)
1541{
1542	struct kthread *kthread;
1543
1544	if (current->flags & PF_KTHREAD) {
1545		kthread = to_kthread(current);
1546		if (kthread)
1547			return kthread->blkcg_css;
1548	}
1549	return NULL;
1550}
1551#endif