Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations for regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  28 * the page is dirty and is used for optimization purposes - dirty pages are
  29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  30 * the budget for this page. The @PG_checked flag is set if full budgeting is
  31 * required for the page e.g., when it corresponds to a file hole or it is
  32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  33 * it is OK to fail in this function, and the budget is released in
  34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  35 * information about how the page was budgeted, to make it possible to release
  36 * the budget properly.
  37 *
  38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  39 * implement. However, this is not true for 'ubifs_writepage()', which may be
  40 * called with @i_mutex unlocked. For example, when flusher thread is doing
  41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  45 *
  46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
  47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
  49 * set as well. However, UBIFS disables readahead.
  50 */
  51
  52#include "ubifs.h"
  53#include <linux/aio.h>
  54#include <linux/mount.h>
  55#include <linux/namei.h>
  56#include <linux/slab.h>
 
  57
  58static int read_block(struct inode *inode, void *addr, unsigned int block,
  59		      struct ubifs_data_node *dn)
  60{
  61	struct ubifs_info *c = inode->i_sb->s_fs_info;
  62	int err, len, out_len;
  63	union ubifs_key key;
  64	unsigned int dlen;
  65
  66	data_key_init(c, &key, inode->i_ino, block);
  67	err = ubifs_tnc_lookup(c, &key, dn);
  68	if (err) {
  69		if (err == -ENOENT)
  70			/* Not found, so it must be a hole */
  71			memset(addr, 0, UBIFS_BLOCK_SIZE);
  72		return err;
  73	}
  74
  75	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  76		     ubifs_inode(inode)->creat_sqnum);
  77	len = le32_to_cpu(dn->size);
  78	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  79		goto dump;
  80
  81	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 
 
 
 
 
 
 
  82	out_len = UBIFS_BLOCK_SIZE;
  83	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
  84			       le16_to_cpu(dn->compr_type));
  85	if (err || len != out_len)
  86		goto dump;
  87
  88	/*
  89	 * Data length can be less than a full block, even for blocks that are
  90	 * not the last in the file (e.g., as a result of making a hole and
  91	 * appending data). Ensure that the remainder is zeroed out.
  92	 */
  93	if (len < UBIFS_BLOCK_SIZE)
  94		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  95
  96	return 0;
  97
  98dump:
  99	ubifs_err("bad data node (block %u, inode %lu)",
 100		  block, inode->i_ino);
 101	ubifs_dump_node(c, dn);
 102	return -EINVAL;
 103}
 104
 105static int do_readpage(struct page *page)
 106{
 107	void *addr;
 108	int err = 0, i;
 109	unsigned int block, beyond;
 110	struct ubifs_data_node *dn;
 111	struct inode *inode = page->mapping->host;
 
 112	loff_t i_size = i_size_read(inode);
 113
 114	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 115		inode->i_ino, page->index, i_size, page->flags);
 116	ubifs_assert(!PageChecked(page));
 117	ubifs_assert(!PagePrivate(page));
 118
 119	addr = kmap(page);
 120
 121	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 122	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 123	if (block >= beyond) {
 124		/* Reading beyond inode */
 125		SetPageChecked(page);
 126		memset(addr, 0, PAGE_CACHE_SIZE);
 127		goto out;
 128	}
 129
 130	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 131	if (!dn) {
 132		err = -ENOMEM;
 133		goto error;
 134	}
 135
 136	i = 0;
 137	while (1) {
 138		int ret;
 139
 140		if (block >= beyond) {
 141			/* Reading beyond inode */
 142			err = -ENOENT;
 143			memset(addr, 0, UBIFS_BLOCK_SIZE);
 144		} else {
 145			ret = read_block(inode, addr, block, dn);
 146			if (ret) {
 147				err = ret;
 148				if (err != -ENOENT)
 149					break;
 150			} else if (block + 1 == beyond) {
 151				int dlen = le32_to_cpu(dn->size);
 152				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 153
 154				if (ilen && ilen < dlen)
 155					memset(addr + ilen, 0, dlen - ilen);
 156			}
 157		}
 158		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 159			break;
 160		block += 1;
 161		addr += UBIFS_BLOCK_SIZE;
 
 
 
 
 162	}
 
 163	if (err) {
 
 164		if (err == -ENOENT) {
 165			/* Not found, so it must be a hole */
 166			SetPageChecked(page);
 167			dbg_gen("hole");
 168			goto out_free;
 
 
 
 169		}
 170		ubifs_err("cannot read page %lu of inode %lu, error %d",
 171			  page->index, inode->i_ino, err);
 172		goto error;
 173	}
 174
 175out_free:
 176	kfree(dn);
 177out:
 178	SetPageUptodate(page);
 179	ClearPageError(page);
 180	flush_dcache_page(page);
 181	kunmap(page);
 182	return 0;
 183
 184error:
 185	kfree(dn);
 186	ClearPageUptodate(page);
 187	SetPageError(page);
 188	flush_dcache_page(page);
 189	kunmap(page);
 190	return err;
 191}
 192
 193/**
 194 * release_new_page_budget - release budget of a new page.
 195 * @c: UBIFS file-system description object
 196 *
 197 * This is a helper function which releases budget corresponding to the budget
 198 * of one new page of data.
 199 */
 200static void release_new_page_budget(struct ubifs_info *c)
 201{
 202	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 203
 204	ubifs_release_budget(c, &req);
 205}
 206
 207/**
 208 * release_existing_page_budget - release budget of an existing page.
 209 * @c: UBIFS file-system description object
 210 *
 211 * This is a helper function which releases budget corresponding to the budget
 212 * of changing one one page of data which already exists on the flash media.
 213 */
 214static void release_existing_page_budget(struct ubifs_info *c)
 215{
 216	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 217
 218	ubifs_release_budget(c, &req);
 219}
 220
 221static int write_begin_slow(struct address_space *mapping,
 222			    loff_t pos, unsigned len, struct page **pagep,
 223			    unsigned flags)
 224{
 225	struct inode *inode = mapping->host;
 226	struct ubifs_info *c = inode->i_sb->s_fs_info;
 227	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 228	struct ubifs_budget_req req = { .new_page = 1 };
 229	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 230	struct page *page;
 231
 232	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 233		inode->i_ino, pos, len, inode->i_size);
 234
 235	/*
 236	 * At the slow path we have to budget before locking the page, because
 237	 * budgeting may force write-back, which would wait on locked pages and
 238	 * deadlock if we had the page locked. At this point we do not know
 239	 * anything about the page, so assume that this is a new page which is
 240	 * written to a hole. This corresponds to largest budget. Later the
 241	 * budget will be amended if this is not true.
 242	 */
 243	if (appending)
 244		/* We are appending data, budget for inode change */
 245		req.dirtied_ino = 1;
 246
 247	err = ubifs_budget_space(c, &req);
 248	if (unlikely(err))
 249		return err;
 250
 251	page = grab_cache_page_write_begin(mapping, index, flags);
 252	if (unlikely(!page)) {
 
 253		ubifs_release_budget(c, &req);
 254		return -ENOMEM;
 255	}
 256
 257	if (!PageUptodate(page)) {
 258		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
 259			SetPageChecked(page);
 260		else {
 261			err = do_readpage(page);
 262			if (err) {
 263				unlock_page(page);
 264				page_cache_release(page);
 
 265				return err;
 266			}
 267		}
 268
 269		SetPageUptodate(page);
 270		ClearPageError(page);
 271	}
 272
 273	if (PagePrivate(page))
 274		/*
 275		 * The page is dirty, which means it was budgeted twice:
 276		 *   o first time the budget was allocated by the task which
 277		 *     made the page dirty and set the PG_private flag;
 278		 *   o and then we budgeted for it for the second time at the
 279		 *     very beginning of this function.
 280		 *
 281		 * So what we have to do is to release the page budget we
 282		 * allocated.
 283		 */
 284		release_new_page_budget(c);
 285	else if (!PageChecked(page))
 286		/*
 287		 * We are changing a page which already exists on the media.
 288		 * This means that changing the page does not make the amount
 289		 * of indexing information larger, and this part of the budget
 290		 * which we have already acquired may be released.
 291		 */
 292		ubifs_convert_page_budget(c);
 293
 294	if (appending) {
 295		struct ubifs_inode *ui = ubifs_inode(inode);
 296
 297		/*
 298		 * 'ubifs_write_end()' is optimized from the fast-path part of
 299		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 300		 * if data is appended.
 301		 */
 302		mutex_lock(&ui->ui_mutex);
 303		if (ui->dirty)
 304			/*
 305			 * The inode is dirty already, so we may free the
 306			 * budget we allocated.
 307			 */
 308			ubifs_release_dirty_inode_budget(c, ui);
 309	}
 310
 311	*pagep = page;
 312	return 0;
 313}
 314
 315/**
 316 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 317 * @c: UBIFS file-system description object
 318 * @page: page to allocate budget for
 319 * @ui: UBIFS inode object the page belongs to
 320 * @appending: non-zero if the page is appended
 321 *
 322 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 323 * for the operation. The budget is allocated differently depending on whether
 324 * this is appending, whether the page is dirty or not, and so on. This
 325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 326 * in case of success and %-ENOSPC in case of failure.
 
 327 */
 328static int allocate_budget(struct ubifs_info *c, struct page *page,
 329			   struct ubifs_inode *ui, int appending)
 330{
 331	struct ubifs_budget_req req = { .fast = 1 };
 332
 333	if (PagePrivate(page)) {
 334		if (!appending)
 335			/*
 336			 * The page is dirty and we are not appending, which
 337			 * means no budget is needed at all.
 338			 */
 339			return 0;
 340
 341		mutex_lock(&ui->ui_mutex);
 342		if (ui->dirty)
 343			/*
 344			 * The page is dirty and we are appending, so the inode
 345			 * has to be marked as dirty. However, it is already
 346			 * dirty, so we do not need any budget. We may return,
 347			 * but @ui->ui_mutex hast to be left locked because we
 348			 * should prevent write-back from flushing the inode
 349			 * and freeing the budget. The lock will be released in
 350			 * 'ubifs_write_end()'.
 351			 */
 352			return 0;
 353
 354		/*
 355		 * The page is dirty, we are appending, the inode is clean, so
 356		 * we need to budget the inode change.
 357		 */
 358		req.dirtied_ino = 1;
 359	} else {
 360		if (PageChecked(page))
 361			/*
 362			 * The page corresponds to a hole and does not
 363			 * exist on the media. So changing it makes
 364			 * make the amount of indexing information
 365			 * larger, and we have to budget for a new
 366			 * page.
 367			 */
 368			req.new_page = 1;
 369		else
 370			/*
 371			 * Not a hole, the change will not add any new
 372			 * indexing information, budget for page
 373			 * change.
 374			 */
 375			req.dirtied_page = 1;
 376
 377		if (appending) {
 378			mutex_lock(&ui->ui_mutex);
 379			if (!ui->dirty)
 380				/*
 381				 * The inode is clean but we will have to mark
 382				 * it as dirty because we are appending. This
 383				 * needs a budget.
 384				 */
 385				req.dirtied_ino = 1;
 386		}
 387	}
 388
 389	return ubifs_budget_space(c, &req);
 390}
 391
 392/*
 393 * This function is called when a page of data is going to be written. Since
 394 * the page of data will not necessarily go to the flash straight away, UBIFS
 395 * has to reserve space on the media for it, which is done by means of
 396 * budgeting.
 397 *
 398 * This is the hot-path of the file-system and we are trying to optimize it as
 399 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 400 *
 401 * There many budgeting cases:
 402 *     o a new page is appended - we have to budget for a new page and for
 403 *       changing the inode; however, if the inode is already dirty, there is
 404 *       no need to budget for it;
 405 *     o an existing clean page is changed - we have budget for it; if the page
 406 *       does not exist on the media (a hole), we have to budget for a new
 407 *       page; otherwise, we may budget for changing an existing page; the
 408 *       difference between these cases is that changing an existing page does
 409 *       not introduce anything new to the FS indexing information, so it does
 410 *       not grow, and smaller budget is acquired in this case;
 411 *     o an existing dirty page is changed - no need to budget at all, because
 412 *       the page budget has been acquired by earlier, when the page has been
 413 *       marked dirty.
 414 *
 415 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 416 * space to reserve. This imposes some locking restrictions and makes it
 417 * impossible to take into account the above cases, and makes it impossible to
 418 * optimize budgeting.
 419 *
 420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 421 * there is a plenty of flash space and the budget will be acquired quickly,
 422 * without forcing write-back. The slow path does not make this assumption.
 423 */
 424static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 425			     loff_t pos, unsigned len, unsigned flags,
 426			     struct page **pagep, void **fsdata)
 427{
 428	struct inode *inode = mapping->host;
 429	struct ubifs_info *c = inode->i_sb->s_fs_info;
 430	struct ubifs_inode *ui = ubifs_inode(inode);
 431	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 432	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 433	int skipped_read = 0;
 434	struct page *page;
 435
 436	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 437	ubifs_assert(!c->ro_media && !c->ro_mount);
 438
 439	if (unlikely(c->ro_error))
 440		return -EROFS;
 441
 442	/* Try out the fast-path part first */
 443	page = grab_cache_page_write_begin(mapping, index, flags);
 444	if (unlikely(!page))
 445		return -ENOMEM;
 
 446
 447	if (!PageUptodate(page)) {
 448		/* The page is not loaded from the flash */
 449		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
 450			/*
 451			 * We change whole page so no need to load it. But we
 452			 * do not know whether this page exists on the media or
 453			 * not, so we assume the latter because it requires
 454			 * larger budget. The assumption is that it is better
 455			 * to budget a bit more than to read the page from the
 456			 * media. Thus, we are setting the @PG_checked flag
 457			 * here.
 458			 */
 459			SetPageChecked(page);
 460			skipped_read = 1;
 461		} else {
 462			err = do_readpage(page);
 463			if (err) {
 464				unlock_page(page);
 465				page_cache_release(page);
 466				return err;
 467			}
 468		}
 469
 470		SetPageUptodate(page);
 471		ClearPageError(page);
 472	}
 473
 474	err = allocate_budget(c, page, ui, appending);
 475	if (unlikely(err)) {
 476		ubifs_assert(err == -ENOSPC);
 477		/*
 478		 * If we skipped reading the page because we were going to
 479		 * write all of it, then it is not up to date.
 480		 */
 481		if (skipped_read) {
 482			ClearPageChecked(page);
 483			ClearPageUptodate(page);
 484		}
 485		/*
 486		 * Budgeting failed which means it would have to force
 487		 * write-back but didn't, because we set the @fast flag in the
 488		 * request. Write-back cannot be done now, while we have the
 489		 * page locked, because it would deadlock. Unlock and free
 490		 * everything and fall-back to slow-path.
 491		 */
 492		if (appending) {
 493			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 494			mutex_unlock(&ui->ui_mutex);
 495		}
 496		unlock_page(page);
 497		page_cache_release(page);
 498
 499		return write_begin_slow(mapping, pos, len, pagep, flags);
 500	}
 501
 502	/*
 503	 * Whee, we acquired budgeting quickly - without involving
 504	 * garbage-collection, committing or forcing write-back. We return
 505	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
 506	 * otherwise. This is an optimization (slightly hacky though).
 507	 */
 508	*pagep = page;
 509	return 0;
 510
 511}
 512
 513/**
 514 * cancel_budget - cancel budget.
 515 * @c: UBIFS file-system description object
 516 * @page: page to cancel budget for
 517 * @ui: UBIFS inode object the page belongs to
 518 * @appending: non-zero if the page is appended
 519 *
 520 * This is a helper function for a page write operation. It unlocks the
 521 * @ui->ui_mutex in case of appending.
 522 */
 523static void cancel_budget(struct ubifs_info *c, struct page *page,
 524			  struct ubifs_inode *ui, int appending)
 525{
 526	if (appending) {
 527		if (!ui->dirty)
 528			ubifs_release_dirty_inode_budget(c, ui);
 529		mutex_unlock(&ui->ui_mutex);
 530	}
 531	if (!PagePrivate(page)) {
 532		if (PageChecked(page))
 533			release_new_page_budget(c);
 534		else
 535			release_existing_page_budget(c);
 536	}
 537}
 538
 539static int ubifs_write_end(struct file *file, struct address_space *mapping,
 540			   loff_t pos, unsigned len, unsigned copied,
 541			   struct page *page, void *fsdata)
 542{
 
 543	struct inode *inode = mapping->host;
 544	struct ubifs_inode *ui = ubifs_inode(inode);
 545	struct ubifs_info *c = inode->i_sb->s_fs_info;
 546	loff_t end_pos = pos + len;
 547	int appending = !!(end_pos > inode->i_size);
 548
 549	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 550		inode->i_ino, pos, page->index, len, copied, inode->i_size);
 551
 552	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
 553		/*
 554		 * VFS copied less data to the page that it intended and
 555		 * declared in its '->write_begin()' call via the @len
 556		 * argument. If the page was not up-to-date, and @len was
 557		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
 558		 * not load it from the media (for optimization reasons). This
 559		 * means that part of the page contains garbage. So read the
 560		 * page now.
 561		 */
 562		dbg_gen("copied %d instead of %d, read page and repeat",
 563			copied, len);
 564		cancel_budget(c, page, ui, appending);
 565		ClearPageChecked(page);
 566
 567		/*
 568		 * Return 0 to force VFS to repeat the whole operation, or the
 569		 * error code if 'do_readpage()' fails.
 570		 */
 571		copied = do_readpage(page);
 572		goto out;
 573	}
 574
 575	if (!PagePrivate(page)) {
 576		SetPagePrivate(page);
 
 
 
 577		atomic_long_inc(&c->dirty_pg_cnt);
 578		__set_page_dirty_nobuffers(page);
 579	}
 580
 581	if (appending) {
 582		i_size_write(inode, end_pos);
 583		ui->ui_size = end_pos;
 584		/*
 585		 * Note, we do not set @I_DIRTY_PAGES (which means that the
 586		 * inode has dirty pages), this has been done in
 587		 * '__set_page_dirty_nobuffers()'.
 588		 */
 589		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 590		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 591		mutex_unlock(&ui->ui_mutex);
 592	}
 593
 594out:
 595	unlock_page(page);
 596	page_cache_release(page);
 597	return copied;
 598}
 599
 600/**
 601 * populate_page - copy data nodes into a page for bulk-read.
 602 * @c: UBIFS file-system description object
 603 * @page: page
 604 * @bu: bulk-read information
 605 * @n: next zbranch slot
 606 *
 607 * This function returns %0 on success and a negative error code on failure.
 608 */
 609static int populate_page(struct ubifs_info *c, struct page *page,
 610			 struct bu_info *bu, int *n)
 611{
 612	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 613	struct inode *inode = page->mapping->host;
 614	loff_t i_size = i_size_read(inode);
 615	unsigned int page_block;
 616	void *addr, *zaddr;
 617	pgoff_t end_index;
 618
 619	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 620		inode->i_ino, page->index, i_size, page->flags);
 621
 622	addr = zaddr = kmap(page);
 623
 624	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
 625	if (!i_size || page->index > end_index) {
 626		hole = 1;
 627		memset(addr, 0, PAGE_CACHE_SIZE);
 628		goto out_hole;
 629	}
 630
 631	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 632	while (1) {
 633		int err, len, out_len, dlen;
 634
 635		if (nn >= bu->cnt) {
 636			hole = 1;
 637			memset(addr, 0, UBIFS_BLOCK_SIZE);
 638		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 639			struct ubifs_data_node *dn;
 640
 641			dn = bu->buf + (bu->zbranch[nn].offs - offs);
 642
 643			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 644				     ubifs_inode(inode)->creat_sqnum);
 645
 646			len = le32_to_cpu(dn->size);
 647			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 648				goto out_err;
 649
 650			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 651			out_len = UBIFS_BLOCK_SIZE;
 652			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
 
 
 
 
 
 
 
 653					       le16_to_cpu(dn->compr_type));
 654			if (err || len != out_len)
 655				goto out_err;
 656
 657			if (len < UBIFS_BLOCK_SIZE)
 658				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 659
 660			nn += 1;
 661			read = (i << UBIFS_BLOCK_SHIFT) + len;
 662		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 663			nn += 1;
 664			continue;
 665		} else {
 666			hole = 1;
 667			memset(addr, 0, UBIFS_BLOCK_SIZE);
 668		}
 669		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 670			break;
 671		addr += UBIFS_BLOCK_SIZE;
 672		page_block += 1;
 
 
 
 
 673	}
 674
 675	if (end_index == page->index) {
 676		int len = i_size & (PAGE_CACHE_SIZE - 1);
 677
 678		if (len && len < read)
 679			memset(zaddr + len, 0, read - len);
 680	}
 681
 682out_hole:
 683	if (hole) {
 684		SetPageChecked(page);
 685		dbg_gen("hole");
 686	}
 687
 688	SetPageUptodate(page);
 689	ClearPageError(page);
 690	flush_dcache_page(page);
 691	kunmap(page);
 692	*n = nn;
 693	return 0;
 694
 695out_err:
 696	ClearPageUptodate(page);
 697	SetPageError(page);
 698	flush_dcache_page(page);
 699	kunmap(page);
 700	ubifs_err("bad data node (block %u, inode %lu)",
 701		  page_block, inode->i_ino);
 702	return -EINVAL;
 703}
 704
 705/**
 706 * ubifs_do_bulk_read - do bulk-read.
 707 * @c: UBIFS file-system description object
 708 * @bu: bulk-read information
 709 * @page1: first page to read
 710 *
 711 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 712 */
 713static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 714			      struct page *page1)
 715{
 716	pgoff_t offset = page1->index, end_index;
 717	struct address_space *mapping = page1->mapping;
 718	struct inode *inode = mapping->host;
 719	struct ubifs_inode *ui = ubifs_inode(inode);
 720	int err, page_idx, page_cnt, ret = 0, n = 0;
 721	int allocate = bu->buf ? 0 : 1;
 722	loff_t isize;
 
 723
 724	err = ubifs_tnc_get_bu_keys(c, bu);
 725	if (err)
 726		goto out_warn;
 727
 728	if (bu->eof) {
 729		/* Turn off bulk-read at the end of the file */
 730		ui->read_in_a_row = 1;
 731		ui->bulk_read = 0;
 732	}
 733
 734	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 735	if (!page_cnt) {
 736		/*
 737		 * This happens when there are multiple blocks per page and the
 738		 * blocks for the first page we are looking for, are not
 739		 * together. If all the pages were like this, bulk-read would
 740		 * reduce performance, so we turn it off for a while.
 741		 */
 742		goto out_bu_off;
 743	}
 744
 745	if (bu->cnt) {
 746		if (allocate) {
 747			/*
 748			 * Allocate bulk-read buffer depending on how many data
 749			 * nodes we are going to read.
 750			 */
 751			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 752				      bu->zbranch[bu->cnt - 1].len -
 753				      bu->zbranch[0].offs;
 754			ubifs_assert(bu->buf_len > 0);
 755			ubifs_assert(bu->buf_len <= c->leb_size);
 756			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 757			if (!bu->buf)
 758				goto out_bu_off;
 759		}
 760
 761		err = ubifs_tnc_bulk_read(c, bu);
 762		if (err)
 763			goto out_warn;
 764	}
 765
 766	err = populate_page(c, page1, bu, &n);
 767	if (err)
 768		goto out_warn;
 769
 770	unlock_page(page1);
 771	ret = 1;
 772
 773	isize = i_size_read(inode);
 774	if (isize == 0)
 775		goto out_free;
 776	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
 777
 778	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 779		pgoff_t page_offset = offset + page_idx;
 780		struct page *page;
 781
 782		if (page_offset > end_index)
 783			break;
 784		page = find_or_create_page(mapping, page_offset,
 785					   GFP_NOFS | __GFP_COLD);
 786		if (!page)
 
 787			break;
 788		if (!PageUptodate(page))
 789			err = populate_page(c, page, bu, &n);
 790		unlock_page(page);
 791		page_cache_release(page);
 792		if (err)
 793			break;
 794	}
 795
 796	ui->last_page_read = offset + page_idx - 1;
 797
 798out_free:
 799	if (allocate)
 800		kfree(bu->buf);
 801	return ret;
 802
 803out_warn:
 804	ubifs_warn("ignoring error %d and skipping bulk-read", err);
 805	goto out_free;
 806
 807out_bu_off:
 808	ui->read_in_a_row = ui->bulk_read = 0;
 809	goto out_free;
 810}
 811
 812/**
 813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 814 * @page: page from which to start bulk-read.
 815 *
 816 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 817 * bulk-read facility is designed to take advantage of that, by reading in one
 818 * go consecutive data nodes that are also located consecutively in the same
 819 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 
 
 820 */
 821static int ubifs_bulk_read(struct page *page)
 822{
 823	struct inode *inode = page->mapping->host;
 824	struct ubifs_info *c = inode->i_sb->s_fs_info;
 825	struct ubifs_inode *ui = ubifs_inode(inode);
 826	pgoff_t index = page->index, last_page_read = ui->last_page_read;
 827	struct bu_info *bu;
 828	int err = 0, allocated = 0;
 829
 830	ui->last_page_read = index;
 831	if (!c->bulk_read)
 832		return 0;
 833
 834	/*
 835	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 836	 * so don't bother if we cannot lock the mutex.
 837	 */
 838	if (!mutex_trylock(&ui->ui_mutex))
 839		return 0;
 840
 841	if (index != last_page_read + 1) {
 842		/* Turn off bulk-read if we stop reading sequentially */
 843		ui->read_in_a_row = 1;
 844		if (ui->bulk_read)
 845			ui->bulk_read = 0;
 846		goto out_unlock;
 847	}
 848
 849	if (!ui->bulk_read) {
 850		ui->read_in_a_row += 1;
 851		if (ui->read_in_a_row < 3)
 852			goto out_unlock;
 853		/* Three reads in a row, so switch on bulk-read */
 854		ui->bulk_read = 1;
 855	}
 856
 857	/*
 858	 * If possible, try to use pre-allocated bulk-read information, which
 859	 * is protected by @c->bu_mutex.
 860	 */
 861	if (mutex_trylock(&c->bu_mutex))
 862		bu = &c->bu;
 863	else {
 864		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 865		if (!bu)
 866			goto out_unlock;
 867
 868		bu->buf = NULL;
 869		allocated = 1;
 870	}
 871
 872	bu->buf_len = c->max_bu_buf_len;
 873	data_key_init(c, &bu->key, inode->i_ino,
 874		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 875	err = ubifs_do_bulk_read(c, bu, page);
 876
 877	if (!allocated)
 878		mutex_unlock(&c->bu_mutex);
 879	else
 880		kfree(bu);
 881
 882out_unlock:
 883	mutex_unlock(&ui->ui_mutex);
 884	return err;
 885}
 886
 887static int ubifs_readpage(struct file *file, struct page *page)
 888{
 889	if (ubifs_bulk_read(page))
 890		return 0;
 891	do_readpage(page);
 892	unlock_page(page);
 893	return 0;
 894}
 895
 896static int do_writepage(struct page *page, int len)
 897{
 898	int err = 0, i, blen;
 899	unsigned int block;
 900	void *addr;
 
 901	union ubifs_key key;
 902	struct inode *inode = page->mapping->host;
 903	struct ubifs_info *c = inode->i_sb->s_fs_info;
 904
 905#ifdef UBIFS_DEBUG
 
 906	spin_lock(&ui->ui_lock);
 907	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
 908	spin_unlock(&ui->ui_lock);
 909#endif
 910
 911	/* Update radix tree tags */
 912	set_page_writeback(page);
 913
 914	addr = kmap(page);
 915	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 916	i = 0;
 917	while (len) {
 918		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 919		data_key_init(c, &key, inode->i_ino, block);
 920		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 921		if (err)
 922			break;
 923		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 
 924			break;
 925		block += 1;
 926		addr += blen;
 927		len -= blen;
 
 
 
 
 928	}
 
 929	if (err) {
 930		SetPageError(page);
 931		ubifs_err("cannot write page %lu of inode %lu, error %d",
 932			  page->index, inode->i_ino, err);
 933		ubifs_ro_mode(c, err);
 934	}
 935
 936	ubifs_assert(PagePrivate(page));
 937	if (PageChecked(page))
 938		release_new_page_budget(c);
 939	else
 940		release_existing_page_budget(c);
 941
 942	atomic_long_dec(&c->dirty_pg_cnt);
 943	ClearPagePrivate(page);
 944	ClearPageChecked(page);
 945
 946	kunmap(page);
 947	unlock_page(page);
 948	end_page_writeback(page);
 949	return err;
 950}
 951
 952/*
 953 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 954 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 955 * situation when a we have an inode with size 0, then a megabyte of data is
 956 * appended to the inode, then write-back starts and flushes some amount of the
 957 * dirty pages, the journal becomes full, commit happens and finishes, and then
 958 * an unclean reboot happens. When the file system is mounted next time, the
 959 * inode size would still be 0, but there would be many pages which are beyond
 960 * the inode size, they would be indexed and consume flash space. Because the
 961 * journal has been committed, the replay would not be able to detect this
 962 * situation and correct the inode size. This means UBIFS would have to scan
 963 * whole index and correct all inode sizes, which is long an unacceptable.
 964 *
 965 * To prevent situations like this, UBIFS writes pages back only if they are
 966 * within the last synchronized inode size, i.e. the size which has been
 967 * written to the flash media last time. Otherwise, UBIFS forces inode
 968 * write-back, thus making sure the on-flash inode contains current inode size,
 969 * and then keeps writing pages back.
 970 *
 971 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 972 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 973 * @i_mutex, which means other VFS operations may be run on this inode at the
 974 * same time. And the problematic one is truncation to smaller size, from where
 975 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 976 * then drops the truncated pages. And while dropping the pages, it takes the
 977 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 978 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 979 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 980 *
 981 * XXX(truncate): with the new truncate sequence this is not true anymore,
 982 * and the calls to truncate_setsize can be move around freely.  They should
 983 * be moved to the very end of the truncate sequence.
 984 *
 985 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 986 * inode size. How do we do this if @inode->i_size may became smaller while we
 987 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 988 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 989 * internally and updates it under @ui_mutex.
 990 *
 991 * Q: why we do not worry that if we race with truncation, we may end up with a
 992 * situation when the inode is truncated while we are in the middle of
 993 * 'do_writepage()', so we do write beyond inode size?
 994 * A: If we are in the middle of 'do_writepage()', truncation would be locked
 995 * on the page lock and it would not write the truncated inode node to the
 996 * journal before we have finished.
 997 */
 998static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
 
 999{
1000	struct inode *inode = page->mapping->host;
 
1001	struct ubifs_inode *ui = ubifs_inode(inode);
1002	loff_t i_size =  i_size_read(inode), synced_i_size;
1003	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1004	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1005	void *kaddr;
1006
1007	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1008		inode->i_ino, page->index, page->flags);
1009	ubifs_assert(PagePrivate(page));
1010
1011	/* Is the page fully outside @i_size? (truncate in progress) */
1012	if (page->index > end_index || (page->index == end_index && !len)) {
1013		err = 0;
1014		goto out_unlock;
1015	}
1016
1017	spin_lock(&ui->ui_lock);
1018	synced_i_size = ui->synced_i_size;
1019	spin_unlock(&ui->ui_lock);
1020
1021	/* Is the page fully inside @i_size? */
1022	if (page->index < end_index) {
1023		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1024			err = inode->i_sb->s_op->write_inode(inode, NULL);
1025			if (err)
1026				goto out_unlock;
1027			/*
1028			 * The inode has been written, but the write-buffer has
1029			 * not been synchronized, so in case of an unclean
1030			 * reboot we may end up with some pages beyond inode
1031			 * size, but they would be in the journal (because
1032			 * commit flushes write buffers) and recovery would deal
1033			 * with this.
1034			 */
1035		}
1036		return do_writepage(page, PAGE_CACHE_SIZE);
1037	}
1038
1039	/*
1040	 * The page straddles @i_size. It must be zeroed out on each and every
1041	 * writepage invocation because it may be mmapped. "A file is mapped
1042	 * in multiples of the page size. For a file that is not a multiple of
1043	 * the page size, the remaining memory is zeroed when mapped, and
1044	 * writes to that region are not written out to the file."
1045	 */
1046	kaddr = kmap_atomic(page);
1047	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1048	flush_dcache_page(page);
1049	kunmap_atomic(kaddr);
1050
1051	if (i_size > synced_i_size) {
1052		err = inode->i_sb->s_op->write_inode(inode, NULL);
1053		if (err)
1054			goto out_unlock;
1055	}
1056
1057	return do_writepage(page, len);
1058
 
 
 
 
 
 
1059out_unlock:
1060	unlock_page(page);
1061	return err;
1062}
1063
 
 
 
 
 
 
1064/**
1065 * do_attr_changes - change inode attributes.
1066 * @inode: inode to change attributes for
1067 * @attr: describes attributes to change
1068 */
1069static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1070{
1071	if (attr->ia_valid & ATTR_UID)
1072		inode->i_uid = attr->ia_uid;
1073	if (attr->ia_valid & ATTR_GID)
1074		inode->i_gid = attr->ia_gid;
1075	if (attr->ia_valid & ATTR_ATIME)
1076		inode->i_atime = timespec_trunc(attr->ia_atime,
1077						inode->i_sb->s_time_gran);
1078	if (attr->ia_valid & ATTR_MTIME)
1079		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1080						inode->i_sb->s_time_gran);
1081	if (attr->ia_valid & ATTR_CTIME)
1082		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1083						inode->i_sb->s_time_gran);
1084	if (attr->ia_valid & ATTR_MODE) {
1085		umode_t mode = attr->ia_mode;
1086
1087		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1088			mode &= ~S_ISGID;
1089		inode->i_mode = mode;
1090	}
1091}
1092
1093/**
1094 * do_truncation - truncate an inode.
1095 * @c: UBIFS file-system description object
1096 * @inode: inode to truncate
1097 * @attr: inode attribute changes description
1098 *
1099 * This function implements VFS '->setattr()' call when the inode is truncated
1100 * to a smaller size. Returns zero in case of success and a negative error code
 
 
1101 * in case of failure.
1102 */
1103static int do_truncation(struct ubifs_info *c, struct inode *inode,
1104			 const struct iattr *attr)
1105{
1106	int err;
1107	struct ubifs_budget_req req;
1108	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1109	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1110	struct ubifs_inode *ui = ubifs_inode(inode);
1111
1112	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1113	memset(&req, 0, sizeof(struct ubifs_budget_req));
1114
1115	/*
1116	 * If this is truncation to a smaller size, and we do not truncate on a
1117	 * block boundary, budget for changing one data block, because the last
1118	 * block will be re-written.
1119	 */
1120	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1121		req.dirtied_page = 1;
1122
1123	req.dirtied_ino = 1;
1124	/* A funny way to budget for truncation node */
1125	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1126	err = ubifs_budget_space(c, &req);
1127	if (err) {
1128		/*
1129		 * Treat truncations to zero as deletion and always allow them,
1130		 * just like we do for '->unlink()'.
1131		 */
1132		if (new_size || err != -ENOSPC)
1133			return err;
1134		budgeted = 0;
1135	}
1136
1137	truncate_setsize(inode, new_size);
1138
1139	if (offset) {
1140		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1141		struct page *page;
1142
1143		page = find_lock_page(inode->i_mapping, index);
1144		if (page) {
1145			if (PageDirty(page)) {
1146				/*
1147				 * 'ubifs_jnl_truncate()' will try to truncate
1148				 * the last data node, but it contains
1149				 * out-of-date data because the page is dirty.
1150				 * Write the page now, so that
1151				 * 'ubifs_jnl_truncate()' will see an already
1152				 * truncated (and up to date) data node.
1153				 */
1154				ubifs_assert(PagePrivate(page));
1155
1156				clear_page_dirty_for_io(page);
1157				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1158					offset = new_size &
1159						 (PAGE_CACHE_SIZE - 1);
1160				err = do_writepage(page, offset);
1161				page_cache_release(page);
1162				if (err)
1163					goto out_budg;
1164				/*
1165				 * We could now tell 'ubifs_jnl_truncate()' not
1166				 * to read the last block.
1167				 */
1168			} else {
1169				/*
1170				 * We could 'kmap()' the page and pass the data
1171				 * to 'ubifs_jnl_truncate()' to save it from
1172				 * having to read it.
1173				 */
1174				unlock_page(page);
1175				page_cache_release(page);
1176			}
1177		}
1178	}
1179
1180	mutex_lock(&ui->ui_mutex);
1181	ui->ui_size = inode->i_size;
1182	/* Truncation changes inode [mc]time */
1183	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1184	/* Other attributes may be changed at the same time as well */
1185	do_attr_changes(inode, attr);
1186	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1187	mutex_unlock(&ui->ui_mutex);
1188
1189out_budg:
1190	if (budgeted)
1191		ubifs_release_budget(c, &req);
1192	else {
1193		c->bi.nospace = c->bi.nospace_rp = 0;
1194		smp_wmb();
1195	}
1196	return err;
1197}
1198
1199/**
1200 * do_setattr - change inode attributes.
1201 * @c: UBIFS file-system description object
1202 * @inode: inode to change attributes for
1203 * @attr: inode attribute changes description
1204 *
1205 * This function implements VFS '->setattr()' call for all cases except
1206 * truncations to smaller size. Returns zero in case of success and a negative
 
 
1207 * error code in case of failure.
1208 */
1209static int do_setattr(struct ubifs_info *c, struct inode *inode,
1210		      const struct iattr *attr)
1211{
1212	int err, release;
1213	loff_t new_size = attr->ia_size;
1214	struct ubifs_inode *ui = ubifs_inode(inode);
1215	struct ubifs_budget_req req = { .dirtied_ino = 1,
1216				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1217
1218	err = ubifs_budget_space(c, &req);
1219	if (err)
1220		return err;
1221
1222	if (attr->ia_valid & ATTR_SIZE) {
1223		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1224		truncate_setsize(inode, new_size);
1225	}
1226
1227	mutex_lock(&ui->ui_mutex);
1228	if (attr->ia_valid & ATTR_SIZE) {
1229		/* Truncation changes inode [mc]time */
1230		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1231		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1232		ui->ui_size = inode->i_size;
1233	}
1234
1235	do_attr_changes(inode, attr);
1236
1237	release = ui->dirty;
1238	if (attr->ia_valid & ATTR_SIZE)
1239		/*
1240		 * Inode length changed, so we have to make sure
1241		 * @I_DIRTY_DATASYNC is set.
1242		 */
1243		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1244	else
1245		mark_inode_dirty_sync(inode);
1246	mutex_unlock(&ui->ui_mutex);
1247
1248	if (release)
1249		ubifs_release_budget(c, &req);
1250	if (IS_SYNC(inode))
1251		err = inode->i_sb->s_op->write_inode(inode, NULL);
1252	return err;
1253}
1254
1255int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
 
1256{
1257	int err;
1258	struct inode *inode = dentry->d_inode;
1259	struct ubifs_info *c = inode->i_sb->s_fs_info;
1260
1261	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1262		inode->i_ino, inode->i_mode, attr->ia_valid);
1263	err = inode_change_ok(inode, attr);
1264	if (err)
1265		return err;
1266
1267	err = dbg_check_synced_i_size(c, inode);
1268	if (err)
1269		return err;
1270
 
 
 
 
1271	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1272		/* Truncation to a smaller size */
1273		err = do_truncation(c, inode, attr);
1274	else
1275		err = do_setattr(c, inode, attr);
1276
1277	return err;
1278}
1279
1280static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1281				 unsigned int length)
1282{
1283	struct inode *inode = page->mapping->host;
1284	struct ubifs_info *c = inode->i_sb->s_fs_info;
1285
1286	ubifs_assert(PagePrivate(page));
1287	if (offset || length < PAGE_CACHE_SIZE)
1288		/* Partial page remains dirty */
1289		return;
1290
1291	if (PageChecked(page))
1292		release_new_page_budget(c);
1293	else
1294		release_existing_page_budget(c);
1295
1296	atomic_long_dec(&c->dirty_pg_cnt);
1297	ClearPagePrivate(page);
1298	ClearPageChecked(page);
1299}
1300
1301static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1302{
1303	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1304
1305	nd_set_link(nd, ui->data);
1306	return NULL;
1307}
1308
1309int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1310{
1311	struct inode *inode = file->f_mapping->host;
1312	struct ubifs_info *c = inode->i_sb->s_fs_info;
1313	int err;
1314
1315	dbg_gen("syncing inode %lu", inode->i_ino);
1316
1317	if (c->ro_mount)
1318		/*
1319		 * For some really strange reasons VFS does not filter out
1320		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1321		 */
1322		return 0;
1323
1324	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1325	if (err)
1326		return err;
1327	mutex_lock(&inode->i_mutex);
1328
1329	/* Synchronize the inode unless this is a 'datasync()' call. */
1330	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1331		err = inode->i_sb->s_op->write_inode(inode, NULL);
1332		if (err)
1333			goto out;
1334	}
1335
1336	/*
1337	 * Nodes related to this inode may still sit in a write-buffer. Flush
1338	 * them.
1339	 */
1340	err = ubifs_sync_wbufs_by_inode(c, inode);
1341out:
1342	mutex_unlock(&inode->i_mutex);
1343	return err;
1344}
1345
1346/**
1347 * mctime_update_needed - check if mtime or ctime update is needed.
1348 * @inode: the inode to do the check for
1349 * @now: current time
1350 *
1351 * This helper function checks if the inode mtime/ctime should be updated or
1352 * not. If current values of the time-stamps are within the UBIFS inode time
1353 * granularity, they are not updated. This is an optimization.
 
 
1354 */
1355static inline int mctime_update_needed(const struct inode *inode,
1356				       const struct timespec *now)
1357{
1358	if (!timespec_equal(&inode->i_mtime, now) ||
1359	    !timespec_equal(&inode->i_ctime, now))
 
 
1360		return 1;
1361	return 0;
1362}
1363
1364/**
1365 * update_ctime - update mtime and ctime of an inode.
1366 * @c: UBIFS file-system description object
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367 * @inode: inode to update
1368 *
1369 * This function updates mtime and ctime of the inode if it is not equivalent to
1370 * current time. Returns zero in case of success and a negative error code in
 
 
1371 * case of failure.
1372 */
1373static int update_mctime(struct ubifs_info *c, struct inode *inode)
1374{
1375	struct timespec now = ubifs_current_time(inode);
1376	struct ubifs_inode *ui = ubifs_inode(inode);
 
1377
1378	if (mctime_update_needed(inode, &now)) {
1379		int err, release;
1380		struct ubifs_budget_req req = { .dirtied_ino = 1,
1381				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382
1383		err = ubifs_budget_space(c, &req);
1384		if (err)
1385			return err;
1386
1387		mutex_lock(&ui->ui_mutex);
1388		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1389		release = ui->dirty;
1390		mark_inode_dirty_sync(inode);
1391		mutex_unlock(&ui->ui_mutex);
1392		if (release)
1393			ubifs_release_budget(c, &req);
1394	}
1395
1396	return 0;
1397}
1398
1399static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1400			       unsigned long nr_segs, loff_t pos)
1401{
1402	int err;
1403	struct inode *inode = iocb->ki_filp->f_mapping->host;
1404	struct ubifs_info *c = inode->i_sb->s_fs_info;
1405
1406	err = update_mctime(c, inode);
1407	if (err)
1408		return err;
1409
1410	return generic_file_aio_write(iocb, iov, nr_segs, pos);
1411}
1412
1413static int ubifs_set_page_dirty(struct page *page)
 
1414{
1415	int ret;
 
1416
1417	ret = __set_page_dirty_nobuffers(page);
1418	/*
1419	 * An attempt to dirty a page without budgeting for it - should not
1420	 * happen.
1421	 */
1422	ubifs_assert(ret == 0);
1423	return ret;
1424}
1425
1426static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1427{
 
 
 
 
 
 
1428	/*
1429	 * An attempt to release a dirty page without budgeting for it - should
1430	 * not happen.
 
 
 
1431	 */
1432	if (PageWriteback(page))
1433		return 0;
1434	ubifs_assert(PagePrivate(page));
1435	ubifs_assert(0);
1436	ClearPagePrivate(page);
1437	ClearPageChecked(page);
1438	return 1;
 
 
 
1439}
1440
1441/*
1442 * mmap()d file has taken write protection fault and is being made writable.
1443 * UBIFS must ensure page is budgeted for.
1444 */
1445static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1446				 struct vm_fault *vmf)
1447{
1448	struct page *page = vmf->page;
1449	struct inode *inode = file_inode(vma->vm_file);
1450	struct ubifs_info *c = inode->i_sb->s_fs_info;
1451	struct timespec now = ubifs_current_time(inode);
1452	struct ubifs_budget_req req = { .new_page = 1 };
1453	int err, update_time;
1454
1455	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1456		i_size_read(inode));
1457	ubifs_assert(!c->ro_media && !c->ro_mount);
1458
1459	if (unlikely(c->ro_error))
1460		return VM_FAULT_SIGBUS; /* -EROFS */
1461
1462	/*
1463	 * We have not locked @page so far so we may budget for changing the
1464	 * page. Note, we cannot do this after we locked the page, because
1465	 * budgeting may cause write-back which would cause deadlock.
1466	 *
1467	 * At the moment we do not know whether the page is dirty or not, so we
1468	 * assume that it is not and budget for a new page. We could look at
1469	 * the @PG_private flag and figure this out, but we may race with write
1470	 * back and the page state may change by the time we lock it, so this
1471	 * would need additional care. We do not bother with this at the
1472	 * moment, although it might be good idea to do. Instead, we allocate
1473	 * budget for a new page and amend it later on if the page was in fact
1474	 * dirty.
1475	 *
1476	 * The budgeting-related logic of this function is similar to what we
1477	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1478	 * for more comments.
1479	 */
1480	update_time = mctime_update_needed(inode, &now);
1481	if (update_time)
1482		/*
1483		 * We have to change inode time stamp which requires extra
1484		 * budgeting.
1485		 */
1486		req.dirtied_ino = 1;
1487
1488	err = ubifs_budget_space(c, &req);
1489	if (unlikely(err)) {
1490		if (err == -ENOSPC)
1491			ubifs_warn("out of space for mmapped file (inode number %lu)",
1492				   inode->i_ino);
1493		return VM_FAULT_SIGBUS;
1494	}
1495
1496	lock_page(page);
1497	if (unlikely(page->mapping != inode->i_mapping ||
1498		     page_offset(page) > i_size_read(inode))) {
1499		/* Page got truncated out from underneath us */
1500		err = -EINVAL;
1501		goto out_unlock;
1502	}
1503
1504	if (PagePrivate(page))
1505		release_new_page_budget(c);
1506	else {
1507		if (!PageChecked(page))
1508			ubifs_convert_page_budget(c);
1509		SetPagePrivate(page);
1510		atomic_long_inc(&c->dirty_pg_cnt);
1511		__set_page_dirty_nobuffers(page);
1512	}
1513
1514	if (update_time) {
1515		int release;
1516		struct ubifs_inode *ui = ubifs_inode(inode);
1517
1518		mutex_lock(&ui->ui_mutex);
1519		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1520		release = ui->dirty;
1521		mark_inode_dirty_sync(inode);
1522		mutex_unlock(&ui->ui_mutex);
1523		if (release)
1524			ubifs_release_dirty_inode_budget(c, ui);
1525	}
1526
1527	wait_for_stable_page(page);
1528	unlock_page(page);
1529	return 0;
1530
1531out_unlock:
1532	unlock_page(page);
1533	ubifs_release_budget(c, &req);
1534	if (err)
1535		err = VM_FAULT_SIGBUS;
1536	return err;
1537}
1538
1539static const struct vm_operations_struct ubifs_file_vm_ops = {
1540	.fault        = filemap_fault,
1541	.map_pages = filemap_map_pages,
1542	.page_mkwrite = ubifs_vm_page_mkwrite,
1543	.remap_pages = generic_file_remap_pages,
1544};
1545
1546static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1547{
1548	int err;
1549
1550	err = generic_file_mmap(file, vma);
1551	if (err)
1552		return err;
1553	vma->vm_ops = &ubifs_file_vm_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	return 0;
1555}
1556
1557const struct address_space_operations ubifs_file_address_operations = {
1558	.readpage       = ubifs_readpage,
1559	.writepage      = ubifs_writepage,
1560	.write_begin    = ubifs_write_begin,
1561	.write_end      = ubifs_write_end,
1562	.invalidatepage = ubifs_invalidatepage,
1563	.set_page_dirty = ubifs_set_page_dirty,
1564	.releasepage    = ubifs_releasepage,
 
1565};
1566
1567const struct inode_operations ubifs_file_inode_operations = {
1568	.setattr     = ubifs_setattr,
1569	.getattr     = ubifs_getattr,
1570	.setxattr    = ubifs_setxattr,
1571	.getxattr    = ubifs_getxattr,
1572	.listxattr   = ubifs_listxattr,
1573	.removexattr = ubifs_removexattr,
 
 
1574};
1575
1576const struct inode_operations ubifs_symlink_inode_operations = {
1577	.readlink    = generic_readlink,
1578	.follow_link = ubifs_follow_link,
1579	.setattr     = ubifs_setattr,
1580	.getattr     = ubifs_getattr,
 
 
1581};
1582
1583const struct file_operations ubifs_file_operations = {
1584	.llseek         = generic_file_llseek,
1585	.read           = do_sync_read,
1586	.write          = do_sync_write,
1587	.aio_read       = generic_file_aio_read,
1588	.aio_write      = ubifs_aio_write,
1589	.mmap           = ubifs_file_mmap,
1590	.fsync          = ubifs_fsync,
1591	.unlocked_ioctl = ubifs_ioctl,
1592	.splice_read	= generic_file_splice_read,
1593	.splice_write	= generic_file_splice_write,
 
1594#ifdef CONFIG_COMPAT
1595	.compat_ioctl   = ubifs_compat_ioctl,
1596#endif
1597};
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements VFS file and inode operations for regular files, device
  13 * nodes and symlinks as well as address space operations.
  14 *
  15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
  16 * the page is dirty and is used for optimization purposes - dirty pages are
  17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
  18 * the budget for this page. The @PG_checked flag is set if full budgeting is
  19 * required for the page e.g., when it corresponds to a file hole or it is
  20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
  21 * it is OK to fail in this function, and the budget is released in
  22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
  23 * information about how the page was budgeted, to make it possible to release
  24 * the budget properly.
  25 *
  26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
  27 * implement. However, this is not true for 'ubifs_writepage()', which may be
  28 * called with @i_mutex unlocked. For example, when flusher thread is doing
  29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
  30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
  31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
  32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
  33 *
  34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
  35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
  36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
  37 * set as well. However, UBIFS disables readahead.
  38 */
  39
  40#include "ubifs.h"
 
  41#include <linux/mount.h>
 
  42#include <linux/slab.h>
  43#include <linux/migrate.h>
  44
  45static int read_block(struct inode *inode, void *addr, unsigned int block,
  46		      struct ubifs_data_node *dn)
  47{
  48	struct ubifs_info *c = inode->i_sb->s_fs_info;
  49	int err, len, out_len;
  50	union ubifs_key key;
  51	unsigned int dlen;
  52
  53	data_key_init(c, &key, inode->i_ino, block);
  54	err = ubifs_tnc_lookup(c, &key, dn);
  55	if (err) {
  56		if (err == -ENOENT)
  57			/* Not found, so it must be a hole */
  58			memset(addr, 0, UBIFS_BLOCK_SIZE);
  59		return err;
  60	}
  61
  62	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
  63		     ubifs_inode(inode)->creat_sqnum);
  64	len = le32_to_cpu(dn->size);
  65	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  66		goto dump;
  67
  68	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  69
  70	if (IS_ENCRYPTED(inode)) {
  71		err = ubifs_decrypt(inode, dn, &dlen, block);
  72		if (err)
  73			goto dump;
  74	}
  75
  76	out_len = UBIFS_BLOCK_SIZE;
  77	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
  78			       le16_to_cpu(dn->compr_type));
  79	if (err || len != out_len)
  80		goto dump;
  81
  82	/*
  83	 * Data length can be less than a full block, even for blocks that are
  84	 * not the last in the file (e.g., as a result of making a hole and
  85	 * appending data). Ensure that the remainder is zeroed out.
  86	 */
  87	if (len < UBIFS_BLOCK_SIZE)
  88		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  89
  90	return 0;
  91
  92dump:
  93	ubifs_err(c, "bad data node (block %u, inode %lu)",
  94		  block, inode->i_ino);
  95	ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
  96	return -EINVAL;
  97}
  98
  99static int do_readpage(struct folio *folio)
 100{
 101	void *addr;
 102	int err = 0, i;
 103	unsigned int block, beyond;
 104	struct ubifs_data_node *dn = NULL;
 105	struct inode *inode = folio->mapping->host;
 106	struct ubifs_info *c = inode->i_sb->s_fs_info;
 107	loff_t i_size = i_size_read(inode);
 108
 109	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 110		inode->i_ino, folio->index, i_size, folio->flags);
 111	ubifs_assert(c, !folio_test_checked(folio));
 112	ubifs_assert(c, !folio->private);
 113
 114	addr = kmap_local_folio(folio, 0);
 115
 116	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 117	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 118	if (block >= beyond) {
 119		/* Reading beyond inode */
 120		folio_set_checked(folio);
 121		addr = folio_zero_tail(folio, 0, addr);
 122		goto out;
 123	}
 124
 125	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 126	if (!dn) {
 127		err = -ENOMEM;
 128		goto out;
 129	}
 130
 131	i = 0;
 132	while (1) {
 133		int ret;
 134
 135		if (block >= beyond) {
 136			/* Reading beyond inode */
 137			err = -ENOENT;
 138			memset(addr, 0, UBIFS_BLOCK_SIZE);
 139		} else {
 140			ret = read_block(inode, addr, block, dn);
 141			if (ret) {
 142				err = ret;
 143				if (err != -ENOENT)
 144					break;
 145			} else if (block + 1 == beyond) {
 146				int dlen = le32_to_cpu(dn->size);
 147				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 148
 149				if (ilen && ilen < dlen)
 150					memset(addr + ilen, 0, dlen - ilen);
 151			}
 152		}
 153		if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio)))
 154			break;
 155		block += 1;
 156		addr += UBIFS_BLOCK_SIZE;
 157		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
 158			kunmap_local(addr - UBIFS_BLOCK_SIZE);
 159			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
 160		}
 161	}
 162
 163	if (err) {
 164		struct ubifs_info *c = inode->i_sb->s_fs_info;
 165		if (err == -ENOENT) {
 166			/* Not found, so it must be a hole */
 167			folio_set_checked(folio);
 168			dbg_gen("hole");
 169			err = 0;
 170		} else {
 171			ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
 172				  folio->index, inode->i_ino, err);
 173		}
 
 
 
 174	}
 175
 
 
 176out:
 
 
 
 
 
 
 
 177	kfree(dn);
 178	if (!err)
 179		folio_mark_uptodate(folio);
 180	flush_dcache_folio(folio);
 181	kunmap_local(addr);
 182	return err;
 183}
 184
 185/**
 186 * release_new_page_budget - release budget of a new page.
 187 * @c: UBIFS file-system description object
 188 *
 189 * This is a helper function which releases budget corresponding to the budget
 190 * of one new page of data.
 191 */
 192static void release_new_page_budget(struct ubifs_info *c)
 193{
 194	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 195
 196	ubifs_release_budget(c, &req);
 197}
 198
 199/**
 200 * release_existing_page_budget - release budget of an existing page.
 201 * @c: UBIFS file-system description object
 202 *
 203 * This is a helper function which releases budget corresponding to the budget
 204 * of changing one page of data which already exists on the flash media.
 205 */
 206static void release_existing_page_budget(struct ubifs_info *c)
 207{
 208	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
 209
 210	ubifs_release_budget(c, &req);
 211}
 212
 213static int write_begin_slow(struct address_space *mapping,
 214			    loff_t pos, unsigned len, struct page **pagep)
 
 215{
 216	struct inode *inode = mapping->host;
 217	struct ubifs_info *c = inode->i_sb->s_fs_info;
 218	pgoff_t index = pos >> PAGE_SHIFT;
 219	struct ubifs_budget_req req = { .new_page = 1 };
 220	int err, appending = !!(pos + len > inode->i_size);
 221	struct folio *folio;
 222
 223	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 224		inode->i_ino, pos, len, inode->i_size);
 225
 226	/*
 227	 * At the slow path we have to budget before locking the folio, because
 228	 * budgeting may force write-back, which would wait on locked folios and
 229	 * deadlock if we had the folio locked. At this point we do not know
 230	 * anything about the folio, so assume that this is a new folio which is
 231	 * written to a hole. This corresponds to largest budget. Later the
 232	 * budget will be amended if this is not true.
 233	 */
 234	if (appending)
 235		/* We are appending data, budget for inode change */
 236		req.dirtied_ino = 1;
 237
 238	err = ubifs_budget_space(c, &req);
 239	if (unlikely(err))
 240		return err;
 241
 242	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
 243			mapping_gfp_mask(mapping));
 244	if (IS_ERR(folio)) {
 245		ubifs_release_budget(c, &req);
 246		return PTR_ERR(folio);
 247	}
 248
 249	if (!folio_test_uptodate(folio)) {
 250		if (pos == folio_pos(folio) && len >= folio_size(folio))
 251			folio_set_checked(folio);
 252		else {
 253			err = do_readpage(folio);
 254			if (err) {
 255				folio_unlock(folio);
 256				folio_put(folio);
 257				ubifs_release_budget(c, &req);
 258				return err;
 259			}
 260		}
 
 
 
 261	}
 262
 263	if (folio->private)
 264		/*
 265		 * The folio is dirty, which means it was budgeted twice:
 266		 *   o first time the budget was allocated by the task which
 267		 *     made the folio dirty and set the private field;
 268		 *   o and then we budgeted for it for the second time at the
 269		 *     very beginning of this function.
 270		 *
 271		 * So what we have to do is to release the folio budget we
 272		 * allocated.
 273		 */
 274		release_new_page_budget(c);
 275	else if (!folio_test_checked(folio))
 276		/*
 277		 * We are changing a folio which already exists on the media.
 278		 * This means that changing the folio does not make the amount
 279		 * of indexing information larger, and this part of the budget
 280		 * which we have already acquired may be released.
 281		 */
 282		ubifs_convert_page_budget(c);
 283
 284	if (appending) {
 285		struct ubifs_inode *ui = ubifs_inode(inode);
 286
 287		/*
 288		 * 'ubifs_write_end()' is optimized from the fast-path part of
 289		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 290		 * if data is appended.
 291		 */
 292		mutex_lock(&ui->ui_mutex);
 293		if (ui->dirty)
 294			/*
 295			 * The inode is dirty already, so we may free the
 296			 * budget we allocated.
 297			 */
 298			ubifs_release_dirty_inode_budget(c, ui);
 299	}
 300
 301	*pagep = &folio->page;
 302	return 0;
 303}
 304
 305/**
 306 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 307 * @c: UBIFS file-system description object
 308 * @folio: folio to allocate budget for
 309 * @ui: UBIFS inode object the page belongs to
 310 * @appending: non-zero if the page is appended
 311 *
 312 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 313 * for the operation. The budget is allocated differently depending on whether
 314 * this is appending, whether the page is dirty or not, and so on. This
 315 * function leaves the @ui->ui_mutex locked in case of appending.
 316 *
 317 * Returns: %0 in case of success and %-ENOSPC in case of failure.
 318 */
 319static int allocate_budget(struct ubifs_info *c, struct folio *folio,
 320			   struct ubifs_inode *ui, int appending)
 321{
 322	struct ubifs_budget_req req = { .fast = 1 };
 323
 324	if (folio->private) {
 325		if (!appending)
 326			/*
 327			 * The folio is dirty and we are not appending, which
 328			 * means no budget is needed at all.
 329			 */
 330			return 0;
 331
 332		mutex_lock(&ui->ui_mutex);
 333		if (ui->dirty)
 334			/*
 335			 * The page is dirty and we are appending, so the inode
 336			 * has to be marked as dirty. However, it is already
 337			 * dirty, so we do not need any budget. We may return,
 338			 * but @ui->ui_mutex hast to be left locked because we
 339			 * should prevent write-back from flushing the inode
 340			 * and freeing the budget. The lock will be released in
 341			 * 'ubifs_write_end()'.
 342			 */
 343			return 0;
 344
 345		/*
 346		 * The page is dirty, we are appending, the inode is clean, so
 347		 * we need to budget the inode change.
 348		 */
 349		req.dirtied_ino = 1;
 350	} else {
 351		if (folio_test_checked(folio))
 352			/*
 353			 * The page corresponds to a hole and does not
 354			 * exist on the media. So changing it makes
 355			 * the amount of indexing information
 356			 * larger, and we have to budget for a new
 357			 * page.
 358			 */
 359			req.new_page = 1;
 360		else
 361			/*
 362			 * Not a hole, the change will not add any new
 363			 * indexing information, budget for page
 364			 * change.
 365			 */
 366			req.dirtied_page = 1;
 367
 368		if (appending) {
 369			mutex_lock(&ui->ui_mutex);
 370			if (!ui->dirty)
 371				/*
 372				 * The inode is clean but we will have to mark
 373				 * it as dirty because we are appending. This
 374				 * needs a budget.
 375				 */
 376				req.dirtied_ino = 1;
 377		}
 378	}
 379
 380	return ubifs_budget_space(c, &req);
 381}
 382
 383/*
 384 * This function is called when a page of data is going to be written. Since
 385 * the page of data will not necessarily go to the flash straight away, UBIFS
 386 * has to reserve space on the media for it, which is done by means of
 387 * budgeting.
 388 *
 389 * This is the hot-path of the file-system and we are trying to optimize it as
 390 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 391 *
 392 * There many budgeting cases:
 393 *     o a new page is appended - we have to budget for a new page and for
 394 *       changing the inode; however, if the inode is already dirty, there is
 395 *       no need to budget for it;
 396 *     o an existing clean page is changed - we have budget for it; if the page
 397 *       does not exist on the media (a hole), we have to budget for a new
 398 *       page; otherwise, we may budget for changing an existing page; the
 399 *       difference between these cases is that changing an existing page does
 400 *       not introduce anything new to the FS indexing information, so it does
 401 *       not grow, and smaller budget is acquired in this case;
 402 *     o an existing dirty page is changed - no need to budget at all, because
 403 *       the page budget has been acquired by earlier, when the page has been
 404 *       marked dirty.
 405 *
 406 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 407 * space to reserve. This imposes some locking restrictions and makes it
 408 * impossible to take into account the above cases, and makes it impossible to
 409 * optimize budgeting.
 410 *
 411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 412 * there is a plenty of flash space and the budget will be acquired quickly,
 413 * without forcing write-back. The slow path does not make this assumption.
 414 */
 415static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 416			     loff_t pos, unsigned len,
 417			     struct page **pagep, void **fsdata)
 418{
 419	struct inode *inode = mapping->host;
 420	struct ubifs_info *c = inode->i_sb->s_fs_info;
 421	struct ubifs_inode *ui = ubifs_inode(inode);
 422	pgoff_t index = pos >> PAGE_SHIFT;
 423	int err, appending = !!(pos + len > inode->i_size);
 424	int skipped_read = 0;
 425	struct folio *folio;
 426
 427	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
 428	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 429
 430	if (unlikely(c->ro_error))
 431		return -EROFS;
 432
 433	/* Try out the fast-path part first */
 434	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
 435			mapping_gfp_mask(mapping));
 436	if (IS_ERR(folio))
 437		return PTR_ERR(folio);
 438
 439	if (!folio_test_uptodate(folio)) {
 440		/* The page is not loaded from the flash */
 441		if (pos == folio_pos(folio) && len >= folio_size(folio)) {
 442			/*
 443			 * We change whole page so no need to load it. But we
 444			 * do not know whether this page exists on the media or
 445			 * not, so we assume the latter because it requires
 446			 * larger budget. The assumption is that it is better
 447			 * to budget a bit more than to read the page from the
 448			 * media. Thus, we are setting the @PG_checked flag
 449			 * here.
 450			 */
 451			folio_set_checked(folio);
 452			skipped_read = 1;
 453		} else {
 454			err = do_readpage(folio);
 455			if (err) {
 456				folio_unlock(folio);
 457				folio_put(folio);
 458				return err;
 459			}
 460		}
 
 
 
 461	}
 462
 463	err = allocate_budget(c, folio, ui, appending);
 464	if (unlikely(err)) {
 465		ubifs_assert(c, err == -ENOSPC);
 466		/*
 467		 * If we skipped reading the page because we were going to
 468		 * write all of it, then it is not up to date.
 469		 */
 470		if (skipped_read)
 471			folio_clear_checked(folio);
 
 
 472		/*
 473		 * Budgeting failed which means it would have to force
 474		 * write-back but didn't, because we set the @fast flag in the
 475		 * request. Write-back cannot be done now, while we have the
 476		 * page locked, because it would deadlock. Unlock and free
 477		 * everything and fall-back to slow-path.
 478		 */
 479		if (appending) {
 480			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 481			mutex_unlock(&ui->ui_mutex);
 482		}
 483		folio_unlock(folio);
 484		folio_put(folio);
 485
 486		return write_begin_slow(mapping, pos, len, pagep);
 487	}
 488
 489	/*
 490	 * Whee, we acquired budgeting quickly - without involving
 491	 * garbage-collection, committing or forcing write-back. We return
 492	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
 493	 * otherwise. This is an optimization (slightly hacky though).
 494	 */
 495	*pagep = &folio->page;
 496	return 0;
 
 497}
 498
 499/**
 500 * cancel_budget - cancel budget.
 501 * @c: UBIFS file-system description object
 502 * @folio: folio to cancel budget for
 503 * @ui: UBIFS inode object the page belongs to
 504 * @appending: non-zero if the page is appended
 505 *
 506 * This is a helper function for a page write operation. It unlocks the
 507 * @ui->ui_mutex in case of appending.
 508 */
 509static void cancel_budget(struct ubifs_info *c, struct folio *folio,
 510			  struct ubifs_inode *ui, int appending)
 511{
 512	if (appending) {
 513		if (!ui->dirty)
 514			ubifs_release_dirty_inode_budget(c, ui);
 515		mutex_unlock(&ui->ui_mutex);
 516	}
 517	if (!folio->private) {
 518		if (folio_test_checked(folio))
 519			release_new_page_budget(c);
 520		else
 521			release_existing_page_budget(c);
 522	}
 523}
 524
 525static int ubifs_write_end(struct file *file, struct address_space *mapping,
 526			   loff_t pos, unsigned len, unsigned copied,
 527			   struct page *page, void *fsdata)
 528{
 529	struct folio *folio = page_folio(page);
 530	struct inode *inode = mapping->host;
 531	struct ubifs_inode *ui = ubifs_inode(inode);
 532	struct ubifs_info *c = inode->i_sb->s_fs_info;
 533	loff_t end_pos = pos + len;
 534	int appending = !!(end_pos > inode->i_size);
 535
 536	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 537		inode->i_ino, pos, folio->index, len, copied, inode->i_size);
 538
 539	if (unlikely(copied < len && !folio_test_uptodate(folio))) {
 540		/*
 541		 * VFS copied less data to the folio than it intended and
 542		 * declared in its '->write_begin()' call via the @len
 543		 * argument. If the folio was not up-to-date,
 544		 * the 'ubifs_write_begin()' function did
 545		 * not load it from the media (for optimization reasons). This
 546		 * means that part of the folio contains garbage. So read the
 547		 * folio now.
 548		 */
 549		dbg_gen("copied %d instead of %d, read page and repeat",
 550			copied, len);
 551		cancel_budget(c, folio, ui, appending);
 552		folio_clear_checked(folio);
 553
 554		/*
 555		 * Return 0 to force VFS to repeat the whole operation, or the
 556		 * error code if 'do_readpage()' fails.
 557		 */
 558		copied = do_readpage(folio);
 559		goto out;
 560	}
 561
 562	if (len == folio_size(folio))
 563		folio_mark_uptodate(folio);
 564
 565	if (!folio->private) {
 566		folio_attach_private(folio, (void *)1);
 567		atomic_long_inc(&c->dirty_pg_cnt);
 568		filemap_dirty_folio(mapping, folio);
 569	}
 570
 571	if (appending) {
 572		i_size_write(inode, end_pos);
 573		ui->ui_size = end_pos;
 574		/*
 575		 * We do not set @I_DIRTY_PAGES (which means that
 576		 * the inode has dirty pages), this was done in
 577		 * filemap_dirty_folio().
 578		 */
 579		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 580		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 581		mutex_unlock(&ui->ui_mutex);
 582	}
 583
 584out:
 585	folio_unlock(folio);
 586	folio_put(folio);
 587	return copied;
 588}
 589
 590/**
 591 * populate_page - copy data nodes into a page for bulk-read.
 592 * @c: UBIFS file-system description object
 593 * @folio: folio
 594 * @bu: bulk-read information
 595 * @n: next zbranch slot
 596 *
 597 * Returns: %0 on success and a negative error code on failure.
 598 */
 599static int populate_page(struct ubifs_info *c, struct folio *folio,
 600			 struct bu_info *bu, int *n)
 601{
 602	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 603	struct inode *inode = folio->mapping->host;
 604	loff_t i_size = i_size_read(inode);
 605	unsigned int page_block;
 606	void *addr, *zaddr;
 607	pgoff_t end_index;
 608
 609	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 610		inode->i_ino, folio->index, i_size, folio->flags);
 611
 612	addr = zaddr = kmap_local_folio(folio, 0);
 613
 614	end_index = (i_size - 1) >> PAGE_SHIFT;
 615	if (!i_size || folio->index > end_index) {
 616		hole = 1;
 617		addr = folio_zero_tail(folio, 0, addr);
 618		goto out_hole;
 619	}
 620
 621	page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 622	while (1) {
 623		int err, len, out_len, dlen;
 624
 625		if (nn >= bu->cnt) {
 626			hole = 1;
 627			memset(addr, 0, UBIFS_BLOCK_SIZE);
 628		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 629			struct ubifs_data_node *dn;
 630
 631			dn = bu->buf + (bu->zbranch[nn].offs - offs);
 632
 633			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
 634				     ubifs_inode(inode)->creat_sqnum);
 635
 636			len = le32_to_cpu(dn->size);
 637			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 638				goto out_err;
 639
 640			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 641			out_len = UBIFS_BLOCK_SIZE;
 642
 643			if (IS_ENCRYPTED(inode)) {
 644				err = ubifs_decrypt(inode, dn, &dlen, page_block);
 645				if (err)
 646					goto out_err;
 647			}
 648
 649			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
 650					       le16_to_cpu(dn->compr_type));
 651			if (err || len != out_len)
 652				goto out_err;
 653
 654			if (len < UBIFS_BLOCK_SIZE)
 655				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 656
 657			nn += 1;
 658			read = (i << UBIFS_BLOCK_SHIFT) + len;
 659		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 660			nn += 1;
 661			continue;
 662		} else {
 663			hole = 1;
 664			memset(addr, 0, UBIFS_BLOCK_SIZE);
 665		}
 666		if (++i >= UBIFS_BLOCKS_PER_PAGE)
 667			break;
 668		addr += UBIFS_BLOCK_SIZE;
 669		page_block += 1;
 670		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
 671			kunmap_local(addr - UBIFS_BLOCK_SIZE);
 672			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
 673		}
 674	}
 675
 676	if (end_index == folio->index) {
 677		int len = i_size & (PAGE_SIZE - 1);
 678
 679		if (len && len < read)
 680			memset(zaddr + len, 0, read - len);
 681	}
 682
 683out_hole:
 684	if (hole) {
 685		folio_set_checked(folio);
 686		dbg_gen("hole");
 687	}
 688
 689	folio_mark_uptodate(folio);
 690	flush_dcache_folio(folio);
 691	kunmap_local(addr);
 
 692	*n = nn;
 693	return 0;
 694
 695out_err:
 696	flush_dcache_folio(folio);
 697	kunmap_local(addr);
 698	ubifs_err(c, "bad data node (block %u, inode %lu)",
 
 
 699		  page_block, inode->i_ino);
 700	return -EINVAL;
 701}
 702
 703/**
 704 * ubifs_do_bulk_read - do bulk-read.
 705 * @c: UBIFS file-system description object
 706 * @bu: bulk-read information
 707 * @folio1: first folio to read
 708 *
 709 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
 710 */
 711static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 712			      struct folio *folio1)
 713{
 714	pgoff_t offset = folio1->index, end_index;
 715	struct address_space *mapping = folio1->mapping;
 716	struct inode *inode = mapping->host;
 717	struct ubifs_inode *ui = ubifs_inode(inode);
 718	int err, page_idx, page_cnt, ret = 0, n = 0;
 719	int allocate = bu->buf ? 0 : 1;
 720	loff_t isize;
 721	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
 722
 723	err = ubifs_tnc_get_bu_keys(c, bu);
 724	if (err)
 725		goto out_warn;
 726
 727	if (bu->eof) {
 728		/* Turn off bulk-read at the end of the file */
 729		ui->read_in_a_row = 1;
 730		ui->bulk_read = 0;
 731	}
 732
 733	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 734	if (!page_cnt) {
 735		/*
 736		 * This happens when there are multiple blocks per page and the
 737		 * blocks for the first page we are looking for, are not
 738		 * together. If all the pages were like this, bulk-read would
 739		 * reduce performance, so we turn it off for a while.
 740		 */
 741		goto out_bu_off;
 742	}
 743
 744	if (bu->cnt) {
 745		if (allocate) {
 746			/*
 747			 * Allocate bulk-read buffer depending on how many data
 748			 * nodes we are going to read.
 749			 */
 750			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 751				      bu->zbranch[bu->cnt - 1].len -
 752				      bu->zbranch[0].offs;
 753			ubifs_assert(c, bu->buf_len > 0);
 754			ubifs_assert(c, bu->buf_len <= c->leb_size);
 755			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 756			if (!bu->buf)
 757				goto out_bu_off;
 758		}
 759
 760		err = ubifs_tnc_bulk_read(c, bu);
 761		if (err)
 762			goto out_warn;
 763	}
 764
 765	err = populate_page(c, folio1, bu, &n);
 766	if (err)
 767		goto out_warn;
 768
 769	folio_unlock(folio1);
 770	ret = 1;
 771
 772	isize = i_size_read(inode);
 773	if (isize == 0)
 774		goto out_free;
 775	end_index = ((isize - 1) >> PAGE_SHIFT);
 776
 777	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 778		pgoff_t page_offset = offset + page_idx;
 779		struct folio *folio;
 780
 781		if (page_offset > end_index)
 782			break;
 783		folio = __filemap_get_folio(mapping, page_offset,
 784				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
 785				 ra_gfp_mask);
 786		if (IS_ERR(folio))
 787			break;
 788		if (!folio_test_uptodate(folio))
 789			err = populate_page(c, folio, bu, &n);
 790		folio_unlock(folio);
 791		folio_put(folio);
 792		if (err)
 793			break;
 794	}
 795
 796	ui->last_page_read = offset + page_idx - 1;
 797
 798out_free:
 799	if (allocate)
 800		kfree(bu->buf);
 801	return ret;
 802
 803out_warn:
 804	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
 805	goto out_free;
 806
 807out_bu_off:
 808	ui->read_in_a_row = ui->bulk_read = 0;
 809	goto out_free;
 810}
 811
 812/**
 813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 814 * @folio: folio from which to start bulk-read.
 815 *
 816 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 817 * bulk-read facility is designed to take advantage of that, by reading in one
 818 * go consecutive data nodes that are also located consecutively in the same
 819 * LEB.
 820 *
 821 * Returns: %1 if a bulk-read is done and %0 otherwise.
 822 */
 823static int ubifs_bulk_read(struct folio *folio)
 824{
 825	struct inode *inode = folio->mapping->host;
 826	struct ubifs_info *c = inode->i_sb->s_fs_info;
 827	struct ubifs_inode *ui = ubifs_inode(inode);
 828	pgoff_t index = folio->index, last_page_read = ui->last_page_read;
 829	struct bu_info *bu;
 830	int err = 0, allocated = 0;
 831
 832	ui->last_page_read = index;
 833	if (!c->bulk_read)
 834		return 0;
 835
 836	/*
 837	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 838	 * so don't bother if we cannot lock the mutex.
 839	 */
 840	if (!mutex_trylock(&ui->ui_mutex))
 841		return 0;
 842
 843	if (index != last_page_read + 1) {
 844		/* Turn off bulk-read if we stop reading sequentially */
 845		ui->read_in_a_row = 1;
 846		if (ui->bulk_read)
 847			ui->bulk_read = 0;
 848		goto out_unlock;
 849	}
 850
 851	if (!ui->bulk_read) {
 852		ui->read_in_a_row += 1;
 853		if (ui->read_in_a_row < 3)
 854			goto out_unlock;
 855		/* Three reads in a row, so switch on bulk-read */
 856		ui->bulk_read = 1;
 857	}
 858
 859	/*
 860	 * If possible, try to use pre-allocated bulk-read information, which
 861	 * is protected by @c->bu_mutex.
 862	 */
 863	if (mutex_trylock(&c->bu_mutex))
 864		bu = &c->bu;
 865	else {
 866		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 867		if (!bu)
 868			goto out_unlock;
 869
 870		bu->buf = NULL;
 871		allocated = 1;
 872	}
 873
 874	bu->buf_len = c->max_bu_buf_len;
 875	data_key_init(c, &bu->key, inode->i_ino,
 876		      folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 877	err = ubifs_do_bulk_read(c, bu, folio);
 878
 879	if (!allocated)
 880		mutex_unlock(&c->bu_mutex);
 881	else
 882		kfree(bu);
 883
 884out_unlock:
 885	mutex_unlock(&ui->ui_mutex);
 886	return err;
 887}
 888
 889static int ubifs_read_folio(struct file *file, struct folio *folio)
 890{
 891	if (ubifs_bulk_read(folio))
 892		return 0;
 893	do_readpage(folio);
 894	folio_unlock(folio);
 895	return 0;
 896}
 897
 898static int do_writepage(struct folio *folio, size_t len)
 899{
 900	int err = 0, blen;
 901	unsigned int block;
 902	void *addr;
 903	size_t offset = 0;
 904	union ubifs_key key;
 905	struct inode *inode = folio->mapping->host;
 906	struct ubifs_info *c = inode->i_sb->s_fs_info;
 907
 908#ifdef UBIFS_DEBUG
 909	struct ubifs_inode *ui = ubifs_inode(inode);
 910	spin_lock(&ui->ui_lock);
 911	ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT);
 912	spin_unlock(&ui->ui_lock);
 913#endif
 914
 915	folio_start_writeback(folio);
 
 916
 917	addr = kmap_local_folio(folio, offset);
 918	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 919	for (;;) {
 920		blen = min_t(size_t, len, UBIFS_BLOCK_SIZE);
 
 921		data_key_init(c, &key, inode->i_ino, block);
 922		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 923		if (err)
 924			break;
 925		len -= blen;
 926		if (!len)
 927			break;
 928		block += 1;
 929		addr += blen;
 930		if (folio_test_highmem(folio) && !offset_in_page(addr)) {
 931			kunmap_local(addr - blen);
 932			offset += PAGE_SIZE;
 933			addr = kmap_local_folio(folio, offset);
 934		}
 935	}
 936	kunmap_local(addr);
 937	if (err) {
 938		mapping_set_error(folio->mapping, err);
 939		ubifs_err(c, "cannot write folio %lu of inode %lu, error %d",
 940			  folio->index, inode->i_ino, err);
 941		ubifs_ro_mode(c, err);
 942	}
 943
 944	ubifs_assert(c, folio->private != NULL);
 945	if (folio_test_checked(folio))
 946		release_new_page_budget(c);
 947	else
 948		release_existing_page_budget(c);
 949
 950	atomic_long_dec(&c->dirty_pg_cnt);
 951	folio_detach_private(folio);
 952	folio_clear_checked(folio);
 953
 954	folio_unlock(folio);
 955	folio_end_writeback(folio);
 
 956	return err;
 957}
 958
 959/*
 960 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 961 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 962 * situation when a we have an inode with size 0, then a megabyte of data is
 963 * appended to the inode, then write-back starts and flushes some amount of the
 964 * dirty pages, the journal becomes full, commit happens and finishes, and then
 965 * an unclean reboot happens. When the file system is mounted next time, the
 966 * inode size would still be 0, but there would be many pages which are beyond
 967 * the inode size, they would be indexed and consume flash space. Because the
 968 * journal has been committed, the replay would not be able to detect this
 969 * situation and correct the inode size. This means UBIFS would have to scan
 970 * whole index and correct all inode sizes, which is long an unacceptable.
 971 *
 972 * To prevent situations like this, UBIFS writes pages back only if they are
 973 * within the last synchronized inode size, i.e. the size which has been
 974 * written to the flash media last time. Otherwise, UBIFS forces inode
 975 * write-back, thus making sure the on-flash inode contains current inode size,
 976 * and then keeps writing pages back.
 977 *
 978 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 979 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 980 * @i_mutex, which means other VFS operations may be run on this inode at the
 981 * same time. And the problematic one is truncation to smaller size, from where
 982 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
 983 * then drops the truncated pages. And while dropping the pages, it takes the
 984 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
 985 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
 986 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
 987 *
 988 * XXX(truncate): with the new truncate sequence this is not true anymore,
 989 * and the calls to truncate_setsize can be move around freely.  They should
 990 * be moved to the very end of the truncate sequence.
 991 *
 992 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 993 * inode size. How do we do this if @inode->i_size may became smaller while we
 994 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 995 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 996 * internally and updates it under @ui_mutex.
 997 *
 998 * Q: why we do not worry that if we race with truncation, we may end up with a
 999 * situation when the inode is truncated while we are in the middle of
1000 * 'do_writepage()', so we do write beyond inode size?
1001 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002 * on the page lock and it would not write the truncated inode node to the
1003 * journal before we have finished.
1004 */
1005static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc,
1006		void *data)
1007{
1008	struct inode *inode = folio->mapping->host;
1009	struct ubifs_info *c = inode->i_sb->s_fs_info;
1010	struct ubifs_inode *ui = ubifs_inode(inode);
1011	loff_t i_size =  i_size_read(inode), synced_i_size;
1012	int err, len = folio_size(folio);
 
 
1013
1014	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1015		inode->i_ino, folio->index, folio->flags);
1016	ubifs_assert(c, folio->private != NULL);
1017
1018	/* Is the folio fully outside @i_size? (truncate in progress) */
1019	if (folio_pos(folio) >= i_size) {
1020		err = 0;
1021		goto out_unlock;
1022	}
1023
1024	spin_lock(&ui->ui_lock);
1025	synced_i_size = ui->synced_i_size;
1026	spin_unlock(&ui->ui_lock);
1027
1028	/* Is the folio fully inside i_size? */
1029	if (folio_pos(folio) + len <= i_size) {
1030		if (folio_pos(folio) >= synced_i_size) {
1031			err = inode->i_sb->s_op->write_inode(inode, NULL);
1032			if (err)
1033				goto out_redirty;
1034			/*
1035			 * The inode has been written, but the write-buffer has
1036			 * not been synchronized, so in case of an unclean
1037			 * reboot we may end up with some pages beyond inode
1038			 * size, but they would be in the journal (because
1039			 * commit flushes write buffers) and recovery would deal
1040			 * with this.
1041			 */
1042		}
1043		return do_writepage(folio, len);
1044	}
1045
1046	/*
1047	 * The folio straddles @i_size. It must be zeroed out on each and every
1048	 * writepage invocation because it may be mmapped. "A file is mapped
1049	 * in multiples of the page size. For a file that is not a multiple of
1050	 * the page size, the remaining memory is zeroed when mapped, and
1051	 * writes to that region are not written out to the file."
1052	 */
1053	len = i_size - folio_pos(folio);
1054	folio_zero_segment(folio, len, folio_size(folio));
 
 
1055
1056	if (i_size > synced_i_size) {
1057		err = inode->i_sb->s_op->write_inode(inode, NULL);
1058		if (err)
1059			goto out_redirty;
1060	}
1061
1062	return do_writepage(folio, len);
1063out_redirty:
1064	/*
1065	 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1066	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1067	 * there is no need to do space budget for dirty inode.
1068	 */
1069	folio_redirty_for_writepage(wbc, folio);
1070out_unlock:
1071	folio_unlock(folio);
1072	return err;
1073}
1074
1075static int ubifs_writepages(struct address_space *mapping,
1076		struct writeback_control *wbc)
1077{
1078	return write_cache_pages(mapping, wbc, ubifs_writepage, NULL);
1079}
1080
1081/**
1082 * do_attr_changes - change inode attributes.
1083 * @inode: inode to change attributes for
1084 * @attr: describes attributes to change
1085 */
1086static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1087{
1088	if (attr->ia_valid & ATTR_UID)
1089		inode->i_uid = attr->ia_uid;
1090	if (attr->ia_valid & ATTR_GID)
1091		inode->i_gid = attr->ia_gid;
1092	if (attr->ia_valid & ATTR_ATIME)
1093		inode_set_atime_to_ts(inode, attr->ia_atime);
 
1094	if (attr->ia_valid & ATTR_MTIME)
1095		inode_set_mtime_to_ts(inode, attr->ia_mtime);
 
1096	if (attr->ia_valid & ATTR_CTIME)
1097		inode_set_ctime_to_ts(inode, attr->ia_ctime);
 
1098	if (attr->ia_valid & ATTR_MODE) {
1099		umode_t mode = attr->ia_mode;
1100
1101		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1102			mode &= ~S_ISGID;
1103		inode->i_mode = mode;
1104	}
1105}
1106
1107/**
1108 * do_truncation - truncate an inode.
1109 * @c: UBIFS file-system description object
1110 * @inode: inode to truncate
1111 * @attr: inode attribute changes description
1112 *
1113 * This function implements VFS '->setattr()' call when the inode is truncated
1114 * to a smaller size.
1115 *
1116 * Returns: %0 in case of success and a negative error code
1117 * in case of failure.
1118 */
1119static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120			 const struct iattr *attr)
1121{
1122	int err;
1123	struct ubifs_budget_req req;
1124	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126	struct ubifs_inode *ui = ubifs_inode(inode);
1127
1128	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129	memset(&req, 0, sizeof(struct ubifs_budget_req));
1130
1131	/*
1132	 * If this is truncation to a smaller size, and we do not truncate on a
1133	 * block boundary, budget for changing one data block, because the last
1134	 * block will be re-written.
1135	 */
1136	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137		req.dirtied_page = 1;
1138
1139	req.dirtied_ino = 1;
1140	/* A funny way to budget for truncation node */
1141	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142	err = ubifs_budget_space(c, &req);
1143	if (err) {
1144		/*
1145		 * Treat truncations to zero as deletion and always allow them,
1146		 * just like we do for '->unlink()'.
1147		 */
1148		if (new_size || err != -ENOSPC)
1149			return err;
1150		budgeted = 0;
1151	}
1152
1153	truncate_setsize(inode, new_size);
1154
1155	if (offset) {
1156		pgoff_t index = new_size >> PAGE_SHIFT;
1157		struct folio *folio;
1158
1159		folio = filemap_lock_folio(inode->i_mapping, index);
1160		if (!IS_ERR(folio)) {
1161			if (folio_test_dirty(folio)) {
1162				/*
1163				 * 'ubifs_jnl_truncate()' will try to truncate
1164				 * the last data node, but it contains
1165				 * out-of-date data because the page is dirty.
1166				 * Write the page now, so that
1167				 * 'ubifs_jnl_truncate()' will see an already
1168				 * truncated (and up to date) data node.
1169				 */
1170				ubifs_assert(c, folio->private != NULL);
1171
1172				folio_clear_dirty_for_io(folio);
1173				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174					offset = offset_in_folio(folio,
1175							new_size);
1176				err = do_writepage(folio, offset);
1177				folio_put(folio);
1178				if (err)
1179					goto out_budg;
1180				/*
1181				 * We could now tell 'ubifs_jnl_truncate()' not
1182				 * to read the last block.
1183				 */
1184			} else {
1185				/*
1186				 * We could 'kmap()' the page and pass the data
1187				 * to 'ubifs_jnl_truncate()' to save it from
1188				 * having to read it.
1189				 */
1190				folio_unlock(folio);
1191				folio_put(folio);
1192			}
1193		}
1194	}
1195
1196	mutex_lock(&ui->ui_mutex);
1197	ui->ui_size = inode->i_size;
1198	/* Truncation changes inode [mc]time */
1199	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1200	/* Other attributes may be changed at the same time as well */
1201	do_attr_changes(inode, attr);
1202	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203	mutex_unlock(&ui->ui_mutex);
1204
1205out_budg:
1206	if (budgeted)
1207		ubifs_release_budget(c, &req);
1208	else {
1209		c->bi.nospace = c->bi.nospace_rp = 0;
1210		smp_wmb();
1211	}
1212	return err;
1213}
1214
1215/**
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1220 *
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size.
1223 *
1224 * Returns: %0 in case of success and a negative
1225 * error code in case of failure.
1226 */
1227static int do_setattr(struct ubifs_info *c, struct inode *inode,
1228		      const struct iattr *attr)
1229{
1230	int err, release;
1231	loff_t new_size = attr->ia_size;
1232	struct ubifs_inode *ui = ubifs_inode(inode);
1233	struct ubifs_budget_req req = { .dirtied_ino = 1,
1234				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1235
1236	err = ubifs_budget_space(c, &req);
1237	if (err)
1238		return err;
1239
1240	if (attr->ia_valid & ATTR_SIZE) {
1241		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1242		truncate_setsize(inode, new_size);
1243	}
1244
1245	mutex_lock(&ui->ui_mutex);
1246	if (attr->ia_valid & ATTR_SIZE) {
1247		/* Truncation changes inode [mc]time */
1248		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1249		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1250		ui->ui_size = inode->i_size;
1251	}
1252
1253	do_attr_changes(inode, attr);
1254
1255	release = ui->dirty;
1256	if (attr->ia_valid & ATTR_SIZE)
1257		/*
1258		 * Inode length changed, so we have to make sure
1259		 * @I_DIRTY_DATASYNC is set.
1260		 */
1261		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1262	else
1263		mark_inode_dirty_sync(inode);
1264	mutex_unlock(&ui->ui_mutex);
1265
1266	if (release)
1267		ubifs_release_budget(c, &req);
1268	if (IS_SYNC(inode))
1269		err = inode->i_sb->s_op->write_inode(inode, NULL);
1270	return err;
1271}
1272
1273int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1274		  struct iattr *attr)
1275{
1276	int err;
1277	struct inode *inode = d_inode(dentry);
1278	struct ubifs_info *c = inode->i_sb->s_fs_info;
1279
1280	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1281		inode->i_ino, inode->i_mode, attr->ia_valid);
1282	err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1283	if (err)
1284		return err;
1285
1286	err = dbg_check_synced_i_size(c, inode);
1287	if (err)
1288		return err;
1289
1290	err = fscrypt_prepare_setattr(dentry, attr);
1291	if (err)
1292		return err;
1293
1294	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1295		/* Truncation to a smaller size */
1296		err = do_truncation(c, inode, attr);
1297	else
1298		err = do_setattr(c, inode, attr);
1299
1300	return err;
1301}
1302
1303static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1304				 size_t length)
1305{
1306	struct inode *inode = folio->mapping->host;
1307	struct ubifs_info *c = inode->i_sb->s_fs_info;
1308
1309	ubifs_assert(c, folio_test_private(folio));
1310	if (offset || length < folio_size(folio))
1311		/* Partial folio remains dirty */
1312		return;
1313
1314	if (folio_test_checked(folio))
1315		release_new_page_budget(c);
1316	else
1317		release_existing_page_budget(c);
1318
1319	atomic_long_dec(&c->dirty_pg_cnt);
1320	folio_detach_private(folio);
1321	folio_clear_checked(folio);
 
 
 
 
 
 
 
 
1322}
1323
1324int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1325{
1326	struct inode *inode = file->f_mapping->host;
1327	struct ubifs_info *c = inode->i_sb->s_fs_info;
1328	int err;
1329
1330	dbg_gen("syncing inode %lu", inode->i_ino);
1331
1332	if (c->ro_mount)
1333		/*
1334		 * For some really strange reasons VFS does not filter out
1335		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1336		 */
1337		return 0;
1338
1339	err = file_write_and_wait_range(file, start, end);
1340	if (err)
1341		return err;
1342	inode_lock(inode);
1343
1344	/* Synchronize the inode unless this is a 'datasync()' call. */
1345	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1346		err = inode->i_sb->s_op->write_inode(inode, NULL);
1347		if (err)
1348			goto out;
1349	}
1350
1351	/*
1352	 * Nodes related to this inode may still sit in a write-buffer. Flush
1353	 * them.
1354	 */
1355	err = ubifs_sync_wbufs_by_inode(c, inode);
1356out:
1357	inode_unlock(inode);
1358	return err;
1359}
1360
1361/**
1362 * mctime_update_needed - check if mtime or ctime update is needed.
1363 * @inode: the inode to do the check for
1364 * @now: current time
1365 *
1366 * This helper function checks if the inode mtime/ctime should be updated or
1367 * not. If current values of the time-stamps are within the UBIFS inode time
1368 * granularity, they are not updated. This is an optimization.
1369 *
1370 * Returns: %1 if time update is needed, %0 if not
1371 */
1372static inline int mctime_update_needed(const struct inode *inode,
1373				       const struct timespec64 *now)
1374{
1375	struct timespec64 ctime = inode_get_ctime(inode);
1376	struct timespec64 mtime = inode_get_mtime(inode);
1377
1378	if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1379		return 1;
1380	return 0;
1381}
1382
1383/**
1384 * ubifs_update_time - update time of inode.
1385 * @inode: inode to update
1386 * @flags: time updating control flag determines updating
1387 *	    which time fields of @inode
1388 *
1389 * This function updates time of the inode.
1390 *
1391 * Returns: %0 for success or a negative error code otherwise.
1392 */
1393int ubifs_update_time(struct inode *inode, int flags)
1394{
1395	struct ubifs_inode *ui = ubifs_inode(inode);
1396	struct ubifs_info *c = inode->i_sb->s_fs_info;
1397	struct ubifs_budget_req req = { .dirtied_ino = 1,
1398			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1399	int err, release;
1400
1401	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1402		generic_update_time(inode, flags);
1403		return 0;
1404	}
1405
1406	err = ubifs_budget_space(c, &req);
1407	if (err)
1408		return err;
1409
1410	mutex_lock(&ui->ui_mutex);
1411	inode_update_timestamps(inode, flags);
1412	release = ui->dirty;
1413	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1414	mutex_unlock(&ui->ui_mutex);
1415	if (release)
1416		ubifs_release_budget(c, &req);
1417	return 0;
1418}
1419
1420/**
1421 * update_mctime - update mtime and ctime of an inode.
1422 * @inode: inode to update
1423 *
1424 * This function updates mtime and ctime of the inode if it is not equivalent to
1425 * current time.
1426 *
1427 * Returns: %0 in case of success and a negative error code in
1428 * case of failure.
1429 */
1430static int update_mctime(struct inode *inode)
1431{
1432	struct timespec64 now = current_time(inode);
1433	struct ubifs_inode *ui = ubifs_inode(inode);
1434	struct ubifs_info *c = inode->i_sb->s_fs_info;
1435
1436	if (mctime_update_needed(inode, &now)) {
1437		int err, release;
1438		struct ubifs_budget_req req = { .dirtied_ino = 1,
1439				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1440
1441		err = ubifs_budget_space(c, &req);
1442		if (err)
1443			return err;
1444
1445		mutex_lock(&ui->ui_mutex);
1446		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1447		release = ui->dirty;
1448		mark_inode_dirty_sync(inode);
1449		mutex_unlock(&ui->ui_mutex);
1450		if (release)
1451			ubifs_release_budget(c, &req);
1452	}
1453
1454	return 0;
1455}
1456
1457static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
1458{
1459	int err = update_mctime(file_inode(iocb->ki_filp));
 
 
 
 
1460	if (err)
1461		return err;
1462
1463	return generic_file_write_iter(iocb, from);
1464}
1465
1466static bool ubifs_dirty_folio(struct address_space *mapping,
1467		struct folio *folio)
1468{
1469	bool ret;
1470	struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1471
1472	ret = filemap_dirty_folio(mapping, folio);
1473	/*
1474	 * An attempt to dirty a page without budgeting for it - should not
1475	 * happen.
1476	 */
1477	ubifs_assert(c, ret == false);
1478	return ret;
1479}
1480
1481static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1482{
1483	struct inode *inode = folio->mapping->host;
1484	struct ubifs_info *c = inode->i_sb->s_fs_info;
1485
1486	if (folio_test_writeback(folio))
1487		return false;
1488
1489	/*
1490	 * Page is private but not dirty, weird? There is one condition
1491	 * making it happened. ubifs_writepage skipped the page because
1492	 * page index beyonds isize (for example. truncated by other
1493	 * process named A), then the page is invalidated by fadvise64
1494	 * syscall before being truncated by process A.
1495	 */
1496	ubifs_assert(c, folio_test_private(folio));
1497	if (folio_test_checked(folio))
1498		release_new_page_budget(c);
1499	else
1500		release_existing_page_budget(c);
1501
1502	atomic_long_dec(&c->dirty_pg_cnt);
1503	folio_detach_private(folio);
1504	folio_clear_checked(folio);
1505	return true;
1506}
1507
1508/*
1509 * mmap()d file has taken write protection fault and is being made writable.
1510 * UBIFS must ensure page is budgeted for.
1511 */
1512static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
 
1513{
1514	struct folio *folio = page_folio(vmf->page);
1515	struct inode *inode = file_inode(vmf->vma->vm_file);
1516	struct ubifs_info *c = inode->i_sb->s_fs_info;
1517	struct timespec64 now = current_time(inode);
1518	struct ubifs_budget_req req = { .new_page = 1 };
1519	int err, update_time;
1520
1521	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, folio->index,
1522		i_size_read(inode));
1523	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1524
1525	if (unlikely(c->ro_error))
1526		return VM_FAULT_SIGBUS; /* -EROFS */
1527
1528	/*
1529	 * We have not locked @folio so far so we may budget for changing the
1530	 * folio. Note, we cannot do this after we locked the folio, because
1531	 * budgeting may cause write-back which would cause deadlock.
1532	 *
1533	 * At the moment we do not know whether the folio is dirty or not, so we
1534	 * assume that it is not and budget for a new folio. We could look at
1535	 * the @PG_private flag and figure this out, but we may race with write
1536	 * back and the folio state may change by the time we lock it, so this
1537	 * would need additional care. We do not bother with this at the
1538	 * moment, although it might be good idea to do. Instead, we allocate
1539	 * budget for a new folio and amend it later on if the folio was in fact
1540	 * dirty.
1541	 *
1542	 * The budgeting-related logic of this function is similar to what we
1543	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1544	 * for more comments.
1545	 */
1546	update_time = mctime_update_needed(inode, &now);
1547	if (update_time)
1548		/*
1549		 * We have to change inode time stamp which requires extra
1550		 * budgeting.
1551		 */
1552		req.dirtied_ino = 1;
1553
1554	err = ubifs_budget_space(c, &req);
1555	if (unlikely(err)) {
1556		if (err == -ENOSPC)
1557			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1558				   inode->i_ino);
1559		return VM_FAULT_SIGBUS;
1560	}
1561
1562	folio_lock(folio);
1563	if (unlikely(folio->mapping != inode->i_mapping ||
1564		     folio_pos(folio) >= i_size_read(inode))) {
1565		/* Folio got truncated out from underneath us */
1566		goto sigbus;
 
1567	}
1568
1569	if (folio->private)
1570		release_new_page_budget(c);
1571	else {
1572		if (!folio_test_checked(folio))
1573			ubifs_convert_page_budget(c);
1574		folio_attach_private(folio, (void *)1);
1575		atomic_long_inc(&c->dirty_pg_cnt);
1576		filemap_dirty_folio(folio->mapping, folio);
1577	}
1578
1579	if (update_time) {
1580		int release;
1581		struct ubifs_inode *ui = ubifs_inode(inode);
1582
1583		mutex_lock(&ui->ui_mutex);
1584		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1585		release = ui->dirty;
1586		mark_inode_dirty_sync(inode);
1587		mutex_unlock(&ui->ui_mutex);
1588		if (release)
1589			ubifs_release_dirty_inode_budget(c, ui);
1590	}
1591
1592	folio_wait_stable(folio);
1593	return VM_FAULT_LOCKED;
 
1594
1595sigbus:
1596	folio_unlock(folio);
1597	ubifs_release_budget(c, &req);
1598	return VM_FAULT_SIGBUS;
 
 
1599}
1600
1601static const struct vm_operations_struct ubifs_file_vm_ops = {
1602	.fault        = filemap_fault,
1603	.map_pages = filemap_map_pages,
1604	.page_mkwrite = ubifs_vm_page_mkwrite,
 
1605};
1606
1607static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1608{
1609	int err;
1610
1611	err = generic_file_mmap(file, vma);
1612	if (err)
1613		return err;
1614	vma->vm_ops = &ubifs_file_vm_ops;
1615
1616	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1617		file_accessed(file);
1618
1619	return 0;
1620}
1621
1622static const char *ubifs_get_link(struct dentry *dentry,
1623					    struct inode *inode,
1624					    struct delayed_call *done)
1625{
1626	struct ubifs_inode *ui = ubifs_inode(inode);
1627
1628	if (!IS_ENCRYPTED(inode))
1629		return ui->data;
1630
1631	if (!dentry)
1632		return ERR_PTR(-ECHILD);
1633
1634	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1635}
1636
1637static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1638				 const struct path *path, struct kstat *stat,
1639				 u32 request_mask, unsigned int query_flags)
1640{
1641	ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1642
1643	if (IS_ENCRYPTED(d_inode(path->dentry)))
1644		return fscrypt_symlink_getattr(path, stat);
1645	return 0;
1646}
1647
1648const struct address_space_operations ubifs_file_address_operations = {
1649	.read_folio     = ubifs_read_folio,
1650	.writepages     = ubifs_writepages,
1651	.write_begin    = ubifs_write_begin,
1652	.write_end      = ubifs_write_end,
1653	.invalidate_folio = ubifs_invalidate_folio,
1654	.dirty_folio	= ubifs_dirty_folio,
1655	.migrate_folio	= filemap_migrate_folio,
1656	.release_folio	= ubifs_release_folio,
1657};
1658
1659const struct inode_operations ubifs_file_inode_operations = {
1660	.setattr     = ubifs_setattr,
1661	.getattr     = ubifs_getattr,
 
 
1662	.listxattr   = ubifs_listxattr,
1663	.update_time = ubifs_update_time,
1664	.fileattr_get = ubifs_fileattr_get,
1665	.fileattr_set = ubifs_fileattr_set,
1666};
1667
1668const struct inode_operations ubifs_symlink_inode_operations = {
1669	.get_link    = ubifs_get_link,
 
1670	.setattr     = ubifs_setattr,
1671	.getattr     = ubifs_symlink_getattr,
1672	.listxattr   = ubifs_listxattr,
1673	.update_time = ubifs_update_time,
1674};
1675
1676const struct file_operations ubifs_file_operations = {
1677	.llseek         = generic_file_llseek,
1678	.read_iter      = generic_file_read_iter,
1679	.write_iter     = ubifs_write_iter,
 
 
1680	.mmap           = ubifs_file_mmap,
1681	.fsync          = ubifs_fsync,
1682	.unlocked_ioctl = ubifs_ioctl,
1683	.splice_read	= filemap_splice_read,
1684	.splice_write	= iter_file_splice_write,
1685	.open		= fscrypt_file_open,
1686#ifdef CONFIG_COMPAT
1687	.compat_ioctl   = ubifs_compat_ioctl,
1688#endif
1689};