Loading...
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 err = -ENOMEM;
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
87 }
88
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
96 err = -ENOMEM;
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
99 }
100
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
107 kaddr = kmap_atomic(bh_result->b_page);
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
111 }
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
115 kunmap_atomic(kaddr);
116 set_buffer_uptodate(bh_result);
117 }
118 brelse(buffer_cache_bh);
119 }
120
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124 err = 0;
125
126bail:
127 brelse(bh);
128
129 return err;
130}
131
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
134{
135 int err = 0;
136 unsigned int ext_flags;
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 &ext_flags);
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
160 goto bail;
161 }
162
163 if (max_blocks < count)
164 count = max_blocks;
165
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows __block_write_begin() to zero.
171 *
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
176 */
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
181 }
182
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185 map_bh(bh_result, inode->i_sb, p_blkno);
186
187 bh_result->b_size = count << inode->i_blkbits;
188
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
199 goto bail;
200 }
201 }
202
203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
209
210bail:
211 if (err < 0)
212 err = -EIO;
213
214 return err;
215}
216
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
219{
220 void *kaddr;
221 loff_t size;
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
228 }
229
230 size = i_size_read(inode);
231
232 if (size > PAGE_CACHE_SIZE ||
233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 ocfs2_error(inode->i_sb,
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
238 return -EROFS;
239 }
240
241 kaddr = kmap_atomic(page);
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
247 kunmap_atomic(kaddr);
248
249 SetPageUptodate(page);
250
251 return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256 int ret;
257 struct buffer_head *di_bh = NULL;
258
259 BUG_ON(!PageLocked(page));
260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261
262 ret = ocfs2_read_inode_block(inode, &di_bh);
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270 unlock_page(page);
271
272 brelse(di_bh);
273 return ret;
274}
275
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278 struct inode *inode = page->mapping->host;
279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
282
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
285
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 /*
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
299 ret = AOP_TRUNCATED_PAGE;
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
304 goto out_inode_unlock;
305 }
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the page they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
318 zero_user(page, 0, PAGE_SIZE);
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
322 }
323
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
328 unlock = 0;
329
330out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
332out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
334out:
335 if (unlock)
336 unlock_page(page);
337 return ret;
338}
339
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
412
413 return block_write_full_page(page, ocfs2_get_block, wbc);
414}
415
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
420int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
427{
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
433
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
437 {
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
444 }
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
448 }
449 return ret;
450}
451
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
458
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
461
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
464 */
465 if (!INODE_JOURNAL(inode)) {
466 err = ocfs2_inode_lock(inode, NULL, 0);
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
471 }
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 }
474
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
478
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481 ocfs2_inode_unlock(inode, 0);
482 }
483
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
489 }
490
491bail:
492 status = err ? 0 : p_blkno;
493
494 return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514 struct buffer_head *bh_result, int create)
515{
516 int ret;
517 u64 p_blkno, inode_blocks, contig_blocks;
518 unsigned int ext_flags;
519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
525
526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531 &contig_blocks, &ext_flags);
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
537 }
538
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
542 /*
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
545 *
546 * Consider an unwritten extent as a hole.
547 */
548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549 map_bh(bh_result, inode->i_sb, p_blkno);
550 else
551 clear_buffer_mapped(bh_result);
552
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559 return ret;
560}
561
562/*
563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
570 void *private)
571{
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
574
575 /* this io's submitter should not have unlocked this before we could */
576 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
577
578 if (ocfs2_iocb_is_sem_locked(iocb))
579 ocfs2_iocb_clear_sem_locked(iocb);
580
581 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582 ocfs2_iocb_clear_unaligned_aio(iocb);
583
584 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
585 }
586
587 ocfs2_iocb_clear_rw_locked(iocb);
588
589 level = ocfs2_iocb_rw_locked_level(iocb);
590 ocfs2_rw_unlock(inode, level);
591}
592
593static int ocfs2_releasepage(struct page *page, gfp_t wait)
594{
595 if (!page_has_buffers(page))
596 return 0;
597 return try_to_free_buffers(page);
598}
599
600static ssize_t ocfs2_direct_IO(int rw,
601 struct kiocb *iocb,
602 const struct iovec *iov,
603 loff_t offset,
604 unsigned long nr_segs)
605{
606 struct file *file = iocb->ki_filp;
607 struct inode *inode = file_inode(file)->i_mapping->host;
608
609 /*
610 * Fallback to buffered I/O if we see an inode without
611 * extents.
612 */
613 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
614 return 0;
615
616 /* Fallback to buffered I/O if we are appending. */
617 if (i_size_read(inode) <= offset)
618 return 0;
619
620 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
621 iov, offset, nr_segs,
622 ocfs2_direct_IO_get_blocks,
623 ocfs2_dio_end_io, NULL, 0);
624}
625
626static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
627 u32 cpos,
628 unsigned int *start,
629 unsigned int *end)
630{
631 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
632
633 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
634 unsigned int cpp;
635
636 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
637
638 cluster_start = cpos % cpp;
639 cluster_start = cluster_start << osb->s_clustersize_bits;
640
641 cluster_end = cluster_start + osb->s_clustersize;
642 }
643
644 BUG_ON(cluster_start > PAGE_SIZE);
645 BUG_ON(cluster_end > PAGE_SIZE);
646
647 if (start)
648 *start = cluster_start;
649 if (end)
650 *end = cluster_end;
651}
652
653/*
654 * 'from' and 'to' are the region in the page to avoid zeroing.
655 *
656 * If pagesize > clustersize, this function will avoid zeroing outside
657 * of the cluster boundary.
658 *
659 * from == to == 0 is code for "zero the entire cluster region"
660 */
661static void ocfs2_clear_page_regions(struct page *page,
662 struct ocfs2_super *osb, u32 cpos,
663 unsigned from, unsigned to)
664{
665 void *kaddr;
666 unsigned int cluster_start, cluster_end;
667
668 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
669
670 kaddr = kmap_atomic(page);
671
672 if (from || to) {
673 if (from > cluster_start)
674 memset(kaddr + cluster_start, 0, from - cluster_start);
675 if (to < cluster_end)
676 memset(kaddr + to, 0, cluster_end - to);
677 } else {
678 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
679 }
680
681 kunmap_atomic(kaddr);
682}
683
684/*
685 * Nonsparse file systems fully allocate before we get to the write
686 * code. This prevents ocfs2_write() from tagging the write as an
687 * allocating one, which means ocfs2_map_page_blocks() might try to
688 * read-in the blocks at the tail of our file. Avoid reading them by
689 * testing i_size against each block offset.
690 */
691static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
692 unsigned int block_start)
693{
694 u64 offset = page_offset(page) + block_start;
695
696 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
697 return 1;
698
699 if (i_size_read(inode) > offset)
700 return 1;
701
702 return 0;
703}
704
705/*
706 * Some of this taken from __block_write_begin(). We already have our
707 * mapping by now though, and the entire write will be allocating or
708 * it won't, so not much need to use BH_New.
709 *
710 * This will also skip zeroing, which is handled externally.
711 */
712int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
713 struct inode *inode, unsigned int from,
714 unsigned int to, int new)
715{
716 int ret = 0;
717 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
718 unsigned int block_end, block_start;
719 unsigned int bsize = 1 << inode->i_blkbits;
720
721 if (!page_has_buffers(page))
722 create_empty_buffers(page, bsize, 0);
723
724 head = page_buffers(page);
725 for (bh = head, block_start = 0; bh != head || !block_start;
726 bh = bh->b_this_page, block_start += bsize) {
727 block_end = block_start + bsize;
728
729 clear_buffer_new(bh);
730
731 /*
732 * Ignore blocks outside of our i/o range -
733 * they may belong to unallocated clusters.
734 */
735 if (block_start >= to || block_end <= from) {
736 if (PageUptodate(page))
737 set_buffer_uptodate(bh);
738 continue;
739 }
740
741 /*
742 * For an allocating write with cluster size >= page
743 * size, we always write the entire page.
744 */
745 if (new)
746 set_buffer_new(bh);
747
748 if (!buffer_mapped(bh)) {
749 map_bh(bh, inode->i_sb, *p_blkno);
750 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
751 }
752
753 if (PageUptodate(page)) {
754 if (!buffer_uptodate(bh))
755 set_buffer_uptodate(bh);
756 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
757 !buffer_new(bh) &&
758 ocfs2_should_read_blk(inode, page, block_start) &&
759 (block_start < from || block_end > to)) {
760 ll_rw_block(READ, 1, &bh);
761 *wait_bh++=bh;
762 }
763
764 *p_blkno = *p_blkno + 1;
765 }
766
767 /*
768 * If we issued read requests - let them complete.
769 */
770 while(wait_bh > wait) {
771 wait_on_buffer(*--wait_bh);
772 if (!buffer_uptodate(*wait_bh))
773 ret = -EIO;
774 }
775
776 if (ret == 0 || !new)
777 return ret;
778
779 /*
780 * If we get -EIO above, zero out any newly allocated blocks
781 * to avoid exposing stale data.
782 */
783 bh = head;
784 block_start = 0;
785 do {
786 block_end = block_start + bsize;
787 if (block_end <= from)
788 goto next_bh;
789 if (block_start >= to)
790 break;
791
792 zero_user(page, block_start, bh->b_size);
793 set_buffer_uptodate(bh);
794 mark_buffer_dirty(bh);
795
796next_bh:
797 block_start = block_end;
798 bh = bh->b_this_page;
799 } while (bh != head);
800
801 return ret;
802}
803
804#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
805#define OCFS2_MAX_CTXT_PAGES 1
806#else
807#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
808#endif
809
810#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
811
812/*
813 * Describe the state of a single cluster to be written to.
814 */
815struct ocfs2_write_cluster_desc {
816 u32 c_cpos;
817 u32 c_phys;
818 /*
819 * Give this a unique field because c_phys eventually gets
820 * filled.
821 */
822 unsigned c_new;
823 unsigned c_unwritten;
824 unsigned c_needs_zero;
825};
826
827struct ocfs2_write_ctxt {
828 /* Logical cluster position / len of write */
829 u32 w_cpos;
830 u32 w_clen;
831
832 /* First cluster allocated in a nonsparse extend */
833 u32 w_first_new_cpos;
834
835 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
836
837 /*
838 * This is true if page_size > cluster_size.
839 *
840 * It triggers a set of special cases during write which might
841 * have to deal with allocating writes to partial pages.
842 */
843 unsigned int w_large_pages;
844
845 /*
846 * Pages involved in this write.
847 *
848 * w_target_page is the page being written to by the user.
849 *
850 * w_pages is an array of pages which always contains
851 * w_target_page, and in the case of an allocating write with
852 * page_size < cluster size, it will contain zero'd and mapped
853 * pages adjacent to w_target_page which need to be written
854 * out in so that future reads from that region will get
855 * zero's.
856 */
857 unsigned int w_num_pages;
858 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
859 struct page *w_target_page;
860
861 /*
862 * w_target_locked is used for page_mkwrite path indicating no unlocking
863 * against w_target_page in ocfs2_write_end_nolock.
864 */
865 unsigned int w_target_locked:1;
866
867 /*
868 * ocfs2_write_end() uses this to know what the real range to
869 * write in the target should be.
870 */
871 unsigned int w_target_from;
872 unsigned int w_target_to;
873
874 /*
875 * We could use journal_current_handle() but this is cleaner,
876 * IMHO -Mark
877 */
878 handle_t *w_handle;
879
880 struct buffer_head *w_di_bh;
881
882 struct ocfs2_cached_dealloc_ctxt w_dealloc;
883};
884
885void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
886{
887 int i;
888
889 for(i = 0; i < num_pages; i++) {
890 if (pages[i]) {
891 unlock_page(pages[i]);
892 mark_page_accessed(pages[i]);
893 page_cache_release(pages[i]);
894 }
895 }
896}
897
898static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
899{
900 int i;
901
902 /*
903 * w_target_locked is only set to true in the page_mkwrite() case.
904 * The intent is to allow us to lock the target page from write_begin()
905 * to write_end(). The caller must hold a ref on w_target_page.
906 */
907 if (wc->w_target_locked) {
908 BUG_ON(!wc->w_target_page);
909 for (i = 0; i < wc->w_num_pages; i++) {
910 if (wc->w_target_page == wc->w_pages[i]) {
911 wc->w_pages[i] = NULL;
912 break;
913 }
914 }
915 mark_page_accessed(wc->w_target_page);
916 page_cache_release(wc->w_target_page);
917 }
918 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
919
920 brelse(wc->w_di_bh);
921 kfree(wc);
922}
923
924static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
925 struct ocfs2_super *osb, loff_t pos,
926 unsigned len, struct buffer_head *di_bh)
927{
928 u32 cend;
929 struct ocfs2_write_ctxt *wc;
930
931 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
932 if (!wc)
933 return -ENOMEM;
934
935 wc->w_cpos = pos >> osb->s_clustersize_bits;
936 wc->w_first_new_cpos = UINT_MAX;
937 cend = (pos + len - 1) >> osb->s_clustersize_bits;
938 wc->w_clen = cend - wc->w_cpos + 1;
939 get_bh(di_bh);
940 wc->w_di_bh = di_bh;
941
942 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
943 wc->w_large_pages = 1;
944 else
945 wc->w_large_pages = 0;
946
947 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
948
949 *wcp = wc;
950
951 return 0;
952}
953
954/*
955 * If a page has any new buffers, zero them out here, and mark them uptodate
956 * and dirty so they'll be written out (in order to prevent uninitialised
957 * block data from leaking). And clear the new bit.
958 */
959static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
960{
961 unsigned int block_start, block_end;
962 struct buffer_head *head, *bh;
963
964 BUG_ON(!PageLocked(page));
965 if (!page_has_buffers(page))
966 return;
967
968 bh = head = page_buffers(page);
969 block_start = 0;
970 do {
971 block_end = block_start + bh->b_size;
972
973 if (buffer_new(bh)) {
974 if (block_end > from && block_start < to) {
975 if (!PageUptodate(page)) {
976 unsigned start, end;
977
978 start = max(from, block_start);
979 end = min(to, block_end);
980
981 zero_user_segment(page, start, end);
982 set_buffer_uptodate(bh);
983 }
984
985 clear_buffer_new(bh);
986 mark_buffer_dirty(bh);
987 }
988 }
989
990 block_start = block_end;
991 bh = bh->b_this_page;
992 } while (bh != head);
993}
994
995/*
996 * Only called when we have a failure during allocating write to write
997 * zero's to the newly allocated region.
998 */
999static void ocfs2_write_failure(struct inode *inode,
1000 struct ocfs2_write_ctxt *wc,
1001 loff_t user_pos, unsigned user_len)
1002{
1003 int i;
1004 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1005 to = user_pos + user_len;
1006 struct page *tmppage;
1007
1008 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1009
1010 for(i = 0; i < wc->w_num_pages; i++) {
1011 tmppage = wc->w_pages[i];
1012
1013 if (page_has_buffers(tmppage)) {
1014 if (ocfs2_should_order_data(inode))
1015 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1016
1017 block_commit_write(tmppage, from, to);
1018 }
1019 }
1020}
1021
1022static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1023 struct ocfs2_write_ctxt *wc,
1024 struct page *page, u32 cpos,
1025 loff_t user_pos, unsigned user_len,
1026 int new)
1027{
1028 int ret;
1029 unsigned int map_from = 0, map_to = 0;
1030 unsigned int cluster_start, cluster_end;
1031 unsigned int user_data_from = 0, user_data_to = 0;
1032
1033 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1034 &cluster_start, &cluster_end);
1035
1036 /* treat the write as new if the a hole/lseek spanned across
1037 * the page boundary.
1038 */
1039 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1040 (page_offset(page) <= user_pos));
1041
1042 if (page == wc->w_target_page) {
1043 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1044 map_to = map_from + user_len;
1045
1046 if (new)
1047 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1048 cluster_start, cluster_end,
1049 new);
1050 else
1051 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052 map_from, map_to, new);
1053 if (ret) {
1054 mlog_errno(ret);
1055 goto out;
1056 }
1057
1058 user_data_from = map_from;
1059 user_data_to = map_to;
1060 if (new) {
1061 map_from = cluster_start;
1062 map_to = cluster_end;
1063 }
1064 } else {
1065 /*
1066 * If we haven't allocated the new page yet, we
1067 * shouldn't be writing it out without copying user
1068 * data. This is likely a math error from the caller.
1069 */
1070 BUG_ON(!new);
1071
1072 map_from = cluster_start;
1073 map_to = cluster_end;
1074
1075 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1076 cluster_start, cluster_end, new);
1077 if (ret) {
1078 mlog_errno(ret);
1079 goto out;
1080 }
1081 }
1082
1083 /*
1084 * Parts of newly allocated pages need to be zero'd.
1085 *
1086 * Above, we have also rewritten 'to' and 'from' - as far as
1087 * the rest of the function is concerned, the entire cluster
1088 * range inside of a page needs to be written.
1089 *
1090 * We can skip this if the page is up to date - it's already
1091 * been zero'd from being read in as a hole.
1092 */
1093 if (new && !PageUptodate(page))
1094 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1095 cpos, user_data_from, user_data_to);
1096
1097 flush_dcache_page(page);
1098
1099out:
1100 return ret;
1101}
1102
1103/*
1104 * This function will only grab one clusters worth of pages.
1105 */
1106static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1107 struct ocfs2_write_ctxt *wc,
1108 u32 cpos, loff_t user_pos,
1109 unsigned user_len, int new,
1110 struct page *mmap_page)
1111{
1112 int ret = 0, i;
1113 unsigned long start, target_index, end_index, index;
1114 struct inode *inode = mapping->host;
1115 loff_t last_byte;
1116
1117 target_index = user_pos >> PAGE_CACHE_SHIFT;
1118
1119 /*
1120 * Figure out how many pages we'll be manipulating here. For
1121 * non allocating write, we just change the one
1122 * page. Otherwise, we'll need a whole clusters worth. If we're
1123 * writing past i_size, we only need enough pages to cover the
1124 * last page of the write.
1125 */
1126 if (new) {
1127 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1128 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1129 /*
1130 * We need the index *past* the last page we could possibly
1131 * touch. This is the page past the end of the write or
1132 * i_size, whichever is greater.
1133 */
1134 last_byte = max(user_pos + user_len, i_size_read(inode));
1135 BUG_ON(last_byte < 1);
1136 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1137 if ((start + wc->w_num_pages) > end_index)
1138 wc->w_num_pages = end_index - start;
1139 } else {
1140 wc->w_num_pages = 1;
1141 start = target_index;
1142 }
1143
1144 for(i = 0; i < wc->w_num_pages; i++) {
1145 index = start + i;
1146
1147 if (index == target_index && mmap_page) {
1148 /*
1149 * ocfs2_pagemkwrite() is a little different
1150 * and wants us to directly use the page
1151 * passed in.
1152 */
1153 lock_page(mmap_page);
1154
1155 /* Exit and let the caller retry */
1156 if (mmap_page->mapping != mapping) {
1157 WARN_ON(mmap_page->mapping);
1158 unlock_page(mmap_page);
1159 ret = -EAGAIN;
1160 goto out;
1161 }
1162
1163 page_cache_get(mmap_page);
1164 wc->w_pages[i] = mmap_page;
1165 wc->w_target_locked = true;
1166 } else {
1167 wc->w_pages[i] = find_or_create_page(mapping, index,
1168 GFP_NOFS);
1169 if (!wc->w_pages[i]) {
1170 ret = -ENOMEM;
1171 mlog_errno(ret);
1172 goto out;
1173 }
1174 }
1175 wait_for_stable_page(wc->w_pages[i]);
1176
1177 if (index == target_index)
1178 wc->w_target_page = wc->w_pages[i];
1179 }
1180out:
1181 if (ret)
1182 wc->w_target_locked = false;
1183 return ret;
1184}
1185
1186/*
1187 * Prepare a single cluster for write one cluster into the file.
1188 */
1189static int ocfs2_write_cluster(struct address_space *mapping,
1190 u32 phys, unsigned int unwritten,
1191 unsigned int should_zero,
1192 struct ocfs2_alloc_context *data_ac,
1193 struct ocfs2_alloc_context *meta_ac,
1194 struct ocfs2_write_ctxt *wc, u32 cpos,
1195 loff_t user_pos, unsigned user_len)
1196{
1197 int ret, i, new;
1198 u64 v_blkno, p_blkno;
1199 struct inode *inode = mapping->host;
1200 struct ocfs2_extent_tree et;
1201
1202 new = phys == 0 ? 1 : 0;
1203 if (new) {
1204 u32 tmp_pos;
1205
1206 /*
1207 * This is safe to call with the page locks - it won't take
1208 * any additional semaphores or cluster locks.
1209 */
1210 tmp_pos = cpos;
1211 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1212 &tmp_pos, 1, 0, wc->w_di_bh,
1213 wc->w_handle, data_ac,
1214 meta_ac, NULL);
1215 /*
1216 * This shouldn't happen because we must have already
1217 * calculated the correct meta data allocation required. The
1218 * internal tree allocation code should know how to increase
1219 * transaction credits itself.
1220 *
1221 * If need be, we could handle -EAGAIN for a
1222 * RESTART_TRANS here.
1223 */
1224 mlog_bug_on_msg(ret == -EAGAIN,
1225 "Inode %llu: EAGAIN return during allocation.\n",
1226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1227 if (ret < 0) {
1228 mlog_errno(ret);
1229 goto out;
1230 }
1231 } else if (unwritten) {
1232 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1233 wc->w_di_bh);
1234 ret = ocfs2_mark_extent_written(inode, &et,
1235 wc->w_handle, cpos, 1, phys,
1236 meta_ac, &wc->w_dealloc);
1237 if (ret < 0) {
1238 mlog_errno(ret);
1239 goto out;
1240 }
1241 }
1242
1243 if (should_zero)
1244 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1245 else
1246 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1247
1248 /*
1249 * The only reason this should fail is due to an inability to
1250 * find the extent added.
1251 */
1252 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1253 NULL);
1254 if (ret < 0) {
1255 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1256 "at logical block %llu",
1257 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1258 (unsigned long long)v_blkno);
1259 goto out;
1260 }
1261
1262 BUG_ON(p_blkno == 0);
1263
1264 for(i = 0; i < wc->w_num_pages; i++) {
1265 int tmpret;
1266
1267 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1268 wc->w_pages[i], cpos,
1269 user_pos, user_len,
1270 should_zero);
1271 if (tmpret) {
1272 mlog_errno(tmpret);
1273 if (ret == 0)
1274 ret = tmpret;
1275 }
1276 }
1277
1278 /*
1279 * We only have cleanup to do in case of allocating write.
1280 */
1281 if (ret && new)
1282 ocfs2_write_failure(inode, wc, user_pos, user_len);
1283
1284out:
1285
1286 return ret;
1287}
1288
1289static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1290 struct ocfs2_alloc_context *data_ac,
1291 struct ocfs2_alloc_context *meta_ac,
1292 struct ocfs2_write_ctxt *wc,
1293 loff_t pos, unsigned len)
1294{
1295 int ret, i;
1296 loff_t cluster_off;
1297 unsigned int local_len = len;
1298 struct ocfs2_write_cluster_desc *desc;
1299 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1300
1301 for (i = 0; i < wc->w_clen; i++) {
1302 desc = &wc->w_desc[i];
1303
1304 /*
1305 * We have to make sure that the total write passed in
1306 * doesn't extend past a single cluster.
1307 */
1308 local_len = len;
1309 cluster_off = pos & (osb->s_clustersize - 1);
1310 if ((cluster_off + local_len) > osb->s_clustersize)
1311 local_len = osb->s_clustersize - cluster_off;
1312
1313 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1314 desc->c_unwritten,
1315 desc->c_needs_zero,
1316 data_ac, meta_ac,
1317 wc, desc->c_cpos, pos, local_len);
1318 if (ret) {
1319 mlog_errno(ret);
1320 goto out;
1321 }
1322
1323 len -= local_len;
1324 pos += local_len;
1325 }
1326
1327 ret = 0;
1328out:
1329 return ret;
1330}
1331
1332/*
1333 * ocfs2_write_end() wants to know which parts of the target page it
1334 * should complete the write on. It's easiest to compute them ahead of
1335 * time when a more complete view of the write is available.
1336 */
1337static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1338 struct ocfs2_write_ctxt *wc,
1339 loff_t pos, unsigned len, int alloc)
1340{
1341 struct ocfs2_write_cluster_desc *desc;
1342
1343 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1344 wc->w_target_to = wc->w_target_from + len;
1345
1346 if (alloc == 0)
1347 return;
1348
1349 /*
1350 * Allocating write - we may have different boundaries based
1351 * on page size and cluster size.
1352 *
1353 * NOTE: We can no longer compute one value from the other as
1354 * the actual write length and user provided length may be
1355 * different.
1356 */
1357
1358 if (wc->w_large_pages) {
1359 /*
1360 * We only care about the 1st and last cluster within
1361 * our range and whether they should be zero'd or not. Either
1362 * value may be extended out to the start/end of a
1363 * newly allocated cluster.
1364 */
1365 desc = &wc->w_desc[0];
1366 if (desc->c_needs_zero)
1367 ocfs2_figure_cluster_boundaries(osb,
1368 desc->c_cpos,
1369 &wc->w_target_from,
1370 NULL);
1371
1372 desc = &wc->w_desc[wc->w_clen - 1];
1373 if (desc->c_needs_zero)
1374 ocfs2_figure_cluster_boundaries(osb,
1375 desc->c_cpos,
1376 NULL,
1377 &wc->w_target_to);
1378 } else {
1379 wc->w_target_from = 0;
1380 wc->w_target_to = PAGE_CACHE_SIZE;
1381 }
1382}
1383
1384/*
1385 * Populate each single-cluster write descriptor in the write context
1386 * with information about the i/o to be done.
1387 *
1388 * Returns the number of clusters that will have to be allocated, as
1389 * well as a worst case estimate of the number of extent records that
1390 * would have to be created during a write to an unwritten region.
1391 */
1392static int ocfs2_populate_write_desc(struct inode *inode,
1393 struct ocfs2_write_ctxt *wc,
1394 unsigned int *clusters_to_alloc,
1395 unsigned int *extents_to_split)
1396{
1397 int ret;
1398 struct ocfs2_write_cluster_desc *desc;
1399 unsigned int num_clusters = 0;
1400 unsigned int ext_flags = 0;
1401 u32 phys = 0;
1402 int i;
1403
1404 *clusters_to_alloc = 0;
1405 *extents_to_split = 0;
1406
1407 for (i = 0; i < wc->w_clen; i++) {
1408 desc = &wc->w_desc[i];
1409 desc->c_cpos = wc->w_cpos + i;
1410
1411 if (num_clusters == 0) {
1412 /*
1413 * Need to look up the next extent record.
1414 */
1415 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1416 &num_clusters, &ext_flags);
1417 if (ret) {
1418 mlog_errno(ret);
1419 goto out;
1420 }
1421
1422 /* We should already CoW the refcountd extent. */
1423 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1424
1425 /*
1426 * Assume worst case - that we're writing in
1427 * the middle of the extent.
1428 *
1429 * We can assume that the write proceeds from
1430 * left to right, in which case the extent
1431 * insert code is smart enough to coalesce the
1432 * next splits into the previous records created.
1433 */
1434 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1435 *extents_to_split = *extents_to_split + 2;
1436 } else if (phys) {
1437 /*
1438 * Only increment phys if it doesn't describe
1439 * a hole.
1440 */
1441 phys++;
1442 }
1443
1444 /*
1445 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1446 * file that got extended. w_first_new_cpos tells us
1447 * where the newly allocated clusters are so we can
1448 * zero them.
1449 */
1450 if (desc->c_cpos >= wc->w_first_new_cpos) {
1451 BUG_ON(phys == 0);
1452 desc->c_needs_zero = 1;
1453 }
1454
1455 desc->c_phys = phys;
1456 if (phys == 0) {
1457 desc->c_new = 1;
1458 desc->c_needs_zero = 1;
1459 *clusters_to_alloc = *clusters_to_alloc + 1;
1460 }
1461
1462 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1463 desc->c_unwritten = 1;
1464 desc->c_needs_zero = 1;
1465 }
1466
1467 num_clusters--;
1468 }
1469
1470 ret = 0;
1471out:
1472 return ret;
1473}
1474
1475static int ocfs2_write_begin_inline(struct address_space *mapping,
1476 struct inode *inode,
1477 struct ocfs2_write_ctxt *wc)
1478{
1479 int ret;
1480 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1481 struct page *page;
1482 handle_t *handle;
1483 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1484
1485 page = find_or_create_page(mapping, 0, GFP_NOFS);
1486 if (!page) {
1487 ret = -ENOMEM;
1488 mlog_errno(ret);
1489 goto out;
1490 }
1491 /*
1492 * If we don't set w_num_pages then this page won't get unlocked
1493 * and freed on cleanup of the write context.
1494 */
1495 wc->w_pages[0] = wc->w_target_page = page;
1496 wc->w_num_pages = 1;
1497
1498 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1499 if (IS_ERR(handle)) {
1500 ret = PTR_ERR(handle);
1501 mlog_errno(ret);
1502 goto out;
1503 }
1504
1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 OCFS2_JOURNAL_ACCESS_WRITE);
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1509
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1516
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1521
1522 goto out;
1523 }
1524 }
1525
1526 wc->w_handle = handle;
1527out:
1528 return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 return 1;
1537 return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1544{
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 struct ocfs2_dinode *di = NULL;
1549
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1553
1554 /*
1555 * Handle inodes which already have inline data 1st.
1556 */
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1561
1562 /*
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1565 */
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * Check whether the inode can accept inline data.
1574 */
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1577
1578 /*
1579 * Check whether the write can fit.
1580 */
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 return 0;
1585
1586do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * This signals to the caller that the data can be written
1595 * inline.
1596 */
1597 written = 1;
1598out:
1599 return written ? written : ret;
1600}
1601
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
1614 struct ocfs2_write_ctxt *wc)
1615{
1616 int ret;
1617 loff_t newsize = pos + len;
1618
1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1623
1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 if (ret)
1626 mlog_errno(ret);
1627
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631 return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1636{
1637 int ret = 0;
1638
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643 return ret;
1644}
1645
1646/*
1647 * Try to flush truncate logs if we can free enough clusters from it.
1648 * As for return value, "< 0" means error, "0" no space and "1" means
1649 * we have freed enough spaces and let the caller try to allocate again.
1650 */
1651static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1652 unsigned int needed)
1653{
1654 tid_t target;
1655 int ret = 0;
1656 unsigned int truncated_clusters;
1657
1658 mutex_lock(&osb->osb_tl_inode->i_mutex);
1659 truncated_clusters = osb->truncated_clusters;
1660 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1661
1662 /*
1663 * Check whether we can succeed in allocating if we free
1664 * the truncate log.
1665 */
1666 if (truncated_clusters < needed)
1667 goto out;
1668
1669 ret = ocfs2_flush_truncate_log(osb);
1670 if (ret) {
1671 mlog_errno(ret);
1672 goto out;
1673 }
1674
1675 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1676 jbd2_log_wait_commit(osb->journal->j_journal, target);
1677 ret = 1;
1678 }
1679out:
1680 return ret;
1681}
1682
1683int ocfs2_write_begin_nolock(struct file *filp,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned flags,
1686 struct page **pagep, void **fsdata,
1687 struct buffer_head *di_bh, struct page *mmap_page)
1688{
1689 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1690 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1691 struct ocfs2_write_ctxt *wc;
1692 struct inode *inode = mapping->host;
1693 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1694 struct ocfs2_dinode *di;
1695 struct ocfs2_alloc_context *data_ac = NULL;
1696 struct ocfs2_alloc_context *meta_ac = NULL;
1697 handle_t *handle;
1698 struct ocfs2_extent_tree et;
1699 int try_free = 1, ret1;
1700
1701try_again:
1702 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1703 if (ret) {
1704 mlog_errno(ret);
1705 return ret;
1706 }
1707
1708 if (ocfs2_supports_inline_data(osb)) {
1709 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1710 mmap_page, wc);
1711 if (ret == 1) {
1712 ret = 0;
1713 goto success;
1714 }
1715 if (ret < 0) {
1716 mlog_errno(ret);
1717 goto out;
1718 }
1719 }
1720
1721 if (ocfs2_sparse_alloc(osb))
1722 ret = ocfs2_zero_tail(inode, di_bh, pos);
1723 else
1724 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1725 wc);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730
1731 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1732 if (ret < 0) {
1733 mlog_errno(ret);
1734 goto out;
1735 } else if (ret == 1) {
1736 clusters_need = wc->w_clen;
1737 ret = ocfs2_refcount_cow(inode, di_bh,
1738 wc->w_cpos, wc->w_clen, UINT_MAX);
1739 if (ret) {
1740 mlog_errno(ret);
1741 goto out;
1742 }
1743 }
1744
1745 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1746 &extents_to_split);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751 clusters_need += clusters_to_alloc;
1752
1753 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1754
1755 trace_ocfs2_write_begin_nolock(
1756 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757 (long long)i_size_read(inode),
1758 le32_to_cpu(di->i_clusters),
1759 pos, len, flags, mmap_page,
1760 clusters_to_alloc, extents_to_split);
1761
1762 /*
1763 * We set w_target_from, w_target_to here so that
1764 * ocfs2_write_end() knows which range in the target page to
1765 * write out. An allocation requires that we write the entire
1766 * cluster range.
1767 */
1768 if (clusters_to_alloc || extents_to_split) {
1769 /*
1770 * XXX: We are stretching the limits of
1771 * ocfs2_lock_allocators(). It greatly over-estimates
1772 * the work to be done.
1773 */
1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1775 wc->w_di_bh);
1776 ret = ocfs2_lock_allocators(inode, &et,
1777 clusters_to_alloc, extents_to_split,
1778 &data_ac, &meta_ac);
1779 if (ret) {
1780 mlog_errno(ret);
1781 goto out;
1782 }
1783
1784 if (data_ac)
1785 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1786
1787 credits = ocfs2_calc_extend_credits(inode->i_sb,
1788 &di->id2.i_list);
1789
1790 }
1791
1792 /*
1793 * We have to zero sparse allocated clusters, unwritten extent clusters,
1794 * and non-sparse clusters we just extended. For non-sparse writes,
1795 * we know zeros will only be needed in the first and/or last cluster.
1796 */
1797 if (clusters_to_alloc || extents_to_split ||
1798 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1799 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1800 cluster_of_pages = 1;
1801 else
1802 cluster_of_pages = 0;
1803
1804 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1805
1806 handle = ocfs2_start_trans(osb, credits);
1807 if (IS_ERR(handle)) {
1808 ret = PTR_ERR(handle);
1809 mlog_errno(ret);
1810 goto out;
1811 }
1812
1813 wc->w_handle = handle;
1814
1815 if (clusters_to_alloc) {
1816 ret = dquot_alloc_space_nodirty(inode,
1817 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1818 if (ret)
1819 goto out_commit;
1820 }
1821 /*
1822 * We don't want this to fail in ocfs2_write_end(), so do it
1823 * here.
1824 */
1825 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1826 OCFS2_JOURNAL_ACCESS_WRITE);
1827 if (ret) {
1828 mlog_errno(ret);
1829 goto out_quota;
1830 }
1831
1832 /*
1833 * Fill our page array first. That way we've grabbed enough so
1834 * that we can zero and flush if we error after adding the
1835 * extent.
1836 */
1837 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1838 cluster_of_pages, mmap_page);
1839 if (ret && ret != -EAGAIN) {
1840 mlog_errno(ret);
1841 goto out_quota;
1842 }
1843
1844 /*
1845 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1846 * the target page. In this case, we exit with no error and no target
1847 * page. This will trigger the caller, page_mkwrite(), to re-try
1848 * the operation.
1849 */
1850 if (ret == -EAGAIN) {
1851 BUG_ON(wc->w_target_page);
1852 ret = 0;
1853 goto out_quota;
1854 }
1855
1856 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1857 len);
1858 if (ret) {
1859 mlog_errno(ret);
1860 goto out_quota;
1861 }
1862
1863 if (data_ac)
1864 ocfs2_free_alloc_context(data_ac);
1865 if (meta_ac)
1866 ocfs2_free_alloc_context(meta_ac);
1867
1868success:
1869 *pagep = wc->w_target_page;
1870 *fsdata = wc;
1871 return 0;
1872out_quota:
1873 if (clusters_to_alloc)
1874 dquot_free_space(inode,
1875 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1876out_commit:
1877 ocfs2_commit_trans(osb, handle);
1878
1879out:
1880 ocfs2_free_write_ctxt(wc);
1881
1882 if (data_ac) {
1883 ocfs2_free_alloc_context(data_ac);
1884 data_ac = NULL;
1885 }
1886 if (meta_ac) {
1887 ocfs2_free_alloc_context(meta_ac);
1888 meta_ac = NULL;
1889 }
1890
1891 if (ret == -ENOSPC && try_free) {
1892 /*
1893 * Try to free some truncate log so that we can have enough
1894 * clusters to allocate.
1895 */
1896 try_free = 0;
1897
1898 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1899 if (ret1 == 1)
1900 goto try_again;
1901
1902 if (ret1 < 0)
1903 mlog_errno(ret1);
1904 }
1905
1906 return ret;
1907}
1908
1909static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1910 loff_t pos, unsigned len, unsigned flags,
1911 struct page **pagep, void **fsdata)
1912{
1913 int ret;
1914 struct buffer_head *di_bh = NULL;
1915 struct inode *inode = mapping->host;
1916
1917 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1918 if (ret) {
1919 mlog_errno(ret);
1920 return ret;
1921 }
1922
1923 /*
1924 * Take alloc sem here to prevent concurrent lookups. That way
1925 * the mapping, zeroing and tree manipulation within
1926 * ocfs2_write() will be safe against ->readpage(). This
1927 * should also serve to lock out allocation from a shared
1928 * writeable region.
1929 */
1930 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1933 fsdata, di_bh, NULL);
1934 if (ret) {
1935 mlog_errno(ret);
1936 goto out_fail;
1937 }
1938
1939 brelse(di_bh);
1940
1941 return 0;
1942
1943out_fail:
1944 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946 brelse(di_bh);
1947 ocfs2_inode_unlock(inode, 1);
1948
1949 return ret;
1950}
1951
1952static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1953 unsigned len, unsigned *copied,
1954 struct ocfs2_dinode *di,
1955 struct ocfs2_write_ctxt *wc)
1956{
1957 void *kaddr;
1958
1959 if (unlikely(*copied < len)) {
1960 if (!PageUptodate(wc->w_target_page)) {
1961 *copied = 0;
1962 return;
1963 }
1964 }
1965
1966 kaddr = kmap_atomic(wc->w_target_page);
1967 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1968 kunmap_atomic(kaddr);
1969
1970 trace_ocfs2_write_end_inline(
1971 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1972 (unsigned long long)pos, *copied,
1973 le16_to_cpu(di->id2.i_data.id_count),
1974 le16_to_cpu(di->i_dyn_features));
1975}
1976
1977int ocfs2_write_end_nolock(struct address_space *mapping,
1978 loff_t pos, unsigned len, unsigned copied,
1979 struct page *page, void *fsdata)
1980{
1981 int i;
1982 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1983 struct inode *inode = mapping->host;
1984 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1985 struct ocfs2_write_ctxt *wc = fsdata;
1986 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1987 handle_t *handle = wc->w_handle;
1988 struct page *tmppage;
1989
1990 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1991 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1992 goto out_write_size;
1993 }
1994
1995 if (unlikely(copied < len)) {
1996 if (!PageUptodate(wc->w_target_page))
1997 copied = 0;
1998
1999 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2000 start+len);
2001 }
2002 flush_dcache_page(wc->w_target_page);
2003
2004 for(i = 0; i < wc->w_num_pages; i++) {
2005 tmppage = wc->w_pages[i];
2006
2007 if (tmppage == wc->w_target_page) {
2008 from = wc->w_target_from;
2009 to = wc->w_target_to;
2010
2011 BUG_ON(from > PAGE_CACHE_SIZE ||
2012 to > PAGE_CACHE_SIZE ||
2013 to < from);
2014 } else {
2015 /*
2016 * Pages adjacent to the target (if any) imply
2017 * a hole-filling write in which case we want
2018 * to flush their entire range.
2019 */
2020 from = 0;
2021 to = PAGE_CACHE_SIZE;
2022 }
2023
2024 if (page_has_buffers(tmppage)) {
2025 if (ocfs2_should_order_data(inode))
2026 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2027 block_commit_write(tmppage, from, to);
2028 }
2029 }
2030
2031out_write_size:
2032 pos += copied;
2033 if (pos > i_size_read(inode)) {
2034 i_size_write(inode, pos);
2035 mark_inode_dirty(inode);
2036 }
2037 inode->i_blocks = ocfs2_inode_sector_count(inode);
2038 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2039 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2040 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2041 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2042 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043 ocfs2_journal_dirty(handle, wc->w_di_bh);
2044
2045 ocfs2_commit_trans(osb, handle);
2046
2047 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2048
2049 ocfs2_free_write_ctxt(wc);
2050
2051 return copied;
2052}
2053
2054static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2055 loff_t pos, unsigned len, unsigned copied,
2056 struct page *page, void *fsdata)
2057{
2058 int ret;
2059 struct inode *inode = mapping->host;
2060
2061 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2062
2063 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2064 ocfs2_inode_unlock(inode, 1);
2065
2066 return ret;
2067}
2068
2069const struct address_space_operations ocfs2_aops = {
2070 .readpage = ocfs2_readpage,
2071 .readpages = ocfs2_readpages,
2072 .writepage = ocfs2_writepage,
2073 .write_begin = ocfs2_write_begin,
2074 .write_end = ocfs2_write_end,
2075 .bmap = ocfs2_bmap,
2076 .direct_IO = ocfs2_direct_IO,
2077 .invalidatepage = block_invalidatepage,
2078 .releasepage = ocfs2_releasepage,
2079 .migratepage = buffer_migrate_page,
2080 .is_partially_uptodate = block_is_partially_uptodate,
2081 .error_remove_page = generic_error_remove_page,
2082};
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/highmem.h>
9#include <linux/pagemap.h>
10#include <asm/byteorder.h>
11#include <linux/swap.h>
12#include <linux/mpage.h>
13#include <linux/quotaops.h>
14#include <linux/blkdev.h>
15#include <linux/uio.h>
16#include <linux/mm.h>
17
18#include <cluster/masklog.h>
19
20#include "ocfs2.h"
21
22#include "alloc.h"
23#include "aops.h"
24#include "dlmglue.h"
25#include "extent_map.h"
26#include "file.h"
27#include "inode.h"
28#include "journal.h"
29#include "suballoc.h"
30#include "super.h"
31#include "symlink.h"
32#include "refcounttree.h"
33#include "ocfs2_trace.h"
34
35#include "buffer_head_io.h"
36#include "dir.h"
37#include "namei.h"
38#include "sysfile.h"
39
40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42{
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115bail:
116 brelse(bh);
117
118 return err;
119}
120
121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123{
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132}
133
134int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136{
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
162 goto bail;
163 }
164
165 if (max_blocks < count)
166 count = max_blocks;
167
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
178 */
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
184
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
189 bh_result->b_size = count << inode->i_blkbits;
190
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
201 goto bail;
202 }
203 }
204
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
212bail:
213 if (err < 0)
214 err = -EIO;
215
216 return err;
217}
218
219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
221{
222 void *kaddr;
223 loff_t size;
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
240 return -EROFS;
241 }
242
243 kaddr = kmap_atomic(page);
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
250
251 SetPageUptodate(page);
252
253 return 0;
254}
255
256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257{
258 int ret;
259 struct buffer_head *di_bh = NULL;
260
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264 ret = ocfs2_read_inode_block(inode, &di_bh);
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276}
277
278static int ocfs2_read_folio(struct file *file, struct folio *folio)
279{
280 struct inode *inode = folio->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = folio_pos(folio);
283 int ret, unlock = 1;
284
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288 if (ret != 0) {
289 if (ret == AOP_TRUNCATED_PAGE)
290 unlock = 0;
291 mlog_errno(ret);
292 goto out;
293 }
294
295 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 /*
297 * Unlock the folio and cycle ip_alloc_sem so that we don't
298 * busyloop waiting for ip_alloc_sem to unlock
299 */
300 ret = AOP_TRUNCATED_PAGE;
301 folio_unlock(folio);
302 unlock = 0;
303 down_read(&oi->ip_alloc_sem);
304 up_read(&oi->ip_alloc_sem);
305 goto out_inode_unlock;
306 }
307
308 /*
309 * i_size might have just been updated as we grabed the meta lock. We
310 * might now be discovering a truncate that hit on another node.
311 * block_read_full_folio->get_block freaks out if it is asked to read
312 * beyond the end of a file, so we check here. Callers
313 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314 * and notice that the folio they just read isn't needed.
315 *
316 * XXX sys_readahead() seems to get that wrong?
317 */
318 if (start >= i_size_read(inode)) {
319 folio_zero_segment(folio, 0, folio_size(folio));
320 folio_mark_uptodate(folio);
321 ret = 0;
322 goto out_alloc;
323 }
324
325 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326 ret = ocfs2_readpage_inline(inode, &folio->page);
327 else
328 ret = block_read_full_folio(folio, ocfs2_get_block);
329 unlock = 0;
330
331out_alloc:
332 up_read(&oi->ip_alloc_sem);
333out_inode_unlock:
334 ocfs2_inode_unlock(inode, 0);
335out:
336 if (unlock)
337 folio_unlock(folio);
338 return ret;
339}
340
341/*
342 * This is used only for read-ahead. Failures or difficult to handle
343 * situations are safe to ignore.
344 *
345 * Right now, we don't bother with BH_Boundary - in-inode extent lists
346 * are quite large (243 extents on 4k blocks), so most inodes don't
347 * grow out to a tree. If need be, detecting boundary extents could
348 * trivially be added in a future version of ocfs2_get_block().
349 */
350static void ocfs2_readahead(struct readahead_control *rac)
351{
352 int ret;
353 struct inode *inode = rac->mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365 goto out_unlock;
366
367 /*
368 * Don't bother with inline-data. There isn't anything
369 * to read-ahead in that case anyway...
370 */
371 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372 goto out_up;
373
374 /*
375 * Check whether a remote node truncated this file - we just
376 * drop out in that case as it's not worth handling here.
377 */
378 if (readahead_pos(rac) >= i_size_read(inode))
379 goto out_up;
380
381 mpage_readahead(rac, ocfs2_get_block);
382
383out_up:
384 up_read(&oi->ip_alloc_sem);
385out_unlock:
386 ocfs2_inode_unlock(inode, 0);
387}
388
389/* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in
392 * ocfs2_writepages.
393 *
394 * ->writepages is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back.
399 */
400static int ocfs2_writepages(struct address_space *mapping,
401 struct writeback_control *wbc)
402{
403 return mpage_writepages(mapping, wbc, ocfs2_get_block);
404}
405
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
451
452 /*
453 * The swap code (ab-)uses ->bmap to get a block mapping and then
454 * bypasseѕ the file system for actual I/O. We really can't allow
455 * that on refcounted inodes, so we have to skip out here. And yes,
456 * 0 is the magic code for a bmap error..
457 */
458 if (ocfs2_is_refcount_inode(inode))
459 return 0;
460
461 /* We don't need to lock journal system files, since they aren't
462 * accessed concurrently from multiple nodes.
463 */
464 if (!INODE_JOURNAL(inode)) {
465 err = ocfs2_inode_lock(inode, NULL, 0);
466 if (err) {
467 if (err != -ENOENT)
468 mlog_errno(err);
469 goto bail;
470 }
471 down_read(&OCFS2_I(inode)->ip_alloc_sem);
472 }
473
474 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
475 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
476 NULL);
477
478 if (!INODE_JOURNAL(inode)) {
479 up_read(&OCFS2_I(inode)->ip_alloc_sem);
480 ocfs2_inode_unlock(inode, 0);
481 }
482
483 if (err) {
484 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
485 (unsigned long long)block);
486 mlog_errno(err);
487 goto bail;
488 }
489
490bail:
491 status = err ? 0 : p_blkno;
492
493 return status;
494}
495
496static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
497{
498 if (!folio_buffers(folio))
499 return false;
500 return try_to_free_buffers(folio);
501}
502
503static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
504 u32 cpos,
505 unsigned int *start,
506 unsigned int *end)
507{
508 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
509
510 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
511 unsigned int cpp;
512
513 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
514
515 cluster_start = cpos % cpp;
516 cluster_start = cluster_start << osb->s_clustersize_bits;
517
518 cluster_end = cluster_start + osb->s_clustersize;
519 }
520
521 BUG_ON(cluster_start > PAGE_SIZE);
522 BUG_ON(cluster_end > PAGE_SIZE);
523
524 if (start)
525 *start = cluster_start;
526 if (end)
527 *end = cluster_end;
528}
529
530/*
531 * 'from' and 'to' are the region in the page to avoid zeroing.
532 *
533 * If pagesize > clustersize, this function will avoid zeroing outside
534 * of the cluster boundary.
535 *
536 * from == to == 0 is code for "zero the entire cluster region"
537 */
538static void ocfs2_clear_page_regions(struct page *page,
539 struct ocfs2_super *osb, u32 cpos,
540 unsigned from, unsigned to)
541{
542 void *kaddr;
543 unsigned int cluster_start, cluster_end;
544
545 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
546
547 kaddr = kmap_atomic(page);
548
549 if (from || to) {
550 if (from > cluster_start)
551 memset(kaddr + cluster_start, 0, from - cluster_start);
552 if (to < cluster_end)
553 memset(kaddr + to, 0, cluster_end - to);
554 } else {
555 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
556 }
557
558 kunmap_atomic(kaddr);
559}
560
561/*
562 * Nonsparse file systems fully allocate before we get to the write
563 * code. This prevents ocfs2_write() from tagging the write as an
564 * allocating one, which means ocfs2_map_page_blocks() might try to
565 * read-in the blocks at the tail of our file. Avoid reading them by
566 * testing i_size against each block offset.
567 */
568static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
569 unsigned int block_start)
570{
571 u64 offset = folio_pos(folio) + block_start;
572
573 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
574 return 1;
575
576 if (i_size_read(inode) > offset)
577 return 1;
578
579 return 0;
580}
581
582/*
583 * Some of this taken from __block_write_begin(). We already have our
584 * mapping by now though, and the entire write will be allocating or
585 * it won't, so not much need to use BH_New.
586 *
587 * This will also skip zeroing, which is handled externally.
588 */
589int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
590 struct inode *inode, unsigned int from,
591 unsigned int to, int new)
592{
593 struct folio *folio = page_folio(page);
594 int ret = 0;
595 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
596 unsigned int block_end, block_start;
597 unsigned int bsize = i_blocksize(inode);
598
599 head = folio_buffers(folio);
600 if (!head)
601 head = create_empty_buffers(folio, bsize, 0);
602
603 for (bh = head, block_start = 0; bh != head || !block_start;
604 bh = bh->b_this_page, block_start += bsize) {
605 block_end = block_start + bsize;
606
607 clear_buffer_new(bh);
608
609 /*
610 * Ignore blocks outside of our i/o range -
611 * they may belong to unallocated clusters.
612 */
613 if (block_start >= to || block_end <= from) {
614 if (folio_test_uptodate(folio))
615 set_buffer_uptodate(bh);
616 continue;
617 }
618
619 /*
620 * For an allocating write with cluster size >= page
621 * size, we always write the entire page.
622 */
623 if (new)
624 set_buffer_new(bh);
625
626 if (!buffer_mapped(bh)) {
627 map_bh(bh, inode->i_sb, *p_blkno);
628 clean_bdev_bh_alias(bh);
629 }
630
631 if (folio_test_uptodate(folio)) {
632 set_buffer_uptodate(bh);
633 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
634 !buffer_new(bh) &&
635 ocfs2_should_read_blk(inode, folio, block_start) &&
636 (block_start < from || block_end > to)) {
637 bh_read_nowait(bh, 0);
638 *wait_bh++=bh;
639 }
640
641 *p_blkno = *p_blkno + 1;
642 }
643
644 /*
645 * If we issued read requests - let them complete.
646 */
647 while(wait_bh > wait) {
648 wait_on_buffer(*--wait_bh);
649 if (!buffer_uptodate(*wait_bh))
650 ret = -EIO;
651 }
652
653 if (ret == 0 || !new)
654 return ret;
655
656 /*
657 * If we get -EIO above, zero out any newly allocated blocks
658 * to avoid exposing stale data.
659 */
660 bh = head;
661 block_start = 0;
662 do {
663 block_end = block_start + bsize;
664 if (block_end <= from)
665 goto next_bh;
666 if (block_start >= to)
667 break;
668
669 folio_zero_range(folio, block_start, bh->b_size);
670 set_buffer_uptodate(bh);
671 mark_buffer_dirty(bh);
672
673next_bh:
674 block_start = block_end;
675 bh = bh->b_this_page;
676 } while (bh != head);
677
678 return ret;
679}
680
681#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
682#define OCFS2_MAX_CTXT_PAGES 1
683#else
684#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
685#endif
686
687#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
688
689struct ocfs2_unwritten_extent {
690 struct list_head ue_node;
691 struct list_head ue_ip_node;
692 u32 ue_cpos;
693 u32 ue_phys;
694};
695
696/*
697 * Describe the state of a single cluster to be written to.
698 */
699struct ocfs2_write_cluster_desc {
700 u32 c_cpos;
701 u32 c_phys;
702 /*
703 * Give this a unique field because c_phys eventually gets
704 * filled.
705 */
706 unsigned c_new;
707 unsigned c_clear_unwritten;
708 unsigned c_needs_zero;
709};
710
711struct ocfs2_write_ctxt {
712 /* Logical cluster position / len of write */
713 u32 w_cpos;
714 u32 w_clen;
715
716 /* First cluster allocated in a nonsparse extend */
717 u32 w_first_new_cpos;
718
719 /* Type of caller. Must be one of buffer, mmap, direct. */
720 ocfs2_write_type_t w_type;
721
722 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
723
724 /*
725 * This is true if page_size > cluster_size.
726 *
727 * It triggers a set of special cases during write which might
728 * have to deal with allocating writes to partial pages.
729 */
730 unsigned int w_large_pages;
731
732 /*
733 * Pages involved in this write.
734 *
735 * w_target_page is the page being written to by the user.
736 *
737 * w_pages is an array of pages which always contains
738 * w_target_page, and in the case of an allocating write with
739 * page_size < cluster size, it will contain zero'd and mapped
740 * pages adjacent to w_target_page which need to be written
741 * out in so that future reads from that region will get
742 * zero's.
743 */
744 unsigned int w_num_pages;
745 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
746 struct page *w_target_page;
747
748 /*
749 * w_target_locked is used for page_mkwrite path indicating no unlocking
750 * against w_target_page in ocfs2_write_end_nolock.
751 */
752 unsigned int w_target_locked:1;
753
754 /*
755 * ocfs2_write_end() uses this to know what the real range to
756 * write in the target should be.
757 */
758 unsigned int w_target_from;
759 unsigned int w_target_to;
760
761 /*
762 * We could use journal_current_handle() but this is cleaner,
763 * IMHO -Mark
764 */
765 handle_t *w_handle;
766
767 struct buffer_head *w_di_bh;
768
769 struct ocfs2_cached_dealloc_ctxt w_dealloc;
770
771 struct list_head w_unwritten_list;
772 unsigned int w_unwritten_count;
773};
774
775void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
776{
777 int i;
778
779 for(i = 0; i < num_pages; i++) {
780 if (pages[i]) {
781 unlock_page(pages[i]);
782 mark_page_accessed(pages[i]);
783 put_page(pages[i]);
784 }
785 }
786}
787
788static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
789{
790 int i;
791
792 /*
793 * w_target_locked is only set to true in the page_mkwrite() case.
794 * The intent is to allow us to lock the target page from write_begin()
795 * to write_end(). The caller must hold a ref on w_target_page.
796 */
797 if (wc->w_target_locked) {
798 BUG_ON(!wc->w_target_page);
799 for (i = 0; i < wc->w_num_pages; i++) {
800 if (wc->w_target_page == wc->w_pages[i]) {
801 wc->w_pages[i] = NULL;
802 break;
803 }
804 }
805 mark_page_accessed(wc->w_target_page);
806 put_page(wc->w_target_page);
807 }
808 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
809}
810
811static void ocfs2_free_unwritten_list(struct inode *inode,
812 struct list_head *head)
813{
814 struct ocfs2_inode_info *oi = OCFS2_I(inode);
815 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
816
817 list_for_each_entry_safe(ue, tmp, head, ue_node) {
818 list_del(&ue->ue_node);
819 spin_lock(&oi->ip_lock);
820 list_del(&ue->ue_ip_node);
821 spin_unlock(&oi->ip_lock);
822 kfree(ue);
823 }
824}
825
826static void ocfs2_free_write_ctxt(struct inode *inode,
827 struct ocfs2_write_ctxt *wc)
828{
829 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
830 ocfs2_unlock_pages(wc);
831 brelse(wc->w_di_bh);
832 kfree(wc);
833}
834
835static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
836 struct ocfs2_super *osb, loff_t pos,
837 unsigned len, ocfs2_write_type_t type,
838 struct buffer_head *di_bh)
839{
840 u32 cend;
841 struct ocfs2_write_ctxt *wc;
842
843 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
844 if (!wc)
845 return -ENOMEM;
846
847 wc->w_cpos = pos >> osb->s_clustersize_bits;
848 wc->w_first_new_cpos = UINT_MAX;
849 cend = (pos + len - 1) >> osb->s_clustersize_bits;
850 wc->w_clen = cend - wc->w_cpos + 1;
851 get_bh(di_bh);
852 wc->w_di_bh = di_bh;
853 wc->w_type = type;
854
855 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
856 wc->w_large_pages = 1;
857 else
858 wc->w_large_pages = 0;
859
860 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
861 INIT_LIST_HEAD(&wc->w_unwritten_list);
862
863 *wcp = wc;
864
865 return 0;
866}
867
868/*
869 * If a page has any new buffers, zero them out here, and mark them uptodate
870 * and dirty so they'll be written out (in order to prevent uninitialised
871 * block data from leaking). And clear the new bit.
872 */
873static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
874{
875 unsigned int block_start, block_end;
876 struct buffer_head *head, *bh;
877
878 BUG_ON(!PageLocked(page));
879 if (!page_has_buffers(page))
880 return;
881
882 bh = head = page_buffers(page);
883 block_start = 0;
884 do {
885 block_end = block_start + bh->b_size;
886
887 if (buffer_new(bh)) {
888 if (block_end > from && block_start < to) {
889 if (!PageUptodate(page)) {
890 unsigned start, end;
891
892 start = max(from, block_start);
893 end = min(to, block_end);
894
895 zero_user_segment(page, start, end);
896 set_buffer_uptodate(bh);
897 }
898
899 clear_buffer_new(bh);
900 mark_buffer_dirty(bh);
901 }
902 }
903
904 block_start = block_end;
905 bh = bh->b_this_page;
906 } while (bh != head);
907}
908
909/*
910 * Only called when we have a failure during allocating write to write
911 * zero's to the newly allocated region.
912 */
913static void ocfs2_write_failure(struct inode *inode,
914 struct ocfs2_write_ctxt *wc,
915 loff_t user_pos, unsigned user_len)
916{
917 int i;
918 unsigned from = user_pos & (PAGE_SIZE - 1),
919 to = user_pos + user_len;
920 struct page *tmppage;
921
922 if (wc->w_target_page)
923 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
924
925 for(i = 0; i < wc->w_num_pages; i++) {
926 tmppage = wc->w_pages[i];
927
928 if (tmppage && page_has_buffers(tmppage)) {
929 if (ocfs2_should_order_data(inode))
930 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
931 user_pos, user_len);
932
933 block_commit_write(tmppage, from, to);
934 }
935 }
936}
937
938static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
939 struct ocfs2_write_ctxt *wc,
940 struct page *page, u32 cpos,
941 loff_t user_pos, unsigned user_len,
942 int new)
943{
944 int ret;
945 unsigned int map_from = 0, map_to = 0;
946 unsigned int cluster_start, cluster_end;
947 unsigned int user_data_from = 0, user_data_to = 0;
948
949 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
950 &cluster_start, &cluster_end);
951
952 /* treat the write as new if the a hole/lseek spanned across
953 * the page boundary.
954 */
955 new = new | ((i_size_read(inode) <= page_offset(page)) &&
956 (page_offset(page) <= user_pos));
957
958 if (page == wc->w_target_page) {
959 map_from = user_pos & (PAGE_SIZE - 1);
960 map_to = map_from + user_len;
961
962 if (new)
963 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
964 cluster_start, cluster_end,
965 new);
966 else
967 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 map_from, map_to, new);
969 if (ret) {
970 mlog_errno(ret);
971 goto out;
972 }
973
974 user_data_from = map_from;
975 user_data_to = map_to;
976 if (new) {
977 map_from = cluster_start;
978 map_to = cluster_end;
979 }
980 } else {
981 /*
982 * If we haven't allocated the new page yet, we
983 * shouldn't be writing it out without copying user
984 * data. This is likely a math error from the caller.
985 */
986 BUG_ON(!new);
987
988 map_from = cluster_start;
989 map_to = cluster_end;
990
991 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
992 cluster_start, cluster_end, new);
993 if (ret) {
994 mlog_errno(ret);
995 goto out;
996 }
997 }
998
999 /*
1000 * Parts of newly allocated pages need to be zero'd.
1001 *
1002 * Above, we have also rewritten 'to' and 'from' - as far as
1003 * the rest of the function is concerned, the entire cluster
1004 * range inside of a page needs to be written.
1005 *
1006 * We can skip this if the page is up to date - it's already
1007 * been zero'd from being read in as a hole.
1008 */
1009 if (new && !PageUptodate(page))
1010 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1011 cpos, user_data_from, user_data_to);
1012
1013 flush_dcache_page(page);
1014
1015out:
1016 return ret;
1017}
1018
1019/*
1020 * This function will only grab one clusters worth of pages.
1021 */
1022static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1023 struct ocfs2_write_ctxt *wc,
1024 u32 cpos, loff_t user_pos,
1025 unsigned user_len, int new,
1026 struct page *mmap_page)
1027{
1028 int ret = 0, i;
1029 unsigned long start, target_index, end_index, index;
1030 struct inode *inode = mapping->host;
1031 loff_t last_byte;
1032
1033 target_index = user_pos >> PAGE_SHIFT;
1034
1035 /*
1036 * Figure out how many pages we'll be manipulating here. For
1037 * non allocating write, we just change the one
1038 * page. Otherwise, we'll need a whole clusters worth. If we're
1039 * writing past i_size, we only need enough pages to cover the
1040 * last page of the write.
1041 */
1042 if (new) {
1043 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1044 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1045 /*
1046 * We need the index *past* the last page we could possibly
1047 * touch. This is the page past the end of the write or
1048 * i_size, whichever is greater.
1049 */
1050 last_byte = max(user_pos + user_len, i_size_read(inode));
1051 BUG_ON(last_byte < 1);
1052 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1053 if ((start + wc->w_num_pages) > end_index)
1054 wc->w_num_pages = end_index - start;
1055 } else {
1056 wc->w_num_pages = 1;
1057 start = target_index;
1058 }
1059 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1060
1061 for(i = 0; i < wc->w_num_pages; i++) {
1062 index = start + i;
1063
1064 if (index >= target_index && index <= end_index &&
1065 wc->w_type == OCFS2_WRITE_MMAP) {
1066 /*
1067 * ocfs2_pagemkwrite() is a little different
1068 * and wants us to directly use the page
1069 * passed in.
1070 */
1071 lock_page(mmap_page);
1072
1073 /* Exit and let the caller retry */
1074 if (mmap_page->mapping != mapping) {
1075 WARN_ON(mmap_page->mapping);
1076 unlock_page(mmap_page);
1077 ret = -EAGAIN;
1078 goto out;
1079 }
1080
1081 get_page(mmap_page);
1082 wc->w_pages[i] = mmap_page;
1083 wc->w_target_locked = true;
1084 } else if (index >= target_index && index <= end_index &&
1085 wc->w_type == OCFS2_WRITE_DIRECT) {
1086 /* Direct write has no mapping page. */
1087 wc->w_pages[i] = NULL;
1088 continue;
1089 } else {
1090 wc->w_pages[i] = find_or_create_page(mapping, index,
1091 GFP_NOFS);
1092 if (!wc->w_pages[i]) {
1093 ret = -ENOMEM;
1094 mlog_errno(ret);
1095 goto out;
1096 }
1097 }
1098 wait_for_stable_page(wc->w_pages[i]);
1099
1100 if (index == target_index)
1101 wc->w_target_page = wc->w_pages[i];
1102 }
1103out:
1104 if (ret)
1105 wc->w_target_locked = false;
1106 return ret;
1107}
1108
1109/*
1110 * Prepare a single cluster for write one cluster into the file.
1111 */
1112static int ocfs2_write_cluster(struct address_space *mapping,
1113 u32 *phys, unsigned int new,
1114 unsigned int clear_unwritten,
1115 unsigned int should_zero,
1116 struct ocfs2_alloc_context *data_ac,
1117 struct ocfs2_alloc_context *meta_ac,
1118 struct ocfs2_write_ctxt *wc, u32 cpos,
1119 loff_t user_pos, unsigned user_len)
1120{
1121 int ret, i;
1122 u64 p_blkno;
1123 struct inode *inode = mapping->host;
1124 struct ocfs2_extent_tree et;
1125 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1126
1127 if (new) {
1128 u32 tmp_pos;
1129
1130 /*
1131 * This is safe to call with the page locks - it won't take
1132 * any additional semaphores or cluster locks.
1133 */
1134 tmp_pos = cpos;
1135 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1136 &tmp_pos, 1, !clear_unwritten,
1137 wc->w_di_bh, wc->w_handle,
1138 data_ac, meta_ac, NULL);
1139 /*
1140 * This shouldn't happen because we must have already
1141 * calculated the correct meta data allocation required. The
1142 * internal tree allocation code should know how to increase
1143 * transaction credits itself.
1144 *
1145 * If need be, we could handle -EAGAIN for a
1146 * RESTART_TRANS here.
1147 */
1148 mlog_bug_on_msg(ret == -EAGAIN,
1149 "Inode %llu: EAGAIN return during allocation.\n",
1150 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1151 if (ret < 0) {
1152 mlog_errno(ret);
1153 goto out;
1154 }
1155 } else if (clear_unwritten) {
1156 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1157 wc->w_di_bh);
1158 ret = ocfs2_mark_extent_written(inode, &et,
1159 wc->w_handle, cpos, 1, *phys,
1160 meta_ac, &wc->w_dealloc);
1161 if (ret < 0) {
1162 mlog_errno(ret);
1163 goto out;
1164 }
1165 }
1166
1167 /*
1168 * The only reason this should fail is due to an inability to
1169 * find the extent added.
1170 */
1171 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1172 if (ret < 0) {
1173 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1174 "at logical cluster %u",
1175 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1176 goto out;
1177 }
1178
1179 BUG_ON(*phys == 0);
1180
1181 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1182 if (!should_zero)
1183 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1184
1185 for(i = 0; i < wc->w_num_pages; i++) {
1186 int tmpret;
1187
1188 /* This is the direct io target page. */
1189 if (wc->w_pages[i] == NULL) {
1190 p_blkno++;
1191 continue;
1192 }
1193
1194 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1195 wc->w_pages[i], cpos,
1196 user_pos, user_len,
1197 should_zero);
1198 if (tmpret) {
1199 mlog_errno(tmpret);
1200 if (ret == 0)
1201 ret = tmpret;
1202 }
1203 }
1204
1205 /*
1206 * We only have cleanup to do in case of allocating write.
1207 */
1208 if (ret && new)
1209 ocfs2_write_failure(inode, wc, user_pos, user_len);
1210
1211out:
1212
1213 return ret;
1214}
1215
1216static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1217 struct ocfs2_alloc_context *data_ac,
1218 struct ocfs2_alloc_context *meta_ac,
1219 struct ocfs2_write_ctxt *wc,
1220 loff_t pos, unsigned len)
1221{
1222 int ret, i;
1223 loff_t cluster_off;
1224 unsigned int local_len = len;
1225 struct ocfs2_write_cluster_desc *desc;
1226 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1227
1228 for (i = 0; i < wc->w_clen; i++) {
1229 desc = &wc->w_desc[i];
1230
1231 /*
1232 * We have to make sure that the total write passed in
1233 * doesn't extend past a single cluster.
1234 */
1235 local_len = len;
1236 cluster_off = pos & (osb->s_clustersize - 1);
1237 if ((cluster_off + local_len) > osb->s_clustersize)
1238 local_len = osb->s_clustersize - cluster_off;
1239
1240 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1241 desc->c_new,
1242 desc->c_clear_unwritten,
1243 desc->c_needs_zero,
1244 data_ac, meta_ac,
1245 wc, desc->c_cpos, pos, local_len);
1246 if (ret) {
1247 mlog_errno(ret);
1248 goto out;
1249 }
1250
1251 len -= local_len;
1252 pos += local_len;
1253 }
1254
1255 ret = 0;
1256out:
1257 return ret;
1258}
1259
1260/*
1261 * ocfs2_write_end() wants to know which parts of the target page it
1262 * should complete the write on. It's easiest to compute them ahead of
1263 * time when a more complete view of the write is available.
1264 */
1265static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1266 struct ocfs2_write_ctxt *wc,
1267 loff_t pos, unsigned len, int alloc)
1268{
1269 struct ocfs2_write_cluster_desc *desc;
1270
1271 wc->w_target_from = pos & (PAGE_SIZE - 1);
1272 wc->w_target_to = wc->w_target_from + len;
1273
1274 if (alloc == 0)
1275 return;
1276
1277 /*
1278 * Allocating write - we may have different boundaries based
1279 * on page size and cluster size.
1280 *
1281 * NOTE: We can no longer compute one value from the other as
1282 * the actual write length and user provided length may be
1283 * different.
1284 */
1285
1286 if (wc->w_large_pages) {
1287 /*
1288 * We only care about the 1st and last cluster within
1289 * our range and whether they should be zero'd or not. Either
1290 * value may be extended out to the start/end of a
1291 * newly allocated cluster.
1292 */
1293 desc = &wc->w_desc[0];
1294 if (desc->c_needs_zero)
1295 ocfs2_figure_cluster_boundaries(osb,
1296 desc->c_cpos,
1297 &wc->w_target_from,
1298 NULL);
1299
1300 desc = &wc->w_desc[wc->w_clen - 1];
1301 if (desc->c_needs_zero)
1302 ocfs2_figure_cluster_boundaries(osb,
1303 desc->c_cpos,
1304 NULL,
1305 &wc->w_target_to);
1306 } else {
1307 wc->w_target_from = 0;
1308 wc->w_target_to = PAGE_SIZE;
1309 }
1310}
1311
1312/*
1313 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1314 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1315 * by the direct io procedure.
1316 * If this is a new extent that allocated by direct io, we should mark it in
1317 * the ip_unwritten_list.
1318 */
1319static int ocfs2_unwritten_check(struct inode *inode,
1320 struct ocfs2_write_ctxt *wc,
1321 struct ocfs2_write_cluster_desc *desc)
1322{
1323 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1324 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1325 int ret = 0;
1326
1327 if (!desc->c_needs_zero)
1328 return 0;
1329
1330retry:
1331 spin_lock(&oi->ip_lock);
1332 /* Needs not to zero no metter buffer or direct. The one who is zero
1333 * the cluster is doing zero. And he will clear unwritten after all
1334 * cluster io finished. */
1335 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1336 if (desc->c_cpos == ue->ue_cpos) {
1337 BUG_ON(desc->c_new);
1338 desc->c_needs_zero = 0;
1339 desc->c_clear_unwritten = 0;
1340 goto unlock;
1341 }
1342 }
1343
1344 if (wc->w_type != OCFS2_WRITE_DIRECT)
1345 goto unlock;
1346
1347 if (new == NULL) {
1348 spin_unlock(&oi->ip_lock);
1349 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1350 GFP_NOFS);
1351 if (new == NULL) {
1352 ret = -ENOMEM;
1353 goto out;
1354 }
1355 goto retry;
1356 }
1357 /* This direct write will doing zero. */
1358 new->ue_cpos = desc->c_cpos;
1359 new->ue_phys = desc->c_phys;
1360 desc->c_clear_unwritten = 0;
1361 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1362 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1363 wc->w_unwritten_count++;
1364 new = NULL;
1365unlock:
1366 spin_unlock(&oi->ip_lock);
1367out:
1368 kfree(new);
1369 return ret;
1370}
1371
1372/*
1373 * Populate each single-cluster write descriptor in the write context
1374 * with information about the i/o to be done.
1375 *
1376 * Returns the number of clusters that will have to be allocated, as
1377 * well as a worst case estimate of the number of extent records that
1378 * would have to be created during a write to an unwritten region.
1379 */
1380static int ocfs2_populate_write_desc(struct inode *inode,
1381 struct ocfs2_write_ctxt *wc,
1382 unsigned int *clusters_to_alloc,
1383 unsigned int *extents_to_split)
1384{
1385 int ret;
1386 struct ocfs2_write_cluster_desc *desc;
1387 unsigned int num_clusters = 0;
1388 unsigned int ext_flags = 0;
1389 u32 phys = 0;
1390 int i;
1391
1392 *clusters_to_alloc = 0;
1393 *extents_to_split = 0;
1394
1395 for (i = 0; i < wc->w_clen; i++) {
1396 desc = &wc->w_desc[i];
1397 desc->c_cpos = wc->w_cpos + i;
1398
1399 if (num_clusters == 0) {
1400 /*
1401 * Need to look up the next extent record.
1402 */
1403 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1404 &num_clusters, &ext_flags);
1405 if (ret) {
1406 mlog_errno(ret);
1407 goto out;
1408 }
1409
1410 /* We should already CoW the refcountd extent. */
1411 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1412
1413 /*
1414 * Assume worst case - that we're writing in
1415 * the middle of the extent.
1416 *
1417 * We can assume that the write proceeds from
1418 * left to right, in which case the extent
1419 * insert code is smart enough to coalesce the
1420 * next splits into the previous records created.
1421 */
1422 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1423 *extents_to_split = *extents_to_split + 2;
1424 } else if (phys) {
1425 /*
1426 * Only increment phys if it doesn't describe
1427 * a hole.
1428 */
1429 phys++;
1430 }
1431
1432 /*
1433 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1434 * file that got extended. w_first_new_cpos tells us
1435 * where the newly allocated clusters are so we can
1436 * zero them.
1437 */
1438 if (desc->c_cpos >= wc->w_first_new_cpos) {
1439 BUG_ON(phys == 0);
1440 desc->c_needs_zero = 1;
1441 }
1442
1443 desc->c_phys = phys;
1444 if (phys == 0) {
1445 desc->c_new = 1;
1446 desc->c_needs_zero = 1;
1447 desc->c_clear_unwritten = 1;
1448 *clusters_to_alloc = *clusters_to_alloc + 1;
1449 }
1450
1451 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1452 desc->c_clear_unwritten = 1;
1453 desc->c_needs_zero = 1;
1454 }
1455
1456 ret = ocfs2_unwritten_check(inode, wc, desc);
1457 if (ret) {
1458 mlog_errno(ret);
1459 goto out;
1460 }
1461
1462 num_clusters--;
1463 }
1464
1465 ret = 0;
1466out:
1467 return ret;
1468}
1469
1470static int ocfs2_write_begin_inline(struct address_space *mapping,
1471 struct inode *inode,
1472 struct ocfs2_write_ctxt *wc)
1473{
1474 int ret;
1475 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476 struct page *page;
1477 handle_t *handle;
1478 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1479
1480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481 if (IS_ERR(handle)) {
1482 ret = PTR_ERR(handle);
1483 mlog_errno(ret);
1484 goto out;
1485 }
1486
1487 page = find_or_create_page(mapping, 0, GFP_NOFS);
1488 if (!page) {
1489 ocfs2_commit_trans(osb, handle);
1490 ret = -ENOMEM;
1491 mlog_errno(ret);
1492 goto out;
1493 }
1494 /*
1495 * If we don't set w_num_pages then this page won't get unlocked
1496 * and freed on cleanup of the write context.
1497 */
1498 wc->w_pages[0] = wc->w_target_page = page;
1499 wc->w_num_pages = 1;
1500
1501 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1502 OCFS2_JOURNAL_ACCESS_WRITE);
1503 if (ret) {
1504 ocfs2_commit_trans(osb, handle);
1505
1506 mlog_errno(ret);
1507 goto out;
1508 }
1509
1510 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1511 ocfs2_set_inode_data_inline(inode, di);
1512
1513 if (!PageUptodate(page)) {
1514 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1515 if (ret) {
1516 ocfs2_commit_trans(osb, handle);
1517
1518 goto out;
1519 }
1520 }
1521
1522 wc->w_handle = handle;
1523out:
1524 return ret;
1525}
1526
1527int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1528{
1529 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1530
1531 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1532 return 1;
1533 return 0;
1534}
1535
1536static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1537 struct inode *inode, loff_t pos,
1538 unsigned len, struct page *mmap_page,
1539 struct ocfs2_write_ctxt *wc)
1540{
1541 int ret, written = 0;
1542 loff_t end = pos + len;
1543 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1544 struct ocfs2_dinode *di = NULL;
1545
1546 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1547 len, (unsigned long long)pos,
1548 oi->ip_dyn_features);
1549
1550 /*
1551 * Handle inodes which already have inline data 1st.
1552 */
1553 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1554 if (mmap_page == NULL &&
1555 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1556 goto do_inline_write;
1557
1558 /*
1559 * The write won't fit - we have to give this inode an
1560 * inline extent list now.
1561 */
1562 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1563 if (ret)
1564 mlog_errno(ret);
1565 goto out;
1566 }
1567
1568 /*
1569 * Check whether the inode can accept inline data.
1570 */
1571 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1572 return 0;
1573
1574 /*
1575 * Check whether the write can fit.
1576 */
1577 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1578 if (mmap_page ||
1579 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1580 return 0;
1581
1582do_inline_write:
1583 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1584 if (ret) {
1585 mlog_errno(ret);
1586 goto out;
1587 }
1588
1589 /*
1590 * This signals to the caller that the data can be written
1591 * inline.
1592 */
1593 written = 1;
1594out:
1595 return written ? written : ret;
1596}
1597
1598/*
1599 * This function only does anything for file systems which can't
1600 * handle sparse files.
1601 *
1602 * What we want to do here is fill in any hole between the current end
1603 * of allocation and the end of our write. That way the rest of the
1604 * write path can treat it as an non-allocating write, which has no
1605 * special case code for sparse/nonsparse files.
1606 */
1607static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1608 struct buffer_head *di_bh,
1609 loff_t pos, unsigned len,
1610 struct ocfs2_write_ctxt *wc)
1611{
1612 int ret;
1613 loff_t newsize = pos + len;
1614
1615 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1616
1617 if (newsize <= i_size_read(inode))
1618 return 0;
1619
1620 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1621 if (ret)
1622 mlog_errno(ret);
1623
1624 /* There is no wc if this is call from direct. */
1625 if (wc)
1626 wc->w_first_new_cpos =
1627 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1628
1629 return ret;
1630}
1631
1632static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1633 loff_t pos)
1634{
1635 int ret = 0;
1636
1637 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1638 if (pos > i_size_read(inode))
1639 ret = ocfs2_zero_extend(inode, di_bh, pos);
1640
1641 return ret;
1642}
1643
1644int ocfs2_write_begin_nolock(struct address_space *mapping,
1645 loff_t pos, unsigned len, ocfs2_write_type_t type,
1646 struct page **pagep, void **fsdata,
1647 struct buffer_head *di_bh, struct page *mmap_page)
1648{
1649 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1650 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1651 struct ocfs2_write_ctxt *wc;
1652 struct inode *inode = mapping->host;
1653 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1654 struct ocfs2_dinode *di;
1655 struct ocfs2_alloc_context *data_ac = NULL;
1656 struct ocfs2_alloc_context *meta_ac = NULL;
1657 handle_t *handle;
1658 struct ocfs2_extent_tree et;
1659 int try_free = 1, ret1;
1660
1661try_again:
1662 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1663 if (ret) {
1664 mlog_errno(ret);
1665 return ret;
1666 }
1667
1668 if (ocfs2_supports_inline_data(osb)) {
1669 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1670 mmap_page, wc);
1671 if (ret == 1) {
1672 ret = 0;
1673 goto success;
1674 }
1675 if (ret < 0) {
1676 mlog_errno(ret);
1677 goto out;
1678 }
1679 }
1680
1681 /* Direct io change i_size late, should not zero tail here. */
1682 if (type != OCFS2_WRITE_DIRECT) {
1683 if (ocfs2_sparse_alloc(osb))
1684 ret = ocfs2_zero_tail(inode, di_bh, pos);
1685 else
1686 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1687 len, wc);
1688 if (ret) {
1689 mlog_errno(ret);
1690 goto out;
1691 }
1692 }
1693
1694 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1695 if (ret < 0) {
1696 mlog_errno(ret);
1697 goto out;
1698 } else if (ret == 1) {
1699 clusters_need = wc->w_clen;
1700 ret = ocfs2_refcount_cow(inode, di_bh,
1701 wc->w_cpos, wc->w_clen, UINT_MAX);
1702 if (ret) {
1703 mlog_errno(ret);
1704 goto out;
1705 }
1706 }
1707
1708 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1709 &extents_to_split);
1710 if (ret) {
1711 mlog_errno(ret);
1712 goto out;
1713 }
1714 clusters_need += clusters_to_alloc;
1715
1716 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717
1718 trace_ocfs2_write_begin_nolock(
1719 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1720 (long long)i_size_read(inode),
1721 le32_to_cpu(di->i_clusters),
1722 pos, len, type, mmap_page,
1723 clusters_to_alloc, extents_to_split);
1724
1725 /*
1726 * We set w_target_from, w_target_to here so that
1727 * ocfs2_write_end() knows which range in the target page to
1728 * write out. An allocation requires that we write the entire
1729 * cluster range.
1730 */
1731 if (clusters_to_alloc || extents_to_split) {
1732 /*
1733 * XXX: We are stretching the limits of
1734 * ocfs2_lock_allocators(). It greatly over-estimates
1735 * the work to be done.
1736 */
1737 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1738 wc->w_di_bh);
1739 ret = ocfs2_lock_allocators(inode, &et,
1740 clusters_to_alloc, extents_to_split,
1741 &data_ac, &meta_ac);
1742 if (ret) {
1743 mlog_errno(ret);
1744 goto out;
1745 }
1746
1747 if (data_ac)
1748 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1749
1750 credits = ocfs2_calc_extend_credits(inode->i_sb,
1751 &di->id2.i_list);
1752 } else if (type == OCFS2_WRITE_DIRECT)
1753 /* direct write needs not to start trans if no extents alloc. */
1754 goto success;
1755
1756 /*
1757 * We have to zero sparse allocated clusters, unwritten extent clusters,
1758 * and non-sparse clusters we just extended. For non-sparse writes,
1759 * we know zeros will only be needed in the first and/or last cluster.
1760 */
1761 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1762 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1763 cluster_of_pages = 1;
1764 else
1765 cluster_of_pages = 0;
1766
1767 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1768
1769 handle = ocfs2_start_trans(osb, credits);
1770 if (IS_ERR(handle)) {
1771 ret = PTR_ERR(handle);
1772 mlog_errno(ret);
1773 goto out;
1774 }
1775
1776 wc->w_handle = handle;
1777
1778 if (clusters_to_alloc) {
1779 ret = dquot_alloc_space_nodirty(inode,
1780 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1781 if (ret)
1782 goto out_commit;
1783 }
1784
1785 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1786 OCFS2_JOURNAL_ACCESS_WRITE);
1787 if (ret) {
1788 mlog_errno(ret);
1789 goto out_quota;
1790 }
1791
1792 /*
1793 * Fill our page array first. That way we've grabbed enough so
1794 * that we can zero and flush if we error after adding the
1795 * extent.
1796 */
1797 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1798 cluster_of_pages, mmap_page);
1799 if (ret) {
1800 /*
1801 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1802 * the target page. In this case, we exit with no error and no target
1803 * page. This will trigger the caller, page_mkwrite(), to re-try
1804 * the operation.
1805 */
1806 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1807 BUG_ON(wc->w_target_page);
1808 ret = 0;
1809 goto out_quota;
1810 }
1811
1812 mlog_errno(ret);
1813 goto out_quota;
1814 }
1815
1816 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817 len);
1818 if (ret) {
1819 mlog_errno(ret);
1820 goto out_quota;
1821 }
1822
1823 if (data_ac)
1824 ocfs2_free_alloc_context(data_ac);
1825 if (meta_ac)
1826 ocfs2_free_alloc_context(meta_ac);
1827
1828success:
1829 if (pagep)
1830 *pagep = wc->w_target_page;
1831 *fsdata = wc;
1832 return 0;
1833out_quota:
1834 if (clusters_to_alloc)
1835 dquot_free_space(inode,
1836 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1837out_commit:
1838 ocfs2_commit_trans(osb, handle);
1839
1840out:
1841 /*
1842 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1843 * even in case of error here like ENOSPC and ENOMEM. So, we need
1844 * to unlock the target page manually to prevent deadlocks when
1845 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1846 * to VM code.
1847 */
1848 if (wc->w_target_locked)
1849 unlock_page(mmap_page);
1850
1851 ocfs2_free_write_ctxt(inode, wc);
1852
1853 if (data_ac) {
1854 ocfs2_free_alloc_context(data_ac);
1855 data_ac = NULL;
1856 }
1857 if (meta_ac) {
1858 ocfs2_free_alloc_context(meta_ac);
1859 meta_ac = NULL;
1860 }
1861
1862 if (ret == -ENOSPC && try_free) {
1863 /*
1864 * Try to free some truncate log so that we can have enough
1865 * clusters to allocate.
1866 */
1867 try_free = 0;
1868
1869 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1870 if (ret1 == 1)
1871 goto try_again;
1872
1873 if (ret1 < 0)
1874 mlog_errno(ret1);
1875 }
1876
1877 return ret;
1878}
1879
1880static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1881 loff_t pos, unsigned len,
1882 struct page **pagep, void **fsdata)
1883{
1884 int ret;
1885 struct buffer_head *di_bh = NULL;
1886 struct inode *inode = mapping->host;
1887
1888 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1889 if (ret) {
1890 mlog_errno(ret);
1891 return ret;
1892 }
1893
1894 /*
1895 * Take alloc sem here to prevent concurrent lookups. That way
1896 * the mapping, zeroing and tree manipulation within
1897 * ocfs2_write() will be safe against ->read_folio(). This
1898 * should also serve to lock out allocation from a shared
1899 * writeable region.
1900 */
1901 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902
1903 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1904 pagep, fsdata, di_bh, NULL);
1905 if (ret) {
1906 mlog_errno(ret);
1907 goto out_fail;
1908 }
1909
1910 brelse(di_bh);
1911
1912 return 0;
1913
1914out_fail:
1915 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916
1917 brelse(di_bh);
1918 ocfs2_inode_unlock(inode, 1);
1919
1920 return ret;
1921}
1922
1923static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1924 unsigned len, unsigned *copied,
1925 struct ocfs2_dinode *di,
1926 struct ocfs2_write_ctxt *wc)
1927{
1928 void *kaddr;
1929
1930 if (unlikely(*copied < len)) {
1931 if (!PageUptodate(wc->w_target_page)) {
1932 *copied = 0;
1933 return;
1934 }
1935 }
1936
1937 kaddr = kmap_atomic(wc->w_target_page);
1938 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1939 kunmap_atomic(kaddr);
1940
1941 trace_ocfs2_write_end_inline(
1942 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1943 (unsigned long long)pos, *copied,
1944 le16_to_cpu(di->id2.i_data.id_count),
1945 le16_to_cpu(di->i_dyn_features));
1946}
1947
1948int ocfs2_write_end_nolock(struct address_space *mapping,
1949 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1950{
1951 int i, ret;
1952 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1953 struct inode *inode = mapping->host;
1954 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1955 struct ocfs2_write_ctxt *wc = fsdata;
1956 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1957 handle_t *handle = wc->w_handle;
1958 struct page *tmppage;
1959
1960 BUG_ON(!list_empty(&wc->w_unwritten_list));
1961
1962 if (handle) {
1963 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1964 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1965 if (ret) {
1966 copied = ret;
1967 mlog_errno(ret);
1968 goto out;
1969 }
1970 }
1971
1972 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1973 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1974 goto out_write_size;
1975 }
1976
1977 if (unlikely(copied < len) && wc->w_target_page) {
1978 loff_t new_isize;
1979
1980 if (!PageUptodate(wc->w_target_page))
1981 copied = 0;
1982
1983 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1984 if (new_isize > page_offset(wc->w_target_page))
1985 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986 start+len);
1987 else {
1988 /*
1989 * When page is fully beyond new isize (data copy
1990 * failed), do not bother zeroing the page. Invalidate
1991 * it instead so that writeback does not get confused
1992 * put page & buffer dirty bits into inconsistent
1993 * state.
1994 */
1995 block_invalidate_folio(page_folio(wc->w_target_page),
1996 0, PAGE_SIZE);
1997 }
1998 }
1999 if (wc->w_target_page)
2000 flush_dcache_page(wc->w_target_page);
2001
2002 for(i = 0; i < wc->w_num_pages; i++) {
2003 tmppage = wc->w_pages[i];
2004
2005 /* This is the direct io target page. */
2006 if (tmppage == NULL)
2007 continue;
2008
2009 if (tmppage == wc->w_target_page) {
2010 from = wc->w_target_from;
2011 to = wc->w_target_to;
2012
2013 BUG_ON(from > PAGE_SIZE ||
2014 to > PAGE_SIZE ||
2015 to < from);
2016 } else {
2017 /*
2018 * Pages adjacent to the target (if any) imply
2019 * a hole-filling write in which case we want
2020 * to flush their entire range.
2021 */
2022 from = 0;
2023 to = PAGE_SIZE;
2024 }
2025
2026 if (page_has_buffers(tmppage)) {
2027 if (handle && ocfs2_should_order_data(inode)) {
2028 loff_t start_byte =
2029 ((loff_t)tmppage->index << PAGE_SHIFT) +
2030 from;
2031 loff_t length = to - from;
2032 ocfs2_jbd2_inode_add_write(handle, inode,
2033 start_byte, length);
2034 }
2035 block_commit_write(tmppage, from, to);
2036 }
2037 }
2038
2039out_write_size:
2040 /* Direct io do not update i_size here. */
2041 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 pos += copied;
2043 if (pos > i_size_read(inode)) {
2044 i_size_write(inode, pos);
2045 mark_inode_dirty(inode);
2046 }
2047 inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2050 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2051 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2052 if (handle)
2053 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 }
2055 if (handle)
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058out:
2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 * lock, or it will cause a deadlock since journal commit threads holds
2061 * this lock and will ask for the page lock when flushing the data.
2062 * put it here to preserve the unlock order.
2063 */
2064 ocfs2_unlock_pages(wc);
2065
2066 if (handle)
2067 ocfs2_commit_trans(osb, handle);
2068
2069 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071 brelse(wc->w_di_bh);
2072 kfree(wc);
2073
2074 return copied;
2075}
2076
2077static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 loff_t pos, unsigned len, unsigned copied,
2079 struct page *page, void *fsdata)
2080{
2081 int ret;
2082 struct inode *inode = mapping->host;
2083
2084 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 ocfs2_inode_unlock(inode, 1);
2088
2089 return ret;
2090}
2091
2092struct ocfs2_dio_write_ctxt {
2093 struct list_head dw_zero_list;
2094 unsigned dw_zero_count;
2095 int dw_orphaned;
2096 pid_t dw_writer_pid;
2097};
2098
2099static struct ocfs2_dio_write_ctxt *
2100ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101{
2102 struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104 if (bh->b_private)
2105 return bh->b_private;
2106
2107 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 if (dwc == NULL)
2109 return NULL;
2110 INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 dwc->dw_zero_count = 0;
2112 dwc->dw_orphaned = 0;
2113 dwc->dw_writer_pid = task_pid_nr(current);
2114 bh->b_private = dwc;
2115 *alloc = 1;
2116
2117 return dwc;
2118}
2119
2120static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 struct ocfs2_dio_write_ctxt *dwc)
2122{
2123 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 kfree(dwc);
2125}
2126
2127/*
2128 * TODO: Make this into a generic get_blocks function.
2129 *
2130 * From do_direct_io in direct-io.c:
2131 * "So what we do is to permit the ->get_blocks function to populate
2132 * bh.b_size with the size of IO which is permitted at this offset and
2133 * this i_blkbits."
2134 *
2135 * This function is called directly from get_more_blocks in direct-io.c.
2136 *
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 * fs_count, map_bh, dio->rw == WRITE);
2139 */
2140static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 struct buffer_head *bh_result, int create)
2142{
2143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 struct ocfs2_write_ctxt *wc;
2146 struct ocfs2_write_cluster_desc *desc = NULL;
2147 struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 struct buffer_head *di_bh = NULL;
2149 u64 p_blkno;
2150 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 loff_t pos = iblock << i_blkbits;
2152 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 unsigned len, total_len = bh_result->b_size;
2154 int ret = 0, first_get_block = 0;
2155
2156 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 len = min(total_len, len);
2158
2159 /*
2160 * bh_result->b_size is count in get_more_blocks according to write
2161 * "pos" and "end", we need map twice to return different buffer state:
2162 * 1. area in file size, not set NEW;
2163 * 2. area out file size, set NEW.
2164 *
2165 * iblock endblk
2166 * |--------|---------|---------|---------
2167 * |<-------area in file------->|
2168 */
2169
2170 if ((iblock <= endblk) &&
2171 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 len = (endblk - iblock + 1) << i_blkbits;
2173
2174 mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 inode->i_ino, pos, len, total_len);
2176
2177 /*
2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 * we may need to add it to orphan dir. So can not fall to fast path
2180 * while file size will be changed.
2181 */
2182 if (pos + total_len <= i_size_read(inode)) {
2183
2184 /* This is the fast path for re-write. */
2185 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 if (buffer_mapped(bh_result) &&
2187 !buffer_new(bh_result) &&
2188 ret == 0)
2189 goto out;
2190
2191 /* Clear state set by ocfs2_get_block. */
2192 bh_result->b_state = 0;
2193 }
2194
2195 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 if (unlikely(dwc == NULL)) {
2197 ret = -ENOMEM;
2198 mlog_errno(ret);
2199 goto out;
2200 }
2201
2202 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 !dwc->dw_orphaned) {
2205 /*
2206 * when we are going to alloc extents beyond file size, add the
2207 * inode to orphan dir, so we can recall those spaces when
2208 * system crashed during write.
2209 */
2210 ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 if (ret < 0) {
2212 mlog_errno(ret);
2213 goto out;
2214 }
2215 dwc->dw_orphaned = 1;
2216 }
2217
2218 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 if (ret) {
2220 mlog_errno(ret);
2221 goto out;
2222 }
2223
2224 down_write(&oi->ip_alloc_sem);
2225
2226 if (first_get_block) {
2227 if (ocfs2_sparse_alloc(osb))
2228 ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 else
2230 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 total_len, NULL);
2232 if (ret < 0) {
2233 mlog_errno(ret);
2234 goto unlock;
2235 }
2236 }
2237
2238 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 OCFS2_WRITE_DIRECT, NULL,
2240 (void **)&wc, di_bh, NULL);
2241 if (ret) {
2242 mlog_errno(ret);
2243 goto unlock;
2244 }
2245
2246 desc = &wc->w_desc[0];
2247
2248 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 BUG_ON(p_blkno == 0);
2250 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252 map_bh(bh_result, inode->i_sb, p_blkno);
2253 bh_result->b_size = len;
2254 if (desc->c_needs_zero)
2255 set_buffer_new(bh_result);
2256
2257 if (iblock > endblk)
2258 set_buffer_new(bh_result);
2259
2260 /* May sleep in end_io. It should not happen in a irq context. So defer
2261 * it to dio work queue. */
2262 set_buffer_defer_completion(bh_result);
2263
2264 if (!list_empty(&wc->w_unwritten_list)) {
2265 struct ocfs2_unwritten_extent *ue = NULL;
2266
2267 ue = list_first_entry(&wc->w_unwritten_list,
2268 struct ocfs2_unwritten_extent,
2269 ue_node);
2270 BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 /* The physical address may be 0, fill it. */
2272 ue->ue_phys = desc->c_phys;
2273
2274 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 dwc->dw_zero_count += wc->w_unwritten_count;
2276 }
2277
2278 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 BUG_ON(ret != len);
2280 ret = 0;
2281unlock:
2282 up_write(&oi->ip_alloc_sem);
2283 ocfs2_inode_unlock(inode, 1);
2284 brelse(di_bh);
2285out:
2286 if (ret < 0)
2287 ret = -EIO;
2288 return ret;
2289}
2290
2291static int ocfs2_dio_end_io_write(struct inode *inode,
2292 struct ocfs2_dio_write_ctxt *dwc,
2293 loff_t offset,
2294 ssize_t bytes)
2295{
2296 struct ocfs2_cached_dealloc_ctxt dealloc;
2297 struct ocfs2_extent_tree et;
2298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300 struct ocfs2_unwritten_extent *ue = NULL;
2301 struct buffer_head *di_bh = NULL;
2302 struct ocfs2_dinode *di;
2303 struct ocfs2_alloc_context *data_ac = NULL;
2304 struct ocfs2_alloc_context *meta_ac = NULL;
2305 handle_t *handle = NULL;
2306 loff_t end = offset + bytes;
2307 int ret = 0, credits = 0;
2308
2309 ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311 /* We do clear unwritten, delete orphan, change i_size here. If neither
2312 * of these happen, we can skip all this. */
2313 if (list_empty(&dwc->dw_zero_list) &&
2314 end <= i_size_read(inode) &&
2315 !dwc->dw_orphaned)
2316 goto out;
2317
2318 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319 if (ret < 0) {
2320 mlog_errno(ret);
2321 goto out;
2322 }
2323
2324 down_write(&oi->ip_alloc_sem);
2325
2326 /* Delete orphan before acquire i_rwsem. */
2327 if (dwc->dw_orphaned) {
2328 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329
2330 end = end > i_size_read(inode) ? end : 0;
2331
2332 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333 !!end, end);
2334 if (ret < 0)
2335 mlog_errno(ret);
2336 }
2337
2338 di = (struct ocfs2_dinode *)di_bh->b_data;
2339
2340 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341
2342 /* Attach dealloc with extent tree in case that we may reuse extents
2343 * which are already unlinked from current extent tree due to extent
2344 * rotation and merging.
2345 */
2346 et.et_dealloc = &dealloc;
2347
2348 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2349 &data_ac, &meta_ac);
2350 if (ret) {
2351 mlog_errno(ret);
2352 goto unlock;
2353 }
2354
2355 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2356
2357 handle = ocfs2_start_trans(osb, credits);
2358 if (IS_ERR(handle)) {
2359 ret = PTR_ERR(handle);
2360 mlog_errno(ret);
2361 goto unlock;
2362 }
2363 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2364 OCFS2_JOURNAL_ACCESS_WRITE);
2365 if (ret) {
2366 mlog_errno(ret);
2367 goto commit;
2368 }
2369
2370 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2371 ret = ocfs2_mark_extent_written(inode, &et, handle,
2372 ue->ue_cpos, 1,
2373 ue->ue_phys,
2374 meta_ac, &dealloc);
2375 if (ret < 0) {
2376 mlog_errno(ret);
2377 break;
2378 }
2379 }
2380
2381 if (end > i_size_read(inode)) {
2382 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2383 if (ret < 0)
2384 mlog_errno(ret);
2385 }
2386commit:
2387 ocfs2_commit_trans(osb, handle);
2388unlock:
2389 up_write(&oi->ip_alloc_sem);
2390 ocfs2_inode_unlock(inode, 1);
2391 brelse(di_bh);
2392out:
2393 if (data_ac)
2394 ocfs2_free_alloc_context(data_ac);
2395 if (meta_ac)
2396 ocfs2_free_alloc_context(meta_ac);
2397 ocfs2_run_deallocs(osb, &dealloc);
2398 ocfs2_dio_free_write_ctx(inode, dwc);
2399
2400 return ret;
2401}
2402
2403/*
2404 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2405 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2406 * to protect io on one node from truncation on another.
2407 */
2408static int ocfs2_dio_end_io(struct kiocb *iocb,
2409 loff_t offset,
2410 ssize_t bytes,
2411 void *private)
2412{
2413 struct inode *inode = file_inode(iocb->ki_filp);
2414 int level;
2415 int ret = 0;
2416
2417 /* this io's submitter should not have unlocked this before we could */
2418 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2419
2420 if (bytes <= 0)
2421 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2422 (long long)bytes);
2423 if (private) {
2424 if (bytes > 0)
2425 ret = ocfs2_dio_end_io_write(inode, private, offset,
2426 bytes);
2427 else
2428 ocfs2_dio_free_write_ctx(inode, private);
2429 }
2430
2431 ocfs2_iocb_clear_rw_locked(iocb);
2432
2433 level = ocfs2_iocb_rw_locked_level(iocb);
2434 ocfs2_rw_unlock(inode, level);
2435 return ret;
2436}
2437
2438static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2439{
2440 struct file *file = iocb->ki_filp;
2441 struct inode *inode = file->f_mapping->host;
2442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2443 get_block_t *get_block;
2444
2445 /*
2446 * Fallback to buffered I/O if we see an inode without
2447 * extents.
2448 */
2449 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2450 return 0;
2451
2452 /* Fallback to buffered I/O if we do not support append dio. */
2453 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2454 !ocfs2_supports_append_dio(osb))
2455 return 0;
2456
2457 if (iov_iter_rw(iter) == READ)
2458 get_block = ocfs2_lock_get_block;
2459 else
2460 get_block = ocfs2_dio_wr_get_block;
2461
2462 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2463 iter, get_block,
2464 ocfs2_dio_end_io, 0);
2465}
2466
2467const struct address_space_operations ocfs2_aops = {
2468 .dirty_folio = block_dirty_folio,
2469 .read_folio = ocfs2_read_folio,
2470 .readahead = ocfs2_readahead,
2471 .writepages = ocfs2_writepages,
2472 .write_begin = ocfs2_write_begin,
2473 .write_end = ocfs2_write_end,
2474 .bmap = ocfs2_bmap,
2475 .direct_IO = ocfs2_direct_IO,
2476 .invalidate_folio = block_invalidate_folio,
2477 .release_folio = ocfs2_release_folio,
2478 .migrate_folio = buffer_migrate_folio,
2479 .is_partially_uptodate = block_is_partially_uptodate,
2480 .error_remove_folio = generic_error_remove_folio,
2481};