Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
 
 
 
 
 
 
 
 
 
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97#define RELOCATION_RESERVED_NODES	256
  98
  99struct backref_cache {
 100	/* red black tree of all backref nodes in the cache */
 101	struct rb_root rb_root;
 102	/* for passing backref nodes to btrfs_reloc_cow_block */
 103	struct backref_node *path[BTRFS_MAX_LEVEL];
 104	/*
 105	 * list of blocks that have been cowed but some block
 106	 * pointers in upper level blocks may not reflect the
 107	 * new location
 108	 */
 109	struct list_head pending[BTRFS_MAX_LEVEL];
 110	/* list of backref nodes with no child node */
 111	struct list_head leaves;
 112	/* list of blocks that have been cowed in current transaction */
 113	struct list_head changed;
 114	/* list of detached backref node. */
 115	struct list_head detached;
 116
 117	u64 last_trans;
 118
 119	int nr_nodes;
 120	int nr_edges;
 121};
 122
 123/*
 124 * map address of tree root to tree
 125 */
 126struct mapping_node {
 127	struct rb_node rb_node;
 128	u64 bytenr;
 
 
 129	void *data;
 130};
 131
 132struct mapping_tree {
 133	struct rb_root rb_root;
 134	spinlock_t lock;
 135};
 136
 137/*
 138 * present a tree block to process
 139 */
 140struct tree_block {
 141	struct rb_node rb_node;
 142	u64 bytenr;
 
 
 
 143	struct btrfs_key key;
 144	unsigned int level:8;
 145	unsigned int key_ready:1;
 146};
 147
 148#define MAX_EXTENTS 128
 149
 150struct file_extent_cluster {
 151	u64 start;
 152	u64 end;
 153	u64 boundary[MAX_EXTENTS];
 154	unsigned int nr;
 
 
 
 
 
 
 
 155};
 156
 157struct reloc_control {
 158	/* block group to relocate */
 159	struct btrfs_block_group_cache *block_group;
 160	/* extent tree */
 161	struct btrfs_root *extent_root;
 162	/* inode for moving data */
 163	struct inode *data_inode;
 164
 165	struct btrfs_block_rsv *block_rsv;
 166
 167	struct backref_cache backref_cache;
 168
 169	struct file_extent_cluster cluster;
 170	/* tree blocks have been processed */
 171	struct extent_io_tree processed_blocks;
 172	/* map start of tree root to corresponding reloc tree */
 173	struct mapping_tree reloc_root_tree;
 174	/* list of reloc trees */
 175	struct list_head reloc_roots;
 
 
 176	/* size of metadata reservation for merging reloc trees */
 177	u64 merging_rsv_size;
 178	/* size of relocated tree nodes */
 179	u64 nodes_relocated;
 180	/* reserved size for block group relocation*/
 181	u64 reserved_bytes;
 182
 183	u64 search_start;
 184	u64 extents_found;
 185
 186	unsigned int stage:8;
 187	unsigned int create_reloc_tree:1;
 188	unsigned int merge_reloc_tree:1;
 189	unsigned int found_file_extent:1;
 190};
 191
 192/* stages of data relocation */
 193#define MOVE_DATA_EXTENTS	0
 194#define UPDATE_DATA_PTRS	1
 195
 196static void remove_backref_node(struct backref_cache *cache,
 197				struct backref_node *node);
 198static void __mark_block_processed(struct reloc_control *rc,
 199				   struct backref_node *node);
 200
 201static void mapping_tree_init(struct mapping_tree *tree)
 202{
 203	tree->rb_root = RB_ROOT;
 204	spin_lock_init(&tree->lock);
 205}
 206
 207static void backref_cache_init(struct backref_cache *cache)
 208{
 209	int i;
 210	cache->rb_root = RB_ROOT;
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 212		INIT_LIST_HEAD(&cache->pending[i]);
 213	INIT_LIST_HEAD(&cache->changed);
 214	INIT_LIST_HEAD(&cache->detached);
 215	INIT_LIST_HEAD(&cache->leaves);
 216}
 217
 218static void backref_cache_cleanup(struct backref_cache *cache)
 219{
 220	struct backref_node *node;
 221	int i;
 222
 223	while (!list_empty(&cache->detached)) {
 224		node = list_entry(cache->detached.next,
 225				  struct backref_node, list);
 226		remove_backref_node(cache, node);
 227	}
 228
 229	while (!list_empty(&cache->leaves)) {
 230		node = list_entry(cache->leaves.next,
 231				  struct backref_node, lower);
 232		remove_backref_node(cache, node);
 233	}
 234
 235	cache->last_trans = 0;
 236
 237	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 238		BUG_ON(!list_empty(&cache->pending[i]));
 239	BUG_ON(!list_empty(&cache->changed));
 240	BUG_ON(!list_empty(&cache->detached));
 241	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 242	BUG_ON(cache->nr_nodes);
 243	BUG_ON(cache->nr_edges);
 244}
 245
 246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 247{
 248	struct backref_node *node;
 249
 250	node = kzalloc(sizeof(*node), GFP_NOFS);
 251	if (node) {
 252		INIT_LIST_HEAD(&node->list);
 253		INIT_LIST_HEAD(&node->upper);
 254		INIT_LIST_HEAD(&node->lower);
 255		RB_CLEAR_NODE(&node->rb_node);
 256		cache->nr_nodes++;
 257	}
 258	return node;
 259}
 260
 261static void free_backref_node(struct backref_cache *cache,
 262			      struct backref_node *node)
 263{
 264	if (node) {
 265		cache->nr_nodes--;
 266		kfree(node);
 267	}
 268}
 269
 270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 271{
 272	struct backref_edge *edge;
 273
 274	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 275	if (edge)
 276		cache->nr_edges++;
 277	return edge;
 278}
 279
 280static void free_backref_edge(struct backref_cache *cache,
 281			      struct backref_edge *edge)
 282{
 283	if (edge) {
 284		cache->nr_edges--;
 285		kfree(edge);
 286	}
 287}
 288
 289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 290				   struct rb_node *node)
 291{
 292	struct rb_node **p = &root->rb_node;
 293	struct rb_node *parent = NULL;
 294	struct tree_entry *entry;
 295
 296	while (*p) {
 297		parent = *p;
 298		entry = rb_entry(parent, struct tree_entry, rb_node);
 299
 300		if (bytenr < entry->bytenr)
 301			p = &(*p)->rb_left;
 302		else if (bytenr > entry->bytenr)
 303			p = &(*p)->rb_right;
 304		else
 305			return parent;
 306	}
 307
 308	rb_link_node(node, parent, p);
 309	rb_insert_color(node, root);
 310	return NULL;
 311}
 312
 313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 314{
 315	struct rb_node *n = root->rb_node;
 316	struct tree_entry *entry;
 317
 318	while (n) {
 319		entry = rb_entry(n, struct tree_entry, rb_node);
 320
 321		if (bytenr < entry->bytenr)
 322			n = n->rb_left;
 323		else if (bytenr > entry->bytenr)
 324			n = n->rb_right;
 325		else
 326			return n;
 327	}
 328	return NULL;
 329}
 330
 331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 332{
 333
 334	struct btrfs_fs_info *fs_info = NULL;
 335	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 336					      rb_node);
 337	if (bnode->root)
 338		fs_info = bnode->root->fs_info;
 339	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 340		    "found at offset %llu\n", bytenr);
 341}
 342
 343/*
 344 * walk up backref nodes until reach node presents tree root
 345 */
 346static struct backref_node *walk_up_backref(struct backref_node *node,
 347					    struct backref_edge *edges[],
 348					    int *index)
 349{
 350	struct backref_edge *edge;
 351	int idx = *index;
 352
 353	while (!list_empty(&node->upper)) {
 354		edge = list_entry(node->upper.next,
 355				  struct backref_edge, list[LOWER]);
 356		edges[idx++] = edge;
 357		node = edge->node[UPPER];
 358	}
 359	BUG_ON(node->detached);
 360	*index = idx;
 361	return node;
 362}
 363
 364/*
 365 * walk down backref nodes to find start of next reference path
 366 */
 367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 368					      int *index)
 369{
 370	struct backref_edge *edge;
 371	struct backref_node *lower;
 372	int idx = *index;
 373
 374	while (idx > 0) {
 375		edge = edges[idx - 1];
 376		lower = edge->node[LOWER];
 377		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 378			idx--;
 379			continue;
 380		}
 381		edge = list_entry(edge->list[LOWER].next,
 382				  struct backref_edge, list[LOWER]);
 383		edges[idx - 1] = edge;
 384		*index = idx;
 385		return edge->node[UPPER];
 386	}
 387	*index = 0;
 388	return NULL;
 389}
 390
 391static void unlock_node_buffer(struct backref_node *node)
 392{
 393	if (node->locked) {
 394		btrfs_tree_unlock(node->eb);
 395		node->locked = 0;
 396	}
 397}
 398
 399static void drop_node_buffer(struct backref_node *node)
 400{
 401	if (node->eb) {
 402		unlock_node_buffer(node);
 403		free_extent_buffer(node->eb);
 404		node->eb = NULL;
 405	}
 406}
 407
 408static void drop_backref_node(struct backref_cache *tree,
 409			      struct backref_node *node)
 410{
 411	BUG_ON(!list_empty(&node->upper));
 412
 413	drop_node_buffer(node);
 414	list_del(&node->list);
 415	list_del(&node->lower);
 416	if (!RB_EMPTY_NODE(&node->rb_node))
 417		rb_erase(&node->rb_node, &tree->rb_root);
 418	free_backref_node(tree, node);
 419}
 420
 421/*
 422 * remove a backref node from the backref cache
 423 */
 424static void remove_backref_node(struct backref_cache *cache,
 425				struct backref_node *node)
 426{
 427	struct backref_node *upper;
 428	struct backref_edge *edge;
 429
 430	if (!node)
 431		return;
 432
 433	BUG_ON(!node->lowest && !node->detached);
 434	while (!list_empty(&node->upper)) {
 435		edge = list_entry(node->upper.next, struct backref_edge,
 436				  list[LOWER]);
 437		upper = edge->node[UPPER];
 438		list_del(&edge->list[LOWER]);
 439		list_del(&edge->list[UPPER]);
 440		free_backref_edge(cache, edge);
 441
 442		if (RB_EMPTY_NODE(&upper->rb_node)) {
 443			BUG_ON(!list_empty(&node->upper));
 444			drop_backref_node(cache, node);
 445			node = upper;
 446			node->lowest = 1;
 447			continue;
 448		}
 449		/*
 450		 * add the node to leaf node list if no other
 451		 * child block cached.
 452		 */
 453		if (list_empty(&upper->lower)) {
 454			list_add_tail(&upper->lower, &cache->leaves);
 455			upper->lowest = 1;
 456		}
 457	}
 458
 459	drop_backref_node(cache, node);
 460}
 461
 462static void update_backref_node(struct backref_cache *cache,
 463				struct backref_node *node, u64 bytenr)
 464{
 465	struct rb_node *rb_node;
 466	rb_erase(&node->rb_node, &cache->rb_root);
 467	node->bytenr = bytenr;
 468	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 469	if (rb_node)
 470		backref_tree_panic(rb_node, -EEXIST, bytenr);
 471}
 472
 473/*
 474 * update backref cache after a transaction commit
 475 */
 476static int update_backref_cache(struct btrfs_trans_handle *trans,
 477				struct backref_cache *cache)
 478{
 479	struct backref_node *node;
 480	int level = 0;
 481
 482	if (cache->last_trans == 0) {
 483		cache->last_trans = trans->transid;
 484		return 0;
 485	}
 486
 487	if (cache->last_trans == trans->transid)
 488		return 0;
 489
 490	/*
 491	 * detached nodes are used to avoid unnecessary backref
 492	 * lookup. transaction commit changes the extent tree.
 493	 * so the detached nodes are no longer useful.
 494	 */
 495	while (!list_empty(&cache->detached)) {
 496		node = list_entry(cache->detached.next,
 497				  struct backref_node, list);
 498		remove_backref_node(cache, node);
 499	}
 500
 501	while (!list_empty(&cache->changed)) {
 502		node = list_entry(cache->changed.next,
 503				  struct backref_node, list);
 504		list_del_init(&node->list);
 505		BUG_ON(node->pending);
 506		update_backref_node(cache, node, node->new_bytenr);
 507	}
 508
 509	/*
 510	 * some nodes can be left in the pending list if there were
 511	 * errors during processing the pending nodes.
 512	 */
 513	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 514		list_for_each_entry(node, &cache->pending[level], list) {
 515			BUG_ON(!node->pending);
 516			if (node->bytenr == node->new_bytenr)
 517				continue;
 518			update_backref_node(cache, node, node->new_bytenr);
 519		}
 520	}
 521
 522	cache->last_trans = 0;
 523	return 1;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527static int should_ignore_root(struct btrfs_root *root)
 528{
 529	struct btrfs_root *reloc_root;
 530
 531	if (!root->ref_cows)
 532		return 0;
 
 
 
 
 533
 534	reloc_root = root->reloc_root;
 535	if (!reloc_root)
 536		return 0;
 537
 538	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 539	    root->fs_info->running_transaction->transid - 1)
 540		return 0;
 541	/*
 542	 * if there is reloc tree and it was created in previous
 543	 * transaction backref lookup can find the reloc tree,
 544	 * so backref node for the fs tree root is useless for
 545	 * relocation.
 546	 */
 547	return 1;
 548}
 
 549/*
 550 * find reloc tree by address of tree root
 551 */
 552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 553					  u64 bytenr)
 554{
 
 555	struct rb_node *rb_node;
 556	struct mapping_node *node;
 557	struct btrfs_root *root = NULL;
 558
 
 559	spin_lock(&rc->reloc_root_tree.lock);
 560	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct mapping_node, rb_node);
 563		root = (struct btrfs_root *)node->data;
 564	}
 565	spin_unlock(&rc->reloc_root_tree.lock);
 566	return root;
 567}
 568
 569static int is_cowonly_root(u64 root_objectid)
 570{
 571	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 576	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 578	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
 579		return 1;
 580	return 0;
 581}
 582
 583static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 584					u64 root_objectid)
 585{
 586	struct btrfs_key key;
 587
 588	key.objectid = root_objectid;
 589	key.type = BTRFS_ROOT_ITEM_KEY;
 590	if (is_cowonly_root(root_objectid))
 591		key.offset = 0;
 592	else
 593		key.offset = (u64)-1;
 594
 595	return btrfs_get_fs_root(fs_info, &key, false);
 596}
 597
 598#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 599static noinline_for_stack
 600struct btrfs_root *find_tree_root(struct reloc_control *rc,
 601				  struct extent_buffer *leaf,
 602				  struct btrfs_extent_ref_v0 *ref0)
 603{
 604	struct btrfs_root *root;
 605	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 606	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 607
 608	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 609
 610	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 611	BUG_ON(IS_ERR(root));
 612
 613	if (root->ref_cows &&
 614	    generation != btrfs_root_generation(&root->root_item))
 615		return NULL;
 616
 617	return root;
 618}
 619#endif
 
 
 620
 621static noinline_for_stack
 622int find_inline_backref(struct extent_buffer *leaf, int slot,
 623			unsigned long *ptr, unsigned long *end)
 624{
 625	struct btrfs_key key;
 626	struct btrfs_extent_item *ei;
 627	struct btrfs_tree_block_info *bi;
 628	u32 item_size;
 629
 630	btrfs_item_key_to_cpu(leaf, &key, slot);
 
 
 
 
 
 631
 632	item_size = btrfs_item_size_nr(leaf, slot);
 633#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 634	if (item_size < sizeof(*ei)) {
 635		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 636		return 1;
 637	}
 638#endif
 639	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 640	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 641		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 642
 643	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 644	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 645		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 646		return 1;
 647	}
 648	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 649	    item_size <= sizeof(*ei)) {
 650		WARN_ON(item_size < sizeof(*ei));
 651		return 1;
 652	}
 653
 654	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 655		bi = (struct btrfs_tree_block_info *)(ei + 1);
 656		*ptr = (unsigned long)(bi + 1);
 657	} else {
 658		*ptr = (unsigned long)(ei + 1);
 
 
 
 
 
 
 
 659	}
 660	*end = (unsigned long)ei + item_size;
 661	return 0;
 662}
 663
 664/*
 665 * build backref tree for a given tree block. root of the backref tree
 666 * corresponds the tree block, leaves of the backref tree correspond
 667 * roots of b-trees that reference the tree block.
 668 *
 669 * the basic idea of this function is check backrefs of a given block
 670 * to find upper level blocks that refernece the block, and then check
 671 * bakcrefs of these upper level blocks recursively. the recursion stop
 672 * when tree root is reached or backrefs for the block is cached.
 673 *
 674 * NOTE: if we find backrefs for a block are cached, we know backrefs
 675 * for all upper level blocks that directly/indirectly reference the
 676 * block are also cached.
 677 */
 678static noinline_for_stack
 679struct backref_node *build_backref_tree(struct reloc_control *rc,
 680					struct btrfs_key *node_key,
 681					int level, u64 bytenr)
 682{
 683	struct backref_cache *cache = &rc->backref_cache;
 684	struct btrfs_path *path1;
 685	struct btrfs_path *path2;
 686	struct extent_buffer *eb;
 687	struct btrfs_root *root;
 688	struct backref_node *cur;
 689	struct backref_node *upper;
 690	struct backref_node *lower;
 691	struct backref_node *node = NULL;
 692	struct backref_node *exist = NULL;
 693	struct backref_edge *edge;
 694	struct rb_node *rb_node;
 695	struct btrfs_key key;
 696	unsigned long end;
 697	unsigned long ptr;
 698	LIST_HEAD(list);
 699	LIST_HEAD(useless);
 700	int cowonly;
 701	int ret;
 702	int err = 0;
 703	bool need_check = true;
 704
 705	path1 = btrfs_alloc_path();
 706	path2 = btrfs_alloc_path();
 707	if (!path1 || !path2) {
 
 
 708		err = -ENOMEM;
 709		goto out;
 710	}
 711	path1->reada = 1;
 712	path2->reada = 2;
 713
 714	node = alloc_backref_node(cache);
 715	if (!node) {
 716		err = -ENOMEM;
 717		goto out;
 718	}
 719
 720	node->bytenr = bytenr;
 721	node->level = level;
 722	node->lowest = 1;
 723	cur = node;
 724again:
 725	end = 0;
 726	ptr = 0;
 727	key.objectid = cur->bytenr;
 728	key.type = BTRFS_METADATA_ITEM_KEY;
 729	key.offset = (u64)-1;
 730
 731	path1->search_commit_root = 1;
 732	path1->skip_locking = 1;
 733	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 734				0, 0);
 735	if (ret < 0) {
 736		err = ret;
 737		goto out;
 738	}
 739	BUG_ON(!ret || !path1->slots[0]);
 740
 741	path1->slots[0]--;
 742
 743	WARN_ON(cur->checked);
 744	if (!list_empty(&cur->upper)) {
 745		/*
 746		 * the backref was added previously when processing
 747		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 748		 */
 749		BUG_ON(!list_is_singular(&cur->upper));
 750		edge = list_entry(cur->upper.next, struct backref_edge,
 751				  list[LOWER]);
 752		BUG_ON(!list_empty(&edge->list[UPPER]));
 753		exist = edge->node[UPPER];
 754		/*
 755		 * add the upper level block to pending list if we need
 756		 * check its backrefs
 757		 */
 758		if (!exist->checked)
 759			list_add_tail(&edge->list[UPPER], &list);
 760	} else {
 761		exist = NULL;
 762	}
 763
 764	while (1) {
 765		cond_resched();
 766		eb = path1->nodes[0];
 767
 768		if (ptr >= end) {
 769			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 770				ret = btrfs_next_leaf(rc->extent_root, path1);
 771				if (ret < 0) {
 772					err = ret;
 773					goto out;
 774				}
 775				if (ret > 0)
 776					break;
 777				eb = path1->nodes[0];
 778			}
 779
 780			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 781			if (key.objectid != cur->bytenr) {
 782				WARN_ON(exist);
 783				break;
 784			}
 785
 786			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 787			    key.type == BTRFS_METADATA_ITEM_KEY) {
 788				ret = find_inline_backref(eb, path1->slots[0],
 789							  &ptr, &end);
 790				if (ret)
 791					goto next;
 792			}
 793		}
 794
 795		if (ptr < end) {
 796			/* update key for inline back ref */
 797			struct btrfs_extent_inline_ref *iref;
 798			iref = (struct btrfs_extent_inline_ref *)ptr;
 799			key.type = btrfs_extent_inline_ref_type(eb, iref);
 800			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 801			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 802				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 803		}
 804
 805		if (exist &&
 806		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 807		      exist->owner == key.offset) ||
 808		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 809		      exist->bytenr == key.offset))) {
 810			exist = NULL;
 811			goto next;
 812		}
 813
 814#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 815		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 816		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 817			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 818				struct btrfs_extent_ref_v0 *ref0;
 819				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 820						struct btrfs_extent_ref_v0);
 821				if (key.objectid == key.offset) {
 822					root = find_tree_root(rc, eb, ref0);
 823					if (root && !should_ignore_root(root))
 824						cur->root = root;
 825					else
 826						list_add(&cur->list, &useless);
 827					break;
 828				}
 829				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 830								      ref0)))
 831					cur->cowonly = 1;
 832			}
 833#else
 834		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 835		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 836#endif
 837			if (key.objectid == key.offset) {
 838				/*
 839				 * only root blocks of reloc trees use
 840				 * backref of this type.
 841				 */
 842				root = find_reloc_root(rc, cur->bytenr);
 843				BUG_ON(!root);
 844				cur->root = root;
 845				break;
 846			}
 847
 848			edge = alloc_backref_edge(cache);
 849			if (!edge) {
 850				err = -ENOMEM;
 851				goto out;
 852			}
 853			rb_node = tree_search(&cache->rb_root, key.offset);
 854			if (!rb_node) {
 855				upper = alloc_backref_node(cache);
 856				if (!upper) {
 857					free_backref_edge(cache, edge);
 858					err = -ENOMEM;
 859					goto out;
 860				}
 861				upper->bytenr = key.offset;
 862				upper->level = cur->level + 1;
 863				/*
 864				 *  backrefs for the upper level block isn't
 865				 *  cached, add the block to pending list
 866				 */
 867				list_add_tail(&edge->list[UPPER], &list);
 868			} else {
 869				upper = rb_entry(rb_node, struct backref_node,
 870						 rb_node);
 871				BUG_ON(!upper->checked);
 872				INIT_LIST_HEAD(&edge->list[UPPER]);
 873			}
 874			list_add_tail(&edge->list[LOWER], &cur->upper);
 875			edge->node[LOWER] = cur;
 876			edge->node[UPPER] = upper;
 877
 878			goto next;
 879		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 880			goto next;
 881		}
 882
 883		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 884		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 885		if (IS_ERR(root)) {
 886			err = PTR_ERR(root);
 887			goto out;
 888		}
 889
 890		if (!root->ref_cows)
 891			cur->cowonly = 1;
 892
 893		if (btrfs_root_level(&root->root_item) == cur->level) {
 894			/* tree root */
 895			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 896			       cur->bytenr);
 897			if (should_ignore_root(root))
 898				list_add(&cur->list, &useless);
 899			else
 900				cur->root = root;
 901			break;
 902		}
 903
 904		level = cur->level + 1;
 905
 906		/*
 907		 * searching the tree to find upper level blocks
 908		 * reference the block.
 909		 */
 910		path2->search_commit_root = 1;
 911		path2->skip_locking = 1;
 912		path2->lowest_level = level;
 913		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 914		path2->lowest_level = 0;
 915		if (ret < 0) {
 916			err = ret;
 917			goto out;
 918		}
 919		if (ret > 0 && path2->slots[level] > 0)
 920			path2->slots[level]--;
 921
 922		eb = path2->nodes[level];
 923		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 924			cur->bytenr);
 925
 926		lower = cur;
 927		need_check = true;
 928		for (; level < BTRFS_MAX_LEVEL; level++) {
 929			if (!path2->nodes[level]) {
 930				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 931				       lower->bytenr);
 932				if (should_ignore_root(root))
 933					list_add(&lower->list, &useless);
 934				else
 935					lower->root = root;
 936				break;
 937			}
 938
 939			edge = alloc_backref_edge(cache);
 940			if (!edge) {
 941				err = -ENOMEM;
 942				goto out;
 943			}
 944
 945			eb = path2->nodes[level];
 946			rb_node = tree_search(&cache->rb_root, eb->start);
 947			if (!rb_node) {
 948				upper = alloc_backref_node(cache);
 949				if (!upper) {
 950					free_backref_edge(cache, edge);
 951					err = -ENOMEM;
 952					goto out;
 953				}
 954				upper->bytenr = eb->start;
 955				upper->owner = btrfs_header_owner(eb);
 956				upper->level = lower->level + 1;
 957				if (!root->ref_cows)
 958					upper->cowonly = 1;
 959
 960				/*
 961				 * if we know the block isn't shared
 962				 * we can void checking its backrefs.
 963				 */
 964				if (btrfs_block_can_be_shared(root, eb))
 965					upper->checked = 0;
 966				else
 967					upper->checked = 1;
 968
 969				/*
 970				 * add the block to pending list if we
 971				 * need check its backrefs, we only do this once
 972				 * while walking up a tree as we will catch
 973				 * anything else later on.
 974				 */
 975				if (!upper->checked && need_check) {
 976					need_check = false;
 977					list_add_tail(&edge->list[UPPER],
 978						      &list);
 979				} else
 980					INIT_LIST_HEAD(&edge->list[UPPER]);
 981			} else {
 982				upper = rb_entry(rb_node, struct backref_node,
 983						 rb_node);
 984				BUG_ON(!upper->checked);
 985				INIT_LIST_HEAD(&edge->list[UPPER]);
 986				if (!upper->owner)
 987					upper->owner = btrfs_header_owner(eb);
 988			}
 989			list_add_tail(&edge->list[LOWER], &lower->upper);
 990			edge->node[LOWER] = lower;
 991			edge->node[UPPER] = upper;
 992
 993			if (rb_node)
 994				break;
 995			lower = upper;
 996			upper = NULL;
 997		}
 998		btrfs_release_path(path2);
 999next:
1000		if (ptr < end) {
1001			ptr += btrfs_extent_inline_ref_size(key.type);
1002			if (ptr >= end) {
1003				WARN_ON(ptr > end);
1004				ptr = 0;
1005				end = 0;
1006			}
1007		}
1008		if (ptr >= end)
1009			path1->slots[0]++;
1010	}
1011	btrfs_release_path(path1);
1012
1013	cur->checked = 1;
1014	WARN_ON(exist);
1015
1016	/* the pending list isn't empty, take the first block to process */
1017	if (!list_empty(&list)) {
1018		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1019		list_del_init(&edge->list[UPPER]);
1020		cur = edge->node[UPPER];
1021		goto again;
1022	}
1023
1024	/*
1025	 * everything goes well, connect backref nodes and insert backref nodes
1026	 * into the cache.
1027	 */
1028	BUG_ON(!node->checked);
1029	cowonly = node->cowonly;
1030	if (!cowonly) {
1031		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1032				      &node->rb_node);
1033		if (rb_node)
1034			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1035		list_add_tail(&node->lower, &cache->leaves);
1036	}
1037
1038	list_for_each_entry(edge, &node->upper, list[LOWER])
1039		list_add_tail(&edge->list[UPPER], &list);
1040
1041	while (!list_empty(&list)) {
1042		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043		list_del_init(&edge->list[UPPER]);
1044		upper = edge->node[UPPER];
1045		if (upper->detached) {
1046			list_del(&edge->list[LOWER]);
1047			lower = edge->node[LOWER];
1048			free_backref_edge(cache, edge);
1049			if (list_empty(&lower->upper))
1050				list_add(&lower->list, &useless);
1051			continue;
1052		}
1053
1054		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1055			if (upper->lowest) {
1056				list_del_init(&upper->lower);
1057				upper->lowest = 0;
1058			}
1059
1060			list_add_tail(&edge->list[UPPER], &upper->lower);
1061			continue;
1062		}
1063
1064		BUG_ON(!upper->checked);
1065		BUG_ON(cowonly != upper->cowonly);
1066		if (!cowonly) {
1067			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1068					      &upper->rb_node);
1069			if (rb_node)
1070				backref_tree_panic(rb_node, -EEXIST,
1071						   upper->bytenr);
1072		}
 
1073
1074		list_add_tail(&edge->list[UPPER], &upper->lower);
1075
1076		list_for_each_entry(edge, &upper->upper, list[LOWER])
1077			list_add_tail(&edge->list[UPPER], &list);
 
1078	}
1079	/*
1080	 * process useless backref nodes. backref nodes for tree leaves
1081	 * are deleted from the cache. backref nodes for upper level
1082	 * tree blocks are left in the cache to avoid unnecessary backref
1083	 * lookup.
1084	 */
1085	while (!list_empty(&useless)) {
1086		upper = list_entry(useless.next, struct backref_node, list);
1087		list_del_init(&upper->list);
1088		BUG_ON(!list_empty(&upper->upper));
1089		if (upper == node)
1090			node = NULL;
1091		if (upper->lowest) {
1092			list_del_init(&upper->lower);
1093			upper->lowest = 0;
1094		}
1095		while (!list_empty(&upper->lower)) {
1096			edge = list_entry(upper->lower.next,
1097					  struct backref_edge, list[UPPER]);
1098			list_del(&edge->list[UPPER]);
1099			list_del(&edge->list[LOWER]);
1100			lower = edge->node[LOWER];
1101			free_backref_edge(cache, edge);
1102
1103			if (list_empty(&lower->upper))
1104				list_add(&lower->list, &useless);
1105		}
1106		__mark_block_processed(rc, upper);
1107		if (upper->level > 0) {
1108			list_add(&upper->list, &cache->detached);
1109			upper->detached = 1;
1110		} else {
1111			rb_erase(&upper->rb_node, &cache->rb_root);
1112			free_backref_node(cache, upper);
1113		}
1114	}
1115out:
1116	btrfs_free_path(path1);
1117	btrfs_free_path(path2);
 
1118	if (err) {
1119		while (!list_empty(&useless)) {
1120			lower = list_entry(useless.next,
1121					   struct backref_node, upper);
1122			list_del_init(&lower->upper);
1123		}
1124		upper = node;
1125		INIT_LIST_HEAD(&list);
1126		while (upper) {
1127			if (RB_EMPTY_NODE(&upper->rb_node)) {
1128				list_splice_tail(&upper->upper, &list);
1129				free_backref_node(cache, upper);
1130			}
1131
1132			if (list_empty(&list))
1133				break;
1134
1135			edge = list_entry(list.next, struct backref_edge,
1136					  list[LOWER]);
1137			list_del(&edge->list[LOWER]);
1138			upper = edge->node[UPPER];
1139			free_backref_edge(cache, edge);
1140		}
1141		return ERR_PTR(err);
1142	}
1143	BUG_ON(node && node->detached);
 
 
1144	return node;
1145}
1146
1147/*
1148 * helper to add backref node for the newly created snapshot.
1149 * the backref node is created by cloning backref node that
1150 * corresponds to root of source tree
1151 */
1152static int clone_backref_node(struct btrfs_trans_handle *trans,
1153			      struct reloc_control *rc,
1154			      struct btrfs_root *src,
1155			      struct btrfs_root *dest)
1156{
1157	struct btrfs_root *reloc_root = src->reloc_root;
1158	struct backref_cache *cache = &rc->backref_cache;
1159	struct backref_node *node = NULL;
1160	struct backref_node *new_node;
1161	struct backref_edge *edge;
1162	struct backref_edge *new_edge;
1163	struct rb_node *rb_node;
1164
1165	if (cache->last_trans > 0)
1166		update_backref_cache(trans, cache);
1167
1168	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1169	if (rb_node) {
1170		node = rb_entry(rb_node, struct backref_node, rb_node);
1171		if (node->detached)
1172			node = NULL;
1173		else
1174			BUG_ON(node->new_bytenr != reloc_root->node->start);
1175	}
1176
1177	if (!node) {
1178		rb_node = tree_search(&cache->rb_root,
1179				      reloc_root->commit_root->start);
1180		if (rb_node) {
1181			node = rb_entry(rb_node, struct backref_node,
1182					rb_node);
1183			BUG_ON(node->detached);
1184		}
1185	}
1186
1187	if (!node)
1188		return 0;
1189
1190	new_node = alloc_backref_node(cache);
 
1191	if (!new_node)
1192		return -ENOMEM;
1193
1194	new_node->bytenr = dest->node->start;
1195	new_node->level = node->level;
1196	new_node->lowest = node->lowest;
1197	new_node->checked = 1;
1198	new_node->root = dest;
 
1199
1200	if (!node->lowest) {
1201		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1202			new_edge = alloc_backref_edge(cache);
1203			if (!new_edge)
1204				goto fail;
1205
1206			new_edge->node[UPPER] = new_node;
1207			new_edge->node[LOWER] = edge->node[LOWER];
1208			list_add_tail(&new_edge->list[UPPER],
1209				      &new_node->lower);
1210		}
1211	} else {
1212		list_add_tail(&new_node->lower, &cache->leaves);
1213	}
1214
1215	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1216			      &new_node->rb_node);
1217	if (rb_node)
1218		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1219
1220	if (!new_node->lowest) {
1221		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1222			list_add_tail(&new_edge->list[LOWER],
1223				      &new_edge->node[LOWER]->upper);
1224		}
1225	}
1226	return 0;
1227fail:
1228	while (!list_empty(&new_node->lower)) {
1229		new_edge = list_entry(new_node->lower.next,
1230				      struct backref_edge, list[UPPER]);
1231		list_del(&new_edge->list[UPPER]);
1232		free_backref_edge(cache, new_edge);
1233	}
1234	free_backref_node(cache, new_node);
1235	return -ENOMEM;
1236}
1237
1238/*
1239 * helper to add 'address of tree root -> reloc tree' mapping
1240 */
1241static int __must_check __add_reloc_root(struct btrfs_root *root)
1242{
 
1243	struct rb_node *rb_node;
1244	struct mapping_node *node;
1245	struct reloc_control *rc = root->fs_info->reloc_ctl;
1246
1247	node = kmalloc(sizeof(*node), GFP_NOFS);
1248	if (!node)
1249		return -ENOMEM;
1250
1251	node->bytenr = root->node->start;
1252	node->data = root;
1253
1254	spin_lock(&rc->reloc_root_tree.lock);
1255	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1256			      node->bytenr, &node->rb_node);
1257	spin_unlock(&rc->reloc_root_tree.lock);
1258	if (rb_node) {
1259		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1260			    "for start=%llu while inserting into relocation "
1261			    "tree\n", node->bytenr);
1262		kfree(node);
1263		return -EEXIST;
1264	}
1265
1266	list_add_tail(&root->root_list, &rc->reloc_roots);
1267	return 0;
1268}
1269
1270/*
1271 * helper to delete the 'address of tree root -> reloc tree'
1272 * mapping
1273 */
1274static void __del_reloc_root(struct btrfs_root *root)
1275{
 
1276	struct rb_node *rb_node;
1277	struct mapping_node *node = NULL;
1278	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1279
1280	spin_lock(&rc->reloc_root_tree.lock);
1281	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1282			      root->node->start);
1283	if (rb_node) {
1284		node = rb_entry(rb_node, struct mapping_node, rb_node);
1285		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
 
 
 
 
1286	}
1287	spin_unlock(&rc->reloc_root_tree.lock);
1288
1289	if (!node)
1290		return;
1291	BUG_ON((struct btrfs_root *)node->data != root);
1292
1293	spin_lock(&root->fs_info->trans_lock);
1294	list_del_init(&root->root_list);
1295	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
1296	kfree(node);
1297}
1298
1299/*
1300 * helper to update the 'address of tree root -> reloc tree'
1301 * mapping
1302 */
1303static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1304{
 
1305	struct rb_node *rb_node;
1306	struct mapping_node *node = NULL;
1307	struct reloc_control *rc = root->fs_info->reloc_ctl;
1308
1309	spin_lock(&rc->reloc_root_tree.lock);
1310	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1311			      root->node->start);
1312	if (rb_node) {
1313		node = rb_entry(rb_node, struct mapping_node, rb_node);
1314		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1315	}
1316	spin_unlock(&rc->reloc_root_tree.lock);
1317
1318	if (!node)
1319		return 0;
1320	BUG_ON((struct btrfs_root *)node->data != root);
1321
1322	spin_lock(&rc->reloc_root_tree.lock);
1323	node->bytenr = new_bytenr;
1324	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1325			      node->bytenr, &node->rb_node);
1326	spin_unlock(&rc->reloc_root_tree.lock);
1327	if (rb_node)
1328		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1329	return 0;
1330}
1331
1332static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1333					struct btrfs_root *root, u64 objectid)
1334{
 
1335	struct btrfs_root *reloc_root;
1336	struct extent_buffer *eb;
1337	struct btrfs_root_item *root_item;
1338	struct btrfs_key root_key;
1339	u64 last_snap = 0;
1340	int ret;
1341
1342	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1343	BUG_ON(!root_item);
 
1344
1345	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1346	root_key.type = BTRFS_ROOT_ITEM_KEY;
1347	root_key.offset = objectid;
1348
1349	if (root->root_key.objectid == objectid) {
 
 
1350		/* called by btrfs_init_reloc_root */
1351		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1352				      BTRFS_TREE_RELOC_OBJECTID);
1353		BUG_ON(ret);
 
1354
1355		last_snap = btrfs_root_last_snapshot(&root->root_item);
1356		btrfs_set_root_last_snapshot(&root->root_item,
1357					     trans->transid - 1);
 
 
 
 
 
 
 
1358	} else {
1359		/*
1360		 * called by btrfs_reloc_post_snapshot_hook.
1361		 * the source tree is a reloc tree, all tree blocks
1362		 * modified after it was created have RELOC flag
1363		 * set in their headers. so it's OK to not update
1364		 * the 'last_snapshot'.
1365		 */
1366		ret = btrfs_copy_root(trans, root, root->node, &eb,
1367				      BTRFS_TREE_RELOC_OBJECTID);
1368		BUG_ON(ret);
 
1369	}
1370
 
 
 
 
 
 
1371	memcpy(root_item, &root->root_item, sizeof(*root_item));
1372	btrfs_set_root_bytenr(root_item, eb->start);
1373	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1374	btrfs_set_root_generation(root_item, trans->transid);
1375
1376	if (root->root_key.objectid == objectid) {
1377		btrfs_set_root_refs(root_item, 0);
1378		memset(&root_item->drop_progress, 0,
1379		       sizeof(struct btrfs_disk_key));
1380		root_item->drop_level = 0;
1381		/*
1382		 * abuse rtransid, it is safe because it is impossible to
1383		 * receive data into a relocation tree.
1384		 */
1385		btrfs_set_root_rtransid(root_item, last_snap);
1386		btrfs_set_root_otransid(root_item, trans->transid);
1387	}
1388
1389	btrfs_tree_unlock(eb);
1390	free_extent_buffer(eb);
1391
1392	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1393				&root_key, root_item);
1394	BUG_ON(ret);
 
 
1395	kfree(root_item);
1396
1397	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1398	BUG_ON(IS_ERR(reloc_root));
 
 
 
 
1399	reloc_root->last_trans = trans->transid;
1400	return reloc_root;
 
 
 
 
 
 
1401}
1402
1403/*
1404 * create reloc tree for a given fs tree. reloc tree is just a
1405 * snapshot of the fs tree with special root objectid.
 
 
 
1406 */
1407int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1408			  struct btrfs_root *root)
1409{
 
1410	struct btrfs_root *reloc_root;
1411	struct reloc_control *rc = root->fs_info->reloc_ctl;
1412	struct btrfs_block_rsv *rsv;
1413	int clear_rsv = 0;
1414	int ret;
1415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416	if (root->reloc_root) {
1417		reloc_root = root->reloc_root;
1418		reloc_root->last_trans = trans->transid;
1419		return 0;
1420	}
1421
1422	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1423	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1424		return 0;
1425
1426	if (!trans->reloc_reserved) {
1427		rsv = trans->block_rsv;
1428		trans->block_rsv = rc->block_rsv;
1429		clear_rsv = 1;
1430	}
1431	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1432	if (clear_rsv)
1433		trans->block_rsv = rsv;
 
 
1434
1435	ret = __add_reloc_root(reloc_root);
1436	BUG_ON(ret < 0);
1437	root->reloc_root = reloc_root;
 
 
 
 
 
1438	return 0;
1439}
1440
1441/*
1442 * update root item of reloc tree
1443 */
1444int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1445			    struct btrfs_root *root)
1446{
 
1447	struct btrfs_root *reloc_root;
1448	struct btrfs_root_item *root_item;
1449	int ret;
1450
1451	if (!root->reloc_root)
1452		goto out;
1453
1454	reloc_root = root->reloc_root;
1455	root_item = &reloc_root->root_item;
1456
1457	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1458	    btrfs_root_refs(root_item) == 0) {
1459		root->reloc_root = NULL;
 
 
 
 
 
1460		__del_reloc_root(reloc_root);
1461	}
1462
1463	if (reloc_root->commit_root != reloc_root->node) {
 
1464		btrfs_set_root_node(root_item, reloc_root->node);
1465		free_extent_buffer(reloc_root->commit_root);
1466		reloc_root->commit_root = btrfs_root_node(reloc_root);
1467	}
1468
1469	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1470				&reloc_root->root_key, root_item);
1471	BUG_ON(ret);
1472
1473out:
1474	return 0;
1475}
1476
1477/*
1478 * helper to find first cached inode with inode number >= objectid
1479 * in a subvolume
1480 */
1481static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1482{
1483	struct rb_node *node;
1484	struct rb_node *prev;
1485	struct btrfs_inode *entry;
1486	struct inode *inode;
1487
1488	spin_lock(&root->inode_lock);
1489again:
1490	node = root->inode_tree.rb_node;
1491	prev = NULL;
1492	while (node) {
1493		prev = node;
1494		entry = rb_entry(node, struct btrfs_inode, rb_node);
1495
1496		if (objectid < btrfs_ino(&entry->vfs_inode))
1497			node = node->rb_left;
1498		else if (objectid > btrfs_ino(&entry->vfs_inode))
1499			node = node->rb_right;
1500		else
1501			break;
1502	}
1503	if (!node) {
1504		while (prev) {
1505			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1506			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1507				node = prev;
1508				break;
1509			}
1510			prev = rb_next(prev);
1511		}
1512	}
1513	while (node) {
1514		entry = rb_entry(node, struct btrfs_inode, rb_node);
1515		inode = igrab(&entry->vfs_inode);
1516		if (inode) {
1517			spin_unlock(&root->inode_lock);
1518			return inode;
1519		}
1520
1521		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1522		if (cond_resched_lock(&root->inode_lock))
1523			goto again;
1524
1525		node = rb_next(node);
1526	}
1527	spin_unlock(&root->inode_lock);
1528	return NULL;
1529}
1530
1531static int in_block_group(u64 bytenr,
1532			  struct btrfs_block_group_cache *block_group)
1533{
1534	if (bytenr >= block_group->key.objectid &&
1535	    bytenr < block_group->key.objectid + block_group->key.offset)
1536		return 1;
1537	return 0;
1538}
1539
1540/*
1541 * get new location of data
1542 */
1543static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1544			    u64 bytenr, u64 num_bytes)
1545{
1546	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1547	struct btrfs_path *path;
1548	struct btrfs_file_extent_item *fi;
1549	struct extent_buffer *leaf;
1550	int ret;
1551
1552	path = btrfs_alloc_path();
1553	if (!path)
1554		return -ENOMEM;
1555
1556	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1557	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1558				       bytenr, 0);
1559	if (ret < 0)
1560		goto out;
1561	if (ret > 0) {
1562		ret = -ENOENT;
1563		goto out;
1564	}
1565
1566	leaf = path->nodes[0];
1567	fi = btrfs_item_ptr(leaf, path->slots[0],
1568			    struct btrfs_file_extent_item);
1569
1570	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1571	       btrfs_file_extent_compression(leaf, fi) ||
1572	       btrfs_file_extent_encryption(leaf, fi) ||
1573	       btrfs_file_extent_other_encoding(leaf, fi));
1574
1575	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1576		ret = -EINVAL;
1577		goto out;
1578	}
1579
1580	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1581	ret = 0;
1582out:
1583	btrfs_free_path(path);
1584	return ret;
1585}
1586
1587/*
1588 * update file extent items in the tree leaf to point to
1589 * the new locations.
1590 */
1591static noinline_for_stack
1592int replace_file_extents(struct btrfs_trans_handle *trans,
1593			 struct reloc_control *rc,
1594			 struct btrfs_root *root,
1595			 struct extent_buffer *leaf)
1596{
 
1597	struct btrfs_key key;
1598	struct btrfs_file_extent_item *fi;
1599	struct inode *inode = NULL;
1600	u64 parent;
1601	u64 bytenr;
1602	u64 new_bytenr = 0;
1603	u64 num_bytes;
1604	u64 end;
1605	u32 nritems;
1606	u32 i;
1607	int ret = 0;
1608	int first = 1;
1609	int dirty = 0;
1610
1611	if (rc->stage != UPDATE_DATA_PTRS)
1612		return 0;
1613
1614	/* reloc trees always use full backref */
1615	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1616		parent = leaf->start;
1617	else
1618		parent = 0;
1619
1620	nritems = btrfs_header_nritems(leaf);
1621	for (i = 0; i < nritems; i++) {
 
 
1622		cond_resched();
1623		btrfs_item_key_to_cpu(leaf, &key, i);
1624		if (key.type != BTRFS_EXTENT_DATA_KEY)
1625			continue;
1626		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1627		if (btrfs_file_extent_type(leaf, fi) ==
1628		    BTRFS_FILE_EXTENT_INLINE)
1629			continue;
1630		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1631		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1632		if (bytenr == 0)
1633			continue;
1634		if (!in_block_group(bytenr, rc->block_group))
 
1635			continue;
1636
1637		/*
1638		 * if we are modifying block in fs tree, wait for readpage
1639		 * to complete and drop the extent cache
1640		 */
1641		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1642			if (first) {
1643				inode = find_next_inode(root, key.objectid);
1644				first = 0;
1645			} else if (inode && btrfs_ino(inode) < key.objectid) {
1646				btrfs_add_delayed_iput(inode);
1647				inode = find_next_inode(root, key.objectid);
1648			}
1649			if (inode && btrfs_ino(inode) == key.objectid) {
 
 
1650				end = key.offset +
1651				      btrfs_file_extent_num_bytes(leaf, fi);
1652				WARN_ON(!IS_ALIGNED(key.offset,
1653						    root->sectorsize));
1654				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1655				end--;
1656				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1657						      key.offset, end);
 
1658				if (!ret)
1659					continue;
1660
1661				btrfs_drop_extent_cache(inode, key.offset, end,
1662							1);
1663				unlock_extent(&BTRFS_I(inode)->io_tree,
1664					      key.offset, end);
1665			}
1666		}
1667
1668		ret = get_new_location(rc->data_inode, &new_bytenr,
1669				       bytenr, num_bytes);
1670		if (ret) {
1671			/*
1672			 * Don't have to abort since we've not changed anything
1673			 * in the file extent yet.
1674			 */
1675			break;
1676		}
1677
1678		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1679		dirty = 1;
1680
1681		key.offset -= btrfs_file_extent_offset(leaf, fi);
1682		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1683					   num_bytes, parent,
1684					   btrfs_header_owner(leaf),
1685					   key.objectid, key.offset, 1);
 
 
1686		if (ret) {
1687			btrfs_abort_transaction(trans, root, ret);
1688			break;
1689		}
1690
1691		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1692					parent, btrfs_header_owner(leaf),
1693					key.objectid, key.offset, 1);
 
 
 
1694		if (ret) {
1695			btrfs_abort_transaction(trans, root, ret);
1696			break;
1697		}
1698	}
1699	if (dirty)
1700		btrfs_mark_buffer_dirty(leaf);
1701	if (inode)
1702		btrfs_add_delayed_iput(inode);
1703	return ret;
1704}
1705
1706static noinline_for_stack
1707int memcmp_node_keys(struct extent_buffer *eb, int slot,
1708		     struct btrfs_path *path, int level)
1709{
1710	struct btrfs_disk_key key1;
1711	struct btrfs_disk_key key2;
1712	btrfs_node_key(eb, &key1, slot);
1713	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1714	return memcmp(&key1, &key2, sizeof(key1));
1715}
1716
1717/*
1718 * try to replace tree blocks in fs tree with the new blocks
1719 * in reloc tree. tree blocks haven't been modified since the
1720 * reloc tree was create can be replaced.
1721 *
1722 * if a block was replaced, level of the block + 1 is returned.
1723 * if no block got replaced, 0 is returned. if there are other
1724 * errors, a negative error number is returned.
1725 */
1726static noinline_for_stack
1727int replace_path(struct btrfs_trans_handle *trans,
1728		 struct btrfs_root *dest, struct btrfs_root *src,
1729		 struct btrfs_path *path, struct btrfs_key *next_key,
1730		 int lowest_level, int max_level)
1731{
 
1732	struct extent_buffer *eb;
1733	struct extent_buffer *parent;
 
1734	struct btrfs_key key;
1735	u64 old_bytenr;
1736	u64 new_bytenr;
1737	u64 old_ptr_gen;
1738	u64 new_ptr_gen;
1739	u64 last_snapshot;
1740	u32 blocksize;
1741	int cow = 0;
1742	int level;
1743	int ret;
1744	int slot;
1745
1746	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1747	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1748
1749	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1750again:
1751	slot = path->slots[lowest_level];
1752	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1753
1754	eb = btrfs_lock_root_node(dest);
1755	btrfs_set_lock_blocking(eb);
1756	level = btrfs_header_level(eb);
1757
1758	if (level < lowest_level) {
1759		btrfs_tree_unlock(eb);
1760		free_extent_buffer(eb);
1761		return 0;
1762	}
1763
1764	if (cow) {
1765		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1766		BUG_ON(ret);
 
 
 
 
 
1767	}
1768	btrfs_set_lock_blocking(eb);
1769
1770	if (next_key) {
1771		next_key->objectid = (u64)-1;
1772		next_key->type = (u8)-1;
1773		next_key->offset = (u64)-1;
1774	}
1775
1776	parent = eb;
1777	while (1) {
1778		level = btrfs_header_level(parent);
1779		BUG_ON(level < lowest_level);
1780
1781		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1782		if (ret && slot > 0)
1783			slot--;
1784
1785		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1786			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1787
1788		old_bytenr = btrfs_node_blockptr(parent, slot);
1789		blocksize = btrfs_level_size(dest, level - 1);
1790		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1791
1792		if (level <= max_level) {
1793			eb = path->nodes[level];
1794			new_bytenr = btrfs_node_blockptr(eb,
1795							path->slots[level]);
1796			new_ptr_gen = btrfs_node_ptr_generation(eb,
1797							path->slots[level]);
1798		} else {
1799			new_bytenr = 0;
1800			new_ptr_gen = 0;
1801		}
1802
1803		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1804			ret = level;
1805			break;
1806		}
1807
1808		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1809		    memcmp_node_keys(parent, slot, path, level)) {
1810			if (level <= lowest_level) {
1811				ret = 0;
1812				break;
1813			}
1814
1815			eb = read_tree_block(dest, old_bytenr, blocksize,
1816					     old_ptr_gen);
1817			if (!eb || !extent_buffer_uptodate(eb)) {
1818				ret = (!eb) ? -ENOMEM : -EIO;
1819				free_extent_buffer(eb);
1820				break;
1821			}
1822			btrfs_tree_lock(eb);
1823			if (cow) {
1824				ret = btrfs_cow_block(trans, dest, eb, parent,
1825						      slot, &eb);
1826				BUG_ON(ret);
 
 
 
 
 
1827			}
1828			btrfs_set_lock_blocking(eb);
1829
1830			btrfs_tree_unlock(parent);
1831			free_extent_buffer(parent);
1832
1833			parent = eb;
1834			continue;
1835		}
1836
1837		if (!cow) {
1838			btrfs_tree_unlock(parent);
1839			free_extent_buffer(parent);
1840			cow = 1;
1841			goto again;
1842		}
1843
1844		btrfs_node_key_to_cpu(path->nodes[level], &key,
1845				      path->slots[level]);
1846		btrfs_release_path(path);
1847
1848		path->lowest_level = level;
 
1849		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
 
1850		path->lowest_level = 0;
1851		BUG_ON(ret);
 
 
 
 
1852
1853		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854		 * swap blocks in fs tree and reloc tree.
1855		 */
1856		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1857		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1858		btrfs_mark_buffer_dirty(parent);
1859
1860		btrfs_set_node_blockptr(path->nodes[level],
1861					path->slots[level], old_bytenr);
1862		btrfs_set_node_ptr_generation(path->nodes[level],
1863					      path->slots[level], old_ptr_gen);
1864		btrfs_mark_buffer_dirty(path->nodes[level]);
1865
1866		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1867					path->nodes[level]->start,
1868					src->root_key.objectid, level - 1, 0,
1869					1);
1870		BUG_ON(ret);
1871		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1872					0, dest->root_key.objectid, level - 1,
1873					0, 1);
1874		BUG_ON(ret);
1875
1876		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1877					path->nodes[level]->start,
1878					src->root_key.objectid, level - 1, 0,
1879					1);
1880		BUG_ON(ret);
1881
1882		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1883					0, dest->root_key.objectid, level - 1,
1884					0, 1);
1885		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886
1887		btrfs_unlock_up_safe(path, 0);
1888
1889		ret = level;
1890		break;
1891	}
1892	btrfs_tree_unlock(parent);
1893	free_extent_buffer(parent);
1894	return ret;
1895}
1896
1897/*
1898 * helper to find next relocated block in reloc tree
1899 */
1900static noinline_for_stack
1901int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1902		       int *level)
1903{
1904	struct extent_buffer *eb;
1905	int i;
1906	u64 last_snapshot;
1907	u32 nritems;
1908
1909	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1910
1911	for (i = 0; i < *level; i++) {
1912		free_extent_buffer(path->nodes[i]);
1913		path->nodes[i] = NULL;
1914	}
1915
1916	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1917		eb = path->nodes[i];
1918		nritems = btrfs_header_nritems(eb);
1919		while (path->slots[i] + 1 < nritems) {
1920			path->slots[i]++;
1921			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1922			    last_snapshot)
1923				continue;
1924
1925			*level = i;
1926			return 0;
1927		}
1928		free_extent_buffer(path->nodes[i]);
1929		path->nodes[i] = NULL;
1930	}
1931	return 1;
1932}
1933
1934/*
1935 * walk down reloc tree to find relocated block of lowest level
1936 */
1937static noinline_for_stack
1938int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1939			 int *level)
1940{
1941	struct extent_buffer *eb = NULL;
1942	int i;
1943	u64 bytenr;
1944	u64 ptr_gen = 0;
1945	u64 last_snapshot;
1946	u32 blocksize;
1947	u32 nritems;
1948
1949	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950
1951	for (i = *level; i > 0; i--) {
1952		eb = path->nodes[i];
1953		nritems = btrfs_header_nritems(eb);
1954		while (path->slots[i] < nritems) {
1955			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1956			if (ptr_gen > last_snapshot)
1957				break;
1958			path->slots[i]++;
1959		}
1960		if (path->slots[i] >= nritems) {
1961			if (i == *level)
1962				break;
1963			*level = i + 1;
1964			return 0;
1965		}
1966		if (i == 1) {
1967			*level = i;
1968			return 0;
1969		}
1970
1971		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1972		blocksize = btrfs_level_size(root, i - 1);
1973		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1974		if (!eb || !extent_buffer_uptodate(eb)) {
1975			free_extent_buffer(eb);
1976			return -EIO;
1977		}
1978		BUG_ON(btrfs_header_level(eb) != i - 1);
1979		path->nodes[i - 1] = eb;
1980		path->slots[i - 1] = 0;
1981	}
1982	return 1;
1983}
1984
1985/*
1986 * invalidate extent cache for file extents whose key in range of
1987 * [min_key, max_key)
1988 */
1989static int invalidate_extent_cache(struct btrfs_root *root,
1990				   struct btrfs_key *min_key,
1991				   struct btrfs_key *max_key)
1992{
 
1993	struct inode *inode = NULL;
1994	u64 objectid;
1995	u64 start, end;
1996	u64 ino;
1997
1998	objectid = min_key->objectid;
1999	while (1) {
 
 
2000		cond_resched();
2001		iput(inode);
2002
2003		if (objectid > max_key->objectid)
2004			break;
2005
2006		inode = find_next_inode(root, objectid);
2007		if (!inode)
2008			break;
2009		ino = btrfs_ino(inode);
2010
2011		if (ino > max_key->objectid) {
2012			iput(inode);
2013			break;
2014		}
2015
2016		objectid = ino + 1;
2017		if (!S_ISREG(inode->i_mode))
2018			continue;
2019
2020		if (unlikely(min_key->objectid == ino)) {
2021			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2022				continue;
2023			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2024				start = 0;
2025			else {
2026				start = min_key->offset;
2027				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2028			}
2029		} else {
2030			start = 0;
2031		}
2032
2033		if (unlikely(max_key->objectid == ino)) {
2034			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2035				continue;
2036			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2037				end = (u64)-1;
2038			} else {
2039				if (max_key->offset == 0)
2040					continue;
2041				end = max_key->offset;
2042				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2043				end--;
2044			}
2045		} else {
2046			end = (u64)-1;
2047		}
2048
2049		/* the lock_extent waits for readpage to complete */
2050		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2051		btrfs_drop_extent_cache(inode, start, end, 1);
2052		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2053	}
2054	return 0;
2055}
2056
2057static int find_next_key(struct btrfs_path *path, int level,
2058			 struct btrfs_key *key)
2059
2060{
2061	while (level < BTRFS_MAX_LEVEL) {
2062		if (!path->nodes[level])
2063			break;
2064		if (path->slots[level] + 1 <
2065		    btrfs_header_nritems(path->nodes[level])) {
2066			btrfs_node_key_to_cpu(path->nodes[level], key,
2067					      path->slots[level] + 1);
2068			return 0;
2069		}
2070		level++;
2071	}
2072	return 1;
2073}
2074
2075/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076 * merge the relocated tree blocks in reloc tree with corresponding
2077 * fs tree.
2078 */
2079static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2080					       struct btrfs_root *root)
2081{
2082	LIST_HEAD(inode_list);
2083	struct btrfs_key key;
2084	struct btrfs_key next_key;
2085	struct btrfs_trans_handle *trans = NULL;
2086	struct btrfs_root *reloc_root;
2087	struct btrfs_root_item *root_item;
2088	struct btrfs_path *path;
2089	struct extent_buffer *leaf;
 
2090	int level;
2091	int max_level;
2092	int replaced = 0;
2093	int ret;
2094	int err = 0;
2095	u32 min_reserved;
2096
2097	path = btrfs_alloc_path();
2098	if (!path)
2099		return -ENOMEM;
2100	path->reada = 1;
2101
2102	reloc_root = root->reloc_root;
2103	root_item = &reloc_root->root_item;
2104
2105	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2106		level = btrfs_root_level(root_item);
2107		extent_buffer_get(reloc_root->node);
2108		path->nodes[level] = reloc_root->node;
2109		path->slots[level] = 0;
2110	} else {
2111		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2112
2113		level = root_item->drop_level;
2114		BUG_ON(level == 0);
2115		path->lowest_level = level;
2116		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2117		path->lowest_level = 0;
2118		if (ret < 0) {
2119			btrfs_free_path(path);
2120			return ret;
2121		}
2122
2123		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2124				      path->slots[level]);
2125		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2126
2127		btrfs_unlock_up_safe(path, 0);
2128	}
2129
2130	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2131	memset(&next_key, 0, sizeof(next_key));
2132
2133	while (1) {
2134		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2135					     BTRFS_RESERVE_FLUSH_ALL);
2136		if (ret) {
2137			err = ret;
2138			goto out;
2139		}
2140		trans = btrfs_start_transaction(root, 0);
2141		if (IS_ERR(trans)) {
2142			err = PTR_ERR(trans);
2143			trans = NULL;
2144			goto out;
2145		}
 
 
 
 
 
 
 
 
 
 
 
 
2146		trans->block_rsv = rc->block_rsv;
2147
2148		replaced = 0;
2149		max_level = level;
2150
2151		ret = walk_down_reloc_tree(reloc_root, path, &level);
2152		if (ret < 0) {
2153			err = ret;
2154			goto out;
2155		}
2156		if (ret > 0)
2157			break;
2158
2159		if (!find_next_key(path, level, &key) &&
2160		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2161			ret = 0;
2162		} else {
2163			ret = replace_path(trans, root, reloc_root, path,
2164					   &next_key, level, max_level);
2165		}
2166		if (ret < 0) {
2167			err = ret;
2168			goto out;
2169		}
2170
2171		if (ret > 0) {
2172			level = ret;
2173			btrfs_node_key_to_cpu(path->nodes[level], &key,
2174					      path->slots[level]);
2175			replaced = 1;
2176		}
2177
2178		ret = walk_up_reloc_tree(reloc_root, path, &level);
2179		if (ret > 0)
2180			break;
2181
2182		BUG_ON(level == 0);
2183		/*
2184		 * save the merging progress in the drop_progress.
2185		 * this is OK since root refs == 1 in this case.
2186		 */
2187		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2188			       path->slots[level]);
2189		root_item->drop_level = level;
2190
2191		btrfs_end_transaction_throttle(trans, root);
2192		trans = NULL;
2193
2194		btrfs_btree_balance_dirty(root);
2195
2196		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2197			invalidate_extent_cache(root, &key, &next_key);
2198	}
2199
2200	/*
2201	 * handle the case only one block in the fs tree need to be
2202	 * relocated and the block is tree root.
2203	 */
2204	leaf = btrfs_lock_root_node(root);
2205	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2206	btrfs_tree_unlock(leaf);
2207	free_extent_buffer(leaf);
2208	if (ret < 0)
2209		err = ret;
2210out:
2211	btrfs_free_path(path);
2212
2213	if (err == 0) {
2214		memset(&root_item->drop_progress, 0,
2215		       sizeof(root_item->drop_progress));
2216		root_item->drop_level = 0;
2217		btrfs_set_root_refs(root_item, 0);
2218		btrfs_update_reloc_root(trans, root);
2219	}
2220
2221	if (trans)
2222		btrfs_end_transaction_throttle(trans, root);
2223
2224	btrfs_btree_balance_dirty(root);
2225
2226	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2227		invalidate_extent_cache(root, &key, &next_key);
2228
2229	return err;
2230}
2231
2232static noinline_for_stack
2233int prepare_to_merge(struct reloc_control *rc, int err)
2234{
2235	struct btrfs_root *root = rc->extent_root;
 
2236	struct btrfs_root *reloc_root;
2237	struct btrfs_trans_handle *trans;
2238	LIST_HEAD(reloc_roots);
2239	u64 num_bytes = 0;
2240	int ret;
2241
2242	mutex_lock(&root->fs_info->reloc_mutex);
2243	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2244	rc->merging_rsv_size += rc->nodes_relocated * 2;
2245	mutex_unlock(&root->fs_info->reloc_mutex);
2246
2247again:
2248	if (!err) {
2249		num_bytes = rc->merging_rsv_size;
2250		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2251					  BTRFS_RESERVE_FLUSH_ALL);
2252		if (ret)
2253			err = ret;
2254	}
2255
2256	trans = btrfs_join_transaction(rc->extent_root);
2257	if (IS_ERR(trans)) {
2258		if (!err)
2259			btrfs_block_rsv_release(rc->extent_root,
2260						rc->block_rsv, num_bytes);
2261		return PTR_ERR(trans);
2262	}
2263
2264	if (!err) {
2265		if (num_bytes != rc->merging_rsv_size) {
2266			btrfs_end_transaction(trans, rc->extent_root);
2267			btrfs_block_rsv_release(rc->extent_root,
2268						rc->block_rsv, num_bytes);
2269			goto again;
2270		}
2271	}
2272
2273	rc->merge_reloc_tree = 1;
2274
2275	while (!list_empty(&rc->reloc_roots)) {
2276		reloc_root = list_entry(rc->reloc_roots.next,
2277					struct btrfs_root, root_list);
2278		list_del_init(&reloc_root->root_list);
2279
2280		root = read_fs_root(reloc_root->fs_info,
2281				    reloc_root->root_key.offset);
2282		BUG_ON(IS_ERR(root));
2283		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284
2285		/*
2286		 * set reference count to 1, so btrfs_recover_relocation
2287		 * knows it should resumes merging
2288		 */
2289		if (!err)
2290			btrfs_set_root_refs(&reloc_root->root_item, 1);
2291		btrfs_update_reloc_root(trans, root);
2292
 
 
 
 
2293		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2294	}
2295
2296	list_splice(&reloc_roots, &rc->reloc_roots);
2297
2298	if (!err)
2299		btrfs_commit_transaction(trans, rc->extent_root);
2300	else
2301		btrfs_end_transaction(trans, rc->extent_root);
2302	return err;
2303}
2304
2305static noinline_for_stack
2306void free_reloc_roots(struct list_head *list)
2307{
2308	struct btrfs_root *reloc_root;
2309
2310	while (!list_empty(list)) {
2311		reloc_root = list_entry(list->next, struct btrfs_root,
2312					root_list);
2313		__del_reloc_root(reloc_root);
2314	}
2315}
2316
2317static noinline_for_stack
2318int merge_reloc_roots(struct reloc_control *rc)
2319{
 
2320	struct btrfs_root *root;
2321	struct btrfs_root *reloc_root;
2322	u64 last_snap;
2323	u64 otransid;
2324	u64 objectid;
2325	LIST_HEAD(reloc_roots);
2326	int found = 0;
2327	int ret = 0;
2328again:
2329	root = rc->extent_root;
2330
2331	/*
2332	 * this serializes us with btrfs_record_root_in_transaction,
2333	 * we have to make sure nobody is in the middle of
2334	 * adding their roots to the list while we are
2335	 * doing this splice
2336	 */
2337	mutex_lock(&root->fs_info->reloc_mutex);
2338	list_splice_init(&rc->reloc_roots, &reloc_roots);
2339	mutex_unlock(&root->fs_info->reloc_mutex);
2340
2341	while (!list_empty(&reloc_roots)) {
2342		found = 1;
2343		reloc_root = list_entry(reloc_roots.next,
2344					struct btrfs_root, root_list);
2345
 
 
2346		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2347			root = read_fs_root(reloc_root->fs_info,
2348					    reloc_root->root_key.offset);
2349			BUG_ON(IS_ERR(root));
2350			BUG_ON(root->reloc_root != reloc_root);
2351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2352			ret = merge_reloc_root(rc, root);
 
2353			if (ret) {
2354				if (list_empty(&reloc_root->root_list))
2355					list_add_tail(&reloc_root->root_list,
2356						      &reloc_roots);
2357				goto out;
2358			}
2359		} else {
2360			list_del_init(&reloc_root->root_list);
2361		}
2362
2363		/*
2364		 * we keep the old last snapshod transid in rtranid when we
2365		 * created the relocation tree.
2366		 */
2367		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2368		otransid = btrfs_root_otransid(&reloc_root->root_item);
2369		objectid = reloc_root->root_key.offset;
2370
2371		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2372		if (ret < 0) {
2373			if (list_empty(&reloc_root->root_list))
2374				list_add_tail(&reloc_root->root_list,
2375					      &reloc_roots);
2376			goto out;
2377		}
2378	}
2379
2380	if (found) {
2381		found = 0;
2382		goto again;
2383	}
2384out:
2385	if (ret) {
2386		btrfs_std_error(root->fs_info, ret);
2387		if (!list_empty(&reloc_roots))
2388			free_reloc_roots(&reloc_roots);
2389
2390		/* new reloc root may be added */
2391		mutex_lock(&root->fs_info->reloc_mutex);
2392		list_splice_init(&rc->reloc_roots, &reloc_roots);
2393		mutex_unlock(&root->fs_info->reloc_mutex);
2394		if (!list_empty(&reloc_roots))
2395			free_reloc_roots(&reloc_roots);
2396	}
2397
2398	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
2402static void free_block_list(struct rb_root *blocks)
2403{
2404	struct tree_block *block;
2405	struct rb_node *rb_node;
2406	while ((rb_node = rb_first(blocks))) {
2407		block = rb_entry(rb_node, struct tree_block, rb_node);
2408		rb_erase(rb_node, blocks);
2409		kfree(block);
2410	}
2411}
2412
2413static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2414				      struct btrfs_root *reloc_root)
2415{
 
2416	struct btrfs_root *root;
 
2417
2418	if (reloc_root->last_trans == trans->transid)
2419		return 0;
2420
2421	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2422	BUG_ON(IS_ERR(root));
2423	BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424
2425	return btrfs_record_root_in_trans(trans, root);
2426}
2427
2428static noinline_for_stack
2429struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2430				     struct reloc_control *rc,
2431				     struct backref_node *node,
2432				     struct backref_edge *edges[])
2433{
2434	struct backref_node *next;
2435	struct btrfs_root *root;
2436	int index = 0;
 
2437
2438	next = node;
2439	while (1) {
2440		cond_resched();
2441		next = walk_up_backref(next, edges, &index);
2442		root = next->root;
2443		BUG_ON(!root);
2444		BUG_ON(!root->ref_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445
2446		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2447			record_reloc_root_in_trans(trans, root);
 
 
2448			break;
2449		}
2450
2451		btrfs_record_root_in_trans(trans, root);
 
 
2452		root = root->reloc_root;
2453
 
 
 
 
 
 
 
2454		if (next->new_bytenr != root->node->start) {
2455			BUG_ON(next->new_bytenr);
2456			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457			next->new_bytenr = root->node->start;
2458			next->root = root;
 
 
2459			list_add_tail(&next->list,
2460				      &rc->backref_cache.changed);
2461			__mark_block_processed(rc, next);
2462			break;
2463		}
2464
2465		WARN_ON(1);
2466		root = NULL;
2467		next = walk_down_backref(edges, &index);
2468		if (!next || next->level <= node->level)
2469			break;
2470	}
2471	if (!root)
2472		return NULL;
 
 
 
 
 
 
2473
2474	next = node;
2475	/* setup backref node path for btrfs_reloc_cow_block */
2476	while (1) {
2477		rc->backref_cache.path[next->level] = next;
2478		if (--index < 0)
2479			break;
2480		next = edges[index]->node[UPPER];
2481	}
2482	return root;
2483}
2484
2485/*
2486 * select a tree root for relocation. return NULL if the block
2487 * is reference counted. we should use do_relocation() in this
2488 * case. return a tree root pointer if the block isn't reference
2489 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2490 */
2491static noinline_for_stack
2492struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2493				   struct backref_node *node)
2494{
2495	struct backref_node *next;
2496	struct btrfs_root *root;
2497	struct btrfs_root *fs_root = NULL;
2498	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2499	int index = 0;
2500
2501	next = node;
2502	while (1) {
2503		cond_resched();
2504		next = walk_up_backref(next, edges, &index);
2505		root = next->root;
2506		BUG_ON(!root);
2507
2508		/* no other choice for non-references counted tree */
2509		if (!root->ref_cows)
 
 
 
 
 
 
 
2510			return root;
2511
2512		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2513			fs_root = root;
2514
2515		if (next != node)
2516			return NULL;
2517
2518		next = walk_down_backref(edges, &index);
2519		if (!next || next->level <= node->level)
2520			break;
2521	}
2522
2523	if (!fs_root)
2524		return ERR_PTR(-ENOENT);
2525	return fs_root;
2526}
2527
2528static noinline_for_stack
2529u64 calcu_metadata_size(struct reloc_control *rc,
2530			struct backref_node *node, int reserve)
2531{
2532	struct backref_node *next = node;
2533	struct backref_edge *edge;
2534	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2535	u64 num_bytes = 0;
2536	int index = 0;
2537
2538	BUG_ON(reserve && node->processed);
2539
2540	while (next) {
2541		cond_resched();
2542		while (1) {
2543			if (next->processed && (reserve || next != node))
2544				break;
2545
2546			num_bytes += btrfs_level_size(rc->extent_root,
2547						      next->level);
2548
2549			if (list_empty(&next->upper))
2550				break;
2551
2552			edge = list_entry(next->upper.next,
2553					  struct backref_edge, list[LOWER]);
2554			edges[index++] = edge;
2555			next = edge->node[UPPER];
2556		}
2557		next = walk_down_backref(edges, &index);
2558	}
2559	return num_bytes;
2560}
2561
2562static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2563				  struct reloc_control *rc,
2564				  struct backref_node *node)
2565{
2566	struct btrfs_root *root = rc->extent_root;
 
2567	u64 num_bytes;
2568	int ret;
2569	u64 tmp;
2570
2571	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2572
2573	trans->block_rsv = rc->block_rsv;
2574	rc->reserved_bytes += num_bytes;
2575	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2576				BTRFS_RESERVE_FLUSH_ALL);
 
 
 
 
 
 
2577	if (ret) {
2578		if (ret == -EAGAIN) {
2579			tmp = rc->extent_root->nodesize *
2580				RELOCATION_RESERVED_NODES;
2581			while (tmp <= rc->reserved_bytes)
2582				tmp <<= 1;
2583			/*
2584			 * only one thread can access block_rsv at this point,
2585			 * so we don't need hold lock to protect block_rsv.
2586			 * we expand more reservation size here to allow enough
2587			 * space for relocation and we will return eailer in
2588			 * enospc case.
2589			 */
2590			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2591					      RELOCATION_RESERVED_NODES;
2592		}
2593		return ret;
2594	}
2595
2596	return 0;
2597}
2598
2599/*
2600 * relocate a block tree, and then update pointers in upper level
2601 * blocks that reference the block to point to the new location.
2602 *
2603 * if called by link_to_upper, the block has already been relocated.
2604 * in that case this function just updates pointers.
2605 */
2606static int do_relocation(struct btrfs_trans_handle *trans,
2607			 struct reloc_control *rc,
2608			 struct backref_node *node,
2609			 struct btrfs_key *key,
2610			 struct btrfs_path *path, int lowest)
2611{
2612	struct backref_node *upper;
2613	struct backref_edge *edge;
2614	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2615	struct btrfs_root *root;
2616	struct extent_buffer *eb;
2617	u32 blocksize;
2618	u64 bytenr;
2619	u64 generation;
2620	int slot;
2621	int ret;
2622	int err = 0;
2623
2624	BUG_ON(lowest && node->eb);
 
 
 
 
2625
2626	path->lowest_level = node->level + 1;
2627	rc->backref_cache.path[node->level] = node;
2628	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2629		cond_resched();
2630
2631		upper = edge->node[UPPER];
2632		root = select_reloc_root(trans, rc, upper, edges);
2633		BUG_ON(!root);
 
 
 
2634
2635		if (upper->eb && !upper->locked) {
2636			if (!lowest) {
2637				ret = btrfs_bin_search(upper->eb, key,
2638						       upper->level, &slot);
 
2639				BUG_ON(ret);
2640				bytenr = btrfs_node_blockptr(upper->eb, slot);
2641				if (node->eb->start == bytenr)
2642					goto next;
2643			}
2644			drop_node_buffer(upper);
2645		}
2646
2647		if (!upper->eb) {
2648			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649			if (ret < 0) {
2650				err = ret;
 
 
 
2651				break;
2652			}
2653			BUG_ON(ret > 0);
2654
2655			if (!upper->eb) {
2656				upper->eb = path->nodes[upper->level];
2657				path->nodes[upper->level] = NULL;
2658			} else {
2659				BUG_ON(upper->eb != path->nodes[upper->level]);
2660			}
2661
2662			upper->locked = 1;
2663			path->locks[upper->level] = 0;
2664
2665			slot = path->slots[upper->level];
2666			btrfs_release_path(path);
2667		} else {
2668			ret = btrfs_bin_search(upper->eb, key, upper->level,
2669					       &slot);
 
2670			BUG_ON(ret);
2671		}
2672
2673		bytenr = btrfs_node_blockptr(upper->eb, slot);
2674		if (lowest) {
2675			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2676		} else {
2677			if (node->eb->start == bytenr)
2678				goto next;
2679		}
2680
2681		blocksize = btrfs_level_size(root, node->level);
2682		generation = btrfs_node_ptr_generation(upper->eb, slot);
2683		eb = read_tree_block(root, bytenr, blocksize, generation);
2684		if (!eb || !extent_buffer_uptodate(eb)) {
2685			free_extent_buffer(eb);
2686			err = -EIO;
2687			goto next;
2688		}
2689		btrfs_tree_lock(eb);
2690		btrfs_set_lock_blocking(eb);
2691
2692		if (!node->eb) {
2693			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2694					      slot, &eb);
2695			btrfs_tree_unlock(eb);
2696			free_extent_buffer(eb);
2697			if (ret < 0) {
2698				err = ret;
2699				goto next;
2700			}
2701			BUG_ON(node->eb != eb);
 
 
 
2702		} else {
2703			btrfs_set_node_blockptr(upper->eb, slot,
2704						node->eb->start);
2705			btrfs_set_node_ptr_generation(upper->eb, slot,
2706						      trans->transid);
2707			btrfs_mark_buffer_dirty(upper->eb);
2708
2709			ret = btrfs_inc_extent_ref(trans, root,
2710						node->eb->start, blocksize,
2711						upper->eb->start,
2712						btrfs_header_owner(upper->eb),
2713						node->level, 0, 1);
2714			BUG_ON(ret);
2715
2716			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2717			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
2718		}
2719next:
2720		if (!upper->pending)
2721			drop_node_buffer(upper);
2722		else
2723			unlock_node_buffer(upper);
2724		if (err)
2725			break;
2726	}
2727
2728	if (!err && node->pending) {
2729		drop_node_buffer(node);
2730		list_move_tail(&node->list, &rc->backref_cache.changed);
2731		node->pending = 0;
2732	}
2733
2734	path->lowest_level = 0;
2735	BUG_ON(err == -ENOSPC);
2736	return err;
 
 
 
 
 
2737}
2738
2739static int link_to_upper(struct btrfs_trans_handle *trans,
2740			 struct reloc_control *rc,
2741			 struct backref_node *node,
2742			 struct btrfs_path *path)
2743{
2744	struct btrfs_key key;
2745
2746	btrfs_node_key_to_cpu(node->eb, &key, 0);
2747	return do_relocation(trans, rc, node, &key, path, 0);
2748}
2749
2750static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2751				struct reloc_control *rc,
2752				struct btrfs_path *path, int err)
2753{
2754	LIST_HEAD(list);
2755	struct backref_cache *cache = &rc->backref_cache;
2756	struct backref_node *node;
2757	int level;
2758	int ret;
2759
2760	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2761		while (!list_empty(&cache->pending[level])) {
2762			node = list_entry(cache->pending[level].next,
2763					  struct backref_node, list);
2764			list_move_tail(&node->list, &list);
2765			BUG_ON(!node->pending);
2766
2767			if (!err) {
2768				ret = link_to_upper(trans, rc, node, path);
2769				if (ret < 0)
2770					err = ret;
2771			}
2772		}
2773		list_splice_init(&list, &cache->pending[level]);
2774	}
2775	return err;
2776}
2777
2778static void mark_block_processed(struct reloc_control *rc,
2779				 u64 bytenr, u32 blocksize)
2780{
2781	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2782			EXTENT_DIRTY, GFP_NOFS);
2783}
2784
2785static void __mark_block_processed(struct reloc_control *rc,
2786				   struct backref_node *node)
2787{
2788	u32 blocksize;
2789	if (node->level == 0 ||
2790	    in_block_group(node->bytenr, rc->block_group)) {
2791		blocksize = btrfs_level_size(rc->extent_root, node->level);
2792		mark_block_processed(rc, node->bytenr, blocksize);
2793	}
2794	node->processed = 1;
2795}
2796
2797/*
2798 * mark a block and all blocks directly/indirectly reference the block
2799 * as processed.
2800 */
2801static void update_processed_blocks(struct reloc_control *rc,
2802				    struct backref_node *node)
2803{
2804	struct backref_node *next = node;
2805	struct backref_edge *edge;
2806	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2807	int index = 0;
2808
2809	while (next) {
2810		cond_resched();
2811		while (1) {
2812			if (next->processed)
2813				break;
2814
2815			__mark_block_processed(rc, next);
2816
2817			if (list_empty(&next->upper))
2818				break;
2819
2820			edge = list_entry(next->upper.next,
2821					  struct backref_edge, list[LOWER]);
2822			edges[index++] = edge;
2823			next = edge->node[UPPER];
2824		}
2825		next = walk_down_backref(edges, &index);
2826	}
2827}
2828
2829static int tree_block_processed(u64 bytenr, u32 blocksize,
2830				struct reloc_control *rc)
2831{
 
 
2832	if (test_range_bit(&rc->processed_blocks, bytenr,
2833			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2834		return 1;
2835	return 0;
2836}
2837
2838static int get_tree_block_key(struct reloc_control *rc,
2839			      struct tree_block *block)
2840{
 
 
 
 
 
2841	struct extent_buffer *eb;
2842
2843	BUG_ON(block->key_ready);
2844	eb = read_tree_block(rc->extent_root, block->bytenr,
2845			     block->key.objectid, block->key.offset);
2846	if (!eb || !extent_buffer_uptodate(eb)) {
2847		free_extent_buffer(eb);
2848		return -EIO;
2849	}
2850	WARN_ON(btrfs_header_level(eb) != block->level);
2851	if (block->level == 0)
2852		btrfs_item_key_to_cpu(eb, &block->key, 0);
2853	else
2854		btrfs_node_key_to_cpu(eb, &block->key, 0);
2855	free_extent_buffer(eb);
2856	block->key_ready = 1;
2857	return 0;
2858}
2859
2860static int reada_tree_block(struct reloc_control *rc,
2861			    struct tree_block *block)
2862{
2863	BUG_ON(block->key_ready);
2864	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2865		readahead_tree_block(rc->extent_root, block->bytenr,
2866				     block->key.objectid,
2867				     rc->extent_root->leafsize);
2868	else
2869		readahead_tree_block(rc->extent_root, block->bytenr,
2870				     block->key.objectid, block->key.offset);
2871	return 0;
2872}
2873
2874/*
2875 * helper function to relocate a tree block
2876 */
2877static int relocate_tree_block(struct btrfs_trans_handle *trans,
2878				struct reloc_control *rc,
2879				struct backref_node *node,
2880				struct btrfs_key *key,
2881				struct btrfs_path *path)
2882{
2883	struct btrfs_root *root;
2884	int ret = 0;
2885
2886	if (!node)
2887		return 0;
2888
2889	BUG_ON(node->processed);
2890	root = select_one_root(trans, node);
2891	if (root == ERR_PTR(-ENOENT)) {
2892		update_processed_blocks(rc, node);
 
 
2893		goto out;
2894	}
2895
2896	if (!root || root->ref_cows) {
2897		ret = reserve_metadata_space(trans, rc, node);
2898		if (ret)
2899			goto out;
 
 
 
 
 
 
 
 
2900	}
2901
2902	if (root) {
2903		if (root->ref_cows) {
2904			BUG_ON(node->new_bytenr);
2905			BUG_ON(!list_empty(&node->list));
2906			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907			root = root->reloc_root;
2908			node->new_bytenr = root->node->start;
2909			node->root = root;
 
 
2910			list_add_tail(&node->list, &rc->backref_cache.changed);
2911		} else {
2912			path->lowest_level = node->level;
 
 
2913			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2914			btrfs_release_path(path);
 
 
2915			if (ret > 0)
2916				ret = 0;
2917		}
2918		if (!ret)
2919			update_processed_blocks(rc, node);
2920	} else {
2921		ret = do_relocation(trans, rc, node, key, path, 1);
2922	}
2923out:
2924	if (ret || node->level == 0 || node->cowonly)
2925		remove_backref_node(&rc->backref_cache, node);
2926	return ret;
2927}
2928
2929/*
2930 * relocate a list of blocks
2931 */
2932static noinline_for_stack
2933int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2934			 struct reloc_control *rc, struct rb_root *blocks)
2935{
2936	struct backref_node *node;
 
2937	struct btrfs_path *path;
2938	struct tree_block *block;
2939	struct rb_node *rb_node;
2940	int ret;
2941	int err = 0;
2942
2943	path = btrfs_alloc_path();
2944	if (!path) {
2945		err = -ENOMEM;
2946		goto out_free_blocks;
2947	}
2948
2949	rb_node = rb_first(blocks);
2950	while (rb_node) {
2951		block = rb_entry(rb_node, struct tree_block, rb_node);
2952		if (!block->key_ready)
2953			reada_tree_block(rc, block);
2954		rb_node = rb_next(rb_node);
 
2955	}
2956
2957	rb_node = rb_first(blocks);
2958	while (rb_node) {
2959		block = rb_entry(rb_node, struct tree_block, rb_node);
2960		if (!block->key_ready) {
2961			err = get_tree_block_key(rc, block);
2962			if (err)
2963				goto out_free_path;
2964		}
2965		rb_node = rb_next(rb_node);
2966	}
2967
2968	rb_node = rb_first(blocks);
2969	while (rb_node) {
2970		block = rb_entry(rb_node, struct tree_block, rb_node);
2971
2972		node = build_backref_tree(rc, &block->key,
2973					  block->level, block->bytenr);
2974		if (IS_ERR(node)) {
2975			err = PTR_ERR(node);
2976			goto out;
2977		}
2978
2979		ret = relocate_tree_block(trans, rc, node, &block->key,
2980					  path);
2981		if (ret < 0) {
2982			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2983				err = ret;
2984			goto out;
2985		}
2986		rb_node = rb_next(rb_node);
2987	}
2988out:
2989	err = finish_pending_nodes(trans, rc, path, err);
2990
2991out_free_path:
2992	btrfs_free_path(path);
2993out_free_blocks:
2994	free_block_list(blocks);
2995	return err;
2996}
2997
2998static noinline_for_stack
2999int prealloc_file_extent_cluster(struct inode *inode,
3000				 struct file_extent_cluster *cluster)
3001{
3002	u64 alloc_hint = 0;
3003	u64 start;
3004	u64 end;
3005	u64 offset = BTRFS_I(inode)->index_cnt;
3006	u64 num_bytes;
3007	int nr = 0;
3008	int ret = 0;
 
 
 
 
3009
3010	BUG_ON(cluster->start != cluster->boundary[0]);
3011	mutex_lock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3012
3013	ret = btrfs_check_data_free_space(inode, cluster->end +
3014					  1 - cluster->start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015	if (ret)
3016		goto out;
 
 
 
 
3017
3018	while (nr < cluster->nr) {
3019		start = cluster->boundary[nr] - offset;
3020		if (nr + 1 < cluster->nr)
3021			end = cluster->boundary[nr + 1] - 1 - offset;
3022		else
3023			end = cluster->end - offset;
3024
3025		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3026		num_bytes = end + 1 - start;
3027		ret = btrfs_prealloc_file_range(inode, 0, start,
3028						num_bytes, num_bytes,
3029						end + 1, &alloc_hint);
3030		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
3031		if (ret)
3032			break;
3033		nr++;
3034	}
3035	btrfs_free_reserved_data_space(inode, cluster->end +
3036				       1 - cluster->start);
3037out:
3038	mutex_unlock(&inode->i_mutex);
 
3039	return ret;
3040}
3041
3042static noinline_for_stack
3043int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3044			 u64 block_start)
3045{
3046	struct btrfs_root *root = BTRFS_I(inode)->root;
3047	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3048	struct extent_map *em;
 
3049	int ret = 0;
3050
3051	em = alloc_extent_map();
3052	if (!em)
3053		return -ENOMEM;
3054
3055	em->start = start;
3056	em->len = end + 1 - start;
3057	em->block_len = em->len;
3058	em->block_start = block_start;
3059	em->bdev = root->fs_info->fs_devices->latest_bdev;
3060	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3061
3062	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3063	while (1) {
3064		write_lock(&em_tree->lock);
3065		ret = add_extent_mapping(em_tree, em, 0);
3066		write_unlock(&em_tree->lock);
3067		if (ret != -EEXIST) {
3068			free_extent_map(em);
3069			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070		}
3071		btrfs_drop_extent_cache(inode, start, end, 0);
3072	}
3073	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3074	return ret;
3075}
3076
3077static int relocate_file_extent_cluster(struct inode *inode,
3078					struct file_extent_cluster *cluster)
3079{
3080	u64 page_start;
3081	u64 page_end;
3082	u64 offset = BTRFS_I(inode)->index_cnt;
3083	unsigned long index;
3084	unsigned long last_index;
3085	struct page *page;
3086	struct file_ra_state *ra;
3087	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3088	int nr = 0;
3089	int ret = 0;
3090
3091	if (!cluster->nr)
3092		return 0;
3093
3094	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3095	if (!ra)
3096		return -ENOMEM;
3097
3098	ret = prealloc_file_extent_cluster(inode, cluster);
3099	if (ret)
3100		goto out;
3101
3102	file_ra_state_init(ra, inode->i_mapping);
3103
3104	ret = setup_extent_mapping(inode, cluster->start - offset,
3105				   cluster->end - offset, cluster->start);
3106	if (ret)
3107		goto out;
3108
3109	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3110	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3111	while (index <= last_index) {
3112		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3113		if (ret)
3114			goto out;
3115
3116		page = find_lock_page(inode->i_mapping, index);
3117		if (!page) {
3118			page_cache_sync_readahead(inode->i_mapping,
3119						  ra, NULL, index,
3120						  last_index + 1 - index);
3121			page = find_or_create_page(inode->i_mapping, index,
3122						   mask);
3123			if (!page) {
3124				btrfs_delalloc_release_metadata(inode,
3125							PAGE_CACHE_SIZE);
3126				ret = -ENOMEM;
3127				goto out;
3128			}
3129		}
3130
3131		if (PageReadahead(page)) {
3132			page_cache_async_readahead(inode->i_mapping,
3133						   ra, NULL, page, index,
3134						   last_index + 1 - index);
3135		}
3136
3137		if (!PageUptodate(page)) {
3138			btrfs_readpage(NULL, page);
3139			lock_page(page);
3140			if (!PageUptodate(page)) {
3141				unlock_page(page);
3142				page_cache_release(page);
3143				btrfs_delalloc_release_metadata(inode,
3144							PAGE_CACHE_SIZE);
3145				ret = -EIO;
3146				goto out;
3147			}
3148		}
3149
3150		page_start = page_offset(page);
3151		page_end = page_start + PAGE_CACHE_SIZE - 1;
3152
3153		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3154
3155		set_page_extent_mapped(page);
3156
3157		if (nr < cluster->nr &&
3158		    page_start + offset == cluster->boundary[nr]) {
3159			set_extent_bits(&BTRFS_I(inode)->io_tree,
3160					page_start, page_end,
3161					EXTENT_BOUNDARY, GFP_NOFS);
3162			nr++;
3163		}
3164
3165		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3166		set_page_dirty(page);
3167
3168		unlock_extent(&BTRFS_I(inode)->io_tree,
3169			      page_start, page_end);
3170		unlock_page(page);
3171		page_cache_release(page);
3172
3173		index++;
3174		balance_dirty_pages_ratelimited(inode->i_mapping);
3175		btrfs_throttle(BTRFS_I(inode)->root);
3176	}
3177	WARN_ON(nr != cluster->nr);
3178out:
3179	kfree(ra);
3180	return ret;
3181}
3182
3183static noinline_for_stack
3184int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3185			 struct file_extent_cluster *cluster)
3186{
3187	int ret;
 
3188
3189	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3190		ret = relocate_file_extent_cluster(inode, cluster);
3191		if (ret)
3192			return ret;
3193		cluster->nr = 0;
3194	}
3195
3196	if (!cluster->nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197		cluster->start = extent_key->objectid;
 
 
3198	else
3199		BUG_ON(cluster->nr >= MAX_EXTENTS);
3200	cluster->end = extent_key->objectid + extent_key->offset - 1;
3201	cluster->boundary[cluster->nr] = extent_key->objectid;
3202	cluster->nr++;
3203
3204	if (cluster->nr >= MAX_EXTENTS) {
3205		ret = relocate_file_extent_cluster(inode, cluster);
3206		if (ret)
3207			return ret;
3208		cluster->nr = 0;
3209	}
3210	return 0;
3211}
3212
3213#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3214static int get_ref_objectid_v0(struct reloc_control *rc,
3215			       struct btrfs_path *path,
3216			       struct btrfs_key *extent_key,
3217			       u64 *ref_objectid, int *path_change)
3218{
3219	struct btrfs_key key;
3220	struct extent_buffer *leaf;
3221	struct btrfs_extent_ref_v0 *ref0;
3222	int ret;
3223	int slot;
3224
3225	leaf = path->nodes[0];
3226	slot = path->slots[0];
3227	while (1) {
3228		if (slot >= btrfs_header_nritems(leaf)) {
3229			ret = btrfs_next_leaf(rc->extent_root, path);
3230			if (ret < 0)
3231				return ret;
3232			BUG_ON(ret > 0);
3233			leaf = path->nodes[0];
3234			slot = path->slots[0];
3235			if (path_change)
3236				*path_change = 1;
3237		}
3238		btrfs_item_key_to_cpu(leaf, &key, slot);
3239		if (key.objectid != extent_key->objectid)
3240			return -ENOENT;
3241
3242		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3243			slot++;
3244			continue;
3245		}
3246		ref0 = btrfs_item_ptr(leaf, slot,
3247				struct btrfs_extent_ref_v0);
3248		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3249		break;
3250	}
3251	return 0;
3252}
3253#endif
3254
3255/*
3256 * helper to add a tree block to the list.
3257 * the major work is getting the generation and level of the block
3258 */
3259static int add_tree_block(struct reloc_control *rc,
3260			  struct btrfs_key *extent_key,
3261			  struct btrfs_path *path,
3262			  struct rb_root *blocks)
3263{
3264	struct extent_buffer *eb;
3265	struct btrfs_extent_item *ei;
3266	struct btrfs_tree_block_info *bi;
3267	struct tree_block *block;
3268	struct rb_node *rb_node;
3269	u32 item_size;
3270	int level = -1;
3271	u64 generation;
 
3272
3273	eb =  path->nodes[0];
3274	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3275
3276	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3277	    item_size >= sizeof(*ei) + sizeof(*bi)) {
 
 
3278		ei = btrfs_item_ptr(eb, path->slots[0],
3279				struct btrfs_extent_item);
 
3280		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3281			bi = (struct btrfs_tree_block_info *)(ei + 1);
3282			level = btrfs_tree_block_level(eb, bi);
 
3283		} else {
3284			level = (int)extent_key->offset;
 
3285		}
3286		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287	} else {
3288#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3289		u64 ref_owner;
3290		int ret;
3291
3292		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3293		ret = get_ref_objectid_v0(rc, path, extent_key,
3294					  &ref_owner, NULL);
3295		if (ret < 0)
3296			return ret;
3297		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3298		level = (int)ref_owner;
3299		/* FIXME: get real generation */
3300		generation = 0;
3301#else
3302		BUG();
3303#endif
3304	}
3305
3306	btrfs_release_path(path);
3307
3308	BUG_ON(level == -1);
3309
3310	block = kmalloc(sizeof(*block), GFP_NOFS);
3311	if (!block)
3312		return -ENOMEM;
3313
3314	block->bytenr = extent_key->objectid;
3315	block->key.objectid = rc->extent_root->leafsize;
3316	block->key.offset = generation;
3317	block->level = level;
3318	block->key_ready = 0;
 
3319
3320	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3321	if (rb_node)
3322		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3323
3324	return 0;
3325}
3326
3327/*
3328 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3329 */
3330static int __add_tree_block(struct reloc_control *rc,
3331			    u64 bytenr, u32 blocksize,
3332			    struct rb_root *blocks)
3333{
 
3334	struct btrfs_path *path;
3335	struct btrfs_key key;
3336	int ret;
3337	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3338					SKINNY_METADATA);
3339
3340	if (tree_block_processed(bytenr, blocksize, rc))
3341		return 0;
3342
3343	if (tree_search(blocks, bytenr))
3344		return 0;
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349again:
3350	key.objectid = bytenr;
3351	if (skinny) {
3352		key.type = BTRFS_METADATA_ITEM_KEY;
3353		key.offset = (u64)-1;
3354	} else {
3355		key.type = BTRFS_EXTENT_ITEM_KEY;
3356		key.offset = blocksize;
3357	}
3358
3359	path->search_commit_root = 1;
3360	path->skip_locking = 1;
3361	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3362	if (ret < 0)
3363		goto out;
3364
3365	if (ret > 0 && skinny) {
3366		if (path->slots[0]) {
3367			path->slots[0]--;
3368			btrfs_item_key_to_cpu(path->nodes[0], &key,
3369					      path->slots[0]);
3370			if (key.objectid == bytenr &&
3371			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3372			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3373			      key.offset == blocksize)))
3374				ret = 0;
3375		}
3376
3377		if (ret) {
3378			skinny = false;
3379			btrfs_release_path(path);
3380			goto again;
3381		}
3382	}
3383	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
3384
3385	ret = add_tree_block(rc, &key, path, blocks);
3386out:
3387	btrfs_free_path(path);
3388	return ret;
3389}
3390
3391/*
3392 * helper to check if the block use full backrefs for pointers in it
3393 */
3394static int block_use_full_backref(struct reloc_control *rc,
3395				  struct extent_buffer *eb)
3396{
3397	u64 flags;
3398	int ret;
3399
3400	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3401	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3402		return 1;
3403
3404	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3405				       eb->start, btrfs_header_level(eb), 1,
3406				       NULL, &flags);
3407	BUG_ON(ret);
3408
3409	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3410		ret = 1;
3411	else
3412		ret = 0;
3413	return ret;
3414}
3415
3416static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3417				    struct inode *inode, u64 ino)
 
 
3418{
3419	struct btrfs_key key;
3420	struct btrfs_root *root = fs_info->tree_root;
3421	struct btrfs_trans_handle *trans;
3422	int ret = 0;
3423
3424	if (inode)
3425		goto truncate;
3426
3427	key.objectid = ino;
3428	key.type = BTRFS_INODE_ITEM_KEY;
3429	key.offset = 0;
3430
3431	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3432	if (IS_ERR(inode) || is_bad_inode(inode)) {
3433		if (!IS_ERR(inode))
3434			iput(inode);
3435		return -ENOENT;
3436	}
3437
3438truncate:
3439	ret = btrfs_check_trunc_cache_free_space(root,
3440						 &fs_info->global_block_rsv);
3441	if (ret)
3442		goto out;
3443
3444	trans = btrfs_join_transaction(root);
3445	if (IS_ERR(trans)) {
3446		ret = PTR_ERR(trans);
3447		goto out;
3448	}
3449
3450	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3451
3452	btrfs_end_transaction(trans, root);
3453	btrfs_btree_balance_dirty(root);
3454out:
3455	iput(inode);
3456	return ret;
3457}
3458
3459/*
3460 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3461 * this function scans fs tree to find blocks reference the data extent
3462 */
3463static int find_data_references(struct reloc_control *rc,
3464				struct btrfs_key *extent_key,
3465				struct extent_buffer *leaf,
3466				struct btrfs_extent_data_ref *ref,
3467				struct rb_root *blocks)
3468{
3469	struct btrfs_path *path;
3470	struct tree_block *block;
3471	struct btrfs_root *root;
3472	struct btrfs_file_extent_item *fi;
3473	struct rb_node *rb_node;
3474	struct btrfs_key key;
3475	u64 ref_root;
3476	u64 ref_objectid;
3477	u64 ref_offset;
3478	u32 ref_count;
3479	u32 nritems;
3480	int err = 0;
3481	int added = 0;
3482	int counted;
3483	int ret;
3484
3485	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3486	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3487	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3488	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3489
3490	/*
3491	 * This is an extent belonging to the free space cache, lets just delete
3492	 * it and redo the search.
3493	 */
3494	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3495		ret = delete_block_group_cache(rc->extent_root->fs_info,
3496					       NULL, ref_objectid);
3497		if (ret != -ENOENT)
3498			return ret;
3499		ret = 0;
3500	}
3501
3502	path = btrfs_alloc_path();
3503	if (!path)
3504		return -ENOMEM;
3505	path->reada = 1;
3506
3507	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3508	if (IS_ERR(root)) {
3509		err = PTR_ERR(root);
3510		goto out;
3511	}
3512
3513	key.objectid = ref_objectid;
3514	key.type = BTRFS_EXTENT_DATA_KEY;
3515	if (ref_offset > ((u64)-1 << 32))
3516		key.offset = 0;
3517	else
3518		key.offset = ref_offset;
3519
3520	path->search_commit_root = 1;
3521	path->skip_locking = 1;
3522	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523	if (ret < 0) {
3524		err = ret;
3525		goto out;
3526	}
3527
3528	leaf = path->nodes[0];
3529	nritems = btrfs_header_nritems(leaf);
3530	/*
3531	 * the references in tree blocks that use full backrefs
3532	 * are not counted in
3533	 */
3534	if (block_use_full_backref(rc, leaf))
3535		counted = 0;
3536	else
3537		counted = 1;
3538	rb_node = tree_search(blocks, leaf->start);
3539	if (rb_node) {
3540		if (counted)
3541			added = 1;
3542		else
3543			path->slots[0] = nritems;
3544	}
3545
3546	while (ref_count > 0) {
3547		while (path->slots[0] >= nritems) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0) {
3550				err = ret;
3551				goto out;
3552			}
3553			if (WARN_ON(ret > 0))
3554				goto out;
3555
3556			leaf = path->nodes[0];
3557			nritems = btrfs_header_nritems(leaf);
3558			added = 0;
3559
3560			if (block_use_full_backref(rc, leaf))
3561				counted = 0;
3562			else
3563				counted = 1;
3564			rb_node = tree_search(blocks, leaf->start);
3565			if (rb_node) {
3566				if (counted)
3567					added = 1;
3568				else
3569					path->slots[0] = nritems;
3570			}
3571		}
3572
3573		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3574		if (WARN_ON(key.objectid != ref_objectid ||
3575		    key.type != BTRFS_EXTENT_DATA_KEY))
 
 
3576			break;
3577
3578		fi = btrfs_item_ptr(leaf, path->slots[0],
3579				    struct btrfs_file_extent_item);
3580
3581		if (btrfs_file_extent_type(leaf, fi) ==
3582		    BTRFS_FILE_EXTENT_INLINE)
3583			goto next;
3584
3585		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3586		    extent_key->objectid)
3587			goto next;
3588
3589		key.offset -= btrfs_file_extent_offset(leaf, fi);
3590		if (key.offset != ref_offset)
3591			goto next;
3592
3593		if (counted)
3594			ref_count--;
3595		if (added)
3596			goto next;
3597
3598		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3599			block = kmalloc(sizeof(*block), GFP_NOFS);
3600			if (!block) {
3601				err = -ENOMEM;
3602				break;
3603			}
3604			block->bytenr = leaf->start;
3605			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3606			block->level = 0;
3607			block->key_ready = 1;
3608			rb_node = tree_insert(blocks, block->bytenr,
3609					      &block->rb_node);
3610			if (rb_node)
3611				backref_tree_panic(rb_node, -EEXIST,
3612						   block->bytenr);
3613		}
3614		if (counted)
3615			added = 1;
3616		else
3617			path->slots[0] = nritems;
3618next:
3619		path->slots[0]++;
3620
3621	}
3622out:
3623	btrfs_free_path(path);
3624	return err;
 
 
3625}
3626
3627/*
3628 * helper to find all tree blocks that reference a given data extent
3629 */
3630static noinline_for_stack
3631int add_data_references(struct reloc_control *rc,
3632			struct btrfs_key *extent_key,
3633			struct btrfs_path *path,
3634			struct rb_root *blocks)
3635{
3636	struct btrfs_key key;
3637	struct extent_buffer *eb;
3638	struct btrfs_extent_data_ref *dref;
3639	struct btrfs_extent_inline_ref *iref;
3640	unsigned long ptr;
3641	unsigned long end;
3642	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3643	int ret = 0;
3644	int err = 0;
3645
3646	eb = path->nodes[0];
3647	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3648	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3649#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3650	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3651		ptr = end;
3652	else
3653#endif
3654		ptr += sizeof(struct btrfs_extent_item);
3655
3656	while (ptr < end) {
3657		iref = (struct btrfs_extent_inline_ref *)ptr;
3658		key.type = btrfs_extent_inline_ref_type(eb, iref);
3659		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3660			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3661			ret = __add_tree_block(rc, key.offset, blocksize,
3662					       blocks);
3663		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3665			ret = find_data_references(rc, extent_key,
3666						   eb, dref, blocks);
3667		} else {
3668			BUG();
3669		}
3670		if (ret) {
3671			err = ret;
3672			goto out;
3673		}
3674		ptr += btrfs_extent_inline_ref_size(key.type);
3675	}
3676	WARN_ON(ptr > end);
3677
3678	while (1) {
3679		cond_resched();
3680		eb = path->nodes[0];
3681		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3682			ret = btrfs_next_leaf(rc->extent_root, path);
3683			if (ret < 0) {
3684				err = ret;
3685				break;
3686			}
3687			if (ret > 0)
3688				break;
3689			eb = path->nodes[0];
3690		}
3691
3692		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3693		if (key.objectid != extent_key->objectid)
 
 
 
 
 
 
3694			break;
3695
3696#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3697		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3698		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3699#else
3700		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3701		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3702#endif
3703			ret = __add_tree_block(rc, key.offset, blocksize,
3704					       blocks);
3705		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3706			dref = btrfs_item_ptr(eb, path->slots[0],
3707					      struct btrfs_extent_data_ref);
3708			ret = find_data_references(rc, extent_key,
3709						   eb, dref, blocks);
3710		} else {
3711			ret = 0;
3712		}
3713		if (ret) {
3714			err = ret;
 
 
 
 
 
3715			break;
3716		}
3717		path->slots[0]++;
3718	}
3719out:
3720	btrfs_release_path(path);
3721	if (err)
3722		free_block_list(blocks);
3723	return err;
 
3724}
3725
3726/*
3727 * helper to find next unprocessed extent
3728 */
3729static noinline_for_stack
3730int find_next_extent(struct btrfs_trans_handle *trans,
3731		     struct reloc_control *rc, struct btrfs_path *path,
3732		     struct btrfs_key *extent_key)
3733{
 
3734	struct btrfs_key key;
3735	struct extent_buffer *leaf;
3736	u64 start, end, last;
3737	int ret;
3738
3739	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3740	while (1) {
 
 
3741		cond_resched();
3742		if (rc->search_start >= last) {
3743			ret = 1;
3744			break;
3745		}
3746
3747		key.objectid = rc->search_start;
3748		key.type = BTRFS_EXTENT_ITEM_KEY;
3749		key.offset = 0;
3750
3751		path->search_commit_root = 1;
3752		path->skip_locking = 1;
3753		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3754					0, 0);
3755		if (ret < 0)
3756			break;
3757next:
3758		leaf = path->nodes[0];
3759		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3760			ret = btrfs_next_leaf(rc->extent_root, path);
3761			if (ret != 0)
3762				break;
3763			leaf = path->nodes[0];
3764		}
3765
3766		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3767		if (key.objectid >= last) {
3768			ret = 1;
3769			break;
3770		}
3771
3772		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3773		    key.type != BTRFS_METADATA_ITEM_KEY) {
3774			path->slots[0]++;
3775			goto next;
3776		}
3777
3778		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3779		    key.objectid + key.offset <= rc->search_start) {
3780			path->slots[0]++;
3781			goto next;
3782		}
3783
3784		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3785		    key.objectid + rc->extent_root->leafsize <=
3786		    rc->search_start) {
3787			path->slots[0]++;
3788			goto next;
3789		}
3790
3791		ret = find_first_extent_bit(&rc->processed_blocks,
3792					    key.objectid, &start, &end,
3793					    EXTENT_DIRTY, NULL);
3794
3795		if (ret == 0 && start <= key.objectid) {
3796			btrfs_release_path(path);
3797			rc->search_start = end + 1;
3798		} else {
3799			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3800				rc->search_start = key.objectid + key.offset;
3801			else
3802				rc->search_start = key.objectid +
3803					rc->extent_root->leafsize;
3804			memcpy(extent_key, &key, sizeof(key));
3805			return 0;
3806		}
3807	}
3808	btrfs_release_path(path);
3809	return ret;
3810}
3811
3812static void set_reloc_control(struct reloc_control *rc)
3813{
3814	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3815
3816	mutex_lock(&fs_info->reloc_mutex);
3817	fs_info->reloc_ctl = rc;
3818	mutex_unlock(&fs_info->reloc_mutex);
3819}
3820
3821static void unset_reloc_control(struct reloc_control *rc)
3822{
3823	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3824
3825	mutex_lock(&fs_info->reloc_mutex);
3826	fs_info->reloc_ctl = NULL;
3827	mutex_unlock(&fs_info->reloc_mutex);
3828}
3829
3830static int check_extent_flags(u64 flags)
3831{
3832	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3833	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3834		return 1;
3835	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3836	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3837		return 1;
3838	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3839	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3840		return 1;
3841	return 0;
3842}
3843
3844static noinline_for_stack
3845int prepare_to_relocate(struct reloc_control *rc)
3846{
3847	struct btrfs_trans_handle *trans;
 
3848
3849	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3850					      BTRFS_BLOCK_RSV_TEMP);
3851	if (!rc->block_rsv)
3852		return -ENOMEM;
3853
3854	memset(&rc->cluster, 0, sizeof(rc->cluster));
3855	rc->search_start = rc->block_group->key.objectid;
3856	rc->extents_found = 0;
3857	rc->nodes_relocated = 0;
3858	rc->merging_rsv_size = 0;
3859	rc->reserved_bytes = 0;
3860	rc->block_rsv->size = rc->extent_root->nodesize *
3861			      RELOCATION_RESERVED_NODES;
 
 
 
 
 
3862
3863	rc->create_reloc_tree = 1;
3864	set_reloc_control(rc);
3865
3866	trans = btrfs_join_transaction(rc->extent_root);
3867	if (IS_ERR(trans)) {
3868		unset_reloc_control(rc);
3869		/*
3870		 * extent tree is not a ref_cow tree and has no reloc_root to
3871		 * cleanup.  And callers are responsible to free the above
3872		 * block rsv.
3873		 */
3874		return PTR_ERR(trans);
3875	}
3876	btrfs_commit_transaction(trans, rc->extent_root);
3877	return 0;
 
 
 
 
3878}
3879
3880static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3881{
 
3882	struct rb_root blocks = RB_ROOT;
3883	struct btrfs_key key;
3884	struct btrfs_trans_handle *trans = NULL;
3885	struct btrfs_path *path;
3886	struct btrfs_extent_item *ei;
3887	u64 flags;
3888	u32 item_size;
3889	int ret;
3890	int err = 0;
3891	int progress = 0;
3892
3893	path = btrfs_alloc_path();
3894	if (!path)
3895		return -ENOMEM;
3896	path->reada = 1;
3897
3898	ret = prepare_to_relocate(rc);
3899	if (ret) {
3900		err = ret;
3901		goto out_free;
3902	}
3903
3904	while (1) {
3905		rc->reserved_bytes = 0;
3906		ret = btrfs_block_rsv_refill(rc->extent_root,
3907					rc->block_rsv, rc->block_rsv->size,
3908					BTRFS_RESERVE_FLUSH_ALL);
3909		if (ret) {
3910			err = ret;
3911			break;
3912		}
3913		progress++;
3914		trans = btrfs_start_transaction(rc->extent_root, 0);
3915		if (IS_ERR(trans)) {
3916			err = PTR_ERR(trans);
3917			trans = NULL;
3918			break;
3919		}
3920restart:
3921		if (update_backref_cache(trans, &rc->backref_cache)) {
3922			btrfs_end_transaction(trans, rc->extent_root);
 
3923			continue;
3924		}
3925
3926		ret = find_next_extent(trans, rc, path, &key);
3927		if (ret < 0)
3928			err = ret;
3929		if (ret != 0)
3930			break;
3931
3932		rc->extents_found++;
3933
3934		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3935				    struct btrfs_extent_item);
3936		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3937		if (item_size >= sizeof(*ei)) {
3938			flags = btrfs_extent_flags(path->nodes[0], ei);
3939			ret = check_extent_flags(flags);
3940			BUG_ON(ret);
3941
3942		} else {
3943#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3944			u64 ref_owner;
3945			int path_change = 0;
3946
3947			BUG_ON(item_size !=
3948			       sizeof(struct btrfs_extent_item_v0));
3949			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3950						  &path_change);
3951			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3952				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3953			else
3954				flags = BTRFS_EXTENT_FLAG_DATA;
3955
3956			if (path_change) {
3957				btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
3958
3959				path->search_commit_root = 1;
3960				path->skip_locking = 1;
3961				ret = btrfs_search_slot(NULL, rc->extent_root,
3962							&key, path, 0, 0);
3963				if (ret < 0) {
3964					err = ret;
3965					break;
3966				}
3967				BUG_ON(ret > 0);
3968			}
3969#else
3970			BUG();
3971#endif
3972		}
3973
3974		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3975			ret = add_tree_block(rc, &key, path, &blocks);
3976		} else if (rc->stage == UPDATE_DATA_PTRS &&
3977			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3978			ret = add_data_references(rc, &key, path, &blocks);
3979		} else {
3980			btrfs_release_path(path);
3981			ret = 0;
3982		}
3983		if (ret < 0) {
3984			err = ret;
3985			break;
3986		}
3987
3988		if (!RB_EMPTY_ROOT(&blocks)) {
3989			ret = relocate_tree_blocks(trans, rc, &blocks);
3990			if (ret < 0) {
3991				/*
3992				 * if we fail to relocate tree blocks, force to update
3993				 * backref cache when committing transaction.
3994				 */
3995				rc->backref_cache.last_trans = trans->transid - 1;
3996
3997				if (ret != -EAGAIN) {
3998					err = ret;
3999					break;
4000				}
4001				rc->extents_found--;
4002				rc->search_start = key.objectid;
4003			}
4004		}
4005
4006		btrfs_end_transaction_throttle(trans, rc->extent_root);
4007		btrfs_btree_balance_dirty(rc->extent_root);
4008		trans = NULL;
4009
4010		if (rc->stage == MOVE_DATA_EXTENTS &&
4011		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4012			rc->found_file_extent = 1;
4013			ret = relocate_data_extent(rc->data_inode,
4014						   &key, &rc->cluster);
4015			if (ret < 0) {
4016				err = ret;
4017				break;
4018			}
4019		}
 
 
 
 
4020	}
4021	if (trans && progress && err == -ENOSPC) {
4022		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4023					      rc->block_group->flags);
4024		if (ret == 0) {
4025			err = 0;
4026			progress = 0;
4027			goto restart;
4028		}
4029	}
4030
4031	btrfs_release_path(path);
4032	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4033			  GFP_NOFS);
4034
4035	if (trans) {
4036		btrfs_end_transaction_throttle(trans, rc->extent_root);
4037		btrfs_btree_balance_dirty(rc->extent_root);
4038	}
4039
4040	if (!err) {
4041		ret = relocate_file_extent_cluster(rc->data_inode,
4042						   &rc->cluster);
4043		if (ret < 0)
4044			err = ret;
4045	}
4046
4047	rc->create_reloc_tree = 0;
4048	set_reloc_control(rc);
4049
4050	backref_cache_cleanup(&rc->backref_cache);
4051	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4052
 
 
 
 
 
 
 
 
4053	err = prepare_to_merge(rc, err);
4054
4055	merge_reloc_roots(rc);
4056
4057	rc->merge_reloc_tree = 0;
4058	unset_reloc_control(rc);
4059	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4060
4061	/* get rid of pinned extents */
4062	trans = btrfs_join_transaction(rc->extent_root);
4063	if (IS_ERR(trans))
4064		err = PTR_ERR(trans);
4065	else
4066		btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
4067out_free:
4068	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
4069	btrfs_free_path(path);
4070	return err;
4071}
4072
4073static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4074				 struct btrfs_root *root, u64 objectid)
4075{
4076	struct btrfs_path *path;
4077	struct btrfs_inode_item *item;
4078	struct extent_buffer *leaf;
4079	int ret;
4080
4081	path = btrfs_alloc_path();
4082	if (!path)
4083		return -ENOMEM;
4084
4085	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4086	if (ret)
4087		goto out;
4088
4089	leaf = path->nodes[0];
4090	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4091	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4092	btrfs_set_inode_generation(leaf, item, 1);
4093	btrfs_set_inode_size(leaf, item, 0);
4094	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4095	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4096					  BTRFS_INODE_PREALLOC);
4097	btrfs_mark_buffer_dirty(leaf);
4098	btrfs_release_path(path);
4099out:
4100	btrfs_free_path(path);
4101	return ret;
4102}
4103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4104/*
4105 * helper to create inode for data relocation.
4106 * the inode is in data relocation tree and its link count is 0
4107 */
4108static noinline_for_stack
4109struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4110				 struct btrfs_block_group_cache *group)
4111{
4112	struct inode *inode = NULL;
4113	struct btrfs_trans_handle *trans;
4114	struct btrfs_root *root;
4115	struct btrfs_key key;
4116	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4117	int err = 0;
4118
4119	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4120	if (IS_ERR(root))
4121		return ERR_CAST(root);
4122
4123	trans = btrfs_start_transaction(root, 6);
4124	if (IS_ERR(trans))
 
4125		return ERR_CAST(trans);
 
4126
4127	err = btrfs_find_free_objectid(root, &objectid);
4128	if (err)
4129		goto out;
4130
4131	err = __insert_orphan_inode(trans, root, objectid);
4132	BUG_ON(err);
 
4133
4134	key.objectid = objectid;
4135	key.type = BTRFS_INODE_ITEM_KEY;
4136	key.offset = 0;
4137	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4138	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4139	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
4140
4141	err = btrfs_orphan_add(trans, inode);
4142out:
4143	btrfs_end_transaction(trans, root);
4144	btrfs_btree_balance_dirty(root);
 
4145	if (err) {
4146		if (inode)
4147			iput(inode);
4148		inode = ERR_PTR(err);
4149	}
4150	return inode;
4151}
4152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4154{
4155	struct reloc_control *rc;
4156
4157	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4158	if (!rc)
4159		return NULL;
4160
4161	INIT_LIST_HEAD(&rc->reloc_roots);
4162	backref_cache_init(&rc->backref_cache);
4163	mapping_tree_init(&rc->reloc_root_tree);
4164	extent_io_tree_init(&rc->processed_blocks,
4165			    fs_info->btree_inode->i_mapping);
 
4166	return rc;
4167}
4168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169/*
4170 * function to relocate all extents in a block group.
4171 */
4172int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4173{
4174	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
4175	struct reloc_control *rc;
4176	struct inode *inode;
4177	struct btrfs_path *path;
4178	int ret;
4179	int rw = 0;
4180	int err = 0;
4181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182	rc = alloc_reloc_control(fs_info);
4183	if (!rc)
 
4184		return -ENOMEM;
 
4185
4186	rc->extent_root = extent_root;
 
 
 
 
4187
4188	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4189	BUG_ON(!rc->block_group);
4190
4191	if (!rc->block_group->ro) {
4192		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4193		if (ret) {
4194			err = ret;
4195			goto out;
4196		}
4197		rw = 1;
4198	}
 
4199
4200	path = btrfs_alloc_path();
4201	if (!path) {
4202		err = -ENOMEM;
4203		goto out;
4204	}
4205
4206	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4207					path);
4208	btrfs_free_path(path);
4209
4210	if (!IS_ERR(inode))
4211		ret = delete_block_group_cache(fs_info, inode, 0);
4212	else
4213		ret = PTR_ERR(inode);
4214
4215	if (ret && ret != -ENOENT) {
4216		err = ret;
4217		goto out;
4218	}
4219
4220	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4221	if (IS_ERR(rc->data_inode)) {
4222		err = PTR_ERR(rc->data_inode);
4223		rc->data_inode = NULL;
4224		goto out;
4225	}
4226
4227	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4228	       rc->block_group->key.objectid, rc->block_group->flags);
4229
4230	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4231	if (ret < 0) {
4232		err = ret;
4233		goto out;
4234	}
4235	btrfs_wait_ordered_roots(fs_info, -1);
 
 
4236
4237	while (1) {
 
 
4238		mutex_lock(&fs_info->cleaner_mutex);
4239		ret = relocate_block_group(rc);
4240		mutex_unlock(&fs_info->cleaner_mutex);
4241		if (ret < 0) {
4242			err = ret;
4243			goto out;
4244		}
4245
4246		if (rc->extents_found == 0)
4247			break;
4248
4249		btrfs_info(extent_root->fs_info, "found %llu extents",
4250			rc->extents_found);
4251
 
 
 
 
 
 
 
 
 
 
4252		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4253			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4254						       (u64)-1);
4255			if (ret) {
4256				err = ret;
4257				goto out;
4258			}
4259			invalidate_mapping_pages(rc->data_inode->i_mapping,
4260						 0, -1);
4261			rc->stage = UPDATE_DATA_PTRS;
4262		}
 
 
 
 
 
 
 
 
 
4263	}
4264
4265	WARN_ON(rc->block_group->pinned > 0);
4266	WARN_ON(rc->block_group->reserved > 0);
4267	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4268out:
4269	if (err && rw)
4270		btrfs_set_block_group_rw(extent_root, rc->block_group);
4271	iput(rc->data_inode);
4272	btrfs_put_block_group(rc->block_group);
4273	kfree(rc);
 
 
4274	return err;
4275}
4276
4277static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4278{
 
4279	struct btrfs_trans_handle *trans;
4280	int ret, err;
4281
4282	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4283	if (IS_ERR(trans))
4284		return PTR_ERR(trans);
4285
4286	memset(&root->root_item.drop_progress, 0,
4287		sizeof(root->root_item.drop_progress));
4288	root->root_item.drop_level = 0;
4289	btrfs_set_root_refs(&root->root_item, 0);
4290	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4291				&root->root_key, &root->root_item);
4292
4293	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4294	if (err)
4295		return err;
4296	return ret;
4297}
4298
4299/*
4300 * recover relocation interrupted by system crash.
4301 *
4302 * this function resumes merging reloc trees with corresponding fs trees.
4303 * this is important for keeping the sharing of tree blocks
4304 */
4305int btrfs_recover_relocation(struct btrfs_root *root)
4306{
4307	LIST_HEAD(reloc_roots);
4308	struct btrfs_key key;
4309	struct btrfs_root *fs_root;
4310	struct btrfs_root *reloc_root;
4311	struct btrfs_path *path;
4312	struct extent_buffer *leaf;
4313	struct reloc_control *rc = NULL;
4314	struct btrfs_trans_handle *trans;
4315	int ret;
4316	int err = 0;
4317
4318	path = btrfs_alloc_path();
4319	if (!path)
4320		return -ENOMEM;
4321	path->reada = -1;
4322
4323	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4324	key.type = BTRFS_ROOT_ITEM_KEY;
4325	key.offset = (u64)-1;
4326
4327	while (1) {
4328		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4329					path, 0, 0);
4330		if (ret < 0) {
4331			err = ret;
4332			goto out;
4333		}
4334		if (ret > 0) {
4335			if (path->slots[0] == 0)
4336				break;
4337			path->slots[0]--;
4338		}
4339		leaf = path->nodes[0];
4340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341		btrfs_release_path(path);
4342
4343		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4344		    key.type != BTRFS_ROOT_ITEM_KEY)
4345			break;
4346
4347		reloc_root = btrfs_read_fs_root(root, &key);
4348		if (IS_ERR(reloc_root)) {
4349			err = PTR_ERR(reloc_root);
4350			goto out;
4351		}
4352
 
4353		list_add(&reloc_root->root_list, &reloc_roots);
4354
4355		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4356			fs_root = read_fs_root(root->fs_info,
4357					       reloc_root->root_key.offset);
4358			if (IS_ERR(fs_root)) {
4359				ret = PTR_ERR(fs_root);
4360				if (ret != -ENOENT) {
4361					err = ret;
4362					goto out;
4363				}
4364				ret = mark_garbage_root(reloc_root);
4365				if (ret < 0) {
4366					err = ret;
4367					goto out;
4368				}
 
 
4369			}
4370		}
4371
4372		if (key.offset == 0)
4373			break;
4374
4375		key.offset--;
4376	}
4377	btrfs_release_path(path);
4378
4379	if (list_empty(&reloc_roots))
4380		goto out;
4381
4382	rc = alloc_reloc_control(root->fs_info);
4383	if (!rc) {
4384		err = -ENOMEM;
4385		goto out;
4386	}
4387
4388	rc->extent_root = root->fs_info->extent_root;
 
 
 
 
 
 
4389
4390	set_reloc_control(rc);
4391
4392	trans = btrfs_join_transaction(rc->extent_root);
4393	if (IS_ERR(trans)) {
4394		unset_reloc_control(rc);
4395		err = PTR_ERR(trans);
4396		goto out_free;
4397	}
4398
4399	rc->merge_reloc_tree = 1;
4400
4401	while (!list_empty(&reloc_roots)) {
4402		reloc_root = list_entry(reloc_roots.next,
4403					struct btrfs_root, root_list);
4404		list_del(&reloc_root->root_list);
4405
4406		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4407			list_add_tail(&reloc_root->root_list,
4408				      &rc->reloc_roots);
4409			continue;
4410		}
4411
4412		fs_root = read_fs_root(root->fs_info,
4413				       reloc_root->root_key.offset);
4414		if (IS_ERR(fs_root)) {
4415			err = PTR_ERR(fs_root);
4416			goto out_free;
 
 
4417		}
4418
4419		err = __add_reloc_root(reloc_root);
4420		BUG_ON(err < 0); /* -ENOMEM or logic error */
4421		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
4422	}
4423
4424	err = btrfs_commit_transaction(trans, rc->extent_root);
4425	if (err)
4426		goto out_free;
4427
4428	merge_reloc_roots(rc);
4429
4430	unset_reloc_control(rc);
4431
4432	trans = btrfs_join_transaction(rc->extent_root);
4433	if (IS_ERR(trans))
4434		err = PTR_ERR(trans);
4435	else
4436		err = btrfs_commit_transaction(trans, rc->extent_root);
4437out_free:
4438	kfree(rc);
 
 
 
 
 
 
 
 
4439out:
4440	if (!list_empty(&reloc_roots))
4441		free_reloc_roots(&reloc_roots);
4442
4443	btrfs_free_path(path);
4444
4445	if (err == 0) {
4446		/* cleanup orphan inode in data relocation tree */
4447		fs_root = read_fs_root(root->fs_info,
4448				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4449		if (IS_ERR(fs_root))
4450			err = PTR_ERR(fs_root);
4451		else
4452			err = btrfs_orphan_cleanup(fs_root);
4453	}
4454	return err;
4455}
4456
4457/*
4458 * helper to add ordered checksum for data relocation.
4459 *
4460 * cloning checksum properly handles the nodatasum extents.
4461 * it also saves CPU time to re-calculate the checksum.
4462 */
4463int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4464{
4465	struct btrfs_ordered_sum *sums;
4466	struct btrfs_ordered_extent *ordered;
4467	struct btrfs_root *root = BTRFS_I(inode)->root;
4468	int ret;
4469	u64 disk_bytenr;
4470	u64 new_bytenr;
4471	LIST_HEAD(list);
 
4472
4473	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4474	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4475
4476	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4477	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4478				       disk_bytenr + len - 1, &list, 0);
4479	if (ret)
4480		goto out;
4481
4482	while (!list_empty(&list)) {
4483		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
 
 
4484		list_del_init(&sums->list);
4485
4486		/*
4487		 * We need to offset the new_bytenr based on where the csum is.
4488		 * We need to do this because we will read in entire prealloc
4489		 * extents but we may have written to say the middle of the
4490		 * prealloc extent, so we need to make sure the csum goes with
4491		 * the right disk offset.
4492		 *
4493		 * We can do this because the data reloc inode refers strictly
4494		 * to the on disk bytes, so we don't have to worry about
4495		 * disk_len vs real len like with real inodes since it's all
4496		 * disk length.
4497		 */
4498		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4499		sums->bytenr = new_bytenr;
4500
4501		btrfs_add_ordered_sum(inode, ordered, sums);
4502	}
4503out:
4504	btrfs_put_ordered_extent(ordered);
4505	return ret;
4506}
4507
4508int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4509			  struct btrfs_root *root, struct extent_buffer *buf,
 
4510			  struct extent_buffer *cow)
4511{
 
4512	struct reloc_control *rc;
4513	struct backref_node *node;
4514	int first_cow = 0;
4515	int level;
4516	int ret = 0;
4517
4518	rc = root->fs_info->reloc_ctl;
4519	if (!rc)
4520		return 0;
4521
4522	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4523	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4524
4525	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4526		if (buf == root->node)
4527			__update_reloc_root(root, cow->start);
4528	}
4529
4530	level = btrfs_header_level(buf);
4531	if (btrfs_header_generation(buf) <=
4532	    btrfs_root_last_snapshot(&root->root_item))
4533		first_cow = 1;
4534
4535	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4536	    rc->create_reloc_tree) {
4537		WARN_ON(!first_cow && level == 0);
4538
4539		node = rc->backref_cache.path[level];
4540		BUG_ON(node->bytenr != buf->start &&
4541		       node->new_bytenr != buf->start);
4542
4543		drop_node_buffer(node);
4544		extent_buffer_get(cow);
4545		node->eb = cow;
4546		node->new_bytenr = cow->start;
4547
4548		if (!node->pending) {
4549			list_move_tail(&node->list,
4550				       &rc->backref_cache.pending[level]);
4551			node->pending = 1;
4552		}
4553
4554		if (first_cow)
4555			__mark_block_processed(rc, node);
4556
4557		if (first_cow && level > 0)
4558			rc->nodes_relocated += buf->len;
4559	}
4560
4561	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4562		ret = replace_file_extents(trans, rc, root, cow);
4563	return ret;
4564}
4565
4566/*
4567 * called before creating snapshot. it calculates metadata reservation
4568 * requried for relocating tree blocks in the snapshot
4569 */
4570void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4571			      struct btrfs_pending_snapshot *pending,
4572			      u64 *bytes_to_reserve)
4573{
4574	struct btrfs_root *root;
4575	struct reloc_control *rc;
4576
4577	root = pending->root;
4578	if (!root->reloc_root)
4579		return;
4580
4581	rc = root->fs_info->reloc_ctl;
4582	if (!rc->merge_reloc_tree)
4583		return;
4584
4585	root = root->reloc_root;
4586	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4587	/*
4588	 * relocation is in the stage of merging trees. the space
4589	 * used by merging a reloc tree is twice the size of
4590	 * relocated tree nodes in the worst case. half for cowing
4591	 * the reloc tree, half for cowing the fs tree. the space
4592	 * used by cowing the reloc tree will be freed after the
4593	 * tree is dropped. if we create snapshot, cowing the fs
4594	 * tree may use more space than it frees. so we need
4595	 * reserve extra space.
4596	 */
4597	*bytes_to_reserve += rc->nodes_relocated;
4598}
4599
4600/*
4601 * called after snapshot is created. migrate block reservation
4602 * and create reloc root for the newly created snapshot
 
 
 
 
4603 */
4604int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4605			       struct btrfs_pending_snapshot *pending)
4606{
4607	struct btrfs_root *root = pending->root;
4608	struct btrfs_root *reloc_root;
4609	struct btrfs_root *new_root;
4610	struct reloc_control *rc;
4611	int ret;
4612
4613	if (!root->reloc_root)
4614		return 0;
4615
4616	rc = root->fs_info->reloc_ctl;
4617	rc->merging_rsv_size += rc->nodes_relocated;
4618
4619	if (rc->merge_reloc_tree) {
4620		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4621					      rc->block_rsv,
4622					      rc->nodes_relocated);
4623		if (ret)
4624			return ret;
4625	}
4626
4627	new_root = pending->snap;
4628	reloc_root = create_reloc_root(trans, root->reloc_root,
4629				       new_root->root_key.objectid);
4630	if (IS_ERR(reloc_root))
4631		return PTR_ERR(reloc_root);
4632
4633	ret = __add_reloc_root(reloc_root);
4634	BUG_ON(ret < 0);
4635	new_root->reloc_root = reloc_root;
 
 
 
 
 
4636
4637	if (rc->create_reloc_tree)
4638		ret = clone_backref_node(trans, rc, root, reloc_root);
4639	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4640}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30#include "space-info.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "extent-tree.h"
  34#include "root-tree.h"
  35#include "file-item.h"
  36#include "relocation.h"
  37#include "super.h"
  38#include "tree-checker.h"
  39
  40/*
  41 * Relocation overview
  42 *
  43 * [What does relocation do]
  44 *
  45 * The objective of relocation is to relocate all extents of the target block
  46 * group to other block groups.
  47 * This is utilized by resize (shrink only), profile converting, compacting
  48 * space, or balance routine to spread chunks over devices.
  49 *
  50 * 		Before		|		After
  51 * ------------------------------------------------------------------
  52 *  BG A: 10 data extents	| BG A: deleted
  53 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  54 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  55 *
  56 * [How does relocation work]
  57 *
  58 * 1.   Mark the target block group read-only
  59 *      New extents won't be allocated from the target block group.
  60 *
  61 * 2.1  Record each extent in the target block group
  62 *      To build a proper map of extents to be relocated.
  63 *
  64 * 2.2  Build data reloc tree and reloc trees
  65 *      Data reloc tree will contain an inode, recording all newly relocated
  66 *      data extents.
  67 *      There will be only one data reloc tree for one data block group.
  68 *
  69 *      Reloc tree will be a special snapshot of its source tree, containing
  70 *      relocated tree blocks.
  71 *      Each tree referring to a tree block in target block group will get its
  72 *      reloc tree built.
  73 *
  74 * 2.3  Swap source tree with its corresponding reloc tree
  75 *      Each involved tree only refers to new extents after swap.
  76 *
  77 * 3.   Cleanup reloc trees and data reloc tree.
  78 *      As old extents in the target block group are still referenced by reloc
  79 *      trees, we need to clean them up before really freeing the target block
  80 *      group.
  81 *
  82 * The main complexity is in steps 2.2 and 2.3.
  83 *
  84 * The entry point of relocation is relocate_block_group() function.
 
  85 */
 
 
 
 
  86
 
 
  87#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88/*
  89 * map address of tree root to tree
  90 */
  91struct mapping_node {
  92	struct {
  93		struct rb_node rb_node;
  94		u64 bytenr;
  95	}; /* Use rb_simle_node for search/insert */
  96	void *data;
  97};
  98
  99struct mapping_tree {
 100	struct rb_root rb_root;
 101	spinlock_t lock;
 102};
 103
 104/*
 105 * present a tree block to process
 106 */
 107struct tree_block {
 108	struct {
 109		struct rb_node rb_node;
 110		u64 bytenr;
 111	}; /* Use rb_simple_node for search/insert */
 112	u64 owner;
 113	struct btrfs_key key;
 114	u8 level;
 115	bool key_ready;
 116};
 117
 118#define MAX_EXTENTS 128
 119
 120struct file_extent_cluster {
 121	u64 start;
 122	u64 end;
 123	u64 boundary[MAX_EXTENTS];
 124	unsigned int nr;
 125	u64 owning_root;
 126};
 127
 128/* Stages of data relocation. */
 129enum reloc_stage {
 130	MOVE_DATA_EXTENTS,
 131	UPDATE_DATA_PTRS
 132};
 133
 134struct reloc_control {
 135	/* block group to relocate */
 136	struct btrfs_block_group *block_group;
 137	/* extent tree */
 138	struct btrfs_root *extent_root;
 139	/* inode for moving data */
 140	struct inode *data_inode;
 141
 142	struct btrfs_block_rsv *block_rsv;
 143
 144	struct btrfs_backref_cache backref_cache;
 145
 146	struct file_extent_cluster cluster;
 147	/* tree blocks have been processed */
 148	struct extent_io_tree processed_blocks;
 149	/* map start of tree root to corresponding reloc tree */
 150	struct mapping_tree reloc_root_tree;
 151	/* list of reloc trees */
 152	struct list_head reloc_roots;
 153	/* list of subvolume trees that get relocated */
 154	struct list_head dirty_subvol_roots;
 155	/* size of metadata reservation for merging reloc trees */
 156	u64 merging_rsv_size;
 157	/* size of relocated tree nodes */
 158	u64 nodes_relocated;
 159	/* reserved size for block group relocation*/
 160	u64 reserved_bytes;
 161
 162	u64 search_start;
 163	u64 extents_found;
 164
 165	enum reloc_stage stage;
 166	bool create_reloc_tree;
 167	bool merge_reloc_tree;
 168	bool found_file_extent;
 169};
 170
 171static void mark_block_processed(struct reloc_control *rc,
 172				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	u32 blocksize;
 
 
 
 
 175
 176	if (node->level == 0 ||
 177	    in_range(node->bytenr, rc->block_group->start,
 178		     rc->block_group->length)) {
 179		blocksize = rc->extent_root->fs_info->nodesize;
 180		set_extent_bit(&rc->processed_blocks, node->bytenr,
 181			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
 182	}
 183	node->processed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 184}
 185
 186/*
 187 * walk up backref nodes until reach node presents tree root
 188 */
 189static struct btrfs_backref_node *walk_up_backref(
 190		struct btrfs_backref_node *node,
 191		struct btrfs_backref_edge *edges[], int *index)
 192{
 193	struct btrfs_backref_edge *edge;
 194	int idx = *index;
 195
 196	while (!list_empty(&node->upper)) {
 197		edge = list_entry(node->upper.next,
 198				  struct btrfs_backref_edge, list[LOWER]);
 199		edges[idx++] = edge;
 200		node = edge->node[UPPER];
 201	}
 202	BUG_ON(node->detached);
 203	*index = idx;
 204	return node;
 205}
 206
 207/*
 208 * walk down backref nodes to find start of next reference path
 209 */
 210static struct btrfs_backref_node *walk_down_backref(
 211		struct btrfs_backref_edge *edges[], int *index)
 212{
 213	struct btrfs_backref_edge *edge;
 214	struct btrfs_backref_node *lower;
 215	int idx = *index;
 216
 217	while (idx > 0) {
 218		edge = edges[idx - 1];
 219		lower = edge->node[LOWER];
 220		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 221			idx--;
 222			continue;
 223		}
 224		edge = list_entry(edge->list[LOWER].next,
 225				  struct btrfs_backref_edge, list[LOWER]);
 226		edges[idx - 1] = edge;
 227		*index = idx;
 228		return edge->node[UPPER];
 229	}
 230	*index = 0;
 231	return NULL;
 232}
 233
 234static void update_backref_node(struct btrfs_backref_cache *cache,
 235				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236{
 237	struct rb_node *rb_node;
 238	rb_erase(&node->rb_node, &cache->rb_root);
 239	node->bytenr = bytenr;
 240	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 241	if (rb_node)
 242		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 243}
 244
 245/*
 246 * update backref cache after a transaction commit
 247 */
 248static int update_backref_cache(struct btrfs_trans_handle *trans,
 249				struct btrfs_backref_cache *cache)
 250{
 251	struct btrfs_backref_node *node;
 252	int level = 0;
 253
 254	if (cache->last_trans == 0) {
 255		cache->last_trans = trans->transid;
 256		return 0;
 257	}
 258
 259	if (cache->last_trans == trans->transid)
 260		return 0;
 261
 262	/*
 263	 * detached nodes are used to avoid unnecessary backref
 264	 * lookup. transaction commit changes the extent tree.
 265	 * so the detached nodes are no longer useful.
 266	 */
 267	while (!list_empty(&cache->detached)) {
 268		node = list_entry(cache->detached.next,
 269				  struct btrfs_backref_node, list);
 270		btrfs_backref_cleanup_node(cache, node);
 271	}
 272
 273	while (!list_empty(&cache->changed)) {
 274		node = list_entry(cache->changed.next,
 275				  struct btrfs_backref_node, list);
 276		list_del_init(&node->list);
 277		BUG_ON(node->pending);
 278		update_backref_node(cache, node, node->new_bytenr);
 279	}
 280
 281	/*
 282	 * some nodes can be left in the pending list if there were
 283	 * errors during processing the pending nodes.
 284	 */
 285	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 286		list_for_each_entry(node, &cache->pending[level], list) {
 287			BUG_ON(!node->pending);
 288			if (node->bytenr == node->new_bytenr)
 289				continue;
 290			update_backref_node(cache, node, node->new_bytenr);
 291		}
 292	}
 293
 294	cache->last_trans = 0;
 295	return 1;
 296}
 297
 298static bool reloc_root_is_dead(const struct btrfs_root *root)
 299{
 300	/*
 301	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 302	 * btrfs_update_reloc_root. We need to see the updated bit before
 303	 * trying to access reloc_root
 304	 */
 305	smp_rmb();
 306	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 307		return true;
 308	return false;
 309}
 310
 311/*
 312 * Check if this subvolume tree has valid reloc tree.
 313 *
 314 * Reloc tree after swap is considered dead, thus not considered as valid.
 315 * This is enough for most callers, as they don't distinguish dead reloc root
 316 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 317 * special case.
 318 */
 319static bool have_reloc_root(const struct btrfs_root *root)
 320{
 321	if (reloc_root_is_dead(root))
 322		return false;
 323	if (!root->reloc_root)
 324		return false;
 325	return true;
 326}
 327
 328bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
 329{
 330	struct btrfs_root *reloc_root;
 331
 332	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 333		return false;
 334
 335	/* This root has been merged with its reloc tree, we can ignore it */
 336	if (reloc_root_is_dead(root))
 337		return true;
 338
 339	reloc_root = root->reloc_root;
 340	if (!reloc_root)
 341		return false;
 342
 343	if (btrfs_header_generation(reloc_root->commit_root) ==
 344	    root->fs_info->running_transaction->transid)
 345		return false;
 346	/*
 347	 * If there is reloc tree and it was created in previous transaction
 348	 * backref lookup can find the reloc tree, so backref node for the fs
 349	 * tree root is useless for relocation.
 
 350	 */
 351	return true;
 352}
 353
 354/*
 355 * find reloc tree by address of tree root
 356 */
 357struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 358{
 359	struct reloc_control *rc = fs_info->reloc_ctl;
 360	struct rb_node *rb_node;
 361	struct mapping_node *node;
 362	struct btrfs_root *root = NULL;
 363
 364	ASSERT(rc);
 365	spin_lock(&rc->reloc_root_tree.lock);
 366	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 367	if (rb_node) {
 368		node = rb_entry(rb_node, struct mapping_node, rb_node);
 369		root = node->data;
 370	}
 371	spin_unlock(&rc->reloc_root_tree.lock);
 372	return btrfs_grab_root(root);
 373}
 374
 375/*
 376 * For useless nodes, do two major clean ups:
 377 *
 378 * - Cleanup the children edges and nodes
 379 *   If child node is also orphan (no parent) during cleanup, then the child
 380 *   node will also be cleaned up.
 381 *
 382 * - Freeing up leaves (level 0), keeps nodes detached
 383 *   For nodes, the node is still cached as "detached"
 384 *
 385 * Return false if @node is not in the @useless_nodes list.
 386 * Return true if @node is in the @useless_nodes list.
 387 */
 388static bool handle_useless_nodes(struct reloc_control *rc,
 389				 struct btrfs_backref_node *node)
 
 390{
 391	struct btrfs_backref_cache *cache = &rc->backref_cache;
 392	struct list_head *useless_node = &cache->useless_node;
 393	bool ret = false;
 
 
 
 
 
 
 
 
 394
 395	while (!list_empty(useless_node)) {
 396		struct btrfs_backref_node *cur;
 
 
 
 
 
 
 
 397
 398		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 399				 list);
 400		list_del_init(&cur->list);
 401
 402		/* Only tree root nodes can be added to @useless_nodes */
 403		ASSERT(list_empty(&cur->upper));
 404
 405		if (cur == node)
 406			ret = true;
 
 407
 408		/* The node is the lowest node */
 409		if (cur->lowest) {
 410			list_del_init(&cur->lower);
 411			cur->lowest = 0;
 412		}
 413
 414		/* Cleanup the lower edges */
 415		while (!list_empty(&cur->lower)) {
 416			struct btrfs_backref_edge *edge;
 417			struct btrfs_backref_node *lower;
 
 
 
 
 418
 419			edge = list_entry(cur->lower.next,
 420					struct btrfs_backref_edge, list[UPPER]);
 421			list_del(&edge->list[UPPER]);
 422			list_del(&edge->list[LOWER]);
 423			lower = edge->node[LOWER];
 424			btrfs_backref_free_edge(cache, edge);
 425
 426			/* Child node is also orphan, queue for cleanup */
 427			if (list_empty(&lower->upper))
 428				list_add(&lower->list, useless_node);
 429		}
 430		/* Mark this block processed for relocation */
 431		mark_block_processed(rc, cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433		/*
 434		 * Backref nodes for tree leaves are deleted from the cache.
 435		 * Backref nodes for upper level tree blocks are left in the
 436		 * cache to avoid unnecessary backref lookup.
 437		 */
 438		if (cur->level > 0) {
 439			list_add(&cur->list, &cache->detached);
 440			cur->detached = 1;
 441		} else {
 442			rb_erase(&cur->rb_node, &cache->rb_root);
 443			btrfs_backref_free_node(cache, cur);
 444		}
 445	}
 446	return ret;
 
 447}
 448
 449/*
 450 * Build backref tree for a given tree block. Root of the backref tree
 451 * corresponds the tree block, leaves of the backref tree correspond roots of
 452 * b-trees that reference the tree block.
 453 *
 454 * The basic idea of this function is check backrefs of a given block to find
 455 * upper level blocks that reference the block, and then check backrefs of
 456 * these upper level blocks recursively. The recursion stops when tree root is
 457 * reached or backrefs for the block is cached.
 458 *
 459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 460 * all upper level blocks that directly/indirectly reference the block are also
 461 * cached.
 462 */
 463static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 464			struct btrfs_trans_handle *trans,
 465			struct reloc_control *rc, struct btrfs_key *node_key,
 466			int level, u64 bytenr)
 467{
 468	struct btrfs_backref_iter *iter;
 469	struct btrfs_backref_cache *cache = &rc->backref_cache;
 470	/* For searching parent of TREE_BLOCK_REF */
 471	struct btrfs_path *path;
 472	struct btrfs_backref_node *cur;
 473	struct btrfs_backref_node *node = NULL;
 474	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 475	int ret;
 476	int err = 0;
 
 477
 478	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
 479	if (!iter)
 480		return ERR_PTR(-ENOMEM);
 481	path = btrfs_alloc_path();
 482	if (!path) {
 483		err = -ENOMEM;
 484		goto out;
 485	}
 
 
 486
 487	node = btrfs_backref_alloc_node(cache, bytenr, level);
 488	if (!node) {
 489		err = -ENOMEM;
 490		goto out;
 491	}
 492
 
 
 493	node->lowest = 1;
 494	cur = node;
 
 
 
 
 
 
 495
 496	/* Breadth-first search to build backref cache */
 497	do {
 498		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
 499						  node_key, cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500		if (ret < 0) {
 501			err = ret;
 502			goto out;
 503		}
 504		edge = list_first_entry_or_null(&cache->pending_edge,
 505				struct btrfs_backref_edge, list[UPPER]);
 506		/*
 507		 * The pending list isn't empty, take the first block to
 508		 * process
 509		 */
 510		if (edge) {
 511			list_del_init(&edge->list[UPPER]);
 512			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513		}
 514	} while (edge);
 515
 516	/* Finish the upper linkage of newly added edges/nodes */
 517	ret = btrfs_backref_finish_upper_links(cache, node);
 518	if (ret < 0) {
 519		err = ret;
 520		goto out;
 521	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522
 523	if (handle_useless_nodes(rc, node))
 524		node = NULL;
 
 
 
 
 
 
 
 
 
 
 525out:
 526	btrfs_free_path(iter->path);
 527	kfree(iter);
 528	btrfs_free_path(path);
 529	if (err) {
 530		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531		return ERR_PTR(err);
 532	}
 533	ASSERT(!node || !node->detached);
 534	ASSERT(list_empty(&cache->useless_node) &&
 535	       list_empty(&cache->pending_edge));
 536	return node;
 537}
 538
 539/*
 540 * helper to add backref node for the newly created snapshot.
 541 * the backref node is created by cloning backref node that
 542 * corresponds to root of source tree
 543 */
 544static int clone_backref_node(struct btrfs_trans_handle *trans,
 545			      struct reloc_control *rc,
 546			      const struct btrfs_root *src,
 547			      struct btrfs_root *dest)
 548{
 549	struct btrfs_root *reloc_root = src->reloc_root;
 550	struct btrfs_backref_cache *cache = &rc->backref_cache;
 551	struct btrfs_backref_node *node = NULL;
 552	struct btrfs_backref_node *new_node;
 553	struct btrfs_backref_edge *edge;
 554	struct btrfs_backref_edge *new_edge;
 555	struct rb_node *rb_node;
 556
 557	if (cache->last_trans > 0)
 558		update_backref_cache(trans, cache);
 559
 560	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 563		if (node->detached)
 564			node = NULL;
 565		else
 566			BUG_ON(node->new_bytenr != reloc_root->node->start);
 567	}
 568
 569	if (!node) {
 570		rb_node = rb_simple_search(&cache->rb_root,
 571					   reloc_root->commit_root->start);
 572		if (rb_node) {
 573			node = rb_entry(rb_node, struct btrfs_backref_node,
 574					rb_node);
 575			BUG_ON(node->detached);
 576		}
 577	}
 578
 579	if (!node)
 580		return 0;
 581
 582	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 583					    node->level);
 584	if (!new_node)
 585		return -ENOMEM;
 586
 
 
 587	new_node->lowest = node->lowest;
 588	new_node->checked = 1;
 589	new_node->root = btrfs_grab_root(dest);
 590	ASSERT(new_node->root);
 591
 592	if (!node->lowest) {
 593		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 594			new_edge = btrfs_backref_alloc_edge(cache);
 595			if (!new_edge)
 596				goto fail;
 597
 598			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 599						new_node, LINK_UPPER);
 
 
 600		}
 601	} else {
 602		list_add_tail(&new_node->lower, &cache->leaves);
 603	}
 604
 605	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 606				   &new_node->rb_node);
 607	if (rb_node)
 608		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 609
 610	if (!new_node->lowest) {
 611		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 612			list_add_tail(&new_edge->list[LOWER],
 613				      &new_edge->node[LOWER]->upper);
 614		}
 615	}
 616	return 0;
 617fail:
 618	while (!list_empty(&new_node->lower)) {
 619		new_edge = list_entry(new_node->lower.next,
 620				      struct btrfs_backref_edge, list[UPPER]);
 621		list_del(&new_edge->list[UPPER]);
 622		btrfs_backref_free_edge(cache, new_edge);
 623	}
 624	btrfs_backref_free_node(cache, new_node);
 625	return -ENOMEM;
 626}
 627
 628/*
 629 * helper to add 'address of tree root -> reloc tree' mapping
 630 */
 631static int __add_reloc_root(struct btrfs_root *root)
 632{
 633	struct btrfs_fs_info *fs_info = root->fs_info;
 634	struct rb_node *rb_node;
 635	struct mapping_node *node;
 636	struct reloc_control *rc = fs_info->reloc_ctl;
 637
 638	node = kmalloc(sizeof(*node), GFP_NOFS);
 639	if (!node)
 640		return -ENOMEM;
 641
 642	node->bytenr = root->commit_root->start;
 643	node->data = root;
 644
 645	spin_lock(&rc->reloc_root_tree.lock);
 646	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 647				   node->bytenr, &node->rb_node);
 648	spin_unlock(&rc->reloc_root_tree.lock);
 649	if (rb_node) {
 650		btrfs_err(fs_info,
 651			    "Duplicate root found for start=%llu while inserting into relocation tree",
 652			    node->bytenr);
 
 653		return -EEXIST;
 654	}
 655
 656	list_add_tail(&root->root_list, &rc->reloc_roots);
 657	return 0;
 658}
 659
 660/*
 661 * helper to delete the 'address of tree root -> reloc tree'
 662 * mapping
 663 */
 664static void __del_reloc_root(struct btrfs_root *root)
 665{
 666	struct btrfs_fs_info *fs_info = root->fs_info;
 667	struct rb_node *rb_node;
 668	struct mapping_node *node = NULL;
 669	struct reloc_control *rc = fs_info->reloc_ctl;
 670	bool put_ref = false;
 671
 672	if (rc && root->node) {
 673		spin_lock(&rc->reloc_root_tree.lock);
 674		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 675					   root->commit_root->start);
 676		if (rb_node) {
 677			node = rb_entry(rb_node, struct mapping_node, rb_node);
 678			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 679			RB_CLEAR_NODE(&node->rb_node);
 680		}
 681		spin_unlock(&rc->reloc_root_tree.lock);
 682		ASSERT(!node || (struct btrfs_root *)node->data == root);
 683	}
 
 684
 685	/*
 686	 * We only put the reloc root here if it's on the list.  There's a lot
 687	 * of places where the pattern is to splice the rc->reloc_roots, process
 688	 * the reloc roots, and then add the reloc root back onto
 689	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 690	 * list we don't want the reference being dropped, because the guy
 691	 * messing with the list is in charge of the reference.
 692	 */
 693	spin_lock(&fs_info->trans_lock);
 694	if (!list_empty(&root->root_list)) {
 695		put_ref = true;
 696		list_del_init(&root->root_list);
 697	}
 698	spin_unlock(&fs_info->trans_lock);
 699	if (put_ref)
 700		btrfs_put_root(root);
 701	kfree(node);
 702}
 703
 704/*
 705 * helper to update the 'address of tree root -> reloc tree'
 706 * mapping
 707 */
 708static int __update_reloc_root(struct btrfs_root *root)
 709{
 710	struct btrfs_fs_info *fs_info = root->fs_info;
 711	struct rb_node *rb_node;
 712	struct mapping_node *node = NULL;
 713	struct reloc_control *rc = fs_info->reloc_ctl;
 714
 715	spin_lock(&rc->reloc_root_tree.lock);
 716	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 717				   root->commit_root->start);
 718	if (rb_node) {
 719		node = rb_entry(rb_node, struct mapping_node, rb_node);
 720		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 721	}
 722	spin_unlock(&rc->reloc_root_tree.lock);
 723
 724	if (!node)
 725		return 0;
 726	BUG_ON((struct btrfs_root *)node->data != root);
 727
 728	spin_lock(&rc->reloc_root_tree.lock);
 729	node->bytenr = root->node->start;
 730	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 731				   node->bytenr, &node->rb_node);
 732	spin_unlock(&rc->reloc_root_tree.lock);
 733	if (rb_node)
 734		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 735	return 0;
 736}
 737
 738static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 739					struct btrfs_root *root, u64 objectid)
 740{
 741	struct btrfs_fs_info *fs_info = root->fs_info;
 742	struct btrfs_root *reloc_root;
 743	struct extent_buffer *eb;
 744	struct btrfs_root_item *root_item;
 745	struct btrfs_key root_key;
 746	int ret = 0;
 747	bool must_abort = false;
 748
 749	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 750	if (!root_item)
 751		return ERR_PTR(-ENOMEM);
 752
 753	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 754	root_key.type = BTRFS_ROOT_ITEM_KEY;
 755	root_key.offset = objectid;
 756
 757	if (root->root_key.objectid == objectid) {
 758		u64 commit_root_gen;
 759
 760		/* called by btrfs_init_reloc_root */
 761		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 762				      BTRFS_TREE_RELOC_OBJECTID);
 763		if (ret)
 764			goto fail;
 765
 766		/*
 767		 * Set the last_snapshot field to the generation of the commit
 768		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 769		 * correctly (returns true) when the relocation root is created
 770		 * either inside the critical section of a transaction commit
 771		 * (through transaction.c:qgroup_account_snapshot()) and when
 772		 * it's created before the transaction commit is started.
 773		 */
 774		commit_root_gen = btrfs_header_generation(root->commit_root);
 775		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 776	} else {
 777		/*
 778		 * called by btrfs_reloc_post_snapshot_hook.
 779		 * the source tree is a reloc tree, all tree blocks
 780		 * modified after it was created have RELOC flag
 781		 * set in their headers. so it's OK to not update
 782		 * the 'last_snapshot'.
 783		 */
 784		ret = btrfs_copy_root(trans, root, root->node, &eb,
 785				      BTRFS_TREE_RELOC_OBJECTID);
 786		if (ret)
 787			goto fail;
 788	}
 789
 790	/*
 791	 * We have changed references at this point, we must abort the
 792	 * transaction if anything fails.
 793	 */
 794	must_abort = true;
 795
 796	memcpy(root_item, &root->root_item, sizeof(*root_item));
 797	btrfs_set_root_bytenr(root_item, eb->start);
 798	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 799	btrfs_set_root_generation(root_item, trans->transid);
 800
 801	if (root->root_key.objectid == objectid) {
 802		btrfs_set_root_refs(root_item, 0);
 803		memset(&root_item->drop_progress, 0,
 804		       sizeof(struct btrfs_disk_key));
 805		btrfs_set_root_drop_level(root_item, 0);
 
 
 
 
 
 
 806	}
 807
 808	btrfs_tree_unlock(eb);
 809	free_extent_buffer(eb);
 810
 811	ret = btrfs_insert_root(trans, fs_info->tree_root,
 812				&root_key, root_item);
 813	if (ret)
 814		goto fail;
 815
 816	kfree(root_item);
 817
 818	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 819	if (IS_ERR(reloc_root)) {
 820		ret = PTR_ERR(reloc_root);
 821		goto abort;
 822	}
 823	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 824	reloc_root->last_trans = trans->transid;
 825	return reloc_root;
 826fail:
 827	kfree(root_item);
 828abort:
 829	if (must_abort)
 830		btrfs_abort_transaction(trans, ret);
 831	return ERR_PTR(ret);
 832}
 833
 834/*
 835 * create reloc tree for a given fs tree. reloc tree is just a
 836 * snapshot of the fs tree with special root objectid.
 837 *
 838 * The reloc_root comes out of here with two references, one for
 839 * root->reloc_root, and another for being on the rc->reloc_roots list.
 840 */
 841int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 842			  struct btrfs_root *root)
 843{
 844	struct btrfs_fs_info *fs_info = root->fs_info;
 845	struct btrfs_root *reloc_root;
 846	struct reloc_control *rc = fs_info->reloc_ctl;
 847	struct btrfs_block_rsv *rsv;
 848	int clear_rsv = 0;
 849	int ret;
 850
 851	if (!rc)
 852		return 0;
 853
 854	/*
 855	 * The subvolume has reloc tree but the swap is finished, no need to
 856	 * create/update the dead reloc tree
 857	 */
 858	if (reloc_root_is_dead(root))
 859		return 0;
 860
 861	/*
 862	 * This is subtle but important.  We do not do
 863	 * record_root_in_transaction for reloc roots, instead we record their
 864	 * corresponding fs root, and then here we update the last trans for the
 865	 * reloc root.  This means that we have to do this for the entire life
 866	 * of the reloc root, regardless of which stage of the relocation we are
 867	 * in.
 868	 */
 869	if (root->reloc_root) {
 870		reloc_root = root->reloc_root;
 871		reloc_root->last_trans = trans->transid;
 872		return 0;
 873	}
 874
 875	/*
 876	 * We are merging reloc roots, we do not need new reloc trees.  Also
 877	 * reloc trees never need their own reloc tree.
 878	 */
 879	if (!rc->create_reloc_tree ||
 880	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 881		return 0;
 882
 883	if (!trans->reloc_reserved) {
 884		rsv = trans->block_rsv;
 885		trans->block_rsv = rc->block_rsv;
 886		clear_rsv = 1;
 887	}
 888	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 889	if (clear_rsv)
 890		trans->block_rsv = rsv;
 891	if (IS_ERR(reloc_root))
 892		return PTR_ERR(reloc_root);
 893
 894	ret = __add_reloc_root(reloc_root);
 895	ASSERT(ret != -EEXIST);
 896	if (ret) {
 897		/* Pairs with create_reloc_root */
 898		btrfs_put_root(reloc_root);
 899		return ret;
 900	}
 901	root->reloc_root = btrfs_grab_root(reloc_root);
 902	return 0;
 903}
 904
 905/*
 906 * update root item of reloc tree
 907 */
 908int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 909			    struct btrfs_root *root)
 910{
 911	struct btrfs_fs_info *fs_info = root->fs_info;
 912	struct btrfs_root *reloc_root;
 913	struct btrfs_root_item *root_item;
 914	int ret;
 915
 916	if (!have_reloc_root(root))
 917		return 0;
 918
 919	reloc_root = root->reloc_root;
 920	root_item = &reloc_root->root_item;
 921
 922	/*
 923	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 924	 * the root.  We have the ref for root->reloc_root, but just in case
 925	 * hold it while we update the reloc root.
 926	 */
 927	btrfs_grab_root(reloc_root);
 928
 929	/* root->reloc_root will stay until current relocation finished */
 930	if (fs_info->reloc_ctl->merge_reloc_tree &&
 931	    btrfs_root_refs(root_item) == 0) {
 932		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 933		/*
 934		 * Mark the tree as dead before we change reloc_root so
 935		 * have_reloc_root will not touch it from now on.
 936		 */
 937		smp_wmb();
 938		__del_reloc_root(reloc_root);
 939	}
 940
 941	if (reloc_root->commit_root != reloc_root->node) {
 942		__update_reloc_root(reloc_root);
 943		btrfs_set_root_node(root_item, reloc_root->node);
 944		free_extent_buffer(reloc_root->commit_root);
 945		reloc_root->commit_root = btrfs_root_node(reloc_root);
 946	}
 947
 948	ret = btrfs_update_root(trans, fs_info->tree_root,
 949				&reloc_root->root_key, root_item);
 950	btrfs_put_root(reloc_root);
 951	return ret;
 
 
 952}
 953
 954/*
 955 * helper to find first cached inode with inode number >= objectid
 956 * in a subvolume
 957 */
 958static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 959{
 960	struct rb_node *node;
 961	struct rb_node *prev;
 962	struct btrfs_inode *entry;
 963	struct inode *inode;
 964
 965	spin_lock(&root->inode_lock);
 966again:
 967	node = root->inode_tree.rb_node;
 968	prev = NULL;
 969	while (node) {
 970		prev = node;
 971		entry = rb_entry(node, struct btrfs_inode, rb_node);
 972
 973		if (objectid < btrfs_ino(entry))
 974			node = node->rb_left;
 975		else if (objectid > btrfs_ino(entry))
 976			node = node->rb_right;
 977		else
 978			break;
 979	}
 980	if (!node) {
 981		while (prev) {
 982			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 983			if (objectid <= btrfs_ino(entry)) {
 984				node = prev;
 985				break;
 986			}
 987			prev = rb_next(prev);
 988		}
 989	}
 990	while (node) {
 991		entry = rb_entry(node, struct btrfs_inode, rb_node);
 992		inode = igrab(&entry->vfs_inode);
 993		if (inode) {
 994			spin_unlock(&root->inode_lock);
 995			return inode;
 996		}
 997
 998		objectid = btrfs_ino(entry) + 1;
 999		if (cond_resched_lock(&root->inode_lock))
1000			goto again;
1001
1002		node = rb_next(node);
1003	}
1004	spin_unlock(&root->inode_lock);
1005	return NULL;
1006}
1007
 
 
 
 
 
 
 
 
 
1008/*
1009 * get new location of data
1010 */
1011static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1012			    u64 bytenr, u64 num_bytes)
1013{
1014	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1015	struct btrfs_path *path;
1016	struct btrfs_file_extent_item *fi;
1017	struct extent_buffer *leaf;
1018	int ret;
1019
1020	path = btrfs_alloc_path();
1021	if (!path)
1022		return -ENOMEM;
1023
1024	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1025	ret = btrfs_lookup_file_extent(NULL, root, path,
1026			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1027	if (ret < 0)
1028		goto out;
1029	if (ret > 0) {
1030		ret = -ENOENT;
1031		goto out;
1032	}
1033
1034	leaf = path->nodes[0];
1035	fi = btrfs_item_ptr(leaf, path->slots[0],
1036			    struct btrfs_file_extent_item);
1037
1038	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1039	       btrfs_file_extent_compression(leaf, fi) ||
1040	       btrfs_file_extent_encryption(leaf, fi) ||
1041	       btrfs_file_extent_other_encoding(leaf, fi));
1042
1043	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1044		ret = -EINVAL;
1045		goto out;
1046	}
1047
1048	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1049	ret = 0;
1050out:
1051	btrfs_free_path(path);
1052	return ret;
1053}
1054
1055/*
1056 * update file extent items in the tree leaf to point to
1057 * the new locations.
1058 */
1059static noinline_for_stack
1060int replace_file_extents(struct btrfs_trans_handle *trans,
1061			 struct reloc_control *rc,
1062			 struct btrfs_root *root,
1063			 struct extent_buffer *leaf)
1064{
1065	struct btrfs_fs_info *fs_info = root->fs_info;
1066	struct btrfs_key key;
1067	struct btrfs_file_extent_item *fi;
1068	struct inode *inode = NULL;
1069	u64 parent;
1070	u64 bytenr;
1071	u64 new_bytenr = 0;
1072	u64 num_bytes;
1073	u64 end;
1074	u32 nritems;
1075	u32 i;
1076	int ret = 0;
1077	int first = 1;
1078	int dirty = 0;
1079
1080	if (rc->stage != UPDATE_DATA_PTRS)
1081		return 0;
1082
1083	/* reloc trees always use full backref */
1084	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1085		parent = leaf->start;
1086	else
1087		parent = 0;
1088
1089	nritems = btrfs_header_nritems(leaf);
1090	for (i = 0; i < nritems; i++) {
1091		struct btrfs_ref ref = { 0 };
1092
1093		cond_resched();
1094		btrfs_item_key_to_cpu(leaf, &key, i);
1095		if (key.type != BTRFS_EXTENT_DATA_KEY)
1096			continue;
1097		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1098		if (btrfs_file_extent_type(leaf, fi) ==
1099		    BTRFS_FILE_EXTENT_INLINE)
1100			continue;
1101		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1102		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1103		if (bytenr == 0)
1104			continue;
1105		if (!in_range(bytenr, rc->block_group->start,
1106			      rc->block_group->length))
1107			continue;
1108
1109		/*
1110		 * if we are modifying block in fs tree, wait for read_folio
1111		 * to complete and drop the extent cache
1112		 */
1113		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1114			if (first) {
1115				inode = find_next_inode(root, key.objectid);
1116				first = 0;
1117			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1118				btrfs_add_delayed_iput(BTRFS_I(inode));
1119				inode = find_next_inode(root, key.objectid);
1120			}
1121			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1122				struct extent_state *cached_state = NULL;
1123
1124				end = key.offset +
1125				      btrfs_file_extent_num_bytes(leaf, fi);
1126				WARN_ON(!IS_ALIGNED(key.offset,
1127						    fs_info->sectorsize));
1128				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1129				end--;
1130				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1131						      key.offset, end,
1132						      &cached_state);
1133				if (!ret)
1134					continue;
1135
1136				btrfs_drop_extent_map_range(BTRFS_I(inode),
1137							    key.offset, end, true);
1138				unlock_extent(&BTRFS_I(inode)->io_tree,
1139					      key.offset, end, &cached_state);
1140			}
1141		}
1142
1143		ret = get_new_location(rc->data_inode, &new_bytenr,
1144				       bytenr, num_bytes);
1145		if (ret) {
1146			/*
1147			 * Don't have to abort since we've not changed anything
1148			 * in the file extent yet.
1149			 */
1150			break;
1151		}
1152
1153		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1154		dirty = 1;
1155
1156		key.offset -= btrfs_file_extent_offset(leaf, fi);
1157		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1158				       num_bytes, parent, root->root_key.objectid);
1159		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160				    key.objectid, key.offset,
1161				    root->root_key.objectid, false);
1162		ret = btrfs_inc_extent_ref(trans, &ref);
1163		if (ret) {
1164			btrfs_abort_transaction(trans, ret);
1165			break;
1166		}
1167
1168		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1169				       num_bytes, parent, root->root_key.objectid);
1170		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1171				    key.objectid, key.offset,
1172				    root->root_key.objectid, false);
1173		ret = btrfs_free_extent(trans, &ref);
1174		if (ret) {
1175			btrfs_abort_transaction(trans, ret);
1176			break;
1177		}
1178	}
1179	if (dirty)
1180		btrfs_mark_buffer_dirty(trans, leaf);
1181	if (inode)
1182		btrfs_add_delayed_iput(BTRFS_I(inode));
1183	return ret;
1184}
1185
1186static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1187					       int slot, const struct btrfs_path *path,
1188					       int level)
1189{
1190	struct btrfs_disk_key key1;
1191	struct btrfs_disk_key key2;
1192	btrfs_node_key(eb, &key1, slot);
1193	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1194	return memcmp(&key1, &key2, sizeof(key1));
1195}
1196
1197/*
1198 * try to replace tree blocks in fs tree with the new blocks
1199 * in reloc tree. tree blocks haven't been modified since the
1200 * reloc tree was create can be replaced.
1201 *
1202 * if a block was replaced, level of the block + 1 is returned.
1203 * if no block got replaced, 0 is returned. if there are other
1204 * errors, a negative error number is returned.
1205 */
1206static noinline_for_stack
1207int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1208		 struct btrfs_root *dest, struct btrfs_root *src,
1209		 struct btrfs_path *path, struct btrfs_key *next_key,
1210		 int lowest_level, int max_level)
1211{
1212	struct btrfs_fs_info *fs_info = dest->fs_info;
1213	struct extent_buffer *eb;
1214	struct extent_buffer *parent;
1215	struct btrfs_ref ref = { 0 };
1216	struct btrfs_key key;
1217	u64 old_bytenr;
1218	u64 new_bytenr;
1219	u64 old_ptr_gen;
1220	u64 new_ptr_gen;
1221	u64 last_snapshot;
1222	u32 blocksize;
1223	int cow = 0;
1224	int level;
1225	int ret;
1226	int slot;
1227
1228	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1229	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1230
1231	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1232again:
1233	slot = path->slots[lowest_level];
1234	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1235
1236	eb = btrfs_lock_root_node(dest);
 
1237	level = btrfs_header_level(eb);
1238
1239	if (level < lowest_level) {
1240		btrfs_tree_unlock(eb);
1241		free_extent_buffer(eb);
1242		return 0;
1243	}
1244
1245	if (cow) {
1246		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1247				      BTRFS_NESTING_COW);
1248		if (ret) {
1249			btrfs_tree_unlock(eb);
1250			free_extent_buffer(eb);
1251			return ret;
1252		}
1253	}
 
1254
1255	if (next_key) {
1256		next_key->objectid = (u64)-1;
1257		next_key->type = (u8)-1;
1258		next_key->offset = (u64)-1;
1259	}
1260
1261	parent = eb;
1262	while (1) {
1263		level = btrfs_header_level(parent);
1264		ASSERT(level >= lowest_level);
1265
1266		ret = btrfs_bin_search(parent, 0, &key, &slot);
1267		if (ret < 0)
1268			break;
1269		if (ret && slot > 0)
1270			slot--;
1271
1272		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1273			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1274
1275		old_bytenr = btrfs_node_blockptr(parent, slot);
1276		blocksize = fs_info->nodesize;
1277		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1278
1279		if (level <= max_level) {
1280			eb = path->nodes[level];
1281			new_bytenr = btrfs_node_blockptr(eb,
1282							path->slots[level]);
1283			new_ptr_gen = btrfs_node_ptr_generation(eb,
1284							path->slots[level]);
1285		} else {
1286			new_bytenr = 0;
1287			new_ptr_gen = 0;
1288		}
1289
1290		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1291			ret = level;
1292			break;
1293		}
1294
1295		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1296		    memcmp_node_keys(parent, slot, path, level)) {
1297			if (level <= lowest_level) {
1298				ret = 0;
1299				break;
1300			}
1301
1302			eb = btrfs_read_node_slot(parent, slot);
1303			if (IS_ERR(eb)) {
1304				ret = PTR_ERR(eb);
 
 
1305				break;
1306			}
1307			btrfs_tree_lock(eb);
1308			if (cow) {
1309				ret = btrfs_cow_block(trans, dest, eb, parent,
1310						      slot, &eb,
1311						      BTRFS_NESTING_COW);
1312				if (ret) {
1313					btrfs_tree_unlock(eb);
1314					free_extent_buffer(eb);
1315					break;
1316				}
1317			}
 
1318
1319			btrfs_tree_unlock(parent);
1320			free_extent_buffer(parent);
1321
1322			parent = eb;
1323			continue;
1324		}
1325
1326		if (!cow) {
1327			btrfs_tree_unlock(parent);
1328			free_extent_buffer(parent);
1329			cow = 1;
1330			goto again;
1331		}
1332
1333		btrfs_node_key_to_cpu(path->nodes[level], &key,
1334				      path->slots[level]);
1335		btrfs_release_path(path);
1336
1337		path->lowest_level = level;
1338		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1339		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1340		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1341		path->lowest_level = 0;
1342		if (ret) {
1343			if (ret > 0)
1344				ret = -ENOENT;
1345			break;
1346		}
1347
1348		/*
1349		 * Info qgroup to trace both subtrees.
1350		 *
1351		 * We must trace both trees.
1352		 * 1) Tree reloc subtree
1353		 *    If not traced, we will leak data numbers
1354		 * 2) Fs subtree
1355		 *    If not traced, we will double count old data
1356		 *
1357		 * We don't scan the subtree right now, but only record
1358		 * the swapped tree blocks.
1359		 * The real subtree rescan is delayed until we have new
1360		 * CoW on the subtree root node before transaction commit.
1361		 */
1362		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1363				rc->block_group, parent, slot,
1364				path->nodes[level], path->slots[level],
1365				last_snapshot);
1366		if (ret < 0)
1367			break;
1368		/*
1369		 * swap blocks in fs tree and reloc tree.
1370		 */
1371		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1372		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1373		btrfs_mark_buffer_dirty(trans, parent);
1374
1375		btrfs_set_node_blockptr(path->nodes[level],
1376					path->slots[level], old_bytenr);
1377		btrfs_set_node_ptr_generation(path->nodes[level],
1378					      path->slots[level], old_ptr_gen);
1379		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1380
1381		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1382				       blocksize, path->nodes[level]->start,
1383				       src->root_key.objectid);
1384		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1385				    0, true);
1386		ret = btrfs_inc_extent_ref(trans, &ref);
1387		if (ret) {
1388			btrfs_abort_transaction(trans, ret);
1389			break;
1390		}
1391		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1392				       blocksize, 0, dest->root_key.objectid);
1393		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1394				    true);
1395		ret = btrfs_inc_extent_ref(trans, &ref);
1396		if (ret) {
1397			btrfs_abort_transaction(trans, ret);
1398			break;
1399		}
1400
1401		/* We don't know the real owning_root, use 0. */
1402		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1403				       blocksize, path->nodes[level]->start, 0);
1404		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1405				    0, true);
1406		ret = btrfs_free_extent(trans, &ref);
1407		if (ret) {
1408			btrfs_abort_transaction(trans, ret);
1409			break;
1410		}
1411
1412		/* We don't know the real owning_root, use 0. */
1413		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414				       blocksize, 0, 0);
1415		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416				    0, true);
1417		ret = btrfs_free_extent(trans, &ref);
1418		if (ret) {
1419			btrfs_abort_transaction(trans, ret);
1420			break;
1421		}
1422
1423		btrfs_unlock_up_safe(path, 0);
1424
1425		ret = level;
1426		break;
1427	}
1428	btrfs_tree_unlock(parent);
1429	free_extent_buffer(parent);
1430	return ret;
1431}
1432
1433/*
1434 * helper to find next relocated block in reloc tree
1435 */
1436static noinline_for_stack
1437int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438		       int *level)
1439{
1440	struct extent_buffer *eb;
1441	int i;
1442	u64 last_snapshot;
1443	u32 nritems;
1444
1445	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447	for (i = 0; i < *level; i++) {
1448		free_extent_buffer(path->nodes[i]);
1449		path->nodes[i] = NULL;
1450	}
1451
1452	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453		eb = path->nodes[i];
1454		nritems = btrfs_header_nritems(eb);
1455		while (path->slots[i] + 1 < nritems) {
1456			path->slots[i]++;
1457			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458			    last_snapshot)
1459				continue;
1460
1461			*level = i;
1462			return 0;
1463		}
1464		free_extent_buffer(path->nodes[i]);
1465		path->nodes[i] = NULL;
1466	}
1467	return 1;
1468}
1469
1470/*
1471 * walk down reloc tree to find relocated block of lowest level
1472 */
1473static noinline_for_stack
1474int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475			 int *level)
1476{
1477	struct extent_buffer *eb = NULL;
1478	int i;
 
1479	u64 ptr_gen = 0;
1480	u64 last_snapshot;
 
1481	u32 nritems;
1482
1483	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485	for (i = *level; i > 0; i--) {
1486		eb = path->nodes[i];
1487		nritems = btrfs_header_nritems(eb);
1488		while (path->slots[i] < nritems) {
1489			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490			if (ptr_gen > last_snapshot)
1491				break;
1492			path->slots[i]++;
1493		}
1494		if (path->slots[i] >= nritems) {
1495			if (i == *level)
1496				break;
1497			*level = i + 1;
1498			return 0;
1499		}
1500		if (i == 1) {
1501			*level = i;
1502			return 0;
1503		}
1504
1505		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506		if (IS_ERR(eb))
1507			return PTR_ERR(eb);
 
 
 
 
1508		BUG_ON(btrfs_header_level(eb) != i - 1);
1509		path->nodes[i - 1] = eb;
1510		path->slots[i - 1] = 0;
1511	}
1512	return 1;
1513}
1514
1515/*
1516 * invalidate extent cache for file extents whose key in range of
1517 * [min_key, max_key)
1518 */
1519static int invalidate_extent_cache(struct btrfs_root *root,
1520				   const struct btrfs_key *min_key,
1521				   const struct btrfs_key *max_key)
1522{
1523	struct btrfs_fs_info *fs_info = root->fs_info;
1524	struct inode *inode = NULL;
1525	u64 objectid;
1526	u64 start, end;
1527	u64 ino;
1528
1529	objectid = min_key->objectid;
1530	while (1) {
1531		struct extent_state *cached_state = NULL;
1532
1533		cond_resched();
1534		iput(inode);
1535
1536		if (objectid > max_key->objectid)
1537			break;
1538
1539		inode = find_next_inode(root, objectid);
1540		if (!inode)
1541			break;
1542		ino = btrfs_ino(BTRFS_I(inode));
1543
1544		if (ino > max_key->objectid) {
1545			iput(inode);
1546			break;
1547		}
1548
1549		objectid = ino + 1;
1550		if (!S_ISREG(inode->i_mode))
1551			continue;
1552
1553		if (unlikely(min_key->objectid == ino)) {
1554			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555				continue;
1556			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557				start = 0;
1558			else {
1559				start = min_key->offset;
1560				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561			}
1562		} else {
1563			start = 0;
1564		}
1565
1566		if (unlikely(max_key->objectid == ino)) {
1567			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568				continue;
1569			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570				end = (u64)-1;
1571			} else {
1572				if (max_key->offset == 0)
1573					continue;
1574				end = max_key->offset;
1575				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576				end--;
1577			}
1578		} else {
1579			end = (u64)-1;
1580		}
1581
1582		/* the lock_extent waits for read_folio to complete */
1583		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586	}
1587	return 0;
1588}
1589
1590static int find_next_key(struct btrfs_path *path, int level,
1591			 struct btrfs_key *key)
1592
1593{
1594	while (level < BTRFS_MAX_LEVEL) {
1595		if (!path->nodes[level])
1596			break;
1597		if (path->slots[level] + 1 <
1598		    btrfs_header_nritems(path->nodes[level])) {
1599			btrfs_node_key_to_cpu(path->nodes[level], key,
1600					      path->slots[level] + 1);
1601			return 0;
1602		}
1603		level++;
1604	}
1605	return 1;
1606}
1607
1608/*
1609 * Insert current subvolume into reloc_control::dirty_subvol_roots
1610 */
1611static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612			       struct reloc_control *rc,
1613			       struct btrfs_root *root)
1614{
1615	struct btrfs_root *reloc_root = root->reloc_root;
1616	struct btrfs_root_item *reloc_root_item;
1617	int ret;
1618
1619	/* @root must be a subvolume tree root with a valid reloc tree */
1620	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621	ASSERT(reloc_root);
1622
1623	reloc_root_item = &reloc_root->root_item;
1624	memset(&reloc_root_item->drop_progress, 0,
1625		sizeof(reloc_root_item->drop_progress));
1626	btrfs_set_root_drop_level(reloc_root_item, 0);
1627	btrfs_set_root_refs(reloc_root_item, 0);
1628	ret = btrfs_update_reloc_root(trans, root);
1629	if (ret)
1630		return ret;
1631
1632	if (list_empty(&root->reloc_dirty_list)) {
1633		btrfs_grab_root(root);
1634		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635	}
1636
1637	return 0;
1638}
1639
1640static int clean_dirty_subvols(struct reloc_control *rc)
1641{
1642	struct btrfs_root *root;
1643	struct btrfs_root *next;
1644	int ret = 0;
1645	int ret2;
1646
1647	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648				 reloc_dirty_list) {
1649		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650			/* Merged subvolume, cleanup its reloc root */
1651			struct btrfs_root *reloc_root = root->reloc_root;
1652
1653			list_del_init(&root->reloc_dirty_list);
1654			root->reloc_root = NULL;
1655			/*
1656			 * Need barrier to ensure clear_bit() only happens after
1657			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658			 */
1659			smp_wmb();
1660			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661			if (reloc_root) {
1662				/*
1663				 * btrfs_drop_snapshot drops our ref we hold for
1664				 * ->reloc_root.  If it fails however we must
1665				 * drop the ref ourselves.
1666				 */
1667				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668				if (ret2 < 0) {
1669					btrfs_put_root(reloc_root);
1670					if (!ret)
1671						ret = ret2;
1672				}
1673			}
1674			btrfs_put_root(root);
1675		} else {
1676			/* Orphan reloc tree, just clean it up */
1677			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678			if (ret2 < 0) {
1679				btrfs_put_root(root);
1680				if (!ret)
1681					ret = ret2;
1682			}
1683		}
1684	}
1685	return ret;
1686}
1687
1688/*
1689 * merge the relocated tree blocks in reloc tree with corresponding
1690 * fs tree.
1691 */
1692static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693					       struct btrfs_root *root)
1694{
1695	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696	struct btrfs_key key;
1697	struct btrfs_key next_key;
1698	struct btrfs_trans_handle *trans = NULL;
1699	struct btrfs_root *reloc_root;
1700	struct btrfs_root_item *root_item;
1701	struct btrfs_path *path;
1702	struct extent_buffer *leaf;
1703	int reserve_level;
1704	int level;
1705	int max_level;
1706	int replaced = 0;
1707	int ret = 0;
 
1708	u32 min_reserved;
1709
1710	path = btrfs_alloc_path();
1711	if (!path)
1712		return -ENOMEM;
1713	path->reada = READA_FORWARD;
1714
1715	reloc_root = root->reloc_root;
1716	root_item = &reloc_root->root_item;
1717
1718	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719		level = btrfs_root_level(root_item);
1720		atomic_inc(&reloc_root->node->refs);
1721		path->nodes[level] = reloc_root->node;
1722		path->slots[level] = 0;
1723	} else {
1724		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726		level = btrfs_root_drop_level(root_item);
1727		BUG_ON(level == 0);
1728		path->lowest_level = level;
1729		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730		path->lowest_level = 0;
1731		if (ret < 0) {
1732			btrfs_free_path(path);
1733			return ret;
1734		}
1735
1736		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737				      path->slots[level]);
1738		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740		btrfs_unlock_up_safe(path, 0);
1741	}
1742
1743	/*
1744	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746	 * block COW, we COW at most from level 1 to root level for each tree.
1747	 *
1748	 * Thus the needed metadata size is at most root_level * nodesize,
1749	 * and * 2 since we have two trees to COW.
1750	 */
1751	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752	min_reserved = fs_info->nodesize * reserve_level * 2;
1753	memset(&next_key, 0, sizeof(next_key));
1754
1755	while (1) {
1756		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757					     min_reserved,
1758					     BTRFS_RESERVE_FLUSH_LIMIT);
1759		if (ret)
1760			goto out;
 
1761		trans = btrfs_start_transaction(root, 0);
1762		if (IS_ERR(trans)) {
1763			ret = PTR_ERR(trans);
1764			trans = NULL;
1765			goto out;
1766		}
1767
1768		/*
1769		 * At this point we no longer have a reloc_control, so we can't
1770		 * depend on btrfs_init_reloc_root to update our last_trans.
1771		 *
1772		 * But that's ok, we started the trans handle on our
1773		 * corresponding fs_root, which means it's been added to the
1774		 * dirty list.  At commit time we'll still call
1775		 * btrfs_update_reloc_root() and update our root item
1776		 * appropriately.
1777		 */
1778		reloc_root->last_trans = trans->transid;
1779		trans->block_rsv = rc->block_rsv;
1780
1781		replaced = 0;
1782		max_level = level;
1783
1784		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785		if (ret < 0)
 
1786			goto out;
 
1787		if (ret > 0)
1788			break;
1789
1790		if (!find_next_key(path, level, &key) &&
1791		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792			ret = 0;
1793		} else {
1794			ret = replace_path(trans, rc, root, reloc_root, path,
1795					   &next_key, level, max_level);
1796		}
1797		if (ret < 0)
 
1798			goto out;
 
 
1799		if (ret > 0) {
1800			level = ret;
1801			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802					      path->slots[level]);
1803			replaced = 1;
1804		}
1805
1806		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807		if (ret > 0)
1808			break;
1809
1810		BUG_ON(level == 0);
1811		/*
1812		 * save the merging progress in the drop_progress.
1813		 * this is OK since root refs == 1 in this case.
1814		 */
1815		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816			       path->slots[level]);
1817		btrfs_set_root_drop_level(root_item, level);
1818
1819		btrfs_end_transaction_throttle(trans);
1820		trans = NULL;
1821
1822		btrfs_btree_balance_dirty(fs_info);
1823
1824		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825			invalidate_extent_cache(root, &key, &next_key);
1826	}
1827
1828	/*
1829	 * handle the case only one block in the fs tree need to be
1830	 * relocated and the block is tree root.
1831	 */
1832	leaf = btrfs_lock_root_node(root);
1833	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834			      BTRFS_NESTING_COW);
1835	btrfs_tree_unlock(leaf);
1836	free_extent_buffer(leaf);
 
 
1837out:
1838	btrfs_free_path(path);
1839
1840	if (ret == 0) {
1841		ret = insert_dirty_subvol(trans, rc, root);
1842		if (ret)
1843			btrfs_abort_transaction(trans, ret);
 
 
1844	}
1845
1846	if (trans)
1847		btrfs_end_transaction_throttle(trans);
1848
1849	btrfs_btree_balance_dirty(fs_info);
1850
1851	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852		invalidate_extent_cache(root, &key, &next_key);
1853
1854	return ret;
1855}
1856
1857static noinline_for_stack
1858int prepare_to_merge(struct reloc_control *rc, int err)
1859{
1860	struct btrfs_root *root = rc->extent_root;
1861	struct btrfs_fs_info *fs_info = root->fs_info;
1862	struct btrfs_root *reloc_root;
1863	struct btrfs_trans_handle *trans;
1864	LIST_HEAD(reloc_roots);
1865	u64 num_bytes = 0;
1866	int ret;
1867
1868	mutex_lock(&fs_info->reloc_mutex);
1869	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871	mutex_unlock(&fs_info->reloc_mutex);
1872
1873again:
1874	if (!err) {
1875		num_bytes = rc->merging_rsv_size;
1876		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877					  BTRFS_RESERVE_FLUSH_ALL);
1878		if (ret)
1879			err = ret;
1880	}
1881
1882	trans = btrfs_join_transaction(rc->extent_root);
1883	if (IS_ERR(trans)) {
1884		if (!err)
1885			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886						num_bytes, NULL);
1887		return PTR_ERR(trans);
1888	}
1889
1890	if (!err) {
1891		if (num_bytes != rc->merging_rsv_size) {
1892			btrfs_end_transaction(trans);
1893			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894						num_bytes, NULL);
1895			goto again;
1896		}
1897	}
1898
1899	rc->merge_reloc_tree = true;
1900
1901	while (!list_empty(&rc->reloc_roots)) {
1902		reloc_root = list_entry(rc->reloc_roots.next,
1903					struct btrfs_root, root_list);
1904		list_del_init(&reloc_root->root_list);
1905
1906		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907				false);
1908		if (IS_ERR(root)) {
1909			/*
1910			 * Even if we have an error we need this reloc root
1911			 * back on our list so we can clean up properly.
1912			 */
1913			list_add(&reloc_root->root_list, &reloc_roots);
1914			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915			if (!err)
1916				err = PTR_ERR(root);
1917			break;
1918		}
1919
1920		if (unlikely(root->reloc_root != reloc_root)) {
1921			if (root->reloc_root) {
1922				btrfs_err(fs_info,
1923"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924					  root->root_key.objectid,
1925					  root->reloc_root->root_key.objectid,
1926					  root->reloc_root->root_key.type,
1927					  root->reloc_root->root_key.offset,
1928					  btrfs_root_generation(
1929						  &root->reloc_root->root_item),
1930					  reloc_root->root_key.objectid,
1931					  reloc_root->root_key.type,
1932					  reloc_root->root_key.offset,
1933					  btrfs_root_generation(
1934						  &reloc_root->root_item));
1935			} else {
1936				btrfs_err(fs_info,
1937"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938					  root->root_key.objectid,
1939					  reloc_root->root_key.objectid,
1940					  reloc_root->root_key.type,
1941					  reloc_root->root_key.offset,
1942					  btrfs_root_generation(
1943						  &reloc_root->root_item));
1944			}
1945			list_add(&reloc_root->root_list, &reloc_roots);
1946			btrfs_put_root(root);
1947			btrfs_abort_transaction(trans, -EUCLEAN);
1948			if (!err)
1949				err = -EUCLEAN;
1950			break;
1951		}
1952
1953		/*
1954		 * set reference count to 1, so btrfs_recover_relocation
1955		 * knows it should resumes merging
1956		 */
1957		if (!err)
1958			btrfs_set_root_refs(&reloc_root->root_item, 1);
1959		ret = btrfs_update_reloc_root(trans, root);
1960
1961		/*
1962		 * Even if we have an error we need this reloc root back on our
1963		 * list so we can clean up properly.
1964		 */
1965		list_add(&reloc_root->root_list, &reloc_roots);
1966		btrfs_put_root(root);
1967
1968		if (ret) {
1969			btrfs_abort_transaction(trans, ret);
1970			if (!err)
1971				err = ret;
1972			break;
1973		}
1974	}
1975
1976	list_splice(&reloc_roots, &rc->reloc_roots);
1977
1978	if (!err)
1979		err = btrfs_commit_transaction(trans);
1980	else
1981		btrfs_end_transaction(trans);
1982	return err;
1983}
1984
1985static noinline_for_stack
1986void free_reloc_roots(struct list_head *list)
1987{
1988	struct btrfs_root *reloc_root, *tmp;
1989
1990	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
1991		__del_reloc_root(reloc_root);
 
1992}
1993
1994static noinline_for_stack
1995void merge_reloc_roots(struct reloc_control *rc)
1996{
1997	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998	struct btrfs_root *root;
1999	struct btrfs_root *reloc_root;
 
 
 
2000	LIST_HEAD(reloc_roots);
2001	int found = 0;
2002	int ret = 0;
2003again:
2004	root = rc->extent_root;
2005
2006	/*
2007	 * this serializes us with btrfs_record_root_in_transaction,
2008	 * we have to make sure nobody is in the middle of
2009	 * adding their roots to the list while we are
2010	 * doing this splice
2011	 */
2012	mutex_lock(&fs_info->reloc_mutex);
2013	list_splice_init(&rc->reloc_roots, &reloc_roots);
2014	mutex_unlock(&fs_info->reloc_mutex);
2015
2016	while (!list_empty(&reloc_roots)) {
2017		found = 1;
2018		reloc_root = list_entry(reloc_roots.next,
2019					struct btrfs_root, root_list);
2020
2021		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022					 false);
2023		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024			if (WARN_ON(IS_ERR(root))) {
2025				/*
2026				 * For recovery we read the fs roots on mount,
2027				 * and if we didn't find the root then we marked
2028				 * the reloc root as a garbage root.  For normal
2029				 * relocation obviously the root should exist in
2030				 * memory.  However there's no reason we can't
2031				 * handle the error properly here just in case.
2032				 */
2033				ret = PTR_ERR(root);
2034				goto out;
2035			}
2036			if (WARN_ON(root->reloc_root != reloc_root)) {
2037				/*
2038				 * This can happen if on-disk metadata has some
2039				 * corruption, e.g. bad reloc tree key offset.
2040				 */
2041				ret = -EINVAL;
2042				goto out;
2043			}
2044			ret = merge_reloc_root(rc, root);
2045			btrfs_put_root(root);
2046			if (ret) {
2047				if (list_empty(&reloc_root->root_list))
2048					list_add_tail(&reloc_root->root_list,
2049						      &reloc_roots);
2050				goto out;
2051			}
2052		} else {
2053			if (!IS_ERR(root)) {
2054				if (root->reloc_root == reloc_root) {
2055					root->reloc_root = NULL;
2056					btrfs_put_root(reloc_root);
2057				}
2058				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059					  &root->state);
2060				btrfs_put_root(root);
2061			}
 
2062
2063			list_del_init(&reloc_root->root_list);
2064			/* Don't forget to queue this reloc root for cleanup */
2065			list_add_tail(&reloc_root->reloc_dirty_list,
2066				      &rc->dirty_subvol_roots);
 
 
2067		}
2068	}
2069
2070	if (found) {
2071		found = 0;
2072		goto again;
2073	}
2074out:
2075	if (ret) {
2076		btrfs_handle_fs_error(fs_info, ret, NULL);
2077		free_reloc_roots(&reloc_roots);
 
2078
2079		/* new reloc root may be added */
2080		mutex_lock(&fs_info->reloc_mutex);
2081		list_splice_init(&rc->reloc_roots, &reloc_roots);
2082		mutex_unlock(&fs_info->reloc_mutex);
2083		free_reloc_roots(&reloc_roots);
 
2084	}
2085
2086	/*
2087	 * We used to have
2088	 *
2089	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090	 *
2091	 * here, but it's wrong.  If we fail to start the transaction in
2092	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093	 * have actually been removed from the reloc_root_tree rb tree.  This is
2094	 * fine because we're bailing here, and we hold a reference on the root
2095	 * for the list that holds it, so these roots will be cleaned up when we
2096	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2097	 * will be cleaned up on unmount.
2098	 *
2099	 * The remaining nodes will be cleaned up by free_reloc_control.
2100	 */
2101}
2102
2103static void free_block_list(struct rb_root *blocks)
2104{
2105	struct tree_block *block;
2106	struct rb_node *rb_node;
2107	while ((rb_node = rb_first(blocks))) {
2108		block = rb_entry(rb_node, struct tree_block, rb_node);
2109		rb_erase(rb_node, blocks);
2110		kfree(block);
2111	}
2112}
2113
2114static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115				      struct btrfs_root *reloc_root)
2116{
2117	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118	struct btrfs_root *root;
2119	int ret;
2120
2121	if (reloc_root->last_trans == trans->transid)
2122		return 0;
2123
2124	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2125
2126	/*
2127	 * This should succeed, since we can't have a reloc root without having
2128	 * already looked up the actual root and created the reloc root for this
2129	 * root.
2130	 *
2131	 * However if there's some sort of corruption where we have a ref to a
2132	 * reloc root without a corresponding root this could return ENOENT.
2133	 */
2134	if (IS_ERR(root)) {
2135		ASSERT(0);
2136		return PTR_ERR(root);
2137	}
2138	if (root->reloc_root != reloc_root) {
2139		ASSERT(0);
2140		btrfs_err(fs_info,
2141			  "root %llu has two reloc roots associated with it",
2142			  reloc_root->root_key.offset);
2143		btrfs_put_root(root);
2144		return -EUCLEAN;
2145	}
2146	ret = btrfs_record_root_in_trans(trans, root);
2147	btrfs_put_root(root);
2148
2149	return ret;
2150}
2151
2152static noinline_for_stack
2153struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154				     struct reloc_control *rc,
2155				     struct btrfs_backref_node *node,
2156				     struct btrfs_backref_edge *edges[])
2157{
2158	struct btrfs_backref_node *next;
2159	struct btrfs_root *root;
2160	int index = 0;
2161	int ret;
2162
2163	next = node;
2164	while (1) {
2165		cond_resched();
2166		next = walk_up_backref(next, edges, &index);
2167		root = next->root;
2168
2169		/*
2170		 * If there is no root, then our references for this block are
2171		 * incomplete, as we should be able to walk all the way up to a
2172		 * block that is owned by a root.
2173		 *
2174		 * This path is only for SHAREABLE roots, so if we come upon a
2175		 * non-SHAREABLE root then we have backrefs that resolve
2176		 * improperly.
2177		 *
2178		 * Both of these cases indicate file system corruption, or a bug
2179		 * in the backref walking code.
2180		 */
2181		if (!root) {
2182			ASSERT(0);
2183			btrfs_err(trans->fs_info,
2184		"bytenr %llu doesn't have a backref path ending in a root",
2185				  node->bytenr);
2186			return ERR_PTR(-EUCLEAN);
2187		}
2188		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189			ASSERT(0);
2190			btrfs_err(trans->fs_info,
2191	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2192				  node->bytenr);
2193			return ERR_PTR(-EUCLEAN);
2194		}
2195
2196		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197			ret = record_reloc_root_in_trans(trans, root);
2198			if (ret)
2199				return ERR_PTR(ret);
2200			break;
2201		}
2202
2203		ret = btrfs_record_root_in_trans(trans, root);
2204		if (ret)
2205			return ERR_PTR(ret);
2206		root = root->reloc_root;
2207
2208		/*
2209		 * We could have raced with another thread which failed, so
2210		 * root->reloc_root may not be set, return ENOENT in this case.
2211		 */
2212		if (!root)
2213			return ERR_PTR(-ENOENT);
2214
2215		if (next->new_bytenr != root->node->start) {
2216			/*
2217			 * We just created the reloc root, so we shouldn't have
2218			 * ->new_bytenr set and this shouldn't be in the changed
2219			 *  list.  If it is then we have multiple roots pointing
2220			 *  at the same bytenr which indicates corruption, or
2221			 *  we've made a mistake in the backref walking code.
2222			 */
2223			ASSERT(next->new_bytenr == 0);
2224			ASSERT(list_empty(&next->list));
2225			if (next->new_bytenr || !list_empty(&next->list)) {
2226				btrfs_err(trans->fs_info,
2227	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228					  node->bytenr, next->bytenr);
2229				return ERR_PTR(-EUCLEAN);
2230			}
2231
2232			next->new_bytenr = root->node->start;
2233			btrfs_put_root(next->root);
2234			next->root = btrfs_grab_root(root);
2235			ASSERT(next->root);
2236			list_add_tail(&next->list,
2237				      &rc->backref_cache.changed);
2238			mark_block_processed(rc, next);
2239			break;
2240		}
2241
2242		WARN_ON(1);
2243		root = NULL;
2244		next = walk_down_backref(edges, &index);
2245		if (!next || next->level <= node->level)
2246			break;
2247	}
2248	if (!root) {
2249		/*
2250		 * This can happen if there's fs corruption or if there's a bug
2251		 * in the backref lookup code.
2252		 */
2253		ASSERT(0);
2254		return ERR_PTR(-ENOENT);
2255	}
2256
2257	next = node;
2258	/* setup backref node path for btrfs_reloc_cow_block */
2259	while (1) {
2260		rc->backref_cache.path[next->level] = next;
2261		if (--index < 0)
2262			break;
2263		next = edges[index]->node[UPPER];
2264	}
2265	return root;
2266}
2267
2268/*
2269 * Select a tree root for relocation.
2270 *
2271 * Return NULL if the block is not shareable. We should use do_relocation() in
2272 * this case.
2273 *
2274 * Return a tree root pointer if the block is shareable.
2275 * Return -ENOENT if the block is root of reloc tree.
2276 */
2277static noinline_for_stack
2278struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2279{
2280	struct btrfs_backref_node *next;
2281	struct btrfs_root *root;
2282	struct btrfs_root *fs_root = NULL;
2283	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284	int index = 0;
2285
2286	next = node;
2287	while (1) {
2288		cond_resched();
2289		next = walk_up_backref(next, edges, &index);
2290		root = next->root;
 
2291
2292		/*
2293		 * This can occur if we have incomplete extent refs leading all
2294		 * the way up a particular path, in this case return -EUCLEAN.
2295		 */
2296		if (!root)
2297			return ERR_PTR(-EUCLEAN);
2298
2299		/* No other choice for non-shareable tree */
2300		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301			return root;
2302
2303		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304			fs_root = root;
2305
2306		if (next != node)
2307			return NULL;
2308
2309		next = walk_down_backref(edges, &index);
2310		if (!next || next->level <= node->level)
2311			break;
2312	}
2313
2314	if (!fs_root)
2315		return ERR_PTR(-ENOENT);
2316	return fs_root;
2317}
2318
2319static noinline_for_stack
2320u64 calcu_metadata_size(struct reloc_control *rc,
2321			struct btrfs_backref_node *node, int reserve)
2322{
2323	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324	struct btrfs_backref_node *next = node;
2325	struct btrfs_backref_edge *edge;
2326	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327	u64 num_bytes = 0;
2328	int index = 0;
2329
2330	BUG_ON(reserve && node->processed);
2331
2332	while (next) {
2333		cond_resched();
2334		while (1) {
2335			if (next->processed && (reserve || next != node))
2336				break;
2337
2338			num_bytes += fs_info->nodesize;
 
2339
2340			if (list_empty(&next->upper))
2341				break;
2342
2343			edge = list_entry(next->upper.next,
2344					struct btrfs_backref_edge, list[LOWER]);
2345			edges[index++] = edge;
2346			next = edge->node[UPPER];
2347		}
2348		next = walk_down_backref(edges, &index);
2349	}
2350	return num_bytes;
2351}
2352
2353static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354				  struct reloc_control *rc,
2355				  struct btrfs_backref_node *node)
2356{
2357	struct btrfs_root *root = rc->extent_root;
2358	struct btrfs_fs_info *fs_info = root->fs_info;
2359	u64 num_bytes;
2360	int ret;
2361	u64 tmp;
2362
2363	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364
2365	trans->block_rsv = rc->block_rsv;
2366	rc->reserved_bytes += num_bytes;
2367
2368	/*
2369	 * We are under a transaction here so we can only do limited flushing.
2370	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2371	 * transaction and try to refill when we can flush all the things.
2372	 */
2373	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374				     BTRFS_RESERVE_FLUSH_LIMIT);
2375	if (ret) {
2376		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377		while (tmp <= rc->reserved_bytes)
2378			tmp <<= 1;
2379		/*
2380		 * only one thread can access block_rsv at this point,
2381		 * so we don't need hold lock to protect block_rsv.
2382		 * we expand more reservation size here to allow enough
2383		 * space for relocation and we will return earlier in
2384		 * enospc case.
2385		 */
2386		rc->block_rsv->size = tmp + fs_info->nodesize *
2387				      RELOCATION_RESERVED_NODES;
2388		return -EAGAIN;
 
 
 
2389	}
2390
2391	return 0;
2392}
2393
2394/*
2395 * relocate a block tree, and then update pointers in upper level
2396 * blocks that reference the block to point to the new location.
2397 *
2398 * if called by link_to_upper, the block has already been relocated.
2399 * in that case this function just updates pointers.
2400 */
2401static int do_relocation(struct btrfs_trans_handle *trans,
2402			 struct reloc_control *rc,
2403			 struct btrfs_backref_node *node,
2404			 struct btrfs_key *key,
2405			 struct btrfs_path *path, int lowest)
2406{
2407	struct btrfs_backref_node *upper;
2408	struct btrfs_backref_edge *edge;
2409	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410	struct btrfs_root *root;
2411	struct extent_buffer *eb;
2412	u32 blocksize;
2413	u64 bytenr;
 
2414	int slot;
2415	int ret = 0;
 
2416
2417	/*
2418	 * If we are lowest then this is the first time we're processing this
2419	 * block, and thus shouldn't have an eb associated with it yet.
2420	 */
2421	ASSERT(!lowest || !node->eb);
2422
2423	path->lowest_level = node->level + 1;
2424	rc->backref_cache.path[node->level] = node;
2425	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426		struct btrfs_ref ref = { 0 };
2427
2428		cond_resched();
2429
2430		upper = edge->node[UPPER];
2431		root = select_reloc_root(trans, rc, upper, edges);
2432		if (IS_ERR(root)) {
2433			ret = PTR_ERR(root);
2434			goto next;
2435		}
2436
2437		if (upper->eb && !upper->locked) {
2438			if (!lowest) {
2439				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440				if (ret < 0)
2441					goto next;
2442				BUG_ON(ret);
2443				bytenr = btrfs_node_blockptr(upper->eb, slot);
2444				if (node->eb->start == bytenr)
2445					goto next;
2446			}
2447			btrfs_backref_drop_node_buffer(upper);
2448		}
2449
2450		if (!upper->eb) {
2451			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452			if (ret) {
2453				if (ret > 0)
2454					ret = -ENOENT;
2455
2456				btrfs_release_path(path);
2457				break;
2458			}
 
2459
2460			if (!upper->eb) {
2461				upper->eb = path->nodes[upper->level];
2462				path->nodes[upper->level] = NULL;
2463			} else {
2464				BUG_ON(upper->eb != path->nodes[upper->level]);
2465			}
2466
2467			upper->locked = 1;
2468			path->locks[upper->level] = 0;
2469
2470			slot = path->slots[upper->level];
2471			btrfs_release_path(path);
2472		} else {
2473			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474			if (ret < 0)
2475				goto next;
2476			BUG_ON(ret);
2477		}
2478
2479		bytenr = btrfs_node_blockptr(upper->eb, slot);
2480		if (lowest) {
2481			if (bytenr != node->bytenr) {
2482				btrfs_err(root->fs_info,
2483		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484					  bytenr, node->bytenr, slot,
2485					  upper->eb->start);
2486				ret = -EIO;
2487				goto next;
2488			}
2489		} else {
2490			if (node->eb->start == bytenr)
2491				goto next;
2492		}
2493
2494		blocksize = root->fs_info->nodesize;
2495		eb = btrfs_read_node_slot(upper->eb, slot);
2496		if (IS_ERR(eb)) {
2497			ret = PTR_ERR(eb);
 
 
2498			goto next;
2499		}
2500		btrfs_tree_lock(eb);
 
2501
2502		if (!node->eb) {
2503			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504					      slot, &eb, BTRFS_NESTING_COW);
2505			btrfs_tree_unlock(eb);
2506			free_extent_buffer(eb);
2507			if (ret < 0)
 
2508				goto next;
2509			/*
2510			 * We've just COWed this block, it should have updated
2511			 * the correct backref node entry.
2512			 */
2513			ASSERT(node->eb == eb);
2514		} else {
2515			btrfs_set_node_blockptr(upper->eb, slot,
2516						node->eb->start);
2517			btrfs_set_node_ptr_generation(upper->eb, slot,
2518						      trans->transid);
2519			btrfs_mark_buffer_dirty(trans, upper->eb);
 
 
 
 
 
 
 
2520
2521			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522					       node->eb->start, blocksize,
2523					       upper->eb->start,
2524					       btrfs_header_owner(upper->eb));
2525			btrfs_init_tree_ref(&ref, node->level,
2526					    btrfs_header_owner(upper->eb),
2527					    root->root_key.objectid, false);
2528			ret = btrfs_inc_extent_ref(trans, &ref);
2529			if (!ret)
2530				ret = btrfs_drop_subtree(trans, root, eb,
2531							 upper->eb);
2532			if (ret)
2533				btrfs_abort_transaction(trans, ret);
2534		}
2535next:
2536		if (!upper->pending)
2537			btrfs_backref_drop_node_buffer(upper);
2538		else
2539			btrfs_backref_unlock_node_buffer(upper);
2540		if (ret)
2541			break;
2542	}
2543
2544	if (!ret && node->pending) {
2545		btrfs_backref_drop_node_buffer(node);
2546		list_move_tail(&node->list, &rc->backref_cache.changed);
2547		node->pending = 0;
2548	}
2549
2550	path->lowest_level = 0;
2551
2552	/*
2553	 * We should have allocated all of our space in the block rsv and thus
2554	 * shouldn't ENOSPC.
2555	 */
2556	ASSERT(ret != -ENOSPC);
2557	return ret;
2558}
2559
2560static int link_to_upper(struct btrfs_trans_handle *trans,
2561			 struct reloc_control *rc,
2562			 struct btrfs_backref_node *node,
2563			 struct btrfs_path *path)
2564{
2565	struct btrfs_key key;
2566
2567	btrfs_node_key_to_cpu(node->eb, &key, 0);
2568	return do_relocation(trans, rc, node, &key, path, 0);
2569}
2570
2571static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572				struct reloc_control *rc,
2573				struct btrfs_path *path, int err)
2574{
2575	LIST_HEAD(list);
2576	struct btrfs_backref_cache *cache = &rc->backref_cache;
2577	struct btrfs_backref_node *node;
2578	int level;
2579	int ret;
2580
2581	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582		while (!list_empty(&cache->pending[level])) {
2583			node = list_entry(cache->pending[level].next,
2584					  struct btrfs_backref_node, list);
2585			list_move_tail(&node->list, &list);
2586			BUG_ON(!node->pending);
2587
2588			if (!err) {
2589				ret = link_to_upper(trans, rc, node, path);
2590				if (ret < 0)
2591					err = ret;
2592			}
2593		}
2594		list_splice_init(&list, &cache->pending[level]);
2595	}
2596	return err;
2597}
2598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599/*
2600 * mark a block and all blocks directly/indirectly reference the block
2601 * as processed.
2602 */
2603static void update_processed_blocks(struct reloc_control *rc,
2604				    struct btrfs_backref_node *node)
2605{
2606	struct btrfs_backref_node *next = node;
2607	struct btrfs_backref_edge *edge;
2608	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609	int index = 0;
2610
2611	while (next) {
2612		cond_resched();
2613		while (1) {
2614			if (next->processed)
2615				break;
2616
2617			mark_block_processed(rc, next);
2618
2619			if (list_empty(&next->upper))
2620				break;
2621
2622			edge = list_entry(next->upper.next,
2623					struct btrfs_backref_edge, list[LOWER]);
2624			edges[index++] = edge;
2625			next = edge->node[UPPER];
2626		}
2627		next = walk_down_backref(edges, &index);
2628	}
2629}
2630
2631static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2632{
2633	u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635	if (test_range_bit(&rc->processed_blocks, bytenr,
2636			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2637		return 1;
2638	return 0;
2639}
2640
2641static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642			      struct tree_block *block)
2643{
2644	struct btrfs_tree_parent_check check = {
2645		.level = block->level,
2646		.owner_root = block->owner,
2647		.transid = block->key.offset
2648	};
2649	struct extent_buffer *eb;
2650
2651	eb = read_tree_block(fs_info, block->bytenr, &check);
2652	if (IS_ERR(eb))
2653		return PTR_ERR(eb);
2654	if (!extent_buffer_uptodate(eb)) {
2655		free_extent_buffer(eb);
2656		return -EIO;
2657	}
 
2658	if (block->level == 0)
2659		btrfs_item_key_to_cpu(eb, &block->key, 0);
2660	else
2661		btrfs_node_key_to_cpu(eb, &block->key, 0);
2662	free_extent_buffer(eb);
2663	block->key_ready = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664	return 0;
2665}
2666
2667/*
2668 * helper function to relocate a tree block
2669 */
2670static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671				struct reloc_control *rc,
2672				struct btrfs_backref_node *node,
2673				struct btrfs_key *key,
2674				struct btrfs_path *path)
2675{
2676	struct btrfs_root *root;
2677	int ret = 0;
2678
2679	if (!node)
2680		return 0;
2681
2682	/*
2683	 * If we fail here we want to drop our backref_node because we are going
2684	 * to start over and regenerate the tree for it.
2685	 */
2686	ret = reserve_metadata_space(trans, rc, node);
2687	if (ret)
2688		goto out;
 
2689
2690	BUG_ON(node->processed);
2691	root = select_one_root(node);
2692	if (IS_ERR(root)) {
2693		ret = PTR_ERR(root);
2694
2695		/* See explanation in select_one_root for the -EUCLEAN case. */
2696		ASSERT(ret == -ENOENT);
2697		if (ret == -ENOENT) {
2698			ret = 0;
2699			update_processed_blocks(rc, node);
2700		}
2701		goto out;
2702	}
2703
2704	if (root) {
2705		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706			/*
2707			 * This block was the root block of a root, and this is
2708			 * the first time we're processing the block and thus it
2709			 * should not have had the ->new_bytenr modified and
2710			 * should have not been included on the changed list.
2711			 *
2712			 * However in the case of corruption we could have
2713			 * multiple refs pointing to the same block improperly,
2714			 * and thus we would trip over these checks.  ASSERT()
2715			 * for the developer case, because it could indicate a
2716			 * bug in the backref code, however error out for a
2717			 * normal user in the case of corruption.
2718			 */
2719			ASSERT(node->new_bytenr == 0);
2720			ASSERT(list_empty(&node->list));
2721			if (node->new_bytenr || !list_empty(&node->list)) {
2722				btrfs_err(root->fs_info,
2723				  "bytenr %llu has improper references to it",
2724					  node->bytenr);
2725				ret = -EUCLEAN;
2726				goto out;
2727			}
2728			ret = btrfs_record_root_in_trans(trans, root);
2729			if (ret)
2730				goto out;
2731			/*
2732			 * Another thread could have failed, need to check if we
2733			 * have reloc_root actually set.
2734			 */
2735			if (!root->reloc_root) {
2736				ret = -ENOENT;
2737				goto out;
2738			}
2739			root = root->reloc_root;
2740			node->new_bytenr = root->node->start;
2741			btrfs_put_root(node->root);
2742			node->root = btrfs_grab_root(root);
2743			ASSERT(node->root);
2744			list_add_tail(&node->list, &rc->backref_cache.changed);
2745		} else {
2746			path->lowest_level = node->level;
2747			if (root == root->fs_info->chunk_root)
2748				btrfs_reserve_chunk_metadata(trans, false);
2749			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750			btrfs_release_path(path);
2751			if (root == root->fs_info->chunk_root)
2752				btrfs_trans_release_chunk_metadata(trans);
2753			if (ret > 0)
2754				ret = 0;
2755		}
2756		if (!ret)
2757			update_processed_blocks(rc, node);
2758	} else {
2759		ret = do_relocation(trans, rc, node, key, path, 1);
2760	}
2761out:
2762	if (ret || node->level == 0 || node->cowonly)
2763		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764	return ret;
2765}
2766
2767/*
2768 * relocate a list of blocks
2769 */
2770static noinline_for_stack
2771int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772			 struct reloc_control *rc, struct rb_root *blocks)
2773{
2774	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775	struct btrfs_backref_node *node;
2776	struct btrfs_path *path;
2777	struct tree_block *block;
2778	struct tree_block *next;
2779	int ret;
2780	int err = 0;
2781
2782	path = btrfs_alloc_path();
2783	if (!path) {
2784		err = -ENOMEM;
2785		goto out_free_blocks;
2786	}
2787
2788	/* Kick in readahead for tree blocks with missing keys */
2789	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2790		if (!block->key_ready)
2791			btrfs_readahead_tree_block(fs_info, block->bytenr,
2792						   block->owner, 0,
2793						   block->level);
2794	}
2795
2796	/* Get first keys */
2797	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2798		if (!block->key_ready) {
2799			err = get_tree_block_key(fs_info, block);
2800			if (err)
2801				goto out_free_path;
2802		}
 
2803	}
2804
2805	/* Do tree relocation */
2806	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807		node = build_backref_tree(trans, rc, &block->key,
 
 
2808					  block->level, block->bytenr);
2809		if (IS_ERR(node)) {
2810			err = PTR_ERR(node);
2811			goto out;
2812		}
2813
2814		ret = relocate_tree_block(trans, rc, node, &block->key,
2815					  path);
2816		if (ret < 0) {
2817			err = ret;
2818			break;
 
2819		}
 
2820	}
2821out:
2822	err = finish_pending_nodes(trans, rc, path, err);
2823
2824out_free_path:
2825	btrfs_free_path(path);
2826out_free_blocks:
2827	free_block_list(blocks);
2828	return err;
2829}
2830
2831static noinline_for_stack int prealloc_file_extent_cluster(
2832				struct btrfs_inode *inode,
2833				const struct file_extent_cluster *cluster)
2834{
2835	u64 alloc_hint = 0;
2836	u64 start;
2837	u64 end;
2838	u64 offset = inode->index_cnt;
2839	u64 num_bytes;
2840	int nr;
2841	int ret = 0;
2842	u64 i_size = i_size_read(&inode->vfs_inode);
2843	u64 prealloc_start = cluster->start - offset;
2844	u64 prealloc_end = cluster->end - offset;
2845	u64 cur_offset = prealloc_start;
2846
2847	/*
2848	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850	 * btrfs_do_readpage() call of previously relocated file cluster.
2851	 *
2852	 * If the current cluster starts in the above range, btrfs_do_readpage()
2853	 * will skip the read, and relocate_one_page() will later writeback
2854	 * the padding zeros as new data, causing data corruption.
2855	 *
2856	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857	 */
2858	if (!PAGE_ALIGNED(i_size)) {
2859		struct address_space *mapping = inode->vfs_inode.i_mapping;
2860		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861		const u32 sectorsize = fs_info->sectorsize;
2862		struct page *page;
2863
2864		ASSERT(sectorsize < PAGE_SIZE);
2865		ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867		/*
2868		 * Subpage can't handle page with DIRTY but without UPTODATE
2869		 * bit as it can lead to the following deadlock:
2870		 *
2871		 * btrfs_read_folio()
2872		 * | Page already *locked*
2873		 * |- btrfs_lock_and_flush_ordered_range()
2874		 *    |- btrfs_start_ordered_extent()
2875		 *       |- extent_write_cache_pages()
2876		 *          |- lock_page()
2877		 *             We try to lock the page we already hold.
2878		 *
2879		 * Here we just writeback the whole data reloc inode, so that
2880		 * we will be ensured to have no dirty range in the page, and
2881		 * are safe to clear the uptodate bits.
2882		 *
2883		 * This shouldn't cause too much overhead, as we need to write
2884		 * the data back anyway.
2885		 */
2886		ret = filemap_write_and_wait(mapping);
2887		if (ret < 0)
2888			return ret;
2889
2890		clear_extent_bits(&inode->io_tree, i_size,
2891				  round_up(i_size, PAGE_SIZE) - 1,
2892				  EXTENT_UPTODATE);
2893		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894		/*
2895		 * If page is freed we don't need to do anything then, as we
2896		 * will re-read the whole page anyway.
2897		 */
2898		if (page) {
2899			btrfs_subpage_clear_uptodate(fs_info, page_folio(page), i_size,
2900					round_up(i_size, PAGE_SIZE) - i_size);
2901			unlock_page(page);
2902			put_page(page);
2903		}
2904	}
2905
2906	BUG_ON(cluster->start != cluster->boundary[0]);
2907	ret = btrfs_alloc_data_chunk_ondemand(inode,
2908					      prealloc_end + 1 - prealloc_start);
2909	if (ret)
2910		return ret;
2911
2912	btrfs_inode_lock(inode, 0);
2913	for (nr = 0; nr < cluster->nr; nr++) {
2914		struct extent_state *cached_state = NULL;
2915
 
2916		start = cluster->boundary[nr] - offset;
2917		if (nr + 1 < cluster->nr)
2918			end = cluster->boundary[nr + 1] - 1 - offset;
2919		else
2920			end = cluster->end - offset;
2921
2922		lock_extent(&inode->io_tree, start, end, &cached_state);
2923		num_bytes = end + 1 - start;
2924		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925						num_bytes, num_bytes,
2926						end + 1, &alloc_hint);
2927		cur_offset = end + 1;
2928		unlock_extent(&inode->io_tree, start, end, &cached_state);
2929		if (ret)
2930			break;
 
2931	}
2932	btrfs_inode_unlock(inode, 0);
2933
2934	if (cur_offset < prealloc_end)
2935		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936					       prealloc_end + 1 - cur_offset);
2937	return ret;
2938}
2939
2940static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941				u64 start, u64 end, u64 block_start)
 
2942{
 
 
2943	struct extent_map *em;
2944	struct extent_state *cached_state = NULL;
2945	int ret = 0;
2946
2947	em = alloc_extent_map();
2948	if (!em)
2949		return -ENOMEM;
2950
2951	em->start = start;
2952	em->len = end + 1 - start;
2953	em->block_len = em->len;
2954	em->block_start = block_start;
2955	em->flags |= EXTENT_FLAG_PINNED;
 
2956
2957	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960	free_extent_map(em);
2961
2962	return ret;
2963}
2964
2965/*
2966 * Allow error injection to test balance/relocation cancellation
2967 */
2968noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2969{
2970	return atomic_read(&fs_info->balance_cancel_req) ||
2971		atomic_read(&fs_info->reloc_cancel_req) ||
2972		fatal_signal_pending(current);
2973}
2974ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2977				    int cluster_nr)
2978{
2979	/* Last extent, use cluster end directly */
2980	if (cluster_nr >= cluster->nr - 1)
2981		return cluster->end;
2982
2983	/* Use next boundary start*/
2984	return cluster->boundary[cluster_nr + 1] - 1;
2985}
2986
2987static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988			     const struct file_extent_cluster *cluster,
2989			     int *cluster_nr, unsigned long page_index)
2990{
2991	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2992	u64 offset = BTRFS_I(inode)->index_cnt;
2993	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995	struct page *page;
2996	u64 page_start;
2997	u64 page_end;
2998	u64 cur;
2999	int ret;
3000
3001	ASSERT(page_index <= last_index);
3002	page = find_lock_page(inode->i_mapping, page_index);
3003	if (!page) {
3004		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005				page_index, last_index + 1 - page_index);
3006		page = find_or_create_page(inode->i_mapping, page_index, mask);
3007		if (!page)
3008			return -ENOMEM;
3009	}
3010
3011	if (PageReadahead(page))
3012		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013				page_folio(page), page_index,
3014				last_index + 1 - page_index);
3015
3016	if (!PageUptodate(page)) {
3017		btrfs_read_folio(NULL, page_folio(page));
3018		lock_page(page);
3019		if (!PageUptodate(page)) {
3020			ret = -EIO;
3021			goto release_page;
3022		}
 
3023	}
3024
3025	/*
3026	 * We could have lost page private when we dropped the lock to read the
3027	 * page above, make sure we set_page_extent_mapped here so we have any
3028	 * of the subpage blocksize stuff we need in place.
3029	 */
3030	ret = set_page_extent_mapped(page);
3031	if (ret < 0)
3032		goto release_page;
3033
3034	page_start = page_offset(page);
3035	page_end = page_start + PAGE_SIZE - 1;
3036
3037	/*
3038	 * Start from the cluster, as for subpage case, the cluster can start
3039	 * inside the page.
3040	 */
3041	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042	while (cur <= page_end) {
3043		struct extent_state *cached_state = NULL;
3044		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045		u64 extent_end = get_cluster_boundary_end(cluster,
3046						*cluster_nr) - offset;
3047		u64 clamped_start = max(page_start, extent_start);
3048		u64 clamped_end = min(page_end, extent_end);
3049		u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051		/* Reserve metadata for this range */
3052		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053						      clamped_len, clamped_len,
3054						      false);
3055		if (ret)
3056			goto release_page;
3057
3058		/* Mark the range delalloc and dirty for later writeback */
3059		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060			    &cached_state);
3061		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062						clamped_end, 0, &cached_state);
3063		if (ret) {
3064			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065					 clamped_start, clamped_end,
3066					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3067					 &cached_state);
3068			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069							clamped_len, true);
3070			btrfs_delalloc_release_extents(BTRFS_I(inode),
3071						       clamped_len);
3072			goto release_page;
3073		}
3074		btrfs_folio_set_dirty(fs_info, page_folio(page),
3075				      clamped_start, clamped_len);
3076
3077		/*
3078		 * Set the boundary if it's inside the page.
3079		 * Data relocation requires the destination extents to have the
3080		 * same size as the source.
3081		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3082		 * with previous extent.
3083		 */
3084		if (in_range(cluster->boundary[*cluster_nr] - offset,
3085			     page_start, PAGE_SIZE)) {
3086			u64 boundary_start = cluster->boundary[*cluster_nr] -
3087						offset;
3088			u64 boundary_end = boundary_start +
3089					   fs_info->sectorsize - 1;
3090
3091			set_extent_bit(&BTRFS_I(inode)->io_tree,
3092				       boundary_start, boundary_end,
3093				       EXTENT_BOUNDARY, NULL);
3094		}
3095		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3096			      &cached_state);
3097		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3098		cur += clamped_len;
3099
3100		/* Crossed extent end, go to next extent */
3101		if (cur >= extent_end) {
3102			(*cluster_nr)++;
3103			/* Just finished the last extent of the cluster, exit. */
3104			if (*cluster_nr >= cluster->nr)
3105				break;
3106		}
3107	}
3108	unlock_page(page);
3109	put_page(page);
3110
3111	balance_dirty_pages_ratelimited(inode->i_mapping);
3112	btrfs_throttle(fs_info);
3113	if (btrfs_should_cancel_balance(fs_info))
3114		ret = -ECANCELED;
3115	return ret;
3116
3117release_page:
3118	unlock_page(page);
3119	put_page(page);
3120	return ret;
3121}
3122
3123static int relocate_file_extent_cluster(struct inode *inode,
3124					const struct file_extent_cluster *cluster)
3125{
 
 
3126	u64 offset = BTRFS_I(inode)->index_cnt;
3127	unsigned long index;
3128	unsigned long last_index;
 
3129	struct file_ra_state *ra;
3130	int cluster_nr = 0;
 
3131	int ret = 0;
3132
3133	if (!cluster->nr)
3134		return 0;
3135
3136	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3137	if (!ra)
3138		return -ENOMEM;
3139
3140	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3141	if (ret)
3142		goto out;
3143
3144	file_ra_state_init(ra, inode->i_mapping);
3145
3146	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3147				   cluster->end - offset, cluster->start);
3148	if (ret)
3149		goto out;
3150
3151	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3152	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3153	     index <= last_index && !ret; index++)
3154		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3155	if (ret == 0)
3156		WARN_ON(cluster_nr != cluster->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157out:
3158	kfree(ra);
3159	return ret;
3160}
3161
3162static noinline_for_stack int relocate_data_extent(struct inode *inode,
3163				const struct btrfs_key *extent_key,
3164				struct file_extent_cluster *cluster)
3165{
3166	int ret;
3167	struct btrfs_root *root = BTRFS_I(inode)->root;
3168
3169	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3170		ret = relocate_file_extent_cluster(inode, cluster);
3171		if (ret)
3172			return ret;
3173		cluster->nr = 0;
3174	}
3175
3176	/*
3177	 * Under simple quotas, we set root->relocation_src_root when we find
3178	 * the extent. If adjacent extents have different owners, we can't merge
3179	 * them while relocating. Handle this by storing the owning root that
3180	 * started a cluster and if we see an extent from a different root break
3181	 * cluster formation (just like the above case of non-adjacent extents).
3182	 *
3183	 * Without simple quotas, relocation_src_root is always 0, so we should
3184	 * never see a mismatch, and it should have no effect on relocation
3185	 * clusters.
3186	 */
3187	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3188		u64 tmp = root->relocation_src_root;
3189
3190		/*
3191		 * root->relocation_src_root is the state that actually affects
3192		 * the preallocation we do here, so set it to the root owning
3193		 * the cluster we need to relocate.
3194		 */
3195		root->relocation_src_root = cluster->owning_root;
3196		ret = relocate_file_extent_cluster(inode, cluster);
3197		if (ret)
3198			return ret;
3199		cluster->nr = 0;
3200		/* And reset it back for the current extent's owning root. */
3201		root->relocation_src_root = tmp;
3202	}
3203
3204	if (!cluster->nr) {
3205		cluster->start = extent_key->objectid;
3206		cluster->owning_root = root->relocation_src_root;
3207	}
3208	else
3209		BUG_ON(cluster->nr >= MAX_EXTENTS);
3210	cluster->end = extent_key->objectid + extent_key->offset - 1;
3211	cluster->boundary[cluster->nr] = extent_key->objectid;
3212	cluster->nr++;
3213
3214	if (cluster->nr >= MAX_EXTENTS) {
3215		ret = relocate_file_extent_cluster(inode, cluster);
3216		if (ret)
3217			return ret;
3218		cluster->nr = 0;
3219	}
3220	return 0;
3221}
3222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3223/*
3224 * helper to add a tree block to the list.
3225 * the major work is getting the generation and level of the block
3226 */
3227static int add_tree_block(struct reloc_control *rc,
3228			  const struct btrfs_key *extent_key,
3229			  struct btrfs_path *path,
3230			  struct rb_root *blocks)
3231{
3232	struct extent_buffer *eb;
3233	struct btrfs_extent_item *ei;
3234	struct btrfs_tree_block_info *bi;
3235	struct tree_block *block;
3236	struct rb_node *rb_node;
3237	u32 item_size;
3238	int level = -1;
3239	u64 generation;
3240	u64 owner = 0;
3241
3242	eb =  path->nodes[0];
3243	item_size = btrfs_item_size(eb, path->slots[0]);
3244
3245	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3246	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3247		unsigned long ptr = 0, end;
3248
3249		ei = btrfs_item_ptr(eb, path->slots[0],
3250				struct btrfs_extent_item);
3251		end = (unsigned long)ei + item_size;
3252		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3253			bi = (struct btrfs_tree_block_info *)(ei + 1);
3254			level = btrfs_tree_block_level(eb, bi);
3255			ptr = (unsigned long)(bi + 1);
3256		} else {
3257			level = (int)extent_key->offset;
3258			ptr = (unsigned long)(ei + 1);
3259		}
3260		generation = btrfs_extent_generation(eb, ei);
3261
3262		/*
3263		 * We're reading random blocks without knowing their owner ahead
3264		 * of time.  This is ok most of the time, as all reloc roots and
3265		 * fs roots have the same lock type.  However normal trees do
3266		 * not, and the only way to know ahead of time is to read the
3267		 * inline ref offset.  We know it's an fs root if
3268		 *
3269		 * 1. There's more than one ref.
3270		 * 2. There's a SHARED_DATA_REF_KEY set.
3271		 * 3. FULL_BACKREF is set on the flags.
3272		 *
3273		 * Otherwise it's safe to assume that the ref offset == the
3274		 * owner of this block, so we can use that when calling
3275		 * read_tree_block.
3276		 */
3277		if (btrfs_extent_refs(eb, ei) == 1 &&
3278		    !(btrfs_extent_flags(eb, ei) &
3279		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3280		    ptr < end) {
3281			struct btrfs_extent_inline_ref *iref;
3282			int type;
3283
3284			iref = (struct btrfs_extent_inline_ref *)ptr;
3285			type = btrfs_get_extent_inline_ref_type(eb, iref,
3286							BTRFS_REF_TYPE_BLOCK);
3287			if (type == BTRFS_REF_TYPE_INVALID)
3288				return -EINVAL;
3289			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3290				owner = btrfs_extent_inline_ref_offset(eb, iref);
3291		}
3292	} else {
3293		btrfs_print_leaf(eb);
3294		btrfs_err(rc->block_group->fs_info,
3295			  "unrecognized tree backref at tree block %llu slot %u",
3296			  eb->start, path->slots[0]);
3297		btrfs_release_path(path);
3298		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
3299	}
3300
3301	btrfs_release_path(path);
3302
3303	BUG_ON(level == -1);
3304
3305	block = kmalloc(sizeof(*block), GFP_NOFS);
3306	if (!block)
3307		return -ENOMEM;
3308
3309	block->bytenr = extent_key->objectid;
3310	block->key.objectid = rc->extent_root->fs_info->nodesize;
3311	block->key.offset = generation;
3312	block->level = level;
3313	block->key_ready = false;
3314	block->owner = owner;
3315
3316	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3317	if (rb_node)
3318		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3319				    -EEXIST);
3320
3321	return 0;
3322}
3323
3324/*
3325 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3326 */
3327static int __add_tree_block(struct reloc_control *rc,
3328			    u64 bytenr, u32 blocksize,
3329			    struct rb_root *blocks)
3330{
3331	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3332	struct btrfs_path *path;
3333	struct btrfs_key key;
3334	int ret;
3335	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
3336
3337	if (tree_block_processed(bytenr, rc))
3338		return 0;
3339
3340	if (rb_simple_search(blocks, bytenr))
3341		return 0;
3342
3343	path = btrfs_alloc_path();
3344	if (!path)
3345		return -ENOMEM;
3346again:
3347	key.objectid = bytenr;
3348	if (skinny) {
3349		key.type = BTRFS_METADATA_ITEM_KEY;
3350		key.offset = (u64)-1;
3351	} else {
3352		key.type = BTRFS_EXTENT_ITEM_KEY;
3353		key.offset = blocksize;
3354	}
3355
3356	path->search_commit_root = 1;
3357	path->skip_locking = 1;
3358	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3359	if (ret < 0)
3360		goto out;
3361
3362	if (ret > 0 && skinny) {
3363		if (path->slots[0]) {
3364			path->slots[0]--;
3365			btrfs_item_key_to_cpu(path->nodes[0], &key,
3366					      path->slots[0]);
3367			if (key.objectid == bytenr &&
3368			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3369			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3370			      key.offset == blocksize)))
3371				ret = 0;
3372		}
3373
3374		if (ret) {
3375			skinny = false;
3376			btrfs_release_path(path);
3377			goto again;
3378		}
3379	}
3380	if (ret) {
3381		ASSERT(ret == 1);
3382		btrfs_print_leaf(path->nodes[0]);
3383		btrfs_err(fs_info,
3384	     "tree block extent item (%llu) is not found in extent tree",
3385		     bytenr);
3386		WARN_ON(1);
3387		ret = -EINVAL;
3388		goto out;
3389	}
3390
3391	ret = add_tree_block(rc, &key, path, blocks);
3392out:
3393	btrfs_free_path(path);
3394	return ret;
3395}
3396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3398				    struct btrfs_block_group *block_group,
3399				    struct inode *inode,
3400				    u64 ino)
3401{
 
3402	struct btrfs_root *root = fs_info->tree_root;
3403	struct btrfs_trans_handle *trans;
3404	int ret = 0;
3405
3406	if (inode)
3407		goto truncate;
3408
3409	inode = btrfs_iget(fs_info->sb, ino, root);
3410	if (IS_ERR(inode))
 
 
 
 
 
 
3411		return -ENOENT;
 
3412
3413truncate:
3414	ret = btrfs_check_trunc_cache_free_space(fs_info,
3415						 &fs_info->global_block_rsv);
3416	if (ret)
3417		goto out;
3418
3419	trans = btrfs_join_transaction(root);
3420	if (IS_ERR(trans)) {
3421		ret = PTR_ERR(trans);
3422		goto out;
3423	}
3424
3425	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3426
3427	btrfs_end_transaction(trans);
3428	btrfs_btree_balance_dirty(fs_info);
3429out:
3430	iput(inode);
3431	return ret;
3432}
3433
3434/*
3435 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3436 * cache inode, to avoid free space cache data extent blocking data relocation.
3437 */
3438static int delete_v1_space_cache(struct extent_buffer *leaf,
3439				 struct btrfs_block_group *block_group,
3440				 u64 data_bytenr)
 
 
3441{
3442	u64 space_cache_ino;
3443	struct btrfs_file_extent_item *ei;
 
 
 
3444	struct btrfs_key key;
3445	bool found = false;
3446	int i;
 
 
 
 
 
 
3447	int ret;
3448
3449	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3450		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451
3452	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3453		u8 type;
 
3454
3455		btrfs_item_key_to_cpu(leaf, &key, i);
3456		if (key.type != BTRFS_EXTENT_DATA_KEY)
3457			continue;
3458		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3459		type = btrfs_file_extent_type(leaf, ei);
 
 
 
 
 
 
 
3460
3461		if ((type == BTRFS_FILE_EXTENT_REG ||
3462		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3463		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3464			found = true;
3465			space_cache_ino = key.objectid;
3466			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467		}
 
 
 
 
 
 
 
3468	}
3469	if (!found)
3470		return -ENOENT;
3471	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3472					space_cache_ino);
3473	return ret;
3474}
3475
3476/*
3477 * helper to find all tree blocks that reference a given data extent
3478 */
3479static noinline_for_stack int add_data_references(struct reloc_control *rc,
3480						  const struct btrfs_key *extent_key,
3481						  struct btrfs_path *path,
3482						  struct rb_root *blocks)
3483{
3484	struct btrfs_backref_walk_ctx ctx = { 0 };
3485	struct ulist_iterator leaf_uiter;
3486	struct ulist_node *ref_node = NULL;
3487	const u32 blocksize = rc->extent_root->fs_info->nodesize;
 
 
 
 
3488	int ret = 0;
 
3489
3490	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3491
3492	ctx.bytenr = extent_key->objectid;
3493	ctx.skip_inode_ref_list = true;
3494	ctx.fs_info = rc->extent_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3495
3496	ret = btrfs_find_all_leafs(&ctx);
3497	if (ret < 0)
3498		return ret;
 
 
 
 
 
 
 
 
 
 
3499
3500	ULIST_ITER_INIT(&leaf_uiter);
3501	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3502		struct btrfs_tree_parent_check check = { 0 };
3503		struct extent_buffer *eb;
3504
3505		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3506		if (IS_ERR(eb)) {
3507			ret = PTR_ERR(eb);
3508			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3509		}
3510		ret = delete_v1_space_cache(eb, rc->block_group,
3511					    extent_key->objectid);
3512		free_extent_buffer(eb);
3513		if (ret < 0)
3514			break;
3515		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3516		if (ret < 0)
3517			break;
 
 
3518	}
3519	if (ret < 0)
 
 
3520		free_block_list(blocks);
3521	ulist_free(ctx.refs);
3522	return ret;
3523}
3524
3525/*
3526 * helper to find next unprocessed extent
3527 */
3528static noinline_for_stack
3529int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3530		     struct btrfs_key *extent_key)
3531{
3532	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3533	struct btrfs_key key;
3534	struct extent_buffer *leaf;
3535	u64 start, end, last;
3536	int ret;
3537
3538	last = rc->block_group->start + rc->block_group->length;
3539	while (1) {
3540		bool block_found;
3541
3542		cond_resched();
3543		if (rc->search_start >= last) {
3544			ret = 1;
3545			break;
3546		}
3547
3548		key.objectid = rc->search_start;
3549		key.type = BTRFS_EXTENT_ITEM_KEY;
3550		key.offset = 0;
3551
3552		path->search_commit_root = 1;
3553		path->skip_locking = 1;
3554		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3555					0, 0);
3556		if (ret < 0)
3557			break;
3558next:
3559		leaf = path->nodes[0];
3560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3561			ret = btrfs_next_leaf(rc->extent_root, path);
3562			if (ret != 0)
3563				break;
3564			leaf = path->nodes[0];
3565		}
3566
3567		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3568		if (key.objectid >= last) {
3569			ret = 1;
3570			break;
3571		}
3572
3573		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3574		    key.type != BTRFS_METADATA_ITEM_KEY) {
3575			path->slots[0]++;
3576			goto next;
3577		}
3578
3579		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3580		    key.objectid + key.offset <= rc->search_start) {
3581			path->slots[0]++;
3582			goto next;
3583		}
3584
3585		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3586		    key.objectid + fs_info->nodesize <=
3587		    rc->search_start) {
3588			path->slots[0]++;
3589			goto next;
3590		}
3591
3592		block_found = find_first_extent_bit(&rc->processed_blocks,
3593						    key.objectid, &start, &end,
3594						    EXTENT_DIRTY, NULL);
3595
3596		if (block_found && start <= key.objectid) {
3597			btrfs_release_path(path);
3598			rc->search_start = end + 1;
3599		} else {
3600			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3601				rc->search_start = key.objectid + key.offset;
3602			else
3603				rc->search_start = key.objectid +
3604					fs_info->nodesize;
3605			memcpy(extent_key, &key, sizeof(key));
3606			return 0;
3607		}
3608	}
3609	btrfs_release_path(path);
3610	return ret;
3611}
3612
3613static void set_reloc_control(struct reloc_control *rc)
3614{
3615	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3616
3617	mutex_lock(&fs_info->reloc_mutex);
3618	fs_info->reloc_ctl = rc;
3619	mutex_unlock(&fs_info->reloc_mutex);
3620}
3621
3622static void unset_reloc_control(struct reloc_control *rc)
3623{
3624	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3625
3626	mutex_lock(&fs_info->reloc_mutex);
3627	fs_info->reloc_ctl = NULL;
3628	mutex_unlock(&fs_info->reloc_mutex);
3629}
3630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631static noinline_for_stack
3632int prepare_to_relocate(struct reloc_control *rc)
3633{
3634	struct btrfs_trans_handle *trans;
3635	int ret;
3636
3637	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3638					      BTRFS_BLOCK_RSV_TEMP);
3639	if (!rc->block_rsv)
3640		return -ENOMEM;
3641
3642	memset(&rc->cluster, 0, sizeof(rc->cluster));
3643	rc->search_start = rc->block_group->start;
3644	rc->extents_found = 0;
3645	rc->nodes_relocated = 0;
3646	rc->merging_rsv_size = 0;
3647	rc->reserved_bytes = 0;
3648	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3649			      RELOCATION_RESERVED_NODES;
3650	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3651				     rc->block_rsv, rc->block_rsv->size,
3652				     BTRFS_RESERVE_FLUSH_ALL);
3653	if (ret)
3654		return ret;
3655
3656	rc->create_reloc_tree = true;
3657	set_reloc_control(rc);
3658
3659	trans = btrfs_join_transaction(rc->extent_root);
3660	if (IS_ERR(trans)) {
3661		unset_reloc_control(rc);
3662		/*
3663		 * extent tree is not a ref_cow tree and has no reloc_root to
3664		 * cleanup.  And callers are responsible to free the above
3665		 * block rsv.
3666		 */
3667		return PTR_ERR(trans);
3668	}
3669
3670	ret = btrfs_commit_transaction(trans);
3671	if (ret)
3672		unset_reloc_control(rc);
3673
3674	return ret;
3675}
3676
3677static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3678{
3679	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3680	struct rb_root blocks = RB_ROOT;
3681	struct btrfs_key key;
3682	struct btrfs_trans_handle *trans = NULL;
3683	struct btrfs_path *path;
3684	struct btrfs_extent_item *ei;
3685	u64 flags;
 
3686	int ret;
3687	int err = 0;
3688	int progress = 0;
3689
3690	path = btrfs_alloc_path();
3691	if (!path)
3692		return -ENOMEM;
3693	path->reada = READA_FORWARD;
3694
3695	ret = prepare_to_relocate(rc);
3696	if (ret) {
3697		err = ret;
3698		goto out_free;
3699	}
3700
3701	while (1) {
3702		rc->reserved_bytes = 0;
3703		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3704					     rc->block_rsv->size,
3705					     BTRFS_RESERVE_FLUSH_ALL);
3706		if (ret) {
3707			err = ret;
3708			break;
3709		}
3710		progress++;
3711		trans = btrfs_start_transaction(rc->extent_root, 0);
3712		if (IS_ERR(trans)) {
3713			err = PTR_ERR(trans);
3714			trans = NULL;
3715			break;
3716		}
3717restart:
3718		if (update_backref_cache(trans, &rc->backref_cache)) {
3719			btrfs_end_transaction(trans);
3720			trans = NULL;
3721			continue;
3722		}
3723
3724		ret = find_next_extent(rc, path, &key);
3725		if (ret < 0)
3726			err = ret;
3727		if (ret != 0)
3728			break;
3729
3730		rc->extents_found++;
3731
3732		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3733				    struct btrfs_extent_item);
3734		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735
3736		/*
3737		 * If we are relocating a simple quota owned extent item, we
3738		 * need to note the owner on the reloc data root so that when
3739		 * we allocate the replacement item, we can attribute it to the
3740		 * correct eventual owner (rather than the reloc data root).
3741		 */
3742		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3743			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3744			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3745								 path->nodes[0],
3746								 path->slots[0]);
3747
3748			root->relocation_src_root = owning_root_id;
 
 
 
 
 
 
 
 
 
 
 
 
3749		}
3750
3751		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3752			ret = add_tree_block(rc, &key, path, &blocks);
3753		} else if (rc->stage == UPDATE_DATA_PTRS &&
3754			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3755			ret = add_data_references(rc, &key, path, &blocks);
3756		} else {
3757			btrfs_release_path(path);
3758			ret = 0;
3759		}
3760		if (ret < 0) {
3761			err = ret;
3762			break;
3763		}
3764
3765		if (!RB_EMPTY_ROOT(&blocks)) {
3766			ret = relocate_tree_blocks(trans, rc, &blocks);
3767			if (ret < 0) {
 
 
 
 
 
 
3768				if (ret != -EAGAIN) {
3769					err = ret;
3770					break;
3771				}
3772				rc->extents_found--;
3773				rc->search_start = key.objectid;
3774			}
3775		}
3776
3777		btrfs_end_transaction_throttle(trans);
3778		btrfs_btree_balance_dirty(fs_info);
3779		trans = NULL;
3780
3781		if (rc->stage == MOVE_DATA_EXTENTS &&
3782		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3783			rc->found_file_extent = true;
3784			ret = relocate_data_extent(rc->data_inode,
3785						   &key, &rc->cluster);
3786			if (ret < 0) {
3787				err = ret;
3788				break;
3789			}
3790		}
3791		if (btrfs_should_cancel_balance(fs_info)) {
3792			err = -ECANCELED;
3793			break;
3794		}
3795	}
3796	if (trans && progress && err == -ENOSPC) {
3797		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3798		if (ret == 1) {
 
3799			err = 0;
3800			progress = 0;
3801			goto restart;
3802		}
3803	}
3804
3805	btrfs_release_path(path);
3806	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3807
3808	if (trans) {
3809		btrfs_end_transaction_throttle(trans);
3810		btrfs_btree_balance_dirty(fs_info);
3811	}
3812
3813	if (!err) {
3814		ret = relocate_file_extent_cluster(rc->data_inode,
3815						   &rc->cluster);
3816		if (ret < 0)
3817			err = ret;
3818	}
3819
3820	rc->create_reloc_tree = false;
3821	set_reloc_control(rc);
3822
3823	btrfs_backref_release_cache(&rc->backref_cache);
3824	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3825
3826	/*
3827	 * Even in the case when the relocation is cancelled, we should all go
3828	 * through prepare_to_merge() and merge_reloc_roots().
3829	 *
3830	 * For error (including cancelled balance), prepare_to_merge() will
3831	 * mark all reloc trees orphan, then queue them for cleanup in
3832	 * merge_reloc_roots()
3833	 */
3834	err = prepare_to_merge(rc, err);
3835
3836	merge_reloc_roots(rc);
3837
3838	rc->merge_reloc_tree = false;
3839	unset_reloc_control(rc);
3840	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3841
3842	/* get rid of pinned extents */
3843	trans = btrfs_join_transaction(rc->extent_root);
3844	if (IS_ERR(trans)) {
3845		err = PTR_ERR(trans);
3846		goto out_free;
3847	}
3848	ret = btrfs_commit_transaction(trans);
3849	if (ret && !err)
3850		err = ret;
3851out_free:
3852	ret = clean_dirty_subvols(rc);
3853	if (ret < 0 && !err)
3854		err = ret;
3855	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3856	btrfs_free_path(path);
3857	return err;
3858}
3859
3860static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3861				 struct btrfs_root *root, u64 objectid)
3862{
3863	struct btrfs_path *path;
3864	struct btrfs_inode_item *item;
3865	struct extent_buffer *leaf;
3866	int ret;
3867
3868	path = btrfs_alloc_path();
3869	if (!path)
3870		return -ENOMEM;
3871
3872	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3873	if (ret)
3874		goto out;
3875
3876	leaf = path->nodes[0];
3877	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3878	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3879	btrfs_set_inode_generation(leaf, item, 1);
3880	btrfs_set_inode_size(leaf, item, 0);
3881	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3882	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3883					  BTRFS_INODE_PREALLOC);
3884	btrfs_mark_buffer_dirty(trans, leaf);
 
3885out:
3886	btrfs_free_path(path);
3887	return ret;
3888}
3889
3890static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3891				struct btrfs_root *root, u64 objectid)
3892{
3893	struct btrfs_path *path;
3894	struct btrfs_key key;
3895	int ret = 0;
3896
3897	path = btrfs_alloc_path();
3898	if (!path) {
3899		ret = -ENOMEM;
3900		goto out;
3901	}
3902
3903	key.objectid = objectid;
3904	key.type = BTRFS_INODE_ITEM_KEY;
3905	key.offset = 0;
3906	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3907	if (ret) {
3908		if (ret > 0)
3909			ret = -ENOENT;
3910		goto out;
3911	}
3912	ret = btrfs_del_item(trans, root, path);
3913out:
3914	if (ret)
3915		btrfs_abort_transaction(trans, ret);
3916	btrfs_free_path(path);
3917}
3918
3919/*
3920 * helper to create inode for data relocation.
3921 * the inode is in data relocation tree and its link count is 0
3922 */
3923static noinline_for_stack struct inode *create_reloc_inode(
3924					struct btrfs_fs_info *fs_info,
3925					const struct btrfs_block_group *group)
3926{
3927	struct inode *inode = NULL;
3928	struct btrfs_trans_handle *trans;
3929	struct btrfs_root *root;
3930	u64 objectid;
 
3931	int err = 0;
3932
3933	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3934	trans = btrfs_start_transaction(root, 6);
3935	if (IS_ERR(trans)) {
3936		btrfs_put_root(root);
3937		return ERR_CAST(trans);
3938	}
3939
3940	err = btrfs_get_free_objectid(root, &objectid);
3941	if (err)
3942		goto out;
3943
3944	err = __insert_orphan_inode(trans, root, objectid);
3945	if (err)
3946		goto out;
3947
3948	inode = btrfs_iget(fs_info->sb, objectid, root);
3949	if (IS_ERR(inode)) {
3950		delete_orphan_inode(trans, root, objectid);
3951		err = PTR_ERR(inode);
3952		inode = NULL;
3953		goto out;
3954	}
3955	BTRFS_I(inode)->index_cnt = group->start;
3956
3957	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3958out:
3959	btrfs_put_root(root);
3960	btrfs_end_transaction(trans);
3961	btrfs_btree_balance_dirty(fs_info);
3962	if (err) {
3963		iput(inode);
 
3964		inode = ERR_PTR(err);
3965	}
3966	return inode;
3967}
3968
3969/*
3970 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3971 * has been requested meanwhile and don't start in that case.
3972 *
3973 * Return:
3974 *   0             success
3975 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3976 *   -ECANCELED    cancellation request was set before the operation started
3977 */
3978static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3979{
3980	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3981		/* This should not happen */
3982		btrfs_err(fs_info, "reloc already running, cannot start");
3983		return -EINPROGRESS;
3984	}
3985
3986	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3987		btrfs_info(fs_info, "chunk relocation canceled on start");
3988		/*
3989		 * On cancel, clear all requests but let the caller mark
3990		 * the end after cleanup operations.
3991		 */
3992		atomic_set(&fs_info->reloc_cancel_req, 0);
3993		return -ECANCELED;
3994	}
3995	return 0;
3996}
3997
3998/*
3999 * Mark end of chunk relocation that is cancellable and wake any waiters.
4000 */
4001static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
4002{
4003	/* Requested after start, clear bit first so any waiters can continue */
4004	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
4005		btrfs_info(fs_info, "chunk relocation canceled during operation");
4006	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
4007	atomic_set(&fs_info->reloc_cancel_req, 0);
4008}
4009
4010static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4011{
4012	struct reloc_control *rc;
4013
4014	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4015	if (!rc)
4016		return NULL;
4017
4018	INIT_LIST_HEAD(&rc->reloc_roots);
4019	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4020	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
4021	rc->reloc_root_tree.rb_root = RB_ROOT;
4022	spin_lock_init(&rc->reloc_root_tree.lock);
4023	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
4024	return rc;
4025}
4026
4027static void free_reloc_control(struct reloc_control *rc)
4028{
4029	struct mapping_node *node, *tmp;
4030
4031	free_reloc_roots(&rc->reloc_roots);
4032	rbtree_postorder_for_each_entry_safe(node, tmp,
4033			&rc->reloc_root_tree.rb_root, rb_node)
4034		kfree(node);
4035
4036	kfree(rc);
4037}
4038
4039/*
4040 * Print the block group being relocated
4041 */
4042static void describe_relocation(struct btrfs_fs_info *fs_info,
4043				struct btrfs_block_group *block_group)
4044{
4045	char buf[128] = {'\0'};
4046
4047	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4048
4049	btrfs_info(fs_info,
4050		   "relocating block group %llu flags %s",
4051		   block_group->start, buf);
4052}
4053
4054static const char *stage_to_string(enum reloc_stage stage)
4055{
4056	if (stage == MOVE_DATA_EXTENTS)
4057		return "move data extents";
4058	if (stage == UPDATE_DATA_PTRS)
4059		return "update data pointers";
4060	return "unknown";
4061}
4062
4063/*
4064 * function to relocate all extents in a block group.
4065 */
4066int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4067{
4068	struct btrfs_block_group *bg;
4069	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4070	struct reloc_control *rc;
4071	struct inode *inode;
4072	struct btrfs_path *path;
4073	int ret;
4074	int rw = 0;
4075	int err = 0;
4076
4077	/*
4078	 * This only gets set if we had a half-deleted snapshot on mount.  We
4079	 * cannot allow relocation to start while we're still trying to clean up
4080	 * these pending deletions.
4081	 */
4082	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4083	if (ret)
4084		return ret;
4085
4086	/* We may have been woken up by close_ctree, so bail if we're closing. */
4087	if (btrfs_fs_closing(fs_info))
4088		return -EINTR;
4089
4090	bg = btrfs_lookup_block_group(fs_info, group_start);
4091	if (!bg)
4092		return -ENOENT;
4093
4094	/*
4095	 * Relocation of a data block group creates ordered extents.  Without
4096	 * sb_start_write(), we can freeze the filesystem while unfinished
4097	 * ordered extents are left. Such ordered extents can cause a deadlock
4098	 * e.g. when syncfs() is waiting for their completion but they can't
4099	 * finish because they block when joining a transaction, due to the
4100	 * fact that the freeze locks are being held in write mode.
4101	 */
4102	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4103		ASSERT(sb_write_started(fs_info->sb));
4104
4105	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4106		btrfs_put_block_group(bg);
4107		return -ETXTBSY;
4108	}
4109
4110	rc = alloc_reloc_control(fs_info);
4111	if (!rc) {
4112		btrfs_put_block_group(bg);
4113		return -ENOMEM;
4114	}
4115
4116	ret = reloc_chunk_start(fs_info);
4117	if (ret < 0) {
4118		err = ret;
4119		goto out_put_bg;
4120	}
4121
4122	rc->extent_root = extent_root;
4123	rc->block_group = bg;
4124
4125	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4126	if (ret) {
4127		err = ret;
4128		goto out;
 
 
 
4129	}
4130	rw = 1;
4131
4132	path = btrfs_alloc_path();
4133	if (!path) {
4134		err = -ENOMEM;
4135		goto out;
4136	}
4137
4138	inode = lookup_free_space_inode(rc->block_group, path);
 
4139	btrfs_free_path(path);
4140
4141	if (!IS_ERR(inode))
4142		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4143	else
4144		ret = PTR_ERR(inode);
4145
4146	if (ret && ret != -ENOENT) {
4147		err = ret;
4148		goto out;
4149	}
4150
4151	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4152	if (IS_ERR(rc->data_inode)) {
4153		err = PTR_ERR(rc->data_inode);
4154		rc->data_inode = NULL;
4155		goto out;
4156	}
4157
4158	describe_relocation(fs_info, rc->block_group);
 
4159
4160	btrfs_wait_block_group_reservations(rc->block_group);
4161	btrfs_wait_nocow_writers(rc->block_group);
4162	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4163				 rc->block_group->start,
4164				 rc->block_group->length);
4165
4166	ret = btrfs_zone_finish(rc->block_group);
4167	WARN_ON(ret && ret != -EAGAIN);
4168
4169	while (1) {
4170		enum reloc_stage finishes_stage;
4171
4172		mutex_lock(&fs_info->cleaner_mutex);
4173		ret = relocate_block_group(rc);
4174		mutex_unlock(&fs_info->cleaner_mutex);
4175		if (ret < 0)
4176			err = ret;
 
 
 
 
 
 
 
 
4177
4178		finishes_stage = rc->stage;
4179		/*
4180		 * We may have gotten ENOSPC after we already dirtied some
4181		 * extents.  If writeout happens while we're relocating a
4182		 * different block group we could end up hitting the
4183		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4184		 * btrfs_reloc_cow_block.  Make sure we write everything out
4185		 * properly so we don't trip over this problem, and then break
4186		 * out of the loop if we hit an error.
4187		 */
4188		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4189			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4190						       (u64)-1);
4191			if (ret)
4192				err = ret;
 
 
4193			invalidate_mapping_pages(rc->data_inode->i_mapping,
4194						 0, -1);
4195			rc->stage = UPDATE_DATA_PTRS;
4196		}
4197
4198		if (err < 0)
4199			goto out;
4200
4201		if (rc->extents_found == 0)
4202			break;
4203
4204		btrfs_info(fs_info, "found %llu extents, stage: %s",
4205			   rc->extents_found, stage_to_string(finishes_stage));
4206	}
4207
4208	WARN_ON(rc->block_group->pinned > 0);
4209	WARN_ON(rc->block_group->reserved > 0);
4210	WARN_ON(rc->block_group->used > 0);
4211out:
4212	if (err && rw)
4213		btrfs_dec_block_group_ro(rc->block_group);
4214	iput(rc->data_inode);
4215out_put_bg:
4216	btrfs_put_block_group(bg);
4217	reloc_chunk_end(fs_info);
4218	free_reloc_control(rc);
4219	return err;
4220}
4221
4222static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4223{
4224	struct btrfs_fs_info *fs_info = root->fs_info;
4225	struct btrfs_trans_handle *trans;
4226	int ret, err;
4227
4228	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4229	if (IS_ERR(trans))
4230		return PTR_ERR(trans);
4231
4232	memset(&root->root_item.drop_progress, 0,
4233		sizeof(root->root_item.drop_progress));
4234	btrfs_set_root_drop_level(&root->root_item, 0);
4235	btrfs_set_root_refs(&root->root_item, 0);
4236	ret = btrfs_update_root(trans, fs_info->tree_root,
4237				&root->root_key, &root->root_item);
4238
4239	err = btrfs_end_transaction(trans);
4240	if (err)
4241		return err;
4242	return ret;
4243}
4244
4245/*
4246 * recover relocation interrupted by system crash.
4247 *
4248 * this function resumes merging reloc trees with corresponding fs trees.
4249 * this is important for keeping the sharing of tree blocks
4250 */
4251int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4252{
4253	LIST_HEAD(reloc_roots);
4254	struct btrfs_key key;
4255	struct btrfs_root *fs_root;
4256	struct btrfs_root *reloc_root;
4257	struct btrfs_path *path;
4258	struct extent_buffer *leaf;
4259	struct reloc_control *rc = NULL;
4260	struct btrfs_trans_handle *trans;
4261	int ret;
4262	int err = 0;
4263
4264	path = btrfs_alloc_path();
4265	if (!path)
4266		return -ENOMEM;
4267	path->reada = READA_BACK;
4268
4269	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4270	key.type = BTRFS_ROOT_ITEM_KEY;
4271	key.offset = (u64)-1;
4272
4273	while (1) {
4274		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4275					path, 0, 0);
4276		if (ret < 0) {
4277			err = ret;
4278			goto out;
4279		}
4280		if (ret > 0) {
4281			if (path->slots[0] == 0)
4282				break;
4283			path->slots[0]--;
4284		}
4285		leaf = path->nodes[0];
4286		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4287		btrfs_release_path(path);
4288
4289		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4290		    key.type != BTRFS_ROOT_ITEM_KEY)
4291			break;
4292
4293		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4294		if (IS_ERR(reloc_root)) {
4295			err = PTR_ERR(reloc_root);
4296			goto out;
4297		}
4298
4299		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4300		list_add(&reloc_root->root_list, &reloc_roots);
4301
4302		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4303			fs_root = btrfs_get_fs_root(fs_info,
4304					reloc_root->root_key.offset, false);
4305			if (IS_ERR(fs_root)) {
4306				ret = PTR_ERR(fs_root);
4307				if (ret != -ENOENT) {
4308					err = ret;
4309					goto out;
4310				}
4311				ret = mark_garbage_root(reloc_root);
4312				if (ret < 0) {
4313					err = ret;
4314					goto out;
4315				}
4316			} else {
4317				btrfs_put_root(fs_root);
4318			}
4319		}
4320
4321		if (key.offset == 0)
4322			break;
4323
4324		key.offset--;
4325	}
4326	btrfs_release_path(path);
4327
4328	if (list_empty(&reloc_roots))
4329		goto out;
4330
4331	rc = alloc_reloc_control(fs_info);
4332	if (!rc) {
4333		err = -ENOMEM;
4334		goto out;
4335	}
4336
4337	ret = reloc_chunk_start(fs_info);
4338	if (ret < 0) {
4339		err = ret;
4340		goto out_end;
4341	}
4342
4343	rc->extent_root = btrfs_extent_root(fs_info, 0);
4344
4345	set_reloc_control(rc);
4346
4347	trans = btrfs_join_transaction(rc->extent_root);
4348	if (IS_ERR(trans)) {
 
4349		err = PTR_ERR(trans);
4350		goto out_unset;
4351	}
4352
4353	rc->merge_reloc_tree = true;
4354
4355	while (!list_empty(&reloc_roots)) {
4356		reloc_root = list_entry(reloc_roots.next,
4357					struct btrfs_root, root_list);
4358		list_del(&reloc_root->root_list);
4359
4360		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4361			list_add_tail(&reloc_root->root_list,
4362				      &rc->reloc_roots);
4363			continue;
4364		}
4365
4366		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4367					    false);
4368		if (IS_ERR(fs_root)) {
4369			err = PTR_ERR(fs_root);
4370			list_add_tail(&reloc_root->root_list, &reloc_roots);
4371			btrfs_end_transaction(trans);
4372			goto out_unset;
4373		}
4374
4375		err = __add_reloc_root(reloc_root);
4376		ASSERT(err != -EEXIST);
4377		if (err) {
4378			list_add_tail(&reloc_root->root_list, &reloc_roots);
4379			btrfs_put_root(fs_root);
4380			btrfs_end_transaction(trans);
4381			goto out_unset;
4382		}
4383		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4384		btrfs_put_root(fs_root);
4385	}
4386
4387	err = btrfs_commit_transaction(trans);
4388	if (err)
4389		goto out_unset;
4390
4391	merge_reloc_roots(rc);
4392
4393	unset_reloc_control(rc);
4394
4395	trans = btrfs_join_transaction(rc->extent_root);
4396	if (IS_ERR(trans)) {
4397		err = PTR_ERR(trans);
4398		goto out_clean;
4399	}
4400	err = btrfs_commit_transaction(trans);
4401out_clean:
4402	ret = clean_dirty_subvols(rc);
4403	if (ret < 0 && !err)
4404		err = ret;
4405out_unset:
4406	unset_reloc_control(rc);
4407out_end:
4408	reloc_chunk_end(fs_info);
4409	free_reloc_control(rc);
4410out:
4411	free_reloc_roots(&reloc_roots);
 
4412
4413	btrfs_free_path(path);
4414
4415	if (err == 0) {
4416		/* cleanup orphan inode in data relocation tree */
4417		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4418		ASSERT(fs_root);
4419		err = btrfs_orphan_cleanup(fs_root);
4420		btrfs_put_root(fs_root);
 
 
4421	}
4422	return err;
4423}
4424
4425/*
4426 * helper to add ordered checksum for data relocation.
4427 *
4428 * cloning checksum properly handles the nodatasum extents.
4429 * it also saves CPU time to re-calculate the checksum.
4430 */
4431int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4432{
4433	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4434	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4435	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4436	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 
 
4437	LIST_HEAD(list);
4438	int ret;
4439
4440	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4441				      disk_bytenr + ordered->num_bytes - 1,
4442				      &list, 0, false);
 
 
 
4443	if (ret)
4444		return ret;
4445
4446	while (!list_empty(&list)) {
4447		struct btrfs_ordered_sum *sums =
4448			list_entry(list.next, struct btrfs_ordered_sum, list);
4449
4450		list_del_init(&sums->list);
4451
4452		/*
4453		 * We need to offset the new_bytenr based on where the csum is.
4454		 * We need to do this because we will read in entire prealloc
4455		 * extents but we may have written to say the middle of the
4456		 * prealloc extent, so we need to make sure the csum goes with
4457		 * the right disk offset.
4458		 *
4459		 * We can do this because the data reloc inode refers strictly
4460		 * to the on disk bytes, so we don't have to worry about
4461		 * disk_len vs real len like with real inodes since it's all
4462		 * disk length.
4463		 */
4464		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4465		btrfs_add_ordered_sum(ordered, sums);
 
 
4466	}
4467
4468	return 0;
 
4469}
4470
4471int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4472			  struct btrfs_root *root,
4473			  const struct extent_buffer *buf,
4474			  struct extent_buffer *cow)
4475{
4476	struct btrfs_fs_info *fs_info = root->fs_info;
4477	struct reloc_control *rc;
4478	struct btrfs_backref_node *node;
4479	int first_cow = 0;
4480	int level;
4481	int ret = 0;
4482
4483	rc = fs_info->reloc_ctl;
4484	if (!rc)
4485		return 0;
4486
4487	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
 
 
 
 
 
 
4488
4489	level = btrfs_header_level(buf);
4490	if (btrfs_header_generation(buf) <=
4491	    btrfs_root_last_snapshot(&root->root_item))
4492		first_cow = 1;
4493
4494	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4495	    rc->create_reloc_tree) {
4496		WARN_ON(!first_cow && level == 0);
4497
4498		node = rc->backref_cache.path[level];
4499		BUG_ON(node->bytenr != buf->start &&
4500		       node->new_bytenr != buf->start);
4501
4502		btrfs_backref_drop_node_buffer(node);
4503		atomic_inc(&cow->refs);
4504		node->eb = cow;
4505		node->new_bytenr = cow->start;
4506
4507		if (!node->pending) {
4508			list_move_tail(&node->list,
4509				       &rc->backref_cache.pending[level]);
4510			node->pending = 1;
4511		}
4512
4513		if (first_cow)
4514			mark_block_processed(rc, node);
4515
4516		if (first_cow && level > 0)
4517			rc->nodes_relocated += buf->len;
4518	}
4519
4520	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4521		ret = replace_file_extents(trans, rc, root, cow);
4522	return ret;
4523}
4524
4525/*
4526 * called before creating snapshot. it calculates metadata reservation
4527 * required for relocating tree blocks in the snapshot
4528 */
4529void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4530			      u64 *bytes_to_reserve)
4531{
4532	struct btrfs_root *root = pending->root;
4533	struct reloc_control *rc = root->fs_info->reloc_ctl;
4534
4535	if (!rc || !have_reloc_root(root))
 
4536		return;
4537
 
4538	if (!rc->merge_reloc_tree)
4539		return;
4540
4541	root = root->reloc_root;
4542	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4543	/*
4544	 * relocation is in the stage of merging trees. the space
4545	 * used by merging a reloc tree is twice the size of
4546	 * relocated tree nodes in the worst case. half for cowing
4547	 * the reloc tree, half for cowing the fs tree. the space
4548	 * used by cowing the reloc tree will be freed after the
4549	 * tree is dropped. if we create snapshot, cowing the fs
4550	 * tree may use more space than it frees. so we need
4551	 * reserve extra space.
4552	 */
4553	*bytes_to_reserve += rc->nodes_relocated;
4554}
4555
4556/*
4557 * called after snapshot is created. migrate block reservation
4558 * and create reloc root for the newly created snapshot
4559 *
4560 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4561 * references held on the reloc_root, one for root->reloc_root and one for
4562 * rc->reloc_roots.
4563 */
4564int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4565			       struct btrfs_pending_snapshot *pending)
4566{
4567	struct btrfs_root *root = pending->root;
4568	struct btrfs_root *reloc_root;
4569	struct btrfs_root *new_root;
4570	struct reloc_control *rc = root->fs_info->reloc_ctl;
4571	int ret;
4572
4573	if (!rc || !have_reloc_root(root))
4574		return 0;
4575
4576	rc = root->fs_info->reloc_ctl;
4577	rc->merging_rsv_size += rc->nodes_relocated;
4578
4579	if (rc->merge_reloc_tree) {
4580		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4581					      rc->block_rsv,
4582					      rc->nodes_relocated, true);
4583		if (ret)
4584			return ret;
4585	}
4586
4587	new_root = pending->snap;
4588	reloc_root = create_reloc_root(trans, root->reloc_root,
4589				       new_root->root_key.objectid);
4590	if (IS_ERR(reloc_root))
4591		return PTR_ERR(reloc_root);
4592
4593	ret = __add_reloc_root(reloc_root);
4594	ASSERT(ret != -EEXIST);
4595	if (ret) {
4596		/* Pairs with create_reloc_root */
4597		btrfs_put_root(reloc_root);
4598		return ret;
4599	}
4600	new_root->reloc_root = btrfs_grab_root(reloc_root);
4601
4602	if (rc->create_reloc_tree)
4603		ret = clone_backref_node(trans, rc, root, reloc_root);
4604	return ret;
4605}
4606
4607/*
4608 * Get the current bytenr for the block group which is being relocated.
4609 *
4610 * Return U64_MAX if no running relocation.
4611 */
4612u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4613{
4614	u64 logical = U64_MAX;
4615
4616	lockdep_assert_held(&fs_info->reloc_mutex);
4617
4618	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4619		logical = fs_info->reloc_ctl->block_group->start;
4620	return logical;
4621}