Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 
 
 
 
 25
 26struct kmem_cache *btrfs_delayed_ref_head_cachep;
 27struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 28struct kmem_cache *btrfs_delayed_data_ref_cachep;
 29struct kmem_cache *btrfs_delayed_extent_op_cachep;
 30/*
 31 * delayed back reference update tracking.  For subvolume trees
 32 * we queue up extent allocations and backref maintenance for
 33 * delayed processing.   This avoids deep call chains where we
 34 * add extents in the middle of btrfs_search_slot, and it allows
 35 * us to buffer up frequently modified backrefs in an rb tree instead
 36 * of hammering updates on the extent allocation tree.
 37 */
 38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39/*
 40 * compare two delayed tree backrefs with same bytenr and type
 41 */
 42static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 43			  struct btrfs_delayed_tree_ref *ref1, int type)
 44{
 45	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
 46		if (ref1->root < ref2->root)
 47			return -1;
 48		if (ref1->root > ref2->root)
 49			return 1;
 50	} else {
 51		if (ref1->parent < ref2->parent)
 52			return -1;
 53		if (ref1->parent > ref2->parent)
 54			return 1;
 55	}
 56	return 0;
 57}
 58
 59/*
 60 * compare two delayed data backrefs with same bytenr and type
 61 */
 62static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 63			  struct btrfs_delayed_data_ref *ref1)
 64{
 65	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 66		if (ref1->root < ref2->root)
 67			return -1;
 68		if (ref1->root > ref2->root)
 69			return 1;
 70		if (ref1->objectid < ref2->objectid)
 71			return -1;
 72		if (ref1->objectid > ref2->objectid)
 73			return 1;
 74		if (ref1->offset < ref2->offset)
 75			return -1;
 76		if (ref1->offset > ref2->offset)
 77			return 1;
 78	} else {
 79		if (ref1->parent < ref2->parent)
 80			return -1;
 81		if (ref1->parent > ref2->parent)
 82			return 1;
 83	}
 84	return 0;
 85}
 86
 87/*
 88 * entries in the rb tree are ordered by the byte number of the extent,
 89 * type of the delayed backrefs and content of delayed backrefs.
 90 */
 91static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 92		      struct btrfs_delayed_ref_node *ref1,
 93		      bool compare_seq)
 94{
 95	if (ref1->bytenr < ref2->bytenr)
 96		return -1;
 97	if (ref1->bytenr > ref2->bytenr)
 98		return 1;
 99	if (ref1->is_head && ref2->is_head)
100		return 0;
101	if (ref2->is_head)
102		return -1;
103	if (ref1->is_head)
104		return 1;
105	if (ref1->type < ref2->type)
106		return -1;
107	if (ref1->type > ref2->type)
108		return 1;
109	/* merging of sequenced refs is not allowed */
110	if (compare_seq) {
 
 
 
 
 
 
 
 
111		if (ref1->seq < ref2->seq)
112			return -1;
113		if (ref1->seq > ref2->seq)
114			return 1;
115	}
116	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
117	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
118		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
119				      btrfs_delayed_node_to_tree_ref(ref1),
120				      ref1->type);
121	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
122		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
123		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
124				      btrfs_delayed_node_to_data_ref(ref1));
125	}
126	BUG();
127	return 0;
128}
129
130/*
131 * insert a new ref into the rbtree.  This returns any existing refs
132 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
133 * inserted.
134 */
135static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
136						  struct rb_node *node)
137{
138	struct rb_node **p = &root->rb_node;
139	struct rb_node *parent_node = NULL;
140	struct btrfs_delayed_ref_node *entry;
141	struct btrfs_delayed_ref_node *ins;
142	int cmp;
 
143
144	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 
145	while (*p) {
146		parent_node = *p;
147		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
148				 rb_node);
149
150		cmp = comp_entry(entry, ins, 1);
151		if (cmp < 0)
152			p = &(*p)->rb_left;
153		else if (cmp > 0)
154			p = &(*p)->rb_right;
155		else
 
156			return entry;
 
157	}
158
159	rb_link_node(node, parent_node, p);
160	rb_insert_color(node, root);
161	return NULL;
162}
163
164/* insert a new ref to head ref rbtree */
165static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
166						   struct rb_node *node)
167{
168	struct rb_node **p = &root->rb_node;
 
169	struct rb_node *parent_node = NULL;
170	struct btrfs_delayed_ref_head *entry;
171	struct btrfs_delayed_ref_head *ins;
172	u64 bytenr;
173
174	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
175	bytenr = ins->node.bytenr;
176	while (*p) {
177		parent_node = *p;
178		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
179				 href_node);
180
181		if (bytenr < entry->node.bytenr)
 
 
 
 
182			p = &(*p)->rb_left;
183		else if (bytenr > entry->node.bytenr)
184			p = &(*p)->rb_right;
185		else
 
186			return entry;
 
187	}
188
189	rb_link_node(node, parent_node, p);
190	rb_insert_color(node, root);
191	return NULL;
192}
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194/*
195 * find an head entry based on bytenr. This returns the delayed ref
196 * head if it was able to find one, or NULL if nothing was in that spot.
197 * If return_bigger is given, the next bigger entry is returned if no exact
198 * match is found.
199 */
200static struct btrfs_delayed_ref_head *
201find_ref_head(struct rb_root *root, u64 bytenr,
202	      int return_bigger)
203{
 
204	struct rb_node *n;
205	struct btrfs_delayed_ref_head *entry;
206
207	n = root->rb_node;
208	entry = NULL;
209	while (n) {
210		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
211
212		if (bytenr < entry->node.bytenr)
213			n = n->rb_left;
214		else if (bytenr > entry->node.bytenr)
215			n = n->rb_right;
216		else
217			return entry;
218	}
219	if (entry && return_bigger) {
220		if (bytenr > entry->node.bytenr) {
221			n = rb_next(&entry->href_node);
222			if (!n)
223				n = rb_first(root);
224			entry = rb_entry(n, struct btrfs_delayed_ref_head,
225					 href_node);
226			return entry;
227		}
228		return entry;
229	}
230	return NULL;
231}
232
233int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
234			   struct btrfs_delayed_ref_head *head)
235{
236	struct btrfs_delayed_ref_root *delayed_refs;
237
238	delayed_refs = &trans->transaction->delayed_refs;
239	assert_spin_locked(&delayed_refs->lock);
240	if (mutex_trylock(&head->mutex))
241		return 0;
242
243	atomic_inc(&head->node.refs);
244	spin_unlock(&delayed_refs->lock);
245
246	mutex_lock(&head->mutex);
247	spin_lock(&delayed_refs->lock);
248	if (!head->node.in_tree) {
249		mutex_unlock(&head->mutex);
250		btrfs_put_delayed_ref(&head->node);
251		return -EAGAIN;
252	}
253	btrfs_put_delayed_ref(&head->node);
254	return 0;
255}
256
257static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
258				    struct btrfs_delayed_ref_root *delayed_refs,
259				    struct btrfs_delayed_ref_head *head,
260				    struct btrfs_delayed_ref_node *ref)
261{
262	if (btrfs_delayed_ref_is_head(ref)) {
263		head = btrfs_delayed_node_to_head(ref);
264		rb_erase(&head->href_node, &delayed_refs->href_root);
265	} else {
266		assert_spin_locked(&head->lock);
267		rb_erase(&ref->rb_node, &head->ref_root);
268	}
269	ref->in_tree = 0;
270	btrfs_put_delayed_ref(ref);
271	atomic_dec(&delayed_refs->num_entries);
272	if (trans->delayed_ref_updates)
273		trans->delayed_ref_updates--;
274}
275
276static int merge_ref(struct btrfs_trans_handle *trans,
277		     struct btrfs_delayed_ref_root *delayed_refs,
278		     struct btrfs_delayed_ref_head *head,
279		     struct btrfs_delayed_ref_node *ref, u64 seq)
280{
281	struct rb_node *node;
282	int mod = 0;
283	int done = 0;
 
284
285	node = rb_next(&ref->rb_node);
286	while (!done && node) {
287		struct btrfs_delayed_ref_node *next;
288
289		next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
290		node = rb_next(node);
291		if (seq && next->seq >= seq)
292			break;
293		if (comp_entry(ref, next, 0))
294			continue;
295
296		if (ref->action == next->action) {
297			mod = next->ref_mod;
298		} else {
299			if (ref->ref_mod < next->ref_mod) {
300				struct btrfs_delayed_ref_node *tmp;
301
302				tmp = ref;
303				ref = next;
304				next = tmp;
305				done = 1;
306			}
307			mod = -next->ref_mod;
308		}
309
310		drop_delayed_ref(trans, delayed_refs, head, next);
311		ref->ref_mod += mod;
312		if (ref->ref_mod == 0) {
313			drop_delayed_ref(trans, delayed_refs, head, ref);
314			done = 1;
315		} else {
316			/*
317			 * You can't have multiples of the same ref on a tree
318			 * block.
319			 */
320			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
321				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
322		}
323	}
 
324	return done;
325}
326
327void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
328			      struct btrfs_fs_info *fs_info,
329			      struct btrfs_delayed_ref_root *delayed_refs,
330			      struct btrfs_delayed_ref_head *head)
331{
 
332	struct rb_node *node;
333	u64 seq = 0;
334
335	assert_spin_locked(&head->lock);
336	/*
337	 * We don't have too much refs to merge in the case of delayed data
338	 * refs.
339	 */
 
340	if (head->is_data)
341		return;
342
343	spin_lock(&fs_info->tree_mod_seq_lock);
344	if (!list_empty(&fs_info->tree_mod_seq_list)) {
345		struct seq_list *elem;
346
347		elem = list_first_entry(&fs_info->tree_mod_seq_list,
348					struct seq_list, list);
349		seq = elem->seq;
350	}
351	spin_unlock(&fs_info->tree_mod_seq_lock);
352
353	node = rb_first(&head->ref_root);
354	while (node) {
355		struct btrfs_delayed_ref_node *ref;
356
357		ref = rb_entry(node, struct btrfs_delayed_ref_node,
358			       rb_node);
359		/* We can't merge refs that are outside of our seq count */
360		if (seq && ref->seq >= seq)
361			break;
362		if (merge_ref(trans, delayed_refs, head, ref, seq))
363			node = rb_first(&head->ref_root);
364		else
365			node = rb_next(&ref->rb_node);
366	}
367}
368
369int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
370			    struct btrfs_delayed_ref_root *delayed_refs,
371			    u64 seq)
372{
373	struct seq_list *elem;
374	int ret = 0;
 
375
376	spin_lock(&fs_info->tree_mod_seq_lock);
377	if (!list_empty(&fs_info->tree_mod_seq_list)) {
378		elem = list_first_entry(&fs_info->tree_mod_seq_list,
379					struct seq_list, list);
380		if (seq >= elem->seq) {
381			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
382				 (u32)(seq >> 32), (u32)seq,
383				 (u32)(elem->seq >> 32), (u32)elem->seq,
384				 delayed_refs);
385			ret = 1;
386		}
387	}
388
389	spin_unlock(&fs_info->tree_mod_seq_lock);
390	return ret;
391}
392
393struct btrfs_delayed_ref_head *
394btrfs_select_ref_head(struct btrfs_trans_handle *trans)
395{
396	struct btrfs_delayed_ref_root *delayed_refs;
397	struct btrfs_delayed_ref_head *head;
398	u64 start;
399	bool loop = false;
400
401	delayed_refs = &trans->transaction->delayed_refs;
402
 
403again:
404	start = delayed_refs->run_delayed_start;
405	head = find_ref_head(&delayed_refs->href_root, start, 1);
406	if (!head && !loop) {
407		delayed_refs->run_delayed_start = 0;
408		start = 0;
409		loop = true;
410		head = find_ref_head(&delayed_refs->href_root, start, 1);
411		if (!head)
412			return NULL;
413	} else if (!head && loop) {
414		return NULL;
415	}
 
 
416
417	while (head->processing) {
418		struct rb_node *node;
419
420		node = rb_next(&head->href_node);
421		if (!node) {
422			if (loop)
423				return NULL;
424			delayed_refs->run_delayed_start = 0;
425			start = 0;
426			loop = true;
427			goto again;
428		}
429		head = rb_entry(node, struct btrfs_delayed_ref_head,
430				href_node);
431	}
432
433	head->processing = 1;
434	WARN_ON(delayed_refs->num_heads_ready == 0);
435	delayed_refs->num_heads_ready--;
436	delayed_refs->run_delayed_start = head->node.bytenr +
437		head->node.num_bytes;
438	return head;
439}
440
441/*
442 * helper function to update an extent delayed ref in the
443 * rbtree.  existing and update must both have the same
444 * bytenr and parent
445 *
446 * This may free existing if the update cancels out whatever
447 * operation it was doing.
448 */
449static noinline void
450update_existing_ref(struct btrfs_trans_handle *trans,
451		    struct btrfs_delayed_ref_root *delayed_refs,
452		    struct btrfs_delayed_ref_head *head,
453		    struct btrfs_delayed_ref_node *existing,
454		    struct btrfs_delayed_ref_node *update)
455{
456	if (update->action != existing->action) {
457		/*
458		 * this is effectively undoing either an add or a
459		 * drop.  We decrement the ref_mod, and if it goes
460		 * down to zero we just delete the entry without
461		 * every changing the extent allocation tree.
462		 */
463		existing->ref_mod--;
464		if (existing->ref_mod == 0)
465			drop_delayed_ref(trans, delayed_refs, head, existing);
466		else
467			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
468				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469	} else {
470		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
471			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
472		/*
473		 * the action on the existing ref matches
474		 * the action on the ref we're trying to add.
475		 * Bump the ref_mod by one so the backref that
476		 * is eventually added/removed has the correct
477		 * reference count
478		 */
479		existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
480	}
 
 
 
 
 
 
 
481}
482
483/*
484 * helper function to update the accounting in the head ref
485 * existing and update must have the same bytenr
486 */
487static noinline void
488update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
489			 struct btrfs_delayed_ref_node *update)
490{
491	struct btrfs_delayed_ref_head *existing_ref;
492	struct btrfs_delayed_ref_head *ref;
493
494	existing_ref = btrfs_delayed_node_to_head(existing);
495	ref = btrfs_delayed_node_to_head(update);
496	BUG_ON(existing_ref->is_data != ref->is_data);
 
 
 
 
 
 
 
 
 
 
497
498	spin_lock(&existing_ref->lock);
499	if (ref->must_insert_reserved) {
500		/* if the extent was freed and then
501		 * reallocated before the delayed ref
502		 * entries were processed, we can end up
503		 * with an existing head ref without
504		 * the must_insert_reserved flag set.
505		 * Set it again here
506		 */
507		existing_ref->must_insert_reserved = ref->must_insert_reserved;
 
508
509		/*
510		 * update the num_bytes so we make sure the accounting
511		 * is done correctly
512		 */
513		existing->num_bytes = update->num_bytes;
514
515	}
516
517	if (ref->extent_op) {
518		if (!existing_ref->extent_op) {
519			existing_ref->extent_op = ref->extent_op;
520		} else {
521			if (ref->extent_op->update_key) {
522				memcpy(&existing_ref->extent_op->key,
523				       &ref->extent_op->key,
524				       sizeof(ref->extent_op->key));
525				existing_ref->extent_op->update_key = 1;
526			}
527			if (ref->extent_op->update_flags) {
528				existing_ref->extent_op->flags_to_set |=
529					ref->extent_op->flags_to_set;
530				existing_ref->extent_op->update_flags = 1;
531			}
532			btrfs_free_delayed_extent_op(ref->extent_op);
533		}
534	}
535	/*
536	 * update the reference mod on the head to reflect this new operation,
537	 * only need the lock for this case cause we could be processing it
538	 * currently, for refs we just added we know we're a-ok.
539	 */
 
540	existing->ref_mod += update->ref_mod;
541	spin_unlock(&existing_ref->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542}
543
544/*
545 * helper function to actually insert a head node into the rbtree.
546 * this does all the dirty work in terms of maintaining the correct
547 * overall modification count.
548 */
549static noinline struct btrfs_delayed_ref_head *
550add_delayed_ref_head(struct btrfs_fs_info *fs_info,
551		     struct btrfs_trans_handle *trans,
552		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
553		     u64 num_bytes, int action, int is_data)
554{
555	struct btrfs_delayed_ref_head *existing;
556	struct btrfs_delayed_ref_head *head_ref = NULL;
557	struct btrfs_delayed_ref_root *delayed_refs;
558	int count_mod = 1;
559	int must_insert_reserved = 0;
560
561	/*
562	 * the head node stores the sum of all the mods, so dropping a ref
563	 * should drop the sum in the head node by one.
564	 */
565	if (action == BTRFS_UPDATE_DELAYED_HEAD)
566		count_mod = 0;
567	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
568		count_mod = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
570	/*
571	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
572	 * the reserved accounting when the extent is finally added, or
573	 * if a later modification deletes the delayed ref without ever
574	 * inserting the extent into the extent allocation tree.
575	 * ref->must_insert_reserved is the flag used to record
576	 * that accounting mods are required.
577	 *
578	 * Once we record must_insert_reserved, switch the action to
579	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
580	 */
581	if (action == BTRFS_ADD_DELAYED_EXTENT)
582		must_insert_reserved = 1;
583	else
584		must_insert_reserved = 0;
585
586	delayed_refs = &trans->transaction->delayed_refs;
587
588	/* first set the basic ref node struct up */
589	atomic_set(&ref->refs, 1);
590	ref->bytenr = bytenr;
591	ref->num_bytes = num_bytes;
592	ref->ref_mod = count_mod;
593	ref->type  = 0;
594	ref->action  = 0;
595	ref->is_head = 1;
596	ref->in_tree = 1;
597	ref->seq = 0;
598
599	head_ref = btrfs_delayed_node_to_head(ref);
600	head_ref->must_insert_reserved = must_insert_reserved;
 
601	head_ref->is_data = is_data;
602	head_ref->ref_root = RB_ROOT;
603	head_ref->processing = 0;
604
 
 
 
605	spin_lock_init(&head_ref->lock);
606	mutex_init(&head_ref->mutex);
607
608	trace_add_delayed_ref_head(ref, head_ref, action);
609
610	existing = htree_insert(&delayed_refs->href_root,
611				&head_ref->href_node);
612	if (existing) {
613		update_existing_head_ref(&existing->node, ref);
614		/*
615		 * we've updated the existing ref, free the newly
616		 * allocated ref
617		 */
618		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
619		head_ref = existing;
620	} else {
621		delayed_refs->num_heads++;
622		delayed_refs->num_heads_ready++;
623		atomic_inc(&delayed_refs->num_entries);
624		trans->delayed_ref_updates++;
625	}
626	return head_ref;
627}
628
629/*
630 * helper to insert a delayed tree ref into the rbtree.
 
 
631 */
632static noinline void
633add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
634		     struct btrfs_trans_handle *trans,
635		     struct btrfs_delayed_ref_head *head_ref,
636		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
637		     u64 num_bytes, u64 parent, u64 ref_root, int level,
638		     int action, int for_cow)
639{
640	struct btrfs_delayed_ref_node *existing;
641	struct btrfs_delayed_tree_ref *full_ref;
642	struct btrfs_delayed_ref_root *delayed_refs;
643	u64 seq = 0;
644
645	if (action == BTRFS_ADD_DELAYED_EXTENT)
646		action = BTRFS_ADD_DELAYED_REF;
647
648	delayed_refs = &trans->transaction->delayed_refs;
649
650	/* first set the basic ref node struct up */
651	atomic_set(&ref->refs, 1);
652	ref->bytenr = bytenr;
653	ref->num_bytes = num_bytes;
654	ref->ref_mod = 1;
655	ref->action = action;
656	ref->is_head = 0;
657	ref->in_tree = 1;
658
659	if (need_ref_seq(for_cow, ref_root))
660		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
661	ref->seq = seq;
662
663	full_ref = btrfs_delayed_node_to_tree_ref(ref);
664	full_ref->parent = parent;
665	full_ref->root = ref_root;
666	if (parent)
667		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
668	else
669		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
670	full_ref->level = level;
671
672	trace_add_delayed_tree_ref(ref, full_ref, action);
673
674	spin_lock(&head_ref->lock);
675	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
676	if (existing) {
677		update_existing_ref(trans, delayed_refs, head_ref, existing,
678				    ref);
679		/*
680		 * we've updated the existing ref, free the newly
681		 * allocated ref
682		 */
683		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
 
684	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685		atomic_inc(&delayed_refs->num_entries);
686		trans->delayed_ref_updates++;
687	}
688	spin_unlock(&head_ref->lock);
 
 
 
689}
690
691/*
692 * helper to insert a delayed data ref into the rbtree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693 */
694static noinline void
695add_delayed_data_ref(struct btrfs_fs_info *fs_info,
696		     struct btrfs_trans_handle *trans,
697		     struct btrfs_delayed_ref_head *head_ref,
698		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
699		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
700		     u64 offset, int action, int for_cow)
701{
702	struct btrfs_delayed_ref_node *existing;
703	struct btrfs_delayed_data_ref *full_ref;
704	struct btrfs_delayed_ref_root *delayed_refs;
705	u64 seq = 0;
706
707	if (action == BTRFS_ADD_DELAYED_EXTENT)
708		action = BTRFS_ADD_DELAYED_REF;
709
710	delayed_refs = &trans->transaction->delayed_refs;
 
711
712	/* first set the basic ref node struct up */
713	atomic_set(&ref->refs, 1);
714	ref->bytenr = bytenr;
715	ref->num_bytes = num_bytes;
716	ref->ref_mod = 1;
717	ref->action = action;
718	ref->is_head = 0;
719	ref->in_tree = 1;
720
721	if (need_ref_seq(for_cow, ref_root))
722		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
723	ref->seq = seq;
724
725	full_ref = btrfs_delayed_node_to_data_ref(ref);
726	full_ref->parent = parent;
727	full_ref->root = ref_root;
728	if (parent)
729		ref->type = BTRFS_SHARED_DATA_REF_KEY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730	else
731		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
732
733	full_ref->objectid = owner;
734	full_ref->offset = offset;
735
736	trace_add_delayed_data_ref(ref, full_ref, action);
737
738	spin_lock(&head_ref->lock);
739	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
740	if (existing) {
741		update_existing_ref(trans, delayed_refs, head_ref, existing,
742				    ref);
743		/*
744		 * we've updated the existing ref, free the newly
745		 * allocated ref
746		 */
747		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
748	} else {
749		atomic_inc(&delayed_refs->num_entries);
750		trans->delayed_ref_updates++;
751	}
752	spin_unlock(&head_ref->lock);
 
753}
754
755/*
756 * add a delayed tree ref.  This does all of the accounting required
757 * to make sure the delayed ref is eventually processed before this
758 * transaction commits.
759 */
760int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
761			       struct btrfs_trans_handle *trans,
762			       u64 bytenr, u64 num_bytes, u64 parent,
763			       u64 ref_root,  int level, int action,
764			       struct btrfs_delayed_extent_op *extent_op,
765			       int for_cow)
766{
 
767	struct btrfs_delayed_tree_ref *ref;
768	struct btrfs_delayed_ref_head *head_ref;
769	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
770
771	BUG_ON(extent_op && extent_op->is_data);
 
 
772	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
773	if (!ref)
774		return -ENOMEM;
775
776	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
777	if (!head_ref) {
778		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
779		return -ENOMEM;
780	}
781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782	head_ref->extent_op = extent_op;
783
784	delayed_refs = &trans->transaction->delayed_refs;
785	spin_lock(&delayed_refs->lock);
786
787	/*
788	 * insert both the head node and the new ref without dropping
789	 * the spin lock
790	 */
791	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
792					bytenr, num_bytes, action, 0);
793
794	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
795				   num_bytes, parent, ref_root, level, action,
796				   for_cow);
797	spin_unlock(&delayed_refs->lock);
798	if (need_ref_seq(for_cow, ref_root))
799		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
800
801	return 0;
802}
803
804/*
805 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
806 */
807int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
808			       struct btrfs_trans_handle *trans,
809			       u64 bytenr, u64 num_bytes,
810			       u64 parent, u64 ref_root,
811			       u64 owner, u64 offset, int action,
812			       struct btrfs_delayed_extent_op *extent_op,
813			       int for_cow)
814{
 
815	struct btrfs_delayed_data_ref *ref;
816	struct btrfs_delayed_ref_head *head_ref;
817	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
818
819	BUG_ON(extent_op && !extent_op->is_data);
820	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
821	if (!ref)
822		return -ENOMEM;
823
 
 
 
 
 
 
 
 
 
 
 
 
824	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
825	if (!head_ref) {
826		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
827		return -ENOMEM;
828	}
829
830	head_ref->extent_op = extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
831
832	delayed_refs = &trans->transaction->delayed_refs;
833	spin_lock(&delayed_refs->lock);
834
835	/*
836	 * insert both the head node and the new ref without dropping
837	 * the spin lock
838	 */
839	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
840					bytenr, num_bytes, action, 1);
841
842	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
843				   num_bytes, parent, ref_root, owner, offset,
844				   action, for_cow);
845	spin_unlock(&delayed_refs->lock);
846	if (need_ref_seq(for_cow, ref_root))
847		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
849	return 0;
850}
851
852int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
853				struct btrfs_trans_handle *trans,
854				u64 bytenr, u64 num_bytes,
855				struct btrfs_delayed_extent_op *extent_op)
856{
857	struct btrfs_delayed_ref_head *head_ref;
858	struct btrfs_delayed_ref_root *delayed_refs;
859
860	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
861	if (!head_ref)
862		return -ENOMEM;
863
 
 
864	head_ref->extent_op = extent_op;
865
866	delayed_refs = &trans->transaction->delayed_refs;
867	spin_lock(&delayed_refs->lock);
868
869	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
870				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
871				   extent_op->is_data);
872
873	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
874	return 0;
875}
876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877/*
878 * this does a simple search for the head node for a given extent.
879 * It must be called with the delayed ref spinlock held, and it returns
880 * the head node if any where found, or NULL if not.
881 */
882struct btrfs_delayed_ref_head *
883btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
884{
885	struct btrfs_delayed_ref_root *delayed_refs;
886
887	delayed_refs = &trans->transaction->delayed_refs;
888	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
889}
890
891void btrfs_delayed_ref_exit(void)
892{
893	if (btrfs_delayed_ref_head_cachep)
894		kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
895	if (btrfs_delayed_tree_ref_cachep)
896		kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
897	if (btrfs_delayed_data_ref_cachep)
898		kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
899	if (btrfs_delayed_extent_op_cachep)
900		kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
901}
902
903int btrfs_delayed_ref_init(void)
904{
905	btrfs_delayed_ref_head_cachep = kmem_cache_create(
906				"btrfs_delayed_ref_head",
907				sizeof(struct btrfs_delayed_ref_head), 0,
908				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
909	if (!btrfs_delayed_ref_head_cachep)
910		goto fail;
911
912	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
913				"btrfs_delayed_tree_ref",
914				sizeof(struct btrfs_delayed_tree_ref), 0,
915				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
916	if (!btrfs_delayed_tree_ref_cachep)
917		goto fail;
918
919	btrfs_delayed_data_ref_cachep = kmem_cache_create(
920				"btrfs_delayed_data_ref",
921				sizeof(struct btrfs_delayed_data_ref), 0,
922				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
923	if (!btrfs_delayed_data_ref_cachep)
924		goto fail;
925
926	btrfs_delayed_extent_op_cachep = kmem_cache_create(
927				"btrfs_delayed_extent_op",
928				sizeof(struct btrfs_delayed_extent_op), 0,
929				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
930	if (!btrfs_delayed_extent_op_cachep)
931		goto fail;
932
933	return 0;
934fail:
935	btrfs_delayed_ref_exit();
936	return -ENOMEM;
937}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 
 
 
 
 358{
 359	int ret = 0;
 360
 
 
 
 
 
 
 
 
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 
 
 
 
 
 
 
 
 
 
 
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 
 
 
 
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 
 424
 
 
 425	while (*p) {
 426		int comp;
 
 
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 503	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 
 546	while (!done && node) {
 547		int mod;
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 
 
 
 
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 
 
 
 
 
 
 
 
 
 
 
 
 605		if (seq && ref->seq >= seq)
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 
 
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 
 
 613{
 
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 
 
 
 
 
 
 622	}
 623
 
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 
 630	struct btrfs_delayed_ref_head *head;
 
 
 
 
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 
 
 
 
 
 
 639	}
 640	if (!head)
 641		return NULL;
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 
 
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 
 
 
 
 
 
 
 
 
 
 
 
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 704
 705	/* Now we are sure we can merge */
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 731	spin_unlock(&href->lock);
 732	return true;
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 
 
 
 
 
 835{
 
 
 
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 
 895	}
 
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 
 908{
 909	struct btrfs_delayed_ref_head *existing;
 
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 
 
 
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 955
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 
 
 
 987{
 
 
 
 988	u64 seq = 0;
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 995
 996	refcount_set(&ref->refs, 1);
 
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
 
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007void btrfs_init_generic_ref(struct btrfs_ref *generic_ref, int action, u64 bytenr,
1008			    u64 len, u64 parent, u64 owning_root)
1009{
1010	generic_ref->action = action;
1011	generic_ref->bytenr = bytenr;
1012	generic_ref->len = len;
1013	generic_ref->parent = parent;
1014	generic_ref->owning_root = owning_root;
1015}
1016
1017void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 root,
1018			 u64 mod_root, bool skip_qgroup)
1019{
1020#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1021	/* If @real_root not set, use @root as fallback */
1022	generic_ref->real_root = mod_root ?: root;
1023#endif
1024	generic_ref->tree_ref.level = level;
1025	generic_ref->tree_ref.ref_root = root;
1026	generic_ref->type = BTRFS_REF_METADATA;
1027	if (skip_qgroup || !(is_fstree(root) &&
1028			     (!mod_root || is_fstree(mod_root))))
1029		generic_ref->skip_qgroup = true;
1030	else
1031		generic_ref->skip_qgroup = false;
1032
1033}
 
 
 
1034
1035void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ref_root, u64 ino,
1036			 u64 offset, u64 mod_root, bool skip_qgroup)
1037{
1038#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1039	/* If @real_root not set, use @root as fallback */
1040	generic_ref->real_root = mod_root ?: ref_root;
1041#endif
1042	generic_ref->data_ref.ref_root = ref_root;
1043	generic_ref->data_ref.ino = ino;
1044	generic_ref->data_ref.offset = offset;
1045	generic_ref->type = BTRFS_REF_DATA;
1046	if (skip_qgroup || !(is_fstree(ref_root) &&
1047			     (!mod_root || is_fstree(mod_root))))
1048		generic_ref->skip_qgroup = true;
1049	else
1050		generic_ref->skip_qgroup = false;
1051}
1052
1053/*
1054 * add a delayed tree ref.  This does all of the accounting required
1055 * to make sure the delayed ref is eventually processed before this
1056 * transaction commits.
1057 */
1058int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1059			       struct btrfs_ref *generic_ref,
1060			       struct btrfs_delayed_extent_op *extent_op)
 
 
 
1061{
1062	struct btrfs_fs_info *fs_info = trans->fs_info;
1063	struct btrfs_delayed_tree_ref *ref;
1064	struct btrfs_delayed_ref_head *head_ref;
1065	struct btrfs_delayed_ref_root *delayed_refs;
1066	struct btrfs_qgroup_extent_record *record = NULL;
1067	bool qrecord_inserted;
1068	bool is_system;
1069	bool merged;
1070	int action = generic_ref->action;
1071	int level = generic_ref->tree_ref.level;
1072	u64 bytenr = generic_ref->bytenr;
1073	u64 num_bytes = generic_ref->len;
1074	u64 parent = generic_ref->parent;
1075	u8 ref_type;
1076
1077	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1078
1079	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1080	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1081	if (!ref)
1082		return -ENOMEM;
1083
1084	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1085	if (!head_ref) {
1086		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1087		return -ENOMEM;
1088	}
1089
1090	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1091		record = kzalloc(sizeof(*record), GFP_NOFS);
1092		if (!record) {
1093			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1095			return -ENOMEM;
1096		}
1097	}
1098
1099	if (parent)
1100		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1101	else
1102		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1103
1104	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1105				generic_ref->tree_ref.ref_root, action,
1106				ref_type);
1107	ref->root = generic_ref->tree_ref.ref_root;
1108	ref->parent = parent;
1109	ref->level = level;
1110
1111	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1112			      generic_ref->tree_ref.ref_root, 0, action,
1113			      false, is_system, generic_ref->owning_root);
1114	head_ref->extent_op = extent_op;
1115
1116	delayed_refs = &trans->transaction->delayed_refs;
1117	spin_lock(&delayed_refs->lock);
1118
1119	/*
1120	 * insert both the head node and the new ref without dropping
1121	 * the spin lock
1122	 */
1123	head_ref = add_delayed_ref_head(trans, head_ref, record,
1124					action, &qrecord_inserted);
1125
1126	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
 
1127	spin_unlock(&delayed_refs->lock);
1128
1129	/*
1130	 * Need to update the delayed_refs_rsv with any changes we may have
1131	 * made.
1132	 */
1133	btrfs_update_delayed_refs_rsv(trans);
1134
1135	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1136				   action == BTRFS_ADD_DELAYED_EXTENT ?
1137				   BTRFS_ADD_DELAYED_REF : action);
1138	if (merged)
1139		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1140
1141	if (qrecord_inserted)
1142		btrfs_qgroup_trace_extent_post(trans, record);
1143
1144	return 0;
1145}
1146
1147/*
1148 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1149 */
1150int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1151			       struct btrfs_ref *generic_ref,
1152			       u64 reserved)
 
 
 
 
1153{
1154	struct btrfs_fs_info *fs_info = trans->fs_info;
1155	struct btrfs_delayed_data_ref *ref;
1156	struct btrfs_delayed_ref_head *head_ref;
1157	struct btrfs_delayed_ref_root *delayed_refs;
1158	struct btrfs_qgroup_extent_record *record = NULL;
1159	bool qrecord_inserted;
1160	int action = generic_ref->action;
1161	bool merged;
1162	u64 bytenr = generic_ref->bytenr;
1163	u64 num_bytes = generic_ref->len;
1164	u64 parent = generic_ref->parent;
1165	u64 ref_root = generic_ref->data_ref.ref_root;
1166	u64 owner = generic_ref->data_ref.ino;
1167	u64 offset = generic_ref->data_ref.offset;
1168	u8 ref_type;
1169
1170	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1171	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1172	if (!ref)
1173		return -ENOMEM;
1174
1175	if (parent)
1176	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1177	else
1178	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1179	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1180				ref_root, action, ref_type);
1181	ref->root = ref_root;
1182	ref->parent = parent;
1183	ref->objectid = owner;
1184	ref->offset = offset;
1185
1186
1187	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1188	if (!head_ref) {
1189		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1190		return -ENOMEM;
1191	}
1192
1193	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1194		record = kzalloc(sizeof(*record), GFP_NOFS);
1195		if (!record) {
1196			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1197			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1198					head_ref);
1199			return -ENOMEM;
1200		}
1201	}
1202
1203	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1204			      reserved, action, true, false, generic_ref->owning_root);
1205	head_ref->extent_op = NULL;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	/*
1211	 * insert both the head node and the new ref without dropping
1212	 * the spin lock
1213	 */
1214	head_ref = add_delayed_ref_head(trans, head_ref, record,
1215					action, &qrecord_inserted);
1216
1217	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
 
1218	spin_unlock(&delayed_refs->lock);
 
 
1219
1220	/*
1221	 * Need to update the delayed_refs_rsv with any changes we may have
1222	 * made.
1223	 */
1224	btrfs_update_delayed_refs_rsv(trans);
1225
1226	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1227				   action == BTRFS_ADD_DELAYED_EXTENT ?
1228				   BTRFS_ADD_DELAYED_REF : action);
1229	if (merged)
1230		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1231
1232
1233	if (qrecord_inserted)
1234		return btrfs_qgroup_trace_extent_post(trans, record);
1235	return 0;
1236}
1237
1238int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1239				u64 bytenr, u64 num_bytes,
1240				struct btrfs_delayed_extent_op *extent_op)
1241{
1242	struct btrfs_delayed_ref_head *head_ref;
1243	struct btrfs_delayed_ref_root *delayed_refs;
1244
1245	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1246	if (!head_ref)
1247		return -ENOMEM;
1248
1249	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1250			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1251	head_ref->extent_op = extent_op;
1252
1253	delayed_refs = &trans->transaction->delayed_refs;
1254	spin_lock(&delayed_refs->lock);
1255
1256	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1257			     NULL);
 
1258
1259	spin_unlock(&delayed_refs->lock);
1260
1261	/*
1262	 * Need to update the delayed_refs_rsv with any changes we may have
1263	 * made.
1264	 */
1265	btrfs_update_delayed_refs_rsv(trans);
1266	return 0;
1267}
1268
1269void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1270{
1271	if (refcount_dec_and_test(&ref->refs)) {
1272		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1273		switch (ref->type) {
1274		case BTRFS_TREE_BLOCK_REF_KEY:
1275		case BTRFS_SHARED_BLOCK_REF_KEY:
1276			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1277			break;
1278		case BTRFS_EXTENT_DATA_REF_KEY:
1279		case BTRFS_SHARED_DATA_REF_KEY:
1280			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1281			break;
1282		default:
1283			BUG();
1284		}
1285	}
1286}
1287
1288/*
1289 * This does a simple search for the head node for a given extent.  Returns the
1290 * head node if found, or NULL if not.
 
1291 */
1292struct btrfs_delayed_ref_head *
1293btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1294{
1295	lockdep_assert_held(&delayed_refs->lock);
1296
1297	return find_ref_head(delayed_refs, bytenr, false);
 
1298}
1299
1300void __cold btrfs_delayed_ref_exit(void)
1301{
1302	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1303	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1304	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1305	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
 
 
 
 
1306}
1307
1308int __init btrfs_delayed_ref_init(void)
1309{
1310	btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
 
 
 
1311	if (!btrfs_delayed_ref_head_cachep)
1312		goto fail;
1313
1314	btrfs_delayed_tree_ref_cachep = KMEM_CACHE(btrfs_delayed_tree_ref, 0);
 
 
 
1315	if (!btrfs_delayed_tree_ref_cachep)
1316		goto fail;
1317
1318	btrfs_delayed_data_ref_cachep = KMEM_CACHE(btrfs_delayed_data_ref, 0);
 
 
 
1319	if (!btrfs_delayed_data_ref_cachep)
1320		goto fail;
1321
1322	btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
 
 
 
1323	if (!btrfs_delayed_extent_op_cachep)
1324		goto fail;
1325
1326	return 0;
1327fail:
1328	btrfs_delayed_ref_exit();
1329	return -ENOMEM;
1330}