Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
 
 
  34
  35#define DRIVER_AUTHOR "Sarah Sharp"
  36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  37
 
 
  38/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  39static int link_quirk;
  40module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  41MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  42
  43static unsigned int quirks;
  44module_param(quirks, uint, S_IRUGO);
  45MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  46
  47/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48/*
  49 * xhci_handshake - spin reading hc until handshake completes or fails
  50 * @ptr: address of hc register to be read
  51 * @mask: bits to look at in result of read
  52 * @done: value of those bits when handshake succeeds
  53 * @usec: timeout in microseconds
  54 *
  55 * Returns negative errno, or zero on success
  56 *
  57 * Success happens when the "mask" bits have the specified value (hardware
  58 * handshake done).  There are two failure modes:  "usec" have passed (major
  59 * hardware flakeout), or the register reads as all-ones (hardware removed).
  60 */
  61int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  62		      u32 mask, u32 done, int usec)
  63{
  64	u32	result;
 
  65
  66	do {
  67		result = readl(ptr);
  68		if (result == ~(u32)0)		/* card removed */
  69			return -ENODEV;
  70		result &= mask;
  71		if (result == done)
  72			return 0;
  73		udelay(1);
  74		usec--;
  75	} while (usec > 0);
  76	return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77}
  78
  79/*
  80 * Disable interrupts and begin the xHCI halting process.
  81 */
  82void xhci_quiesce(struct xhci_hcd *xhci)
  83{
  84	u32 halted;
  85	u32 cmd;
  86	u32 mask;
  87
  88	mask = ~(XHCI_IRQS);
  89	halted = readl(&xhci->op_regs->status) & STS_HALT;
  90	if (!halted)
  91		mask &= ~CMD_RUN;
  92
  93	cmd = readl(&xhci->op_regs->command);
  94	cmd &= mask;
  95	writel(cmd, &xhci->op_regs->command);
  96}
  97
  98/*
  99 * Force HC into halt state.
 100 *
 101 * Disable any IRQs and clear the run/stop bit.
 102 * HC will complete any current and actively pipelined transactions, and
 103 * should halt within 16 ms of the run/stop bit being cleared.
 104 * Read HC Halted bit in the status register to see when the HC is finished.
 105 */
 106int xhci_halt(struct xhci_hcd *xhci)
 107{
 108	int ret;
 
 109	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 110	xhci_quiesce(xhci);
 111
 112	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 113			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 114	if (!ret) {
 115		xhci->xhc_state |= XHCI_STATE_HALTED;
 116		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 117	} else
 118		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 119				XHCI_MAX_HALT_USEC);
 
 
 120	return ret;
 121}
 122
 123/*
 124 * Set the run bit and wait for the host to be running.
 125 */
 126static int xhci_start(struct xhci_hcd *xhci)
 127{
 128	u32 temp;
 129	int ret;
 130
 131	temp = readl(&xhci->op_regs->command);
 132	temp |= (CMD_RUN);
 133	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 134			temp);
 135	writel(temp, &xhci->op_regs->command);
 136
 137	/*
 138	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 139	 * running.
 140	 */
 141	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 142			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 143	if (ret == -ETIMEDOUT)
 144		xhci_err(xhci, "Host took too long to start, "
 145				"waited %u microseconds.\n",
 146				XHCI_MAX_HALT_USEC);
 147	if (!ret)
 148		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 
 
 
 
 149	return ret;
 150}
 151
 152/*
 153 * Reset a halted HC.
 154 *
 155 * This resets pipelines, timers, counters, state machines, etc.
 156 * Transactions will be terminated immediately, and operational registers
 157 * will be set to their defaults.
 158 */
 159int xhci_reset(struct xhci_hcd *xhci)
 160{
 161	u32 command;
 162	u32 state;
 163	int ret, i;
 164
 165	state = readl(&xhci->op_regs->status);
 
 
 
 
 
 
 166	if ((state & STS_HALT) == 0) {
 167		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 168		return 0;
 169	}
 170
 171	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 172	command = readl(&xhci->op_regs->command);
 173	command |= CMD_RESET;
 174	writel(command, &xhci->op_regs->command);
 175
 176	ret = xhci_handshake(xhci, &xhci->op_regs->command,
 177			CMD_RESET, 0, 10 * 1000 * 1000);
 
 
 
 
 
 
 
 
 
 
 178	if (ret)
 179		return ret;
 180
 
 
 
 181	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 182			 "Wait for controller to be ready for doorbell rings");
 183	/*
 184	 * xHCI cannot write to any doorbells or operational registers other
 185	 * than status until the "Controller Not Ready" flag is cleared.
 186	 */
 187	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 188			STS_CNR, 0, 10 * 1000 * 1000);
 189
 190	for (i = 0; i < 2; ++i) {
 191		xhci->bus_state[i].port_c_suspend = 0;
 192		xhci->bus_state[i].suspended_ports = 0;
 193		xhci->bus_state[i].resuming_ports = 0;
 194	}
 
 195
 196	return ret;
 197}
 198
 199#ifdef CONFIG_PCI
 200static int xhci_free_msi(struct xhci_hcd *xhci)
 201{
 202	int i;
 203
 204	if (!xhci->msix_entries)
 205		return -EINVAL;
 206
 207	for (i = 0; i < xhci->msix_count; i++)
 208		if (xhci->msix_entries[i].vector)
 209			free_irq(xhci->msix_entries[i].vector,
 210					xhci_to_hcd(xhci));
 211	return 0;
 212}
 213
 214/*
 215 * Set up MSI
 216 */
 217static int xhci_setup_msi(struct xhci_hcd *xhci)
 218{
 219	int ret;
 220	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 221
 222	ret = pci_enable_msi(pdev);
 223	if (ret) {
 224		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 225				"failed to allocate MSI entry");
 226		return ret;
 227	}
 228
 229	ret = request_irq(pdev->irq, xhci_msi_irq,
 230				0, "xhci_hcd", xhci_to_hcd(xhci));
 231	if (ret) {
 232		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 233				"disable MSI interrupt");
 234		pci_disable_msi(pdev);
 235	}
 236
 237	return ret;
 238}
 239
 240/*
 241 * Free IRQs
 242 * free all IRQs request
 243 */
 244static void xhci_free_irq(struct xhci_hcd *xhci)
 245{
 246	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 247	int ret;
 248
 249	/* return if using legacy interrupt */
 250	if (xhci_to_hcd(xhci)->irq > 0)
 251		return;
 252
 253	ret = xhci_free_msi(xhci);
 254	if (!ret)
 255		return;
 256	if (pdev->irq > 0)
 257		free_irq(pdev->irq, xhci_to_hcd(xhci));
 258
 259	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260}
 261
 262/*
 263 * Set up MSI-X
 264 */
 265static int xhci_setup_msix(struct xhci_hcd *xhci)
 266{
 267	int i, ret = 0;
 268	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 269	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 270
 271	/*
 272	 * calculate number of msi-x vectors supported.
 273	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 274	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 275	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 276	 *   Add additional 1 vector to ensure always available interrupt.
 277	 */
 278	xhci->msix_count = min(num_online_cpus() + 1,
 279				HCS_MAX_INTRS(xhci->hcs_params1));
 280
 281	xhci->msix_entries =
 282		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 283				GFP_KERNEL);
 284	if (!xhci->msix_entries) {
 285		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 286		return -ENOMEM;
 287	}
 288
 289	for (i = 0; i < xhci->msix_count; i++) {
 290		xhci->msix_entries[i].entry = i;
 291		xhci->msix_entries[i].vector = 0;
 292	}
 293
 294	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 295	if (ret) {
 296		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 297				"Failed to enable MSI-X");
 298		goto free_entries;
 299	}
 300
 301	for (i = 0; i < xhci->msix_count; i++) {
 302		ret = request_irq(xhci->msix_entries[i].vector,
 303				xhci_msi_irq,
 304				0, "xhci_hcd", xhci_to_hcd(xhci));
 305		if (ret)
 306			goto disable_msix;
 307	}
 308
 309	hcd->msix_enabled = 1;
 310	return ret;
 311
 312disable_msix:
 313	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 314	xhci_free_irq(xhci);
 315	pci_disable_msix(pdev);
 316free_entries:
 317	kfree(xhci->msix_entries);
 318	xhci->msix_entries = NULL;
 319	return ret;
 320}
 321
 322/* Free any IRQs and disable MSI-X */
 323static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 324{
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	if (xhci->quirks & XHCI_PLAT)
 329		return;
 330
 331	xhci_free_irq(xhci);
 332
 333	if (xhci->msix_entries) {
 334		pci_disable_msix(pdev);
 335		kfree(xhci->msix_entries);
 336		xhci->msix_entries = NULL;
 337	} else {
 338		pci_disable_msi(pdev);
 339	}
 340
 341	hcd->msix_enabled = 0;
 342	return;
 343}
 344
 345static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 346{
 347	int i;
 348
 349	if (xhci->msix_entries) {
 350		for (i = 0; i < xhci->msix_count; i++)
 351			synchronize_irq(xhci->msix_entries[i].vector);
 352	}
 353}
 354
 355static int xhci_try_enable_msi(struct usb_hcd *hcd)
 
 
 356{
 357	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 358	struct pci_dev  *pdev;
 359	int ret;
 360
 361	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 362	if (xhci->quirks & XHCI_PLAT)
 363		return 0;
 364
 365	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 366	/*
 367	 * Some Fresco Logic host controllers advertise MSI, but fail to
 368	 * generate interrupts.  Don't even try to enable MSI.
 369	 */
 370	if (xhci->quirks & XHCI_BROKEN_MSI)
 371		goto legacy_irq;
 372
 373	/* unregister the legacy interrupt */
 374	if (hcd->irq)
 375		free_irq(hcd->irq, hcd);
 376	hcd->irq = 0;
 377
 378	ret = xhci_setup_msix(xhci);
 379	if (ret)
 380		/* fall back to msi*/
 381		ret = xhci_setup_msi(xhci);
 382
 383	if (!ret)
 384		/* hcd->irq is 0, we have MSI */
 385		return 0;
 386
 387	if (!pdev->irq) {
 388		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 389		return -EINVAL;
 390	}
 391
 392 legacy_irq:
 393	if (!strlen(hcd->irq_descr))
 394		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 395			 hcd->driver->description, hcd->self.busnum);
 396
 397	/* fall back to legacy interrupt*/
 398	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 399			hcd->irq_descr, hcd);
 400	if (ret) {
 401		xhci_err(xhci, "request interrupt %d failed\n",
 402				pdev->irq);
 403		return ret;
 404	}
 405	hcd->irq = pdev->irq;
 406	return 0;
 407}
 408
 409#else
 410
 411static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 412{
 413	return 0;
 414}
 415
 416static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 417{
 418}
 419
 420static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 421{
 422}
 423
 424#endif
 425
 426static void compliance_mode_recovery(unsigned long arg)
 427{
 428	struct xhci_hcd *xhci;
 429	struct usb_hcd *hcd;
 
 430	u32 temp;
 431	int i;
 432
 433	xhci = (struct xhci_hcd *)arg;
 
 
 
 
 
 434
 435	for (i = 0; i < xhci->num_usb3_ports; i++) {
 436		temp = readl(xhci->usb3_ports[i]);
 437		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 438			/*
 439			 * Compliance Mode Detected. Letting USB Core
 440			 * handle the Warm Reset
 441			 */
 442			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 443					"Compliance mode detected->port %d",
 444					i + 1);
 445			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 446					"Attempting compliance mode recovery");
 447			hcd = xhci->shared_hcd;
 448
 449			if (hcd->state == HC_STATE_SUSPENDED)
 450				usb_hcd_resume_root_hub(hcd);
 451
 452			usb_hcd_poll_rh_status(hcd);
 453		}
 454	}
 455
 456	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 457		mod_timer(&xhci->comp_mode_recovery_timer,
 458			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 459}
 460
 461/*
 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 463 * that causes ports behind that hardware to enter compliance mode sometimes.
 464 * The quirk creates a timer that polls every 2 seconds the link state of
 465 * each host controller's port and recovers it by issuing a Warm reset
 466 * if Compliance mode is detected, otherwise the port will become "dead" (no
 467 * device connections or disconnections will be detected anymore). Becasue no
 468 * status event is generated when entering compliance mode (per xhci spec),
 469 * this quirk is needed on systems that have the failing hardware installed.
 470 */
 471static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 472{
 473	xhci->port_status_u0 = 0;
 474	init_timer(&xhci->comp_mode_recovery_timer);
 475
 476	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 477	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 478	xhci->comp_mode_recovery_timer.expires = jiffies +
 479			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 480
 481	set_timer_slack(&xhci->comp_mode_recovery_timer,
 482			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 483	add_timer(&xhci->comp_mode_recovery_timer);
 484	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 485			"Compliance mode recovery timer initialized");
 486}
 487
 488/*
 489 * This function identifies the systems that have installed the SN65LVPE502CP
 490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 491 * Systems:
 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 493 */
 494bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 495{
 496	const char *dmi_product_name, *dmi_sys_vendor;
 497
 498	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 499	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 500	if (!dmi_product_name || !dmi_sys_vendor)
 501		return false;
 502
 503	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 504		return false;
 505
 506	if (strstr(dmi_product_name, "Z420") ||
 507			strstr(dmi_product_name, "Z620") ||
 508			strstr(dmi_product_name, "Z820") ||
 509			strstr(dmi_product_name, "Z1 Workstation"))
 510		return true;
 511
 512	return false;
 513}
 514
 515static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 516{
 517	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 518}
 519
 520
 521/*
 522 * Initialize memory for HCD and xHC (one-time init).
 523 *
 524 * Program the PAGESIZE register, initialize the device context array, create
 525 * device contexts (?), set up a command ring segment (or two?), create event
 526 * ring (one for now).
 527 */
 528int xhci_init(struct usb_hcd *hcd)
 529{
 530	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 531	int retval = 0;
 532
 533	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 534	spin_lock_init(&xhci->lock);
 535	if (xhci->hci_version == 0x95 && link_quirk) {
 536		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 537				"QUIRK: Not clearing Link TRB chain bits.");
 538		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 539	} else {
 540		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 541				"xHCI doesn't need link TRB QUIRK");
 542	}
 543	retval = xhci_mem_init(xhci, GFP_KERNEL);
 544	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 545
 546	/* Initializing Compliance Mode Recovery Data If Needed */
 547	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 548		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 549		compliance_mode_recovery_timer_init(xhci);
 550	}
 551
 552	return retval;
 553}
 554
 555/*-------------------------------------------------------------------------*/
 556
 557
 558static int xhci_run_finished(struct xhci_hcd *xhci)
 559{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560	if (xhci_start(xhci)) {
 561		xhci_halt(xhci);
 
 562		return -ENODEV;
 563	}
 564	xhci->shared_hcd->state = HC_STATE_RUNNING;
 565	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 566
 567	if (xhci->quirks & XHCI_NEC_HOST)
 568		xhci_ring_cmd_db(xhci);
 569
 570	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 571			"Finished xhci_run for USB3 roothub");
 572	return 0;
 573}
 574
 575/*
 576 * Start the HC after it was halted.
 577 *
 578 * This function is called by the USB core when the HC driver is added.
 579 * Its opposite is xhci_stop().
 580 *
 581 * xhci_init() must be called once before this function can be called.
 582 * Reset the HC, enable device slot contexts, program DCBAAP, and
 583 * set command ring pointer and event ring pointer.
 584 *
 585 * Setup MSI-X vectors and enable interrupts.
 586 */
 587int xhci_run(struct usb_hcd *hcd)
 588{
 589	u32 temp;
 590	u64 temp_64;
 591	int ret;
 592	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 593
 594	/* Start the xHCI host controller running only after the USB 2.0 roothub
 595	 * is setup.
 596	 */
 597
 598	hcd->uses_new_polling = 1;
 
 
 
 599	if (!usb_hcd_is_primary_hcd(hcd))
 600		return xhci_run_finished(xhci);
 601
 602	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 603
 604	ret = xhci_try_enable_msi(hcd);
 605	if (ret)
 606		return ret;
 607
 608	xhci_dbg(xhci, "Command ring memory map follows:\n");
 609	xhci_debug_ring(xhci, xhci->cmd_ring);
 610	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 611	xhci_dbg_cmd_ptrs(xhci);
 612
 613	xhci_dbg(xhci, "ERST memory map follows:\n");
 614	xhci_dbg_erst(xhci, &xhci->erst);
 615	xhci_dbg(xhci, "Event ring:\n");
 616	xhci_debug_ring(xhci, xhci->event_ring);
 617	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 618	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 619	temp_64 &= ~ERST_PTR_MASK;
 620	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 622
 623	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 624			"// Set the interrupt modulation register");
 625	temp = readl(&xhci->ir_set->irq_control);
 626	temp &= ~ER_IRQ_INTERVAL_MASK;
 627	temp |= (u32) 160;
 628	writel(temp, &xhci->ir_set->irq_control);
 629
 630	/* Set the HCD state before we enable the irqs */
 631	temp = readl(&xhci->op_regs->command);
 632	temp |= (CMD_EIE);
 633	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 634			"// Enable interrupts, cmd = 0x%x.", temp);
 635	writel(temp, &xhci->op_regs->command);
 636
 637	temp = readl(&xhci->ir_set->irq_pending);
 638	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 639			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 640			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 641	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 642	xhci_print_ir_set(xhci, 0);
 643
 644	if (xhci->quirks & XHCI_NEC_HOST)
 645		xhci_queue_vendor_command(xhci, 0, 0, 0,
 646				TRB_TYPE(TRB_NEC_GET_FW));
 647
 
 
 648	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 649			"Finished xhci_run for USB2 roothub");
 650	return 0;
 651}
 652
 653static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 654{
 655	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 656
 657	spin_lock_irq(&xhci->lock);
 658	xhci_halt(xhci);
 659
 660	/* The shared_hcd is going to be deallocated shortly (the USB core only
 661	 * calls this function when allocation fails in usb_add_hcd(), or
 662	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 663	 */
 664	xhci->shared_hcd = NULL;
 665	spin_unlock_irq(&xhci->lock);
 666}
 
 667
 668/*
 669 * Stop xHCI driver.
 670 *
 671 * This function is called by the USB core when the HC driver is removed.
 672 * Its opposite is xhci_run().
 673 *
 674 * Disable device contexts, disable IRQs, and quiesce the HC.
 675 * Reset the HC, finish any completed transactions, and cleanup memory.
 676 */
 677void xhci_stop(struct usb_hcd *hcd)
 678{
 679	u32 temp;
 680	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
 
 681
 
 682	if (!usb_hcd_is_primary_hcd(hcd)) {
 683		xhci_only_stop_hcd(xhci->shared_hcd);
 684		return;
 685	}
 686
 
 
 687	spin_lock_irq(&xhci->lock);
 688	/* Make sure the xHC is halted for a USB3 roothub
 689	 * (xhci_stop() could be called as part of failed init).
 690	 */
 691	xhci_halt(xhci);
 692	xhci_reset(xhci);
 693	spin_unlock_irq(&xhci->lock);
 694
 695	xhci_cleanup_msix(xhci);
 696
 697	/* Deleting Compliance Mode Recovery Timer */
 698	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 699			(!(xhci_all_ports_seen_u0(xhci)))) {
 700		del_timer_sync(&xhci->comp_mode_recovery_timer);
 701		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 702				"%s: compliance mode recovery timer deleted",
 703				__func__);
 704	}
 705
 706	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 707		usb_amd_dev_put();
 708
 709	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 710			"// Disabling event ring interrupts");
 711	temp = readl(&xhci->op_regs->status);
 712	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 713	temp = readl(&xhci->ir_set->irq_pending);
 714	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 715	xhci_print_ir_set(xhci, 0);
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 718	xhci_mem_cleanup(xhci);
 
 719	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 720			"xhci_stop completed - status = %x",
 721			readl(&xhci->op_regs->status));
 
 722}
 
 723
 724/*
 725 * Shutdown HC (not bus-specific)
 726 *
 727 * This is called when the machine is rebooting or halting.  We assume that the
 728 * machine will be powered off, and the HC's internal state will be reset.
 729 * Don't bother to free memory.
 730 *
 731 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 732 */
 733void xhci_shutdown(struct usb_hcd *hcd)
 734{
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 736
 737	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 738		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 
 
 
 
 
 
 
 
 
 
 
 739
 740	spin_lock_irq(&xhci->lock);
 741	xhci_halt(xhci);
 742	/* Workaround for spurious wakeups at shutdown with HSW */
 743	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 744		xhci_reset(xhci);
 745	spin_unlock_irq(&xhci->lock);
 746
 747	xhci_cleanup_msix(xhci);
 
 
 
 
 
 
 
 
 748
 749	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 750			"xhci_shutdown completed - status = %x",
 751			readl(&xhci->op_regs->status));
 752
 753	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 754	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 755		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 756}
 
 757
 758#ifdef CONFIG_PM
 759static void xhci_save_registers(struct xhci_hcd *xhci)
 760{
 
 
 
 761	xhci->s3.command = readl(&xhci->op_regs->command);
 762	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 763	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 764	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 765	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 766	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 767	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 768	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 769	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 770}
 771
 772static void xhci_restore_registers(struct xhci_hcd *xhci)
 773{
 
 
 
 774	writel(xhci->s3.command, &xhci->op_regs->command);
 775	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 776	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 777	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 778	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 779	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 780	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 781	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 782	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 783}
 784
 785static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 786{
 787	u64	val_64;
 788
 789	/* step 2: initialize command ring buffer */
 790	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 791	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 792		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 793				      xhci->cmd_ring->dequeue) &
 794		 (u64) ~CMD_RING_RSVD_BITS) |
 795		xhci->cmd_ring->cycle_state;
 796	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 797			"// Setting command ring address to 0x%llx",
 798			(long unsigned long) val_64);
 799	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 800}
 801
 802/*
 803 * The whole command ring must be cleared to zero when we suspend the host.
 804 *
 805 * The host doesn't save the command ring pointer in the suspend well, so we
 806 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 807 * aligned, because of the reserved bits in the command ring dequeue pointer
 808 * register.  Therefore, we can't just set the dequeue pointer back in the
 809 * middle of the ring (TRBs are 16-byte aligned).
 810 */
 811static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 812{
 813	struct xhci_ring *ring;
 814	struct xhci_segment *seg;
 815
 816	ring = xhci->cmd_ring;
 817	seg = ring->deq_seg;
 818	do {
 819		memset(seg->trbs, 0,
 820			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 821		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 822			cpu_to_le32(~TRB_CYCLE);
 823		seg = seg->next;
 824	} while (seg != ring->deq_seg);
 825
 826	/* Reset the software enqueue and dequeue pointers */
 827	ring->deq_seg = ring->first_seg;
 828	ring->dequeue = ring->first_seg->trbs;
 829	ring->enq_seg = ring->deq_seg;
 830	ring->enqueue = ring->dequeue;
 831
 832	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 833	/*
 834	 * Ring is now zeroed, so the HW should look for change of ownership
 835	 * when the cycle bit is set to 1.
 836	 */
 837	ring->cycle_state = 1;
 838
 839	/*
 840	 * Reset the hardware dequeue pointer.
 841	 * Yes, this will need to be re-written after resume, but we're paranoid
 842	 * and want to make sure the hardware doesn't access bogus memory
 843	 * because, say, the BIOS or an SMI started the host without changing
 844	 * the command ring pointers.
 845	 */
 846	xhci_set_cmd_ring_deq(xhci);
 847}
 848
 849/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850 * Stop HC (not bus-specific)
 851 *
 852 * This is called when the machine transition into S3/S4 mode.
 853 *
 854 */
 855int xhci_suspend(struct xhci_hcd *xhci)
 856{
 857	int			rc = 0;
 858	unsigned int		delay = XHCI_MAX_HALT_USEC;
 859	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 860	u32			command;
 
 
 
 
 861
 862	if (hcd->state != HC_STATE_SUSPENDED ||
 863			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 864		return -EINVAL;
 865
 
 
 
 
 
 
 
 
 
 866	/* Don't poll the roothubs on bus suspend. */
 867	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 
 868	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 869	del_timer_sync(&hcd->rh_timer);
 
 
 
 
 
 
 
 870
 871	spin_lock_irq(&xhci->lock);
 872	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 873	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 874	/* step 1: stop endpoint */
 875	/* skipped assuming that port suspend has done */
 876
 877	/* step 2: clear Run/Stop bit */
 878	command = readl(&xhci->op_regs->command);
 879	command &= ~CMD_RUN;
 880	writel(command, &xhci->op_regs->command);
 881
 882	/* Some chips from Fresco Logic need an extraordinary delay */
 883	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 884
 885	if (xhci_handshake(xhci, &xhci->op_regs->status,
 886		      STS_HALT, STS_HALT, delay)) {
 887		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 888		spin_unlock_irq(&xhci->lock);
 889		return -ETIMEDOUT;
 890	}
 891	xhci_clear_command_ring(xhci);
 892
 893	/* step 3: save registers */
 894	xhci_save_registers(xhci);
 895
 896	/* step 4: set CSS flag */
 897	command = readl(&xhci->op_regs->command);
 898	command |= CMD_CSS;
 899	writel(command, &xhci->op_regs->command);
 900	if (xhci_handshake(xhci, &xhci->op_regs->status,
 901				STS_SAVE, 0, 10 * 1000)) {
 902		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 903		spin_unlock_irq(&xhci->lock);
 904		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905	}
 906	spin_unlock_irq(&xhci->lock);
 907
 908	/*
 909	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 910	 * is about to be suspended.
 911	 */
 912	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 913			(!(xhci_all_ports_seen_u0(xhci)))) {
 914		del_timer_sync(&xhci->comp_mode_recovery_timer);
 915		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 916				"%s: compliance mode recovery timer deleted",
 917				__func__);
 918	}
 919
 920	/* step 5: remove core well power */
 921	/* synchronize irq when using MSI-X */
 922	xhci_msix_sync_irqs(xhci);
 923
 924	return rc;
 925}
 
 926
 927/*
 928 * start xHC (not bus-specific)
 929 *
 930 * This is called when the machine transition from S3/S4 mode.
 931 *
 932 */
 933int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 934{
 
 935	u32			command, temp = 0;
 936	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 937	struct usb_hcd		*secondary_hcd;
 938	int			retval = 0;
 939	bool			comp_timer_running = false;
 
 
 
 
 
 
 940
 941	/* Wait a bit if either of the roothubs need to settle from the
 942	 * transition into bus suspend.
 943	 */
 944	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 945			time_before(jiffies,
 946				xhci->bus_state[1].next_statechange))
 947		msleep(100);
 948
 949	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 950	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 951
 952	spin_lock_irq(&xhci->lock);
 953	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 954		hibernated = true;
 955
 956	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		/* step 1: restore register */
 958		xhci_restore_registers(xhci);
 959		/* step 2: initialize command ring buffer */
 960		xhci_set_cmd_ring_deq(xhci);
 961		/* step 3: restore state and start state*/
 962		/* step 3: set CRS flag */
 963		command = readl(&xhci->op_regs->command);
 964		command |= CMD_CRS;
 965		writel(command, &xhci->op_regs->command);
 966		if (xhci_handshake(xhci, &xhci->op_regs->status,
 967			      STS_RESTORE, 0, 10 * 1000)) {
 
 
 
 
 
 968			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 969			spin_unlock_irq(&xhci->lock);
 970			return -ETIMEDOUT;
 971		}
 972		temp = readl(&xhci->op_regs->status);
 973	}
 974
 975	/* If restore operation fails, re-initialize the HC during resume */
 976	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 977
 
 978		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 979				!(xhci_all_ports_seen_u0(xhci))) {
 980			del_timer_sync(&xhci->comp_mode_recovery_timer);
 981			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 982				"Compliance Mode Recovery Timer deleted!");
 983		}
 984
 985		/* Let the USB core know _both_ roothubs lost power. */
 986		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 987		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
 988
 989		xhci_dbg(xhci, "Stop HCD\n");
 990		xhci_halt(xhci);
 991		xhci_reset(xhci);
 
 992		spin_unlock_irq(&xhci->lock);
 993		xhci_cleanup_msix(xhci);
 
 994
 995		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 996		temp = readl(&xhci->op_regs->status);
 997		writel(temp & ~STS_EINT, &xhci->op_regs->status);
 998		temp = readl(&xhci->ir_set->irq_pending);
 999		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1000		xhci_print_ir_set(xhci, 0);
1001
1002		xhci_dbg(xhci, "cleaning up memory\n");
1003		xhci_mem_cleanup(xhci);
 
1004		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005			    readl(&xhci->op_regs->status));
1006
1007		/* USB core calls the PCI reinit and start functions twice:
1008		 * first with the primary HCD, and then with the secondary HCD.
1009		 * If we don't do the same, the host will never be started.
1010		 */
1011		if (!usb_hcd_is_primary_hcd(hcd))
1012			secondary_hcd = hcd;
1013		else
1014			secondary_hcd = xhci->shared_hcd;
1015
1016		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017		retval = xhci_init(hcd->primary_hcd);
1018		if (retval)
1019			return retval;
1020		comp_timer_running = true;
1021
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
 
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = readl(&xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	writel(command, &xhci->op_regs->command);
1037	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
 
 
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056
 
 
 
 
 
 
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064		compliance_mode_recovery_timer_init(xhci);
1065
 
 
 
1066	/* Re-enable port polling. */
1067	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
 
 
 
 
 
1068	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069	usb_hcd_poll_rh_status(hcd);
1070
1071	return retval;
1072}
 
1073#endif	/* CONFIG_PM */
1074
1075/*-------------------------------------------------------------------------*/
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077/**
1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1080 * value to right shift 1 for the bitmask.
1081 *
1082 * Index  = (epnum * 2) + direction - 1,
1083 * where direction = 0 for OUT, 1 for IN.
1084 * For control endpoints, the IN index is used (OUT index is unused), so
1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086 */
1087unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088{
1089	unsigned int index;
1090	if (usb_endpoint_xfer_control(desc))
1091		index = (unsigned int) (usb_endpoint_num(desc)*2);
1092	else
1093		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095	return index;
1096}
 
1097
1098/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099 * address from the XHCI endpoint index.
1100 */
1101unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102{
1103	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105	return direction | number;
1106}
1107
1108/* Find the flag for this endpoint (for use in the control context).  Use the
1109 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110 * bit 1, etc.
1111 */
1112unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113{
1114	return 1 << (xhci_get_endpoint_index(desc) + 1);
1115}
1116
1117/* Find the flag for this endpoint (for use in the control context).  Use the
1118 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1119 * bit 1, etc.
1120 */
1121unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122{
1123	return 1 << (ep_index + 1);
1124}
1125
1126/* Compute the last valid endpoint context index.  Basically, this is the
1127 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1128 * we find the most significant bit set in the added contexts flags.
1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131 */
1132unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133{
1134	return fls(added_ctxs) - 1;
1135}
1136
1137/* Returns 1 if the arguments are OK;
1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139 */
1140static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142		const char *func) {
1143	struct xhci_hcd	*xhci;
1144	struct xhci_virt_device	*virt_dev;
1145
1146	if (!hcd || (check_ep && !ep) || !udev) {
1147		pr_debug("xHCI %s called with invalid args\n", func);
1148		return -EINVAL;
1149	}
1150	if (!udev->parent) {
1151		pr_debug("xHCI %s called for root hub\n", func);
1152		return 0;
1153	}
1154
1155	xhci = hcd_to_xhci(hcd);
1156	if (check_virt_dev) {
1157		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159					func);
1160			return -EINVAL;
1161		}
1162
1163		virt_dev = xhci->devs[udev->slot_id];
1164		if (virt_dev->udev != udev) {
1165			xhci_dbg(xhci, "xHCI %s called with udev and "
1166					  "virt_dev does not match\n", func);
1167			return -EINVAL;
1168		}
1169	}
1170
1171	if (xhci->xhc_state & XHCI_STATE_HALTED)
1172		return -ENODEV;
1173
1174	return 1;
1175}
1176
1177static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178		struct usb_device *udev, struct xhci_command *command,
1179		bool ctx_change, bool must_succeed);
1180
1181/*
1182 * Full speed devices may have a max packet size greater than 8 bytes, but the
1183 * USB core doesn't know that until it reads the first 8 bytes of the
1184 * descriptor.  If the usb_device's max packet size changes after that point,
1185 * we need to issue an evaluate context command and wait on it.
1186 */
1187static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188		unsigned int ep_index, struct urb *urb)
1189{
1190	struct xhci_container_ctx *in_ctx;
1191	struct xhci_container_ctx *out_ctx;
1192	struct xhci_input_control_ctx *ctrl_ctx;
1193	struct xhci_ep_ctx *ep_ctx;
 
1194	int max_packet_size;
1195	int hw_max_packet_size;
1196	int ret = 0;
1197
1198	out_ctx = xhci->devs[slot_id]->out_ctx;
1199	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202	if (hw_max_packet_size != max_packet_size) {
 
 
 
 
 
1203		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204				"Max Packet Size for ep 0 changed.");
1205		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1206				"Max packet size in usb_device = %d",
1207				max_packet_size);
1208		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1209				"Max packet size in xHCI HW = %d",
1210				hw_max_packet_size);
1211		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212				"Issuing evaluate context command.");
1213
1214		/* Set up the input context flags for the command */
1215		/* FIXME: This won't work if a non-default control endpoint
1216		 * changes max packet sizes.
1217		 */
1218		in_ctx = xhci->devs[slot_id]->in_ctx;
1219		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220		if (!ctrl_ctx) {
1221			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222					__func__);
1223			return -ENOMEM;
 
1224		}
1225		/* Set up the modified control endpoint 0 */
1226		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227				xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
 
1230		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
1233		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234		ctrl_ctx->drop_flags = 0;
1235
1236		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242				true, false);
1243
1244		/* Clean up the input context for later use by bandwidth
1245		 * functions.
1246		 */
1247		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
 
 
 
 
 
1248	}
 
 
 
 
1249	return ret;
1250}
1251
1252/*
1253 * non-error returns are a promise to giveback() the urb later
1254 * we drop ownership so next owner (or urb unlink) can get it
1255 */
1256int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257{
1258	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259	struct xhci_td *buffer;
1260	unsigned long flags;
1261	int ret = 0;
1262	unsigned int slot_id, ep_index;
 
1263	struct urb_priv	*urb_priv;
1264	int size, i;
1265
1266	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267					true, true, __func__) <= 0)
1268		return -EINVAL;
1269
1270	slot_id = urb->dev->slot_id;
1271	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273	if (!HCD_HW_ACCESSIBLE(hcd)) {
1274		if (!in_interrupt())
1275			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276		ret = -ESHUTDOWN;
1277		goto exit;
1278	}
1279
1280	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281		size = urb->number_of_packets;
 
 
 
 
 
1282	else
1283		size = 1;
1284
1285	urb_priv = kzalloc(sizeof(struct urb_priv) +
1286				  size * sizeof(struct xhci_td *), mem_flags);
1287	if (!urb_priv)
1288		return -ENOMEM;
1289
1290	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291	if (!buffer) {
1292		kfree(urb_priv);
1293		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1294	}
1295
1296	for (i = 0; i < size; i++) {
1297		urb_priv->td[i] = buffer;
1298		buffer++;
 
 
1299	}
1300
1301	urb_priv->length = size;
1302	urb_priv->td_cnt = 0;
1303	urb->hcpriv = urb_priv;
 
 
1304
1305	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306		/* Check to see if the max packet size for the default control
1307		 * endpoint changed during FS device enumeration
1308		 */
1309		if (urb->dev->speed == USB_SPEED_FULL) {
1310			ret = xhci_check_maxpacket(xhci, slot_id,
1311					ep_index, urb);
1312			if (ret < 0) {
1313				xhci_urb_free_priv(xhci, urb_priv);
1314				urb->hcpriv = NULL;
1315				return ret;
1316			}
1317		}
1318
1319		/* We have a spinlock and interrupts disabled, so we must pass
1320		 * atomic context to this function, which may allocate memory.
1321		 */
1322		spin_lock_irqsave(&xhci->lock, flags);
1323		if (xhci->xhc_state & XHCI_STATE_DYING)
1324			goto dying;
 
 
 
 
 
 
 
 
 
 
 
1325		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326				slot_id, ep_index);
1327		if (ret)
1328			goto free_priv;
1329		spin_unlock_irqrestore(&xhci->lock, flags);
1330	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331		spin_lock_irqsave(&xhci->lock, flags);
1332		if (xhci->xhc_state & XHCI_STATE_DYING)
1333			goto dying;
1334		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335				EP_GETTING_STREAMS) {
1336			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337					"is transitioning to using streams.\n");
1338			ret = -EINVAL;
1339		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340				EP_GETTING_NO_STREAMS) {
1341			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342					"is transitioning to "
1343					"not having streams.\n");
1344			ret = -EINVAL;
1345		} else {
1346			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347					slot_id, ep_index);
1348		}
1349		if (ret)
1350			goto free_priv;
1351		spin_unlock_irqrestore(&xhci->lock, flags);
1352	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353		spin_lock_irqsave(&xhci->lock, flags);
1354		if (xhci->xhc_state & XHCI_STATE_DYING)
1355			goto dying;
1356		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357				slot_id, ep_index);
1358		if (ret)
1359			goto free_priv;
1360		spin_unlock_irqrestore(&xhci->lock, flags);
1361	} else {
1362		spin_lock_irqsave(&xhci->lock, flags);
1363		if (xhci->xhc_state & XHCI_STATE_DYING)
1364			goto dying;
1365		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366				slot_id, ep_index);
1367		if (ret)
1368			goto free_priv;
1369		spin_unlock_irqrestore(&xhci->lock, flags);
1370	}
1371exit:
1372	return ret;
1373dying:
1374	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375			"non-responsive xHCI host.\n",
1376			urb->ep->desc.bEndpointAddress, urb);
1377	ret = -ESHUTDOWN;
1378free_priv:
1379	xhci_urb_free_priv(xhci, urb_priv);
1380	urb->hcpriv = NULL;
 
1381	spin_unlock_irqrestore(&xhci->lock, flags);
1382	return ret;
1383}
1384
1385/* Get the right ring for the given URB.
1386 * If the endpoint supports streams, boundary check the URB's stream ID.
1387 * If the endpoint doesn't support streams, return the singular endpoint ring.
1388 */
1389static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390		struct urb *urb)
1391{
1392	unsigned int slot_id;
1393	unsigned int ep_index;
1394	unsigned int stream_id;
1395	struct xhci_virt_ep *ep;
1396
1397	slot_id = urb->dev->slot_id;
1398	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399	stream_id = urb->stream_id;
1400	ep = &xhci->devs[slot_id]->eps[ep_index];
1401	/* Common case: no streams */
1402	if (!(ep->ep_state & EP_HAS_STREAMS))
1403		return ep->ring;
1404
1405	if (stream_id == 0) {
1406		xhci_warn(xhci,
1407				"WARN: Slot ID %u, ep index %u has streams, "
1408				"but URB has no stream ID.\n",
1409				slot_id, ep_index);
1410		return NULL;
1411	}
1412
1413	if (stream_id < ep->stream_info->num_streams)
1414		return ep->stream_info->stream_rings[stream_id];
1415
1416	xhci_warn(xhci,
1417			"WARN: Slot ID %u, ep index %u has "
1418			"stream IDs 1 to %u allocated, "
1419			"but stream ID %u is requested.\n",
1420			slot_id, ep_index,
1421			ep->stream_info->num_streams - 1,
1422			stream_id);
1423	return NULL;
1424}
1425
1426/*
1427 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1428 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1429 * should pick up where it left off in the TD, unless a Set Transfer Ring
1430 * Dequeue Pointer is issued.
1431 *
1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433 * the ring.  Since the ring is a contiguous structure, they can't be physically
1434 * removed.  Instead, there are two options:
1435 *
1436 *  1) If the HC is in the middle of processing the URB to be canceled, we
1437 *     simply move the ring's dequeue pointer past those TRBs using the Set
1438 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1439 *     when drivers timeout on the last submitted URB and attempt to cancel.
1440 *
1441 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1443 *     HC will need to invalidate the any TRBs it has cached after the stop
1444 *     endpoint command, as noted in the xHCI 0.95 errata.
1445 *
1446 *  3) The TD may have completed by the time the Stop Endpoint Command
1447 *     completes, so software needs to handle that case too.
1448 *
1449 * This function should protect against the TD enqueueing code ringing the
1450 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451 * It also needs to account for multiple cancellations on happening at the same
1452 * time for the same endpoint.
1453 *
1454 * Note that this function can be called in any context, or so says
1455 * usb_hcd_unlink_urb()
1456 */
1457int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458{
1459	unsigned long flags;
1460	int ret, i;
1461	u32 temp;
1462	struct xhci_hcd *xhci;
1463	struct urb_priv	*urb_priv;
1464	struct xhci_td *td;
1465	unsigned int ep_index;
1466	struct xhci_ring *ep_ring;
1467	struct xhci_virt_ep *ep;
 
 
1468
1469	xhci = hcd_to_xhci(hcd);
1470	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1471	/* Make sure the URB hasn't completed or been unlinked already */
1472	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473	if (ret || !urb->hcpriv)
1474		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475	temp = readl(&xhci->op_regs->status);
1476	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478				"HW died, freeing TD.");
1479		urb_priv = urb->hcpriv;
1480		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481			td = urb_priv->td[i];
 
1482			if (!list_empty(&td->td_list))
1483				list_del_init(&td->td_list);
1484			if (!list_empty(&td->cancelled_td_list))
1485				list_del_init(&td->cancelled_td_list);
1486		}
1487
1488		usb_hcd_unlink_urb_from_ep(hcd, urb);
1489		spin_unlock_irqrestore(&xhci->lock, flags);
1490		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491		xhci_urb_free_priv(xhci, urb_priv);
1492		return ret;
1493	}
1494	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1496		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497				"Ep 0x%x: URB %p to be canceled on "
1498				"non-responsive xHCI host.",
1499				urb->ep->desc.bEndpointAddress, urb);
1500		/* Let the stop endpoint command watchdog timer (which set this
1501		 * state) finish cleaning up the endpoint TD lists.  We must
1502		 * have caught it in the middle of dropping a lock and giving
1503		 * back an URB.
1504		 */
1505		goto done;
1506	}
1507
1508	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511	if (!ep_ring) {
1512		ret = -EINVAL;
1513		goto done;
1514	}
1515
1516	urb_priv = urb->hcpriv;
1517	i = urb_priv->td_cnt;
1518	if (i < urb_priv->length)
1519		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520				"Cancel URB %p, dev %s, ep 0x%x, "
1521				"starting at offset 0x%llx",
1522				urb, urb->dev->devpath,
1523				urb->ep->desc.bEndpointAddress,
1524				(unsigned long long) xhci_trb_virt_to_dma(
1525					urb_priv->td[i]->start_seg,
1526					urb_priv->td[i]->first_trb));
1527
1528	for (; i < urb_priv->length; i++) {
1529		td = urb_priv->td[i];
1530		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1531	}
1532
1533	/* Queue a stop endpoint command, but only if this is
1534	 * the first cancellation to be handled.
1535	 */
1536	if (!(ep->ep_state & EP_HALT_PENDING)) {
1537		ep->ep_state |= EP_HALT_PENDING;
1538		ep->stop_cmds_pending++;
1539		ep->stop_cmd_timer.expires = jiffies +
1540			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541		add_timer(&ep->stop_cmd_timer);
1542		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
 
 
1543		xhci_ring_cmd_db(xhci);
1544	}
1545done:
1546	spin_unlock_irqrestore(&xhci->lock, flags);
1547	return ret;
 
 
 
 
 
 
 
 
1548}
1549
1550/* Drop an endpoint from a new bandwidth configuration for this device.
1551 * Only one call to this function is allowed per endpoint before
1552 * check_bandwidth() or reset_bandwidth() must be called.
1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554 * add the endpoint to the schedule with possibly new parameters denoted by a
1555 * different endpoint descriptor in usb_host_endpoint.
1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557 * not allowed.
1558 *
1559 * The USB core will not allow URBs to be queued to an endpoint that is being
1560 * disabled, so there's no need for mutual exclusion to protect
1561 * the xhci->devs[slot_id] structure.
1562 */
1563int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564		struct usb_host_endpoint *ep)
1565{
1566	struct xhci_hcd *xhci;
1567	struct xhci_container_ctx *in_ctx, *out_ctx;
1568	struct xhci_input_control_ctx *ctrl_ctx;
1569	struct xhci_slot_ctx *slot_ctx;
1570	unsigned int last_ctx;
1571	unsigned int ep_index;
1572	struct xhci_ep_ctx *ep_ctx;
1573	u32 drop_flag;
1574	u32 new_add_flags, new_drop_flags, new_slot_info;
1575	int ret;
1576
1577	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578	if (ret <= 0)
1579		return ret;
1580	xhci = hcd_to_xhci(hcd);
1581	if (xhci->xhc_state & XHCI_STATE_DYING)
1582		return -ENODEV;
1583
1584	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588				__func__, drop_flag);
1589		return 0;
1590	}
1591
1592	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595	if (!ctrl_ctx) {
1596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597				__func__);
1598		return 0;
1599	}
1600
1601	ep_index = xhci_get_endpoint_index(&ep->desc);
1602	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603	/* If the HC already knows the endpoint is disabled,
1604	 * or the HCD has noted it is disabled, ignore this request
1605	 */
1606	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607	     cpu_to_le32(EP_STATE_DISABLED)) ||
1608	    le32_to_cpu(ctrl_ctx->drop_flags) &
1609	    xhci_get_endpoint_flag(&ep->desc)) {
1610		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611				__func__, ep);
 
 
1612		return 0;
1613	}
1614
1615	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623	/* Update the last valid endpoint context, if we deleted the last one */
1624	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625	    LAST_CTX(last_ctx)) {
1626		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628	}
1629	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634			(unsigned int) ep->desc.bEndpointAddress,
1635			udev->slot_id,
1636			(unsigned int) new_drop_flags,
1637			(unsigned int) new_add_flags,
1638			(unsigned int) new_slot_info);
1639	return 0;
1640}
 
1641
1642/* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656		struct usb_host_endpoint *ep)
1657{
1658	struct xhci_hcd *xhci;
1659	struct xhci_container_ctx *in_ctx, *out_ctx;
1660	unsigned int ep_index;
1661	struct xhci_slot_ctx *slot_ctx;
1662	struct xhci_input_control_ctx *ctrl_ctx;
 
1663	u32 added_ctxs;
1664	unsigned int last_ctx;
1665	u32 new_add_flags, new_drop_flags, new_slot_info;
1666	struct xhci_virt_device *virt_dev;
1667	int ret = 0;
1668
1669	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670	if (ret <= 0) {
1671		/* So we won't queue a reset ep command for a root hub */
1672		ep->hcpriv = NULL;
1673		return ret;
1674	}
1675	xhci = hcd_to_xhci(hcd);
1676	if (xhci->xhc_state & XHCI_STATE_DYING)
1677		return -ENODEV;
1678
1679	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682		/* FIXME when we have to issue an evaluate endpoint command to
1683		 * deal with ep0 max packet size changing once we get the
1684		 * descriptors
1685		 */
1686		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687				__func__, added_ctxs);
1688		return 0;
1689	}
1690
1691	virt_dev = xhci->devs[udev->slot_id];
1692	in_ctx = virt_dev->in_ctx;
1693	out_ctx = virt_dev->out_ctx;
1694	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695	if (!ctrl_ctx) {
1696		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697				__func__);
1698		return 0;
1699	}
1700
1701	ep_index = xhci_get_endpoint_index(&ep->desc);
1702	/* If this endpoint is already in use, and the upper layers are trying
1703	 * to add it again without dropping it, reject the addition.
1704	 */
1705	if (virt_dev->eps[ep_index].ring &&
1706			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1707				xhci_get_endpoint_flag(&ep->desc))) {
1708		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709				"without dropping it.\n",
1710				(unsigned int) ep->desc.bEndpointAddress);
1711		return -EINVAL;
1712	}
1713
1714	/* If the HCD has already noted the endpoint is enabled,
1715	 * ignore this request.
1716	 */
1717	if (le32_to_cpu(ctrl_ctx->add_flags) &
1718	    xhci_get_endpoint_flag(&ep->desc)) {
1719		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720				__func__, ep);
1721		return 0;
1722	}
1723
1724	/*
1725	 * Configuration and alternate setting changes must be done in
1726	 * process context, not interrupt context (or so documenation
1727	 * for usb_set_interface() and usb_set_configuration() claim).
1728	 */
1729	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731				__func__, ep->desc.bEndpointAddress);
1732		return -ENOMEM;
1733	}
1734
1735	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738	/* If xhci_endpoint_disable() was called for this endpoint, but the
1739	 * xHC hasn't been notified yet through the check_bandwidth() call,
1740	 * this re-adds a new state for the endpoint from the new endpoint
1741	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1742	 * drop flags alone.
1743	 */
1744	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747	/* Update the last valid endpoint context, if we just added one past */
1748	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749	    LAST_CTX(last_ctx)) {
1750		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752	}
1753	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755	/* Store the usb_device pointer for later use */
1756	ep->hcpriv = udev;
1757
1758	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
 
 
 
1759			(unsigned int) ep->desc.bEndpointAddress,
1760			udev->slot_id,
1761			(unsigned int) new_drop_flags,
1762			(unsigned int) new_add_flags,
1763			(unsigned int) new_slot_info);
1764	return 0;
1765}
 
1766
1767static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768{
1769	struct xhci_input_control_ctx *ctrl_ctx;
1770	struct xhci_ep_ctx *ep_ctx;
1771	struct xhci_slot_ctx *slot_ctx;
1772	int i;
1773
1774	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775	if (!ctrl_ctx) {
1776		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777				__func__);
1778		return;
1779	}
1780
1781	/* When a device's add flag and drop flag are zero, any subsequent
1782	 * configure endpoint command will leave that endpoint's state
1783	 * untouched.  Make sure we don't leave any old state in the input
1784	 * endpoint contexts.
1785	 */
1786	ctrl_ctx->drop_flags = 0;
1787	ctrl_ctx->add_flags = 0;
1788	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790	/* Endpoint 0 is always valid */
1791	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792	for (i = 1; i < 31; ++i) {
1793		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794		ep_ctx->ep_info = 0;
1795		ep_ctx->ep_info2 = 0;
1796		ep_ctx->deq = 0;
1797		ep_ctx->tx_info = 0;
1798	}
1799}
1800
1801static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802		struct usb_device *udev, u32 *cmd_status)
1803{
1804	int ret;
1805
1806	switch (*cmd_status) {
1807	case COMP_ENOMEM:
1808		dev_warn(&udev->dev, "Not enough host controller resources "
1809				"for new device state.\n");
 
 
 
 
 
1810		ret = -ENOMEM;
1811		/* FIXME: can we allocate more resources for the HC? */
1812		break;
1813	case COMP_BW_ERR:
1814	case COMP_2ND_BW_ERR:
1815		dev_warn(&udev->dev, "Not enough bandwidth "
1816				"for new device state.\n");
1817		ret = -ENOSPC;
1818		/* FIXME: can we go back to the old state? */
1819		break;
1820	case COMP_TRB_ERR:
1821		/* the HCD set up something wrong */
1822		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823				"add flag = 1, "
1824				"and endpoint is not disabled.\n");
1825		ret = -EINVAL;
1826		break;
1827	case COMP_DEV_ERR:
1828		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829				"configure command.\n");
1830		ret = -ENODEV;
1831		break;
1832	case COMP_SUCCESS:
1833		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834				"Successful Endpoint Configure command");
1835		ret = 0;
1836		break;
1837	default:
1838		xhci_err(xhci, "ERROR: unexpected command completion "
1839				"code 0x%x.\n", *cmd_status);
1840		ret = -EINVAL;
1841		break;
1842	}
1843	return ret;
1844}
1845
1846static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847		struct usb_device *udev, u32 *cmd_status)
1848{
1849	int ret;
1850	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852	switch (*cmd_status) {
1853	case COMP_EINVAL:
1854		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855				"context command.\n");
 
 
 
 
 
1856		ret = -EINVAL;
1857		break;
1858	case COMP_EBADSLT:
1859		dev_warn(&udev->dev, "WARN: slot not enabled for"
1860				"evaluate context command.\n");
1861		ret = -EINVAL;
1862		break;
1863	case COMP_CTX_STATE:
1864		dev_warn(&udev->dev, "WARN: invalid context state for "
1865				"evaluate context command.\n");
1866		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867		ret = -EINVAL;
1868		break;
1869	case COMP_DEV_ERR:
1870		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871				"context command.\n");
1872		ret = -ENODEV;
1873		break;
1874	case COMP_MEL_ERR:
1875		/* Max Exit Latency too large error */
1876		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877		ret = -EINVAL;
1878		break;
1879	case COMP_SUCCESS:
1880		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881				"Successful evaluate context command");
1882		ret = 0;
1883		break;
1884	default:
1885		xhci_err(xhci, "ERROR: unexpected command completion "
1886				"code 0x%x.\n", *cmd_status);
1887		ret = -EINVAL;
1888		break;
1889	}
1890	return ret;
1891}
1892
1893static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894		struct xhci_input_control_ctx *ctrl_ctx)
1895{
1896	u32 valid_add_flags;
1897	u32 valid_drop_flags;
1898
1899	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1900	 * (bit 1).  The default control endpoint is added during the Address
1901	 * Device command and is never removed until the slot is disabled.
1902	 */
1903	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906	/* Use hweight32 to count the number of ones in the add flags, or
1907	 * number of endpoints added.  Don't count endpoints that are changed
1908	 * (both added and dropped).
1909	 */
1910	return hweight32(valid_add_flags) -
1911		hweight32(valid_add_flags & valid_drop_flags);
1912}
1913
1914static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915		struct xhci_input_control_ctx *ctrl_ctx)
1916{
1917	u32 valid_add_flags;
1918	u32 valid_drop_flags;
1919
1920	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1922
1923	return hweight32(valid_drop_flags) -
1924		hweight32(valid_add_flags & valid_drop_flags);
1925}
1926
1927/*
1928 * We need to reserve the new number of endpoints before the configure endpoint
1929 * command completes.  We can't subtract the dropped endpoints from the number
1930 * of active endpoints until the command completes because we can oversubscribe
1931 * the host in this case:
1932 *
1933 *  - the first configure endpoint command drops more endpoints than it adds
1934 *  - a second configure endpoint command that adds more endpoints is queued
1935 *  - the first configure endpoint command fails, so the config is unchanged
1936 *  - the second command may succeed, even though there isn't enough resources
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941		struct xhci_input_control_ctx *ctrl_ctx)
1942{
1943	u32 added_eps;
1944
1945	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948				"Not enough ep ctxs: "
1949				"%u active, need to add %u, limit is %u.",
1950				xhci->num_active_eps, added_eps,
1951				xhci->limit_active_eps);
1952		return -ENOMEM;
1953	}
1954	xhci->num_active_eps += added_eps;
1955	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956			"Adding %u ep ctxs, %u now active.", added_eps,
1957			xhci->num_active_eps);
1958	return 0;
1959}
1960
1961/*
1962 * The configure endpoint was failed by the xHC for some other reason, so we
1963 * need to revert the resources that failed configuration would have used.
1964 *
1965 * Must be called with xhci->lock held.
1966 */
1967static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968		struct xhci_input_control_ctx *ctrl_ctx)
1969{
1970	u32 num_failed_eps;
1971
1972	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973	xhci->num_active_eps -= num_failed_eps;
1974	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975			"Removing %u failed ep ctxs, %u now active.",
1976			num_failed_eps,
1977			xhci->num_active_eps);
1978}
1979
1980/*
1981 * Now that the command has completed, clean up the active endpoint count by
1982 * subtracting out the endpoints that were dropped (but not changed).
1983 *
1984 * Must be called with xhci->lock held.
1985 */
1986static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987		struct xhci_input_control_ctx *ctrl_ctx)
1988{
1989	u32 num_dropped_eps;
1990
1991	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992	xhci->num_active_eps -= num_dropped_eps;
1993	if (num_dropped_eps)
1994		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995				"Removing %u dropped ep ctxs, %u now active.",
1996				num_dropped_eps,
1997				xhci->num_active_eps);
1998}
1999
2000static unsigned int xhci_get_block_size(struct usb_device *udev)
2001{
2002	switch (udev->speed) {
2003	case USB_SPEED_LOW:
2004	case USB_SPEED_FULL:
2005		return FS_BLOCK;
2006	case USB_SPEED_HIGH:
2007		return HS_BLOCK;
2008	case USB_SPEED_SUPER:
 
2009		return SS_BLOCK;
2010	case USB_SPEED_UNKNOWN:
2011	case USB_SPEED_WIRELESS:
2012	default:
2013		/* Should never happen */
2014		return 1;
2015	}
2016}
2017
2018static unsigned int
2019xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020{
2021	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022		return LS_OVERHEAD;
2023	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024		return FS_OVERHEAD;
2025	return HS_OVERHEAD;
2026}
2027
2028/* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
2032static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033		struct xhci_virt_device *virt_dev,
2034		int old_active_eps)
2035{
2036	struct xhci_interval_bw_table *bw_table;
2037	struct xhci_tt_bw_info *tt_info;
2038
2039	/* Find the bandwidth table for the root port this TT is attached to. */
2040	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041	tt_info = virt_dev->tt_info;
2042	/* If this TT already had active endpoints, the bandwidth for this TT
2043	 * has already been added.  Removing all periodic endpoints (and thus
2044	 * making the TT enactive) will only decrease the bandwidth used.
2045	 */
2046	if (old_active_eps)
2047		return 0;
2048	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050			return -ENOMEM;
2051		return 0;
2052	}
2053	/* Not sure why we would have no new active endpoints...
2054	 *
2055	 * Maybe because of an Evaluate Context change for a hub update or a
2056	 * control endpoint 0 max packet size change?
2057	 * FIXME: skip the bandwidth calculation in that case.
2058	 */
2059	return 0;
2060}
2061
2062static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063		struct xhci_virt_device *virt_dev)
2064{
2065	unsigned int bw_reserved;
2066
2067	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069		return -ENOMEM;
2070
2071	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073		return -ENOMEM;
2074
2075	return 0;
2076}
2077
2078/*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval.  The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario.  Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval.  In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in.  For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so.  The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit.  This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval.  We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval.  Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
2119static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120		struct xhci_virt_device *virt_dev,
2121		int old_active_eps)
2122{
2123	unsigned int bw_reserved;
2124	unsigned int max_bandwidth;
2125	unsigned int bw_used;
2126	unsigned int block_size;
2127	struct xhci_interval_bw_table *bw_table;
2128	unsigned int packet_size = 0;
2129	unsigned int overhead = 0;
2130	unsigned int packets_transmitted = 0;
2131	unsigned int packets_remaining = 0;
2132	unsigned int i;
2133
2134	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135		return xhci_check_ss_bw(xhci, virt_dev);
2136
2137	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138		max_bandwidth = HS_BW_LIMIT;
2139		/* Convert percent of bus BW reserved to blocks reserved */
2140		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141	} else {
2142		max_bandwidth = FS_BW_LIMIT;
2143		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144	}
2145
2146	bw_table = virt_dev->bw_table;
2147	/* We need to translate the max packet size and max ESIT payloads into
2148	 * the units the hardware uses.
2149	 */
2150	block_size = xhci_get_block_size(virt_dev->udev);
2151
2152	/* If we are manipulating a LS/FS device under a HS hub, double check
2153	 * that the HS bus has enough bandwidth if we are activing a new TT.
2154	 */
2155	if (virt_dev->tt_info) {
2156		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157				"Recalculating BW for rootport %u",
2158				virt_dev->real_port);
2159		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161					"newly activated TT.\n");
2162			return -ENOMEM;
2163		}
2164		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165				"Recalculating BW for TT slot %u port %u",
2166				virt_dev->tt_info->slot_id,
2167				virt_dev->tt_info->ttport);
2168	} else {
2169		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170				"Recalculating BW for rootport %u",
2171				virt_dev->real_port);
2172	}
2173
2174	/* Add in how much bandwidth will be used for interval zero, or the
2175	 * rounded max ESIT payload + number of packets * largest overhead.
2176	 */
2177	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178		bw_table->interval_bw[0].num_packets *
2179		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182		unsigned int bw_added;
2183		unsigned int largest_mps;
2184		unsigned int interval_overhead;
2185
2186		/*
2187		 * How many packets could we transmit in this interval?
2188		 * If packets didn't fit in the previous interval, we will need
2189		 * to transmit that many packets twice within this interval.
2190		 */
2191		packets_remaining = 2 * packets_remaining +
2192			bw_table->interval_bw[i].num_packets;
2193
2194		/* Find the largest max packet size of this or the previous
2195		 * interval.
2196		 */
2197		if (list_empty(&bw_table->interval_bw[i].endpoints))
2198			largest_mps = 0;
2199		else {
2200			struct xhci_virt_ep *virt_ep;
2201			struct list_head *ep_entry;
2202
2203			ep_entry = bw_table->interval_bw[i].endpoints.next;
2204			virt_ep = list_entry(ep_entry,
2205					struct xhci_virt_ep, bw_endpoint_list);
2206			/* Convert to blocks, rounding up */
2207			largest_mps = DIV_ROUND_UP(
2208					virt_ep->bw_info.max_packet_size,
2209					block_size);
2210		}
2211		if (largest_mps > packet_size)
2212			packet_size = largest_mps;
2213
2214		/* Use the larger overhead of this or the previous interval. */
2215		interval_overhead = xhci_get_largest_overhead(
2216				&bw_table->interval_bw[i]);
2217		if (interval_overhead > overhead)
2218			overhead = interval_overhead;
2219
2220		/* How many packets can we evenly distribute across
2221		 * (1 << (i + 1)) possible scheduling opportunities?
2222		 */
2223		packets_transmitted = packets_remaining >> (i + 1);
2224
2225		/* Add in the bandwidth used for those scheduled packets */
2226		bw_added = packets_transmitted * (overhead + packet_size);
2227
2228		/* How many packets do we have remaining to transmit? */
2229		packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231		/* What largest max packet size should those packets have? */
2232		/* If we've transmitted all packets, don't carry over the
2233		 * largest packet size.
2234		 */
2235		if (packets_remaining == 0) {
2236			packet_size = 0;
2237			overhead = 0;
2238		} else if (packets_transmitted > 0) {
2239			/* Otherwise if we do have remaining packets, and we've
2240			 * scheduled some packets in this interval, take the
2241			 * largest max packet size from endpoints with this
2242			 * interval.
2243			 */
2244			packet_size = largest_mps;
2245			overhead = interval_overhead;
2246		}
2247		/* Otherwise carry over packet_size and overhead from the last
2248		 * time we had a remainder.
2249		 */
2250		bw_used += bw_added;
2251		if (bw_used > max_bandwidth) {
2252			xhci_warn(xhci, "Not enough bandwidth. "
2253					"Proposed: %u, Max: %u\n",
2254				bw_used, max_bandwidth);
2255			return -ENOMEM;
2256		}
2257	}
2258	/*
2259	 * Ok, we know we have some packets left over after even-handedly
2260	 * scheduling interval 15.  We don't know which microframes they will
2261	 * fit into, so we over-schedule and say they will be scheduled every
2262	 * microframe.
2263	 */
2264	if (packets_remaining > 0)
2265		bw_used += overhead + packet_size;
2266
2267	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268		unsigned int port_index = virt_dev->real_port - 1;
2269
2270		/* OK, we're manipulating a HS device attached to a
2271		 * root port bandwidth domain.  Include the number of active TTs
2272		 * in the bandwidth used.
2273		 */
2274		bw_used += TT_HS_OVERHEAD *
2275			xhci->rh_bw[port_index].num_active_tts;
2276	}
2277
2278	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280		"Available: %u " "percent",
2281		bw_used, max_bandwidth, bw_reserved,
2282		(max_bandwidth - bw_used - bw_reserved) * 100 /
2283		max_bandwidth);
2284
2285	bw_used += bw_reserved;
2286	if (bw_used > max_bandwidth) {
2287		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288				bw_used, max_bandwidth);
2289		return -ENOMEM;
2290	}
2291
2292	bw_table->bw_used = bw_used;
2293	return 0;
2294}
2295
2296static bool xhci_is_async_ep(unsigned int ep_type)
2297{
2298	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299					ep_type != ISOC_IN_EP &&
2300					ep_type != INT_IN_EP);
2301}
2302
2303static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304{
2305	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306}
2307
2308static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309{
2310	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312	if (ep_bw->ep_interval == 0)
2313		return SS_OVERHEAD_BURST +
2314			(ep_bw->mult * ep_bw->num_packets *
2315					(SS_OVERHEAD + mps));
2316	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318				1 << ep_bw->ep_interval);
2319
2320}
2321
2322void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323		struct xhci_bw_info *ep_bw,
2324		struct xhci_interval_bw_table *bw_table,
2325		struct usb_device *udev,
2326		struct xhci_virt_ep *virt_ep,
2327		struct xhci_tt_bw_info *tt_info)
2328{
2329	struct xhci_interval_bw	*interval_bw;
2330	int normalized_interval;
2331
2332	if (xhci_is_async_ep(ep_bw->type))
2333		return;
2334
2335	if (udev->speed == USB_SPEED_SUPER) {
2336		if (xhci_is_sync_in_ep(ep_bw->type))
2337			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338				xhci_get_ss_bw_consumed(ep_bw);
2339		else
2340			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341				xhci_get_ss_bw_consumed(ep_bw);
2342		return;
2343	}
2344
2345	/* SuperSpeed endpoints never get added to intervals in the table, so
2346	 * this check is only valid for HS/FS/LS devices.
2347	 */
2348	if (list_empty(&virt_ep->bw_endpoint_list))
2349		return;
2350	/* For LS/FS devices, we need to translate the interval expressed in
2351	 * microframes to frames.
2352	 */
2353	if (udev->speed == USB_SPEED_HIGH)
2354		normalized_interval = ep_bw->ep_interval;
2355	else
2356		normalized_interval = ep_bw->ep_interval - 3;
2357
2358	if (normalized_interval == 0)
2359		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360	interval_bw = &bw_table->interval_bw[normalized_interval];
2361	interval_bw->num_packets -= ep_bw->num_packets;
2362	switch (udev->speed) {
2363	case USB_SPEED_LOW:
2364		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365		break;
2366	case USB_SPEED_FULL:
2367		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368		break;
2369	case USB_SPEED_HIGH:
2370		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371		break;
2372	case USB_SPEED_SUPER:
2373	case USB_SPEED_UNKNOWN:
2374	case USB_SPEED_WIRELESS:
2375		/* Should never happen because only LS/FS/HS endpoints will get
2376		 * added to the endpoint list.
2377		 */
2378		return;
2379	}
2380	if (tt_info)
2381		tt_info->active_eps -= 1;
2382	list_del_init(&virt_ep->bw_endpoint_list);
2383}
2384
2385static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386		struct xhci_bw_info *ep_bw,
2387		struct xhci_interval_bw_table *bw_table,
2388		struct usb_device *udev,
2389		struct xhci_virt_ep *virt_ep,
2390		struct xhci_tt_bw_info *tt_info)
2391{
2392	struct xhci_interval_bw	*interval_bw;
2393	struct xhci_virt_ep *smaller_ep;
2394	int normalized_interval;
2395
2396	if (xhci_is_async_ep(ep_bw->type))
2397		return;
2398
2399	if (udev->speed == USB_SPEED_SUPER) {
2400		if (xhci_is_sync_in_ep(ep_bw->type))
2401			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402				xhci_get_ss_bw_consumed(ep_bw);
2403		else
2404			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405				xhci_get_ss_bw_consumed(ep_bw);
2406		return;
2407	}
2408
2409	/* For LS/FS devices, we need to translate the interval expressed in
2410	 * microframes to frames.
2411	 */
2412	if (udev->speed == USB_SPEED_HIGH)
2413		normalized_interval = ep_bw->ep_interval;
2414	else
2415		normalized_interval = ep_bw->ep_interval - 3;
2416
2417	if (normalized_interval == 0)
2418		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419	interval_bw = &bw_table->interval_bw[normalized_interval];
2420	interval_bw->num_packets += ep_bw->num_packets;
2421	switch (udev->speed) {
2422	case USB_SPEED_LOW:
2423		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424		break;
2425	case USB_SPEED_FULL:
2426		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427		break;
2428	case USB_SPEED_HIGH:
2429		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430		break;
2431	case USB_SPEED_SUPER:
2432	case USB_SPEED_UNKNOWN:
2433	case USB_SPEED_WIRELESS:
2434		/* Should never happen because only LS/FS/HS endpoints will get
2435		 * added to the endpoint list.
2436		 */
2437		return;
2438	}
2439
2440	if (tt_info)
2441		tt_info->active_eps += 1;
2442	/* Insert the endpoint into the list, largest max packet size first. */
2443	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444			bw_endpoint_list) {
2445		if (ep_bw->max_packet_size >=
2446				smaller_ep->bw_info.max_packet_size) {
2447			/* Add the new ep before the smaller endpoint */
2448			list_add_tail(&virt_ep->bw_endpoint_list,
2449					&smaller_ep->bw_endpoint_list);
2450			return;
2451		}
2452	}
2453	/* Add the new endpoint at the end of the list. */
2454	list_add_tail(&virt_ep->bw_endpoint_list,
2455			&interval_bw->endpoints);
2456}
2457
2458void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459		struct xhci_virt_device *virt_dev,
2460		int old_active_eps)
2461{
2462	struct xhci_root_port_bw_info *rh_bw_info;
2463	if (!virt_dev->tt_info)
2464		return;
2465
2466	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467	if (old_active_eps == 0 &&
2468				virt_dev->tt_info->active_eps != 0) {
2469		rh_bw_info->num_active_tts += 1;
2470		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471	} else if (old_active_eps != 0 &&
2472				virt_dev->tt_info->active_eps == 0) {
2473		rh_bw_info->num_active_tts -= 1;
2474		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475	}
2476}
2477
2478static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479		struct xhci_virt_device *virt_dev,
2480		struct xhci_container_ctx *in_ctx)
2481{
2482	struct xhci_bw_info ep_bw_info[31];
2483	int i;
2484	struct xhci_input_control_ctx *ctrl_ctx;
2485	int old_active_eps = 0;
2486
2487	if (virt_dev->tt_info)
2488		old_active_eps = virt_dev->tt_info->active_eps;
2489
2490	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491	if (!ctrl_ctx) {
2492		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493				__func__);
2494		return -ENOMEM;
2495	}
2496
2497	for (i = 0; i < 31; i++) {
2498		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499			continue;
2500
2501		/* Make a copy of the BW info in case we need to revert this */
2502		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503				sizeof(ep_bw_info[i]));
2504		/* Drop the endpoint from the interval table if the endpoint is
2505		 * being dropped or changed.
2506		 */
2507		if (EP_IS_DROPPED(ctrl_ctx, i))
2508			xhci_drop_ep_from_interval_table(xhci,
2509					&virt_dev->eps[i].bw_info,
2510					virt_dev->bw_table,
2511					virt_dev->udev,
2512					&virt_dev->eps[i],
2513					virt_dev->tt_info);
2514	}
2515	/* Overwrite the information stored in the endpoints' bw_info */
2516	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517	for (i = 0; i < 31; i++) {
2518		/* Add any changed or added endpoints to the interval table */
2519		if (EP_IS_ADDED(ctrl_ctx, i))
2520			xhci_add_ep_to_interval_table(xhci,
2521					&virt_dev->eps[i].bw_info,
2522					virt_dev->bw_table,
2523					virt_dev->udev,
2524					&virt_dev->eps[i],
2525					virt_dev->tt_info);
2526	}
2527
2528	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529		/* Ok, this fits in the bandwidth we have.
2530		 * Update the number of active TTs.
2531		 */
2532		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533		return 0;
2534	}
2535
2536	/* We don't have enough bandwidth for this, revert the stored info. */
2537	for (i = 0; i < 31; i++) {
2538		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539			continue;
2540
2541		/* Drop the new copies of any added or changed endpoints from
2542		 * the interval table.
2543		 */
2544		if (EP_IS_ADDED(ctrl_ctx, i)) {
2545			xhci_drop_ep_from_interval_table(xhci,
2546					&virt_dev->eps[i].bw_info,
2547					virt_dev->bw_table,
2548					virt_dev->udev,
2549					&virt_dev->eps[i],
2550					virt_dev->tt_info);
2551		}
2552		/* Revert the endpoint back to its old information */
2553		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554				sizeof(ep_bw_info[i]));
2555		/* Add any changed or dropped endpoints back into the table */
2556		if (EP_IS_DROPPED(ctrl_ctx, i))
2557			xhci_add_ep_to_interval_table(xhci,
2558					&virt_dev->eps[i].bw_info,
2559					virt_dev->bw_table,
2560					virt_dev->udev,
2561					&virt_dev->eps[i],
2562					virt_dev->tt_info);
2563	}
2564	return -ENOMEM;
2565}
2566
2567
2568/* Issue a configure endpoint command or evaluate context command
2569 * and wait for it to finish.
2570 */
2571static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572		struct usb_device *udev,
2573		struct xhci_command *command,
2574		bool ctx_change, bool must_succeed)
2575{
2576	int ret;
2577	int timeleft;
2578	unsigned long flags;
2579	struct xhci_container_ctx *in_ctx;
2580	struct xhci_input_control_ctx *ctrl_ctx;
2581	struct completion *cmd_completion;
2582	u32 *cmd_status;
2583	struct xhci_virt_device *virt_dev;
2584	union xhci_trb *cmd_trb;
 
 
 
2585
2586	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2587	virt_dev = xhci->devs[udev->slot_id];
2588
2589	if (command)
2590		in_ctx = command->in_ctx;
2591	else
2592		in_ctx = virt_dev->in_ctx;
2593	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594	if (!ctrl_ctx) {
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597				__func__);
2598		return -ENOMEM;
2599	}
2600
2601	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603		spin_unlock_irqrestore(&xhci->lock, flags);
2604		xhci_warn(xhci, "Not enough host resources, "
2605				"active endpoint contexts = %u\n",
2606				xhci->num_active_eps);
2607		return -ENOMEM;
2608	}
2609	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612			xhci_free_host_resources(xhci, ctrl_ctx);
2613		spin_unlock_irqrestore(&xhci->lock, flags);
2614		xhci_warn(xhci, "Not enough bandwidth\n");
2615		return -ENOMEM;
2616	}
2617
2618	if (command) {
2619		cmd_completion = command->completion;
2620		cmd_status = &command->status;
2621		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623	} else {
2624		cmd_completion = &virt_dev->cmd_completion;
2625		cmd_status = &virt_dev->cmd_status;
2626	}
2627	init_completion(cmd_completion);
2628
2629	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630	if (!ctx_change)
2631		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
 
2632				udev->slot_id, must_succeed);
2633	else
2634		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
 
2635				udev->slot_id, must_succeed);
2636	if (ret < 0) {
2637		if (command)
2638			list_del(&command->cmd_list);
2639		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640			xhci_free_host_resources(xhci, ctrl_ctx);
2641		spin_unlock_irqrestore(&xhci->lock, flags);
2642		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2643				"FIXME allocate a new ring segment");
2644		return -ENOMEM;
2645	}
2646	xhci_ring_cmd_db(xhci);
2647	spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649	/* Wait for the configure endpoint command to complete */
2650	timeleft = wait_for_completion_interruptible_timeout(
2651			cmd_completion,
2652			XHCI_CMD_DEFAULT_TIMEOUT);
2653	if (timeleft <= 0) {
2654		xhci_warn(xhci, "%s while waiting for %s command\n",
2655				timeleft == 0 ? "Timeout" : "Signal",
2656				ctx_change == 0 ?
2657					"configure endpoint" :
2658					"evaluate context");
2659		/* cancel the configure endpoint command */
2660		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661		if (ret < 0)
2662			return ret;
2663		return -ETIME;
2664	}
2665
2666	if (!ctx_change)
2667		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
 
2668	else
2669		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
 
2670
2671	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672		spin_lock_irqsave(&xhci->lock, flags);
2673		/* If the command failed, remove the reserved resources.
2674		 * Otherwise, clean up the estimate to include dropped eps.
2675		 */
2676		if (ret)
2677			xhci_free_host_resources(xhci, ctrl_ctx);
2678		else
2679			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680		spin_unlock_irqrestore(&xhci->lock, flags);
2681	}
2682	return ret;
2683}
2684
2685static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686	struct xhci_virt_device *vdev, int i)
2687{
2688	struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690	if (ep->ep_state & EP_HAS_STREAMS) {
2691		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692				xhci_get_endpoint_address(i));
2693		xhci_free_stream_info(xhci, ep->stream_info);
2694		ep->stream_info = NULL;
2695		ep->ep_state &= ~EP_HAS_STREAMS;
2696	}
2697}
2698
2699/* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface.  Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710{
2711	int i;
2712	int ret = 0;
2713	struct xhci_hcd *xhci;
2714	struct xhci_virt_device	*virt_dev;
2715	struct xhci_input_control_ctx *ctrl_ctx;
2716	struct xhci_slot_ctx *slot_ctx;
 
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return ret;
2721	xhci = hcd_to_xhci(hcd);
2722	if (xhci->xhc_state & XHCI_STATE_DYING)
 
2723		return -ENODEV;
2724
2725	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726	virt_dev = xhci->devs[udev->slot_id];
2727
 
 
 
 
 
 
2728	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730	if (!ctrl_ctx) {
2731		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732				__func__);
2733		return -ENOMEM;
 
2734	}
2735	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738
2739	/* Don't issue the command if there's no endpoints to update. */
2740	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741			ctrl_ctx->drop_flags == 0)
2742		return 0;
2743
2744	xhci_dbg(xhci, "New Input Control Context:\n");
 
2745	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748
2749	ret = xhci_configure_endpoint(xhci, udev, NULL,
2750			false, false);
2751	if (ret) {
2752		/* Callee should call reset_bandwidth() */
2753		return ret;
 
2754	}
2755
2756	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
 
 
2759
2760	/* Free any rings that were dropped, but not changed. */
2761	for (i = 1; i < 31; ++i) {
2762		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766		}
2767	}
2768	xhci_zero_in_ctx(xhci, virt_dev);
2769	/*
2770	 * Install any rings for completely new endpoints or changed endpoints,
2771	 * and free or cache any old rings from changed endpoints.
2772	 */
2773	for (i = 1; i < 31; ++i) {
2774		if (!virt_dev->eps[i].new_ring)
2775			continue;
2776		/* Only cache or free the old ring if it exists.
2777		 * It may not if this is the first add of an endpoint.
2778		 */
2779		if (virt_dev->eps[i].ring) {
2780			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781		}
2782		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784		virt_dev->eps[i].new_ring = NULL;
 
2785	}
 
 
 
2786
2787	return ret;
2788}
 
2789
2790void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791{
2792	struct xhci_hcd *xhci;
2793	struct xhci_virt_device	*virt_dev;
2794	int i, ret;
2795
2796	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797	if (ret <= 0)
2798		return;
2799	xhci = hcd_to_xhci(hcd);
2800
2801	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802	virt_dev = xhci->devs[udev->slot_id];
2803	/* Free any rings allocated for added endpoints */
2804	for (i = 0; i < 31; ++i) {
2805		if (virt_dev->eps[i].new_ring) {
 
2806			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807			virt_dev->eps[i].new_ring = NULL;
2808		}
2809	}
2810	xhci_zero_in_ctx(xhci, virt_dev);
2811}
 
2812
2813static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814		struct xhci_container_ctx *in_ctx,
2815		struct xhci_container_ctx *out_ctx,
2816		struct xhci_input_control_ctx *ctrl_ctx,
2817		u32 add_flags, u32 drop_flags)
2818{
2819	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821	xhci_slot_copy(xhci, in_ctx, out_ctx);
2822	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824	xhci_dbg(xhci, "Input Context:\n");
2825	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826}
2827
2828static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829		unsigned int slot_id, unsigned int ep_index,
2830		struct xhci_dequeue_state *deq_state)
2831{
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	struct xhci_container_ctx *in_ctx;
2834	struct xhci_ep_ctx *ep_ctx;
2835	u32 added_ctxs;
2836	dma_addr_t addr;
 
2837
2838	in_ctx = xhci->devs[slot_id]->in_ctx;
2839	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840	if (!ctrl_ctx) {
2841		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842				__func__);
2843		return;
2844	}
2845
2846	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847			xhci->devs[slot_id]->out_ctx, ep_index);
2848	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850			deq_state->new_deq_ptr);
2851	if (addr == 0) {
2852		xhci_warn(xhci, "WARN Cannot submit config ep after "
2853				"reset ep command\n");
2854		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855				deq_state->new_deq_seg,
2856				deq_state->new_deq_ptr);
2857		return;
2858	}
2859	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864			added_ctxs, added_ctxs);
2865}
2866
2867void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868		struct usb_device *udev, unsigned int ep_index)
2869{
2870	struct xhci_dequeue_state deq_state;
2871	struct xhci_virt_ep *ep;
2872
2873	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874			"Cleaning up stalled endpoint ring");
2875	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876	/* We need to move the HW's dequeue pointer past this TD,
2877	 * or it will attempt to resend it on the next doorbell ring.
2878	 */
2879	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880			ep_index, ep->stopped_stream, ep->stopped_td,
2881			&deq_state);
2882
2883	/* HW with the reset endpoint quirk will use the saved dequeue state to
2884	 * issue a configure endpoint command later.
2885	 */
2886	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888				"Queueing new dequeue state");
2889		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890				ep_index, ep->stopped_stream, &deq_state);
2891	} else {
2892		/* Better hope no one uses the input context between now and the
2893		 * reset endpoint completion!
2894		 * XXX: No idea how this hardware will react when stream rings
2895		 * are enabled.
2896		 */
2897		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898				"Setting up input context for "
2899				"configure endpoint command");
2900		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901				ep_index, &deq_state);
2902	}
 
 
 
 
 
 
 
2903}
2904
2905/* Deal with stalled endpoints.  The core should have sent the control message
2906 * to clear the halt condition.  However, we need to make the xHCI hardware
2907 * reset its sequence number, since a device will expect a sequence number of
2908 * zero after the halt condition is cleared.
2909 * Context: in_interrupt
 
 
 
 
 
 
 
 
2910 */
2911void xhci_endpoint_reset(struct usb_hcd *hcd,
2912		struct usb_host_endpoint *ep)
 
2913{
2914	struct xhci_hcd *xhci;
2915	struct usb_device *udev;
 
 
 
 
2916	unsigned int ep_index;
2917	unsigned long flags;
2918	int ret;
2919	struct xhci_virt_ep *virt_ep;
2920
2921	xhci = hcd_to_xhci(hcd);
2922	udev = (struct usb_device *) ep->hcpriv;
2923	/* Called with a root hub endpoint (or an endpoint that wasn't added
2924	 * with xhci_add_endpoint()
 
 
 
2925	 */
2926	if (!ep->hcpriv)
2927		return;
2928	ep_index = xhci_get_endpoint_index(&ep->desc);
2929	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930	if (!virt_ep->stopped_td) {
2931		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932			"Endpoint 0x%x not halted, refusing to reset.",
2933			ep->desc.bEndpointAddress);
 
 
 
 
 
2934		return;
2935	}
2936	if (usb_endpoint_xfer_control(&ep->desc)) {
2937		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938				"Control endpoint stall already handled.");
 
 
 
 
 
 
 
 
 
 
 
 
 
2939		return;
2940	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941
2942	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943			"Queueing reset endpoint command");
2944	spin_lock_irqsave(&xhci->lock, flags);
2945	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
 
 
 
2946	/*
2947	 * Can't change the ring dequeue pointer until it's transitioned to the
2948	 * stopped state, which is only upon a successful reset endpoint
2949	 * command.  Better hope that last command worked!
2950	 */
2951	if (!ret) {
2952		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953		kfree(virt_ep->stopped_td);
2954		xhci_ring_cmd_db(xhci);
 
 
 
 
 
 
 
 
 
 
 
 
2955	}
2956	virt_ep->stopped_td = NULL;
2957	virt_ep->stopped_stream = 0;
2958	spin_unlock_irqrestore(&xhci->lock, flags);
2959
2960	if (ret)
2961		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962}
2963
2964static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2965		struct usb_device *udev, struct usb_host_endpoint *ep,
2966		unsigned int slot_id)
2967{
2968	int ret;
2969	unsigned int ep_index;
2970	unsigned int ep_state;
2971
2972	if (!ep)
2973		return -EINVAL;
2974	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2975	if (ret <= 0)
2976		return -EINVAL;
2977	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2978		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2979				" descriptor for ep 0x%x does not support streams\n",
2980				ep->desc.bEndpointAddress);
2981		return -EINVAL;
2982	}
2983
2984	ep_index = xhci_get_endpoint_index(&ep->desc);
2985	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2986	if (ep_state & EP_HAS_STREAMS ||
2987			ep_state & EP_GETTING_STREAMS) {
2988		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2989				"already has streams set up.\n",
2990				ep->desc.bEndpointAddress);
2991		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2992				"dynamic stream context array reallocation.\n");
2993		return -EINVAL;
2994	}
2995	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2996		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2997				"endpoint 0x%x; URBs are pending.\n",
2998				ep->desc.bEndpointAddress);
2999		return -EINVAL;
3000	}
3001	return 0;
3002}
3003
3004static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3005		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3006{
3007	unsigned int max_streams;
3008
3009	/* The stream context array size must be a power of two */
3010	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3011	/*
3012	 * Find out how many primary stream array entries the host controller
3013	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3014	 * level page entries), but that's an optional feature for xHCI host
3015	 * controllers. xHCs must support at least 4 stream IDs.
3016	 */
3017	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3018	if (*num_stream_ctxs > max_streams) {
3019		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3020				max_streams);
3021		*num_stream_ctxs = max_streams;
3022		*num_streams = max_streams;
3023	}
3024}
3025
3026/* Returns an error code if one of the endpoint already has streams.
3027 * This does not change any data structures, it only checks and gathers
3028 * information.
3029 */
3030static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3031		struct usb_device *udev,
3032		struct usb_host_endpoint **eps, unsigned int num_eps,
3033		unsigned int *num_streams, u32 *changed_ep_bitmask)
3034{
3035	unsigned int max_streams;
3036	unsigned int endpoint_flag;
3037	int i;
3038	int ret;
3039
3040	for (i = 0; i < num_eps; i++) {
3041		ret = xhci_check_streams_endpoint(xhci, udev,
3042				eps[i], udev->slot_id);
3043		if (ret < 0)
3044			return ret;
3045
3046		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3047		if (max_streams < (*num_streams - 1)) {
3048			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3049					eps[i]->desc.bEndpointAddress,
3050					max_streams);
3051			*num_streams = max_streams+1;
3052		}
3053
3054		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3055		if (*changed_ep_bitmask & endpoint_flag)
3056			return -EINVAL;
3057		*changed_ep_bitmask |= endpoint_flag;
3058	}
3059	return 0;
3060}
3061
3062static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3063		struct usb_device *udev,
3064		struct usb_host_endpoint **eps, unsigned int num_eps)
3065{
3066	u32 changed_ep_bitmask = 0;
3067	unsigned int slot_id;
3068	unsigned int ep_index;
3069	unsigned int ep_state;
3070	int i;
3071
3072	slot_id = udev->slot_id;
3073	if (!xhci->devs[slot_id])
3074		return 0;
3075
3076	for (i = 0; i < num_eps; i++) {
3077		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3079		/* Are streams already being freed for the endpoint? */
3080		if (ep_state & EP_GETTING_NO_STREAMS) {
3081			xhci_warn(xhci, "WARN Can't disable streams for "
3082					"endpoint 0x%x, "
3083					"streams are being disabled already\n",
3084					eps[i]->desc.bEndpointAddress);
3085			return 0;
3086		}
3087		/* Are there actually any streams to free? */
3088		if (!(ep_state & EP_HAS_STREAMS) &&
3089				!(ep_state & EP_GETTING_STREAMS)) {
3090			xhci_warn(xhci, "WARN Can't disable streams for "
3091					"endpoint 0x%x, "
3092					"streams are already disabled!\n",
3093					eps[i]->desc.bEndpointAddress);
3094			xhci_warn(xhci, "WARN xhci_free_streams() called "
3095					"with non-streams endpoint\n");
3096			return 0;
3097		}
3098		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3099	}
3100	return changed_ep_bitmask;
3101}
3102
3103/*
3104 * The USB device drivers use this function (though the HCD interface in USB
3105 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3106 * coordinate mass storage command queueing across multiple endpoints (basically
3107 * a stream ID == a task ID).
3108 *
3109 * Setting up streams involves allocating the same size stream context array
3110 * for each endpoint and issuing a configure endpoint command for all endpoints.
3111 *
3112 * Don't allow the call to succeed if one endpoint only supports one stream
3113 * (which means it doesn't support streams at all).
3114 *
3115 * Drivers may get less stream IDs than they asked for, if the host controller
3116 * hardware or endpoints claim they can't support the number of requested
3117 * stream IDs.
3118 */
3119int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3120		struct usb_host_endpoint **eps, unsigned int num_eps,
3121		unsigned int num_streams, gfp_t mem_flags)
3122{
3123	int i, ret;
3124	struct xhci_hcd *xhci;
3125	struct xhci_virt_device *vdev;
3126	struct xhci_command *config_cmd;
3127	struct xhci_input_control_ctx *ctrl_ctx;
3128	unsigned int ep_index;
3129	unsigned int num_stream_ctxs;
 
3130	unsigned long flags;
3131	u32 changed_ep_bitmask = 0;
3132
3133	if (!eps)
3134		return -EINVAL;
3135
3136	/* Add one to the number of streams requested to account for
3137	 * stream 0 that is reserved for xHCI usage.
3138	 */
3139	num_streams += 1;
3140	xhci = hcd_to_xhci(hcd);
3141	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142			num_streams);
3143
3144	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
 
3146		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3147		return -ENOSYS;
3148	}
3149
3150	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3151	if (!config_cmd) {
3152		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3153		return -ENOMEM;
3154	}
3155	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3156	if (!ctrl_ctx) {
3157		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3158				__func__);
3159		xhci_free_command(xhci, config_cmd);
3160		return -ENOMEM;
3161	}
3162
3163	/* Check to make sure all endpoints are not already configured for
3164	 * streams.  While we're at it, find the maximum number of streams that
3165	 * all the endpoints will support and check for duplicate endpoints.
3166	 */
3167	spin_lock_irqsave(&xhci->lock, flags);
3168	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3169			num_eps, &num_streams, &changed_ep_bitmask);
3170	if (ret < 0) {
3171		xhci_free_command(xhci, config_cmd);
3172		spin_unlock_irqrestore(&xhci->lock, flags);
3173		return ret;
3174	}
3175	if (num_streams <= 1) {
3176		xhci_warn(xhci, "WARN: endpoints can't handle "
3177				"more than one stream.\n");
3178		xhci_free_command(xhci, config_cmd);
3179		spin_unlock_irqrestore(&xhci->lock, flags);
3180		return -EINVAL;
3181	}
3182	vdev = xhci->devs[udev->slot_id];
3183	/* Mark each endpoint as being in transition, so
3184	 * xhci_urb_enqueue() will reject all URBs.
3185	 */
3186	for (i = 0; i < num_eps; i++) {
3187		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3189	}
3190	spin_unlock_irqrestore(&xhci->lock, flags);
3191
3192	/* Setup internal data structures and allocate HW data structures for
3193	 * streams (but don't install the HW structures in the input context
3194	 * until we're sure all memory allocation succeeded).
3195	 */
3196	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3197	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3198			num_stream_ctxs, num_streams);
3199
3200	for (i = 0; i < num_eps; i++) {
3201		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3202		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3203				num_stream_ctxs,
3204				num_streams, mem_flags);
 
3205		if (!vdev->eps[ep_index].stream_info)
3206			goto cleanup;
3207		/* Set maxPstreams in endpoint context and update deq ptr to
3208		 * point to stream context array. FIXME
3209		 */
3210	}
3211
3212	/* Set up the input context for a configure endpoint command. */
3213	for (i = 0; i < num_eps; i++) {
3214		struct xhci_ep_ctx *ep_ctx;
3215
3216		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3217		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3218
3219		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3220				vdev->out_ctx, ep_index);
3221		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3222				vdev->eps[ep_index].stream_info);
3223	}
3224	/* Tell the HW to drop its old copy of the endpoint context info
3225	 * and add the updated copy from the input context.
3226	 */
3227	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3228			vdev->out_ctx, ctrl_ctx,
3229			changed_ep_bitmask, changed_ep_bitmask);
3230
3231	/* Issue and wait for the configure endpoint command */
3232	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3233			false, false);
3234
3235	/* xHC rejected the configure endpoint command for some reason, so we
3236	 * leave the old ring intact and free our internal streams data
3237	 * structure.
3238	 */
3239	if (ret < 0)
3240		goto cleanup;
3241
3242	spin_lock_irqsave(&xhci->lock, flags);
3243	for (i = 0; i < num_eps; i++) {
3244		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3246		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3247			 udev->slot_id, ep_index);
3248		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3249	}
3250	xhci_free_command(xhci, config_cmd);
3251	spin_unlock_irqrestore(&xhci->lock, flags);
3252
 
 
 
 
3253	/* Subtract 1 for stream 0, which drivers can't use */
3254	return num_streams - 1;
3255
3256cleanup:
3257	/* If it didn't work, free the streams! */
3258	for (i = 0; i < num_eps; i++) {
3259		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3260		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3261		vdev->eps[ep_index].stream_info = NULL;
3262		/* FIXME Unset maxPstreams in endpoint context and
3263		 * update deq ptr to point to normal string ring.
3264		 */
3265		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3266		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3267		xhci_endpoint_zero(xhci, vdev, eps[i]);
3268	}
3269	xhci_free_command(xhci, config_cmd);
3270	return -ENOMEM;
3271}
3272
3273/* Transition the endpoint from using streams to being a "normal" endpoint
3274 * without streams.
3275 *
3276 * Modify the endpoint context state, submit a configure endpoint command,
3277 * and free all endpoint rings for streams if that completes successfully.
3278 */
3279int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3280		struct usb_host_endpoint **eps, unsigned int num_eps,
3281		gfp_t mem_flags)
3282{
3283	int i, ret;
3284	struct xhci_hcd *xhci;
3285	struct xhci_virt_device *vdev;
3286	struct xhci_command *command;
3287	struct xhci_input_control_ctx *ctrl_ctx;
3288	unsigned int ep_index;
3289	unsigned long flags;
3290	u32 changed_ep_bitmask;
3291
3292	xhci = hcd_to_xhci(hcd);
3293	vdev = xhci->devs[udev->slot_id];
3294
3295	/* Set up a configure endpoint command to remove the streams rings */
3296	spin_lock_irqsave(&xhci->lock, flags);
3297	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3298			udev, eps, num_eps);
3299	if (changed_ep_bitmask == 0) {
3300		spin_unlock_irqrestore(&xhci->lock, flags);
3301		return -EINVAL;
3302	}
3303
3304	/* Use the xhci_command structure from the first endpoint.  We may have
3305	 * allocated too many, but the driver may call xhci_free_streams() for
3306	 * each endpoint it grouped into one call to xhci_alloc_streams().
3307	 */
3308	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3309	command = vdev->eps[ep_index].stream_info->free_streams_command;
3310	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3311	if (!ctrl_ctx) {
3312		spin_unlock_irqrestore(&xhci->lock, flags);
3313		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3314				__func__);
3315		return -EINVAL;
3316	}
3317
3318	for (i = 0; i < num_eps; i++) {
3319		struct xhci_ep_ctx *ep_ctx;
3320
3321		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3322		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3323		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3324			EP_GETTING_NO_STREAMS;
3325
3326		xhci_endpoint_copy(xhci, command->in_ctx,
3327				vdev->out_ctx, ep_index);
3328		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3329				&vdev->eps[ep_index]);
3330	}
3331	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3332			vdev->out_ctx, ctrl_ctx,
3333			changed_ep_bitmask, changed_ep_bitmask);
3334	spin_unlock_irqrestore(&xhci->lock, flags);
3335
3336	/* Issue and wait for the configure endpoint command,
3337	 * which must succeed.
3338	 */
3339	ret = xhci_configure_endpoint(xhci, udev, command,
3340			false, true);
3341
3342	/* xHC rejected the configure endpoint command for some reason, so we
3343	 * leave the streams rings intact.
3344	 */
3345	if (ret < 0)
3346		return ret;
3347
3348	spin_lock_irqsave(&xhci->lock, flags);
3349	for (i = 0; i < num_eps; i++) {
3350		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3352		vdev->eps[ep_index].stream_info = NULL;
3353		/* FIXME Unset maxPstreams in endpoint context and
3354		 * update deq ptr to point to normal string ring.
3355		 */
3356		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3357		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3358	}
3359	spin_unlock_irqrestore(&xhci->lock, flags);
3360
3361	return 0;
3362}
3363
3364/*
3365 * Deletes endpoint resources for endpoints that were active before a Reset
3366 * Device command, or a Disable Slot command.  The Reset Device command leaves
3367 * the control endpoint intact, whereas the Disable Slot command deletes it.
3368 *
3369 * Must be called with xhci->lock held.
3370 */
3371void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3372	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3373{
3374	int i;
3375	unsigned int num_dropped_eps = 0;
3376	unsigned int drop_flags = 0;
3377
3378	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3379		if (virt_dev->eps[i].ring) {
3380			drop_flags |= 1 << i;
3381			num_dropped_eps++;
3382		}
3383	}
3384	xhci->num_active_eps -= num_dropped_eps;
3385	if (num_dropped_eps)
3386		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3387				"Dropped %u ep ctxs, flags = 0x%x, "
3388				"%u now active.",
3389				num_dropped_eps, drop_flags,
3390				xhci->num_active_eps);
3391}
3392
3393/*
3394 * This submits a Reset Device Command, which will set the device state to 0,
3395 * set the device address to 0, and disable all the endpoints except the default
3396 * control endpoint.  The USB core should come back and call
3397 * xhci_address_device(), and then re-set up the configuration.  If this is
3398 * called because of a usb_reset_and_verify_device(), then the old alternate
3399 * settings will be re-installed through the normal bandwidth allocation
3400 * functions.
3401 *
3402 * Wait for the Reset Device command to finish.  Remove all structures
3403 * associated with the endpoints that were disabled.  Clear the input device
3404 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3405 *
3406 * If the virt_dev to be reset does not exist or does not match the udev,
3407 * it means the device is lost, possibly due to the xHC restore error and
3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3409 * re-allocate the device.
3410 */
3411int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3412{
3413	int ret, i;
3414	unsigned long flags;
3415	struct xhci_hcd *xhci;
3416	unsigned int slot_id;
3417	struct xhci_virt_device *virt_dev;
3418	struct xhci_command *reset_device_cmd;
3419	int timeleft;
3420	int last_freed_endpoint;
3421	struct xhci_slot_ctx *slot_ctx;
3422	int old_active_eps = 0;
3423
3424	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3425	if (ret <= 0)
3426		return ret;
3427	xhci = hcd_to_xhci(hcd);
3428	slot_id = udev->slot_id;
3429	virt_dev = xhci->devs[slot_id];
3430	if (!virt_dev) {
3431		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3432				"not exist. Re-allocate the device\n", slot_id);
3433		ret = xhci_alloc_dev(hcd, udev);
3434		if (ret == 1)
3435			return 0;
3436		else
3437			return -EINVAL;
3438	}
3439
 
 
 
3440	if (virt_dev->udev != udev) {
3441		/* If the virt_dev and the udev does not match, this virt_dev
3442		 * may belong to another udev.
3443		 * Re-allocate the device.
3444		 */
3445		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3446				"not match the udev. Re-allocate the device\n",
3447				slot_id);
3448		ret = xhci_alloc_dev(hcd, udev);
3449		if (ret == 1)
3450			return 0;
3451		else
3452			return -EINVAL;
3453	}
3454
3455	/* If device is not setup, there is no point in resetting it */
3456	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3457	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3458						SLOT_STATE_DISABLED)
3459		return 0;
3460
 
 
3461	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3462	/* Allocate the command structure that holds the struct completion.
3463	 * Assume we're in process context, since the normal device reset
3464	 * process has to wait for the device anyway.  Storage devices are
3465	 * reset as part of error handling, so use GFP_NOIO instead of
3466	 * GFP_KERNEL.
3467	 */
3468	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3469	if (!reset_device_cmd) {
3470		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3471		return -ENOMEM;
3472	}
3473
3474	/* Attempt to submit the Reset Device command to the command ring */
3475	spin_lock_irqsave(&xhci->lock, flags);
3476	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3477
3478	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3479	ret = xhci_queue_reset_device(xhci, slot_id);
3480	if (ret) {
3481		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3482		list_del(&reset_device_cmd->cmd_list);
3483		spin_unlock_irqrestore(&xhci->lock, flags);
3484		goto command_cleanup;
3485	}
3486	xhci_ring_cmd_db(xhci);
3487	spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489	/* Wait for the Reset Device command to finish */
3490	timeleft = wait_for_completion_interruptible_timeout(
3491			reset_device_cmd->completion,
3492			XHCI_CMD_DEFAULT_TIMEOUT);
3493	if (timeleft <= 0) {
3494		xhci_warn(xhci, "%s while waiting for reset device command\n",
3495				timeleft == 0 ? "Timeout" : "Signal");
3496		spin_lock_irqsave(&xhci->lock, flags);
3497		/* The timeout might have raced with the event ring handler, so
3498		 * only delete from the list if the item isn't poisoned.
3499		 */
3500		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3501			list_del(&reset_device_cmd->cmd_list);
3502		spin_unlock_irqrestore(&xhci->lock, flags);
3503		ret = -ETIME;
3504		goto command_cleanup;
3505	}
3506
3507	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508	 * unless we tried to reset a slot ID that wasn't enabled,
3509	 * or the device wasn't in the addressed or configured state.
3510	 */
3511	ret = reset_device_cmd->status;
3512	switch (ret) {
3513	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
 
 
 
 
 
3515		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516				slot_id,
3517				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518		xhci_dbg(xhci, "Not freeing device rings.\n");
3519		/* Don't treat this as an error.  May change my mind later. */
3520		ret = 0;
3521		goto command_cleanup;
3522	case COMP_SUCCESS:
3523		xhci_dbg(xhci, "Successful reset device command.\n");
3524		break;
3525	default:
3526		if (xhci_is_vendor_info_code(xhci, ret))
3527			break;
3528		xhci_warn(xhci, "Unknown completion code %u for "
3529				"reset device command.\n", ret);
3530		ret = -EINVAL;
3531		goto command_cleanup;
3532	}
3533
3534	/* Free up host controller endpoint resources */
3535	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536		spin_lock_irqsave(&xhci->lock, flags);
3537		/* Don't delete the default control endpoint resources */
3538		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539		spin_unlock_irqrestore(&xhci->lock, flags);
3540	}
3541
3542	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543	last_freed_endpoint = 1;
3544	for (i = 1; i < 31; ++i) {
3545		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546
3547		if (ep->ep_state & EP_HAS_STREAMS) {
3548			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549					xhci_get_endpoint_address(i));
3550			xhci_free_stream_info(xhci, ep->stream_info);
3551			ep->stream_info = NULL;
3552			ep->ep_state &= ~EP_HAS_STREAMS;
3553		}
3554
3555		if (ep->ring) {
3556			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557			last_freed_endpoint = i;
3558		}
3559		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560			xhci_drop_ep_from_interval_table(xhci,
3561					&virt_dev->eps[i].bw_info,
3562					virt_dev->bw_table,
3563					udev,
3564					&virt_dev->eps[i],
3565					virt_dev->tt_info);
3566		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567	}
3568	/* If necessary, update the number of active TTs on this root port */
3569	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570
3571	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573	ret = 0;
3574
3575command_cleanup:
3576	xhci_free_command(xhci, reset_device_cmd);
3577	return ret;
3578}
3579
3580/*
3581 * At this point, the struct usb_device is about to go away, the device has
3582 * disconnected, and all traffic has been stopped and the endpoints have been
3583 * disabled.  Free any HC data structures associated with that device.
3584 */
3585void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586{
3587	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588	struct xhci_virt_device *virt_dev;
 
3589	unsigned long flags;
3590	u32 state;
3591	int i, ret;
3592
3593#ifndef CONFIG_USB_DEFAULT_PERSIST
3594	/*
3595	 * We called pm_runtime_get_noresume when the device was attached.
3596	 * Decrement the counter here to allow controller to runtime suspend
3597	 * if no devices remain.
3598	 */
3599	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3600		pm_runtime_put_noidle(hcd->self.controller);
3601#endif
3602
3603	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3604	/* If the host is halted due to driver unload, we still need to free the
3605	 * device.
3606	 */
3607	if (ret <= 0 && ret != -ENODEV)
3608		return;
3609
3610	virt_dev = xhci->devs[udev->slot_id];
 
 
3611
3612	/* Stop any wayward timer functions (which may grab the lock) */
3613	for (i = 0; i < 31; ++i) {
3614		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3615		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3616	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3617
3618	spin_lock_irqsave(&xhci->lock, flags);
3619	/* Don't disable the slot if the host controller is dead. */
3620	state = readl(&xhci->op_regs->status);
3621	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3622			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3623		xhci_free_virt_device(xhci, udev->slot_id);
3624		spin_unlock_irqrestore(&xhci->lock, flags);
3625		return;
 
3626	}
3627
3628	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
 
 
3629		spin_unlock_irqrestore(&xhci->lock, flags);
3630		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631		return;
3632	}
3633	xhci_ring_cmd_db(xhci);
3634	spin_unlock_irqrestore(&xhci->lock, flags);
3635	/*
3636	 * Event command completion handler will free any data structures
3637	 * associated with the slot.  XXX Can free sleep?
3638	 */
 
 
 
 
 
 
3639}
3640
3641/*
3642 * Checks if we have enough host controller resources for the default control
3643 * endpoint.
3644 *
3645 * Must be called with xhci->lock held.
3646 */
3647static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3648{
3649	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3650		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3651				"Not enough ep ctxs: "
3652				"%u active, need to add 1, limit is %u.",
3653				xhci->num_active_eps, xhci->limit_active_eps);
3654		return -ENOMEM;
3655	}
3656	xhci->num_active_eps += 1;
3657	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658			"Adding 1 ep ctx, %u now active.",
3659			xhci->num_active_eps);
3660	return 0;
3661}
3662
3663
3664/*
3665 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3666 * timed out, or allocating memory failed.  Returns 1 on success.
3667 */
3668int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3669{
3670	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3671	unsigned long flags;
3672	int timeleft;
3673	int ret;
3674	union xhci_trb *cmd_trb;
 
 
 
3675
3676	spin_lock_irqsave(&xhci->lock, flags);
3677	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3678	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3679	if (ret) {
3680		spin_unlock_irqrestore(&xhci->lock, flags);
3681		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3682		return 0;
3683	}
3684	xhci_ring_cmd_db(xhci);
3685	spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687	/* XXX: how much time for xHC slot assignment? */
3688	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689			XHCI_CMD_DEFAULT_TIMEOUT);
3690	if (timeleft <= 0) {
3691		xhci_warn(xhci, "%s while waiting for a slot\n",
3692				timeleft == 0 ? "Timeout" : "Signal");
3693		/* cancel the enable slot request */
3694		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3695	}
3696
3697	if (!xhci->slot_id) {
3698		xhci_err(xhci, "Error while assigning device slot ID\n");
 
 
 
 
 
3699		return 0;
3700	}
3701
 
 
3702	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3703		spin_lock_irqsave(&xhci->lock, flags);
3704		ret = xhci_reserve_host_control_ep_resources(xhci);
3705		if (ret) {
3706			spin_unlock_irqrestore(&xhci->lock, flags);
3707			xhci_warn(xhci, "Not enough host resources, "
3708					"active endpoint contexts = %u\n",
3709					xhci->num_active_eps);
3710			goto disable_slot;
3711		}
3712		spin_unlock_irqrestore(&xhci->lock, flags);
3713	}
3714	/* Use GFP_NOIO, since this function can be called from
3715	 * xhci_discover_or_reset_device(), which may be called as part of
3716	 * mass storage driver error handling.
3717	 */
3718	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3719		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3720		goto disable_slot;
3721	}
3722	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
3723
3724#ifndef CONFIG_USB_DEFAULT_PERSIST
3725	/*
3726	 * If resetting upon resume, we can't put the controller into runtime
3727	 * suspend if there is a device attached.
3728	 */
3729	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3730		pm_runtime_get_noresume(hcd->self.controller);
3731#endif
3732
3733	/* Is this a LS or FS device under a HS hub? */
3734	/* Hub or peripherial? */
3735	return 1;
3736
3737disable_slot:
3738	/* Disable slot, if we can do it without mem alloc */
3739	spin_lock_irqsave(&xhci->lock, flags);
3740	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3741		xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743	return 0;
3744}
3745
3746/*
3747 * Issue an Address Device command and optionally send a corresponding
3748 * SetAddress request to the device.
3749 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3750 * we should only issue and wait on one address command at the same time.
 
 
 
 
3751 */
3752static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3753			     enum xhci_setup_dev setup)
3754{
3755	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3756	unsigned long flags;
3757	int timeleft;
3758	struct xhci_virt_device *virt_dev;
3759	int ret = 0;
3760	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3761	struct xhci_slot_ctx *slot_ctx;
3762	struct xhci_input_control_ctx *ctrl_ctx;
3763	u64 temp_64;
3764	union xhci_trb *cmd_trb;
 
 
 
 
 
 
 
3765
3766	if (!udev->slot_id) {
3767		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3768				"Bad Slot ID %d", udev->slot_id);
3769		return -EINVAL;
 
3770	}
3771
3772	virt_dev = xhci->devs[udev->slot_id];
3773
3774	if (WARN_ON(!virt_dev)) {
3775		/*
3776		 * In plug/unplug torture test with an NEC controller,
3777		 * a zero-dereference was observed once due to virt_dev = 0.
3778		 * Print useful debug rather than crash if it is observed again!
3779		 */
3780		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3781			udev->slot_id);
3782		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3783	}
3784
 
 
 
3785	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3786	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3787	if (!ctrl_ctx) {
3788		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3789				__func__);
3790		return -EINVAL;
 
3791	}
3792	/*
3793	 * If this is the first Set Address since device plug-in or
3794	 * virt_device realloaction after a resume with an xHCI power loss,
3795	 * then set up the slot context.
3796	 */
3797	if (!slot_ctx->dev_info)
3798		xhci_setup_addressable_virt_dev(xhci, udev);
3799	/* Otherwise, update the control endpoint ring enqueue pointer. */
3800	else
3801		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3802	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3803	ctrl_ctx->drop_flags = 0;
3804
3805	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3806	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3807	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3808				le32_to_cpu(slot_ctx->dev_info) >> 27);
3809
 
3810	spin_lock_irqsave(&xhci->lock, flags);
3811	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3812	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3813					udev->slot_id, setup);
3814	if (ret) {
3815		spin_unlock_irqrestore(&xhci->lock, flags);
3816		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3817				"FIXME: allocate a command ring segment");
3818		return ret;
3819	}
3820	xhci_ring_cmd_db(xhci);
3821	spin_unlock_irqrestore(&xhci->lock, flags);
3822
3823	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3824	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3825			XHCI_CMD_DEFAULT_TIMEOUT);
3826	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3827	 * the SetAddress() "recovery interval" required by USB and aborting the
3828	 * command on a timeout.
3829	 */
3830	if (timeleft <= 0) {
3831		xhci_warn(xhci, "%s while waiting for setup %s command\n",
3832			  timeleft == 0 ? "Timeout" : "Signal", act);
3833		/* cancel the address device command */
3834		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3835		if (ret < 0)
3836			return ret;
3837		return -ETIME;
3838	}
3839
3840	switch (virt_dev->cmd_status) {
3841	case COMP_CTX_STATE:
3842	case COMP_EBADSLT:
3843		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3844			 act, udev->slot_id);
3845		ret = -EINVAL;
3846		break;
3847	case COMP_TX_ERR:
3848		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3849		ret = -EPROTO;
3850		break;
3851	case COMP_DEV_ERR:
 
 
 
 
 
 
 
3852		dev_warn(&udev->dev,
3853			 "ERROR: Incompatible device for setup %s command\n", act);
3854		ret = -ENODEV;
3855		break;
3856	case COMP_SUCCESS:
3857		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858			       "Successful setup %s command", act);
3859		break;
3860	default:
3861		xhci_err(xhci,
3862			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3863			 act, virt_dev->cmd_status);
3864		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3865		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3866		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3867		ret = -EINVAL;
3868		break;
3869	}
3870	if (ret) {
3871		return ret;
3872	}
3873	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3874	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875			"Op regs DCBAA ptr = %#016llx", temp_64);
3876	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877		"Slot ID %d dcbaa entry @%p = %#016llx",
3878		udev->slot_id,
3879		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3880		(unsigned long long)
3881		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3882	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883			"Output Context DMA address = %#08llx",
3884			(unsigned long long)virt_dev->out_ctx->dma);
3885	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3886	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3887	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3888				le32_to_cpu(slot_ctx->dev_info) >> 27);
3889	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3890	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3891	/*
3892	 * USB core uses address 1 for the roothubs, so we add one to the
3893	 * address given back to us by the HC.
3894	 */
3895	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3896	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3897				le32_to_cpu(slot_ctx->dev_info) >> 27);
3898	/* Zero the input context control for later use */
3899	ctrl_ctx->add_flags = 0;
3900	ctrl_ctx->drop_flags = 0;
 
 
3901
3902	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903		       "Internal device address = %d",
3904		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3905
3906	return 0;
 
 
 
 
 
3907}
3908
3909int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3910{
3911	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3912}
3913
3914int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3915{
3916	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
 
3917}
3918
3919/*
3920 * Transfer the port index into real index in the HW port status
3921 * registers. Caculate offset between the port's PORTSC register
3922 * and port status base. Divide the number of per port register
3923 * to get the real index. The raw port number bases 1.
3924 */
3925int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3926{
3927	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3929	__le32 __iomem *addr;
3930	int raw_port;
3931
3932	if (hcd->speed != HCD_USB3)
3933		addr = xhci->usb2_ports[port1 - 1];
3934	else
3935		addr = xhci->usb3_ports[port1 - 1];
3936
3937	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3938	return raw_port;
3939}
3940
3941/*
3942 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3943 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3944 */
3945static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3946			struct usb_device *udev, u16 max_exit_latency)
3947{
3948	struct xhci_virt_device *virt_dev;
3949	struct xhci_command *command;
3950	struct xhci_input_control_ctx *ctrl_ctx;
3951	struct xhci_slot_ctx *slot_ctx;
3952	unsigned long flags;
3953	int ret;
3954
 
 
 
 
3955	spin_lock_irqsave(&xhci->lock, flags);
3956	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
 
 
 
 
 
 
 
 
 
3957		spin_unlock_irqrestore(&xhci->lock, flags);
 
3958		return 0;
3959	}
3960
3961	/* Attempt to issue an Evaluate Context command to change the MEL. */
3962	virt_dev = xhci->devs[udev->slot_id];
3963	command = xhci->lpm_command;
3964	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3965	if (!ctrl_ctx) {
3966		spin_unlock_irqrestore(&xhci->lock, flags);
 
3967		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3968				__func__);
3969		return -ENOMEM;
3970	}
3971
3972	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3973	spin_unlock_irqrestore(&xhci->lock, flags);
3974
3975	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3976	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3977	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3978	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
 
3979
3980	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3981			"Set up evaluate context for LPM MEL change.");
3982	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3983	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3984
3985	/* Issue and wait for the evaluate context command. */
3986	ret = xhci_configure_endpoint(xhci, udev, command,
3987			true, true);
3988	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3989	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3990
3991	if (!ret) {
3992		spin_lock_irqsave(&xhci->lock, flags);
3993		virt_dev->current_mel = max_exit_latency;
3994		spin_unlock_irqrestore(&xhci->lock, flags);
3995	}
 
 
 
3996	return ret;
3997}
3998
3999#ifdef CONFIG_PM_RUNTIME
4000
4001/* BESL to HIRD Encoding array for USB2 LPM */
4002static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4003	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4004
4005/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4006static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4007					struct usb_device *udev)
4008{
4009	int u2del, besl, besl_host;
4010	int besl_device = 0;
4011	u32 field;
4012
4013	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4014	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016	if (field & USB_BESL_SUPPORT) {
4017		for (besl_host = 0; besl_host < 16; besl_host++) {
4018			if (xhci_besl_encoding[besl_host] >= u2del)
4019				break;
4020		}
4021		/* Use baseline BESL value as default */
4022		if (field & USB_BESL_BASELINE_VALID)
4023			besl_device = USB_GET_BESL_BASELINE(field);
4024		else if (field & USB_BESL_DEEP_VALID)
4025			besl_device = USB_GET_BESL_DEEP(field);
4026	} else {
4027		if (u2del <= 50)
4028			besl_host = 0;
4029		else
4030			besl_host = (u2del - 51) / 75 + 1;
4031	}
4032
4033	besl = besl_host + besl_device;
4034	if (besl > 15)
4035		besl = 15;
4036
4037	return besl;
4038}
4039
4040/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4041static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4042{
4043	u32 field;
4044	int l1;
4045	int besld = 0;
4046	int hirdm = 0;
4047
4048	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049
4050	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4051	l1 = udev->l1_params.timeout / 256;
4052
4053	/* device has preferred BESLD */
4054	if (field & USB_BESL_DEEP_VALID) {
4055		besld = USB_GET_BESL_DEEP(field);
4056		hirdm = 1;
4057	}
4058
4059	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4060}
4061
4062int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4063			struct usb_device *udev, int enable)
4064{
4065	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4066	__le32 __iomem	**port_array;
4067	__le32 __iomem	*pm_addr, *hlpm_addr;
4068	u32		pm_val, hlpm_val, field;
4069	unsigned int	port_num;
4070	unsigned long	flags;
4071	int		hird, exit_latency;
4072	int		ret;
4073
4074	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
 
 
 
4075			!udev->lpm_capable)
4076		return -EPERM;
4077
4078	if (!udev->parent || udev->parent->parent ||
4079			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4080		return -EPERM;
4081
4082	if (udev->usb2_hw_lpm_capable != 1)
4083		return -EPERM;
4084
4085	spin_lock_irqsave(&xhci->lock, flags);
4086
4087	port_array = xhci->usb2_ports;
4088	port_num = udev->portnum - 1;
4089	pm_addr = port_array[port_num] + PORTPMSC;
4090	pm_val = readl(pm_addr);
4091	hlpm_addr = port_array[port_num] + PORTHLPMC;
4092	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093
4094	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4095			enable ? "enable" : "disable", port_num);
4096
4097	if (enable) {
4098		/* Host supports BESL timeout instead of HIRD */
4099		if (udev->usb2_hw_lpm_besl_capable) {
4100			/* if device doesn't have a preferred BESL value use a
4101			 * default one which works with mixed HIRD and BESL
4102			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4103			 */
 
4104			if ((field & USB_BESL_SUPPORT) &&
4105			    (field & USB_BESL_BASELINE_VALID))
4106				hird = USB_GET_BESL_BASELINE(field);
4107			else
4108				hird = udev->l1_params.besl;
4109
4110			exit_latency = xhci_besl_encoding[hird];
4111			spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4114			 * input context for link powermanagement evaluate
4115			 * context commands. It is protected by hcd->bandwidth
4116			 * mutex and is shared by all devices. We need to set
4117			 * the max ext latency in USB 2 BESL LPM as well, so
4118			 * use the same mutex and xhci_change_max_exit_latency()
4119			 */
4120			mutex_lock(hcd->bandwidth_mutex);
4121			ret = xhci_change_max_exit_latency(xhci, udev,
4122							   exit_latency);
4123			mutex_unlock(hcd->bandwidth_mutex);
4124
4125			if (ret < 0)
4126				return ret;
4127			spin_lock_irqsave(&xhci->lock, flags);
4128
4129			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4130			writel(hlpm_val, hlpm_addr);
4131			/* flush write */
4132			readl(hlpm_addr);
4133		} else {
4134			hird = xhci_calculate_hird_besl(xhci, udev);
4135		}
4136
4137		pm_val &= ~PORT_HIRD_MASK;
4138		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4139		writel(pm_val, pm_addr);
4140		pm_val = readl(pm_addr);
4141		pm_val |= PORT_HLE;
4142		writel(pm_val, pm_addr);
4143		/* flush write */
4144		readl(pm_addr);
4145	} else {
4146		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4147		writel(pm_val, pm_addr);
4148		/* flush write */
4149		readl(pm_addr);
4150		if (udev->usb2_hw_lpm_besl_capable) {
4151			spin_unlock_irqrestore(&xhci->lock, flags);
4152			mutex_lock(hcd->bandwidth_mutex);
4153			xhci_change_max_exit_latency(xhci, udev, 0);
4154			mutex_unlock(hcd->bandwidth_mutex);
 
 
4155			return 0;
4156		}
4157	}
4158
4159	spin_unlock_irqrestore(&xhci->lock, flags);
4160	return 0;
4161}
4162
4163/* check if a usb2 port supports a given extened capability protocol
4164 * only USB2 ports extended protocol capability values are cached.
4165 * Return 1 if capability is supported
4166 */
4167static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4168					   unsigned capability)
4169{
4170	u32 port_offset, port_count;
4171	int i;
4172
4173	for (i = 0; i < xhci->num_ext_caps; i++) {
4174		if (xhci->ext_caps[i] & capability) {
4175			/* port offsets starts at 1 */
4176			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4177			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4178			if (port >= port_offset &&
4179			    port < port_offset + port_count)
4180				return 1;
4181		}
4182	}
4183	return 0;
4184}
4185
4186int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4187{
4188	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4189	int		portnum = udev->portnum - 1;
4190
4191	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4192			!udev->lpm_capable)
4193		return 0;
4194
4195	/* we only support lpm for non-hub device connected to root hub yet */
4196	if (!udev->parent || udev->parent->parent ||
4197			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4198		return 0;
4199
4200	if (xhci->hw_lpm_support == 1 &&
4201			xhci_check_usb2_port_capability(
4202				xhci, portnum, XHCI_HLC)) {
4203		udev->usb2_hw_lpm_capable = 1;
4204		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206		if (xhci_check_usb2_port_capability(xhci, portnum,
4207					XHCI_BLC))
4208			udev->usb2_hw_lpm_besl_capable = 1;
4209	}
4210
4211	return 0;
4212}
4213
4214#else
4215
4216int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217				struct usb_device *udev, int enable)
4218{
4219	return 0;
4220}
4221
4222int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4223{
4224	return 0;
4225}
4226
4227#endif /* CONFIG_PM_RUNTIME */
4228
4229/*---------------------- USB 3.0 Link PM functions ------------------------*/
4230
4231#ifdef CONFIG_PM
4232/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4233static unsigned long long xhci_service_interval_to_ns(
4234		struct usb_endpoint_descriptor *desc)
4235{
4236	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4237}
4238
4239static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4240		enum usb3_link_state state)
4241{
4242	unsigned long long sel;
4243	unsigned long long pel;
4244	unsigned int max_sel_pel;
4245	char *state_name;
4246
4247	switch (state) {
4248	case USB3_LPM_U1:
4249		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4250		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4251		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4252		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4253		state_name = "U1";
4254		break;
4255	case USB3_LPM_U2:
4256		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4257		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4258		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4259		state_name = "U2";
4260		break;
4261	default:
4262		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4263				__func__);
4264		return USB3_LPM_DISABLED;
4265	}
4266
4267	if (sel <= max_sel_pel && pel <= max_sel_pel)
4268		return USB3_LPM_DEVICE_INITIATED;
4269
4270	if (sel > max_sel_pel)
4271		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4272				"due to long SEL %llu ms\n",
4273				state_name, sel);
4274	else
4275		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4276				"due to long PEL %llu ms\n",
4277				state_name, pel);
4278	return USB3_LPM_DISABLED;
4279}
4280
4281/* Returns the hub-encoded U1 timeout value.
4282 * The U1 timeout should be the maximum of the following values:
4283 *  - For control endpoints, U1 system exit latency (SEL) * 3
4284 *  - For bulk endpoints, U1 SEL * 5
4285 *  - For interrupt endpoints:
4286 *    - Notification EPs, U1 SEL * 3
4287 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4288 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4289 */
4290static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
 
4291		struct usb_endpoint_descriptor *desc)
4292{
4293	unsigned long long timeout_ns;
4294	int ep_type;
4295	int intr_type;
4296
4297	ep_type = usb_endpoint_type(desc);
4298	switch (ep_type) {
4299	case USB_ENDPOINT_XFER_CONTROL:
4300		timeout_ns = udev->u1_params.sel * 3;
4301		break;
4302	case USB_ENDPOINT_XFER_BULK:
4303		timeout_ns = udev->u1_params.sel * 5;
4304		break;
4305	case USB_ENDPOINT_XFER_INT:
4306		intr_type = usb_endpoint_interrupt_type(desc);
4307		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4308			timeout_ns = udev->u1_params.sel * 3;
4309			break;
4310		}
4311		/* Otherwise the calculation is the same as isoc eps */
 
4312	case USB_ENDPOINT_XFER_ISOC:
4313		timeout_ns = xhci_service_interval_to_ns(desc);
4314		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4315		if (timeout_ns < udev->u1_params.sel * 2)
4316			timeout_ns = udev->u1_params.sel * 2;
4317		break;
4318	default:
4319		return 0;
4320	}
4321
4322	/* The U1 timeout is encoded in 1us intervals. */
4323	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4324	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325	if (timeout_ns == USB3_LPM_DISABLED)
4326		timeout_ns++;
 
 
4327
4328	/* If the necessary timeout value is bigger than what we can set in the
4329	 * USB 3.0 hub, we have to disable hub-initiated U1.
4330	 */
4331	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4332		return timeout_ns;
4333	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4334			"due to long timeout %llu ms\n", timeout_ns);
4335	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4336}
4337
4338/* Returns the hub-encoded U2 timeout value.
4339 * The U2 timeout should be the maximum of:
4340 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4341 *  - largest bInterval of any active periodic endpoint (to avoid going
4342 *    into lower power link states between intervals).
4343 *  - the U2 Exit Latency of the device
4344 */
4345static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
 
4346		struct usb_endpoint_descriptor *desc)
4347{
4348	unsigned long long timeout_ns;
4349	unsigned long long u2_del_ns;
4350
4351	timeout_ns = 10 * 1000 * 1000;
4352
4353	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4354			(xhci_service_interval_to_ns(desc) > timeout_ns))
4355		timeout_ns = xhci_service_interval_to_ns(desc);
4356
4357	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4358	if (u2_del_ns > timeout_ns)
4359		timeout_ns = u2_del_ns;
4360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4361	/* The U2 timeout is encoded in 256us intervals */
4362	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363	/* If the necessary timeout value is bigger than what we can set in the
4364	 * USB 3.0 hub, we have to disable hub-initiated U2.
4365	 */
4366	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367		return timeout_ns;
4368	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369			"due to long timeout %llu ms\n", timeout_ns);
4370	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371}
4372
4373static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374		struct usb_device *udev,
4375		struct usb_endpoint_descriptor *desc,
4376		enum usb3_link_state state,
4377		u16 *timeout)
4378{
4379	if (state == USB3_LPM_U1) {
4380		if (xhci->quirks & XHCI_INTEL_HOST)
4381			return xhci_calculate_intel_u1_timeout(udev, desc);
4382	} else {
4383		if (xhci->quirks & XHCI_INTEL_HOST)
4384			return xhci_calculate_intel_u2_timeout(udev, desc);
4385	}
4386
4387	return USB3_LPM_DISABLED;
4388}
4389
4390static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4391		struct usb_device *udev,
4392		struct usb_endpoint_descriptor *desc,
4393		enum usb3_link_state state,
4394		u16 *timeout)
4395{
4396	u16 alt_timeout;
4397
4398	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4399		desc, state, timeout);
4400
4401	/* If we found we can't enable hub-initiated LPM, or
4402	 * the U1 or U2 exit latency was too high to allow
4403	 * device-initiated LPM as well, just stop searching.
 
4404	 */
4405	if (alt_timeout == USB3_LPM_DISABLED ||
4406			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4407		*timeout = alt_timeout;
4408		return -E2BIG;
4409	}
4410	if (alt_timeout > *timeout)
4411		*timeout = alt_timeout;
4412	return 0;
4413}
4414
4415static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4416		struct usb_device *udev,
4417		struct usb_host_interface *alt,
4418		enum usb3_link_state state,
4419		u16 *timeout)
4420{
4421	int j;
4422
4423	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4424		if (xhci_update_timeout_for_endpoint(xhci, udev,
4425					&alt->endpoint[j].desc, state, timeout))
4426			return -E2BIG;
4427		continue;
4428	}
4429	return 0;
4430}
4431
4432static int xhci_check_intel_tier_policy(struct usb_device *udev,
 
4433		enum usb3_link_state state)
4434{
4435	struct usb_device *parent;
4436	unsigned int num_hubs;
4437
4438	if (state == USB3_LPM_U2)
4439		return 0;
 
 
4440
4441	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4442	for (parent = udev->parent, num_hubs = 0; parent->parent;
4443			parent = parent->parent)
4444		num_hubs++;
4445
4446	if (num_hubs < 2)
4447		return 0;
4448
4449	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4450			" below second-tier hub.\n");
4451	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4452			"to decrease power consumption.\n");
4453	return -E2BIG;
4454}
4455
4456static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4457		struct usb_device *udev,
4458		enum usb3_link_state state)
4459{
4460	if (xhci->quirks & XHCI_INTEL_HOST)
4461		return xhci_check_intel_tier_policy(udev, state);
4462	return -EINVAL;
4463}
4464
4465/* Returns the U1 or U2 timeout that should be enabled.
4466 * If the tier check or timeout setting functions return with a non-zero exit
4467 * code, that means the timeout value has been finalized and we shouldn't look
4468 * at any more endpoints.
4469 */
4470static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471			struct usb_device *udev, enum usb3_link_state state)
4472{
4473	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474	struct usb_host_config *config;
4475	char *state_name;
4476	int i;
4477	u16 timeout = USB3_LPM_DISABLED;
4478
4479	if (state == USB3_LPM_U1)
4480		state_name = "U1";
4481	else if (state == USB3_LPM_U2)
4482		state_name = "U2";
4483	else {
4484		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485				state);
4486		return timeout;
4487	}
4488
4489	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490		return timeout;
4491
4492	/* Gather some information about the currently installed configuration
4493	 * and alternate interface settings.
4494	 */
4495	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496			state, &timeout))
4497		return timeout;
4498
4499	config = udev->actconfig;
4500	if (!config)
4501		return timeout;
4502
4503	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504		struct usb_driver *driver;
4505		struct usb_interface *intf = config->interface[i];
4506
4507		if (!intf)
4508			continue;
4509
4510		/* Check if any currently bound drivers want hub-initiated LPM
4511		 * disabled.
4512		 */
4513		if (intf->dev.driver) {
4514			driver = to_usb_driver(intf->dev.driver);
4515			if (driver && driver->disable_hub_initiated_lpm) {
4516				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517						"at request of driver %s\n",
4518						state_name, driver->name);
4519				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4520			}
4521		}
4522
4523		/* Not sure how this could happen... */
4524		if (!intf->cur_altsetting)
4525			continue;
4526
4527		if (xhci_update_timeout_for_interface(xhci, udev,
4528					intf->cur_altsetting,
4529					state, &timeout))
4530			return timeout;
4531	}
4532	return timeout;
4533}
4534
4535static int calculate_max_exit_latency(struct usb_device *udev,
4536		enum usb3_link_state state_changed,
4537		u16 hub_encoded_timeout)
4538{
4539	unsigned long long u1_mel_us = 0;
4540	unsigned long long u2_mel_us = 0;
4541	unsigned long long mel_us = 0;
4542	bool disabling_u1;
4543	bool disabling_u2;
4544	bool enabling_u1;
4545	bool enabling_u2;
4546
4547	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548			hub_encoded_timeout == USB3_LPM_DISABLED);
4549	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550			hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553			hub_encoded_timeout != USB3_LPM_DISABLED);
4554	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555			hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557	/* If U1 was already enabled and we're not disabling it,
4558	 * or we're going to enable U1, account for the U1 max exit latency.
4559	 */
4560	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561			enabling_u1)
4562		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564			enabling_u2)
4565		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567	if (u1_mel_us > u2_mel_us)
4568		mel_us = u1_mel_us;
4569	else
4570		mel_us = u2_mel_us;
4571	/* xHCI host controller max exit latency field is only 16 bits wide. */
4572	if (mel_us > MAX_EXIT) {
4573		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574				"is too big.\n", mel_us);
4575		return -E2BIG;
4576	}
4577	return mel_us;
4578}
4579
4580/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582			struct usb_device *udev, enum usb3_link_state state)
4583{
4584	struct xhci_hcd	*xhci;
 
4585	u16 hub_encoded_timeout;
4586	int mel;
4587	int ret;
4588
4589	xhci = hcd_to_xhci(hcd);
4590	/* The LPM timeout values are pretty host-controller specific, so don't
4591	 * enable hub-initiated timeouts unless the vendor has provided
4592	 * information about their timeout algorithm.
4593	 */
4594	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595			!xhci->devs[udev->slot_id])
4596		return USB3_LPM_DISABLED;
4597
 
 
 
 
 
 
 
 
 
 
4598	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600	if (mel < 0) {
4601		/* Max Exit Latency is too big, disable LPM. */
4602		hub_encoded_timeout = USB3_LPM_DISABLED;
4603		mel = 0;
4604	}
4605
4606	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607	if (ret)
4608		return ret;
4609	return hub_encoded_timeout;
4610}
4611
4612int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613			struct usb_device *udev, enum usb3_link_state state)
4614{
4615	struct xhci_hcd	*xhci;
4616	u16 mel;
4617	int ret;
4618
4619	xhci = hcd_to_xhci(hcd);
4620	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4621			!xhci->devs[udev->slot_id])
4622		return 0;
4623
4624	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4625	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4626	if (ret)
4627		return ret;
4628	return 0;
4629}
4630#else /* CONFIG_PM */
4631
4632int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
 
 
 
 
 
 
 
 
 
 
 
4633			struct usb_device *udev, enum usb3_link_state state)
4634{
4635	return USB3_LPM_DISABLED;
4636}
4637
4638int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639			struct usb_device *udev, enum usb3_link_state state)
4640{
4641	return 0;
4642}
4643#endif	/* CONFIG_PM */
4644
4645/*-------------------------------------------------------------------------*/
4646
4647/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4648 * internal data structures for the device.
4649 */
4650int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4651			struct usb_tt *tt, gfp_t mem_flags)
4652{
4653	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4654	struct xhci_virt_device *vdev;
4655	struct xhci_command *config_cmd;
4656	struct xhci_input_control_ctx *ctrl_ctx;
4657	struct xhci_slot_ctx *slot_ctx;
4658	unsigned long flags;
4659	unsigned think_time;
4660	int ret;
4661
4662	/* Ignore root hubs */
4663	if (!hdev->parent)
4664		return 0;
4665
4666	vdev = xhci->devs[hdev->slot_id];
4667	if (!vdev) {
4668		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4669		return -EINVAL;
4670	}
4671	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4672	if (!config_cmd) {
4673		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4674		return -ENOMEM;
4675	}
4676	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4677	if (!ctrl_ctx) {
4678		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4679				__func__);
4680		xhci_free_command(xhci, config_cmd);
4681		return -ENOMEM;
4682	}
4683
4684	spin_lock_irqsave(&xhci->lock, flags);
4685	if (hdev->speed == USB_SPEED_HIGH &&
4686			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4687		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4688		xhci_free_command(xhci, config_cmd);
4689		spin_unlock_irqrestore(&xhci->lock, flags);
4690		return -ENOMEM;
4691	}
4692
4693	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4694	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4695	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4696	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
 
 
 
 
 
4697	if (tt->multi)
4698		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 
 
 
4699	if (xhci->hci_version > 0x95) {
4700		xhci_dbg(xhci, "xHCI version %x needs hub "
4701				"TT think time and number of ports\n",
4702				(unsigned int) xhci->hci_version);
4703		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4704		/* Set TT think time - convert from ns to FS bit times.
4705		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4706		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4707		 *
4708		 * xHCI 1.0: this field shall be 0 if the device is not a
4709		 * High-spped hub.
4710		 */
4711		think_time = tt->think_time;
4712		if (think_time != 0)
4713			think_time = (think_time / 666) - 1;
4714		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4715			slot_ctx->tt_info |=
4716				cpu_to_le32(TT_THINK_TIME(think_time));
4717	} else {
4718		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4719				"TT think time or number of ports\n",
4720				(unsigned int) xhci->hci_version);
4721	}
4722	slot_ctx->dev_state = 0;
4723	spin_unlock_irqrestore(&xhci->lock, flags);
4724
4725	xhci_dbg(xhci, "Set up %s for hub device.\n",
4726			(xhci->hci_version > 0x95) ?
4727			"configure endpoint" : "evaluate context");
4728	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4729	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4730
4731	/* Issue and wait for the configure endpoint or
4732	 * evaluate context command.
4733	 */
4734	if (xhci->hci_version > 0x95)
4735		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4736				false, false);
4737	else
4738		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4739				true, false);
4740
4741	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4742	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4743
4744	xhci_free_command(xhci, config_cmd);
4745	return ret;
4746}
 
4747
4748int xhci_get_frame(struct usb_hcd *hcd)
4749{
4750	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4751	/* EHCI mods by the periodic size.  Why? */
4752	return readl(&xhci->run_regs->microframe_index) >> 3;
4753}
4754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4755int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4756{
4757	struct xhci_hcd		*xhci;
4758	struct device		*dev = hcd->self.controller;
 
 
 
 
4759	int			retval;
4760
4761	/* Accept arbitrarily long scatter-gather lists */
4762	hcd->self.sg_tablesize = ~0;
4763
4764	/* support to build packet from discontinuous buffers */
4765	hcd->self.no_sg_constraint = 1;
4766
4767	/* XHCI controllers don't stop the ep queue on short packets :| */
4768	hcd->self.no_stop_on_short = 1;
4769
4770	if (usb_hcd_is_primary_hcd(hcd)) {
4771		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4772		if (!xhci)
4773			return -ENOMEM;
4774		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4775		xhci->main_hcd = hcd;
4776		/* Mark the first roothub as being USB 2.0.
4777		 * The xHCI driver will register the USB 3.0 roothub.
4778		 */
4779		hcd->speed = HCD_USB2;
4780		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4781		/*
4782		 * USB 2.0 roothub under xHCI has an integrated TT,
4783		 * (rate matching hub) as opposed to having an OHCI/UHCI
4784		 * companion controller.
4785		 */
4786		hcd->has_tt = 1;
4787	} else {
4788		/* xHCI private pointer was set in xhci_pci_probe for the second
4789		 * registered roothub.
4790		 */
4791		return 0;
4792	}
4793
 
 
4794	xhci->cap_regs = hcd->regs;
4795	xhci->op_regs = hcd->regs +
4796		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4797	xhci->run_regs = hcd->regs +
4798		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4799	/* Cache read-only capability registers */
4800	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4801	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4802	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4803	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4804	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4805	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4806	xhci_print_registers(xhci);
 
 
 
 
 
 
4807
4808	xhci->quirks = quirks;
4809
4810	get_quirks(dev, xhci);
 
4811
4812	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4813	 * success event after a short transfer. This quirk will ignore such
4814	 * spurious event.
4815	 */
4816	if (xhci->hci_version > 0x96)
4817		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4818
4819	/* Make sure the HC is halted. */
4820	retval = xhci_halt(xhci);
4821	if (retval)
4822		goto error;
 
 
4823
4824	xhci_dbg(xhci, "Resetting HCD\n");
4825	/* Reset the internal HC memory state and registers. */
4826	retval = xhci_reset(xhci);
4827	if (retval)
4828		goto error;
4829	xhci_dbg(xhci, "Reset complete\n");
4830
 
 
 
 
 
 
 
 
 
 
4831	/* Set dma_mask and coherent_dma_mask to 64-bits,
4832	 * if xHC supports 64-bit addressing */
4833	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4834			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4835		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4836		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
 
 
 
 
 
 
 
 
 
 
4837	}
4838
4839	xhci_dbg(xhci, "Calling HCD init\n");
4840	/* Initialize HCD and host controller data structures. */
4841	retval = xhci_init(hcd);
4842	if (retval)
4843		goto error;
4844	xhci_dbg(xhci, "Called HCD init\n");
 
 
 
 
 
 
 
 
 
4845	return 0;
4846error:
4847	kfree(xhci);
4848	return retval;
4849}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4850
4851MODULE_DESCRIPTION(DRIVER_DESC);
4852MODULE_AUTHOR(DRIVER_AUTHOR);
4853MODULE_LICENSE("GPL");
4854
4855static int __init xhci_hcd_init(void)
4856{
4857	int retval;
4858
4859	retval = xhci_register_pci();
4860	if (retval < 0) {
4861		pr_debug("Problem registering PCI driver.\n");
4862		return retval;
4863	}
4864	retval = xhci_register_plat();
4865	if (retval < 0) {
4866		pr_debug("Problem registering platform driver.\n");
4867		goto unreg_pci;
4868	}
4869	/*
4870	 * Check the compiler generated sizes of structures that must be laid
4871	 * out in specific ways for hardware access.
4872	 */
4873	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4874	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4875	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4876	/* xhci_device_control has eight fields, and also
4877	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4878	 */
4879	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4880	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4881	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4882	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4883	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4884	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4885	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
 
 
 
 
 
 
4886	return 0;
4887unreg_pci:
4888	xhci_unregister_pci();
4889	return retval;
4890}
4891module_init(xhci_hcd_init);
4892
4893static void __exit xhci_hcd_cleanup(void)
 
 
 
 
4894{
4895	xhci_unregister_pci();
4896	xhci_unregister_plat();
4897}
4898module_exit(xhci_hcd_cleanup);
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/irq.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/slab.h>
  19#include <linux/dmi.h>
  20#include <linux/dma-mapping.h>
  21
  22#include "xhci.h"
  23#include "xhci-trace.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
 
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, timeout_us);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
  85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
  86 * exit_state parameter, and bails out with an error immediately when xhc_state
  87 * has exit_state flag set.
  88 */
  89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
  90		u32 mask, u32 done, int usec, unsigned int exit_state)
  91{
  92	u32	result;
  93	int	ret;
  94
  95	ret = readl_poll_timeout_atomic(ptr, result,
  96				(result & mask) == done ||
  97				result == U32_MAX ||
  98				xhci->xhc_state & exit_state,
  99				1, usec);
 100
 101	if (result == U32_MAX || xhci->xhc_state & exit_state)
 102		return -ENODEV;
 103
 104	return ret;
 105}
 106
 107/*
 108 * Disable interrupts and begin the xHCI halting process.
 109 */
 110void xhci_quiesce(struct xhci_hcd *xhci)
 111{
 112	u32 halted;
 113	u32 cmd;
 114	u32 mask;
 115
 116	mask = ~(XHCI_IRQS);
 117	halted = readl(&xhci->op_regs->status) & STS_HALT;
 118	if (!halted)
 119		mask &= ~CMD_RUN;
 120
 121	cmd = readl(&xhci->op_regs->command);
 122	cmd &= mask;
 123	writel(cmd, &xhci->op_regs->command);
 124}
 125
 126/*
 127 * Force HC into halt state.
 128 *
 129 * Disable any IRQs and clear the run/stop bit.
 130 * HC will complete any current and actively pipelined transactions, and
 131 * should halt within 16 ms of the run/stop bit being cleared.
 132 * Read HC Halted bit in the status register to see when the HC is finished.
 133 */
 134int xhci_halt(struct xhci_hcd *xhci)
 135{
 136	int ret;
 137
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 139	xhci_quiesce(xhci);
 140
 141	ret = xhci_handshake(&xhci->op_regs->status,
 142			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 143	if (ret) {
 144		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 145		return ret;
 146	}
 147
 148	xhci->xhc_state |= XHCI_STATE_HALTED;
 149	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 150
 151	return ret;
 152}
 153
 154/*
 155 * Set the run bit and wait for the host to be running.
 156 */
 157int xhci_start(struct xhci_hcd *xhci)
 158{
 159	u32 temp;
 160	int ret;
 161
 162	temp = readl(&xhci->op_regs->command);
 163	temp |= (CMD_RUN);
 164	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 165			temp);
 166	writel(temp, &xhci->op_regs->command);
 167
 168	/*
 169	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 170	 * running.
 171	 */
 172	ret = xhci_handshake(&xhci->op_regs->status,
 173			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 174	if (ret == -ETIMEDOUT)
 175		xhci_err(xhci, "Host took too long to start, "
 176				"waited %u microseconds.\n",
 177				XHCI_MAX_HALT_USEC);
 178	if (!ret) {
 179		/* clear state flags. Including dying, halted or removing */
 180		xhci->xhc_state = 0;
 181		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 182	}
 183
 184	return ret;
 185}
 186
 187/*
 188 * Reset a halted HC.
 189 *
 190 * This resets pipelines, timers, counters, state machines, etc.
 191 * Transactions will be terminated immediately, and operational registers
 192 * will be set to their defaults.
 193 */
 194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 195{
 196	u32 command;
 197	u32 state;
 198	int ret;
 199
 200	state = readl(&xhci->op_regs->status);
 201
 202	if (state == ~(u32)0) {
 203		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 204		return -ENODEV;
 205	}
 206
 207	if ((state & STS_HALT) == 0) {
 208		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 209		return 0;
 210	}
 211
 212	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 213	command = readl(&xhci->op_regs->command);
 214	command |= CMD_RESET;
 215	writel(command, &xhci->op_regs->command);
 216
 217	/* Existing Intel xHCI controllers require a delay of 1 mS,
 218	 * after setting the CMD_RESET bit, and before accessing any
 219	 * HC registers. This allows the HC to complete the
 220	 * reset operation and be ready for HC register access.
 221	 * Without this delay, the subsequent HC register access,
 222	 * may result in a system hang very rarely.
 223	 */
 224	if (xhci->quirks & XHCI_INTEL_HOST)
 225		udelay(1000);
 226
 227	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
 228				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
 229	if (ret)
 230		return ret;
 231
 232	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 233		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 234
 235	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236			 "Wait for controller to be ready for doorbell rings");
 237	/*
 238	 * xHCI cannot write to any doorbells or operational registers other
 239	 * than status until the "Controller Not Ready" flag is cleared.
 240	 */
 241	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 242
 243	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 244	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 245	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 246	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 247	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 248	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 249
 250	return ret;
 251}
 252
 253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 254{
 255	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 256	struct iommu_domain *domain;
 257	int err, i;
 258	u64 val;
 259	u32 intrs;
 
 
 
 
 
 
 260
 261	/*
 262	 * Some Renesas controllers get into a weird state if they are
 263	 * reset while programmed with 64bit addresses (they will preserve
 264	 * the top half of the address in internal, non visible
 265	 * registers). You end up with half the address coming from the
 266	 * kernel, and the other half coming from the firmware. Also,
 267	 * changing the programming leads to extra accesses even if the
 268	 * controller is supposed to be halted. The controller ends up with
 269	 * a fatal fault, and is then ripe for being properly reset.
 270	 *
 271	 * Special care is taken to only apply this if the device is behind
 272	 * an iommu. Doing anything when there is no iommu is definitely
 273	 * unsafe...
 274	 */
 275	domain = iommu_get_domain_for_dev(dev);
 276	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
 277	    domain->type == IOMMU_DOMAIN_IDENTITY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278		return;
 279
 280	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 
 
 
 
 281
 282	/* Clear HSEIE so that faults do not get signaled */
 283	val = readl(&xhci->op_regs->command);
 284	val &= ~CMD_HSEIE;
 285	writel(val, &xhci->op_regs->command);
 286
 287	/* Clear HSE (aka FATAL) */
 288	val = readl(&xhci->op_regs->status);
 289	val |= STS_FATAL;
 290	writel(val, &xhci->op_regs->status);
 291
 292	/* Now zero the registers, and brace for impact */
 293	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 294	if (upper_32_bits(val))
 295		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 296	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 297	if (upper_32_bits(val))
 298		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 299
 300	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 301		      ARRAY_SIZE(xhci->run_regs->ir_set));
 302
 303	for (i = 0; i < intrs; i++) {
 304		struct xhci_intr_reg __iomem *ir;
 305
 306		ir = &xhci->run_regs->ir_set[i];
 307		val = xhci_read_64(xhci, &ir->erst_base);
 308		if (upper_32_bits(val))
 309			xhci_write_64(xhci, 0, &ir->erst_base);
 310		val= xhci_read_64(xhci, &ir->erst_dequeue);
 311		if (upper_32_bits(val))
 312			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 313	}
 314
 315	/* Wait for the fault to appear. It will be cleared on reset */
 316	err = xhci_handshake(&xhci->op_regs->status,
 317			     STS_FATAL, STS_FATAL,
 318			     XHCI_MAX_HALT_USEC);
 319	if (!err)
 320		xhci_info(xhci, "Fault detected\n");
 321}
 322
 323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
 
 
 
 324{
 325	u32 iman;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327	if (!ir || !ir->ir_set)
 328		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	iman = readl(&ir->ir_set->irq_pending);
 331	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
 332
 333	return 0;
 
 
 
 
 
 
 
 334}
 335
 336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
 
 337{
 338	u32 iman;
 
 
 
 
 
 
 339
 340	if (!ir || !ir->ir_set)
 341		return -EINVAL;
 
 
 
 
 
 
 
 
 
 342
 343	iman = readl(&ir->ir_set->irq_pending);
 344	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
 
 345
 346	return 0;
 
 
 
 347}
 348
 349/* interrupt moderation interval imod_interval in nanoseconds */
 350static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
 351					   u32 imod_interval)
 352{
 353	u32 imod;
 
 
 354
 355	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356		return -EINVAL;
 
 357
 358	imod = readl(&ir->ir_set->irq_control);
 359	imod &= ~ER_IRQ_INTERVAL_MASK;
 360	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 361	writel(imod, &ir->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362
 
 
 363	return 0;
 364}
 365
 366static void compliance_mode_recovery(struct timer_list *t)
 
 
 
 
 
 
 
 
 
 
 367{
 368	struct xhci_hcd *xhci;
 369	struct usb_hcd *hcd;
 370	struct xhci_hub *rhub;
 371	u32 temp;
 372	int i;
 373
 374	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 375	rhub = &xhci->usb3_rhub;
 376	hcd = rhub->hcd;
 377
 378	if (!hcd)
 379		return;
 380
 381	for (i = 0; i < rhub->num_ports; i++) {
 382		temp = readl(rhub->ports[i]->addr);
 383		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 384			/*
 385			 * Compliance Mode Detected. Letting USB Core
 386			 * handle the Warm Reset
 387			 */
 388			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 389					"Compliance mode detected->port %d",
 390					i + 1);
 391			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 392					"Attempting compliance mode recovery");
 
 393
 394			if (hcd->state == HC_STATE_SUSPENDED)
 395				usb_hcd_resume_root_hub(hcd);
 396
 397			usb_hcd_poll_rh_status(hcd);
 398		}
 399	}
 400
 401	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 402		mod_timer(&xhci->comp_mode_recovery_timer,
 403			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 404}
 405
 406/*
 407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 408 * that causes ports behind that hardware to enter compliance mode sometimes.
 409 * The quirk creates a timer that polls every 2 seconds the link state of
 410 * each host controller's port and recovers it by issuing a Warm reset
 411 * if Compliance mode is detected, otherwise the port will become "dead" (no
 412 * device connections or disconnections will be detected anymore). Becasue no
 413 * status event is generated when entering compliance mode (per xhci spec),
 414 * this quirk is needed on systems that have the failing hardware installed.
 415 */
 416static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 417{
 418	xhci->port_status_u0 = 0;
 419	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 420		    0);
 
 
 421	xhci->comp_mode_recovery_timer.expires = jiffies +
 422			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 423
 
 
 424	add_timer(&xhci->comp_mode_recovery_timer);
 425	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 426			"Compliance mode recovery timer initialized");
 427}
 428
 429/*
 430 * This function identifies the systems that have installed the SN65LVPE502CP
 431 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 432 * Systems:
 433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 434 */
 435static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 436{
 437	const char *dmi_product_name, *dmi_sys_vendor;
 438
 439	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 440	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 441	if (!dmi_product_name || !dmi_sys_vendor)
 442		return false;
 443
 444	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 445		return false;
 446
 447	if (strstr(dmi_product_name, "Z420") ||
 448			strstr(dmi_product_name, "Z620") ||
 449			strstr(dmi_product_name, "Z820") ||
 450			strstr(dmi_product_name, "Z1 Workstation"))
 451		return true;
 452
 453	return false;
 454}
 455
 456static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 457{
 458	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 459}
 460
 461
 462/*
 463 * Initialize memory for HCD and xHC (one-time init).
 464 *
 465 * Program the PAGESIZE register, initialize the device context array, create
 466 * device contexts (?), set up a command ring segment (or two?), create event
 467 * ring (one for now).
 468 */
 469static int xhci_init(struct usb_hcd *hcd)
 470{
 471	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 472	int retval;
 473
 474	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 475	spin_lock_init(&xhci->lock);
 476	if (xhci->hci_version == 0x95 && link_quirk) {
 477		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 478				"QUIRK: Not clearing Link TRB chain bits.");
 479		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 480	} else {
 481		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 482				"xHCI doesn't need link TRB QUIRK");
 483	}
 484	retval = xhci_mem_init(xhci, GFP_KERNEL);
 485	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 486
 487	/* Initializing Compliance Mode Recovery Data If Needed */
 488	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 489		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 490		compliance_mode_recovery_timer_init(xhci);
 491	}
 492
 493	return retval;
 494}
 495
 496/*-------------------------------------------------------------------------*/
 497
 
 498static int xhci_run_finished(struct xhci_hcd *xhci)
 499{
 500	struct xhci_interrupter *ir = xhci->interrupters[0];
 501	unsigned long	flags;
 502	u32		temp;
 503
 504	/*
 505	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 506	 * Protect the short window before host is running with a lock
 507	 */
 508	spin_lock_irqsave(&xhci->lock, flags);
 509
 510	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 511	temp = readl(&xhci->op_regs->command);
 512	temp |= (CMD_EIE);
 513	writel(temp, &xhci->op_regs->command);
 514
 515	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 516	xhci_enable_interrupter(ir);
 517
 518	if (xhci_start(xhci)) {
 519		xhci_halt(xhci);
 520		spin_unlock_irqrestore(&xhci->lock, flags);
 521		return -ENODEV;
 522	}
 523
 524	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 525
 526	if (xhci->quirks & XHCI_NEC_HOST)
 527		xhci_ring_cmd_db(xhci);
 528
 529	spin_unlock_irqrestore(&xhci->lock, flags);
 530
 531	return 0;
 532}
 533
 534/*
 535 * Start the HC after it was halted.
 536 *
 537 * This function is called by the USB core when the HC driver is added.
 538 * Its opposite is xhci_stop().
 539 *
 540 * xhci_init() must be called once before this function can be called.
 541 * Reset the HC, enable device slot contexts, program DCBAAP, and
 542 * set command ring pointer and event ring pointer.
 543 *
 544 * Setup MSI-X vectors and enable interrupts.
 545 */
 546int xhci_run(struct usb_hcd *hcd)
 547{
 
 548	u64 temp_64;
 549	int ret;
 550	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 551	struct xhci_interrupter *ir = xhci->interrupters[0];
 552	/* Start the xHCI host controller running only after the USB 2.0 roothub
 553	 * is setup.
 554	 */
 555
 556	hcd->uses_new_polling = 1;
 557	if (hcd->msi_enabled)
 558		ir->ip_autoclear = true;
 559
 560	if (!usb_hcd_is_primary_hcd(hcd))
 561		return xhci_run_finished(xhci);
 562
 563	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 564
 565	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 566	temp_64 &= ERST_PTR_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 568			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 569
 570	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
 
 
 
 
 
 571
 572	if (xhci->quirks & XHCI_NEC_HOST) {
 573		struct xhci_command *command;
 
 
 
 
 574
 575		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 576		if (!command)
 577			return -ENOMEM;
 
 
 
 578
 579		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 580				TRB_TYPE(TRB_NEC_GET_FW));
 581		if (ret)
 582			xhci_free_command(xhci, command);
 583	}
 584	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 585			"Finished %s for main hcd", __func__);
 
 
 586
 587	xhci_create_dbc_dev(xhci);
 
 
 588
 589	xhci_debugfs_init(xhci);
 
 590
 591	if (xhci_has_one_roothub(xhci))
 592		return xhci_run_finished(xhci);
 593
 594	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 595
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(xhci_run);
 599
 600/*
 601 * Stop xHCI driver.
 602 *
 603 * This function is called by the USB core when the HC driver is removed.
 604 * Its opposite is xhci_run().
 605 *
 606 * Disable device contexts, disable IRQs, and quiesce the HC.
 607 * Reset the HC, finish any completed transactions, and cleanup memory.
 608 */
 609void xhci_stop(struct usb_hcd *hcd)
 610{
 611	u32 temp;
 612	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 613	struct xhci_interrupter *ir = xhci->interrupters[0];
 614
 615	mutex_lock(&xhci->mutex);
 616
 617	/* Only halt host and free memory after both hcds are removed */
 618	if (!usb_hcd_is_primary_hcd(hcd)) {
 619		mutex_unlock(&xhci->mutex);
 620		return;
 621	}
 622
 623	xhci_remove_dbc_dev(xhci);
 624
 625	spin_lock_irq(&xhci->lock);
 626	xhci->xhc_state |= XHCI_STATE_HALTED;
 627	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 628	xhci_halt(xhci);
 629	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 630	spin_unlock_irq(&xhci->lock);
 631
 
 
 632	/* Deleting Compliance Mode Recovery Timer */
 633	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 634			(!(xhci_all_ports_seen_u0(xhci)))) {
 635		del_timer_sync(&xhci->comp_mode_recovery_timer);
 636		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 637				"%s: compliance mode recovery timer deleted",
 638				__func__);
 639	}
 640
 641	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 642		usb_amd_dev_put();
 643
 644	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 645			"// Disabling event ring interrupts");
 646	temp = readl(&xhci->op_regs->status);
 647	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 648	xhci_disable_interrupter(ir);
 
 
 649
 650	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 651	xhci_mem_cleanup(xhci);
 652	xhci_debugfs_exit(xhci);
 653	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 654			"xhci_stop completed - status = %x",
 655			readl(&xhci->op_regs->status));
 656	mutex_unlock(&xhci->mutex);
 657}
 658EXPORT_SYMBOL_GPL(xhci_stop);
 659
 660/*
 661 * Shutdown HC (not bus-specific)
 662 *
 663 * This is called when the machine is rebooting or halting.  We assume that the
 664 * machine will be powered off, and the HC's internal state will be reset.
 665 * Don't bother to free memory.
 666 *
 667 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 668 */
 669void xhci_shutdown(struct usb_hcd *hcd)
 670{
 671	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 672
 673	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 674		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 675
 676	/* Don't poll the roothubs after shutdown. */
 677	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 678			__func__, hcd->self.busnum);
 679	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 680	del_timer_sync(&hcd->rh_timer);
 681
 682	if (xhci->shared_hcd) {
 683		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 684		del_timer_sync(&xhci->shared_hcd->rh_timer);
 685	}
 686
 687	spin_lock_irq(&xhci->lock);
 688	xhci_halt(xhci);
 
 
 
 
 689
 690	/*
 691	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 692	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 693	 */
 694	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 695	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 696		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 697
 698	spin_unlock_irq(&xhci->lock);
 699
 700	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 701			"xhci_shutdown completed - status = %x",
 702			readl(&xhci->op_regs->status));
 
 
 
 
 703}
 704EXPORT_SYMBOL_GPL(xhci_shutdown);
 705
 706#ifdef CONFIG_PM
 707static void xhci_save_registers(struct xhci_hcd *xhci)
 708{
 709	struct xhci_interrupter *ir;
 710	unsigned int i;
 711
 712	xhci->s3.command = readl(&xhci->op_regs->command);
 713	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 714	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 715	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 716
 717	/* save both primary and all secondary interrupters */
 718	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
 719	for (i = 0; i < xhci->max_interrupters; i++) {
 720		ir = xhci->interrupters[i];
 721		if (!ir)
 722			continue;
 723
 724		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
 725		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
 726		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 727		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
 728		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
 729	}
 730}
 731
 732static void xhci_restore_registers(struct xhci_hcd *xhci)
 733{
 734	struct xhci_interrupter *ir;
 735	unsigned int i;
 736
 737	writel(xhci->s3.command, &xhci->op_regs->command);
 738	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 739	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 740	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 741
 742	/* FIXME should we lock to protect against freeing of interrupters */
 743	for (i = 0; i < xhci->max_interrupters; i++) {
 744		ir = xhci->interrupters[i];
 745		if (!ir)
 746			continue;
 747
 748		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
 749		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
 750		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
 751		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
 752		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
 753	}
 754}
 755
 756static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 757{
 758	u64	val_64;
 759
 760	/* step 2: initialize command ring buffer */
 761	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 762	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 763		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 764				      xhci->cmd_ring->dequeue) &
 765		 (u64) ~CMD_RING_RSVD_BITS) |
 766		xhci->cmd_ring->cycle_state;
 767	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 768			"// Setting command ring address to 0x%llx",
 769			(long unsigned long) val_64);
 770	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 771}
 772
 773/*
 774 * The whole command ring must be cleared to zero when we suspend the host.
 775 *
 776 * The host doesn't save the command ring pointer in the suspend well, so we
 777 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 778 * aligned, because of the reserved bits in the command ring dequeue pointer
 779 * register.  Therefore, we can't just set the dequeue pointer back in the
 780 * middle of the ring (TRBs are 16-byte aligned).
 781 */
 782static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 783{
 784	struct xhci_ring *ring;
 785	struct xhci_segment *seg;
 786
 787	ring = xhci->cmd_ring;
 788	seg = ring->deq_seg;
 789	do {
 790		memset(seg->trbs, 0,
 791			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 792		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 793			cpu_to_le32(~TRB_CYCLE);
 794		seg = seg->next;
 795	} while (seg != ring->deq_seg);
 796
 797	xhci_initialize_ring_info(ring, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 798	/*
 799	 * Reset the hardware dequeue pointer.
 800	 * Yes, this will need to be re-written after resume, but we're paranoid
 801	 * and want to make sure the hardware doesn't access bogus memory
 802	 * because, say, the BIOS or an SMI started the host without changing
 803	 * the command ring pointers.
 804	 */
 805	xhci_set_cmd_ring_deq(xhci);
 806}
 807
 808/*
 809 * Disable port wake bits if do_wakeup is not set.
 810 *
 811 * Also clear a possible internal port wake state left hanging for ports that
 812 * detected termination but never successfully enumerated (trained to 0U).
 813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 814 * at enumeration clears this wake, force one here as well for unconnected ports
 815 */
 816
 817static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 818				       struct xhci_hub *rhub,
 819				       bool do_wakeup)
 820{
 821	unsigned long flags;
 822	u32 t1, t2, portsc;
 823	int i;
 824
 825	spin_lock_irqsave(&xhci->lock, flags);
 826
 827	for (i = 0; i < rhub->num_ports; i++) {
 828		portsc = readl(rhub->ports[i]->addr);
 829		t1 = xhci_port_state_to_neutral(portsc);
 830		t2 = t1;
 831
 832		/* clear wake bits if do_wake is not set */
 833		if (!do_wakeup)
 834			t2 &= ~PORT_WAKE_BITS;
 835
 836		/* Don't touch csc bit if connected or connect change is set */
 837		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 838			t2 |= PORT_CSC;
 839
 840		if (t1 != t2) {
 841			writel(t2, rhub->ports[i]->addr);
 842			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 843				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 844		}
 845	}
 846	spin_unlock_irqrestore(&xhci->lock, flags);
 847}
 848
 849static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 850{
 851	struct xhci_port	**ports;
 852	int			port_index;
 853	u32			status;
 854	u32			portsc;
 855
 856	status = readl(&xhci->op_regs->status);
 857	if (status & STS_EINT)
 858		return true;
 859	/*
 860	 * Checking STS_EINT is not enough as there is a lag between a change
 861	 * bit being set and the Port Status Change Event that it generated
 862	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 863	 */
 864
 865	port_index = xhci->usb2_rhub.num_ports;
 866	ports = xhci->usb2_rhub.ports;
 867	while (port_index--) {
 868		portsc = readl(ports[port_index]->addr);
 869		if (portsc & PORT_CHANGE_MASK ||
 870		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 871			return true;
 872	}
 873	port_index = xhci->usb3_rhub.num_ports;
 874	ports = xhci->usb3_rhub.ports;
 875	while (port_index--) {
 876		portsc = readl(ports[port_index]->addr);
 877		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
 878		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 879			return true;
 880	}
 881	return false;
 882}
 883
 884/*
 885 * Stop HC (not bus-specific)
 886 *
 887 * This is called when the machine transition into S3/S4 mode.
 888 *
 889 */
 890int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 891{
 892	int			rc = 0;
 893	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 894	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 895	u32			command;
 896	u32			res;
 897
 898	if (!hcd->state)
 899		return 0;
 900
 901	if (hcd->state != HC_STATE_SUSPENDED ||
 902	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
 903		return -EINVAL;
 904
 905	/* Clear root port wake on bits if wakeup not allowed. */
 906	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 907	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 908
 909	if (!HCD_HW_ACCESSIBLE(hcd))
 910		return 0;
 911
 912	xhci_dbc_suspend(xhci);
 913
 914	/* Don't poll the roothubs on bus suspend. */
 915	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 916		 __func__, hcd->self.busnum);
 917	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 918	del_timer_sync(&hcd->rh_timer);
 919	if (xhci->shared_hcd) {
 920		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921		del_timer_sync(&xhci->shared_hcd->rh_timer);
 922	}
 923
 924	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 925		usleep_range(1000, 1500);
 926
 927	spin_lock_irq(&xhci->lock);
 928	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 929	if (xhci->shared_hcd)
 930		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 931	/* step 1: stop endpoint */
 932	/* skipped assuming that port suspend has done */
 933
 934	/* step 2: clear Run/Stop bit */
 935	command = readl(&xhci->op_regs->command);
 936	command &= ~CMD_RUN;
 937	writel(command, &xhci->op_regs->command);
 938
 939	/* Some chips from Fresco Logic need an extraordinary delay */
 940	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 941
 942	if (xhci_handshake(&xhci->op_regs->status,
 943		      STS_HALT, STS_HALT, delay)) {
 944		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 945		spin_unlock_irq(&xhci->lock);
 946		return -ETIMEDOUT;
 947	}
 948	xhci_clear_command_ring(xhci);
 949
 950	/* step 3: save registers */
 951	xhci_save_registers(xhci);
 952
 953	/* step 4: set CSS flag */
 954	command = readl(&xhci->op_regs->command);
 955	command |= CMD_CSS;
 956	writel(command, &xhci->op_regs->command);
 957	xhci->broken_suspend = 0;
 958	if (xhci_handshake(&xhci->op_regs->status,
 959				STS_SAVE, 0, 20 * 1000)) {
 960	/*
 961	 * AMD SNPS xHC 3.0 occasionally does not clear the
 962	 * SSS bit of USBSTS and when driver tries to poll
 963	 * to see if the xHC clears BIT(8) which never happens
 964	 * and driver assumes that controller is not responding
 965	 * and times out. To workaround this, its good to check
 966	 * if SRE and HCE bits are not set (as per xhci
 967	 * Section 5.4.2) and bypass the timeout.
 968	 */
 969		res = readl(&xhci->op_regs->status);
 970		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
 971		    (((res & STS_SRE) == 0) &&
 972				((res & STS_HCE) == 0))) {
 973			xhci->broken_suspend = 1;
 974		} else {
 975			xhci_warn(xhci, "WARN: xHC save state timeout\n");
 976			spin_unlock_irq(&xhci->lock);
 977			return -ETIMEDOUT;
 978		}
 979	}
 980	spin_unlock_irq(&xhci->lock);
 981
 982	/*
 983	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 984	 * is about to be suspended.
 985	 */
 986	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 987			(!(xhci_all_ports_seen_u0(xhci)))) {
 988		del_timer_sync(&xhci->comp_mode_recovery_timer);
 989		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 990				"%s: compliance mode recovery timer deleted",
 991				__func__);
 992	}
 993
 
 
 
 
 994	return rc;
 995}
 996EXPORT_SYMBOL_GPL(xhci_suspend);
 997
 998/*
 999 * start xHC (not bus-specific)
1000 *
1001 * This is called when the machine transition from S3/S4 mode.
1002 *
1003 */
1004int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005{
1006	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1007	u32			command, temp = 0;
1008	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1009	int			retval = 0;
1010	bool			comp_timer_running = false;
1011	bool			pending_portevent = false;
1012	bool			suspended_usb3_devs = false;
1013	bool			reinit_xhc = false;
1014
1015	if (!hcd->state)
1016		return 0;
1017
1018	/* Wait a bit if either of the roothubs need to settle from the
1019	 * transition into bus suspend.
1020	 */
1021
1022	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024		msleep(100);
1025
1026	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027	if (xhci->shared_hcd)
1028		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030	spin_lock_irq(&xhci->lock);
 
 
1031
1032	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033		reinit_xhc = true;
1034
1035	if (!reinit_xhc) {
1036		/*
1037		 * Some controllers might lose power during suspend, so wait
1038		 * for controller not ready bit to clear, just as in xHC init.
1039		 */
1040		retval = xhci_handshake(&xhci->op_regs->status,
1041					STS_CNR, 0, 10 * 1000 * 1000);
1042		if (retval) {
1043			xhci_warn(xhci, "Controller not ready at resume %d\n",
1044				  retval);
1045			spin_unlock_irq(&xhci->lock);
1046			return retval;
1047		}
1048		/* step 1: restore register */
1049		xhci_restore_registers(xhci);
1050		/* step 2: initialize command ring buffer */
1051		xhci_set_cmd_ring_deq(xhci);
1052		/* step 3: restore state and start state*/
1053		/* step 3: set CRS flag */
1054		command = readl(&xhci->op_regs->command);
1055		command |= CMD_CRS;
1056		writel(command, &xhci->op_regs->command);
1057		/*
1058		 * Some controllers take up to 55+ ms to complete the controller
1059		 * restore so setting the timeout to 100ms. Xhci specification
1060		 * doesn't mention any timeout value.
1061		 */
1062		if (xhci_handshake(&xhci->op_regs->status,
1063			      STS_RESTORE, 0, 100 * 1000)) {
1064			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065			spin_unlock_irq(&xhci->lock);
1066			return -ETIMEDOUT;
1067		}
 
1068	}
1069
1070	temp = readl(&xhci->op_regs->status);
1071
1072	/* re-initialize the HC on Restore Error, or Host Controller Error */
1073	if ((temp & (STS_SRE | STS_HCE)) &&
1074	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075		reinit_xhc = true;
1076		if (!xhci->broken_suspend)
1077			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078	}
1079
1080	if (reinit_xhc) {
1081		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082				!(xhci_all_ports_seen_u0(xhci))) {
1083			del_timer_sync(&xhci->comp_mode_recovery_timer);
1084			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085				"Compliance Mode Recovery Timer deleted!");
1086		}
1087
1088		/* Let the USB core know _both_ roothubs lost power. */
1089		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090		if (xhci->shared_hcd)
1091			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093		xhci_dbg(xhci, "Stop HCD\n");
1094		xhci_halt(xhci);
1095		xhci_zero_64b_regs(xhci);
1096		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097		spin_unlock_irq(&xhci->lock);
1098		if (retval)
1099			return retval;
1100
1101		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102		temp = readl(&xhci->op_regs->status);
1103		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104		xhci_disable_interrupter(xhci->interrupters[0]);
 
 
1105
1106		xhci_dbg(xhci, "cleaning up memory\n");
1107		xhci_mem_cleanup(xhci);
1108		xhci_debugfs_exit(xhci);
1109		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110			    readl(&xhci->op_regs->status));
1111
1112		/* USB core calls the PCI reinit and start functions twice:
1113		 * first with the primary HCD, and then with the secondary HCD.
1114		 * If we don't do the same, the host will never be started.
1115		 */
 
 
 
 
 
1116		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117		retval = xhci_init(hcd);
1118		if (retval)
1119			return retval;
1120		comp_timer_running = true;
1121
1122		xhci_dbg(xhci, "Start the primary HCD\n");
1123		retval = xhci_run(hcd);
1124		if (!retval && xhci->shared_hcd) {
1125			xhci_dbg(xhci, "Start the secondary HCD\n");
1126			retval = xhci_run(xhci->shared_hcd);
1127		}
1128
1129		hcd->state = HC_STATE_SUSPENDED;
1130		if (xhci->shared_hcd)
1131			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132		goto done;
1133	}
1134
1135	/* step 4: set Run/Stop bit */
1136	command = readl(&xhci->op_regs->command);
1137	command |= CMD_RUN;
1138	writel(command, &xhci->op_regs->command);
1139	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140		  0, 250 * 1000);
1141
1142	/* step 5: walk topology and initialize portsc,
1143	 * portpmsc and portli
1144	 */
1145	/* this is done in bus_resume */
1146
1147	/* step 6: restart each of the previously
1148	 * Running endpoints by ringing their doorbells
1149	 */
1150
1151	spin_unlock_irq(&xhci->lock);
1152
1153	xhci_dbc_resume(xhci);
1154
1155 done:
1156	if (retval == 0) {
1157		/*
1158		 * Resume roothubs only if there are pending events.
1159		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160		 * the first wake signalling failed, give it that chance if
1161		 * there are suspended USB 3 devices.
1162		 */
1163		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164		    xhci->usb3_rhub.bus_state.bus_suspended)
1165			suspended_usb3_devs = true;
1166
1167		pending_portevent = xhci_pending_portevent(xhci);
1168
1169		if (suspended_usb3_devs && !pending_portevent &&
1170		    msg.event == PM_EVENT_AUTO_RESUME) {
1171			msleep(120);
1172			pending_portevent = xhci_pending_portevent(xhci);
1173		}
1174
1175		if (pending_portevent) {
1176			if (xhci->shared_hcd)
1177				usb_hcd_resume_root_hub(xhci->shared_hcd);
1178			usb_hcd_resume_root_hub(hcd);
1179		}
1180	}
1181	/*
1182	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183	 * be re-initialized Always after a system resume. Ports are subject
1184	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185	 * ports have entered previously to U0 before system's suspension.
1186	 */
1187	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188		compliance_mode_recovery_timer_init(xhci);
1189
1190	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192
1193	/* Re-enable port polling. */
1194	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195		 __func__, hcd->self.busnum);
1196	if (xhci->shared_hcd) {
1197		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199	}
1200	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201	usb_hcd_poll_rh_status(hcd);
1202
1203	return retval;
1204}
1205EXPORT_SYMBOL_GPL(xhci_resume);
1206#endif	/* CONFIG_PM */
1207
1208/*-------------------------------------------------------------------------*/
1209
1210static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211{
1212	void *temp;
1213	int ret = 0;
1214	unsigned int buf_len;
1215	enum dma_data_direction dir;
1216
1217	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218	buf_len = urb->transfer_buffer_length;
1219
1220	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221			    dev_to_node(hcd->self.sysdev));
1222	if (!temp)
1223		return -ENOMEM;
1224
1225	if (usb_urb_dir_out(urb))
1226		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227				   temp, buf_len, 0);
1228
1229	urb->transfer_buffer = temp;
1230	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231					   urb->transfer_buffer,
1232					   urb->transfer_buffer_length,
1233					   dir);
1234
1235	if (dma_mapping_error(hcd->self.sysdev,
1236			      urb->transfer_dma)) {
1237		ret = -EAGAIN;
1238		kfree(temp);
1239	} else {
1240		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241	}
1242
1243	return ret;
1244}
1245
1246static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247					  struct urb *urb)
1248{
1249	bool ret = false;
1250	unsigned int i;
1251	unsigned int len = 0;
1252	unsigned int trb_size;
1253	unsigned int max_pkt;
1254	struct scatterlist *sg;
1255	struct scatterlist *tail_sg;
1256
1257	tail_sg = urb->sg;
1258	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259
1260	if (!urb->num_sgs)
1261		return ret;
1262
1263	if (urb->dev->speed >= USB_SPEED_SUPER)
1264		trb_size = TRB_CACHE_SIZE_SS;
1265	else
1266		trb_size = TRB_CACHE_SIZE_HS;
1267
1268	if (urb->transfer_buffer_length != 0 &&
1269	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271			len = len + sg->length;
1272			if (i > trb_size - 2) {
1273				len = len - tail_sg->length;
1274				if (len < max_pkt) {
1275					ret = true;
1276					break;
1277				}
1278
1279				tail_sg = sg_next(tail_sg);
1280			}
1281		}
1282	}
1283	return ret;
1284}
1285
1286static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287{
1288	unsigned int len;
1289	unsigned int buf_len;
1290	enum dma_data_direction dir;
1291
1292	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293
1294	buf_len = urb->transfer_buffer_length;
1295
1296	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298		dma_unmap_single(hcd->self.sysdev,
1299				 urb->transfer_dma,
1300				 urb->transfer_buffer_length,
1301				 dir);
1302
1303	if (usb_urb_dir_in(urb)) {
1304		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305					   urb->transfer_buffer,
1306					   buf_len,
1307					   0);
1308		if (len != buf_len) {
1309			xhci_dbg(hcd_to_xhci(hcd),
1310				 "Copy from tmp buf to urb sg list failed\n");
1311			urb->actual_length = len;
1312		}
1313	}
1314	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315	kfree(urb->transfer_buffer);
1316	urb->transfer_buffer = NULL;
1317}
1318
1319/*
1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321 * we'll copy the actual data into the TRB address register. This is limited to
1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324 */
1325static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326				gfp_t mem_flags)
1327{
1328	struct xhci_hcd *xhci;
1329
1330	xhci = hcd_to_xhci(hcd);
1331
1332	if (xhci_urb_suitable_for_idt(urb))
1333		return 0;
1334
1335	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336		if (xhci_urb_temp_buffer_required(hcd, urb))
1337			return xhci_map_temp_buffer(hcd, urb);
1338	}
1339	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340}
1341
1342static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344	struct xhci_hcd *xhci;
1345	bool unmap_temp_buf = false;
1346
1347	xhci = hcd_to_xhci(hcd);
1348
1349	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350		unmap_temp_buf = true;
1351
1352	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353		xhci_unmap_temp_buf(hcd, urb);
1354	else
1355		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356}
1357
1358/**
1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361 * value to right shift 1 for the bitmask.
1362 *
1363 * Index  = (epnum * 2) + direction - 1,
1364 * where direction = 0 for OUT, 1 for IN.
1365 * For control endpoints, the IN index is used (OUT index is unused), so
1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367 */
1368unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369{
1370	unsigned int index;
1371	if (usb_endpoint_xfer_control(desc))
1372		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373	else
1374		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376	return index;
1377}
1378EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379
1380/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381 * address from the XHCI endpoint index.
1382 */
1383static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384{
1385	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387	return direction | number;
1388}
1389
1390/* Find the flag for this endpoint (for use in the control context).  Use the
1391 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392 * bit 1, etc.
1393 */
1394static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395{
1396	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397}
1398
 
 
 
 
 
 
 
 
 
1399/* Compute the last valid endpoint context index.  Basically, this is the
1400 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401 * we find the most significant bit set in the added contexts flags.
1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404 */
1405unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406{
1407	return fls(added_ctxs) - 1;
1408}
1409
1410/* Returns 1 if the arguments are OK;
1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412 */
1413static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415		const char *func) {
1416	struct xhci_hcd	*xhci;
1417	struct xhci_virt_device	*virt_dev;
1418
1419	if (!hcd || (check_ep && !ep) || !udev) {
1420		pr_debug("xHCI %s called with invalid args\n", func);
1421		return -EINVAL;
1422	}
1423	if (!udev->parent) {
1424		pr_debug("xHCI %s called for root hub\n", func);
1425		return 0;
1426	}
1427
1428	xhci = hcd_to_xhci(hcd);
1429	if (check_virt_dev) {
1430		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432					func);
1433			return -EINVAL;
1434		}
1435
1436		virt_dev = xhci->devs[udev->slot_id];
1437		if (virt_dev->udev != udev) {
1438			xhci_dbg(xhci, "xHCI %s called with udev and "
1439					  "virt_dev does not match\n", func);
1440			return -EINVAL;
1441		}
1442	}
1443
1444	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445		return -ENODEV;
1446
1447	return 1;
1448}
1449
1450static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451		struct usb_device *udev, struct xhci_command *command,
1452		bool ctx_change, bool must_succeed);
1453
1454/*
1455 * Full speed devices may have a max packet size greater than 8 bytes, but the
1456 * USB core doesn't know that until it reads the first 8 bytes of the
1457 * descriptor.  If the usb_device's max packet size changes after that point,
1458 * we need to issue an evaluate context command and wait on it.
1459 */
1460static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
 
1461{
 
 
1462	struct xhci_input_control_ctx *ctrl_ctx;
1463	struct xhci_ep_ctx *ep_ctx;
1464	struct xhci_command *command;
1465	int max_packet_size;
1466	int hw_max_packet_size;
1467	int ret = 0;
1468
1469	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
 
1470	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472
1473	if (hw_max_packet_size == max_packet_size)
1474		return 0;
1475
1476	switch (max_packet_size) {
1477	case 8: case 16: case 32: case 64: case 9:
1478		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479				"Max Packet Size for ep 0 changed.");
1480		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481				"Max packet size in usb_device = %d",
1482				max_packet_size);
1483		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484				"Max packet size in xHCI HW = %d",
1485				hw_max_packet_size);
1486		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487				"Issuing evaluate context command.");
1488
1489		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490		if (!command)
1491			return -ENOMEM;
1492
1493		command->in_ctx = vdev->in_ctx;
1494		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495		if (!ctrl_ctx) {
1496			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497					__func__);
1498			ret = -ENOMEM;
1499			break;
1500		}
1501		/* Set up the modified control endpoint 0 */
1502		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
 
1503
1504		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508
1509		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510		ctrl_ctx->drop_flags = 0;
1511
1512		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513					      true, false);
1514		/* Clean up the input context for later use by bandwidth functions */
 
 
 
 
 
 
 
 
1515		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516		break;
1517	default:
1518		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519			max_packet_size);
1520		return -EINVAL;
1521	}
1522
1523	kfree(command->completion);
1524	kfree(command);
1525
1526	return ret;
1527}
1528
1529/*
1530 * non-error returns are a promise to giveback() the urb later
1531 * we drop ownership so next owner (or urb unlink) can get it
1532 */
1533static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534{
1535	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1536	unsigned long flags;
1537	int ret = 0;
1538	unsigned int slot_id, ep_index;
1539	unsigned int *ep_state;
1540	struct urb_priv	*urb_priv;
1541	int num_tds;
1542
 
 
 
 
 
1543	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544
 
 
 
 
 
 
 
1545	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546		num_tds = urb->number_of_packets;
1547	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548	    urb->transfer_buffer_length > 0 &&
1549	    urb->transfer_flags & URB_ZERO_PACKET &&
1550	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551		num_tds = 2;
1552	else
1553		num_tds = 1;
1554
1555	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1556	if (!urb_priv)
1557		return -ENOMEM;
1558
1559	urb_priv->num_tds = num_tds;
1560	urb_priv->num_tds_done = 0;
1561	urb->hcpriv = urb_priv;
1562
1563	trace_xhci_urb_enqueue(urb);
1564
1565	spin_lock_irqsave(&xhci->lock, flags);
1566
1567	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568			      true, true, __func__);
1569	if (ret <= 0) {
1570		ret = ret ? ret : -EINVAL;
1571		goto free_priv;
1572	}
1573
1574	slot_id = urb->dev->slot_id;
1575
1576	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577		ret = -ESHUTDOWN;
1578		goto free_priv;
1579	}
1580
1581	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583		ret = -ENODEV;
1584		goto free_priv;
1585	}
1586
1587	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589			 urb->ep->desc.bEndpointAddress, urb);
1590		ret = -ESHUTDOWN;
1591		goto free_priv;
1592	}
 
 
 
 
 
 
 
1593
1594	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598			  *ep_state);
1599		ret = -EINVAL;
1600		goto free_priv;
1601	}
1602	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604		ret = -EINVAL;
1605		goto free_priv;
1606	}
1607
1608	switch (usb_endpoint_type(&urb->ep->desc)) {
1609
1610	case USB_ENDPOINT_XFER_CONTROL:
1611		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612					 slot_id, ep_index);
1613		break;
1614	case USB_ENDPOINT_XFER_BULK:
1615		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616					 slot_id, ep_index);
1617		break;
1618	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620				slot_id, ep_index);
1621		break;
1622	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1623		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624				slot_id, ep_index);
 
 
 
1625	}
1626
1627	if (ret) {
 
 
 
 
 
1628free_priv:
1629		xhci_urb_free_priv(urb_priv);
1630		urb->hcpriv = NULL;
1631	}
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
1634}
1635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636/*
1637 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1638 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1639 * should pick up where it left off in the TD, unless a Set Transfer Ring
1640 * Dequeue Pointer is issued.
1641 *
1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643 * the ring.  Since the ring is a contiguous structure, they can't be physically
1644 * removed.  Instead, there are two options:
1645 *
1646 *  1) If the HC is in the middle of processing the URB to be canceled, we
1647 *     simply move the ring's dequeue pointer past those TRBs using the Set
1648 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1649 *     when drivers timeout on the last submitted URB and attempt to cancel.
1650 *
1651 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1653 *     HC will need to invalidate the any TRBs it has cached after the stop
1654 *     endpoint command, as noted in the xHCI 0.95 errata.
1655 *
1656 *  3) The TD may have completed by the time the Stop Endpoint Command
1657 *     completes, so software needs to handle that case too.
1658 *
1659 * This function should protect against the TD enqueueing code ringing the
1660 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661 * It also needs to account for multiple cancellations on happening at the same
1662 * time for the same endpoint.
1663 *
1664 * Note that this function can be called in any context, or so says
1665 * usb_hcd_unlink_urb()
1666 */
1667static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668{
1669	unsigned long flags;
1670	int ret, i;
1671	u32 temp;
1672	struct xhci_hcd *xhci;
1673	struct urb_priv	*urb_priv;
1674	struct xhci_td *td;
1675	unsigned int ep_index;
1676	struct xhci_ring *ep_ring;
1677	struct xhci_virt_ep *ep;
1678	struct xhci_command *command;
1679	struct xhci_virt_device *vdev;
1680
1681	xhci = hcd_to_xhci(hcd);
1682	spin_lock_irqsave(&xhci->lock, flags);
1683
1684	trace_xhci_urb_dequeue(urb);
1685
1686	/* Make sure the URB hasn't completed or been unlinked already */
1687	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688	if (ret)
1689		goto done;
1690
1691	/* give back URB now if we can't queue it for cancel */
1692	vdev = xhci->devs[urb->dev->slot_id];
1693	urb_priv = urb->hcpriv;
1694	if (!vdev || !urb_priv)
1695		goto err_giveback;
1696
1697	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698	ep = &vdev->eps[ep_index];
1699	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700	if (!ep || !ep_ring)
1701		goto err_giveback;
1702
1703	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704	temp = readl(&xhci->op_regs->status);
1705	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706		xhci_hc_died(xhci);
1707		goto done;
1708	}
1709
1710	/*
1711	 * check ring is not re-allocated since URB was enqueued. If it is, then
1712	 * make sure none of the ring related pointers in this URB private data
1713	 * are touched, such as td_list, otherwise we overwrite freed data
1714	 */
1715	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718			td = &urb_priv->td[i];
1719			if (!list_empty(&td->cancelled_td_list))
1720				list_del_init(&td->cancelled_td_list);
1721		}
1722		goto err_giveback;
1723	}
1724
1725	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727				"HC halted, freeing TD manually.");
1728		for (i = urb_priv->num_tds_done;
1729		     i < urb_priv->num_tds;
1730		     i++) {
1731			td = &urb_priv->td[i];
1732			if (!list_empty(&td->td_list))
1733				list_del_init(&td->td_list);
1734			if (!list_empty(&td->cancelled_td_list))
1735				list_del_init(&td->cancelled_td_list);
1736		}
1737		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738	}
1739
1740	i = urb_priv->num_tds_done;
1741	if (i < urb_priv->num_tds)
 
1742		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743				"Cancel URB %p, dev %s, ep 0x%x, "
1744				"starting at offset 0x%llx",
1745				urb, urb->dev->devpath,
1746				urb->ep->desc.bEndpointAddress,
1747				(unsigned long long) xhci_trb_virt_to_dma(
1748					urb_priv->td[i].start_seg,
1749					urb_priv->td[i].first_trb));
1750
1751	for (; i < urb_priv->num_tds; i++) {
1752		td = &urb_priv->td[i];
1753		/* TD can already be on cancelled list if ep halted on it */
1754		if (list_empty(&td->cancelled_td_list)) {
1755			td->cancel_status = TD_DIRTY;
1756			list_add_tail(&td->cancelled_td_list,
1757				      &ep->cancelled_td_list);
1758		}
1759	}
1760
1761	/* Queue a stop endpoint command, but only if this is
1762	 * the first cancellation to be handled.
1763	 */
1764	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1765		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766		if (!command) {
1767			ret = -ENOMEM;
1768			goto done;
1769		}
1770		ep->ep_state |= EP_STOP_CMD_PENDING;
1771		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1772					 ep_index, 0);
1773		xhci_ring_cmd_db(xhci);
1774	}
1775done:
1776	spin_unlock_irqrestore(&xhci->lock, flags);
1777	return ret;
1778
1779err_giveback:
1780	if (urb_priv)
1781		xhci_urb_free_priv(urb_priv);
1782	usb_hcd_unlink_urb_from_ep(hcd, urb);
1783	spin_unlock_irqrestore(&xhci->lock, flags);
1784	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1785	return ret;
1786}
1787
1788/* Drop an endpoint from a new bandwidth configuration for this device.
1789 * Only one call to this function is allowed per endpoint before
1790 * check_bandwidth() or reset_bandwidth() must be called.
1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792 * add the endpoint to the schedule with possibly new parameters denoted by a
1793 * different endpoint descriptor in usb_host_endpoint.
1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795 * not allowed.
1796 *
1797 * The USB core will not allow URBs to be queued to an endpoint that is being
1798 * disabled, so there's no need for mutual exclusion to protect
1799 * the xhci->devs[slot_id] structure.
1800 */
1801int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802		       struct usb_host_endpoint *ep)
1803{
1804	struct xhci_hcd *xhci;
1805	struct xhci_container_ctx *in_ctx, *out_ctx;
1806	struct xhci_input_control_ctx *ctrl_ctx;
 
 
1807	unsigned int ep_index;
1808	struct xhci_ep_ctx *ep_ctx;
1809	u32 drop_flag;
1810	u32 new_add_flags, new_drop_flags;
1811	int ret;
1812
1813	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1814	if (ret <= 0)
1815		return ret;
1816	xhci = hcd_to_xhci(hcd);
1817	if (xhci->xhc_state & XHCI_STATE_DYING)
1818		return -ENODEV;
1819
1820	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1821	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1822	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1823		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1824				__func__, drop_flag);
1825		return 0;
1826	}
1827
1828	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1829	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1830	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1831	if (!ctrl_ctx) {
1832		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833				__func__);
1834		return 0;
1835	}
1836
1837	ep_index = xhci_get_endpoint_index(&ep->desc);
1838	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1839	/* If the HC already knows the endpoint is disabled,
1840	 * or the HCD has noted it is disabled, ignore this request
1841	 */
1842	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1843	    le32_to_cpu(ctrl_ctx->drop_flags) &
1844	    xhci_get_endpoint_flag(&ep->desc)) {
1845		/* Do not warn when called after a usb_device_reset */
1846		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1847			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1848				  __func__, ep);
1849		return 0;
1850	}
1851
1852	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1853	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854
1855	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1856	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1857
1858	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
 
 
 
 
 
 
 
 
1859
1860	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1861
1862	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863			(unsigned int) ep->desc.bEndpointAddress,
1864			udev->slot_id,
1865			(unsigned int) new_drop_flags,
1866			(unsigned int) new_add_flags);
 
1867	return 0;
1868}
1869EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1870
1871/* Add an endpoint to a new possible bandwidth configuration for this device.
1872 * Only one call to this function is allowed per endpoint before
1873 * check_bandwidth() or reset_bandwidth() must be called.
1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875 * add the endpoint to the schedule with possibly new parameters denoted by a
1876 * different endpoint descriptor in usb_host_endpoint.
1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878 * not allowed.
1879 *
1880 * The USB core will not allow URBs to be queued to an endpoint until the
1881 * configuration or alt setting is installed in the device, so there's no need
1882 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1883 */
1884int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885		      struct usb_host_endpoint *ep)
1886{
1887	struct xhci_hcd *xhci;
1888	struct xhci_container_ctx *in_ctx;
1889	unsigned int ep_index;
 
1890	struct xhci_input_control_ctx *ctrl_ctx;
1891	struct xhci_ep_ctx *ep_ctx;
1892	u32 added_ctxs;
1893	u32 new_add_flags, new_drop_flags;
 
1894	struct xhci_virt_device *virt_dev;
1895	int ret = 0;
1896
1897	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1898	if (ret <= 0) {
1899		/* So we won't queue a reset ep command for a root hub */
1900		ep->hcpriv = NULL;
1901		return ret;
1902	}
1903	xhci = hcd_to_xhci(hcd);
1904	if (xhci->xhc_state & XHCI_STATE_DYING)
1905		return -ENODEV;
1906
1907	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
 
1908	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1909		/* FIXME when we have to issue an evaluate endpoint command to
1910		 * deal with ep0 max packet size changing once we get the
1911		 * descriptors
1912		 */
1913		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1914				__func__, added_ctxs);
1915		return 0;
1916	}
1917
1918	virt_dev = xhci->devs[udev->slot_id];
1919	in_ctx = virt_dev->in_ctx;
1920	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
 
1921	if (!ctrl_ctx) {
1922		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923				__func__);
1924		return 0;
1925	}
1926
1927	ep_index = xhci_get_endpoint_index(&ep->desc);
1928	/* If this endpoint is already in use, and the upper layers are trying
1929	 * to add it again without dropping it, reject the addition.
1930	 */
1931	if (virt_dev->eps[ep_index].ring &&
1932			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
 
1933		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1934				"without dropping it.\n",
1935				(unsigned int) ep->desc.bEndpointAddress);
1936		return -EINVAL;
1937	}
1938
1939	/* If the HCD has already noted the endpoint is enabled,
1940	 * ignore this request.
1941	 */
1942	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
 
1943		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1944				__func__, ep);
1945		return 0;
1946	}
1947
1948	/*
1949	 * Configuration and alternate setting changes must be done in
1950	 * process context, not interrupt context (or so documenation
1951	 * for usb_set_interface() and usb_set_configuration() claim).
1952	 */
1953	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1954		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1955				__func__, ep->desc.bEndpointAddress);
1956		return -ENOMEM;
1957	}
1958
1959	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1960	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1961
1962	/* If xhci_endpoint_disable() was called for this endpoint, but the
1963	 * xHC hasn't been notified yet through the check_bandwidth() call,
1964	 * this re-adds a new state for the endpoint from the new endpoint
1965	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1966	 * drop flags alone.
1967	 */
1968	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1969
 
 
 
 
 
 
 
 
 
1970	/* Store the usb_device pointer for later use */
1971	ep->hcpriv = udev;
1972
1973	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1974	trace_xhci_add_endpoint(ep_ctx);
1975
1976	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1977			(unsigned int) ep->desc.bEndpointAddress,
1978			udev->slot_id,
1979			(unsigned int) new_drop_flags,
1980			(unsigned int) new_add_flags);
 
1981	return 0;
1982}
1983EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1984
1985static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1986{
1987	struct xhci_input_control_ctx *ctrl_ctx;
1988	struct xhci_ep_ctx *ep_ctx;
1989	struct xhci_slot_ctx *slot_ctx;
1990	int i;
1991
1992	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1993	if (!ctrl_ctx) {
1994		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995				__func__);
1996		return;
1997	}
1998
1999	/* When a device's add flag and drop flag are zero, any subsequent
2000	 * configure endpoint command will leave that endpoint's state
2001	 * untouched.  Make sure we don't leave any old state in the input
2002	 * endpoint contexts.
2003	 */
2004	ctrl_ctx->drop_flags = 0;
2005	ctrl_ctx->add_flags = 0;
2006	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2007	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2008	/* Endpoint 0 is always valid */
2009	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2010	for (i = 1; i < 31; i++) {
2011		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2012		ep_ctx->ep_info = 0;
2013		ep_ctx->ep_info2 = 0;
2014		ep_ctx->deq = 0;
2015		ep_ctx->tx_info = 0;
2016	}
2017}
2018
2019static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2020		struct usb_device *udev, u32 *cmd_status)
2021{
2022	int ret;
2023
2024	switch (*cmd_status) {
2025	case COMP_COMMAND_ABORTED:
2026	case COMP_COMMAND_RING_STOPPED:
2027		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2028		ret = -ETIME;
2029		break;
2030	case COMP_RESOURCE_ERROR:
2031		dev_warn(&udev->dev,
2032			 "Not enough host controller resources for new device state.\n");
2033		ret = -ENOMEM;
2034		/* FIXME: can we allocate more resources for the HC? */
2035		break;
2036	case COMP_BANDWIDTH_ERROR:
2037	case COMP_SECONDARY_BANDWIDTH_ERROR:
2038		dev_warn(&udev->dev,
2039			 "Not enough bandwidth for new device state.\n");
2040		ret = -ENOSPC;
2041		/* FIXME: can we go back to the old state? */
2042		break;
2043	case COMP_TRB_ERROR:
2044		/* the HCD set up something wrong */
2045		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2046				"add flag = 1, "
2047				"and endpoint is not disabled.\n");
2048		ret = -EINVAL;
2049		break;
2050	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2051		dev_warn(&udev->dev,
2052			 "ERROR: Incompatible device for endpoint configure command.\n");
2053		ret = -ENODEV;
2054		break;
2055	case COMP_SUCCESS:
2056		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2057				"Successful Endpoint Configure command");
2058		ret = 0;
2059		break;
2060	default:
2061		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2062				*cmd_status);
2063		ret = -EINVAL;
2064		break;
2065	}
2066	return ret;
2067}
2068
2069static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2070		struct usb_device *udev, u32 *cmd_status)
2071{
2072	int ret;
 
2073
2074	switch (*cmd_status) {
2075	case COMP_COMMAND_ABORTED:
2076	case COMP_COMMAND_RING_STOPPED:
2077		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2078		ret = -ETIME;
2079		break;
2080	case COMP_PARAMETER_ERROR:
2081		dev_warn(&udev->dev,
2082			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2083		ret = -EINVAL;
2084		break;
2085	case COMP_SLOT_NOT_ENABLED_ERROR:
2086		dev_warn(&udev->dev,
2087			"WARN: slot not enabled for evaluate context command.\n");
2088		ret = -EINVAL;
2089		break;
2090	case COMP_CONTEXT_STATE_ERROR:
2091		dev_warn(&udev->dev,
2092			"WARN: invalid context state for evaluate context command.\n");
 
2093		ret = -EINVAL;
2094		break;
2095	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2096		dev_warn(&udev->dev,
2097			"ERROR: Incompatible device for evaluate context command.\n");
2098		ret = -ENODEV;
2099		break;
2100	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2101		/* Max Exit Latency too large error */
2102		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2103		ret = -EINVAL;
2104		break;
2105	case COMP_SUCCESS:
2106		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2107				"Successful evaluate context command");
2108		ret = 0;
2109		break;
2110	default:
2111		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2112			*cmd_status);
2113		ret = -EINVAL;
2114		break;
2115	}
2116	return ret;
2117}
2118
2119static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2120		struct xhci_input_control_ctx *ctrl_ctx)
2121{
2122	u32 valid_add_flags;
2123	u32 valid_drop_flags;
2124
2125	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2126	 * (bit 1).  The default control endpoint is added during the Address
2127	 * Device command and is never removed until the slot is disabled.
2128	 */
2129	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2130	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2131
2132	/* Use hweight32 to count the number of ones in the add flags, or
2133	 * number of endpoints added.  Don't count endpoints that are changed
2134	 * (both added and dropped).
2135	 */
2136	return hweight32(valid_add_flags) -
2137		hweight32(valid_add_flags & valid_drop_flags);
2138}
2139
2140static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2141		struct xhci_input_control_ctx *ctrl_ctx)
2142{
2143	u32 valid_add_flags;
2144	u32 valid_drop_flags;
2145
2146	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148
2149	return hweight32(valid_drop_flags) -
2150		hweight32(valid_add_flags & valid_drop_flags);
2151}
2152
2153/*
2154 * We need to reserve the new number of endpoints before the configure endpoint
2155 * command completes.  We can't subtract the dropped endpoints from the number
2156 * of active endpoints until the command completes because we can oversubscribe
2157 * the host in this case:
2158 *
2159 *  - the first configure endpoint command drops more endpoints than it adds
2160 *  - a second configure endpoint command that adds more endpoints is queued
2161 *  - the first configure endpoint command fails, so the config is unchanged
2162 *  - the second command may succeed, even though there isn't enough resources
2163 *
2164 * Must be called with xhci->lock held.
2165 */
2166static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2167		struct xhci_input_control_ctx *ctrl_ctx)
2168{
2169	u32 added_eps;
2170
2171	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2172	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2173		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174				"Not enough ep ctxs: "
2175				"%u active, need to add %u, limit is %u.",
2176				xhci->num_active_eps, added_eps,
2177				xhci->limit_active_eps);
2178		return -ENOMEM;
2179	}
2180	xhci->num_active_eps += added_eps;
2181	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2182			"Adding %u ep ctxs, %u now active.", added_eps,
2183			xhci->num_active_eps);
2184	return 0;
2185}
2186
2187/*
2188 * The configure endpoint was failed by the xHC for some other reason, so we
2189 * need to revert the resources that failed configuration would have used.
2190 *
2191 * Must be called with xhci->lock held.
2192 */
2193static void xhci_free_host_resources(struct xhci_hcd *xhci,
2194		struct xhci_input_control_ctx *ctrl_ctx)
2195{
2196	u32 num_failed_eps;
2197
2198	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2199	xhci->num_active_eps -= num_failed_eps;
2200	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201			"Removing %u failed ep ctxs, %u now active.",
2202			num_failed_eps,
2203			xhci->num_active_eps);
2204}
2205
2206/*
2207 * Now that the command has completed, clean up the active endpoint count by
2208 * subtracting out the endpoints that were dropped (but not changed).
2209 *
2210 * Must be called with xhci->lock held.
2211 */
2212static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2213		struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215	u32 num_dropped_eps;
2216
2217	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2218	xhci->num_active_eps -= num_dropped_eps;
2219	if (num_dropped_eps)
2220		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221				"Removing %u dropped ep ctxs, %u now active.",
2222				num_dropped_eps,
2223				xhci->num_active_eps);
2224}
2225
2226static unsigned int xhci_get_block_size(struct usb_device *udev)
2227{
2228	switch (udev->speed) {
2229	case USB_SPEED_LOW:
2230	case USB_SPEED_FULL:
2231		return FS_BLOCK;
2232	case USB_SPEED_HIGH:
2233		return HS_BLOCK;
2234	case USB_SPEED_SUPER:
2235	case USB_SPEED_SUPER_PLUS:
2236		return SS_BLOCK;
2237	case USB_SPEED_UNKNOWN:
 
2238	default:
2239		/* Should never happen */
2240		return 1;
2241	}
2242}
2243
2244static unsigned int
2245xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2246{
2247	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2248		return LS_OVERHEAD;
2249	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2250		return FS_OVERHEAD;
2251	return HS_OVERHEAD;
2252}
2253
2254/* If we are changing a LS/FS device under a HS hub,
2255 * make sure (if we are activating a new TT) that the HS bus has enough
2256 * bandwidth for this new TT.
2257 */
2258static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2259		struct xhci_virt_device *virt_dev,
2260		int old_active_eps)
2261{
2262	struct xhci_interval_bw_table *bw_table;
2263	struct xhci_tt_bw_info *tt_info;
2264
2265	/* Find the bandwidth table for the root port this TT is attached to. */
2266	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2267	tt_info = virt_dev->tt_info;
2268	/* If this TT already had active endpoints, the bandwidth for this TT
2269	 * has already been added.  Removing all periodic endpoints (and thus
2270	 * making the TT enactive) will only decrease the bandwidth used.
2271	 */
2272	if (old_active_eps)
2273		return 0;
2274	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2275		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2276			return -ENOMEM;
2277		return 0;
2278	}
2279	/* Not sure why we would have no new active endpoints...
2280	 *
2281	 * Maybe because of an Evaluate Context change for a hub update or a
2282	 * control endpoint 0 max packet size change?
2283	 * FIXME: skip the bandwidth calculation in that case.
2284	 */
2285	return 0;
2286}
2287
2288static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2289		struct xhci_virt_device *virt_dev)
2290{
2291	unsigned int bw_reserved;
2292
2293	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2294	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2295		return -ENOMEM;
2296
2297	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2298	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2299		return -ENOMEM;
2300
2301	return 0;
2302}
2303
2304/*
2305 * This algorithm is a very conservative estimate of the worst-case scheduling
2306 * scenario for any one interval.  The hardware dynamically schedules the
2307 * packets, so we can't tell which microframe could be the limiting factor in
2308 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2309 *
2310 * Obviously, we can't solve an NP complete problem to find the minimum worst
2311 * case scenario.  Instead, we come up with an estimate that is no less than
2312 * the worst case bandwidth used for any one microframe, but may be an
2313 * over-estimate.
2314 *
2315 * We walk the requirements for each endpoint by interval, starting with the
2316 * smallest interval, and place packets in the schedule where there is only one
2317 * possible way to schedule packets for that interval.  In order to simplify
2318 * this algorithm, we record the largest max packet size for each interval, and
2319 * assume all packets will be that size.
2320 *
2321 * For interval 0, we obviously must schedule all packets for each interval.
2322 * The bandwidth for interval 0 is just the amount of data to be transmitted
2323 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2324 * the number of packets).
2325 *
2326 * For interval 1, we have two possible microframes to schedule those packets
2327 * in.  For this algorithm, if we can schedule the same number of packets for
2328 * each possible scheduling opportunity (each microframe), we will do so.  The
2329 * remaining number of packets will be saved to be transmitted in the gaps in
2330 * the next interval's scheduling sequence.
2331 *
2332 * As we move those remaining packets to be scheduled with interval 2 packets,
2333 * we have to double the number of remaining packets to transmit.  This is
2334 * because the intervals are actually powers of 2, and we would be transmitting
2335 * the previous interval's packets twice in this interval.  We also have to be
2336 * sure that when we look at the largest max packet size for this interval, we
2337 * also look at the largest max packet size for the remaining packets and take
2338 * the greater of the two.
2339 *
2340 * The algorithm continues to evenly distribute packets in each scheduling
2341 * opportunity, and push the remaining packets out, until we get to the last
2342 * interval.  Then those packets and their associated overhead are just added
2343 * to the bandwidth used.
2344 */
2345static int xhci_check_bw_table(struct xhci_hcd *xhci,
2346		struct xhci_virt_device *virt_dev,
2347		int old_active_eps)
2348{
2349	unsigned int bw_reserved;
2350	unsigned int max_bandwidth;
2351	unsigned int bw_used;
2352	unsigned int block_size;
2353	struct xhci_interval_bw_table *bw_table;
2354	unsigned int packet_size = 0;
2355	unsigned int overhead = 0;
2356	unsigned int packets_transmitted = 0;
2357	unsigned int packets_remaining = 0;
2358	unsigned int i;
2359
2360	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2361		return xhci_check_ss_bw(xhci, virt_dev);
2362
2363	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2364		max_bandwidth = HS_BW_LIMIT;
2365		/* Convert percent of bus BW reserved to blocks reserved */
2366		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2367	} else {
2368		max_bandwidth = FS_BW_LIMIT;
2369		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2370	}
2371
2372	bw_table = virt_dev->bw_table;
2373	/* We need to translate the max packet size and max ESIT payloads into
2374	 * the units the hardware uses.
2375	 */
2376	block_size = xhci_get_block_size(virt_dev->udev);
2377
2378	/* If we are manipulating a LS/FS device under a HS hub, double check
2379	 * that the HS bus has enough bandwidth if we are activing a new TT.
2380	 */
2381	if (virt_dev->tt_info) {
2382		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383				"Recalculating BW for rootport %u",
2384				virt_dev->rhub_port->hw_portnum + 1);
2385		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2386			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2387					"newly activated TT.\n");
2388			return -ENOMEM;
2389		}
2390		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391				"Recalculating BW for TT slot %u port %u",
2392				virt_dev->tt_info->slot_id,
2393				virt_dev->tt_info->ttport);
2394	} else {
2395		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2396				"Recalculating BW for rootport %u",
2397				virt_dev->rhub_port->hw_portnum + 1);
2398	}
2399
2400	/* Add in how much bandwidth will be used for interval zero, or the
2401	 * rounded max ESIT payload + number of packets * largest overhead.
2402	 */
2403	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2404		bw_table->interval_bw[0].num_packets *
2405		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2406
2407	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2408		unsigned int bw_added;
2409		unsigned int largest_mps;
2410		unsigned int interval_overhead;
2411
2412		/*
2413		 * How many packets could we transmit in this interval?
2414		 * If packets didn't fit in the previous interval, we will need
2415		 * to transmit that many packets twice within this interval.
2416		 */
2417		packets_remaining = 2 * packets_remaining +
2418			bw_table->interval_bw[i].num_packets;
2419
2420		/* Find the largest max packet size of this or the previous
2421		 * interval.
2422		 */
2423		if (list_empty(&bw_table->interval_bw[i].endpoints))
2424			largest_mps = 0;
2425		else {
2426			struct xhci_virt_ep *virt_ep;
2427			struct list_head *ep_entry;
2428
2429			ep_entry = bw_table->interval_bw[i].endpoints.next;
2430			virt_ep = list_entry(ep_entry,
2431					struct xhci_virt_ep, bw_endpoint_list);
2432			/* Convert to blocks, rounding up */
2433			largest_mps = DIV_ROUND_UP(
2434					virt_ep->bw_info.max_packet_size,
2435					block_size);
2436		}
2437		if (largest_mps > packet_size)
2438			packet_size = largest_mps;
2439
2440		/* Use the larger overhead of this or the previous interval. */
2441		interval_overhead = xhci_get_largest_overhead(
2442				&bw_table->interval_bw[i]);
2443		if (interval_overhead > overhead)
2444			overhead = interval_overhead;
2445
2446		/* How many packets can we evenly distribute across
2447		 * (1 << (i + 1)) possible scheduling opportunities?
2448		 */
2449		packets_transmitted = packets_remaining >> (i + 1);
2450
2451		/* Add in the bandwidth used for those scheduled packets */
2452		bw_added = packets_transmitted * (overhead + packet_size);
2453
2454		/* How many packets do we have remaining to transmit? */
2455		packets_remaining = packets_remaining % (1 << (i + 1));
2456
2457		/* What largest max packet size should those packets have? */
2458		/* If we've transmitted all packets, don't carry over the
2459		 * largest packet size.
2460		 */
2461		if (packets_remaining == 0) {
2462			packet_size = 0;
2463			overhead = 0;
2464		} else if (packets_transmitted > 0) {
2465			/* Otherwise if we do have remaining packets, and we've
2466			 * scheduled some packets in this interval, take the
2467			 * largest max packet size from endpoints with this
2468			 * interval.
2469			 */
2470			packet_size = largest_mps;
2471			overhead = interval_overhead;
2472		}
2473		/* Otherwise carry over packet_size and overhead from the last
2474		 * time we had a remainder.
2475		 */
2476		bw_used += bw_added;
2477		if (bw_used > max_bandwidth) {
2478			xhci_warn(xhci, "Not enough bandwidth. "
2479					"Proposed: %u, Max: %u\n",
2480				bw_used, max_bandwidth);
2481			return -ENOMEM;
2482		}
2483	}
2484	/*
2485	 * Ok, we know we have some packets left over after even-handedly
2486	 * scheduling interval 15.  We don't know which microframes they will
2487	 * fit into, so we over-schedule and say they will be scheduled every
2488	 * microframe.
2489	 */
2490	if (packets_remaining > 0)
2491		bw_used += overhead + packet_size;
2492
2493	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
 
 
2494		/* OK, we're manipulating a HS device attached to a
2495		 * root port bandwidth domain.  Include the number of active TTs
2496		 * in the bandwidth used.
2497		 */
2498		bw_used += TT_HS_OVERHEAD *
2499			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2500	}
2501
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2504		"Available: %u " "percent",
2505		bw_used, max_bandwidth, bw_reserved,
2506		(max_bandwidth - bw_used - bw_reserved) * 100 /
2507		max_bandwidth);
2508
2509	bw_used += bw_reserved;
2510	if (bw_used > max_bandwidth) {
2511		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2512				bw_used, max_bandwidth);
2513		return -ENOMEM;
2514	}
2515
2516	bw_table->bw_used = bw_used;
2517	return 0;
2518}
2519
2520static bool xhci_is_async_ep(unsigned int ep_type)
2521{
2522	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2523					ep_type != ISOC_IN_EP &&
2524					ep_type != INT_IN_EP);
2525}
2526
2527static bool xhci_is_sync_in_ep(unsigned int ep_type)
2528{
2529	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2530}
2531
2532static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2533{
2534	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2535
2536	if (ep_bw->ep_interval == 0)
2537		return SS_OVERHEAD_BURST +
2538			(ep_bw->mult * ep_bw->num_packets *
2539					(SS_OVERHEAD + mps));
2540	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2541				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2542				1 << ep_bw->ep_interval);
2543
2544}
2545
2546static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2547		struct xhci_bw_info *ep_bw,
2548		struct xhci_interval_bw_table *bw_table,
2549		struct usb_device *udev,
2550		struct xhci_virt_ep *virt_ep,
2551		struct xhci_tt_bw_info *tt_info)
2552{
2553	struct xhci_interval_bw	*interval_bw;
2554	int normalized_interval;
2555
2556	if (xhci_is_async_ep(ep_bw->type))
2557		return;
2558
2559	if (udev->speed >= USB_SPEED_SUPER) {
2560		if (xhci_is_sync_in_ep(ep_bw->type))
2561			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2562				xhci_get_ss_bw_consumed(ep_bw);
2563		else
2564			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2565				xhci_get_ss_bw_consumed(ep_bw);
2566		return;
2567	}
2568
2569	/* SuperSpeed endpoints never get added to intervals in the table, so
2570	 * this check is only valid for HS/FS/LS devices.
2571	 */
2572	if (list_empty(&virt_ep->bw_endpoint_list))
2573		return;
2574	/* For LS/FS devices, we need to translate the interval expressed in
2575	 * microframes to frames.
2576	 */
2577	if (udev->speed == USB_SPEED_HIGH)
2578		normalized_interval = ep_bw->ep_interval;
2579	else
2580		normalized_interval = ep_bw->ep_interval - 3;
2581
2582	if (normalized_interval == 0)
2583		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2584	interval_bw = &bw_table->interval_bw[normalized_interval];
2585	interval_bw->num_packets -= ep_bw->num_packets;
2586	switch (udev->speed) {
2587	case USB_SPEED_LOW:
2588		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2589		break;
2590	case USB_SPEED_FULL:
2591		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2592		break;
2593	case USB_SPEED_HIGH:
2594		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2595		break;
2596	default:
 
 
2597		/* Should never happen because only LS/FS/HS endpoints will get
2598		 * added to the endpoint list.
2599		 */
2600		return;
2601	}
2602	if (tt_info)
2603		tt_info->active_eps -= 1;
2604	list_del_init(&virt_ep->bw_endpoint_list);
2605}
2606
2607static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2608		struct xhci_bw_info *ep_bw,
2609		struct xhci_interval_bw_table *bw_table,
2610		struct usb_device *udev,
2611		struct xhci_virt_ep *virt_ep,
2612		struct xhci_tt_bw_info *tt_info)
2613{
2614	struct xhci_interval_bw	*interval_bw;
2615	struct xhci_virt_ep *smaller_ep;
2616	int normalized_interval;
2617
2618	if (xhci_is_async_ep(ep_bw->type))
2619		return;
2620
2621	if (udev->speed == USB_SPEED_SUPER) {
2622		if (xhci_is_sync_in_ep(ep_bw->type))
2623			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2624				xhci_get_ss_bw_consumed(ep_bw);
2625		else
2626			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2627				xhci_get_ss_bw_consumed(ep_bw);
2628		return;
2629	}
2630
2631	/* For LS/FS devices, we need to translate the interval expressed in
2632	 * microframes to frames.
2633	 */
2634	if (udev->speed == USB_SPEED_HIGH)
2635		normalized_interval = ep_bw->ep_interval;
2636	else
2637		normalized_interval = ep_bw->ep_interval - 3;
2638
2639	if (normalized_interval == 0)
2640		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2641	interval_bw = &bw_table->interval_bw[normalized_interval];
2642	interval_bw->num_packets += ep_bw->num_packets;
2643	switch (udev->speed) {
2644	case USB_SPEED_LOW:
2645		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2646		break;
2647	case USB_SPEED_FULL:
2648		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2649		break;
2650	case USB_SPEED_HIGH:
2651		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2652		break;
2653	default:
 
 
2654		/* Should never happen because only LS/FS/HS endpoints will get
2655		 * added to the endpoint list.
2656		 */
2657		return;
2658	}
2659
2660	if (tt_info)
2661		tt_info->active_eps += 1;
2662	/* Insert the endpoint into the list, largest max packet size first. */
2663	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2664			bw_endpoint_list) {
2665		if (ep_bw->max_packet_size >=
2666				smaller_ep->bw_info.max_packet_size) {
2667			/* Add the new ep before the smaller endpoint */
2668			list_add_tail(&virt_ep->bw_endpoint_list,
2669					&smaller_ep->bw_endpoint_list);
2670			return;
2671		}
2672	}
2673	/* Add the new endpoint at the end of the list. */
2674	list_add_tail(&virt_ep->bw_endpoint_list,
2675			&interval_bw->endpoints);
2676}
2677
2678void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2679		struct xhci_virt_device *virt_dev,
2680		int old_active_eps)
2681{
2682	struct xhci_root_port_bw_info *rh_bw_info;
2683	if (!virt_dev->tt_info)
2684		return;
2685
2686	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2687	if (old_active_eps == 0 &&
2688				virt_dev->tt_info->active_eps != 0) {
2689		rh_bw_info->num_active_tts += 1;
2690		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2691	} else if (old_active_eps != 0 &&
2692				virt_dev->tt_info->active_eps == 0) {
2693		rh_bw_info->num_active_tts -= 1;
2694		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2695	}
2696}
2697
2698static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2699		struct xhci_virt_device *virt_dev,
2700		struct xhci_container_ctx *in_ctx)
2701{
2702	struct xhci_bw_info ep_bw_info[31];
2703	int i;
2704	struct xhci_input_control_ctx *ctrl_ctx;
2705	int old_active_eps = 0;
2706
2707	if (virt_dev->tt_info)
2708		old_active_eps = virt_dev->tt_info->active_eps;
2709
2710	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2711	if (!ctrl_ctx) {
2712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2713				__func__);
2714		return -ENOMEM;
2715	}
2716
2717	for (i = 0; i < 31; i++) {
2718		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2719			continue;
2720
2721		/* Make a copy of the BW info in case we need to revert this */
2722		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2723				sizeof(ep_bw_info[i]));
2724		/* Drop the endpoint from the interval table if the endpoint is
2725		 * being dropped or changed.
2726		 */
2727		if (EP_IS_DROPPED(ctrl_ctx, i))
2728			xhci_drop_ep_from_interval_table(xhci,
2729					&virt_dev->eps[i].bw_info,
2730					virt_dev->bw_table,
2731					virt_dev->udev,
2732					&virt_dev->eps[i],
2733					virt_dev->tt_info);
2734	}
2735	/* Overwrite the information stored in the endpoints' bw_info */
2736	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2737	for (i = 0; i < 31; i++) {
2738		/* Add any changed or added endpoints to the interval table */
2739		if (EP_IS_ADDED(ctrl_ctx, i))
2740			xhci_add_ep_to_interval_table(xhci,
2741					&virt_dev->eps[i].bw_info,
2742					virt_dev->bw_table,
2743					virt_dev->udev,
2744					&virt_dev->eps[i],
2745					virt_dev->tt_info);
2746	}
2747
2748	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2749		/* Ok, this fits in the bandwidth we have.
2750		 * Update the number of active TTs.
2751		 */
2752		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2753		return 0;
2754	}
2755
2756	/* We don't have enough bandwidth for this, revert the stored info. */
2757	for (i = 0; i < 31; i++) {
2758		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2759			continue;
2760
2761		/* Drop the new copies of any added or changed endpoints from
2762		 * the interval table.
2763		 */
2764		if (EP_IS_ADDED(ctrl_ctx, i)) {
2765			xhci_drop_ep_from_interval_table(xhci,
2766					&virt_dev->eps[i].bw_info,
2767					virt_dev->bw_table,
2768					virt_dev->udev,
2769					&virt_dev->eps[i],
2770					virt_dev->tt_info);
2771		}
2772		/* Revert the endpoint back to its old information */
2773		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2774				sizeof(ep_bw_info[i]));
2775		/* Add any changed or dropped endpoints back into the table */
2776		if (EP_IS_DROPPED(ctrl_ctx, i))
2777			xhci_add_ep_to_interval_table(xhci,
2778					&virt_dev->eps[i].bw_info,
2779					virt_dev->bw_table,
2780					virt_dev->udev,
2781					&virt_dev->eps[i],
2782					virt_dev->tt_info);
2783	}
2784	return -ENOMEM;
2785}
2786
2787
2788/* Issue a configure endpoint command or evaluate context command
2789 * and wait for it to finish.
2790 */
2791static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2792		struct usb_device *udev,
2793		struct xhci_command *command,
2794		bool ctx_change, bool must_succeed)
2795{
2796	int ret;
 
2797	unsigned long flags;
 
2798	struct xhci_input_control_ctx *ctrl_ctx;
 
 
2799	struct xhci_virt_device *virt_dev;
2800	struct xhci_slot_ctx *slot_ctx;
2801
2802	if (!command)
2803		return -EINVAL;
2804
2805	spin_lock_irqsave(&xhci->lock, flags);
2806
2807	if (xhci->xhc_state & XHCI_STATE_DYING) {
2808		spin_unlock_irqrestore(&xhci->lock, flags);
2809		return -ESHUTDOWN;
2810	}
2811
2812	virt_dev = xhci->devs[udev->slot_id];
2813
2814	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
 
 
 
 
2815	if (!ctrl_ctx) {
2816		spin_unlock_irqrestore(&xhci->lock, flags);
2817		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818				__func__);
2819		return -ENOMEM;
2820	}
2821
2822	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2823			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2824		spin_unlock_irqrestore(&xhci->lock, flags);
2825		xhci_warn(xhci, "Not enough host resources, "
2826				"active endpoint contexts = %u\n",
2827				xhci->num_active_eps);
2828		return -ENOMEM;
2829	}
2830	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2831	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2832		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2833			xhci_free_host_resources(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835		xhci_warn(xhci, "Not enough bandwidth\n");
2836		return -ENOMEM;
2837	}
2838
2839	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2840
2841	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2842	trace_xhci_configure_endpoint(slot_ctx);
 
 
 
 
 
 
2843
 
2844	if (!ctx_change)
2845		ret = xhci_queue_configure_endpoint(xhci, command,
2846				command->in_ctx->dma,
2847				udev->slot_id, must_succeed);
2848	else
2849		ret = xhci_queue_evaluate_context(xhci, command,
2850				command->in_ctx->dma,
2851				udev->slot_id, must_succeed);
2852	if (ret < 0) {
 
 
2853		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2854			xhci_free_host_resources(xhci, ctrl_ctx);
2855		spin_unlock_irqrestore(&xhci->lock, flags);
2856		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2857				"FIXME allocate a new ring segment");
2858		return -ENOMEM;
2859	}
2860	xhci_ring_cmd_db(xhci);
2861	spin_unlock_irqrestore(&xhci->lock, flags);
2862
2863	/* Wait for the configure endpoint command to complete */
2864	wait_for_completion(command->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865
2866	if (!ctx_change)
2867		ret = xhci_configure_endpoint_result(xhci, udev,
2868						     &command->status);
2869	else
2870		ret = xhci_evaluate_context_result(xhci, udev,
2871						   &command->status);
2872
2873	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2874		spin_lock_irqsave(&xhci->lock, flags);
2875		/* If the command failed, remove the reserved resources.
2876		 * Otherwise, clean up the estimate to include dropped eps.
2877		 */
2878		if (ret)
2879			xhci_free_host_resources(xhci, ctrl_ctx);
2880		else
2881			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2882		spin_unlock_irqrestore(&xhci->lock, flags);
2883	}
2884	return ret;
2885}
2886
2887static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2888	struct xhci_virt_device *vdev, int i)
2889{
2890	struct xhci_virt_ep *ep = &vdev->eps[i];
2891
2892	if (ep->ep_state & EP_HAS_STREAMS) {
2893		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2894				xhci_get_endpoint_address(i));
2895		xhci_free_stream_info(xhci, ep->stream_info);
2896		ep->stream_info = NULL;
2897		ep->ep_state &= ~EP_HAS_STREAMS;
2898	}
2899}
2900
2901/* Called after one or more calls to xhci_add_endpoint() or
2902 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2903 * to call xhci_reset_bandwidth().
2904 *
2905 * Since we are in the middle of changing either configuration or
2906 * installing a new alt setting, the USB core won't allow URBs to be
2907 * enqueued for any endpoint on the old config or interface.  Nothing
2908 * else should be touching the xhci->devs[slot_id] structure, so we
2909 * don't need to take the xhci->lock for manipulating that.
2910 */
2911int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2912{
2913	int i;
2914	int ret = 0;
2915	struct xhci_hcd *xhci;
2916	struct xhci_virt_device	*virt_dev;
2917	struct xhci_input_control_ctx *ctrl_ctx;
2918	struct xhci_slot_ctx *slot_ctx;
2919	struct xhci_command *command;
2920
2921	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2922	if (ret <= 0)
2923		return ret;
2924	xhci = hcd_to_xhci(hcd);
2925	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2926		(xhci->xhc_state & XHCI_STATE_REMOVING))
2927		return -ENODEV;
2928
2929	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2930	virt_dev = xhci->devs[udev->slot_id];
2931
2932	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2933	if (!command)
2934		return -ENOMEM;
2935
2936	command->in_ctx = virt_dev->in_ctx;
2937
2938	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2939	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2940	if (!ctrl_ctx) {
2941		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2942				__func__);
2943		ret = -ENOMEM;
2944		goto command_cleanup;
2945	}
2946	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2947	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2948	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2949
2950	/* Don't issue the command if there's no endpoints to update. */
2951	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2952	    ctrl_ctx->drop_flags == 0) {
2953		ret = 0;
2954		goto command_cleanup;
2955	}
2956	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2957	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2958	for (i = 31; i >= 1; i--) {
2959		__le32 le32 = cpu_to_le32(BIT(i));
2960
2961		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2962		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2963			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2964			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2965			break;
2966		}
2967	}
2968
2969	ret = xhci_configure_endpoint(xhci, udev, command,
2970			false, false);
2971	if (ret)
2972		/* Callee should call reset_bandwidth() */
2973		goto command_cleanup;
2974
2975	/* Free any rings that were dropped, but not changed. */
2976	for (i = 1; i < 31; i++) {
2977		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2978		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2979			xhci_free_endpoint_ring(xhci, virt_dev, i);
2980			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2981		}
2982	}
2983	xhci_zero_in_ctx(xhci, virt_dev);
2984	/*
2985	 * Install any rings for completely new endpoints or changed endpoints,
2986	 * and free any old rings from changed endpoints.
2987	 */
2988	for (i = 1; i < 31; i++) {
2989		if (!virt_dev->eps[i].new_ring)
2990			continue;
2991		/* Only free the old ring if it exists.
2992		 * It may not if this is the first add of an endpoint.
2993		 */
2994		if (virt_dev->eps[i].ring) {
2995			xhci_free_endpoint_ring(xhci, virt_dev, i);
2996		}
2997		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2999		virt_dev->eps[i].new_ring = NULL;
3000		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3001	}
3002command_cleanup:
3003	kfree(command->completion);
3004	kfree(command);
3005
3006	return ret;
3007}
3008EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3009
3010void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3011{
3012	struct xhci_hcd *xhci;
3013	struct xhci_virt_device	*virt_dev;
3014	int i, ret;
3015
3016	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3017	if (ret <= 0)
3018		return;
3019	xhci = hcd_to_xhci(hcd);
3020
3021	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022	virt_dev = xhci->devs[udev->slot_id];
3023	/* Free any rings allocated for added endpoints */
3024	for (i = 0; i < 31; i++) {
3025		if (virt_dev->eps[i].new_ring) {
3026			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3027			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3028			virt_dev->eps[i].new_ring = NULL;
3029		}
3030	}
3031	xhci_zero_in_ctx(xhci, virt_dev);
3032}
3033EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3034
3035static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3036		struct xhci_container_ctx *in_ctx,
3037		struct xhci_container_ctx *out_ctx,
3038		struct xhci_input_control_ctx *ctrl_ctx,
3039		u32 add_flags, u32 drop_flags)
3040{
3041	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3042	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3043	xhci_slot_copy(xhci, in_ctx, out_ctx);
3044	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3045}
3046
3047static void xhci_endpoint_disable(struct usb_hcd *hcd,
3048				  struct usb_host_endpoint *host_ep)
 
3049{
3050	struct xhci_hcd		*xhci;
3051	struct xhci_virt_device	*vdev;
3052	struct xhci_virt_ep	*ep;
3053	struct usb_device	*udev;
3054	unsigned long		flags;
3055	unsigned int		ep_index;
3056
3057	xhci = hcd_to_xhci(hcd);
3058rescan:
3059	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
3060
3061	udev = (struct usb_device *)host_ep->hcpriv;
3062	if (!udev || !udev->slot_id)
3063		goto done;
 
 
 
 
 
 
 
 
 
 
 
3064
3065	vdev = xhci->devs[udev->slot_id];
3066	if (!vdev)
3067		goto done;
 
 
3068
3069	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3070	ep = &vdev->eps[ep_index];
 
 
 
3071
3072	/* wait for hub_tt_work to finish clearing hub TT */
3073	if (ep->ep_state & EP_CLEARING_TT) {
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		schedule_timeout_uninterruptible(1);
3076		goto rescan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3077	}
3078
3079	if (ep->ep_state)
3080		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3081			 ep->ep_state);
3082done:
3083	host_ep->hcpriv = NULL;
3084	spin_unlock_irqrestore(&xhci->lock, flags);
3085}
3086
3087/*
3088 * Called after usb core issues a clear halt control message.
3089 * The host side of the halt should already be cleared by a reset endpoint
3090 * command issued when the STALL event was received.
3091 *
3092 * The reset endpoint command may only be issued to endpoints in the halted
3093 * state. For software that wishes to reset the data toggle or sequence number
3094 * of an endpoint that isn't in the halted state this function will issue a
3095 * configure endpoint command with the Drop and Add bits set for the target
3096 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3097 *
3098 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3099 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3100 */
3101
3102static void xhci_endpoint_reset(struct usb_hcd *hcd,
3103		struct usb_host_endpoint *host_ep)
3104{
3105	struct xhci_hcd *xhci;
3106	struct usb_device *udev;
3107	struct xhci_virt_device *vdev;
3108	struct xhci_virt_ep *ep;
3109	struct xhci_input_control_ctx *ctrl_ctx;
3110	struct xhci_command *stop_cmd, *cfg_cmd;
3111	unsigned int ep_index;
3112	unsigned long flags;
3113	u32 ep_flag;
3114	int err;
3115
3116	xhci = hcd_to_xhci(hcd);
3117	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3118
3119	/*
3120	 * Usb core assumes a max packet value for ep0 on FS devices until the
3121	 * real value is read from the descriptor. Core resets Ep0 if values
3122	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3123	 */
3124	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3125
3126		udev = container_of(host_ep, struct usb_device, ep0);
3127		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3128			return;
3129
3130		vdev = xhci->devs[udev->slot_id];
3131		if (!vdev || vdev->udev != udev)
3132			return;
3133
3134		xhci_check_ep0_maxpacket(xhci, vdev);
3135
3136		/* Nothing else should be done here for ep0 during ep reset */
3137		return;
3138	}
3139
3140	if (!host_ep->hcpriv)
3141		return;
3142	udev = (struct usb_device *) host_ep->hcpriv;
3143	vdev = xhci->devs[udev->slot_id];
3144
3145	if (!udev->slot_id || !vdev)
3146		return;
3147
3148	ep = &vdev->eps[ep_index];
3149
3150	/* Bail out if toggle is already being cleared by a endpoint reset */
3151	spin_lock_irqsave(&xhci->lock, flags);
3152	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3153		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3154		spin_unlock_irqrestore(&xhci->lock, flags);
3155		return;
3156	}
3157	spin_unlock_irqrestore(&xhci->lock, flags);
3158	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3159	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3160	    usb_endpoint_xfer_isoc(&host_ep->desc))
3161		return;
3162
3163	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3164
3165	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3166		return;
3167
3168	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3169	if (!stop_cmd)
3170		return;
3171
3172	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3173	if (!cfg_cmd)
3174		goto cleanup;
3175
 
 
3176	spin_lock_irqsave(&xhci->lock, flags);
3177
3178	/* block queuing new trbs and ringing ep doorbell */
3179	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3180
3181	/*
3182	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3183	 * Driver is required to synchronously cancel all transfer request.
3184	 * Stop the endpoint to force xHC to update the output context
3185	 */
3186
3187	if (!list_empty(&ep->ring->td_list)) {
3188		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3189		spin_unlock_irqrestore(&xhci->lock, flags);
3190		xhci_free_command(xhci, cfg_cmd);
3191		goto cleanup;
3192	}
3193
3194	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3195					ep_index, 0);
3196	if (err < 0) {
3197		spin_unlock_irqrestore(&xhci->lock, flags);
3198		xhci_free_command(xhci, cfg_cmd);
3199		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3200				__func__, err);
3201		goto cleanup;
3202	}
3203
3204	xhci_ring_cmd_db(xhci);
3205	spin_unlock_irqrestore(&xhci->lock, flags);
3206
3207	wait_for_completion(stop_cmd->completion);
3208
3209	spin_lock_irqsave(&xhci->lock, flags);
3210
3211	/* config ep command clears toggle if add and drop ep flags are set */
3212	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3213	if (!ctrl_ctx) {
3214		spin_unlock_irqrestore(&xhci->lock, flags);
3215		xhci_free_command(xhci, cfg_cmd);
3216		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3217				__func__);
3218		goto cleanup;
3219	}
3220
3221	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3222					   ctrl_ctx, ep_flag, ep_flag);
3223	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3224
3225	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3226				      udev->slot_id, false);
3227	if (err < 0) {
3228		spin_unlock_irqrestore(&xhci->lock, flags);
3229		xhci_free_command(xhci, cfg_cmd);
3230		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3231				__func__, err);
3232		goto cleanup;
3233	}
3234
3235	xhci_ring_cmd_db(xhci);
3236	spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238	wait_for_completion(cfg_cmd->completion);
3239
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
3243	spin_lock_irqsave(&xhci->lock, flags);
3244	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246	spin_unlock_irqrestore(&xhci->lock, flags);
3247}
3248
3249static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3250		struct usb_device *udev, struct usb_host_endpoint *ep,
3251		unsigned int slot_id)
3252{
3253	int ret;
3254	unsigned int ep_index;
3255	unsigned int ep_state;
3256
3257	if (!ep)
3258		return -EINVAL;
3259	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3260	if (ret <= 0)
3261		return ret ? ret : -EINVAL;
3262	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3263		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3264				" descriptor for ep 0x%x does not support streams\n",
3265				ep->desc.bEndpointAddress);
3266		return -EINVAL;
3267	}
3268
3269	ep_index = xhci_get_endpoint_index(&ep->desc);
3270	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271	if (ep_state & EP_HAS_STREAMS ||
3272			ep_state & EP_GETTING_STREAMS) {
3273		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3274				"already has streams set up.\n",
3275				ep->desc.bEndpointAddress);
3276		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3277				"dynamic stream context array reallocation.\n");
3278		return -EINVAL;
3279	}
3280	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3281		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3282				"endpoint 0x%x; URBs are pending.\n",
3283				ep->desc.bEndpointAddress);
3284		return -EINVAL;
3285	}
3286	return 0;
3287}
3288
3289static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3290		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3291{
3292	unsigned int max_streams;
3293
3294	/* The stream context array size must be a power of two */
3295	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3296	/*
3297	 * Find out how many primary stream array entries the host controller
3298	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3299	 * level page entries), but that's an optional feature for xHCI host
3300	 * controllers. xHCs must support at least 4 stream IDs.
3301	 */
3302	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3303	if (*num_stream_ctxs > max_streams) {
3304		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3305				max_streams);
3306		*num_stream_ctxs = max_streams;
3307		*num_streams = max_streams;
3308	}
3309}
3310
3311/* Returns an error code if one of the endpoint already has streams.
3312 * This does not change any data structures, it only checks and gathers
3313 * information.
3314 */
3315static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3316		struct usb_device *udev,
3317		struct usb_host_endpoint **eps, unsigned int num_eps,
3318		unsigned int *num_streams, u32 *changed_ep_bitmask)
3319{
3320	unsigned int max_streams;
3321	unsigned int endpoint_flag;
3322	int i;
3323	int ret;
3324
3325	for (i = 0; i < num_eps; i++) {
3326		ret = xhci_check_streams_endpoint(xhci, udev,
3327				eps[i], udev->slot_id);
3328		if (ret < 0)
3329			return ret;
3330
3331		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3332		if (max_streams < (*num_streams - 1)) {
3333			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3334					eps[i]->desc.bEndpointAddress,
3335					max_streams);
3336			*num_streams = max_streams+1;
3337		}
3338
3339		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3340		if (*changed_ep_bitmask & endpoint_flag)
3341			return -EINVAL;
3342		*changed_ep_bitmask |= endpoint_flag;
3343	}
3344	return 0;
3345}
3346
3347static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3348		struct usb_device *udev,
3349		struct usb_host_endpoint **eps, unsigned int num_eps)
3350{
3351	u32 changed_ep_bitmask = 0;
3352	unsigned int slot_id;
3353	unsigned int ep_index;
3354	unsigned int ep_state;
3355	int i;
3356
3357	slot_id = udev->slot_id;
3358	if (!xhci->devs[slot_id])
3359		return 0;
3360
3361	for (i = 0; i < num_eps; i++) {
3362		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3364		/* Are streams already being freed for the endpoint? */
3365		if (ep_state & EP_GETTING_NO_STREAMS) {
3366			xhci_warn(xhci, "WARN Can't disable streams for "
3367					"endpoint 0x%x, "
3368					"streams are being disabled already\n",
3369					eps[i]->desc.bEndpointAddress);
3370			return 0;
3371		}
3372		/* Are there actually any streams to free? */
3373		if (!(ep_state & EP_HAS_STREAMS) &&
3374				!(ep_state & EP_GETTING_STREAMS)) {
3375			xhci_warn(xhci, "WARN Can't disable streams for "
3376					"endpoint 0x%x, "
3377					"streams are already disabled!\n",
3378					eps[i]->desc.bEndpointAddress);
3379			xhci_warn(xhci, "WARN xhci_free_streams() called "
3380					"with non-streams endpoint\n");
3381			return 0;
3382		}
3383		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3384	}
3385	return changed_ep_bitmask;
3386}
3387
3388/*
3389 * The USB device drivers use this function (through the HCD interface in USB
3390 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3391 * coordinate mass storage command queueing across multiple endpoints (basically
3392 * a stream ID == a task ID).
3393 *
3394 * Setting up streams involves allocating the same size stream context array
3395 * for each endpoint and issuing a configure endpoint command for all endpoints.
3396 *
3397 * Don't allow the call to succeed if one endpoint only supports one stream
3398 * (which means it doesn't support streams at all).
3399 *
3400 * Drivers may get less stream IDs than they asked for, if the host controller
3401 * hardware or endpoints claim they can't support the number of requested
3402 * stream IDs.
3403 */
3404static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3405		struct usb_host_endpoint **eps, unsigned int num_eps,
3406		unsigned int num_streams, gfp_t mem_flags)
3407{
3408	int i, ret;
3409	struct xhci_hcd *xhci;
3410	struct xhci_virt_device *vdev;
3411	struct xhci_command *config_cmd;
3412	struct xhci_input_control_ctx *ctrl_ctx;
3413	unsigned int ep_index;
3414	unsigned int num_stream_ctxs;
3415	unsigned int max_packet;
3416	unsigned long flags;
3417	u32 changed_ep_bitmask = 0;
3418
3419	if (!eps)
3420		return -EINVAL;
3421
3422	/* Add one to the number of streams requested to account for
3423	 * stream 0 that is reserved for xHCI usage.
3424	 */
3425	num_streams += 1;
3426	xhci = hcd_to_xhci(hcd);
3427	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3428			num_streams);
3429
3430	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3431	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3432			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3433		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3434		return -ENOSYS;
3435	}
3436
3437	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3438	if (!config_cmd)
 
3439		return -ENOMEM;
3440
3441	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3442	if (!ctrl_ctx) {
3443		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3444				__func__);
3445		xhci_free_command(xhci, config_cmd);
3446		return -ENOMEM;
3447	}
3448
3449	/* Check to make sure all endpoints are not already configured for
3450	 * streams.  While we're at it, find the maximum number of streams that
3451	 * all the endpoints will support and check for duplicate endpoints.
3452	 */
3453	spin_lock_irqsave(&xhci->lock, flags);
3454	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3455			num_eps, &num_streams, &changed_ep_bitmask);
3456	if (ret < 0) {
3457		xhci_free_command(xhci, config_cmd);
3458		spin_unlock_irqrestore(&xhci->lock, flags);
3459		return ret;
3460	}
3461	if (num_streams <= 1) {
3462		xhci_warn(xhci, "WARN: endpoints can't handle "
3463				"more than one stream.\n");
3464		xhci_free_command(xhci, config_cmd);
3465		spin_unlock_irqrestore(&xhci->lock, flags);
3466		return -EINVAL;
3467	}
3468	vdev = xhci->devs[udev->slot_id];
3469	/* Mark each endpoint as being in transition, so
3470	 * xhci_urb_enqueue() will reject all URBs.
3471	 */
3472	for (i = 0; i < num_eps; i++) {
3473		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3475	}
3476	spin_unlock_irqrestore(&xhci->lock, flags);
3477
3478	/* Setup internal data structures and allocate HW data structures for
3479	 * streams (but don't install the HW structures in the input context
3480	 * until we're sure all memory allocation succeeded).
3481	 */
3482	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3483	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3484			num_stream_ctxs, num_streams);
3485
3486	for (i = 0; i < num_eps; i++) {
3487		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3488		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3489		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3490				num_stream_ctxs,
3491				num_streams,
3492				max_packet, mem_flags);
3493		if (!vdev->eps[ep_index].stream_info)
3494			goto cleanup;
3495		/* Set maxPstreams in endpoint context and update deq ptr to
3496		 * point to stream context array. FIXME
3497		 */
3498	}
3499
3500	/* Set up the input context for a configure endpoint command. */
3501	for (i = 0; i < num_eps; i++) {
3502		struct xhci_ep_ctx *ep_ctx;
3503
3504		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3506
3507		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3508				vdev->out_ctx, ep_index);
3509		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3510				vdev->eps[ep_index].stream_info);
3511	}
3512	/* Tell the HW to drop its old copy of the endpoint context info
3513	 * and add the updated copy from the input context.
3514	 */
3515	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3516			vdev->out_ctx, ctrl_ctx,
3517			changed_ep_bitmask, changed_ep_bitmask);
3518
3519	/* Issue and wait for the configure endpoint command */
3520	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3521			false, false);
3522
3523	/* xHC rejected the configure endpoint command for some reason, so we
3524	 * leave the old ring intact and free our internal streams data
3525	 * structure.
3526	 */
3527	if (ret < 0)
3528		goto cleanup;
3529
3530	spin_lock_irqsave(&xhci->lock, flags);
3531	for (i = 0; i < num_eps; i++) {
3532		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3534		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3535			 udev->slot_id, ep_index);
3536		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3537	}
3538	xhci_free_command(xhci, config_cmd);
3539	spin_unlock_irqrestore(&xhci->lock, flags);
3540
3541	for (i = 0; i < num_eps; i++) {
3542		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3544	}
3545	/* Subtract 1 for stream 0, which drivers can't use */
3546	return num_streams - 1;
3547
3548cleanup:
3549	/* If it didn't work, free the streams! */
3550	for (i = 0; i < num_eps; i++) {
3551		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553		vdev->eps[ep_index].stream_info = NULL;
3554		/* FIXME Unset maxPstreams in endpoint context and
3555		 * update deq ptr to point to normal string ring.
3556		 */
3557		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559		xhci_endpoint_zero(xhci, vdev, eps[i]);
3560	}
3561	xhci_free_command(xhci, config_cmd);
3562	return -ENOMEM;
3563}
3564
3565/* Transition the endpoint from using streams to being a "normal" endpoint
3566 * without streams.
3567 *
3568 * Modify the endpoint context state, submit a configure endpoint command,
3569 * and free all endpoint rings for streams if that completes successfully.
3570 */
3571static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3572		struct usb_host_endpoint **eps, unsigned int num_eps,
3573		gfp_t mem_flags)
3574{
3575	int i, ret;
3576	struct xhci_hcd *xhci;
3577	struct xhci_virt_device *vdev;
3578	struct xhci_command *command;
3579	struct xhci_input_control_ctx *ctrl_ctx;
3580	unsigned int ep_index;
3581	unsigned long flags;
3582	u32 changed_ep_bitmask;
3583
3584	xhci = hcd_to_xhci(hcd);
3585	vdev = xhci->devs[udev->slot_id];
3586
3587	/* Set up a configure endpoint command to remove the streams rings */
3588	spin_lock_irqsave(&xhci->lock, flags);
3589	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3590			udev, eps, num_eps);
3591	if (changed_ep_bitmask == 0) {
3592		spin_unlock_irqrestore(&xhci->lock, flags);
3593		return -EINVAL;
3594	}
3595
3596	/* Use the xhci_command structure from the first endpoint.  We may have
3597	 * allocated too many, but the driver may call xhci_free_streams() for
3598	 * each endpoint it grouped into one call to xhci_alloc_streams().
3599	 */
3600	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3601	command = vdev->eps[ep_index].stream_info->free_streams_command;
3602	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3603	if (!ctrl_ctx) {
3604		spin_unlock_irqrestore(&xhci->lock, flags);
3605		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3606				__func__);
3607		return -EINVAL;
3608	}
3609
3610	for (i = 0; i < num_eps; i++) {
3611		struct xhci_ep_ctx *ep_ctx;
3612
3613		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3615		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3616			EP_GETTING_NO_STREAMS;
3617
3618		xhci_endpoint_copy(xhci, command->in_ctx,
3619				vdev->out_ctx, ep_index);
3620		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3621				&vdev->eps[ep_index]);
3622	}
3623	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3624			vdev->out_ctx, ctrl_ctx,
3625			changed_ep_bitmask, changed_ep_bitmask);
3626	spin_unlock_irqrestore(&xhci->lock, flags);
3627
3628	/* Issue and wait for the configure endpoint command,
3629	 * which must succeed.
3630	 */
3631	ret = xhci_configure_endpoint(xhci, udev, command,
3632			false, true);
3633
3634	/* xHC rejected the configure endpoint command for some reason, so we
3635	 * leave the streams rings intact.
3636	 */
3637	if (ret < 0)
3638		return ret;
3639
3640	spin_lock_irqsave(&xhci->lock, flags);
3641	for (i = 0; i < num_eps; i++) {
3642		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3644		vdev->eps[ep_index].stream_info = NULL;
3645		/* FIXME Unset maxPstreams in endpoint context and
3646		 * update deq ptr to point to normal string ring.
3647		 */
3648		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3649		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3650	}
3651	spin_unlock_irqrestore(&xhci->lock, flags);
3652
3653	return 0;
3654}
3655
3656/*
3657 * Deletes endpoint resources for endpoints that were active before a Reset
3658 * Device command, or a Disable Slot command.  The Reset Device command leaves
3659 * the control endpoint intact, whereas the Disable Slot command deletes it.
3660 *
3661 * Must be called with xhci->lock held.
3662 */
3663void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3664	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3665{
3666	int i;
3667	unsigned int num_dropped_eps = 0;
3668	unsigned int drop_flags = 0;
3669
3670	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3671		if (virt_dev->eps[i].ring) {
3672			drop_flags |= 1 << i;
3673			num_dropped_eps++;
3674		}
3675	}
3676	xhci->num_active_eps -= num_dropped_eps;
3677	if (num_dropped_eps)
3678		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679				"Dropped %u ep ctxs, flags = 0x%x, "
3680				"%u now active.",
3681				num_dropped_eps, drop_flags,
3682				xhci->num_active_eps);
3683}
3684
3685/*
3686 * This submits a Reset Device Command, which will set the device state to 0,
3687 * set the device address to 0, and disable all the endpoints except the default
3688 * control endpoint.  The USB core should come back and call
3689 * xhci_address_device(), and then re-set up the configuration.  If this is
3690 * called because of a usb_reset_and_verify_device(), then the old alternate
3691 * settings will be re-installed through the normal bandwidth allocation
3692 * functions.
3693 *
3694 * Wait for the Reset Device command to finish.  Remove all structures
3695 * associated with the endpoints that were disabled.  Clear the input device
3696 * structure? Reset the control endpoint 0 max packet size?
3697 *
3698 * If the virt_dev to be reset does not exist or does not match the udev,
3699 * it means the device is lost, possibly due to the xHC restore error and
3700 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3701 * re-allocate the device.
3702 */
3703static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3704		struct usb_device *udev)
3705{
3706	int ret, i;
3707	unsigned long flags;
3708	struct xhci_hcd *xhci;
3709	unsigned int slot_id;
3710	struct xhci_virt_device *virt_dev;
3711	struct xhci_command *reset_device_cmd;
 
 
3712	struct xhci_slot_ctx *slot_ctx;
3713	int old_active_eps = 0;
3714
3715	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3716	if (ret <= 0)
3717		return ret;
3718	xhci = hcd_to_xhci(hcd);
3719	slot_id = udev->slot_id;
3720	virt_dev = xhci->devs[slot_id];
3721	if (!virt_dev) {
3722		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3723				"not exist. Re-allocate the device\n", slot_id);
3724		ret = xhci_alloc_dev(hcd, udev);
3725		if (ret == 1)
3726			return 0;
3727		else
3728			return -EINVAL;
3729	}
3730
3731	if (virt_dev->tt_info)
3732		old_active_eps = virt_dev->tt_info->active_eps;
3733
3734	if (virt_dev->udev != udev) {
3735		/* If the virt_dev and the udev does not match, this virt_dev
3736		 * may belong to another udev.
3737		 * Re-allocate the device.
3738		 */
3739		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3740				"not match the udev. Re-allocate the device\n",
3741				slot_id);
3742		ret = xhci_alloc_dev(hcd, udev);
3743		if (ret == 1)
3744			return 0;
3745		else
3746			return -EINVAL;
3747	}
3748
3749	/* If device is not setup, there is no point in resetting it */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752						SLOT_STATE_DISABLED)
3753		return 0;
3754
3755	trace_xhci_discover_or_reset_device(slot_ctx);
3756
3757	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3758	/* Allocate the command structure that holds the struct completion.
3759	 * Assume we're in process context, since the normal device reset
3760	 * process has to wait for the device anyway.  Storage devices are
3761	 * reset as part of error handling, so use GFP_NOIO instead of
3762	 * GFP_KERNEL.
3763	 */
3764	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3765	if (!reset_device_cmd) {
3766		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3767		return -ENOMEM;
3768	}
3769
3770	/* Attempt to submit the Reset Device command to the command ring */
3771	spin_lock_irqsave(&xhci->lock, flags);
 
3772
3773	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
 
3774	if (ret) {
3775		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3776		spin_unlock_irqrestore(&xhci->lock, flags);
3777		goto command_cleanup;
3778	}
3779	xhci_ring_cmd_db(xhci);
3780	spin_unlock_irqrestore(&xhci->lock, flags);
3781
3782	/* Wait for the Reset Device command to finish */
3783	wait_for_completion(reset_device_cmd->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3784
3785	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3786	 * unless we tried to reset a slot ID that wasn't enabled,
3787	 * or the device wasn't in the addressed or configured state.
3788	 */
3789	ret = reset_device_cmd->status;
3790	switch (ret) {
3791	case COMP_COMMAND_ABORTED:
3792	case COMP_COMMAND_RING_STOPPED:
3793		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3794		ret = -ETIME;
3795		goto command_cleanup;
3796	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3797	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3798		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3799				slot_id,
3800				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3801		xhci_dbg(xhci, "Not freeing device rings.\n");
3802		/* Don't treat this as an error.  May change my mind later. */
3803		ret = 0;
3804		goto command_cleanup;
3805	case COMP_SUCCESS:
3806		xhci_dbg(xhci, "Successful reset device command.\n");
3807		break;
3808	default:
3809		if (xhci_is_vendor_info_code(xhci, ret))
3810			break;
3811		xhci_warn(xhci, "Unknown completion code %u for "
3812				"reset device command.\n", ret);
3813		ret = -EINVAL;
3814		goto command_cleanup;
3815	}
3816
3817	/* Free up host controller endpoint resources */
3818	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3819		spin_lock_irqsave(&xhci->lock, flags);
3820		/* Don't delete the default control endpoint resources */
3821		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3822		spin_unlock_irqrestore(&xhci->lock, flags);
3823	}
3824
3825	/* Everything but endpoint 0 is disabled, so free the rings. */
3826	for (i = 1; i < 31; i++) {
 
3827		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3828
3829		if (ep->ep_state & EP_HAS_STREAMS) {
3830			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3831					xhci_get_endpoint_address(i));
3832			xhci_free_stream_info(xhci, ep->stream_info);
3833			ep->stream_info = NULL;
3834			ep->ep_state &= ~EP_HAS_STREAMS;
3835		}
3836
3837		if (ep->ring) {
3838			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3839			xhci_free_endpoint_ring(xhci, virt_dev, i);
3840		}
3841		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3842			xhci_drop_ep_from_interval_table(xhci,
3843					&virt_dev->eps[i].bw_info,
3844					virt_dev->bw_table,
3845					udev,
3846					&virt_dev->eps[i],
3847					virt_dev->tt_info);
3848		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3849	}
3850	/* If necessary, update the number of active TTs on this root port */
3851	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3852	virt_dev->flags = 0;
 
 
3853	ret = 0;
3854
3855command_cleanup:
3856	xhci_free_command(xhci, reset_device_cmd);
3857	return ret;
3858}
3859
3860/*
3861 * At this point, the struct usb_device is about to go away, the device has
3862 * disconnected, and all traffic has been stopped and the endpoints have been
3863 * disabled.  Free any HC data structures associated with that device.
3864 */
3865static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3866{
3867	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3868	struct xhci_virt_device *virt_dev;
3869	struct xhci_slot_ctx *slot_ctx;
3870	unsigned long flags;
 
3871	int i, ret;
3872
 
3873	/*
3874	 * We called pm_runtime_get_noresume when the device was attached.
3875	 * Decrement the counter here to allow controller to runtime suspend
3876	 * if no devices remain.
3877	 */
3878	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3879		pm_runtime_put_noidle(hcd->self.controller);
 
3880
3881	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882	/* If the host is halted due to driver unload, we still need to free the
3883	 * device.
3884	 */
3885	if (ret <= 0 && ret != -ENODEV)
3886		return;
3887
3888	virt_dev = xhci->devs[udev->slot_id];
3889	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890	trace_xhci_free_dev(slot_ctx);
3891
3892	/* Stop any wayward timer functions (which may grab the lock) */
3893	for (i = 0; i < 31; i++)
3894		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895	virt_dev->udev = NULL;
3896	xhci_disable_slot(xhci, udev->slot_id);
3897
3898	spin_lock_irqsave(&xhci->lock, flags);
3899	xhci_free_virt_device(xhci, udev->slot_id);
3900	spin_unlock_irqrestore(&xhci->lock, flags);
3901
3902}
3903
3904int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3905{
3906	struct xhci_command *command;
3907	unsigned long flags;
3908	u32 state;
3909	int ret;
3910
3911	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3912	if (!command)
3913		return -ENOMEM;
3914
3915	xhci_debugfs_remove_slot(xhci, slot_id);
3916
3917	spin_lock_irqsave(&xhci->lock, flags);
3918	/* Don't disable the slot if the host controller is dead. */
3919	state = readl(&xhci->op_regs->status);
3920	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3921			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return -ENODEV;
3925	}
3926
3927	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3928				slot_id);
3929	if (ret) {
3930		spin_unlock_irqrestore(&xhci->lock, flags);
3931		kfree(command);
3932		return ret;
3933	}
3934	xhci_ring_cmd_db(xhci);
3935	spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937	wait_for_completion(command->completion);
3938
3939	if (command->status != COMP_SUCCESS)
3940		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3941			  slot_id, command->status);
3942
3943	xhci_free_command(xhci, command);
3944
3945	return 0;
3946}
3947
3948/*
3949 * Checks if we have enough host controller resources for the default control
3950 * endpoint.
3951 *
3952 * Must be called with xhci->lock held.
3953 */
3954static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3955{
3956	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3957		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3958				"Not enough ep ctxs: "
3959				"%u active, need to add 1, limit is %u.",
3960				xhci->num_active_eps, xhci->limit_active_eps);
3961		return -ENOMEM;
3962	}
3963	xhci->num_active_eps += 1;
3964	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965			"Adding 1 ep ctx, %u now active.",
3966			xhci->num_active_eps);
3967	return 0;
3968}
3969
3970
3971/*
3972 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3973 * timed out, or allocating memory failed.  Returns 1 on success.
3974 */
3975int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3976{
3977	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978	struct xhci_virt_device *vdev;
3979	struct xhci_slot_ctx *slot_ctx;
3980	unsigned long flags;
3981	int ret, slot_id;
3982	struct xhci_command *command;
3983
3984	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985	if (!command)
3986		return 0;
3987
3988	spin_lock_irqsave(&xhci->lock, flags);
3989	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
 
3990	if (ret) {
3991		spin_unlock_irqrestore(&xhci->lock, flags);
3992		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3993		xhci_free_command(xhci, command);
3994		return 0;
3995	}
3996	xhci_ring_cmd_db(xhci);
3997	spin_unlock_irqrestore(&xhci->lock, flags);
3998
3999	wait_for_completion(command->completion);
4000	slot_id = command->slot_id;
 
 
 
 
 
 
 
4001
4002	if (!slot_id || command->status != COMP_SUCCESS) {
4003		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4004			 xhci_trb_comp_code_string(command->status));
4005		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4006				HCS_MAX_SLOTS(
4007					readl(&xhci->cap_regs->hcs_params1)));
4008		xhci_free_command(xhci, command);
4009		return 0;
4010	}
4011
4012	xhci_free_command(xhci, command);
4013
4014	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4015		spin_lock_irqsave(&xhci->lock, flags);
4016		ret = xhci_reserve_host_control_ep_resources(xhci);
4017		if (ret) {
4018			spin_unlock_irqrestore(&xhci->lock, flags);
4019			xhci_warn(xhci, "Not enough host resources, "
4020					"active endpoint contexts = %u\n",
4021					xhci->num_active_eps);
4022			goto disable_slot;
4023		}
4024		spin_unlock_irqrestore(&xhci->lock, flags);
4025	}
4026	/* Use GFP_NOIO, since this function can be called from
4027	 * xhci_discover_or_reset_device(), which may be called as part of
4028	 * mass storage driver error handling.
4029	 */
4030	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4031		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4032		goto disable_slot;
4033	}
4034	vdev = xhci->devs[slot_id];
4035	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4036	trace_xhci_alloc_dev(slot_ctx);
4037
4038	udev->slot_id = slot_id;
4039
4040	xhci_debugfs_create_slot(xhci, slot_id);
4041
 
4042	/*
4043	 * If resetting upon resume, we can't put the controller into runtime
4044	 * suspend if there is a device attached.
4045	 */
4046	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4047		pm_runtime_get_noresume(hcd->self.controller);
 
4048
4049	/* Is this a LS or FS device under a HS hub? */
4050	/* Hub or peripherial? */
4051	return 1;
4052
4053disable_slot:
4054	xhci_disable_slot(xhci, udev->slot_id);
4055	xhci_free_virt_device(xhci, udev->slot_id);
4056
 
 
4057	return 0;
4058}
4059
4060/**
4061 * xhci_setup_device - issues an Address Device command to assign a unique
4062 *			USB bus address.
4063 * @hcd: USB host controller data structure.
4064 * @udev: USB dev structure representing the connected device.
4065 * @setup: Enum specifying setup mode: address only or with context.
4066 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4067 *
4068 * Return: 0 if successful; otherwise, negative error code.
4069 */
4070static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4071			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4072{
4073	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4074	unsigned long flags;
 
4075	struct xhci_virt_device *virt_dev;
4076	int ret = 0;
4077	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4078	struct xhci_slot_ctx *slot_ctx;
4079	struct xhci_input_control_ctx *ctrl_ctx;
4080	u64 temp_64;
4081	struct xhci_command *command = NULL;
4082
4083	mutex_lock(&xhci->mutex);
4084
4085	if (xhci->xhc_state) {	/* dying, removing or halted */
4086		ret = -ESHUTDOWN;
4087		goto out;
4088	}
4089
4090	if (!udev->slot_id) {
4091		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4092				"Bad Slot ID %d", udev->slot_id);
4093		ret = -EINVAL;
4094		goto out;
4095	}
4096
4097	virt_dev = xhci->devs[udev->slot_id];
4098
4099	if (WARN_ON(!virt_dev)) {
4100		/*
4101		 * In plug/unplug torture test with an NEC controller,
4102		 * a zero-dereference was observed once due to virt_dev = 0.
4103		 * Print useful debug rather than crash if it is observed again!
4104		 */
4105		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4106			udev->slot_id);
4107		ret = -EINVAL;
4108		goto out;
4109	}
4110	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4111	trace_xhci_setup_device_slot(slot_ctx);
4112
4113	if (setup == SETUP_CONTEXT_ONLY) {
4114		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4115		    SLOT_STATE_DEFAULT) {
4116			xhci_dbg(xhci, "Slot already in default state\n");
4117			goto out;
4118		}
4119	}
4120
4121	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4122	if (!command) {
4123		ret = -ENOMEM;
4124		goto out;
4125	}
4126
4127	command->in_ctx = virt_dev->in_ctx;
4128	command->timeout_ms = timeout_ms;
4129
4130	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4131	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4132	if (!ctrl_ctx) {
4133		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4134				__func__);
4135		ret = -EINVAL;
4136		goto out;
4137	}
4138	/*
4139	 * If this is the first Set Address since device plug-in or
4140	 * virt_device realloaction after a resume with an xHCI power loss,
4141	 * then set up the slot context.
4142	 */
4143	if (!slot_ctx->dev_info)
4144		xhci_setup_addressable_virt_dev(xhci, udev);
4145	/* Otherwise, update the control endpoint ring enqueue pointer. */
4146	else
4147		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4148	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4149	ctrl_ctx->drop_flags = 0;
4150
 
 
4151	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4152				le32_to_cpu(slot_ctx->dev_info) >> 27);
4153
4154	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4155	spin_lock_irqsave(&xhci->lock, flags);
4156	trace_xhci_setup_device(virt_dev);
4157	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4158					udev->slot_id, setup);
4159	if (ret) {
4160		spin_unlock_irqrestore(&xhci->lock, flags);
4161		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162				"FIXME: allocate a command ring segment");
4163		goto out;
4164	}
4165	xhci_ring_cmd_db(xhci);
4166	spin_unlock_irqrestore(&xhci->lock, flags);
4167
4168	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4169	wait_for_completion(command->completion);
4170
4171	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4172	 * the SetAddress() "recovery interval" required by USB and aborting the
4173	 * command on a timeout.
4174	 */
4175	switch (command->status) {
4176	case COMP_COMMAND_ABORTED:
4177	case COMP_COMMAND_RING_STOPPED:
4178		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4179		ret = -ETIME;
4180		break;
4181	case COMP_CONTEXT_STATE_ERROR:
4182	case COMP_SLOT_NOT_ENABLED_ERROR:
 
 
 
 
 
4183		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4184			 act, udev->slot_id);
4185		ret = -EINVAL;
4186		break;
4187	case COMP_USB_TRANSACTION_ERROR:
4188		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4189
4190		mutex_unlock(&xhci->mutex);
4191		ret = xhci_disable_slot(xhci, udev->slot_id);
4192		xhci_free_virt_device(xhci, udev->slot_id);
4193		if (!ret)
4194			xhci_alloc_dev(hcd, udev);
4195		kfree(command->completion);
4196		kfree(command);
4197		return -EPROTO;
4198	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4199		dev_warn(&udev->dev,
4200			 "ERROR: Incompatible device for setup %s command\n", act);
4201		ret = -ENODEV;
4202		break;
4203	case COMP_SUCCESS:
4204		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205			       "Successful setup %s command", act);
4206		break;
4207	default:
4208		xhci_err(xhci,
4209			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4210			 act, command->status);
 
 
4211		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4212		ret = -EINVAL;
4213		break;
4214	}
4215	if (ret)
4216		goto out;
 
4217	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4218	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219			"Op regs DCBAA ptr = %#016llx", temp_64);
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		"Slot ID %d dcbaa entry @%p = %#016llx",
4222		udev->slot_id,
4223		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4224		(unsigned long long)
4225		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4226	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4227			"Output Context DMA address = %#08llx",
4228			(unsigned long long)virt_dev->out_ctx->dma);
 
 
4229	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4231	/*
4232	 * USB core uses address 1 for the roothubs, so we add one to the
4233	 * address given back to us by the HC.
4234	 */
 
4235	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4236				le32_to_cpu(slot_ctx->dev_info) >> 27);
4237	/* Zero the input context control for later use */
4238	ctrl_ctx->add_flags = 0;
4239	ctrl_ctx->drop_flags = 0;
4240	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4241	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4242
4243	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4244		       "Internal device address = %d",
4245		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4246out:
4247	mutex_unlock(&xhci->mutex);
4248	if (command) {
4249		kfree(command->completion);
4250		kfree(command);
4251	}
4252	return ret;
4253}
4254
4255static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4256			       unsigned int timeout_ms)
4257{
4258	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4259}
4260
4261static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4262{
4263	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4264				 XHCI_CMD_DEFAULT_TIMEOUT);
4265}
4266
4267/*
4268 * Transfer the port index into real index in the HW port status
4269 * registers. Caculate offset between the port's PORTSC register
4270 * and port status base. Divide the number of per port register
4271 * to get the real index. The raw port number bases 1.
4272 */
4273int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4274{
4275	struct xhci_hub *rhub;
 
 
 
 
 
 
 
 
4276
4277	rhub = xhci_get_rhub(hcd);
4278	return rhub->ports[port1 - 1]->hw_portnum + 1;
4279}
4280
4281/*
4282 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4283 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4284 */
4285static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4286			struct usb_device *udev, u16 max_exit_latency)
4287{
4288	struct xhci_virt_device *virt_dev;
4289	struct xhci_command *command;
4290	struct xhci_input_control_ctx *ctrl_ctx;
4291	struct xhci_slot_ctx *slot_ctx;
4292	unsigned long flags;
4293	int ret;
4294
4295	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4296	if (!command)
4297		return -ENOMEM;
4298
4299	spin_lock_irqsave(&xhci->lock, flags);
4300
4301	virt_dev = xhci->devs[udev->slot_id];
4302
4303	/*
4304	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4305	 * xHC was re-initialized. Exit latency will be set later after
4306	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4307	 */
4308
4309	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4310		spin_unlock_irqrestore(&xhci->lock, flags);
4311		xhci_free_command(xhci, command);
4312		return 0;
4313	}
4314
4315	/* Attempt to issue an Evaluate Context command to change the MEL. */
4316	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
 
 
4317	if (!ctrl_ctx) {
4318		spin_unlock_irqrestore(&xhci->lock, flags);
4319		xhci_free_command(xhci, command);
4320		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321				__func__);
4322		return -ENOMEM;
4323	}
4324
4325	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4326	spin_unlock_irqrestore(&xhci->lock, flags);
4327
4328	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4329	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4330	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4331	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4332	slot_ctx->dev_state = 0;
4333
4334	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4335			"Set up evaluate context for LPM MEL change.");
 
 
4336
4337	/* Issue and wait for the evaluate context command. */
4338	ret = xhci_configure_endpoint(xhci, udev, command,
4339			true, true);
 
 
4340
4341	if (!ret) {
4342		spin_lock_irqsave(&xhci->lock, flags);
4343		virt_dev->current_mel = max_exit_latency;
4344		spin_unlock_irqrestore(&xhci->lock, flags);
4345	}
4346
4347	xhci_free_command(xhci, command);
4348
4349	return ret;
4350}
4351
4352#ifdef CONFIG_PM
4353
4354/* BESL to HIRD Encoding array for USB2 LPM */
4355static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4356	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4357
4358/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4359static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4360					struct usb_device *udev)
4361{
4362	int u2del, besl, besl_host;
4363	int besl_device = 0;
4364	u32 field;
4365
4366	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4367	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369	if (field & USB_BESL_SUPPORT) {
4370		for (besl_host = 0; besl_host < 16; besl_host++) {
4371			if (xhci_besl_encoding[besl_host] >= u2del)
4372				break;
4373		}
4374		/* Use baseline BESL value as default */
4375		if (field & USB_BESL_BASELINE_VALID)
4376			besl_device = USB_GET_BESL_BASELINE(field);
4377		else if (field & USB_BESL_DEEP_VALID)
4378			besl_device = USB_GET_BESL_DEEP(field);
4379	} else {
4380		if (u2del <= 50)
4381			besl_host = 0;
4382		else
4383			besl_host = (u2del - 51) / 75 + 1;
4384	}
4385
4386	besl = besl_host + besl_device;
4387	if (besl > 15)
4388		besl = 15;
4389
4390	return besl;
4391}
4392
4393/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4394static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4395{
4396	u32 field;
4397	int l1;
4398	int besld = 0;
4399	int hirdm = 0;
4400
4401	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4402
4403	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4404	l1 = udev->l1_params.timeout / 256;
4405
4406	/* device has preferred BESLD */
4407	if (field & USB_BESL_DEEP_VALID) {
4408		besld = USB_GET_BESL_DEEP(field);
4409		hirdm = 1;
4410	}
4411
4412	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4413}
4414
4415static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4416			struct usb_device *udev, int enable)
4417{
4418	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4419	struct xhci_port **ports;
4420	__le32 __iomem	*pm_addr, *hlpm_addr;
4421	u32		pm_val, hlpm_val, field;
4422	unsigned int	port_num;
4423	unsigned long	flags;
4424	int		hird, exit_latency;
4425	int		ret;
4426
4427	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4428		return -EPERM;
4429
4430	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4431			!udev->lpm_capable)
4432		return -EPERM;
4433
4434	if (!udev->parent || udev->parent->parent ||
4435			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4436		return -EPERM;
4437
4438	if (udev->usb2_hw_lpm_capable != 1)
4439		return -EPERM;
4440
4441	spin_lock_irqsave(&xhci->lock, flags);
4442
4443	ports = xhci->usb2_rhub.ports;
4444	port_num = udev->portnum - 1;
4445	pm_addr = ports[port_num]->addr + PORTPMSC;
4446	pm_val = readl(pm_addr);
4447	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
 
4448
4449	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4450			enable ? "enable" : "disable", port_num + 1);
4451
4452	if (enable) {
4453		/* Host supports BESL timeout instead of HIRD */
4454		if (udev->usb2_hw_lpm_besl_capable) {
4455			/* if device doesn't have a preferred BESL value use a
4456			 * default one which works with mixed HIRD and BESL
4457			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4458			 */
4459			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460			if ((field & USB_BESL_SUPPORT) &&
4461			    (field & USB_BESL_BASELINE_VALID))
4462				hird = USB_GET_BESL_BASELINE(field);
4463			else
4464				hird = udev->l1_params.besl;
4465
4466			exit_latency = xhci_besl_encoding[hird];
4467			spin_unlock_irqrestore(&xhci->lock, flags);
4468
 
 
 
 
 
 
 
 
4469			ret = xhci_change_max_exit_latency(xhci, udev,
4470							   exit_latency);
 
 
4471			if (ret < 0)
4472				return ret;
4473			spin_lock_irqsave(&xhci->lock, flags);
4474
4475			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4476			writel(hlpm_val, hlpm_addr);
4477			/* flush write */
4478			readl(hlpm_addr);
4479		} else {
4480			hird = xhci_calculate_hird_besl(xhci, udev);
4481		}
4482
4483		pm_val &= ~PORT_HIRD_MASK;
4484		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4485		writel(pm_val, pm_addr);
4486		pm_val = readl(pm_addr);
4487		pm_val |= PORT_HLE;
4488		writel(pm_val, pm_addr);
4489		/* flush write */
4490		readl(pm_addr);
4491	} else {
4492		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4493		writel(pm_val, pm_addr);
4494		/* flush write */
4495		readl(pm_addr);
4496		if (udev->usb2_hw_lpm_besl_capable) {
4497			spin_unlock_irqrestore(&xhci->lock, flags);
 
4498			xhci_change_max_exit_latency(xhci, udev, 0);
4499			readl_poll_timeout(ports[port_num]->addr, pm_val,
4500					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4501					   100, 10000);
4502			return 0;
4503		}
4504	}
4505
4506	spin_unlock_irqrestore(&xhci->lock, flags);
4507	return 0;
4508}
4509
4510/* check if a usb2 port supports a given extened capability protocol
4511 * only USB2 ports extended protocol capability values are cached.
4512 * Return 1 if capability is supported
4513 */
4514static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4515					   unsigned capability)
4516{
4517	u32 port_offset, port_count;
4518	int i;
4519
4520	for (i = 0; i < xhci->num_ext_caps; i++) {
4521		if (xhci->ext_caps[i] & capability) {
4522			/* port offsets starts at 1 */
4523			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4524			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4525			if (port >= port_offset &&
4526			    port < port_offset + port_count)
4527				return 1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4534{
4535	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4536	int		portnum = udev->portnum - 1;
4537
4538	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
 
4539		return 0;
4540
4541	/* we only support lpm for non-hub device connected to root hub yet */
4542	if (!udev->parent || udev->parent->parent ||
4543			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4544		return 0;
4545
4546	if (xhci->hw_lpm_support == 1 &&
4547			xhci_check_usb2_port_capability(
4548				xhci, portnum, XHCI_HLC)) {
4549		udev->usb2_hw_lpm_capable = 1;
4550		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4551		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4552		if (xhci_check_usb2_port_capability(xhci, portnum,
4553					XHCI_BLC))
4554			udev->usb2_hw_lpm_besl_capable = 1;
4555	}
4556
4557	return 0;
4558}
4559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4560/*---------------------- USB 3.0 Link PM functions ------------------------*/
4561
 
4562/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4563static unsigned long long xhci_service_interval_to_ns(
4564		struct usb_endpoint_descriptor *desc)
4565{
4566	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4567}
4568
4569static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4570		enum usb3_link_state state)
4571{
4572	unsigned long long sel;
4573	unsigned long long pel;
4574	unsigned int max_sel_pel;
4575	char *state_name;
4576
4577	switch (state) {
4578	case USB3_LPM_U1:
4579		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4580		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4581		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4582		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4583		state_name = "U1";
4584		break;
4585	case USB3_LPM_U2:
4586		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4587		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4588		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4589		state_name = "U2";
4590		break;
4591	default:
4592		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4593				__func__);
4594		return USB3_LPM_DISABLED;
4595	}
4596
4597	if (sel <= max_sel_pel && pel <= max_sel_pel)
4598		return USB3_LPM_DEVICE_INITIATED;
4599
4600	if (sel > max_sel_pel)
4601		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4602				"due to long SEL %llu ms\n",
4603				state_name, sel);
4604	else
4605		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4606				"due to long PEL %llu ms\n",
4607				state_name, pel);
4608	return USB3_LPM_DISABLED;
4609}
4610
4611/* The U1 timeout should be the maximum of the following values:
 
4612 *  - For control endpoints, U1 system exit latency (SEL) * 3
4613 *  - For bulk endpoints, U1 SEL * 5
4614 *  - For interrupt endpoints:
4615 *    - Notification EPs, U1 SEL * 3
4616 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4617 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4618 */
4619static unsigned long long xhci_calculate_intel_u1_timeout(
4620		struct usb_device *udev,
4621		struct usb_endpoint_descriptor *desc)
4622{
4623	unsigned long long timeout_ns;
4624	int ep_type;
4625	int intr_type;
4626
4627	ep_type = usb_endpoint_type(desc);
4628	switch (ep_type) {
4629	case USB_ENDPOINT_XFER_CONTROL:
4630		timeout_ns = udev->u1_params.sel * 3;
4631		break;
4632	case USB_ENDPOINT_XFER_BULK:
4633		timeout_ns = udev->u1_params.sel * 5;
4634		break;
4635	case USB_ENDPOINT_XFER_INT:
4636		intr_type = usb_endpoint_interrupt_type(desc);
4637		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4638			timeout_ns = udev->u1_params.sel * 3;
4639			break;
4640		}
4641		/* Otherwise the calculation is the same as isoc eps */
4642		fallthrough;
4643	case USB_ENDPOINT_XFER_ISOC:
4644		timeout_ns = xhci_service_interval_to_ns(desc);
4645		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4646		if (timeout_ns < udev->u1_params.sel * 2)
4647			timeout_ns = udev->u1_params.sel * 2;
4648		break;
4649	default:
4650		return 0;
4651	}
4652
4653	return timeout_ns;
4654}
4655
4656/* Returns the hub-encoded U1 timeout value. */
4657static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4658		struct usb_device *udev,
4659		struct usb_endpoint_descriptor *desc)
4660{
4661	unsigned long long timeout_ns;
4662
4663	/* Prevent U1 if service interval is shorter than U1 exit latency */
4664	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4665		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4666			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4667			return USB3_LPM_DISABLED;
4668		}
4669	}
4670
4671	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4672		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4673	else
4674		timeout_ns = udev->u1_params.sel;
4675
4676	/* The U1 timeout is encoded in 1us intervals.
4677	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4678	 */
4679	if (timeout_ns == USB3_LPM_DISABLED)
4680		timeout_ns = 1;
4681	else
4682		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4683
4684	/* If the necessary timeout value is bigger than what we can set in the
4685	 * USB 3.0 hub, we have to disable hub-initiated U1.
4686	 */
4687	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4688		return timeout_ns;
4689	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4690			"due to long timeout %llu ms\n", timeout_ns);
4691	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4692}
4693
4694/* The U2 timeout should be the maximum of:
 
4695 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4696 *  - largest bInterval of any active periodic endpoint (to avoid going
4697 *    into lower power link states between intervals).
4698 *  - the U2 Exit Latency of the device
4699 */
4700static unsigned long long xhci_calculate_intel_u2_timeout(
4701		struct usb_device *udev,
4702		struct usb_endpoint_descriptor *desc)
4703{
4704	unsigned long long timeout_ns;
4705	unsigned long long u2_del_ns;
4706
4707	timeout_ns = 10 * 1000 * 1000;
4708
4709	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4710			(xhci_service_interval_to_ns(desc) > timeout_ns))
4711		timeout_ns = xhci_service_interval_to_ns(desc);
4712
4713	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4714	if (u2_del_ns > timeout_ns)
4715		timeout_ns = u2_del_ns;
4716
4717	return timeout_ns;
4718}
4719
4720/* Returns the hub-encoded U2 timeout value. */
4721static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4722		struct usb_device *udev,
4723		struct usb_endpoint_descriptor *desc)
4724{
4725	unsigned long long timeout_ns;
4726
4727	/* Prevent U2 if service interval is shorter than U2 exit latency */
4728	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4729		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4730			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4731			return USB3_LPM_DISABLED;
4732		}
4733	}
4734
4735	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4736		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4737	else
4738		timeout_ns = udev->u2_params.sel;
4739
4740	/* The U2 timeout is encoded in 256us intervals */
4741	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4742	/* If the necessary timeout value is bigger than what we can set in the
4743	 * USB 3.0 hub, we have to disable hub-initiated U2.
4744	 */
4745	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4746		return timeout_ns;
4747	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4748			"due to long timeout %llu ms\n", timeout_ns);
4749	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4750}
4751
4752static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753		struct usb_device *udev,
4754		struct usb_endpoint_descriptor *desc,
4755		enum usb3_link_state state,
4756		u16 *timeout)
4757{
4758	if (state == USB3_LPM_U1)
4759		return xhci_calculate_u1_timeout(xhci, udev, desc);
4760	else if (state == USB3_LPM_U2)
4761		return xhci_calculate_u2_timeout(xhci, udev, desc);
 
 
 
4762
4763	return USB3_LPM_DISABLED;
4764}
4765
4766static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4767		struct usb_device *udev,
4768		struct usb_endpoint_descriptor *desc,
4769		enum usb3_link_state state,
4770		u16 *timeout)
4771{
4772	u16 alt_timeout;
4773
4774	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4775		desc, state, timeout);
4776
4777	/* If we found we can't enable hub-initiated LPM, and
4778	 * the U1 or U2 exit latency was too high to allow
4779	 * device-initiated LPM as well, then we will disable LPM
4780	 * for this device, so stop searching any further.
4781	 */
4782	if (alt_timeout == USB3_LPM_DISABLED) {
 
4783		*timeout = alt_timeout;
4784		return -E2BIG;
4785	}
4786	if (alt_timeout > *timeout)
4787		*timeout = alt_timeout;
4788	return 0;
4789}
4790
4791static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4792		struct usb_device *udev,
4793		struct usb_host_interface *alt,
4794		enum usb3_link_state state,
4795		u16 *timeout)
4796{
4797	int j;
4798
4799	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4800		if (xhci_update_timeout_for_endpoint(xhci, udev,
4801					&alt->endpoint[j].desc, state, timeout))
4802			return -E2BIG;
 
4803	}
4804	return 0;
4805}
4806
4807static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4808		struct usb_device *udev,
4809		enum usb3_link_state state)
4810{
4811	struct usb_device *parent = udev->parent;
4812	int tier = 1; /* roothub is tier1 */
4813
4814	while (parent) {
4815		parent = parent->parent;
4816		tier++;
4817	}
4818
4819	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4820		goto fail;
4821	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4822		goto fail;
4823
4824	return 0;
4825fail:
4826	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4827			tier);
 
 
 
4828	return -E2BIG;
4829}
4830
 
 
 
 
 
 
 
 
 
4831/* Returns the U1 or U2 timeout that should be enabled.
4832 * If the tier check or timeout setting functions return with a non-zero exit
4833 * code, that means the timeout value has been finalized and we shouldn't look
4834 * at any more endpoints.
4835 */
4836static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4837			struct usb_device *udev, enum usb3_link_state state)
4838{
4839	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4840	struct usb_host_config *config;
4841	char *state_name;
4842	int i;
4843	u16 timeout = USB3_LPM_DISABLED;
4844
4845	if (state == USB3_LPM_U1)
4846		state_name = "U1";
4847	else if (state == USB3_LPM_U2)
4848		state_name = "U2";
4849	else {
4850		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4851				state);
4852		return timeout;
4853	}
4854
 
 
 
4855	/* Gather some information about the currently installed configuration
4856	 * and alternate interface settings.
4857	 */
4858	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859			state, &timeout))
4860		return timeout;
4861
4862	config = udev->actconfig;
4863	if (!config)
4864		return timeout;
4865
4866	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867		struct usb_driver *driver;
4868		struct usb_interface *intf = config->interface[i];
4869
4870		if (!intf)
4871			continue;
4872
4873		/* Check if any currently bound drivers want hub-initiated LPM
4874		 * disabled.
4875		 */
4876		if (intf->dev.driver) {
4877			driver = to_usb_driver(intf->dev.driver);
4878			if (driver && driver->disable_hub_initiated_lpm) {
4879				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880					state_name, driver->name);
4881				timeout = xhci_get_timeout_no_hub_lpm(udev,
4882								      state);
4883				if (timeout == USB3_LPM_DISABLED)
4884					return timeout;
4885			}
4886		}
4887
4888		/* Not sure how this could happen... */
4889		if (!intf->cur_altsetting)
4890			continue;
4891
4892		if (xhci_update_timeout_for_interface(xhci, udev,
4893					intf->cur_altsetting,
4894					state, &timeout))
4895			return timeout;
4896	}
4897	return timeout;
4898}
4899
4900static int calculate_max_exit_latency(struct usb_device *udev,
4901		enum usb3_link_state state_changed,
4902		u16 hub_encoded_timeout)
4903{
4904	unsigned long long u1_mel_us = 0;
4905	unsigned long long u2_mel_us = 0;
4906	unsigned long long mel_us = 0;
4907	bool disabling_u1;
4908	bool disabling_u2;
4909	bool enabling_u1;
4910	bool enabling_u2;
4911
4912	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913			hub_encoded_timeout == USB3_LPM_DISABLED);
4914	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915			hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918			hub_encoded_timeout != USB3_LPM_DISABLED);
4919	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920			hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922	/* If U1 was already enabled and we're not disabling it,
4923	 * or we're going to enable U1, account for the U1 max exit latency.
4924	 */
4925	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926			enabling_u1)
4927		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929			enabling_u2)
4930		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932	mel_us = max(u1_mel_us, u2_mel_us);
4933
 
 
4934	/* xHCI host controller max exit latency field is only 16 bits wide. */
4935	if (mel_us > MAX_EXIT) {
4936		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4937				"is too big.\n", mel_us);
4938		return -E2BIG;
4939	}
4940	return mel_us;
4941}
4942
4943/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4944static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945			struct usb_device *udev, enum usb3_link_state state)
4946{
4947	struct xhci_hcd	*xhci;
4948	struct xhci_port *port;
4949	u16 hub_encoded_timeout;
4950	int mel;
4951	int ret;
4952
4953	xhci = hcd_to_xhci(hcd);
4954	/* The LPM timeout values are pretty host-controller specific, so don't
4955	 * enable hub-initiated timeouts unless the vendor has provided
4956	 * information about their timeout algorithm.
4957	 */
4958	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4959			!xhci->devs[udev->slot_id])
4960		return USB3_LPM_DISABLED;
4961
4962	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4963		return USB3_LPM_DISABLED;
4964
4965	/* If connected to root port then check port can handle lpm */
4966	if (udev->parent && !udev->parent->parent) {
4967		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4968		if (port->lpm_incapable)
4969			return USB3_LPM_DISABLED;
4970	}
4971
4972	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4973	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4974	if (mel < 0) {
4975		/* Max Exit Latency is too big, disable LPM. */
4976		hub_encoded_timeout = USB3_LPM_DISABLED;
4977		mel = 0;
4978	}
4979
4980	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4981	if (ret)
4982		return ret;
4983	return hub_encoded_timeout;
4984}
4985
4986static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4987			struct usb_device *udev, enum usb3_link_state state)
4988{
4989	struct xhci_hcd	*xhci;
4990	u16 mel;
 
4991
4992	xhci = hcd_to_xhci(hcd);
4993	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4994			!xhci->devs[udev->slot_id])
4995		return 0;
4996
4997	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4998	return xhci_change_max_exit_latency(xhci, udev, mel);
 
 
 
4999}
5000#else /* CONFIG_PM */
5001
5002static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5003				struct usb_device *udev, int enable)
5004{
5005	return 0;
5006}
5007
5008static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5009{
5010	return 0;
5011}
5012
5013static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014			struct usb_device *udev, enum usb3_link_state state)
5015{
5016	return USB3_LPM_DISABLED;
5017}
5018
5019static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020			struct usb_device *udev, enum usb3_link_state state)
5021{
5022	return 0;
5023}
5024#endif	/* CONFIG_PM */
5025
5026/*-------------------------------------------------------------------------*/
5027
5028/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5029 * internal data structures for the device.
5030 */
5031int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5032			struct usb_tt *tt, gfp_t mem_flags)
5033{
5034	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5035	struct xhci_virt_device *vdev;
5036	struct xhci_command *config_cmd;
5037	struct xhci_input_control_ctx *ctrl_ctx;
5038	struct xhci_slot_ctx *slot_ctx;
5039	unsigned long flags;
5040	unsigned think_time;
5041	int ret;
5042
5043	/* Ignore root hubs */
5044	if (!hdev->parent)
5045		return 0;
5046
5047	vdev = xhci->devs[hdev->slot_id];
5048	if (!vdev) {
5049		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5050		return -EINVAL;
5051	}
5052
5053	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5054	if (!config_cmd)
5055		return -ENOMEM;
5056
5057	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5058	if (!ctrl_ctx) {
5059		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5060				__func__);
5061		xhci_free_command(xhci, config_cmd);
5062		return -ENOMEM;
5063	}
5064
5065	spin_lock_irqsave(&xhci->lock, flags);
5066	if (hdev->speed == USB_SPEED_HIGH &&
5067			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5068		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5069		xhci_free_command(xhci, config_cmd);
5070		spin_unlock_irqrestore(&xhci->lock, flags);
5071		return -ENOMEM;
5072	}
5073
5074	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5075	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5076	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5077	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5078	/*
5079	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5080	 * but it may be already set to 1 when setup an xHCI virtual
5081	 * device, so clear it anyway.
5082	 */
5083	if (tt->multi)
5084		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5085	else if (hdev->speed == USB_SPEED_FULL)
5086		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5087
5088	if (xhci->hci_version > 0x95) {
5089		xhci_dbg(xhci, "xHCI version %x needs hub "
5090				"TT think time and number of ports\n",
5091				(unsigned int) xhci->hci_version);
5092		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5093		/* Set TT think time - convert from ns to FS bit times.
5094		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5095		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5096		 *
5097		 * xHCI 1.0: this field shall be 0 if the device is not a
5098		 * High-spped hub.
5099		 */
5100		think_time = tt->think_time;
5101		if (think_time != 0)
5102			think_time = (think_time / 666) - 1;
5103		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5104			slot_ctx->tt_info |=
5105				cpu_to_le32(TT_THINK_TIME(think_time));
5106	} else {
5107		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5108				"TT think time or number of ports\n",
5109				(unsigned int) xhci->hci_version);
5110	}
5111	slot_ctx->dev_state = 0;
5112	spin_unlock_irqrestore(&xhci->lock, flags);
5113
5114	xhci_dbg(xhci, "Set up %s for hub device.\n",
5115			(xhci->hci_version > 0x95) ?
5116			"configure endpoint" : "evaluate context");
 
 
5117
5118	/* Issue and wait for the configure endpoint or
5119	 * evaluate context command.
5120	 */
5121	if (xhci->hci_version > 0x95)
5122		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5123				false, false);
5124	else
5125		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5126				true, false);
5127
 
 
 
5128	xhci_free_command(xhci, config_cmd);
5129	return ret;
5130}
5131EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5132
5133static int xhci_get_frame(struct usb_hcd *hcd)
5134{
5135	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5136	/* EHCI mods by the periodic size.  Why? */
5137	return readl(&xhci->run_regs->microframe_index) >> 3;
5138}
5139
5140static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5141{
5142	xhci->usb2_rhub.hcd = hcd;
5143	hcd->speed = HCD_USB2;
5144	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5145	/*
5146	 * USB 2.0 roothub under xHCI has an integrated TT,
5147	 * (rate matching hub) as opposed to having an OHCI/UHCI
5148	 * companion controller.
5149	 */
5150	hcd->has_tt = 1;
5151}
5152
5153static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5154{
5155	unsigned int minor_rev;
5156
5157	/*
5158	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5159	 * should return 0x31 for sbrn, or that the minor revision
5160	 * is a two digit BCD containig minor and sub-minor numbers.
5161	 * This was later clarified in xHCI 1.2.
5162	 *
5163	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5164	 * minor revision set to 0x1 instead of 0x10.
5165	 */
5166	if (xhci->usb3_rhub.min_rev == 0x1)
5167		minor_rev = 1;
5168	else
5169		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5170
5171	switch (minor_rev) {
5172	case 2:
5173		hcd->speed = HCD_USB32;
5174		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175		hcd->self.root_hub->rx_lanes = 2;
5176		hcd->self.root_hub->tx_lanes = 2;
5177		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5178		break;
5179	case 1:
5180		hcd->speed = HCD_USB31;
5181		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5183		break;
5184	}
5185	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5186		  minor_rev, minor_rev ? "Enhanced " : "");
5187
5188	xhci->usb3_rhub.hcd = hcd;
5189}
5190
5191int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192{
5193	struct xhci_hcd		*xhci;
5194	/*
5195	 * TODO: Check with DWC3 clients for sysdev according to
5196	 * quirks
5197	 */
5198	struct device		*dev = hcd->self.sysdev;
5199	int			retval;
5200
5201	/* Accept arbitrarily long scatter-gather lists */
5202	hcd->self.sg_tablesize = ~0;
5203
5204	/* support to build packet from discontinuous buffers */
5205	hcd->self.no_sg_constraint = 1;
5206
5207	/* XHCI controllers don't stop the ep queue on short packets :| */
5208	hcd->self.no_stop_on_short = 1;
5209
5210	xhci = hcd_to_xhci(hcd);
5211
5212	if (!usb_hcd_is_primary_hcd(hcd)) {
5213		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214		return 0;
5215	}
5216
5217	mutex_init(&xhci->mutex);
5218	xhci->main_hcd = hcd;
5219	xhci->cap_regs = hcd->regs;
5220	xhci->op_regs = hcd->regs +
5221		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5222	xhci->run_regs = hcd->regs +
5223		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5224	/* Cache read-only capability registers */
5225	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5226	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5227	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5228	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
 
5229	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5230	if (xhci->hci_version > 0x100)
5231		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5232
5233	/* xhci-plat or xhci-pci might have set max_interrupters already */
5234	if ((!xhci->max_interrupters) ||
5235	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5236		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5237
5238	xhci->quirks |= quirks;
5239
5240	if (get_quirks)
5241		get_quirks(dev, xhci);
5242
5243	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5244	 * success event after a short transfer. This quirk will ignore such
5245	 * spurious event.
5246	 */
5247	if (xhci->hci_version > 0x96)
5248		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5249
5250	/* Make sure the HC is halted. */
5251	retval = xhci_halt(xhci);
5252	if (retval)
5253		return retval;
5254
5255	xhci_zero_64b_regs(xhci);
5256
5257	xhci_dbg(xhci, "Resetting HCD\n");
5258	/* Reset the internal HC memory state and registers. */
5259	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5260	if (retval)
5261		return retval;
5262	xhci_dbg(xhci, "Reset complete\n");
5263
5264	/*
5265	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5266	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5267	 * address memory pointers actually. So, this driver clears the AC64
5268	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5269	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5270	 */
5271	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5272		xhci->hcc_params &= ~BIT(0);
5273
5274	/* Set dma_mask and coherent_dma_mask to 64-bits,
5275	 * if xHC supports 64-bit addressing */
5276	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5277			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5278		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5279		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5280	} else {
5281		/*
5282		 * This is to avoid error in cases where a 32-bit USB
5283		 * controller is used on a 64-bit capable system.
5284		 */
5285		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5286		if (retval)
5287			return retval;
5288		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5289		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5290	}
5291
5292	xhci_dbg(xhci, "Calling HCD init\n");
5293	/* Initialize HCD and host controller data structures. */
5294	retval = xhci_init(hcd);
5295	if (retval)
5296		return retval;
5297	xhci_dbg(xhci, "Called HCD init\n");
5298
5299	if (xhci_hcd_is_usb3(hcd))
5300		xhci_hcd_init_usb3_data(xhci, hcd);
5301	else
5302		xhci_hcd_init_usb2_data(xhci, hcd);
5303
5304	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5305		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5306
5307	return 0;
 
 
 
5308}
5309EXPORT_SYMBOL_GPL(xhci_gen_setup);
5310
5311static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5312		struct usb_host_endpoint *ep)
5313{
5314	struct xhci_hcd *xhci;
5315	struct usb_device *udev;
5316	unsigned int slot_id;
5317	unsigned int ep_index;
5318	unsigned long flags;
5319
5320	xhci = hcd_to_xhci(hcd);
5321
5322	spin_lock_irqsave(&xhci->lock, flags);
5323	udev = (struct usb_device *)ep->hcpriv;
5324	slot_id = udev->slot_id;
5325	ep_index = xhci_get_endpoint_index(&ep->desc);
5326
5327	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5328	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5329	spin_unlock_irqrestore(&xhci->lock, flags);
5330}
5331
5332static const struct hc_driver xhci_hc_driver = {
5333	.description =		"xhci-hcd",
5334	.product_desc =		"xHCI Host Controller",
5335	.hcd_priv_size =	sizeof(struct xhci_hcd),
5336
5337	/*
5338	 * generic hardware linkage
5339	 */
5340	.irq =			xhci_irq,
5341	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5342				HCD_BH,
5343
5344	/*
5345	 * basic lifecycle operations
5346	 */
5347	.reset =		NULL, /* set in xhci_init_driver() */
5348	.start =		xhci_run,
5349	.stop =			xhci_stop,
5350	.shutdown =		xhci_shutdown,
5351
5352	/*
5353	 * managing i/o requests and associated device resources
5354	 */
5355	.map_urb_for_dma =      xhci_map_urb_for_dma,
5356	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5357	.urb_enqueue =		xhci_urb_enqueue,
5358	.urb_dequeue =		xhci_urb_dequeue,
5359	.alloc_dev =		xhci_alloc_dev,
5360	.free_dev =		xhci_free_dev,
5361	.alloc_streams =	xhci_alloc_streams,
5362	.free_streams =		xhci_free_streams,
5363	.add_endpoint =		xhci_add_endpoint,
5364	.drop_endpoint =	xhci_drop_endpoint,
5365	.endpoint_disable =	xhci_endpoint_disable,
5366	.endpoint_reset =	xhci_endpoint_reset,
5367	.check_bandwidth =	xhci_check_bandwidth,
5368	.reset_bandwidth =	xhci_reset_bandwidth,
5369	.address_device =	xhci_address_device,
5370	.enable_device =	xhci_enable_device,
5371	.update_hub_device =	xhci_update_hub_device,
5372	.reset_device =		xhci_discover_or_reset_device,
5373
5374	/*
5375	 * scheduling support
5376	 */
5377	.get_frame_number =	xhci_get_frame,
5378
5379	/*
5380	 * root hub support
5381	 */
5382	.hub_control =		xhci_hub_control,
5383	.hub_status_data =	xhci_hub_status_data,
5384	.bus_suspend =		xhci_bus_suspend,
5385	.bus_resume =		xhci_bus_resume,
5386	.get_resuming_ports =	xhci_get_resuming_ports,
5387
5388	/*
5389	 * call back when device connected and addressed
5390	 */
5391	.update_device =        xhci_update_device,
5392	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5393	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5394	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5395	.find_raw_port_number =	xhci_find_raw_port_number,
5396	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5397};
5398
5399void xhci_init_driver(struct hc_driver *drv,
5400		      const struct xhci_driver_overrides *over)
5401{
5402	BUG_ON(!over);
5403
5404	/* Copy the generic table to drv then apply the overrides */
5405	*drv = xhci_hc_driver;
5406
5407	if (over) {
5408		drv->hcd_priv_size += over->extra_priv_size;
5409		if (over->reset)
5410			drv->reset = over->reset;
5411		if (over->start)
5412			drv->start = over->start;
5413		if (over->add_endpoint)
5414			drv->add_endpoint = over->add_endpoint;
5415		if (over->drop_endpoint)
5416			drv->drop_endpoint = over->drop_endpoint;
5417		if (over->check_bandwidth)
5418			drv->check_bandwidth = over->check_bandwidth;
5419		if (over->reset_bandwidth)
5420			drv->reset_bandwidth = over->reset_bandwidth;
5421		if (over->update_hub_device)
5422			drv->update_hub_device = over->update_hub_device;
5423		if (over->hub_control)
5424			drv->hub_control = over->hub_control;
5425	}
5426}
5427EXPORT_SYMBOL_GPL(xhci_init_driver);
5428
5429MODULE_DESCRIPTION(DRIVER_DESC);
5430MODULE_AUTHOR(DRIVER_AUTHOR);
5431MODULE_LICENSE("GPL");
5432
5433static int __init xhci_hcd_init(void)
5434{
 
 
 
 
 
 
 
 
 
 
 
 
5435	/*
5436	 * Check the compiler generated sizes of structures that must be laid
5437	 * out in specific ways for hardware access.
5438	 */
5439	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5440	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5441	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5442	/* xhci_device_control has eight fields, and also
5443	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5444	 */
5445	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5446	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5447	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5448	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5449	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5450	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5451	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5452
5453	if (usb_disabled())
5454		return -ENODEV;
5455
5456	xhci_debugfs_create_root();
5457	xhci_dbc_init();
5458
5459	return 0;
 
 
 
5460}
 
5461
5462/*
5463 * If an init function is provided, an exit function must also be provided
5464 * to allow module unload.
5465 */
5466static void __exit xhci_hcd_fini(void)
5467{
5468	xhci_debugfs_remove_root();
5469	xhci_dbc_exit();
5470}
5471
5472module_init(xhci_hcd_init);
5473module_exit(xhci_hcd_fini);