Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
 
  30#include <linux/tick.h>
 
  31#include <trace/events/power.h>
  32
  33/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34 * The "cpufreq driver" - the arch- or hardware-dependent low
  35 * level driver of CPUFreq support, and its spinlock. This lock
  36 * also protects the cpufreq_cpu_data array.
  37 */
  38static struct cpufreq_driver *cpufreq_driver;
  39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
  41static DEFINE_RWLOCK(cpufreq_driver_lock);
  42DEFINE_MUTEX(cpufreq_governor_lock);
  43static LIST_HEAD(cpufreq_policy_list);
  44
  45/* This one keeps track of the previously set governor of a removed CPU */
  46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
 
 
 
  47
  48/* Flag to suspend/resume CPUFreq governors */
  49static bool cpufreq_suspended;
  50
  51static inline bool has_target(void)
  52{
  53	return cpufreq_driver->target_index || cpufreq_driver->target;
  54}
  55
  56/*
  57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
  58 * sections
  59 */
  60static DECLARE_RWSEM(cpufreq_rwsem);
  61
  62/* internal prototypes */
  63static int __cpufreq_governor(struct cpufreq_policy *policy,
  64		unsigned int event);
  65static unsigned int __cpufreq_get(unsigned int cpu);
  66static void handle_update(struct work_struct *work);
 
 
 
 
  67
  68/**
  69 * Two notifier lists: the "policy" list is involved in the
  70 * validation process for a new CPU frequency policy; the
  71 * "transition" list for kernel code that needs to handle
  72 * changes to devices when the CPU clock speed changes.
  73 * The mutex locks both lists.
  74 */
  75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  76static struct srcu_notifier_head cpufreq_transition_notifier_list;
  77
  78static bool init_cpufreq_transition_notifier_list_called;
  79static int __init init_cpufreq_transition_notifier_list(void)
  80{
  81	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  82	init_cpufreq_transition_notifier_list_called = true;
  83	return 0;
  84}
  85pure_initcall(init_cpufreq_transition_notifier_list);
  86
  87static int off __read_mostly;
  88static int cpufreq_disabled(void)
  89{
  90	return off;
  91}
  92void disable_cpufreq(void)
  93{
  94	off = 1;
  95}
  96static LIST_HEAD(cpufreq_governor_list);
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 
 
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 116	u64 idle_time;
 117	u64 cur_wall_time;
 
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 
 
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = cputime_to_usecs(cur_wall_time);
 132
 133	return cputime_to_usecs(idle_time);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 149/*
 150 * This is a generic cpufreq init() routine which can be used by cpufreq
 151 * drivers of SMP systems. It will do following:
 152 * - validate & show freq table passed
 153 * - set policies transition latency
 154 * - policy->cpus with all possible CPUs
 155 */
 156int cpufreq_generic_init(struct cpufreq_policy *policy,
 157		struct cpufreq_frequency_table *table,
 158		unsigned int transition_latency)
 159{
 160	int ret;
 161
 162	ret = cpufreq_table_validate_and_show(policy, table);
 163	if (ret) {
 164		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 165		return ret;
 166	}
 167
 168	policy->cpuinfo.transition_latency = transition_latency;
 169
 170	/*
 171	 * The driver only supports the SMP configuartion where all processors
 172	 * share the clock and voltage and clock.
 173	 */
 174	cpumask_setall(policy->cpus);
 175
 176	return 0;
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 179
 180unsigned int cpufreq_generic_get(unsigned int cpu)
 181{
 182	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 183
 
 
 
 
 
 
 
 
 184	if (!policy || IS_ERR(policy->clk)) {
 185		pr_err("%s: No %s associated to cpu: %d\n",
 186		       __func__, policy ? "clk" : "policy", cpu);
 187		return 0;
 188	}
 189
 190	return clk_get_rate(policy->clk) / 1000;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 193
 194/* Only for cpufreq core internal use */
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	return per_cpu(cpufreq_cpu_data, cpu);
 198}
 199
 
 
 
 
 
 200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 201{
 202	struct cpufreq_policy *policy = NULL;
 203	unsigned long flags;
 204
 205	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
 206		return NULL;
 207
 208	if (!down_read_trylock(&cpufreq_rwsem))
 209		return NULL;
 210
 211	/* get the cpufreq driver */
 212	read_lock_irqsave(&cpufreq_driver_lock, flags);
 213
 214	if (cpufreq_driver) {
 215		/* get the CPU */
 216		policy = per_cpu(cpufreq_cpu_data, cpu);
 217		if (policy)
 218			kobject_get(&policy->kobj);
 219	}
 220
 221	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 222
 223	if (!policy)
 224		up_read(&cpufreq_rwsem);
 225
 226	return policy;
 227}
 228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 229
 
 
 
 
 230void cpufreq_cpu_put(struct cpufreq_policy *policy)
 231{
 232	if (cpufreq_disabled())
 233		return;
 234
 235	kobject_put(&policy->kobj);
 236	up_read(&cpufreq_rwsem);
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*********************************************************************
 241 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 242 *********************************************************************/
 243
 244/**
 245 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 246 *
 247 * This function alters the system "loops_per_jiffy" for the clock
 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 249 * systems as each CPU might be scaled differently. So, use the arch
 250 * per-CPU loops_per_jiffy value wherever possible.
 251 */
 252#ifndef CONFIG_SMP
 253static unsigned long l_p_j_ref;
 254static unsigned int l_p_j_ref_freq;
 255
 256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 257{
 
 
 
 
 258	if (ci->flags & CPUFREQ_CONST_LOOPS)
 259		return;
 260
 261	if (!l_p_j_ref_freq) {
 262		l_p_j_ref = loops_per_jiffy;
 263		l_p_j_ref_freq = ci->old;
 264		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 265			 l_p_j_ref, l_p_j_ref_freq);
 266	}
 267	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 268		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 269								ci->new);
 270		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 271			 loops_per_jiffy, ci->new);
 272	}
 273}
 274#else
 275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 276{
 277	return;
 278}
 279#endif
 
 280
 281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 282		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 283{
 
 
 284	BUG_ON(irqs_disabled());
 285
 286	if (cpufreq_disabled())
 287		return;
 288
 
 289	freqs->flags = cpufreq_driver->flags;
 290	pr_debug("notification %u of frequency transition to %u kHz\n",
 291		 state, freqs->new);
 292
 293	switch (state) {
 294
 295	case CPUFREQ_PRECHANGE:
 296		/* detect if the driver reported a value as "old frequency"
 
 297		 * which is not equal to what the cpufreq core thinks is
 298		 * "old frequency".
 299		 */
 300		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 301			if ((policy) && (policy->cpu == freqs->cpu) &&
 302			    (policy->cur) && (policy->cur != freqs->old)) {
 303				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 304					 freqs->old, policy->cur);
 305				freqs->old = policy->cur;
 306			}
 307		}
 
 308		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 309				CPUFREQ_PRECHANGE, freqs);
 
 310		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 311		break;
 312
 313	case CPUFREQ_POSTCHANGE:
 314		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 315		pr_debug("FREQ: %lu - CPU: %lu\n",
 316			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 317		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 318		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 319				CPUFREQ_POSTCHANGE, freqs);
 320		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 321			policy->cur = freqs->new;
 322		break;
 323	}
 324}
 325
 326/**
 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 328 * on frequency transition.
 329 *
 330 * This function calls the transition notifiers and the "adjust_jiffies"
 331 * function. It is called twice on all CPU frequency changes that have
 332 * external effects.
 333 */
 334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 335		struct cpufreq_freqs *freqs, unsigned int state)
 336{
 337	for_each_cpu(freqs->cpu, policy->cpus)
 338		__cpufreq_notify_transition(policy, freqs, state);
 339}
 340
 341/* Do post notifications when there are chances that transition has failed */
 342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 343		struct cpufreq_freqs *freqs, int transition_failed)
 344{
 345	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 346	if (!transition_failed)
 347		return;
 348
 349	swap(freqs->old, freqs->new);
 350	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 351	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 352}
 353
 354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 355		struct cpufreq_freqs *freqs)
 356{
 
 
 
 
 
 
 
 
 
 
 
 
 357wait:
 358	wait_event(policy->transition_wait, !policy->transition_ongoing);
 359
 360	spin_lock(&policy->transition_lock);
 361
 362	if (unlikely(policy->transition_ongoing)) {
 363		spin_unlock(&policy->transition_lock);
 364		goto wait;
 365	}
 366
 367	policy->transition_ongoing = true;
 
 368
 369	spin_unlock(&policy->transition_lock);
 370
 371	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 372}
 373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 374
 375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 376		struct cpufreq_freqs *freqs, int transition_failed)
 377{
 378	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 379		return;
 380
 381	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 382
 
 
 
 
 
 383	policy->transition_ongoing = false;
 
 
 384
 385	wake_up(&policy->transition_wait);
 386}
 387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/*********************************************************************
 391 *                          SYSFS INTERFACE                          *
 392 *********************************************************************/
 393static ssize_t show_boost(struct kobject *kobj,
 394				 struct attribute *attr, char *buf)
 395{
 396	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 397}
 398
 399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 400				  const char *buf, size_t count)
 401{
 402	int ret, enable;
 403
 404	ret = sscanf(buf, "%d", &enable);
 405	if (ret != 1 || enable < 0 || enable > 1)
 406		return -EINVAL;
 407
 408	if (cpufreq_boost_trigger_state(enable)) {
 409		pr_err("%s: Cannot %s BOOST!\n",
 410		       __func__, enable ? "enable" : "disable");
 411		return -EINVAL;
 412	}
 413
 414	pr_debug("%s: cpufreq BOOST %s\n",
 415		 __func__, enable ? "enabled" : "disabled");
 416
 417	return count;
 418}
 419define_one_global_rw(boost);
 420
 421static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422{
 423	struct cpufreq_governor *t;
 424
 425	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 426		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 427			return t;
 428
 429	return NULL;
 430}
 431
 432/**
 433 * cpufreq_parse_governor - parse a governor string
 434 */
 435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 436				struct cpufreq_governor **governor)
 437{
 438	int err = -EINVAL;
 439
 440	if (!cpufreq_driver)
 441		goto out;
 
 
 442
 443	if (cpufreq_driver->setpolicy) {
 444		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 445			*policy = CPUFREQ_POLICY_PERFORMANCE;
 446			err = 0;
 447		} else if (!strnicmp(str_governor, "powersave",
 448						CPUFREQ_NAME_LEN)) {
 449			*policy = CPUFREQ_POLICY_POWERSAVE;
 450			err = 0;
 451		}
 452	} else if (has_target()) {
 453		struct cpufreq_governor *t;
 454
 455		mutex_lock(&cpufreq_governor_mutex);
 
 456
 457		t = __find_governor(str_governor);
 
 458
 459		if (t == NULL) {
 460			int ret;
 
 
 461
 462			mutex_unlock(&cpufreq_governor_mutex);
 463			ret = request_module("cpufreq_%s", str_governor);
 464			mutex_lock(&cpufreq_governor_mutex);
 465
 466			if (ret == 0)
 467				t = __find_governor(str_governor);
 468		}
 469
 470		if (t != NULL) {
 471			*governor = t;
 472			err = 0;
 473		}
 
 
 
 474
 475		mutex_unlock(&cpufreq_governor_mutex);
 476	}
 477out:
 478	return err;
 
 
 
 
 479}
 480
 481/**
 482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 483 * print out cpufreq information
 484 *
 485 * Write out information from cpufreq_driver->policy[cpu]; object must be
 486 * "unsigned int".
 487 */
 488
 489#define show_one(file_name, object)			\
 490static ssize_t show_##file_name				\
 491(struct cpufreq_policy *policy, char *buf)		\
 492{							\
 493	return sprintf(buf, "%u\n", policy->object);	\
 494}
 495
 496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 499show_one(scaling_min_freq, min);
 500show_one(scaling_max_freq, max);
 501show_one(scaling_cur_freq, cur);
 502
 503static int cpufreq_set_policy(struct cpufreq_policy *policy,
 504				struct cpufreq_policy *new_policy);
 
 
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 508 */
 509#define store_one(file_name, object)			\
 510static ssize_t store_##file_name					\
 511(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 512{									\
 
 513	int ret;							\
 514	struct cpufreq_policy new_policy;				\
 515									\
 516	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 517	if (ret)							\
 518		return -EINVAL;						\
 519									\
 520	ret = sscanf(buf, "%u", &new_policy.object);			\
 521	if (ret != 1)							\
 522		return -EINVAL;						\
 523									\
 524	ret = cpufreq_set_policy(policy, &new_policy);		\
 525	policy->user_policy.object = policy->object;			\
 526									\
 527	return ret ? ret : count;					\
 
 528}
 529
 530store_one(scaling_min_freq, min);
 531store_one(scaling_max_freq, max);
 532
 533/**
 534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 535 */
 536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 537					char *buf)
 538{
 539	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 540	if (!cur_freq)
 541		return sprintf(buf, "<unknown>");
 542	return sprintf(buf, "%u\n", cur_freq);
 
 
 543}
 544
 545/**
 546 * show_scaling_governor - show the current policy for the specified CPU
 547 */
 548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 551		return sprintf(buf, "powersave\n");
 552	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 553		return sprintf(buf, "performance\n");
 554	else if (policy->governor)
 555		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 556				policy->governor->name);
 557	return -EINVAL;
 558}
 559
 560/**
 561 * store_scaling_governor - store policy for the specified CPU
 562 */
 563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 564					const char *buf, size_t count)
 565{
 
 566	int ret;
 567	char	str_governor[16];
 568	struct cpufreq_policy new_policy;
 569
 570	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 571	if (ret)
 572		return ret;
 573
 574	ret = sscanf(buf, "%15s", str_governor);
 575	if (ret != 1)
 576		return -EINVAL;
 577
 578	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 579						&new_policy.governor))
 580		return -EINVAL;
 581
 582	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 583
 584	policy->user_policy.policy = policy->policy;
 585	policy->user_policy.governor = policy->governor;
 
 586
 587	if (ret)
 588		return ret;
 589	else
 590		return count;
 
 
 
 
 
 
 
 591}
 592
 593/**
 594 * show_scaling_driver - show the cpufreq driver currently loaded
 595 */
 596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 597{
 598	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 599}
 600
 601/**
 602 * show_scaling_available_governors - show the available CPUfreq governors
 603 */
 604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 605						char *buf)
 606{
 607	ssize_t i = 0;
 608	struct cpufreq_governor *t;
 609
 610	if (!has_target()) {
 611		i += sprintf(buf, "performance powersave");
 612		goto out;
 613	}
 614
 615	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 616		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 617		    - (CPUFREQ_NAME_LEN + 2)))
 618			goto out;
 619		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 620	}
 
 621out:
 622	i += sprintf(&buf[i], "\n");
 623	return i;
 624}
 625
 626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 627{
 628	ssize_t i = 0;
 629	unsigned int cpu;
 630
 631	for_each_cpu(cpu, mask) {
 632		if (i)
 633			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 634		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 635		if (i >= (PAGE_SIZE - 5))
 636			break;
 637	}
 
 
 
 
 638	i += sprintf(&buf[i], "\n");
 639	return i;
 640}
 641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 642
 643/**
 644 * show_related_cpus - show the CPUs affected by each transition even if
 645 * hw coordination is in use
 646 */
 647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 648{
 649	return cpufreq_show_cpus(policy->related_cpus, buf);
 650}
 651
 652/**
 653 * show_affected_cpus - show the CPUs affected by each transition
 654 */
 655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 656{
 657	return cpufreq_show_cpus(policy->cpus, buf);
 658}
 659
 660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 661					const char *buf, size_t count)
 662{
 663	unsigned int freq = 0;
 664	unsigned int ret;
 665
 666	if (!policy->governor || !policy->governor->store_setspeed)
 667		return -EINVAL;
 668
 669	ret = sscanf(buf, "%u", &freq);
 670	if (ret != 1)
 671		return -EINVAL;
 672
 673	policy->governor->store_setspeed(policy, freq);
 674
 675	return count;
 676}
 677
 678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 679{
 680	if (!policy->governor || !policy->governor->show_setspeed)
 681		return sprintf(buf, "<unsupported>\n");
 682
 683	return policy->governor->show_setspeed(policy, buf);
 684}
 685
 686/**
 687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 688 */
 689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 690{
 691	unsigned int limit;
 692	int ret;
 693	if (cpufreq_driver->bios_limit) {
 694		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 695		if (!ret)
 696			return sprintf(buf, "%u\n", limit);
 697	}
 698	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 699}
 700
 701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 702cpufreq_freq_attr_ro(cpuinfo_min_freq);
 703cpufreq_freq_attr_ro(cpuinfo_max_freq);
 704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 705cpufreq_freq_attr_ro(scaling_available_governors);
 706cpufreq_freq_attr_ro(scaling_driver);
 707cpufreq_freq_attr_ro(scaling_cur_freq);
 708cpufreq_freq_attr_ro(bios_limit);
 709cpufreq_freq_attr_ro(related_cpus);
 710cpufreq_freq_attr_ro(affected_cpus);
 711cpufreq_freq_attr_rw(scaling_min_freq);
 712cpufreq_freq_attr_rw(scaling_max_freq);
 713cpufreq_freq_attr_rw(scaling_governor);
 714cpufreq_freq_attr_rw(scaling_setspeed);
 715
 716static struct attribute *default_attrs[] = {
 717	&cpuinfo_min_freq.attr,
 718	&cpuinfo_max_freq.attr,
 719	&cpuinfo_transition_latency.attr,
 720	&scaling_min_freq.attr,
 721	&scaling_max_freq.attr,
 722	&affected_cpus.attr,
 723	&related_cpus.attr,
 724	&scaling_governor.attr,
 725	&scaling_driver.attr,
 726	&scaling_available_governors.attr,
 727	&scaling_setspeed.attr,
 728	NULL
 729};
 
 730
 731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 732#define to_attr(a) container_of(a, struct freq_attr, attr)
 733
 734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 735{
 736	struct cpufreq_policy *policy = to_policy(kobj);
 737	struct freq_attr *fattr = to_attr(attr);
 738	ssize_t ret;
 739
 740	if (!down_read_trylock(&cpufreq_rwsem))
 741		return -EINVAL;
 742
 743	down_read(&policy->rwsem);
 744
 745	if (fattr->show)
 746		ret = fattr->show(policy, buf);
 747	else
 748		ret = -EIO;
 749
 750	up_read(&policy->rwsem);
 751	up_read(&cpufreq_rwsem);
 752
 753	return ret;
 754}
 755
 756static ssize_t store(struct kobject *kobj, struct attribute *attr,
 757		     const char *buf, size_t count)
 758{
 759	struct cpufreq_policy *policy = to_policy(kobj);
 760	struct freq_attr *fattr = to_attr(attr);
 761	ssize_t ret = -EINVAL;
 762
 763	get_online_cpus();
 764
 765	if (!cpu_online(policy->cpu))
 766		goto unlock;
 767
 768	if (!down_read_trylock(&cpufreq_rwsem))
 769		goto unlock;
 770
 771	down_write(&policy->rwsem);
 772
 773	if (fattr->store)
 774		ret = fattr->store(policy, buf, count);
 775	else
 776		ret = -EIO;
 777
 778	up_write(&policy->rwsem);
 779
 780	up_read(&cpufreq_rwsem);
 781unlock:
 782	put_online_cpus();
 783
 784	return ret;
 785}
 786
 787static void cpufreq_sysfs_release(struct kobject *kobj)
 788{
 789	struct cpufreq_policy *policy = to_policy(kobj);
 790	pr_debug("last reference is dropped\n");
 791	complete(&policy->kobj_unregister);
 792}
 793
 794static const struct sysfs_ops sysfs_ops = {
 795	.show	= show,
 796	.store	= store,
 797};
 798
 799static struct kobj_type ktype_cpufreq = {
 800	.sysfs_ops	= &sysfs_ops,
 801	.default_attrs	= default_attrs,
 802	.release	= cpufreq_sysfs_release,
 803};
 804
 805struct kobject *cpufreq_global_kobject;
 806EXPORT_SYMBOL(cpufreq_global_kobject);
 807
 808static int cpufreq_global_kobject_usage;
 809
 810int cpufreq_get_global_kobject(void)
 811{
 812	if (!cpufreq_global_kobject_usage++)
 813		return kobject_add(cpufreq_global_kobject,
 814				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
 815
 816	return 0;
 817}
 818EXPORT_SYMBOL(cpufreq_get_global_kobject);
 819
 820void cpufreq_put_global_kobject(void)
 821{
 822	if (!--cpufreq_global_kobject_usage)
 823		kobject_del(cpufreq_global_kobject);
 824}
 825EXPORT_SYMBOL(cpufreq_put_global_kobject);
 826
 827int cpufreq_sysfs_create_file(const struct attribute *attr)
 828{
 829	int ret = cpufreq_get_global_kobject();
 830
 831	if (!ret) {
 832		ret = sysfs_create_file(cpufreq_global_kobject, attr);
 833		if (ret)
 834			cpufreq_put_global_kobject();
 835	}
 836
 837	return ret;
 838}
 839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
 840
 841void cpufreq_sysfs_remove_file(const struct attribute *attr)
 842{
 843	sysfs_remove_file(cpufreq_global_kobject, attr);
 844	cpufreq_put_global_kobject();
 845}
 846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
 847
 848/* symlink affected CPUs */
 849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 850{
 851	unsigned int j;
 852	int ret = 0;
 853
 854	for_each_cpu(j, policy->cpus) {
 855		struct device *cpu_dev;
 856
 857		if (j == policy->cpu)
 858			continue;
 859
 860		pr_debug("Adding link for CPU: %u\n", j);
 861		cpu_dev = get_cpu_device(j);
 862		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 863					"cpufreq");
 864		if (ret)
 865			break;
 866	}
 867	return ret;
 868}
 869
 870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
 871				     struct device *dev)
 872{
 873	struct freq_attr **drv_attr;
 874	int ret = 0;
 875
 876	/* prepare interface data */
 877	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 878				   &dev->kobj, "cpufreq");
 879	if (ret)
 880		return ret;
 881
 882	/* set up files for this cpu device */
 883	drv_attr = cpufreq_driver->attr;
 884	while ((drv_attr) && (*drv_attr)) {
 885		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 886		if (ret)
 887			goto err_out_kobj_put;
 888		drv_attr++;
 889	}
 890	if (cpufreq_driver->get) {
 891		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 892		if (ret)
 893			goto err_out_kobj_put;
 894	}
 895	if (has_target()) {
 896		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 897		if (ret)
 898			goto err_out_kobj_put;
 899	}
 
 
 
 
 
 900	if (cpufreq_driver->bios_limit) {
 901		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 902		if (ret)
 903			goto err_out_kobj_put;
 904	}
 905
 906	ret = cpufreq_add_dev_symlink(policy);
 907	if (ret)
 908		goto err_out_kobj_put;
 909
 910	return ret;
 911
 912err_out_kobj_put:
 913	kobject_put(&policy->kobj);
 914	wait_for_completion(&policy->kobj_unregister);
 915	return ret;
 916}
 917
 918static void cpufreq_init_policy(struct cpufreq_policy *policy)
 919{
 920	struct cpufreq_governor *gov = NULL;
 921	struct cpufreq_policy new_policy;
 922	int ret = 0;
 923
 924	memcpy(&new_policy, policy, sizeof(*policy));
 925
 926	/* Update governor of new_policy to the governor used before hotplug */
 927	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
 928	if (gov)
 929		pr_debug("Restoring governor %s for cpu %d\n",
 930				policy->governor->name, policy->cpu);
 931	else
 932		gov = CPUFREQ_DEFAULT_GOVERNOR;
 
 
 933
 934	new_policy.governor = gov;
 
 
 
 935
 936	/* Use the default policy if its valid. */
 937	if (cpufreq_driver->setpolicy)
 938		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
 939
 940	/* set default policy */
 941	ret = cpufreq_set_policy(policy, &new_policy);
 942	if (ret) {
 943		pr_debug("setting policy failed\n");
 944		if (cpufreq_driver->exit)
 945			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 946	}
 
 
 
 
 
 
 947}
 948
 949#ifdef CONFIG_HOTPLUG_CPU
 950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
 951				  unsigned int cpu, struct device *dev)
 952{
 953	int ret = 0;
 954	unsigned long flags;
 955
 956	if (has_target()) {
 957		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 958		if (ret) {
 959			pr_err("%s: Failed to stop governor\n", __func__);
 960			return ret;
 961		}
 962	}
 963
 964	down_write(&policy->rwsem);
 965
 966	write_lock_irqsave(&cpufreq_driver_lock, flags);
 967
 968	cpumask_set_cpu(cpu, policy->cpus);
 969	per_cpu(cpufreq_cpu_data, cpu) = policy;
 970	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 971
 
 
 
 
 
 972	up_write(&policy->rwsem);
 
 
 973
 974	if (has_target()) {
 975		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
 976		if (!ret)
 977			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 978
 979		if (ret) {
 980			pr_err("%s: Failed to start governor\n", __func__);
 981			return ret;
 982		}
 983	}
 
 
 984
 985	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 986}
 987#endif
 988
 989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
 
 990{
 991	struct cpufreq_policy *policy;
 992	unsigned long flags;
 993
 994	read_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 995
 996	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
 
 
 
 997
 998	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 999
1000	policy->governor = NULL;
 
 
 
1001
1002	return policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007	struct cpufreq_policy *policy;
 
 
 
 
 
1008
1009	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010	if (!policy)
1011		return NULL;
1012
1013	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014		goto err_free_policy;
1015
1016	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017		goto err_free_cpumask;
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	INIT_LIST_HEAD(&policy->policy_list);
1020	init_rwsem(&policy->rwsem);
1021	spin_lock_init(&policy->transition_lock);
1022	init_waitqueue_head(&policy->transition_wait);
 
1023
 
1024	return policy;
1025
 
 
 
 
 
 
 
 
 
1026err_free_cpumask:
1027	free_cpumask_var(policy->cpus);
1028err_free_policy:
1029	kfree(policy);
1030
1031	return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036	struct kobject *kobj;
1037	struct completion *cmp;
1038
1039	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040			CPUFREQ_REMOVE_POLICY, policy);
1041
1042	down_read(&policy->rwsem);
1043	kobj = &policy->kobj;
1044	cmp = &policy->kobj_unregister;
1045	up_read(&policy->rwsem);
1046	kobject_put(kobj);
1047
1048	/*
1049	 * We need to make sure that the underlying kobj is
1050	 * actually not referenced anymore by anybody before we
1051	 * proceed with unloading.
1052	 */
1053	pr_debug("waiting for dropping of refcount\n");
1054	wait_for_completion(cmp);
1055	pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060	free_cpumask_var(policy->related_cpus);
1061	free_cpumask_var(policy->cpus);
1062	kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067	if (WARN_ON(cpu == policy->cpu))
1068		return;
1069
1070	down_write(&policy->rwsem);
 
 
 
1071
1072	policy->last_cpu = policy->cpu;
1073	policy->cpu = cpu;
1074
1075	up_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
1076
1077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078			CPUFREQ_UPDATE_POLICY_CPU, policy);
 
 
 
 
 
 
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083	unsigned int j, cpu = dev->id;
1084	int ret = -ENOMEM;
1085	struct cpufreq_policy *policy;
 
1086	unsigned long flags;
1087	bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089	struct cpufreq_policy *tpolicy;
1090#endif
1091
1092	if (cpu_is_offline(cpu))
1093		return 0;
1094
1095	pr_debug("adding CPU %u\n", cpu);
 
 
 
 
 
1096
1097#ifdef CONFIG_SMP
1098	/* check whether a different CPU already registered this
1099	 * CPU because it is in the same boat. */
1100	policy = cpufreq_cpu_get(cpu);
1101	if (unlikely(policy)) {
1102		cpufreq_cpu_put(policy);
1103		return 0;
 
 
 
 
1104	}
1105#endif
1106
1107	if (!down_read_trylock(&cpufreq_rwsem))
1108		return 0;
 
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117			up_read(&cpufreq_rwsem);
1118			return ret;
1119		}
1120	}
1121	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124	/*
1125	 * Restore the saved policy when doing light-weight init and fall back
1126	 * to the full init if that fails.
1127	 */
1128	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129	if (!policy) {
1130		recover_policy = false;
1131		policy = cpufreq_policy_alloc();
1132		if (!policy)
1133			goto nomem_out;
1134	}
1135
1136	/*
1137	 * In the resume path, since we restore a saved policy, the assignment
1138	 * to policy->cpu is like an update of the existing policy, rather than
1139	 * the creation of a brand new one. So we need to perform this update
1140	 * by invoking update_policy_cpu().
1141	 */
1142	if (recover_policy && cpu != policy->cpu)
1143		update_policy_cpu(policy, cpu);
1144	else
1145		policy->cpu = cpu;
1146
1147	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
1148
1149	init_completion(&policy->kobj_unregister);
1150	INIT_WORK(&policy->update, handle_update);
 
 
 
 
 
 
1151
1152	/* call driver. From then on the cpufreq must be able
1153	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154	 */
1155	ret = cpufreq_driver->init(policy);
1156	if (ret) {
1157		pr_debug("initialization failed\n");
1158		goto err_set_policy_cpu;
1159	}
1160
1161	/* related cpus should atleast have policy->cpus */
1162	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164	/*
1165	 * affected cpus must always be the one, which are online. We aren't
1166	 * managing offline cpus here.
1167	 */
1168	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170	if (!recover_policy) {
1171		policy->user_policy.min = policy->min;
1172		policy->user_policy.max = policy->max;
1173	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	down_write(&policy->rwsem);
1176	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177	for_each_cpu(j, policy->cpus)
1178		per_cpu(cpufreq_cpu_data, j) = policy;
1179	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
1180
1181	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
 
 
 
 
1182		policy->cur = cpufreq_driver->get(policy->cpu);
1183		if (!policy->cur) {
 
1184			pr_err("%s: ->get() failed\n", __func__);
1185			goto err_get_freq;
1186		}
1187	}
1188
1189	/*
1190	 * Sometimes boot loaders set CPU frequency to a value outside of
1191	 * frequency table present with cpufreq core. In such cases CPU might be
1192	 * unstable if it has to run on that frequency for long duration of time
1193	 * and so its better to set it to a frequency which is specified in
1194	 * freq-table. This also makes cpufreq stats inconsistent as
1195	 * cpufreq-stats would fail to register because current frequency of CPU
1196	 * isn't found in freq-table.
1197	 *
1198	 * Because we don't want this change to effect boot process badly, we go
1199	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201	 * is initialized to zero).
1202	 *
1203	 * We are passing target-freq as "policy->cur - 1" otherwise
1204	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205	 * equal to target-freq.
1206	 */
1207	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208	    && has_target()) {
 
 
1209		/* Are we running at unknown frequency ? */
1210		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211		if (ret == -EINVAL) {
1212			/* Warn user and fix it */
1213			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214				__func__, policy->cpu, policy->cur);
1215			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216				CPUFREQ_RELATION_L);
1217
1218			/*
1219			 * Reaching here after boot in a few seconds may not
1220			 * mean that system will remain stable at "unknown"
1221			 * frequency for longer duration. Hence, a BUG_ON().
1222			 */
1223			BUG_ON(ret);
1224			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225				__func__, policy->cpu, policy->cur);
1226		}
1227	}
1228
1229	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230				     CPUFREQ_START, policy);
1231
1232	if (!recover_policy) {
1233		ret = cpufreq_add_dev_interface(policy, dev);
1234		if (ret)
1235			goto err_out_unregister;
1236		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237				CPUFREQ_CREATE_POLICY, policy);
1238	}
1239
1240	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241	list_add(&policy->policy_list, &cpufreq_policy_list);
1242	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244	cpufreq_init_policy(policy);
 
 
1245
1246	if (!recover_policy) {
1247		policy->user_policy.policy = policy->policy;
1248		policy->user_policy.governor = policy->governor;
 
 
 
 
 
 
 
 
 
1249	}
 
 
 
 
 
 
 
 
1250	up_write(&policy->rwsem);
1251
1252	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253	up_read(&cpufreq_rwsem);
 
 
 
 
 
 
 
1254
1255	pr_debug("initialization complete\n");
1256
1257	return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262	for_each_cpu(j, policy->cpus)
1263		per_cpu(cpufreq_cpu_data, j) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1265
 
1266	if (cpufreq_driver->exit)
1267		cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269	if (recover_policy) {
1270		/* Do not leave stale fallback data behind. */
1271		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272		cpufreq_policy_put_kobj(policy);
1273	}
1274	cpufreq_policy_free(policy);
1275
1276nomem_out:
1277	up_read(&cpufreq_rwsem);
 
1278
 
1279	return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293	return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297					   unsigned int old_cpu)
1298{
1299	struct device *cpu_dev;
1300	int ret;
1301
1302	/* first sibling now owns the new sysfs dir */
1303	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307	if (ret) {
1308		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310		down_write(&policy->rwsem);
1311		cpumask_set_cpu(old_cpu, policy->cpus);
1312		up_write(&policy->rwsem);
1313
1314		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315					"cpufreq");
1316
1317		return -EINVAL;
1318	}
1319
1320	return cpu_dev->id;
 
 
 
 
 
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324					struct subsys_interface *sif)
1325{
1326	unsigned int cpu = dev->id, cpus;
1327	int new_cpu, ret;
1328	unsigned long flags;
1329	struct cpufreq_policy *policy;
1330
1331	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333	write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335	policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337	/* Save the policy somewhere when doing a light-weight tear-down */
1338	if (cpufreq_suspended)
1339		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343	if (!policy) {
1344		pr_debug("%s: No cpu_data found\n", __func__);
1345		return -EINVAL;
1346	}
1347
1348	if (has_target()) {
1349		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350		if (ret) {
1351			pr_err("%s: Failed to stop governor\n", __func__);
1352			return ret;
1353		}
 
 
1354	}
1355
1356	if (!cpufreq_driver->setpolicy)
1357		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358			policy->governor->name, CPUFREQ_NAME_LEN);
 
 
1359
1360	down_read(&policy->rwsem);
1361	cpus = cpumask_weight(policy->cpus);
1362	up_read(&policy->rwsem);
1363
1364	if (cpu != policy->cpu) {
1365		sysfs_remove_link(&dev->kobj, "cpufreq");
1366	} else if (cpus > 1) {
1367		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368		if (new_cpu >= 0) {
1369			update_policy_cpu(policy, new_cpu);
1370
1371			if (!cpufreq_suspended)
1372				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373					 __func__, new_cpu, cpu);
1374		}
1375	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376		cpufreq_driver->stop_cpu(policy);
1377	}
1378
1379	return 0;
 
 
 
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383				       struct subsys_interface *sif)
1384{
1385	unsigned int cpu = dev->id, cpus;
1386	int ret;
1387	unsigned long flags;
1388	struct cpufreq_policy *policy;
1389
1390	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391	policy = per_cpu(cpufreq_cpu_data, cpu);
1392	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
 
1394	if (!policy) {
1395		pr_debug("%s: No cpu_data found\n", __func__);
1396		return -EINVAL;
1397	}
1398
1399	down_write(&policy->rwsem);
1400	cpus = cpumask_weight(policy->cpus);
1401
1402	if (cpus > 1)
1403		cpumask_clear_cpu(cpu, policy->cpus);
1404	up_write(&policy->rwsem);
1405
1406	/* If cpu is last user of policy, free policy */
1407	if (cpus == 1) {
1408		if (has_target()) {
1409			ret = __cpufreq_governor(policy,
1410					CPUFREQ_GOV_POLICY_EXIT);
1411			if (ret) {
1412				pr_err("%s: Failed to exit governor\n",
1413				       __func__);
1414				return ret;
1415			}
1416		}
1417
1418		if (!cpufreq_suspended)
1419			cpufreq_policy_put_kobj(policy);
1420
1421		/*
1422		 * Perform the ->exit() even during light-weight tear-down,
1423		 * since this is a core component, and is essential for the
1424		 * subsequent light-weight ->init() to succeed.
1425		 */
1426		if (cpufreq_driver->exit)
1427			cpufreq_driver->exit(policy);
1428
1429		/* Remove policy from list of active policies */
1430		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431		list_del(&policy->policy_list);
1432		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434		if (!cpufreq_suspended)
1435			cpufreq_policy_free(policy);
1436	} else if (has_target()) {
1437		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438		if (!ret)
1439			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441		if (ret) {
1442			pr_err("%s: Failed to start governor\n", __func__);
1443			return ret;
1444		}
1445	}
1446
1447	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448	return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458	unsigned int cpu = dev->id;
1459	int ret;
1460
1461	if (cpu_is_offline(cpu))
1462		return 0;
1463
1464	ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466	if (!ret)
1467		ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469	return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474	struct cpufreq_policy *policy =
1475		container_of(work, struct cpufreq_policy, update);
1476	unsigned int cpu = policy->cpu;
1477	pr_debug("handle_update for cpu %u called\n", cpu);
1478	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481/**
1482 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 *	in deep trouble.
1484 *	@cpu: cpu number
1485 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486 *	@new_freq: CPU frequency the CPU actually runs at
1487 *
1488 *	We adjust to current frequency first, and need to clean up later.
1489 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492				unsigned int new_freq)
1493{
1494	struct cpufreq_policy *policy;
1495	struct cpufreq_freqs freqs;
1496	unsigned long flags;
1497
1498	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499		 old_freq, new_freq);
1500
1501	freqs.old = old_freq;
1502	freqs.new = new_freq;
1503
1504	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505	policy = per_cpu(cpufreq_cpu_data, cpu);
1506	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508	cpufreq_freq_transition_begin(policy, &freqs);
1509	cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521	struct cpufreq_policy *policy;
1522	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
1523
1524	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525		return cpufreq_driver->get(cpu);
1526
1527	policy = cpufreq_cpu_get(cpu);
1528	if (policy) {
1529		ret_freq = policy->cur;
1530		cpufreq_cpu_put(policy);
1531	}
1532
1533	return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546	unsigned int ret_freq = 0;
1547
1548	if (policy) {
1549		ret_freq = policy->max;
1550		cpufreq_cpu_put(policy);
1551	}
1552
1553	return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
 
1558{
1559	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560	unsigned int ret_freq = 0;
1561
1562	if (!cpufreq_driver->get)
1563		return ret_freq;
1564
1565	ret_freq = cpufreq_driver->get(cpu);
1566
1567	if (ret_freq && policy->cur &&
1568		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569		/* verify no discrepancy between actual and
1570					saved value exists */
1571		if (unlikely(ret_freq != policy->cur)) {
1572			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573			schedule_work(&policy->update);
1574		}
1575	}
1576
1577	return ret_freq;
1578}
 
 
 
 
 
 
 
 
 
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589	unsigned int ret_freq = 0;
1590
1591	if (policy) {
1592		down_read(&policy->rwsem);
1593		ret_freq = __cpufreq_get(cpu);
 
1594		up_read(&policy->rwsem);
1595
1596		cpufreq_cpu_put(policy);
1597	}
1598
1599	return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604	.name		= "cpufreq",
1605	.subsys		= &cpu_subsys,
1606	.add_dev	= cpufreq_add_dev,
1607	.remove_dev	= cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616	int ret;
1617
1618	if (!policy->suspend_freq) {
1619		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620		return -EINVAL;
1621	}
1622
1623	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624			policy->suspend_freq);
1625
1626	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627			CPUFREQ_RELATION_H);
1628	if (ret)
1629		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630				__func__, policy->suspend_freq, ret);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646	struct cpufreq_policy *policy;
1647
1648	if (!cpufreq_driver)
1649		return;
1650
1651	if (!has_target())
1652		return;
1653
1654	pr_debug("%s: Suspending Governors\n", __func__);
1655
1656	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658			pr_err("%s: Failed to stop governor for policy: %p\n",
1659				__func__, policy);
1660		else if (cpufreq_driver->suspend
1661		    && cpufreq_driver->suspend(policy))
1662			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663				policy);
 
 
1664	}
1665
 
1666	cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677	struct cpufreq_policy *policy;
 
1678
1679	if (!cpufreq_driver)
1680		return;
1681
1682	if (!has_target())
1683		return;
1684
1685	pr_debug("%s: Resuming Governors\n", __func__);
1686
1687	cpufreq_suspended = false;
1688
1689	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692				policy);
1693		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695			pr_err("%s: Failed to start governor for policy: %p\n",
1696				__func__, policy);
1697
1698		/*
1699		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700		 * policy in list. It will verify that the current freq is in
1701		 * sync with what we believe it to be.
1702		 */
1703		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704			schedule_work(&policy->update);
 
 
 
 
 
 
 
 
1705	}
1706}
1707
1708/**
1709 *	cpufreq_get_current_driver - return current driver's name
 
1710 *
1711 *	Return the name string of the currently loaded cpufreq driver
1712 *	or NULL, if none.
 
 
 
 
 
 
 
 
 
 
 
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716	if (cpufreq_driver)
1717		return cpufreq_driver->name;
1718
1719	return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723/*********************************************************************
1724 *                     NOTIFIER LISTS INTERFACE                      *
1725 *********************************************************************/
1726
1727/**
1728 *	cpufreq_register_notifier - register a driver with cpufreq
1729 *	@nb: notifier function to register
1730 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 *	Add a driver to one of two lists: either a list of drivers that
1733 *      are notified about clock rate changes (once before and once after
1734 *      the transition), or a list of drivers that are notified about
1735 *      changes in cpufreq policy.
1736 *
1737 *	This function may sleep, and has the same return conditions as
1738 *	blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742	int ret;
1743
1744	if (cpufreq_disabled())
1745		return -EINVAL;
1746
1747	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749	switch (list) {
1750	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1751		ret = srcu_notifier_chain_register(
1752				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1753		break;
1754	case CPUFREQ_POLICY_NOTIFIER:
1755		ret = blocking_notifier_chain_register(
1756				&cpufreq_policy_notifier_list, nb);
1757		break;
1758	default:
1759		ret = -EINVAL;
1760	}
1761
1762	return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 *	@nb: notifier block to be unregistered
1769 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 *	Remove a driver from the CPU frequency notifier list.
1772 *
1773 *	This function may sleep, and has the same return conditions as
1774 *	blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778	int ret;
1779
1780	if (cpufreq_disabled())
1781		return -EINVAL;
1782
1783	switch (list) {
1784	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1785		ret = srcu_notifier_chain_unregister(
1786				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1787		break;
1788	case CPUFREQ_POLICY_NOTIFIER:
1789		ret = blocking_notifier_chain_unregister(
1790				&cpufreq_policy_notifier_list, nb);
1791		break;
1792	default:
1793		ret = -EINVAL;
1794	}
1795
1796	return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 *                              GOVERNORS                            *
1803 *********************************************************************/
1804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806			    unsigned int target_freq,
1807			    unsigned int relation)
1808{
1809	int retval = -EINVAL;
1810	unsigned int old_target_freq = target_freq;
1811
1812	if (cpufreq_disabled())
1813		return -ENODEV;
1814
1815	/* Make sure that target_freq is within supported range */
1816	if (target_freq > policy->max)
1817		target_freq = policy->max;
1818	if (target_freq < policy->min)
1819		target_freq = policy->min;
1820
1821	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822		 policy->cpu, target_freq, relation, old_target_freq);
1823
1824	/*
1825	 * This might look like a redundant call as we are checking it again
1826	 * after finding index. But it is left intentionally for cases where
1827	 * exactly same freq is called again and so we can save on few function
1828	 * calls.
1829	 */
1830	if (target_freq == policy->cur)
 
1831		return 0;
1832
1833	if (cpufreq_driver->target)
1834		retval = cpufreq_driver->target(policy, target_freq, relation);
1835	else if (cpufreq_driver->target_index) {
1836		struct cpufreq_frequency_table *freq_table;
1837		struct cpufreq_freqs freqs;
1838		bool notify;
1839		int index;
1840
1841		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842		if (unlikely(!freq_table)) {
1843			pr_err("%s: Unable to find freq_table\n", __func__);
1844			goto out;
1845		}
1846
1847		retval = cpufreq_frequency_table_target(policy, freq_table,
1848				target_freq, relation, &index);
1849		if (unlikely(retval)) {
1850			pr_err("%s: Unable to find matching freq\n", __func__);
1851			goto out;
1852		}
1853
1854		if (freq_table[index].frequency == policy->cur) {
1855			retval = 0;
1856			goto out;
1857		}
1858
1859		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861		if (notify) {
1862			freqs.old = policy->cur;
1863			freqs.new = freq_table[index].frequency;
1864			freqs.flags = 0;
1865
1866			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867				 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869			cpufreq_freq_transition_begin(policy, &freqs);
1870		}
1871
1872		retval = cpufreq_driver->target_index(policy, index);
1873		if (retval)
1874			pr_err("%s: Failed to change cpu frequency: %d\n",
1875			       __func__, retval);
1876
1877		if (notify)
1878			cpufreq_freq_transition_end(policy, &freqs, retval);
1879	}
1880
1881out:
1882	return retval;
 
 
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887			  unsigned int target_freq,
1888			  unsigned int relation)
1889{
1890	int ret = -EINVAL;
1891
1892	down_write(&policy->rwsem);
1893
1894	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896	up_write(&policy->rwsem);
1897
1898	return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
 
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907					unsigned int event)
1908{
1909	int ret;
1910
1911	/* Only must be defined when default governor is known to have latency
1912	   restrictions, like e.g. conservative or ondemand.
1913	   That this is the case is already ensured in Kconfig
1914	*/
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918	struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921	/* Don't start any governor operations if we are entering suspend */
1922	if (cpufreq_suspended)
1923		return 0;
 
 
 
 
 
 
1924
1925	if (policy->governor->max_transition_latency &&
1926	    policy->cpuinfo.transition_latency >
1927	    policy->governor->max_transition_latency) {
1928		if (!gov)
1929			return -EINVAL;
1930		else {
1931			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932				policy->governor->name, gov->name);
1933			policy->governor = gov;
 
 
1934		}
1935	}
1936
1937	if (event == CPUFREQ_GOV_POLICY_INIT)
1938		if (!try_module_get(policy->governor->owner))
1939			return -EINVAL;
1940
1941	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942		 policy->cpu, event);
1943
1944	mutex_lock(&cpufreq_governor_lock);
1945	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946	    || (!policy->governor_enabled
1947	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948		mutex_unlock(&cpufreq_governor_lock);
1949		return -EBUSY;
1950	}
1951
1952	if (event == CPUFREQ_GOV_STOP)
1953		policy->governor_enabled = false;
1954	else if (event == CPUFREQ_GOV_START)
1955		policy->governor_enabled = true;
 
 
 
 
 
1956
1957	mutex_unlock(&cpufreq_governor_lock);
1958
1959	ret = policy->governor->governor(policy, event);
 
1960
1961	if (!ret) {
1962		if (event == CPUFREQ_GOV_POLICY_INIT)
1963			policy->governor->initialized++;
1964		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965			policy->governor->initialized--;
1966	} else {
1967		/* Restore original values */
1968		mutex_lock(&cpufreq_governor_lock);
1969		if (event == CPUFREQ_GOV_STOP)
1970			policy->governor_enabled = true;
1971		else if (event == CPUFREQ_GOV_START)
1972			policy->governor_enabled = false;
1973		mutex_unlock(&cpufreq_governor_lock);
 
 
 
 
 
 
 
 
 
1974	}
1975
1976	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978		module_put(policy->governor->owner);
1979
1980	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985	int err;
1986
1987	if (!governor)
1988		return -EINVAL;
1989
1990	if (cpufreq_disabled())
1991		return -ENODEV;
1992
1993	mutex_lock(&cpufreq_governor_mutex);
1994
1995	governor->initialized = 0;
1996	err = -EBUSY;
1997	if (__find_governor(governor->name) == NULL) {
1998		err = 0;
1999		list_add(&governor->governor_list, &cpufreq_governor_list);
2000	}
2001
2002	mutex_unlock(&cpufreq_governor_mutex);
2003	return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009	int cpu;
 
2010
2011	if (!governor)
2012		return;
2013
2014	if (cpufreq_disabled())
2015		return;
2016
2017	for_each_present_cpu(cpu) {
2018		if (cpu_online(cpu))
2019			continue;
2020		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
2022	}
 
2023
2024	mutex_lock(&cpufreq_governor_mutex);
2025	list_del(&governor->governor_list);
2026	mutex_unlock(&cpufreq_governor_mutex);
2027	return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 *                          POLICY INTERFACE                         *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 *	is written
 
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045	struct cpufreq_policy *cpu_policy;
2046	if (!policy)
2047		return -EINVAL;
2048
2049	cpu_policy = cpufreq_cpu_get(cpu);
2050	if (!cpu_policy)
2051		return -EINVAL;
2052
2053	memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055	cpufreq_cpu_put(cpu_policy);
2056	return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065				struct cpufreq_policy *new_policy)
 
2066{
 
2067	struct cpufreq_governor *old_gov;
2068	int ret;
2069
2070	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071		 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076		return -EINVAL;
2077
2078	/* verify the cpu speed can be set within this limit */
2079	ret = cpufreq_driver->verify(new_policy);
2080	if (ret)
2081		return ret;
2082
2083	/* adjust if necessary - all reasons */
2084	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085			CPUFREQ_ADJUST, new_policy);
2086
2087	/* adjust if necessary - hardware incompatibility*/
2088	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089			CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091	/*
2092	 * verify the cpu speed can be set within this limit, which might be
2093	 * different to the first one
2094	 */
2095	ret = cpufreq_driver->verify(new_policy);
2096	if (ret)
2097		return ret;
2098
2099	/* notification of the new policy */
2100	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101			CPUFREQ_NOTIFY, new_policy);
 
 
 
 
 
 
 
2102
2103	policy->min = new_policy->min;
2104	policy->max = new_policy->max;
2105
2106	pr_debug("new min and max freqs are %u - %u kHz\n",
2107		 policy->min, policy->max);
2108
2109	if (cpufreq_driver->setpolicy) {
2110		policy->policy = new_policy->policy;
2111		pr_debug("setting range\n");
2112		return cpufreq_driver->setpolicy(new_policy);
2113	}
2114
2115	if (new_policy->governor == policy->governor)
2116		goto out;
 
 
 
2117
2118	pr_debug("governor switch\n");
2119
2120	/* save old, working values */
2121	old_gov = policy->governor;
2122	/* end old governor */
2123	if (old_gov) {
2124		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125		up_write(&policy->rwsem);
2126		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127		down_write(&policy->rwsem);
2128	}
2129
2130	/* start new governor */
2131	policy->governor = new_policy->governor;
2132	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134			goto out;
2135
2136		up_write(&policy->rwsem);
2137		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138		down_write(&policy->rwsem);
 
2139	}
2140
2141	/* new governor failed, so re-start old one */
2142	pr_debug("starting governor %s failed\n", policy->governor->name);
2143	if (old_gov) {
2144		policy->governor = old_gov;
2145		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146		__cpufreq_governor(policy, CPUFREQ_GOV_START);
 
 
2147	}
2148
2149	return -EINVAL;
2150
2151 out:
2152	pr_debug("governor: change or update limits\n");
2153	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 *	@cpu: CPU which shall be re-evaluated
2159 *
2160 *	Useful for policy notifiers which have different necessities
2161 *	at different times.
 
 
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166	struct cpufreq_policy new_policy;
2167	int ret;
2168
2169	if (!policy) {
2170		ret = -ENODEV;
2171		goto no_policy;
2172	}
2173
2174	down_write(&policy->rwsem);
2175
2176	pr_debug("updating policy for CPU %u\n", cpu);
2177	memcpy(&new_policy, policy, sizeof(*policy));
2178	new_policy.min = policy->user_policy.min;
2179	new_policy.max = policy->user_policy.max;
2180	new_policy.policy = policy->user_policy.policy;
2181	new_policy.governor = policy->user_policy.governor;
2182
2183	/*
2184	 * BIOS might change freq behind our back
2185	 * -> ask driver for current freq and notify governors about a change
2186	 */
2187	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188		new_policy.cur = cpufreq_driver->get(cpu);
2189		if (WARN_ON(!new_policy.cur)) {
2190			ret = -EIO;
2191			goto no_policy;
2192		}
2193
2194		if (!policy->cur) {
2195			pr_debug("Driver did not initialize current freq\n");
2196			policy->cur = new_policy.cur;
2197		} else {
2198			if (policy->cur != new_policy.cur && has_target())
2199				cpufreq_out_of_sync(cpu, policy->cur,
2200								new_policy.cur);
2201		}
2202	}
2203
2204	ret = cpufreq_set_policy(policy, &new_policy);
2205
2206	up_write(&policy->rwsem);
2207
2208	cpufreq_cpu_put(policy);
2209no_policy:
2210	return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215					unsigned long action, void *hcpu)
 
 
 
 
 
 
2216{
2217	unsigned int cpu = (unsigned long)hcpu;
2218	struct device *dev;
2219
2220	dev = get_cpu_device(cpu);
2221	if (dev) {
2222		switch (action & ~CPU_TASKS_FROZEN) {
2223		case CPU_ONLINE:
2224			__cpufreq_add_dev(dev, NULL);
2225			break;
2226
2227		case CPU_DOWN_PREPARE:
2228			__cpufreq_remove_dev_prepare(dev, NULL);
2229			break;
2230
2231		case CPU_POST_DEAD:
2232			__cpufreq_remove_dev_finish(dev, NULL);
2233			break;
2234
2235		case CPU_DOWN_FAILED:
2236			__cpufreq_add_dev(dev, NULL);
2237			break;
2238		}
2239	}
2240	return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244	.notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 *               BOOST						     *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252	struct cpufreq_frequency_table *freq_table;
2253	struct cpufreq_policy *policy;
2254	int ret = -EINVAL;
2255
2256	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258		if (freq_table) {
2259			ret = cpufreq_frequency_table_cpuinfo(policy,
2260							freq_table);
2261			if (ret) {
2262				pr_err("%s: Policy frequency update failed\n",
2263				       __func__);
2264				break;
2265			}
2266			policy->user_policy.max = policy->max;
2267			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268		}
2269	}
2270
2271	return ret;
 
 
 
 
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
 
2276	unsigned long flags;
2277	int ret = 0;
2278
2279	if (cpufreq_driver->boost_enabled == state)
2280		return 0;
2281
2282	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283	cpufreq_driver->boost_enabled = state;
2284	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286	ret = cpufreq_driver->set_boost(state);
2287	if (ret) {
2288		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289		cpufreq_driver->boost_enabled = !state;
2290		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292		pr_err("%s: Cannot %s BOOST\n",
2293		       __func__, state ? "enable" : "disable");
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
 
 
 
 
 
2300{
2301	if (likely(cpufreq_driver))
2302		return cpufreq_driver->boost_supported;
2303
2304	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310	return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330	unsigned long flags;
2331	int ret;
2332
2333	if (cpufreq_disabled())
2334		return -ENODEV;
2335
 
 
 
 
 
 
 
2336	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337	    !(driver_data->setpolicy || driver_data->target_index ||
2338		    driver_data->target) ||
2339	     (driver_data->setpolicy && (driver_data->target_index ||
2340		    driver_data->target)))
 
 
 
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	if (driver_data->setpolicy)
2346		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		return -EEXIST;
 
2352	}
2353	cpufreq_driver = driver_data;
2354	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356	if (cpufreq_boost_supported()) {
2357		/*
2358		 * Check if driver provides function to enable boost -
2359		 * if not, use cpufreq_boost_set_sw as default
2360		 */
2361		if (!cpufreq_driver->set_boost)
2362			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
 
2363
2364		ret = cpufreq_sysfs_create_file(&boost.attr);
2365		if (ret) {
2366			pr_err("%s: cannot register global BOOST sysfs file\n",
2367			       __func__);
 
 
2368			goto err_null_driver;
2369		}
2370	}
2371
2372	ret = subsys_interface_register(&cpufreq_interface);
2373	if (ret)
2374		goto err_boost_unreg;
2375
2376	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377		int i;
2378		ret = -ENODEV;
2379
2380		/* check for at least one working CPU */
2381		for (i = 0; i < nr_cpu_ids; i++)
2382			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383				ret = 0;
2384				break;
2385			}
2386
2387		/* if all ->init() calls failed, unregister */
2388		if (ret) {
2389			pr_debug("no CPU initialized for driver %s\n",
2390				 driver_data->name);
2391			goto err_if_unreg;
2392		}
2393	}
2394
2395	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
2396	pr_debug("driver %s up and running\n", driver_data->name);
 
2397
2398	return 0;
2399err_if_unreg:
2400	subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402	if (cpufreq_boost_supported())
2403		cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406	cpufreq_driver = NULL;
2407	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
2408	return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422	unsigned long flags;
2423
2424	if (!cpufreq_driver || (driver != cpufreq_driver))
2425		return -EINVAL;
2426
2427	pr_debug("unregistering driver %s\n", driver->name);
2428
 
 
2429	subsys_interface_unregister(&cpufreq_interface);
2430	if (cpufreq_boost_supported())
2431		cpufreq_sysfs_remove_file(&boost.attr);
 
2432
2433	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435	down_write(&cpufreq_rwsem);
2436	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438	cpufreq_driver = NULL;
2439
2440	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441	up_write(&cpufreq_rwsem);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
 
 
 
2449	if (cpufreq_disabled())
2450		return -ENODEV;
2451
2452	cpufreq_global_kobject = kobject_create();
 
 
 
 
2453	BUG_ON(!cpufreq_global_kobject);
2454
 
 
 
2455	return 0;
2456}
 
 
2457core_initcall(cpufreq_core_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
 
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
 
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 
 
 
 
 
 
 
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 
 
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 
 
 
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 
 
 
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 
 
 
 252	kobject_put(&policy->kobj);
 
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 
 
 
 
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 
 
 
 
 
 
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 
 
 
 
 
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		unsigned int max_delay_us = 2 * MSEC_PER_SEC;
 580
 581		/*
 582		 * If the platform already has high transition_latency, use it
 583		 * as-is.
 584		 */
 585		if (latency > max_delay_us)
 586			return latency;
 587
 588		/*
 589		 * For platforms that can change the frequency very fast (< 2
 590		 * us), the above formula gives a decent transition delay. But
 591		 * for platforms where transition_latency is in milliseconds, it
 592		 * ends up giving unrealistic values.
 593		 *
 594		 * Cap the default transition delay to 2 ms, which seems to be
 595		 * a reasonable amount of time after which we should reevaluate
 596		 * the frequency.
 597		 */
 598		return min(latency * LATENCY_MULTIPLIER, max_delay_us);
 599	}
 600
 601	return LATENCY_MULTIPLIER;
 602}
 603EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 604
 605/*********************************************************************
 606 *                          SYSFS INTERFACE                          *
 607 *********************************************************************/
 608static ssize_t show_boost(struct kobject *kobj,
 609			  struct kobj_attribute *attr, char *buf)
 610{
 611	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 612}
 613
 614static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 615			   const char *buf, size_t count)
 616{
 617	int ret, enable;
 618
 619	ret = sscanf(buf, "%d", &enable);
 620	if (ret != 1 || enable < 0 || enable > 1)
 621		return -EINVAL;
 622
 623	if (cpufreq_boost_trigger_state(enable)) {
 624		pr_err("%s: Cannot %s BOOST!\n",
 625		       __func__, enable ? "enable" : "disable");
 626		return -EINVAL;
 627	}
 628
 629	pr_debug("%s: cpufreq BOOST %s\n",
 630		 __func__, enable ? "enabled" : "disabled");
 631
 632	return count;
 633}
 634define_one_global_rw(boost);
 635
 636static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 637{
 638	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 639}
 640
 641static ssize_t store_local_boost(struct cpufreq_policy *policy,
 642				 const char *buf, size_t count)
 643{
 644	int ret, enable;
 645
 646	ret = kstrtoint(buf, 10, &enable);
 647	if (ret || enable < 0 || enable > 1)
 648		return -EINVAL;
 649
 650	if (!cpufreq_driver->boost_enabled)
 651		return -EINVAL;
 652
 653	if (policy->boost_enabled == enable)
 654		return count;
 655
 656	policy->boost_enabled = enable;
 657
 658	cpus_read_lock();
 659	ret = cpufreq_driver->set_boost(policy, enable);
 660	cpus_read_unlock();
 661
 662	if (ret) {
 663		policy->boost_enabled = !policy->boost_enabled;
 664		return ret;
 665	}
 666
 667	return count;
 668}
 669
 670static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 671
 672static struct cpufreq_governor *find_governor(const char *str_governor)
 673{
 674	struct cpufreq_governor *t;
 675
 676	for_each_governor(t)
 677		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 678			return t;
 679
 680	return NULL;
 681}
 682
 683static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 684{
 685	struct cpufreq_governor *t;
 686
 687	mutex_lock(&cpufreq_governor_mutex);
 688	t = find_governor(str_governor);
 689	if (!t)
 690		goto unlock;
 691
 692	if (!try_module_get(t->owner))
 693		t = NULL;
 
 
 
 
 
 
 
 
 
 694
 695unlock:
 696	mutex_unlock(&cpufreq_governor_mutex);
 697
 698	return t;
 699}
 700
 701static unsigned int cpufreq_parse_policy(char *str_governor)
 702{
 703	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 704		return CPUFREQ_POLICY_PERFORMANCE;
 705
 706	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 707		return CPUFREQ_POLICY_POWERSAVE;
 
 708
 709	return CPUFREQ_POLICY_UNKNOWN;
 710}
 
 711
 712/**
 713 * cpufreq_parse_governor - parse a governor string only for has_target()
 714 * @str_governor: Governor name.
 715 */
 716static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 717{
 718	struct cpufreq_governor *t;
 719
 720	t = get_governor(str_governor);
 721	if (t)
 722		return t;
 723
 724	if (request_module("cpufreq_%s", str_governor))
 725		return NULL;
 726
 727	return get_governor(str_governor);
 728}
 729
 730/*
 731 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 732 * print out cpufreq information
 733 *
 734 * Write out information from cpufreq_driver->policy[cpu]; object must be
 735 * "unsigned int".
 736 */
 737
 738#define show_one(file_name, object)			\
 739static ssize_t show_##file_name				\
 740(struct cpufreq_policy *policy, char *buf)		\
 741{							\
 742	return sprintf(buf, "%u\n", policy->object);	\
 743}
 744
 745show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 746show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 747show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 748show_one(scaling_min_freq, min);
 749show_one(scaling_max_freq, max);
 
 750
 751__weak unsigned int arch_freq_get_on_cpu(int cpu)
 752{
 753	return 0;
 754}
 755
 756static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 757{
 758	ssize_t ret;
 759	unsigned int freq;
 760
 761	freq = arch_freq_get_on_cpu(policy->cpu);
 762	if (freq)
 763		ret = sprintf(buf, "%u\n", freq);
 764	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 765		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 766	else
 767		ret = sprintf(buf, "%u\n", policy->cur);
 768	return ret;
 769}
 770
 771/*
 772 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 773 */
 774#define store_one(file_name, object)			\
 775static ssize_t store_##file_name					\
 776(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 777{									\
 778	unsigned long val;						\
 779	int ret;							\
 
 780									\
 781	ret = kstrtoul(buf, 0, &val);					\
 782	if (ret)							\
 783		return ret;						\
 
 
 
 
 
 
 
 784									\
 785	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 786	return ret >= 0 ? count : ret;					\
 787}
 788
 789store_one(scaling_min_freq, min);
 790store_one(scaling_max_freq, max);
 791
 792/*
 793 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 794 */
 795static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 796					char *buf)
 797{
 798	unsigned int cur_freq = __cpufreq_get(policy);
 799
 800	if (cur_freq)
 801		return sprintf(buf, "%u\n", cur_freq);
 802
 803	return sprintf(buf, "<unknown>\n");
 804}
 805
 806/*
 807 * show_scaling_governor - show the current policy for the specified CPU
 808 */
 809static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 810{
 811	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 812		return sprintf(buf, "powersave\n");
 813	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 814		return sprintf(buf, "performance\n");
 815	else if (policy->governor)
 816		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 817				policy->governor->name);
 818	return -EINVAL;
 819}
 820
 821/*
 822 * store_scaling_governor - store policy for the specified CPU
 823 */
 824static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 825					const char *buf, size_t count)
 826{
 827	char str_governor[16];
 828	int ret;
 
 
 
 
 
 
 829
 830	ret = sscanf(buf, "%15s", str_governor);
 831	if (ret != 1)
 832		return -EINVAL;
 833
 834	if (cpufreq_driver->setpolicy) {
 835		unsigned int new_pol;
 
 836
 837		new_pol = cpufreq_parse_policy(str_governor);
 838		if (!new_pol)
 839			return -EINVAL;
 840
 841		ret = cpufreq_set_policy(policy, NULL, new_pol);
 842	} else {
 843		struct cpufreq_governor *new_gov;
 844
 845		new_gov = cpufreq_parse_governor(str_governor);
 846		if (!new_gov)
 847			return -EINVAL;
 848
 849		ret = cpufreq_set_policy(policy, new_gov,
 850					 CPUFREQ_POLICY_UNKNOWN);
 851
 852		module_put(new_gov->owner);
 853	}
 854
 855	return ret ? ret : count;
 856}
 857
 858/*
 859 * show_scaling_driver - show the cpufreq driver currently loaded
 860 */
 861static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 862{
 863	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 864}
 865
 866/*
 867 * show_scaling_available_governors - show the available CPUfreq governors
 868 */
 869static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 870						char *buf)
 871{
 872	ssize_t i = 0;
 873	struct cpufreq_governor *t;
 874
 875	if (!has_target()) {
 876		i += sprintf(buf, "performance powersave");
 877		goto out;
 878	}
 879
 880	mutex_lock(&cpufreq_governor_mutex);
 881	for_each_governor(t) {
 882		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 883		    - (CPUFREQ_NAME_LEN + 2)))
 884			break;
 885		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 886	}
 887	mutex_unlock(&cpufreq_governor_mutex);
 888out:
 889	i += sprintf(&buf[i], "\n");
 890	return i;
 891}
 892
 893ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 894{
 895	ssize_t i = 0;
 896	unsigned int cpu;
 897
 898	for_each_cpu(cpu, mask) {
 899		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 900		if (i >= (PAGE_SIZE - 5))
 901			break;
 902	}
 903
 904	/* Remove the extra space at the end */
 905	i--;
 906
 907	i += sprintf(&buf[i], "\n");
 908	return i;
 909}
 910EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 911
 912/*
 913 * show_related_cpus - show the CPUs affected by each transition even if
 914 * hw coordination is in use
 915 */
 916static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 917{
 918	return cpufreq_show_cpus(policy->related_cpus, buf);
 919}
 920
 921/*
 922 * show_affected_cpus - show the CPUs affected by each transition
 923 */
 924static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 925{
 926	return cpufreq_show_cpus(policy->cpus, buf);
 927}
 928
 929static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 930					const char *buf, size_t count)
 931{
 932	unsigned int freq = 0;
 933	unsigned int ret;
 934
 935	if (!policy->governor || !policy->governor->store_setspeed)
 936		return -EINVAL;
 937
 938	ret = sscanf(buf, "%u", &freq);
 939	if (ret != 1)
 940		return -EINVAL;
 941
 942	policy->governor->store_setspeed(policy, freq);
 943
 944	return count;
 945}
 946
 947static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 948{
 949	if (!policy->governor || !policy->governor->show_setspeed)
 950		return sprintf(buf, "<unsupported>\n");
 951
 952	return policy->governor->show_setspeed(policy, buf);
 953}
 954
 955/*
 956 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 957 */
 958static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 959{
 960	unsigned int limit;
 961	int ret;
 962	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 963	if (!ret)
 964		return sprintf(buf, "%u\n", limit);
 
 
 965	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 966}
 967
 968cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 969cpufreq_freq_attr_ro(cpuinfo_min_freq);
 970cpufreq_freq_attr_ro(cpuinfo_max_freq);
 971cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 972cpufreq_freq_attr_ro(scaling_available_governors);
 973cpufreq_freq_attr_ro(scaling_driver);
 974cpufreq_freq_attr_ro(scaling_cur_freq);
 975cpufreq_freq_attr_ro(bios_limit);
 976cpufreq_freq_attr_ro(related_cpus);
 977cpufreq_freq_attr_ro(affected_cpus);
 978cpufreq_freq_attr_rw(scaling_min_freq);
 979cpufreq_freq_attr_rw(scaling_max_freq);
 980cpufreq_freq_attr_rw(scaling_governor);
 981cpufreq_freq_attr_rw(scaling_setspeed);
 982
 983static struct attribute *cpufreq_attrs[] = {
 984	&cpuinfo_min_freq.attr,
 985	&cpuinfo_max_freq.attr,
 986	&cpuinfo_transition_latency.attr,
 987	&scaling_min_freq.attr,
 988	&scaling_max_freq.attr,
 989	&affected_cpus.attr,
 990	&related_cpus.attr,
 991	&scaling_governor.attr,
 992	&scaling_driver.attr,
 993	&scaling_available_governors.attr,
 994	&scaling_setspeed.attr,
 995	NULL
 996};
 997ATTRIBUTE_GROUPS(cpufreq);
 998
 999#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000#define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003{
1004	struct cpufreq_policy *policy = to_policy(kobj);
1005	struct freq_attr *fattr = to_attr(attr);
1006	ssize_t ret = -EBUSY;
1007
1008	if (!fattr->show)
1009		return -EIO;
1010
1011	down_read(&policy->rwsem);
1012	if (likely(!policy_is_inactive(policy)))
 
1013		ret = fattr->show(policy, buf);
 
 
 
1014	up_read(&policy->rwsem);
 
1015
1016	return ret;
1017}
1018
1019static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020		     const char *buf, size_t count)
1021{
1022	struct cpufreq_policy *policy = to_policy(kobj);
1023	struct freq_attr *fattr = to_attr(attr);
1024	ssize_t ret = -EBUSY;
1025
1026	if (!fattr->store)
1027		return -EIO;
 
 
 
 
 
1028
1029	down_write(&policy->rwsem);
1030	if (likely(!policy_is_inactive(policy)))
 
1031		ret = fattr->store(policy, buf, count);
 
 
 
1032	up_write(&policy->rwsem);
1033
 
 
 
 
1034	return ret;
1035}
1036
1037static void cpufreq_sysfs_release(struct kobject *kobj)
1038{
1039	struct cpufreq_policy *policy = to_policy(kobj);
1040	pr_debug("last reference is dropped\n");
1041	complete(&policy->kobj_unregister);
1042}
1043
1044static const struct sysfs_ops sysfs_ops = {
1045	.show	= show,
1046	.store	= store,
1047};
1048
1049static const struct kobj_type ktype_cpufreq = {
1050	.sysfs_ops	= &sysfs_ops,
1051	.default_groups	= cpufreq_groups,
1052	.release	= cpufreq_sysfs_release,
1053};
1054
1055static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056				struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057{
1058	if (unlikely(!dev))
1059		return;
 
 
 
 
 
1060
1061	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1062		return;
 
1063
1064	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1066		dev_err(dev, "cpufreq symlink creation failed\n");
 
1067}
 
1068
1069static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070				   struct device *dev)
1071{
1072	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073	sysfs_remove_link(&dev->kobj, "cpufreq");
1074	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075}
1076
1077static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
1078{
1079	struct freq_attr **drv_attr;
1080	int ret = 0;
1081
 
 
 
 
 
 
1082	/* set up files for this cpu device */
1083	drv_attr = cpufreq_driver->attr;
1084	while (drv_attr && *drv_attr) {
1085		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1086		if (ret)
1087			return ret;
1088		drv_attr++;
1089	}
1090	if (cpufreq_driver->get) {
1091		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1092		if (ret)
1093			return ret;
 
 
 
 
 
1094	}
1095
1096	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1097	if (ret)
1098		return ret;
1099
1100	if (cpufreq_driver->bios_limit) {
1101		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1102		if (ret)
1103			return ret;
1104	}
1105
1106	if (cpufreq_boost_supported()) {
1107		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1108		if (ret)
1109			return ret;
1110	}
1111
1112	return 0;
 
 
 
1113}
1114
1115static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116{
1117	struct cpufreq_governor *gov = NULL;
1118	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119	int ret;
 
 
1120
1121	if (has_target()) {
1122		/* Update policy governor to the one used before hotplug. */
1123		gov = get_governor(policy->last_governor);
1124		if (gov) {
1125			pr_debug("Restoring governor %s for cpu %d\n",
1126				 gov->name, policy->cpu);
1127		} else {
1128			gov = get_governor(default_governor);
1129		}
1130
1131		if (!gov) {
1132			gov = cpufreq_default_governor();
1133			__module_get(gov->owner);
1134		}
1135
1136	} else {
 
 
1137
1138		/* Use the default policy if there is no last_policy. */
1139		if (policy->last_policy) {
1140			pol = policy->last_policy;
1141		} else {
1142			pol = cpufreq_parse_policy(default_governor);
1143			/*
1144			 * In case the default governor is neither "performance"
1145			 * nor "powersave", fall back to the initial policy
1146			 * value set by the driver.
1147			 */
1148			if (pol == CPUFREQ_POLICY_UNKNOWN)
1149				pol = policy->policy;
1150		}
1151		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152		    pol != CPUFREQ_POLICY_POWERSAVE)
1153			return -ENODATA;
1154	}
1155
1156	ret = cpufreq_set_policy(policy, gov, pol);
1157	if (gov)
1158		module_put(gov->owner);
1159
1160	return ret;
1161}
1162
1163static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
1164{
1165	int ret = 0;
 
1166
1167	/* Has this CPU been taken care of already? */
1168	if (cpumask_test_cpu(cpu, policy->cpus))
1169		return 0;
 
 
 
 
1170
1171	down_write(&policy->rwsem);
1172	if (has_target())
1173		cpufreq_stop_governor(policy);
1174
1175	cpumask_set_cpu(cpu, policy->cpus);
 
 
1176
1177	if (has_target()) {
1178		ret = cpufreq_start_governor(policy);
1179		if (ret)
1180			pr_err("%s: Failed to start governor\n", __func__);
1181	}
1182	up_write(&policy->rwsem);
1183	return ret;
1184}
1185
1186void refresh_frequency_limits(struct cpufreq_policy *policy)
1187{
1188	if (!policy_is_inactive(policy)) {
1189		pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191		cpufreq_set_policy(policy, policy->governor, policy->policy);
 
 
 
1192	}
1193}
1194EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196static void handle_update(struct work_struct *work)
1197{
1198	struct cpufreq_policy *policy =
1199		container_of(work, struct cpufreq_policy, update);
1200
1201	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202	down_write(&policy->rwsem);
1203	refresh_frequency_limits(policy);
1204	up_write(&policy->rwsem);
1205}
 
1206
1207static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208				void *data)
1209{
1210	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
 
1211
1212	schedule_work(&policy->update);
1213	return 0;
1214}
1215
1216static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217				void *data)
1218{
1219	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221	schedule_work(&policy->update);
1222	return 0;
1223}
1224
1225static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226{
1227	struct kobject *kobj;
1228	struct completion *cmp;
1229
1230	down_write(&policy->rwsem);
1231	cpufreq_stats_free_table(policy);
1232	kobj = &policy->kobj;
1233	cmp = &policy->kobj_unregister;
1234	up_write(&policy->rwsem);
1235	kobject_put(kobj);
1236
1237	/*
1238	 * We need to make sure that the underlying kobj is
1239	 * actually not referenced anymore by anybody before we
1240	 * proceed with unloading.
1241	 */
1242	pr_debug("waiting for dropping of refcount\n");
1243	wait_for_completion(cmp);
1244	pr_debug("wait complete\n");
1245}
1246
1247static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248{
1249	struct cpufreq_policy *policy;
1250	struct device *dev = get_cpu_device(cpu);
1251	int ret;
1252
1253	if (!dev)
1254		return NULL;
1255
1256	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1257	if (!policy)
1258		return NULL;
1259
1260	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1261		goto err_free_policy;
1262
1263	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1264		goto err_free_cpumask;
1265
1266	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1267		goto err_free_rcpumask;
1268
1269	init_completion(&policy->kobj_unregister);
1270	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1271				   cpufreq_global_kobject, "policy%u", cpu);
1272	if (ret) {
1273		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274		/*
1275		 * The entire policy object will be freed below, but the extra
1276		 * memory allocated for the kobject name needs to be freed by
1277		 * releasing the kobject.
1278		 */
1279		kobject_put(&policy->kobj);
1280		goto err_free_real_cpus;
1281	}
1282
1283	freq_constraints_init(&policy->constraints);
1284
1285	policy->nb_min.notifier_call = cpufreq_notifier_min;
1286	policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1289				    &policy->nb_min);
1290	if (ret) {
1291		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292			ret, cpu);
1293		goto err_kobj_remove;
1294	}
1295
1296	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1297				    &policy->nb_max);
1298	if (ret) {
1299		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300			ret, cpu);
1301		goto err_min_qos_notifier;
1302	}
1303
1304	INIT_LIST_HEAD(&policy->policy_list);
1305	init_rwsem(&policy->rwsem);
1306	spin_lock_init(&policy->transition_lock);
1307	init_waitqueue_head(&policy->transition_wait);
1308	INIT_WORK(&policy->update, handle_update);
1309
1310	policy->cpu = cpu;
1311	return policy;
1312
1313err_min_qos_notifier:
1314	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1315				 &policy->nb_min);
1316err_kobj_remove:
1317	cpufreq_policy_put_kobj(policy);
1318err_free_real_cpus:
1319	free_cpumask_var(policy->real_cpus);
1320err_free_rcpumask:
1321	free_cpumask_var(policy->related_cpus);
1322err_free_cpumask:
1323	free_cpumask_var(policy->cpus);
1324err_free_policy:
1325	kfree(policy);
1326
1327	return NULL;
1328}
1329
1330static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331{
1332	unsigned long flags;
1333	int cpu;
 
 
 
 
 
 
 
 
 
1334
1335	/*
1336	 * The callers must ensure the policy is inactive by now, to avoid any
1337	 * races with show()/store() callbacks.
 
1338	 */
1339	if (unlikely(!policy_is_inactive(policy)))
1340		pr_warn("%s: Freeing active policy\n", __func__);
 
 
1341
1342	/* Remove policy from list */
1343	write_lock_irqsave(&cpufreq_driver_lock, flags);
1344	list_del(&policy->policy_list);
 
 
 
1345
1346	for_each_cpu(cpu, policy->related_cpus)
1347		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1349
1350	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1351				 &policy->nb_max);
1352	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1353				 &policy->nb_min);
1354
1355	/* Cancel any pending policy->update work before freeing the policy. */
1356	cancel_work_sync(&policy->update);
1357
1358	if (policy->max_freq_req) {
1359		/*
1360		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361		 * notification, since CPUFREQ_CREATE_POLICY notification was
1362		 * sent after adding max_freq_req earlier.
1363		 */
1364		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1365					     CPUFREQ_REMOVE_POLICY, policy);
1366		freq_qos_remove_request(policy->max_freq_req);
1367	}
1368
1369	freq_qos_remove_request(policy->min_freq_req);
1370	kfree(policy->min_freq_req);
1371
1372	cpufreq_policy_put_kobj(policy);
1373	free_cpumask_var(policy->real_cpus);
1374	free_cpumask_var(policy->related_cpus);
1375	free_cpumask_var(policy->cpus);
1376	kfree(policy);
1377}
1378
1379static int cpufreq_online(unsigned int cpu)
1380{
 
 
1381	struct cpufreq_policy *policy;
1382	bool new_policy;
1383	unsigned long flags;
1384	unsigned int j;
1385	int ret;
 
 
1386
1387	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1388
1389	/* Check if this CPU already has a policy to manage it */
1390	policy = per_cpu(cpufreq_cpu_data, cpu);
1391	if (policy) {
1392		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393		if (!policy_is_inactive(policy))
1394			return cpufreq_add_policy_cpu(policy, cpu);
1395
1396		/* This is the only online CPU for the policy.  Start over. */
1397		new_policy = false;
1398		down_write(&policy->rwsem);
1399		policy->cpu = cpu;
1400		policy->governor = NULL;
1401	} else {
1402		new_policy = true;
1403		policy = cpufreq_policy_alloc(cpu);
1404		if (!policy)
1405			return -ENOMEM;
1406		down_write(&policy->rwsem);
1407	}
 
1408
1409	if (!new_policy && cpufreq_driver->online) {
1410		/* Recover policy->cpus using related_cpus */
1411		cpumask_copy(policy->cpus, policy->related_cpus);
1412
1413		ret = cpufreq_driver->online(policy);
1414		if (ret) {
1415			pr_debug("%s: %d: initialization failed\n", __func__,
1416				 __LINE__);
1417			goto out_exit_policy;
 
 
 
 
1418		}
1419	} else {
1420		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
1421
1422		/*
1423		 * Call driver. From then on the cpufreq must be able
1424		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1425		 */
1426		ret = cpufreq_driver->init(policy);
1427		if (ret) {
1428			pr_debug("%s: %d: initialization failed\n", __func__,
1429				 __LINE__);
1430			goto out_free_policy;
1431		}
1432
1433		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434		policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436		/*
1437		 * The initialization has succeeded and the policy is online.
1438		 * If there is a problem with its frequency table, take it
1439		 * offline and drop it.
1440		 */
1441		ret = cpufreq_table_validate_and_sort(policy);
1442		if (ret)
1443			goto out_offline_policy;
1444
1445		/* related_cpus should at least include policy->cpus. */
1446		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
 
 
 
1447	}
1448
 
 
 
1449	/*
1450	 * affected cpus must always be the one, which are online. We aren't
1451	 * managing offline cpus here.
1452	 */
1453	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1454
1455	if (new_policy) {
1456		for_each_cpu(j, policy->related_cpus) {
1457			per_cpu(cpufreq_cpu_data, j) = policy;
1458			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1459		}
1460
1461		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1462					       GFP_KERNEL);
1463		if (!policy->min_freq_req) {
1464			ret = -ENOMEM;
1465			goto out_destroy_policy;
1466		}
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->min_freq_req, FREQ_QOS_MIN,
1470					   FREQ_QOS_MIN_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			/*
1473			 * So we don't call freq_qos_remove_request() for an
1474			 * uninitialized request.
1475			 */
1476			kfree(policy->min_freq_req);
1477			policy->min_freq_req = NULL;
1478			goto out_destroy_policy;
1479		}
1480
1481		/*
1482		 * This must be initialized right here to avoid calling
1483		 * freq_qos_remove_request() on uninitialized request in case
1484		 * of errors.
1485		 */
1486		policy->max_freq_req = policy->min_freq_req + 1;
1487
1488		ret = freq_qos_add_request(&policy->constraints,
1489					   policy->max_freq_req, FREQ_QOS_MAX,
1490					   FREQ_QOS_MAX_DEFAULT_VALUE);
1491		if (ret < 0) {
1492			policy->max_freq_req = NULL;
1493			goto out_destroy_policy;
1494		}
1495
1496		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1497				CPUFREQ_CREATE_POLICY, policy);
1498	}
1499
1500	if (cpufreq_driver->get && has_target()) {
1501		policy->cur = cpufreq_driver->get(policy->cpu);
1502		if (!policy->cur) {
1503			ret = -EIO;
1504			pr_err("%s: ->get() failed\n", __func__);
1505			goto out_destroy_policy;
1506		}
1507	}
1508
1509	/*
1510	 * Sometimes boot loaders set CPU frequency to a value outside of
1511	 * frequency table present with cpufreq core. In such cases CPU might be
1512	 * unstable if it has to run on that frequency for long duration of time
1513	 * and so its better to set it to a frequency which is specified in
1514	 * freq-table. This also makes cpufreq stats inconsistent as
1515	 * cpufreq-stats would fail to register because current frequency of CPU
1516	 * isn't found in freq-table.
1517	 *
1518	 * Because we don't want this change to effect boot process badly, we go
1519	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1520	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1521	 * is initialized to zero).
1522	 *
1523	 * We are passing target-freq as "policy->cur - 1" otherwise
1524	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525	 * equal to target-freq.
1526	 */
1527	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528	    && has_target()) {
1529		unsigned int old_freq = policy->cur;
1530
1531		/* Are we running at unknown frequency ? */
1532		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1533		if (ret == -EINVAL) {
1534			ret = __cpufreq_driver_target(policy, old_freq - 1,
1535						      CPUFREQ_RELATION_L);
 
 
 
1536
1537			/*
1538			 * Reaching here after boot in a few seconds may not
1539			 * mean that system will remain stable at "unknown"
1540			 * frequency for longer duration. Hence, a BUG_ON().
1541			 */
1542			BUG_ON(ret);
1543			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544				__func__, policy->cpu, old_freq, policy->cur);
1545		}
1546	}
1547
1548	if (new_policy) {
1549		ret = cpufreq_add_dev_interface(policy);
 
 
 
1550		if (ret)
1551			goto out_destroy_policy;
 
 
 
1552
1553		cpufreq_stats_create_table(policy);
 
 
1554
1555		write_lock_irqsave(&cpufreq_driver_lock, flags);
1556		list_add(&policy->policy_list, &cpufreq_policy_list);
1557		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559		/*
1560		 * Register with the energy model before
1561		 * sugov_eas_rebuild_sd() is called, which will result
1562		 * in rebuilding of the sched domains, which should only be done
1563		 * once the energy model is properly initialized for the policy
1564		 * first.
1565		 *
1566		 * Also, this should be called before the policy is registered
1567		 * with cooling framework.
1568		 */
1569		if (cpufreq_driver->register_em)
1570			cpufreq_driver->register_em(policy);
1571	}
1572
1573	ret = cpufreq_init_policy(policy);
1574	if (ret) {
1575		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576		       __func__, cpu, ret);
1577		goto out_destroy_policy;
1578	}
1579
1580	up_write(&policy->rwsem);
1581
1582	kobject_uevent(&policy->kobj, KOBJ_ADD);
1583
1584	/* Callback for handling stuff after policy is ready */
1585	if (cpufreq_driver->ready)
1586		cpufreq_driver->ready(policy);
1587
1588	/* Register cpufreq cooling only for a new policy */
1589	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1590		policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592	pr_debug("initialization complete\n");
1593
1594	return 0;
1595
1596out_destroy_policy:
1597	for_each_cpu(j, policy->real_cpus)
1598		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1599
1600out_offline_policy:
1601	if (cpufreq_driver->offline)
1602		cpufreq_driver->offline(policy);
1603
1604out_exit_policy:
1605	if (cpufreq_driver->exit)
1606		cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
1607
1608out_free_policy:
1609	cpumask_clear(policy->cpus);
1610	up_write(&policy->rwsem);
1611
1612	cpufreq_policy_free(policy);
1613	return ret;
1614}
1615
1616/**
1617 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618 * @dev: CPU device.
1619 * @sif: Subsystem interface structure pointer (not used)
 
 
 
 
1620 */
1621static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622{
1623	struct cpufreq_policy *policy;
1624	unsigned cpu = dev->id;
 
 
 
 
 
1625	int ret;
1626
1627	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
 
 
 
 
 
1628
1629	if (cpu_online(cpu)) {
1630		ret = cpufreq_online(cpu);
1631		if (ret)
1632			return ret;
 
 
 
 
1633	}
1634
1635	/* Create sysfs link on CPU registration */
1636	policy = per_cpu(cpufreq_cpu_data, cpu);
1637	if (policy)
1638		add_cpu_dev_symlink(policy, cpu, dev);
1639
1640	return 0;
1641}
1642
1643static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
 
1644{
1645	int ret;
 
 
 
 
 
 
 
 
 
1646
1647	if (has_target())
1648		cpufreq_stop_governor(policy);
 
1649
1650	cpumask_clear_cpu(cpu, policy->cpus);
1651
1652	if (!policy_is_inactive(policy)) {
1653		/* Nominate a new CPU if necessary. */
1654		if (cpu == policy->cpu)
1655			policy->cpu = cpumask_any(policy->cpus);
1656
1657		/* Start the governor again for the active policy. */
1658		if (has_target()) {
1659			ret = cpufreq_start_governor(policy);
1660			if (ret)
1661				pr_err("%s: Failed to start governor\n", __func__);
1662		}
1663
1664		return;
1665	}
1666
1667	if (has_target())
1668		strscpy(policy->last_governor, policy->governor->name,
1669			CPUFREQ_NAME_LEN);
1670	else
1671		policy->last_policy = policy->policy;
1672
1673	if (has_target())
1674		cpufreq_exit_governor(policy);
 
1675
1676	/*
1677	 * Perform the ->offline() during light-weight tear-down, as
1678	 * that allows fast recovery when the CPU comes back.
1679	 */
1680	if (cpufreq_driver->offline) {
1681		cpufreq_driver->offline(policy);
1682		return;
 
 
 
 
 
 
1683	}
1684
1685	if (cpufreq_driver->exit)
1686		cpufreq_driver->exit(policy);
1687
1688	policy->freq_table = NULL;
1689}
1690
1691static int cpufreq_offline(unsigned int cpu)
 
1692{
 
 
 
1693	struct cpufreq_policy *policy;
1694
1695	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
1696
1697	policy = cpufreq_cpu_get_raw(cpu);
1698	if (!policy) {
1699		pr_debug("%s: No cpu_data found\n", __func__);
1700		return 0;
1701	}
1702
1703	down_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704
1705	__cpufreq_offline(cpu, policy);
 
 
 
1706
1707	up_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
1708	return 0;
1709}
1710
1711/*
1712 * cpufreq_remove_dev - remove a CPU device
1713 *
1714 * Removes the cpufreq interface for a CPU device.
1715 */
1716static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1717{
1718	unsigned int cpu = dev->id;
1719	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1720
1721	if (!policy)
1722		return;
1723
1724	down_write(&policy->rwsem);
1725
1726	if (cpu_online(cpu))
1727		__cpufreq_offline(cpu, policy);
1728
1729	remove_cpu_dev_symlink(policy, cpu, dev);
 
1730
1731	if (!cpumask_empty(policy->real_cpus)) {
1732		up_write(&policy->rwsem);
1733		return;
1734	}
1735
1736	/*
1737	 * Unregister cpufreq cooling once all the CPUs of the policy are
1738	 * removed.
1739	 */
1740	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1741		cpufreq_cooling_unregister(policy->cdev);
1742		policy->cdev = NULL;
1743	}
1744
1745	/* We did light-weight exit earlier, do full tear down now */
1746	if (cpufreq_driver->offline && cpufreq_driver->exit)
1747		cpufreq_driver->exit(policy);
1748
1749	up_write(&policy->rwsem);
1750
1751	cpufreq_policy_free(policy);
1752}
1753
1754/**
1755 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1756 * @policy: Policy managing CPUs.
1757 * @new_freq: New CPU frequency.
 
 
1758 *
1759 * Adjust to the current frequency first and clean up later by either calling
1760 * cpufreq_update_policy(), or scheduling handle_update().
1761 */
1762static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1763				unsigned int new_freq)
1764{
 
1765	struct cpufreq_freqs freqs;
 
1766
1767	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1768		 policy->cur, new_freq);
1769
1770	freqs.old = policy->cur;
1771	freqs.new = new_freq;
1772
 
 
 
 
1773	cpufreq_freq_transition_begin(policy, &freqs);
1774	cpufreq_freq_transition_end(policy, &freqs, 0);
1775}
1776
1777static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1778{
1779	unsigned int new_freq;
1780
1781	new_freq = cpufreq_driver->get(policy->cpu);
1782	if (!new_freq)
1783		return 0;
1784
1785	/*
1786	 * If fast frequency switching is used with the given policy, the check
1787	 * against policy->cur is pointless, so skip it in that case.
1788	 */
1789	if (policy->fast_switch_enabled || !has_target())
1790		return new_freq;
1791
1792	if (policy->cur != new_freq) {
1793		/*
1794		 * For some platforms, the frequency returned by hardware may be
1795		 * slightly different from what is provided in the frequency
1796		 * table, for example hardware may return 499 MHz instead of 500
1797		 * MHz. In such cases it is better to avoid getting into
1798		 * unnecessary frequency updates.
1799		 */
1800		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1801			return policy->cur;
1802
1803		cpufreq_out_of_sync(policy, new_freq);
1804		if (update)
1805			schedule_work(&policy->update);
1806	}
1807
1808	return new_freq;
1809}
1810
1811/**
1812 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1813 * @cpu: CPU number
1814 *
1815 * This is the last known freq, without actually getting it from the driver.
1816 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1817 */
1818unsigned int cpufreq_quick_get(unsigned int cpu)
1819{
1820	struct cpufreq_policy *policy;
1821	unsigned int ret_freq = 0;
1822	unsigned long flags;
1823
1824	read_lock_irqsave(&cpufreq_driver_lock, flags);
1825
1826	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1827		ret_freq = cpufreq_driver->get(cpu);
1828		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829		return ret_freq;
1830	}
1831
1832	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1833
1834	policy = cpufreq_cpu_get(cpu);
1835	if (policy) {
1836		ret_freq = policy->cur;
1837		cpufreq_cpu_put(policy);
1838	}
1839
1840	return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get);
1843
1844/**
1845 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1846 * @cpu: CPU number
1847 *
1848 * Just return the max possible frequency for a given CPU.
1849 */
1850unsigned int cpufreq_quick_get_max(unsigned int cpu)
1851{
1852	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853	unsigned int ret_freq = 0;
1854
1855	if (policy) {
1856		ret_freq = policy->max;
1857		cpufreq_cpu_put(policy);
1858	}
1859
1860	return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_quick_get_max);
1863
1864/**
1865 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1866 * @cpu: CPU number
1867 *
1868 * The default return value is the max_freq field of cpuinfo.
1869 */
1870__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1871{
1872	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1873	unsigned int ret_freq = 0;
1874
1875	if (policy) {
1876		ret_freq = policy->cpuinfo.max_freq;
1877		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1878	}
1879
1880	return ret_freq;
1881}
1882EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1883
1884static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1885{
1886	if (unlikely(policy_is_inactive(policy)))
1887		return 0;
1888
1889	return cpufreq_verify_current_freq(policy, true);
1890}
1891
1892/**
1893 * cpufreq_get - get the current CPU frequency (in kHz)
1894 * @cpu: CPU number
1895 *
1896 * Get the CPU current (static) CPU frequency
1897 */
1898unsigned int cpufreq_get(unsigned int cpu)
1899{
1900	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1901	unsigned int ret_freq = 0;
1902
1903	if (policy) {
1904		down_read(&policy->rwsem);
1905		if (cpufreq_driver->get)
1906			ret_freq = __cpufreq_get(policy);
1907		up_read(&policy->rwsem);
1908
1909		cpufreq_cpu_put(policy);
1910	}
1911
1912	return ret_freq;
1913}
1914EXPORT_SYMBOL(cpufreq_get);
1915
1916static struct subsys_interface cpufreq_interface = {
1917	.name		= "cpufreq",
1918	.subsys		= &cpu_subsys,
1919	.add_dev	= cpufreq_add_dev,
1920	.remove_dev	= cpufreq_remove_dev,
1921};
1922
1923/*
1924 * In case platform wants some specific frequency to be configured
1925 * during suspend..
1926 */
1927int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1928{
1929	int ret;
1930
1931	if (!policy->suspend_freq) {
1932		pr_debug("%s: suspend_freq not defined\n", __func__);
1933		return 0;
1934	}
1935
1936	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1937			policy->suspend_freq);
1938
1939	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1940			CPUFREQ_RELATION_H);
1941	if (ret)
1942		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1943				__func__, policy->suspend_freq, ret);
1944
1945	return ret;
1946}
1947EXPORT_SYMBOL(cpufreq_generic_suspend);
1948
1949/**
1950 * cpufreq_suspend() - Suspend CPUFreq governors.
1951 *
1952 * Called during system wide Suspend/Hibernate cycles for suspending governors
1953 * as some platforms can't change frequency after this point in suspend cycle.
1954 * Because some of the devices (like: i2c, regulators, etc) they use for
1955 * changing frequency are suspended quickly after this point.
1956 */
1957void cpufreq_suspend(void)
1958{
1959	struct cpufreq_policy *policy;
1960
1961	if (!cpufreq_driver)
1962		return;
1963
1964	if (!has_target() && !cpufreq_driver->suspend)
1965		goto suspend;
1966
1967	pr_debug("%s: Suspending Governors\n", __func__);
1968
1969	for_each_active_policy(policy) {
1970		if (has_target()) {
1971			down_write(&policy->rwsem);
1972			cpufreq_stop_governor(policy);
1973			up_write(&policy->rwsem);
1974		}
1975
1976		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1977			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1978				cpufreq_driver->name);
1979	}
1980
1981suspend:
1982	cpufreq_suspended = true;
1983}
1984
1985/**
1986 * cpufreq_resume() - Resume CPUFreq governors.
1987 *
1988 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1989 * are suspended with cpufreq_suspend().
1990 */
1991void cpufreq_resume(void)
1992{
1993	struct cpufreq_policy *policy;
1994	int ret;
1995
1996	if (!cpufreq_driver)
1997		return;
1998
1999	if (unlikely(!cpufreq_suspended))
2000		return;
2001
 
 
2002	cpufreq_suspended = false;
2003
2004	if (!has_target() && !cpufreq_driver->resume)
2005		return;
 
 
 
 
 
 
2006
2007	pr_debug("%s: Resuming Governors\n", __func__);
2008
2009	for_each_active_policy(policy) {
2010		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2011			pr_err("%s: Failed to resume driver: %s\n", __func__,
2012				cpufreq_driver->name);
2013		} else if (has_target()) {
2014			down_write(&policy->rwsem);
2015			ret = cpufreq_start_governor(policy);
2016			up_write(&policy->rwsem);
2017
2018			if (ret)
2019				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2020				       __func__, policy->cpu);
2021		}
2022	}
2023}
2024
2025/**
2026 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2027 * @flags: Flags to test against the current cpufreq driver's flags.
2028 *
2029 * Assumes that the driver is there, so callers must ensure that this is the
2030 * case.
2031 */
2032bool cpufreq_driver_test_flags(u16 flags)
2033{
2034	return !!(cpufreq_driver->flags & flags);
2035}
2036
2037/**
2038 * cpufreq_get_current_driver - Return the current driver's name.
2039 *
2040 * Return the name string of the currently registered cpufreq driver or NULL if
2041 * none.
2042 */
2043const char *cpufreq_get_current_driver(void)
2044{
2045	if (cpufreq_driver)
2046		return cpufreq_driver->name;
2047
2048	return NULL;
2049}
2050EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2051
2052/**
2053 * cpufreq_get_driver_data - Return current driver data.
2054 *
2055 * Return the private data of the currently registered cpufreq driver, or NULL
2056 * if no cpufreq driver has been registered.
2057 */
2058void *cpufreq_get_driver_data(void)
2059{
2060	if (cpufreq_driver)
2061		return cpufreq_driver->driver_data;
2062
2063	return NULL;
2064}
2065EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2066
2067/*********************************************************************
2068 *                     NOTIFIER LISTS INTERFACE                      *
2069 *********************************************************************/
2070
2071/**
2072 * cpufreq_register_notifier - Register a notifier with cpufreq.
2073 * @nb: notifier function to register.
2074 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2075 *
2076 * Add a notifier to one of two lists: either a list of notifiers that run on
2077 * clock rate changes (once before and once after every transition), or a list
2078 * of notifiers that ron on cpufreq policy changes.
 
2079 *
2080 * This function may sleep and it has the same return values as
2081 * blocking_notifier_chain_register().
2082 */
2083int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2084{
2085	int ret;
2086
2087	if (cpufreq_disabled())
2088		return -EINVAL;
2089
 
 
2090	switch (list) {
2091	case CPUFREQ_TRANSITION_NOTIFIER:
2092		mutex_lock(&cpufreq_fast_switch_lock);
2093
2094		if (cpufreq_fast_switch_count > 0) {
2095			mutex_unlock(&cpufreq_fast_switch_lock);
2096			return -EBUSY;
2097		}
2098		ret = srcu_notifier_chain_register(
2099				&cpufreq_transition_notifier_list, nb);
2100		if (!ret)
2101			cpufreq_fast_switch_count--;
2102
2103		mutex_unlock(&cpufreq_fast_switch_lock);
2104		break;
2105	case CPUFREQ_POLICY_NOTIFIER:
2106		ret = blocking_notifier_chain_register(
2107				&cpufreq_policy_notifier_list, nb);
2108		break;
2109	default:
2110		ret = -EINVAL;
2111	}
2112
2113	return ret;
2114}
2115EXPORT_SYMBOL(cpufreq_register_notifier);
2116
2117/**
2118 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2119 * @nb: notifier block to be unregistered.
2120 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2121 *
2122 * Remove a notifier from one of the cpufreq notifier lists.
2123 *
2124 * This function may sleep and it has the same return values as
2125 * blocking_notifier_chain_unregister().
2126 */
2127int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2128{
2129	int ret;
2130
2131	if (cpufreq_disabled())
2132		return -EINVAL;
2133
2134	switch (list) {
2135	case CPUFREQ_TRANSITION_NOTIFIER:
2136		mutex_lock(&cpufreq_fast_switch_lock);
2137
2138		ret = srcu_notifier_chain_unregister(
2139				&cpufreq_transition_notifier_list, nb);
2140		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2141			cpufreq_fast_switch_count++;
2142
2143		mutex_unlock(&cpufreq_fast_switch_lock);
2144		break;
2145	case CPUFREQ_POLICY_NOTIFIER:
2146		ret = blocking_notifier_chain_unregister(
2147				&cpufreq_policy_notifier_list, nb);
2148		break;
2149	default:
2150		ret = -EINVAL;
2151	}
2152
2153	return ret;
2154}
2155EXPORT_SYMBOL(cpufreq_unregister_notifier);
2156
2157
2158/*********************************************************************
2159 *                              GOVERNORS                            *
2160 *********************************************************************/
2161
2162/**
2163 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2164 * @policy: cpufreq policy to switch the frequency for.
2165 * @target_freq: New frequency to set (may be approximate).
2166 *
2167 * Carry out a fast frequency switch without sleeping.
2168 *
2169 * The driver's ->fast_switch() callback invoked by this function must be
2170 * suitable for being called from within RCU-sched read-side critical sections
2171 * and it is expected to select the minimum available frequency greater than or
2172 * equal to @target_freq (CPUFREQ_RELATION_L).
2173 *
2174 * This function must not be called if policy->fast_switch_enabled is unset.
2175 *
2176 * Governors calling this function must guarantee that it will never be invoked
2177 * twice in parallel for the same policy and that it will never be called in
2178 * parallel with either ->target() or ->target_index() for the same policy.
2179 *
2180 * Returns the actual frequency set for the CPU.
2181 *
2182 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2183 * error condition, the hardware configuration must be preserved.
2184 */
2185unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2186					unsigned int target_freq)
2187{
2188	unsigned int freq;
2189	int cpu;
2190
2191	target_freq = clamp_val(target_freq, policy->min, policy->max);
2192	freq = cpufreq_driver->fast_switch(policy, target_freq);
2193
2194	if (!freq)
2195		return 0;
2196
2197	policy->cur = freq;
2198	arch_set_freq_scale(policy->related_cpus, freq,
2199			    arch_scale_freq_ref(policy->cpu));
2200	cpufreq_stats_record_transition(policy, freq);
2201
2202	if (trace_cpu_frequency_enabled()) {
2203		for_each_cpu(cpu, policy->cpus)
2204			trace_cpu_frequency(freq, cpu);
2205	}
2206
2207	return freq;
2208}
2209EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2210
2211/**
2212 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2213 * @cpu: Target CPU.
2214 * @min_perf: Minimum (required) performance level (units of @capacity).
2215 * @target_perf: Target (desired) performance level (units of @capacity).
2216 * @capacity: Capacity of the target CPU.
2217 *
2218 * Carry out a fast performance level switch of @cpu without sleeping.
2219 *
2220 * The driver's ->adjust_perf() callback invoked by this function must be
2221 * suitable for being called from within RCU-sched read-side critical sections
2222 * and it is expected to select a suitable performance level equal to or above
2223 * @min_perf and preferably equal to or below @target_perf.
2224 *
2225 * This function must not be called if policy->fast_switch_enabled is unset.
2226 *
2227 * Governors calling this function must guarantee that it will never be invoked
2228 * twice in parallel for the same CPU and that it will never be called in
2229 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2230 * the same CPU.
2231 */
2232void cpufreq_driver_adjust_perf(unsigned int cpu,
2233				 unsigned long min_perf,
2234				 unsigned long target_perf,
2235				 unsigned long capacity)
2236{
2237	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2238}
2239
2240/**
2241 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2242 *
2243 * Return 'true' if the ->adjust_perf callback is present for the
2244 * current driver or 'false' otherwise.
2245 */
2246bool cpufreq_driver_has_adjust_perf(void)
2247{
2248	return !!cpufreq_driver->adjust_perf;
2249}
2250
2251/* Must set freqs->new to intermediate frequency */
2252static int __target_intermediate(struct cpufreq_policy *policy,
2253				 struct cpufreq_freqs *freqs, int index)
2254{
2255	int ret;
2256
2257	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2258
2259	/* We don't need to switch to intermediate freq */
2260	if (!freqs->new)
2261		return 0;
2262
2263	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2264		 __func__, policy->cpu, freqs->old, freqs->new);
2265
2266	cpufreq_freq_transition_begin(policy, freqs);
2267	ret = cpufreq_driver->target_intermediate(policy, index);
2268	cpufreq_freq_transition_end(policy, freqs, ret);
2269
2270	if (ret)
2271		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2272		       __func__, ret);
2273
2274	return ret;
2275}
2276
2277static int __target_index(struct cpufreq_policy *policy, int index)
2278{
2279	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2280	unsigned int restore_freq, intermediate_freq = 0;
2281	unsigned int newfreq = policy->freq_table[index].frequency;
2282	int retval = -EINVAL;
2283	bool notify;
2284
2285	if (newfreq == policy->cur)
2286		return 0;
2287
2288	/* Save last value to restore later on errors */
2289	restore_freq = policy->cur;
2290
2291	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2292	if (notify) {
2293		/* Handle switching to intermediate frequency */
2294		if (cpufreq_driver->get_intermediate) {
2295			retval = __target_intermediate(policy, &freqs, index);
2296			if (retval)
2297				return retval;
2298
2299			intermediate_freq = freqs.new;
2300			/* Set old freq to intermediate */
2301			if (intermediate_freq)
2302				freqs.old = freqs.new;
2303		}
2304
2305		freqs.new = newfreq;
2306		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2307			 __func__, policy->cpu, freqs.old, freqs.new);
2308
2309		cpufreq_freq_transition_begin(policy, &freqs);
2310	}
2311
2312	retval = cpufreq_driver->target_index(policy, index);
2313	if (retval)
2314		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2315		       retval);
2316
2317	if (notify) {
2318		cpufreq_freq_transition_end(policy, &freqs, retval);
2319
2320		/*
2321		 * Failed after setting to intermediate freq? Driver should have
2322		 * reverted back to initial frequency and so should we. Check
2323		 * here for intermediate_freq instead of get_intermediate, in
2324		 * case we haven't switched to intermediate freq at all.
2325		 */
2326		if (unlikely(retval && intermediate_freq)) {
2327			freqs.old = intermediate_freq;
2328			freqs.new = restore_freq;
2329			cpufreq_freq_transition_begin(policy, &freqs);
2330			cpufreq_freq_transition_end(policy, &freqs, 0);
2331		}
2332	}
2333
2334	return retval;
2335}
2336
2337int __cpufreq_driver_target(struct cpufreq_policy *policy,
2338			    unsigned int target_freq,
2339			    unsigned int relation)
2340{
 
2341	unsigned int old_target_freq = target_freq;
2342
2343	if (cpufreq_disabled())
2344		return -ENODEV;
2345
2346	target_freq = __resolve_freq(policy, target_freq, relation);
 
 
 
 
2347
2348	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2349		 policy->cpu, target_freq, relation, old_target_freq);
2350
2351	/*
2352	 * This might look like a redundant call as we are checking it again
2353	 * after finding index. But it is left intentionally for cases where
2354	 * exactly same freq is called again and so we can save on few function
2355	 * calls.
2356	 */
2357	if (target_freq == policy->cur &&
2358	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2359		return 0;
2360
2361	if (cpufreq_driver->target) {
2362		/*
2363		 * If the driver hasn't setup a single inefficient frequency,
2364		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2365		 */
2366		if (!policy->efficiencies_available)
2367			relation &= ~CPUFREQ_RELATION_E;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2368
2369		return cpufreq_driver->target(policy, target_freq, relation);
 
2370	}
2371
2372	if (!cpufreq_driver->target_index)
2373		return -EINVAL;
2374
2375	return __target_index(policy, policy->cached_resolved_idx);
2376}
2377EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2378
2379int cpufreq_driver_target(struct cpufreq_policy *policy,
2380			  unsigned int target_freq,
2381			  unsigned int relation)
2382{
2383	int ret;
2384
2385	down_write(&policy->rwsem);
2386
2387	ret = __cpufreq_driver_target(policy, target_freq, relation);
2388
2389	up_write(&policy->rwsem);
2390
2391	return ret;
2392}
2393EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2394
2395__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2396{
2397	return NULL;
2398}
2399
2400static int cpufreq_init_governor(struct cpufreq_policy *policy)
 
2401{
2402	int ret;
2403
 
 
 
 
 
 
 
 
 
 
2404	/* Don't start any governor operations if we are entering suspend */
2405	if (cpufreq_suspended)
2406		return 0;
2407	/*
2408	 * Governor might not be initiated here if ACPI _PPC changed
2409	 * notification happened, so check it.
2410	 */
2411	if (!policy->governor)
2412		return -EINVAL;
2413
2414	/* Platform doesn't want dynamic frequency switching ? */
2415	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2416	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2417		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2418
2419		if (gov) {
2420			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2421				policy->governor->name, gov->name);
2422			policy->governor = gov;
2423		} else {
2424			return -EINVAL;
2425		}
2426	}
2427
2428	if (!try_module_get(policy->governor->owner))
2429		return -EINVAL;
 
2430
2431	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2432
2433	if (policy->governor->init) {
2434		ret = policy->governor->init(policy);
2435		if (ret) {
2436			module_put(policy->governor->owner);
2437			return ret;
2438		}
2439	}
2440
2441	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2442
2443	return 0;
2444}
2445
2446static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2447{
2448	if (cpufreq_suspended || !policy->governor)
2449		return;
2450
2451	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2452
2453	if (policy->governor->exit)
2454		policy->governor->exit(policy);
2455
2456	module_put(policy->governor->owner);
2457}
2458
2459int cpufreq_start_governor(struct cpufreq_policy *policy)
2460{
2461	int ret;
2462
2463	if (cpufreq_suspended)
2464		return 0;
2465
2466	if (!policy->governor)
2467		return -EINVAL;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (cpufreq_driver->get)
2472		cpufreq_verify_current_freq(policy, false);
2473
2474	if (policy->governor->start) {
2475		ret = policy->governor->start(policy);
2476		if (ret)
2477			return ret;
2478	}
2479
2480	if (policy->governor->limits)
2481		policy->governor->limits(policy);
 
2482
2483	return 0;
2484}
2485
2486void cpufreq_stop_governor(struct cpufreq_policy *policy)
2487{
2488	if (cpufreq_suspended || !policy->governor)
2489		return;
2490
2491	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2492
2493	if (policy->governor->stop)
2494		policy->governor->stop(policy);
2495}
2496
2497static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2498{
2499	if (cpufreq_suspended || !policy->governor)
2500		return;
2501
2502	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2503
2504	if (policy->governor->limits)
2505		policy->governor->limits(policy);
2506}
2507
2508int cpufreq_register_governor(struct cpufreq_governor *governor)
2509{
2510	int err;
2511
2512	if (!governor)
2513		return -EINVAL;
2514
2515	if (cpufreq_disabled())
2516		return -ENODEV;
2517
2518	mutex_lock(&cpufreq_governor_mutex);
2519
 
2520	err = -EBUSY;
2521	if (!find_governor(governor->name)) {
2522		err = 0;
2523		list_add(&governor->governor_list, &cpufreq_governor_list);
2524	}
2525
2526	mutex_unlock(&cpufreq_governor_mutex);
2527	return err;
2528}
2529EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2530
2531void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2532{
2533	struct cpufreq_policy *policy;
2534	unsigned long flags;
2535
2536	if (!governor)
2537		return;
2538
2539	if (cpufreq_disabled())
2540		return;
2541
2542	/* clear last_governor for all inactive policies */
2543	read_lock_irqsave(&cpufreq_driver_lock, flags);
2544	for_each_inactive_policy(policy) {
2545		if (!strcmp(policy->last_governor, governor->name)) {
2546			policy->governor = NULL;
2547			strcpy(policy->last_governor, "\0");
2548		}
2549	}
2550	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2551
2552	mutex_lock(&cpufreq_governor_mutex);
2553	list_del(&governor->governor_list);
2554	mutex_unlock(&cpufreq_governor_mutex);
 
2555}
2556EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2557
2558
2559/*********************************************************************
2560 *                          POLICY INTERFACE                         *
2561 *********************************************************************/
2562
2563/**
2564 * cpufreq_get_policy - get the current cpufreq_policy
2565 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2566 *	is written
2567 * @cpu: CPU to find the policy for
2568 *
2569 * Reads the current cpufreq policy.
2570 */
2571int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2572{
2573	struct cpufreq_policy *cpu_policy;
2574	if (!policy)
2575		return -EINVAL;
2576
2577	cpu_policy = cpufreq_cpu_get(cpu);
2578	if (!cpu_policy)
2579		return -EINVAL;
2580
2581	memcpy(policy, cpu_policy, sizeof(*policy));
2582
2583	cpufreq_cpu_put(cpu_policy);
2584	return 0;
2585}
2586EXPORT_SYMBOL(cpufreq_get_policy);
2587
2588/**
2589 * cpufreq_set_policy - Modify cpufreq policy parameters.
2590 * @policy: Policy object to modify.
2591 * @new_gov: Policy governor pointer.
2592 * @new_pol: Policy value (for drivers with built-in governors).
2593 *
2594 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2595 * limits to be set for the policy, update @policy with the verified limits
2596 * values and either invoke the driver's ->setpolicy() callback (if present) or
2597 * carry out a governor update for @policy.  That is, run the current governor's
2598 * ->limits() callback (if @new_gov points to the same object as the one in
2599 * @policy) or replace the governor for @policy with @new_gov.
2600 *
2601 * The cpuinfo part of @policy is not updated by this function.
2602 */
2603static int cpufreq_set_policy(struct cpufreq_policy *policy,
2604			      struct cpufreq_governor *new_gov,
2605			      unsigned int new_pol)
2606{
2607	struct cpufreq_policy_data new_data;
2608	struct cpufreq_governor *old_gov;
2609	int ret;
2610
2611	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2612	new_data.freq_table = policy->freq_table;
2613	new_data.cpu = policy->cpu;
2614	/*
2615	 * PM QoS framework collects all the requests from users and provide us
2616	 * the final aggregated value here.
2617	 */
2618	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2619	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
 
 
 
2620
2621	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2622		 new_data.cpu, new_data.min, new_data.max);
 
 
 
 
 
2623
2624	/*
2625	 * Verify that the CPU speed can be set within these limits and make sure
2626	 * that min <= max.
2627	 */
2628	ret = cpufreq_driver->verify(&new_data);
2629	if (ret)
2630		return ret;
2631
2632	/*
2633	 * Resolve policy min/max to available frequencies. It ensures
2634	 * no frequency resolution will neither overshoot the requested maximum
2635	 * nor undershoot the requested minimum.
2636	 */
2637	policy->min = new_data.min;
2638	policy->max = new_data.max;
2639	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2640	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2641	trace_cpu_frequency_limits(policy);
2642
2643	policy->cached_target_freq = UINT_MAX;
 
2644
2645	pr_debug("new min and max freqs are %u - %u kHz\n",
2646		 policy->min, policy->max);
2647
2648	if (cpufreq_driver->setpolicy) {
2649		policy->policy = new_pol;
2650		pr_debug("setting range\n");
2651		return cpufreq_driver->setpolicy(policy);
2652	}
2653
2654	if (new_gov == policy->governor) {
2655		pr_debug("governor limits update\n");
2656		cpufreq_governor_limits(policy);
2657		return 0;
2658	}
2659
2660	pr_debug("governor switch\n");
2661
2662	/* save old, working values */
2663	old_gov = policy->governor;
2664	/* end old governor */
2665	if (old_gov) {
2666		cpufreq_stop_governor(policy);
2667		cpufreq_exit_governor(policy);
 
 
2668	}
2669
2670	/* start new governor */
2671	policy->governor = new_gov;
2672	ret = cpufreq_init_governor(policy);
2673	if (!ret) {
2674		ret = cpufreq_start_governor(policy);
2675		if (!ret) {
2676			pr_debug("governor change\n");
2677			return 0;
2678		}
2679		cpufreq_exit_governor(policy);
2680	}
2681
2682	/* new governor failed, so re-start old one */
2683	pr_debug("starting governor %s failed\n", policy->governor->name);
2684	if (old_gov) {
2685		policy->governor = old_gov;
2686		if (cpufreq_init_governor(policy))
2687			policy->governor = NULL;
2688		else
2689			cpufreq_start_governor(policy);
2690	}
2691
2692	return ret;
 
 
 
 
2693}
2694
2695/**
2696 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2697 * @cpu: CPU to re-evaluate the policy for.
2698 *
2699 * Update the current frequency for the cpufreq policy of @cpu and use
2700 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2701 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2702 * for the policy in question, among other things.
2703 */
2704void cpufreq_update_policy(unsigned int cpu)
2705{
2706	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
2707
2708	if (!policy)
2709		return;
 
 
 
 
 
 
 
 
 
 
 
2710
2711	/*
2712	 * BIOS might change freq behind our back
2713	 * -> ask driver for current freq and notify governors about a change
2714	 */
2715	if (cpufreq_driver->get && has_target() &&
2716	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2717		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718
2719	refresh_frequency_limits(policy);
2720
2721unlock:
2722	cpufreq_cpu_release(policy);
 
2723}
2724EXPORT_SYMBOL(cpufreq_update_policy);
2725
2726/**
2727 * cpufreq_update_limits - Update policy limits for a given CPU.
2728 * @cpu: CPU to update the policy limits for.
2729 *
2730 * Invoke the driver's ->update_limits callback if present or call
2731 * cpufreq_update_policy() for @cpu.
2732 */
2733void cpufreq_update_limits(unsigned int cpu)
2734{
2735	if (cpufreq_driver->update_limits)
2736		cpufreq_driver->update_limits(cpu);
2737	else
2738		cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739}
2740EXPORT_SYMBOL_GPL(cpufreq_update_limits);
 
 
 
2741
2742/*********************************************************************
2743 *               BOOST						     *
2744 *********************************************************************/
2745static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2746{
2747	int ret;
 
 
2748
2749	if (!policy->freq_table)
2750		return -ENXIO;
2751
2752	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2753	if (ret) {
2754		pr_err("%s: Policy frequency update failed\n", __func__);
2755		return ret;
 
 
 
 
 
 
2756	}
2757
2758	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2759	if (ret < 0)
2760		return ret;
2761
2762	return 0;
2763}
2764
2765int cpufreq_boost_trigger_state(int state)
2766{
2767	struct cpufreq_policy *policy;
2768	unsigned long flags;
2769	int ret = 0;
2770
2771	if (cpufreq_driver->boost_enabled == state)
2772		return 0;
2773
2774	write_lock_irqsave(&cpufreq_driver_lock, flags);
2775	cpufreq_driver->boost_enabled = state;
2776	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2777
2778	cpus_read_lock();
2779	for_each_active_policy(policy) {
2780		policy->boost_enabled = state;
2781		ret = cpufreq_driver->set_boost(policy, state);
2782		if (ret) {
2783			policy->boost_enabled = !policy->boost_enabled;
2784			goto err_reset_state;
2785		}
2786	}
2787	cpus_read_unlock();
2788
2789	return 0;
2790
2791err_reset_state:
2792	cpus_read_unlock();
2793
2794	write_lock_irqsave(&cpufreq_driver_lock, flags);
2795	cpufreq_driver->boost_enabled = !state;
2796	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2797
2798	pr_err("%s: Cannot %s BOOST\n",
2799	       __func__, state ? "enable" : "disable");
2800
2801	return ret;
2802}
2803
2804static bool cpufreq_boost_supported(void)
2805{
2806	return cpufreq_driver->set_boost;
2807}
2808
2809static int create_boost_sysfs_file(void)
2810{
2811	int ret;
 
2812
2813	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2814	if (ret)
2815		pr_err("%s: cannot register global BOOST sysfs file\n",
2816		       __func__);
2817
2818	return ret;
2819}
2820
2821static void remove_boost_sysfs_file(void)
2822{
2823	if (cpufreq_boost_supported())
2824		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2825}
2826
2827int cpufreq_enable_boost_support(void)
2828{
2829	if (!cpufreq_driver)
2830		return -EINVAL;
2831
2832	if (cpufreq_boost_supported())
2833		return 0;
2834
2835	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2836
2837	/* This will get removed on driver unregister */
2838	return create_boost_sysfs_file();
2839}
2840EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2841
2842int cpufreq_boost_enabled(void)
2843{
2844	return cpufreq_driver->boost_enabled;
2845}
2846EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2847
2848/*********************************************************************
2849 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2850 *********************************************************************/
2851static enum cpuhp_state hp_online;
2852
2853static int cpuhp_cpufreq_online(unsigned int cpu)
2854{
2855	cpufreq_online(cpu);
2856
2857	return 0;
2858}
2859
2860static int cpuhp_cpufreq_offline(unsigned int cpu)
2861{
2862	cpufreq_offline(cpu);
2863
2864	return 0;
2865}
2866
2867/**
2868 * cpufreq_register_driver - register a CPU Frequency driver
2869 * @driver_data: A struct cpufreq_driver containing the values#
2870 * submitted by the CPU Frequency driver.
2871 *
2872 * Registers a CPU Frequency driver to this core code. This code
2873 * returns zero on success, -EEXIST when another driver got here first
2874 * (and isn't unregistered in the meantime).
2875 *
2876 */
2877int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2878{
2879	unsigned long flags;
2880	int ret;
2881
2882	if (cpufreq_disabled())
2883		return -ENODEV;
2884
2885	/*
2886	 * The cpufreq core depends heavily on the availability of device
2887	 * structure, make sure they are available before proceeding further.
2888	 */
2889	if (!get_cpu_device(0))
2890		return -EPROBE_DEFER;
2891
2892	if (!driver_data || !driver_data->verify || !driver_data->init ||
2893	    !(driver_data->setpolicy || driver_data->target_index ||
2894		    driver_data->target) ||
2895	     (driver_data->setpolicy && (driver_data->target_index ||
2896		    driver_data->target)) ||
2897	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2898	     (!driver_data->online != !driver_data->offline) ||
2899		 (driver_data->adjust_perf && !driver_data->fast_switch))
2900		return -EINVAL;
2901
2902	pr_debug("trying to register driver %s\n", driver_data->name);
2903
2904	/* Protect against concurrent CPU online/offline. */
2905	cpus_read_lock();
2906
2907	write_lock_irqsave(&cpufreq_driver_lock, flags);
2908	if (cpufreq_driver) {
2909		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2910		ret = -EEXIST;
2911		goto out;
2912	}
2913	cpufreq_driver = driver_data;
2914	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2915
2916	/*
2917	 * Mark support for the scheduler's frequency invariance engine for
2918	 * drivers that implement target(), target_index() or fast_switch().
2919	 */
2920	if (!cpufreq_driver->setpolicy) {
2921		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2922		pr_debug("supports frequency invariance");
2923	}
2924
2925	if (driver_data->setpolicy)
2926		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2927
2928	if (cpufreq_boost_supported()) {
2929		ret = create_boost_sysfs_file();
2930		if (ret)
2931			goto err_null_driver;
 
2932	}
2933
2934	ret = subsys_interface_register(&cpufreq_interface);
2935	if (ret)
2936		goto err_boost_unreg;
2937
2938	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
 
 
 
 
 
 
 
 
 
2939		/* if all ->init() calls failed, unregister */
2940		ret = -ENODEV;
2941		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2942			 driver_data->name);
2943		goto err_if_unreg;
 
2944	}
2945
2946	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2947						   "cpufreq:online",
2948						   cpuhp_cpufreq_online,
2949						   cpuhp_cpufreq_offline);
2950	if (ret < 0)
2951		goto err_if_unreg;
2952	hp_online = ret;
2953	ret = 0;
2954
2955	pr_debug("driver %s up and running\n", driver_data->name);
2956	goto out;
2957
 
2958err_if_unreg:
2959	subsys_interface_unregister(&cpufreq_interface);
2960err_boost_unreg:
2961	remove_boost_sysfs_file();
 
2962err_null_driver:
2963	write_lock_irqsave(&cpufreq_driver_lock, flags);
2964	cpufreq_driver = NULL;
2965	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2966out:
2967	cpus_read_unlock();
2968	return ret;
2969}
2970EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2971
2972/*
2973 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2974 *
2975 * Unregister the current CPUFreq driver. Only call this if you have
2976 * the right to do so, i.e. if you have succeeded in initialising before!
2977 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2978 * currently not initialised.
2979 */
2980void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2981{
2982	unsigned long flags;
2983
2984	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2985		return;
2986
2987	pr_debug("unregistering driver %s\n", driver->name);
2988
2989	/* Protect against concurrent cpu hotplug */
2990	cpus_read_lock();
2991	subsys_interface_unregister(&cpufreq_interface);
2992	remove_boost_sysfs_file();
2993	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2994	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2995
 
 
 
2996	write_lock_irqsave(&cpufreq_driver_lock, flags);
2997
2998	cpufreq_driver = NULL;
2999
3000	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3001	cpus_read_unlock();
 
 
3002}
3003EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3004
3005static int __init cpufreq_core_init(void)
3006{
3007	struct cpufreq_governor *gov = cpufreq_default_governor();
3008	struct device *dev_root;
3009
3010	if (cpufreq_disabled())
3011		return -ENODEV;
3012
3013	dev_root = bus_get_dev_root(&cpu_subsys);
3014	if (dev_root) {
3015		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3016		put_device(dev_root);
3017	}
3018	BUG_ON(!cpufreq_global_kobject);
3019
3020	if (!strlen(default_governor))
3021		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3022
3023	return 0;
3024}
3025module_param(off, int, 0444);
3026module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3027core_initcall(cpufreq_core_init);