Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/init.h>
25#include <linux/kernel_stat.h>
26#include <linux/module.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33/**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38static struct cpufreq_driver *cpufreq_driver;
39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41static DEFINE_RWLOCK(cpufreq_driver_lock);
42DEFINE_MUTEX(cpufreq_governor_lock);
43static LIST_HEAD(cpufreq_policy_list);
44
45/* This one keeps track of the previously set governor of a removed CPU */
46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48/* Flag to suspend/resume CPUFreq governors */
49static bool cpufreq_suspended;
50
51static inline bool has_target(void)
52{
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54}
55
56/*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60static DECLARE_RWSEM(cpufreq_rwsem);
61
62/* internal prototypes */
63static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65static unsigned int __cpufreq_get(unsigned int cpu);
66static void handle_update(struct work_struct *work);
67
68/**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78static bool init_cpufreq_transition_notifier_list_called;
79static int __init init_cpufreq_transition_notifier_list(void)
80{
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84}
85pure_initcall(init_cpufreq_transition_notifier_list);
86
87static int off __read_mostly;
88static int cpufreq_disabled(void)
89{
90 return off;
91}
92void disable_cpufreq(void)
93{
94 off = 1;
95}
96static LIST_HEAD(cpufreq_governor_list);
97static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99bool have_governor_per_policy(void)
100{
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102}
103EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106{
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111}
112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115{
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134}
135
136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137{
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146}
147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149/*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159{
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177}
178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180unsigned int cpufreq_generic_get(unsigned int cpu)
181{
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191}
192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194/* Only for cpufreq core internal use */
195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196{
197 return per_cpu(cpufreq_cpu_data, cpu);
198}
199
200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201{
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227}
228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230void cpufreq_cpu_put(struct cpufreq_policy *policy)
231{
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237}
238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240/*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244/**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252#ifndef CONFIG_SMP
253static unsigned long l_p_j_ref;
254static unsigned int l_p_j_ref_freq;
255
256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257{
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273}
274#else
275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276{
277 return;
278}
279#endif
280
281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283{
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324}
325
326/**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336{
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339}
340
341/* Do post notifications when there are chances that transition has failed */
342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344{
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352}
353
354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356{
357wait:
358 wait_event(policy->transition_wait, !policy->transition_ongoing);
359
360 spin_lock(&policy->transition_lock);
361
362 if (unlikely(policy->transition_ongoing)) {
363 spin_unlock(&policy->transition_lock);
364 goto wait;
365 }
366
367 policy->transition_ongoing = true;
368
369 spin_unlock(&policy->transition_lock);
370
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372}
373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374
375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 struct cpufreq_freqs *freqs, int transition_failed)
377{
378 if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 return;
380
381 cpufreq_notify_post_transition(policy, freqs, transition_failed);
382
383 policy->transition_ongoing = false;
384
385 wake_up(&policy->transition_wait);
386}
387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388
389
390/*********************************************************************
391 * SYSFS INTERFACE *
392 *********************************************************************/
393static ssize_t show_boost(struct kobject *kobj,
394 struct attribute *attr, char *buf)
395{
396 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397}
398
399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 const char *buf, size_t count)
401{
402 int ret, enable;
403
404 ret = sscanf(buf, "%d", &enable);
405 if (ret != 1 || enable < 0 || enable > 1)
406 return -EINVAL;
407
408 if (cpufreq_boost_trigger_state(enable)) {
409 pr_err("%s: Cannot %s BOOST!\n",
410 __func__, enable ? "enable" : "disable");
411 return -EINVAL;
412 }
413
414 pr_debug("%s: cpufreq BOOST %s\n",
415 __func__, enable ? "enabled" : "disabled");
416
417 return count;
418}
419define_one_global_rw(boost);
420
421static struct cpufreq_governor *__find_governor(const char *str_governor)
422{
423 struct cpufreq_governor *t;
424
425 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 return t;
428
429 return NULL;
430}
431
432/**
433 * cpufreq_parse_governor - parse a governor string
434 */
435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 struct cpufreq_governor **governor)
437{
438 int err = -EINVAL;
439
440 if (!cpufreq_driver)
441 goto out;
442
443 if (cpufreq_driver->setpolicy) {
444 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 *policy = CPUFREQ_POLICY_PERFORMANCE;
446 err = 0;
447 } else if (!strnicmp(str_governor, "powersave",
448 CPUFREQ_NAME_LEN)) {
449 *policy = CPUFREQ_POLICY_POWERSAVE;
450 err = 0;
451 }
452 } else if (has_target()) {
453 struct cpufreq_governor *t;
454
455 mutex_lock(&cpufreq_governor_mutex);
456
457 t = __find_governor(str_governor);
458
459 if (t == NULL) {
460 int ret;
461
462 mutex_unlock(&cpufreq_governor_mutex);
463 ret = request_module("cpufreq_%s", str_governor);
464 mutex_lock(&cpufreq_governor_mutex);
465
466 if (ret == 0)
467 t = __find_governor(str_governor);
468 }
469
470 if (t != NULL) {
471 *governor = t;
472 err = 0;
473 }
474
475 mutex_unlock(&cpufreq_governor_mutex);
476 }
477out:
478 return err;
479}
480
481/**
482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
483 * print out cpufreq information
484 *
485 * Write out information from cpufreq_driver->policy[cpu]; object must be
486 * "unsigned int".
487 */
488
489#define show_one(file_name, object) \
490static ssize_t show_##file_name \
491(struct cpufreq_policy *policy, char *buf) \
492{ \
493 return sprintf(buf, "%u\n", policy->object); \
494}
495
496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499show_one(scaling_min_freq, min);
500show_one(scaling_max_freq, max);
501show_one(scaling_cur_freq, cur);
502
503static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 struct cpufreq_policy *new_policy);
505
506/**
507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508 */
509#define store_one(file_name, object) \
510static ssize_t store_##file_name \
511(struct cpufreq_policy *policy, const char *buf, size_t count) \
512{ \
513 int ret; \
514 struct cpufreq_policy new_policy; \
515 \
516 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
517 if (ret) \
518 return -EINVAL; \
519 \
520 ret = sscanf(buf, "%u", &new_policy.object); \
521 if (ret != 1) \
522 return -EINVAL; \
523 \
524 ret = cpufreq_set_policy(policy, &new_policy); \
525 policy->user_policy.object = policy->object; \
526 \
527 return ret ? ret : count; \
528}
529
530store_one(scaling_min_freq, min);
531store_one(scaling_max_freq, max);
532
533/**
534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535 */
536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 char *buf)
538{
539 unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 if (!cur_freq)
541 return sprintf(buf, "<unknown>");
542 return sprintf(buf, "%u\n", cur_freq);
543}
544
545/**
546 * show_scaling_governor - show the current policy for the specified CPU
547 */
548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549{
550 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 return sprintf(buf, "powersave\n");
552 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 return sprintf(buf, "performance\n");
554 else if (policy->governor)
555 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 policy->governor->name);
557 return -EINVAL;
558}
559
560/**
561 * store_scaling_governor - store policy for the specified CPU
562 */
563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 const char *buf, size_t count)
565{
566 int ret;
567 char str_governor[16];
568 struct cpufreq_policy new_policy;
569
570 ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 if (ret)
572 return ret;
573
574 ret = sscanf(buf, "%15s", str_governor);
575 if (ret != 1)
576 return -EINVAL;
577
578 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 &new_policy.governor))
580 return -EINVAL;
581
582 ret = cpufreq_set_policy(policy, &new_policy);
583
584 policy->user_policy.policy = policy->policy;
585 policy->user_policy.governor = policy->governor;
586
587 if (ret)
588 return ret;
589 else
590 return count;
591}
592
593/**
594 * show_scaling_driver - show the cpufreq driver currently loaded
595 */
596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597{
598 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599}
600
601/**
602 * show_scaling_available_governors - show the available CPUfreq governors
603 */
604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 char *buf)
606{
607 ssize_t i = 0;
608 struct cpufreq_governor *t;
609
610 if (!has_target()) {
611 i += sprintf(buf, "performance powersave");
612 goto out;
613 }
614
615 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 - (CPUFREQ_NAME_LEN + 2)))
618 goto out;
619 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 }
621out:
622 i += sprintf(&buf[i], "\n");
623 return i;
624}
625
626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627{
628 ssize_t i = 0;
629 unsigned int cpu;
630
631 for_each_cpu(cpu, mask) {
632 if (i)
633 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 if (i >= (PAGE_SIZE - 5))
636 break;
637 }
638 i += sprintf(&buf[i], "\n");
639 return i;
640}
641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642
643/**
644 * show_related_cpus - show the CPUs affected by each transition even if
645 * hw coordination is in use
646 */
647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648{
649 return cpufreq_show_cpus(policy->related_cpus, buf);
650}
651
652/**
653 * show_affected_cpus - show the CPUs affected by each transition
654 */
655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656{
657 return cpufreq_show_cpus(policy->cpus, buf);
658}
659
660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 const char *buf, size_t count)
662{
663 unsigned int freq = 0;
664 unsigned int ret;
665
666 if (!policy->governor || !policy->governor->store_setspeed)
667 return -EINVAL;
668
669 ret = sscanf(buf, "%u", &freq);
670 if (ret != 1)
671 return -EINVAL;
672
673 policy->governor->store_setspeed(policy, freq);
674
675 return count;
676}
677
678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679{
680 if (!policy->governor || !policy->governor->show_setspeed)
681 return sprintf(buf, "<unsupported>\n");
682
683 return policy->governor->show_setspeed(policy, buf);
684}
685
686/**
687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
688 */
689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690{
691 unsigned int limit;
692 int ret;
693 if (cpufreq_driver->bios_limit) {
694 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 if (!ret)
696 return sprintf(buf, "%u\n", limit);
697 }
698 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699}
700
701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702cpufreq_freq_attr_ro(cpuinfo_min_freq);
703cpufreq_freq_attr_ro(cpuinfo_max_freq);
704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705cpufreq_freq_attr_ro(scaling_available_governors);
706cpufreq_freq_attr_ro(scaling_driver);
707cpufreq_freq_attr_ro(scaling_cur_freq);
708cpufreq_freq_attr_ro(bios_limit);
709cpufreq_freq_attr_ro(related_cpus);
710cpufreq_freq_attr_ro(affected_cpus);
711cpufreq_freq_attr_rw(scaling_min_freq);
712cpufreq_freq_attr_rw(scaling_max_freq);
713cpufreq_freq_attr_rw(scaling_governor);
714cpufreq_freq_attr_rw(scaling_setspeed);
715
716static struct attribute *default_attrs[] = {
717 &cpuinfo_min_freq.attr,
718 &cpuinfo_max_freq.attr,
719 &cpuinfo_transition_latency.attr,
720 &scaling_min_freq.attr,
721 &scaling_max_freq.attr,
722 &affected_cpus.attr,
723 &related_cpus.attr,
724 &scaling_governor.attr,
725 &scaling_driver.attr,
726 &scaling_available_governors.attr,
727 &scaling_setspeed.attr,
728 NULL
729};
730
731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732#define to_attr(a) container_of(a, struct freq_attr, attr)
733
734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735{
736 struct cpufreq_policy *policy = to_policy(kobj);
737 struct freq_attr *fattr = to_attr(attr);
738 ssize_t ret;
739
740 if (!down_read_trylock(&cpufreq_rwsem))
741 return -EINVAL;
742
743 down_read(&policy->rwsem);
744
745 if (fattr->show)
746 ret = fattr->show(policy, buf);
747 else
748 ret = -EIO;
749
750 up_read(&policy->rwsem);
751 up_read(&cpufreq_rwsem);
752
753 return ret;
754}
755
756static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 const char *buf, size_t count)
758{
759 struct cpufreq_policy *policy = to_policy(kobj);
760 struct freq_attr *fattr = to_attr(attr);
761 ssize_t ret = -EINVAL;
762
763 get_online_cpus();
764
765 if (!cpu_online(policy->cpu))
766 goto unlock;
767
768 if (!down_read_trylock(&cpufreq_rwsem))
769 goto unlock;
770
771 down_write(&policy->rwsem);
772
773 if (fattr->store)
774 ret = fattr->store(policy, buf, count);
775 else
776 ret = -EIO;
777
778 up_write(&policy->rwsem);
779
780 up_read(&cpufreq_rwsem);
781unlock:
782 put_online_cpus();
783
784 return ret;
785}
786
787static void cpufreq_sysfs_release(struct kobject *kobj)
788{
789 struct cpufreq_policy *policy = to_policy(kobj);
790 pr_debug("last reference is dropped\n");
791 complete(&policy->kobj_unregister);
792}
793
794static const struct sysfs_ops sysfs_ops = {
795 .show = show,
796 .store = store,
797};
798
799static struct kobj_type ktype_cpufreq = {
800 .sysfs_ops = &sysfs_ops,
801 .default_attrs = default_attrs,
802 .release = cpufreq_sysfs_release,
803};
804
805struct kobject *cpufreq_global_kobject;
806EXPORT_SYMBOL(cpufreq_global_kobject);
807
808static int cpufreq_global_kobject_usage;
809
810int cpufreq_get_global_kobject(void)
811{
812 if (!cpufreq_global_kobject_usage++)
813 return kobject_add(cpufreq_global_kobject,
814 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815
816 return 0;
817}
818EXPORT_SYMBOL(cpufreq_get_global_kobject);
819
820void cpufreq_put_global_kobject(void)
821{
822 if (!--cpufreq_global_kobject_usage)
823 kobject_del(cpufreq_global_kobject);
824}
825EXPORT_SYMBOL(cpufreq_put_global_kobject);
826
827int cpufreq_sysfs_create_file(const struct attribute *attr)
828{
829 int ret = cpufreq_get_global_kobject();
830
831 if (!ret) {
832 ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 if (ret)
834 cpufreq_put_global_kobject();
835 }
836
837 return ret;
838}
839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840
841void cpufreq_sysfs_remove_file(const struct attribute *attr)
842{
843 sysfs_remove_file(cpufreq_global_kobject, attr);
844 cpufreq_put_global_kobject();
845}
846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847
848/* symlink affected CPUs */
849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850{
851 unsigned int j;
852 int ret = 0;
853
854 for_each_cpu(j, policy->cpus) {
855 struct device *cpu_dev;
856
857 if (j == policy->cpu)
858 continue;
859
860 pr_debug("Adding link for CPU: %u\n", j);
861 cpu_dev = get_cpu_device(j);
862 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 "cpufreq");
864 if (ret)
865 break;
866 }
867 return ret;
868}
869
870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 struct device *dev)
872{
873 struct freq_attr **drv_attr;
874 int ret = 0;
875
876 /* prepare interface data */
877 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 &dev->kobj, "cpufreq");
879 if (ret)
880 return ret;
881
882 /* set up files for this cpu device */
883 drv_attr = cpufreq_driver->attr;
884 while ((drv_attr) && (*drv_attr)) {
885 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 if (ret)
887 goto err_out_kobj_put;
888 drv_attr++;
889 }
890 if (cpufreq_driver->get) {
891 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 if (ret)
893 goto err_out_kobj_put;
894 }
895 if (has_target()) {
896 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 if (ret)
898 goto err_out_kobj_put;
899 }
900 if (cpufreq_driver->bios_limit) {
901 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 if (ret)
903 goto err_out_kobj_put;
904 }
905
906 ret = cpufreq_add_dev_symlink(policy);
907 if (ret)
908 goto err_out_kobj_put;
909
910 return ret;
911
912err_out_kobj_put:
913 kobject_put(&policy->kobj);
914 wait_for_completion(&policy->kobj_unregister);
915 return ret;
916}
917
918static void cpufreq_init_policy(struct cpufreq_policy *policy)
919{
920 struct cpufreq_governor *gov = NULL;
921 struct cpufreq_policy new_policy;
922 int ret = 0;
923
924 memcpy(&new_policy, policy, sizeof(*policy));
925
926 /* Update governor of new_policy to the governor used before hotplug */
927 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 if (gov)
929 pr_debug("Restoring governor %s for cpu %d\n",
930 policy->governor->name, policy->cpu);
931 else
932 gov = CPUFREQ_DEFAULT_GOVERNOR;
933
934 new_policy.governor = gov;
935
936 /* Use the default policy if its valid. */
937 if (cpufreq_driver->setpolicy)
938 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939
940 /* set default policy */
941 ret = cpufreq_set_policy(policy, &new_policy);
942 if (ret) {
943 pr_debug("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947}
948
949#ifdef CONFIG_HOTPLUG_CPU
950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 unsigned int cpu, struct device *dev)
952{
953 int ret = 0;
954 unsigned long flags;
955
956 if (has_target()) {
957 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 if (ret) {
959 pr_err("%s: Failed to stop governor\n", __func__);
960 return ret;
961 }
962 }
963
964 down_write(&policy->rwsem);
965
966 write_lock_irqsave(&cpufreq_driver_lock, flags);
967
968 cpumask_set_cpu(cpu, policy->cpus);
969 per_cpu(cpufreq_cpu_data, cpu) = policy;
970 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971
972 up_write(&policy->rwsem);
973
974 if (has_target()) {
975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 if (!ret)
977 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978
979 if (ret) {
980 pr_err("%s: Failed to start governor\n", __func__);
981 return ret;
982 }
983 }
984
985 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986}
987#endif
988
989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990{
991 struct cpufreq_policy *policy;
992 unsigned long flags;
993
994 read_lock_irqsave(&cpufreq_driver_lock, flags);
995
996 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997
998 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999
1000 policy->governor = NULL;
1001
1002 return policy;
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007 struct cpufreq_policy *policy;
1008
1009 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 if (!policy)
1011 return NULL;
1012
1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 goto err_free_policy;
1015
1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 goto err_free_cpumask;
1018
1019 INIT_LIST_HEAD(&policy->policy_list);
1020 init_rwsem(&policy->rwsem);
1021 spin_lock_init(&policy->transition_lock);
1022 init_waitqueue_head(&policy->transition_wait);
1023
1024 return policy;
1025
1026err_free_cpumask:
1027 free_cpumask_var(policy->cpus);
1028err_free_policy:
1029 kfree(policy);
1030
1031 return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036 struct kobject *kobj;
1037 struct completion *cmp;
1038
1039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 CPUFREQ_REMOVE_POLICY, policy);
1041
1042 down_read(&policy->rwsem);
1043 kobj = &policy->kobj;
1044 cmp = &policy->kobj_unregister;
1045 up_read(&policy->rwsem);
1046 kobject_put(kobj);
1047
1048 /*
1049 * We need to make sure that the underlying kobj is
1050 * actually not referenced anymore by anybody before we
1051 * proceed with unloading.
1052 */
1053 pr_debug("waiting for dropping of refcount\n");
1054 wait_for_completion(cmp);
1055 pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060 free_cpumask_var(policy->related_cpus);
1061 free_cpumask_var(policy->cpus);
1062 kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067 if (WARN_ON(cpu == policy->cpu))
1068 return;
1069
1070 down_write(&policy->rwsem);
1071
1072 policy->last_cpu = policy->cpu;
1073 policy->cpu = cpu;
1074
1075 up_write(&policy->rwsem);
1076
1077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 CPUFREQ_UPDATE_POLICY_CPU, policy);
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083 unsigned int j, cpu = dev->id;
1084 int ret = -ENOMEM;
1085 struct cpufreq_policy *policy;
1086 unsigned long flags;
1087 bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089 struct cpufreq_policy *tpolicy;
1090#endif
1091
1092 if (cpu_is_offline(cpu))
1093 return 0;
1094
1095 pr_debug("adding CPU %u\n", cpu);
1096
1097#ifdef CONFIG_SMP
1098 /* check whether a different CPU already registered this
1099 * CPU because it is in the same boat. */
1100 policy = cpufreq_cpu_get(cpu);
1101 if (unlikely(policy)) {
1102 cpufreq_cpu_put(policy);
1103 return 0;
1104 }
1105#endif
1106
1107 if (!down_read_trylock(&cpufreq_rwsem))
1108 return 0;
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111 /* Check if this cpu was hot-unplugged earlier and has siblings */
1112 read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 up_read(&cpufreq_rwsem);
1118 return ret;
1119 }
1120 }
1121 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124 /*
1125 * Restore the saved policy when doing light-weight init and fall back
1126 * to the full init if that fails.
1127 */
1128 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 if (!policy) {
1130 recover_policy = false;
1131 policy = cpufreq_policy_alloc();
1132 if (!policy)
1133 goto nomem_out;
1134 }
1135
1136 /*
1137 * In the resume path, since we restore a saved policy, the assignment
1138 * to policy->cpu is like an update of the existing policy, rather than
1139 * the creation of a brand new one. So we need to perform this update
1140 * by invoking update_policy_cpu().
1141 */
1142 if (recover_policy && cpu != policy->cpu)
1143 update_policy_cpu(policy, cpu);
1144 else
1145 policy->cpu = cpu;
1146
1147 cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149 init_completion(&policy->kobj_unregister);
1150 INIT_WORK(&policy->update, handle_update);
1151
1152 /* call driver. From then on the cpufreq must be able
1153 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 */
1155 ret = cpufreq_driver->init(policy);
1156 if (ret) {
1157 pr_debug("initialization failed\n");
1158 goto err_set_policy_cpu;
1159 }
1160
1161 /* related cpus should atleast have policy->cpus */
1162 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164 /*
1165 * affected cpus must always be the one, which are online. We aren't
1166 * managing offline cpus here.
1167 */
1168 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170 if (!recover_policy) {
1171 policy->user_policy.min = policy->min;
1172 policy->user_policy.max = policy->max;
1173 }
1174
1175 down_write(&policy->rwsem);
1176 write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 for_each_cpu(j, policy->cpus)
1178 per_cpu(cpufreq_cpu_data, j) = policy;
1179 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 policy->cur = cpufreq_driver->get(policy->cpu);
1183 if (!policy->cur) {
1184 pr_err("%s: ->get() failed\n", __func__);
1185 goto err_get_freq;
1186 }
1187 }
1188
1189 /*
1190 * Sometimes boot loaders set CPU frequency to a value outside of
1191 * frequency table present with cpufreq core. In such cases CPU might be
1192 * unstable if it has to run on that frequency for long duration of time
1193 * and so its better to set it to a frequency which is specified in
1194 * freq-table. This also makes cpufreq stats inconsistent as
1195 * cpufreq-stats would fail to register because current frequency of CPU
1196 * isn't found in freq-table.
1197 *
1198 * Because we don't want this change to effect boot process badly, we go
1199 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 * is initialized to zero).
1202 *
1203 * We are passing target-freq as "policy->cur - 1" otherwise
1204 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 * equal to target-freq.
1206 */
1207 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 && has_target()) {
1209 /* Are we running at unknown frequency ? */
1210 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 if (ret == -EINVAL) {
1212 /* Warn user and fix it */
1213 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 __func__, policy->cpu, policy->cur);
1215 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 CPUFREQ_RELATION_L);
1217
1218 /*
1219 * Reaching here after boot in a few seconds may not
1220 * mean that system will remain stable at "unknown"
1221 * frequency for longer duration. Hence, a BUG_ON().
1222 */
1223 BUG_ON(ret);
1224 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 __func__, policy->cpu, policy->cur);
1226 }
1227 }
1228
1229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 CPUFREQ_START, policy);
1231
1232 if (!recover_policy) {
1233 ret = cpufreq_add_dev_interface(policy, dev);
1234 if (ret)
1235 goto err_out_unregister;
1236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 CPUFREQ_CREATE_POLICY, policy);
1238 }
1239
1240 write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 list_add(&policy->policy_list, &cpufreq_policy_list);
1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244 cpufreq_init_policy(policy);
1245
1246 if (!recover_policy) {
1247 policy->user_policy.policy = policy->policy;
1248 policy->user_policy.governor = policy->governor;
1249 }
1250 up_write(&policy->rwsem);
1251
1252 kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 up_read(&cpufreq_rwsem);
1254
1255 pr_debug("initialization complete\n");
1256
1257 return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261 write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 for_each_cpu(j, policy->cpus)
1263 per_cpu(cpufreq_cpu_data, j) = NULL;
1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266 if (cpufreq_driver->exit)
1267 cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269 if (recover_policy) {
1270 /* Do not leave stale fallback data behind. */
1271 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 cpufreq_policy_put_kobj(policy);
1273 }
1274 cpufreq_policy_free(policy);
1275
1276nomem_out:
1277 up_read(&cpufreq_rwsem);
1278
1279 return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293 return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 unsigned int old_cpu)
1298{
1299 struct device *cpu_dev;
1300 int ret;
1301
1302 /* first sibling now owns the new sysfs dir */
1303 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 if (ret) {
1308 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310 down_write(&policy->rwsem);
1311 cpumask_set_cpu(old_cpu, policy->cpus);
1312 up_write(&policy->rwsem);
1313
1314 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 "cpufreq");
1316
1317 return -EINVAL;
1318 }
1319
1320 return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 struct subsys_interface *sif)
1325{
1326 unsigned int cpu = dev->id, cpus;
1327 int new_cpu, ret;
1328 unsigned long flags;
1329 struct cpufreq_policy *policy;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335 policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337 /* Save the policy somewhere when doing a light-weight tear-down */
1338 if (cpufreq_suspended)
1339 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343 if (!policy) {
1344 pr_debug("%s: No cpu_data found\n", __func__);
1345 return -EINVAL;
1346 }
1347
1348 if (has_target()) {
1349 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 if (ret) {
1351 pr_err("%s: Failed to stop governor\n", __func__);
1352 return ret;
1353 }
1354 }
1355
1356 if (!cpufreq_driver->setpolicy)
1357 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360 down_read(&policy->rwsem);
1361 cpus = cpumask_weight(policy->cpus);
1362 up_read(&policy->rwsem);
1363
1364 if (cpu != policy->cpu) {
1365 sysfs_remove_link(&dev->kobj, "cpufreq");
1366 } else if (cpus > 1) {
1367 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 if (new_cpu >= 0) {
1369 update_policy_cpu(policy, new_cpu);
1370
1371 if (!cpufreq_suspended)
1372 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 __func__, new_cpu, cpu);
1374 }
1375 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 cpufreq_driver->stop_cpu(policy);
1377 }
1378
1379 return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383 struct subsys_interface *sif)
1384{
1385 unsigned int cpu = dev->id, cpus;
1386 int ret;
1387 unsigned long flags;
1388 struct cpufreq_policy *policy;
1389
1390 read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 policy = per_cpu(cpufreq_cpu_data, cpu);
1392 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
1394 if (!policy) {
1395 pr_debug("%s: No cpu_data found\n", __func__);
1396 return -EINVAL;
1397 }
1398
1399 down_write(&policy->rwsem);
1400 cpus = cpumask_weight(policy->cpus);
1401
1402 if (cpus > 1)
1403 cpumask_clear_cpu(cpu, policy->cpus);
1404 up_write(&policy->rwsem);
1405
1406 /* If cpu is last user of policy, free policy */
1407 if (cpus == 1) {
1408 if (has_target()) {
1409 ret = __cpufreq_governor(policy,
1410 CPUFREQ_GOV_POLICY_EXIT);
1411 if (ret) {
1412 pr_err("%s: Failed to exit governor\n",
1413 __func__);
1414 return ret;
1415 }
1416 }
1417
1418 if (!cpufreq_suspended)
1419 cpufreq_policy_put_kobj(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit)
1427 cpufreq_driver->exit(policy);
1428
1429 /* Remove policy from list of active policies */
1430 write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 list_del(&policy->policy_list);
1432 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434 if (!cpufreq_suspended)
1435 cpufreq_policy_free(policy);
1436 } else if (has_target()) {
1437 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 if (!ret)
1439 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441 if (ret) {
1442 pr_err("%s: Failed to start governor\n", __func__);
1443 return ret;
1444 }
1445 }
1446
1447 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458 unsigned int cpu = dev->id;
1459 int ret;
1460
1461 if (cpu_is_offline(cpu))
1462 return 0;
1463
1464 ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466 if (!ret)
1467 ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469 return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474 struct cpufreq_policy *policy =
1475 container_of(work, struct cpufreq_policy, update);
1476 unsigned int cpu = policy->cpu;
1477 pr_debug("handle_update for cpu %u called\n", cpu);
1478 cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 * in deep trouble.
1484 * @cpu: cpu number
1485 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1486 * @new_freq: CPU frequency the CPU actually runs at
1487 *
1488 * We adjust to current frequency first, and need to clean up later.
1489 * So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 unsigned int new_freq)
1493{
1494 struct cpufreq_policy *policy;
1495 struct cpufreq_freqs freqs;
1496 unsigned long flags;
1497
1498 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 old_freq, new_freq);
1500
1501 freqs.old = old_freq;
1502 freqs.new = new_freq;
1503
1504 read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 policy = per_cpu(cpufreq_cpu_data, cpu);
1506 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508 cpufreq_freq_transition_begin(policy, &freqs);
1509 cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521 struct cpufreq_policy *policy;
1522 unsigned int ret_freq = 0;
1523
1524 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 return cpufreq_driver->get(cpu);
1526
1527 policy = cpufreq_cpu_get(cpu);
1528 if (policy) {
1529 ret_freq = policy->cur;
1530 cpufreq_cpu_put(policy);
1531 }
1532
1533 return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 unsigned int ret_freq = 0;
1547
1548 if (policy) {
1549 ret_freq = policy->max;
1550 cpufreq_cpu_put(policy);
1551 }
1552
1553 return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
1558{
1559 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (!cpufreq_driver->get)
1563 return ret_freq;
1564
1565 ret_freq = cpufreq_driver->get(cpu);
1566
1567 if (ret_freq && policy->cur &&
1568 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 /* verify no discrepancy between actual and
1570 saved value exists */
1571 if (unlikely(ret_freq != policy->cur)) {
1572 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 schedule_work(&policy->update);
1574 }
1575 }
1576
1577 return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 unsigned int ret_freq = 0;
1590
1591 if (policy) {
1592 down_read(&policy->rwsem);
1593 ret_freq = __cpufreq_get(cpu);
1594 up_read(&policy->rwsem);
1595
1596 cpufreq_cpu_put(policy);
1597 }
1598
1599 return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 return -EINVAL;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target())
1652 return;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 pr_err("%s: Failed to stop governor for policy: %p\n",
1659 __func__, policy);
1660 else if (cpufreq_driver->suspend
1661 && cpufreq_driver->suspend(policy))
1662 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 policy);
1664 }
1665
1666 cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677 struct cpufreq_policy *policy;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 if (!has_target())
1683 return;
1684
1685 pr_debug("%s: Resuming Governors\n", __func__);
1686
1687 cpufreq_suspended = false;
1688
1689 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 pr_err("%s: Failed to start governor for policy: %p\n",
1696 __func__, policy);
1697
1698 /*
1699 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 * policy in list. It will verify that the current freq is in
1701 * sync with what we believe it to be.
1702 */
1703 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 schedule_work(&policy->update);
1705 }
1706}
1707
1708/**
1709 * cpufreq_get_current_driver - return current driver's name
1710 *
1711 * Return the name string of the currently loaded cpufreq driver
1712 * or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716 if (cpufreq_driver)
1717 return cpufreq_driver->name;
1718
1719 return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723/*********************************************************************
1724 * NOTIFIER LISTS INTERFACE *
1725 *********************************************************************/
1726
1727/**
1728 * cpufreq_register_notifier - register a driver with cpufreq
1729 * @nb: notifier function to register
1730 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 * Add a driver to one of two lists: either a list of drivers that
1733 * are notified about clock rate changes (once before and once after
1734 * the transition), or a list of drivers that are notified about
1735 * changes in cpufreq policy.
1736 *
1737 * This function may sleep, and has the same return conditions as
1738 * blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742 int ret;
1743
1744 if (cpufreq_disabled())
1745 return -EINVAL;
1746
1747 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749 switch (list) {
1750 case CPUFREQ_TRANSITION_NOTIFIER:
1751 ret = srcu_notifier_chain_register(
1752 &cpufreq_transition_notifier_list, nb);
1753 break;
1754 case CPUFREQ_POLICY_NOTIFIER:
1755 ret = blocking_notifier_chain_register(
1756 &cpufreq_policy_notifier_list, nb);
1757 break;
1758 default:
1759 ret = -EINVAL;
1760 }
1761
1762 return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 * @nb: notifier block to be unregistered
1769 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 * Remove a driver from the CPU frequency notifier list.
1772 *
1773 * This function may sleep, and has the same return conditions as
1774 * blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778 int ret;
1779
1780 if (cpufreq_disabled())
1781 return -EINVAL;
1782
1783 switch (list) {
1784 case CPUFREQ_TRANSITION_NOTIFIER:
1785 ret = srcu_notifier_chain_unregister(
1786 &cpufreq_transition_notifier_list, nb);
1787 break;
1788 case CPUFREQ_POLICY_NOTIFIER:
1789 ret = blocking_notifier_chain_unregister(
1790 &cpufreq_policy_notifier_list, nb);
1791 break;
1792 default:
1793 ret = -EINVAL;
1794 }
1795
1796 return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 * GOVERNORS *
1803 *********************************************************************/
1804
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 unsigned int target_freq,
1807 unsigned int relation)
1808{
1809 int retval = -EINVAL;
1810 unsigned int old_target_freq = target_freq;
1811
1812 if (cpufreq_disabled())
1813 return -ENODEV;
1814
1815 /* Make sure that target_freq is within supported range */
1816 if (target_freq > policy->max)
1817 target_freq = policy->max;
1818 if (target_freq < policy->min)
1819 target_freq = policy->min;
1820
1821 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 policy->cpu, target_freq, relation, old_target_freq);
1823
1824 /*
1825 * This might look like a redundant call as we are checking it again
1826 * after finding index. But it is left intentionally for cases where
1827 * exactly same freq is called again and so we can save on few function
1828 * calls.
1829 */
1830 if (target_freq == policy->cur)
1831 return 0;
1832
1833 if (cpufreq_driver->target)
1834 retval = cpufreq_driver->target(policy, target_freq, relation);
1835 else if (cpufreq_driver->target_index) {
1836 struct cpufreq_frequency_table *freq_table;
1837 struct cpufreq_freqs freqs;
1838 bool notify;
1839 int index;
1840
1841 freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 if (unlikely(!freq_table)) {
1843 pr_err("%s: Unable to find freq_table\n", __func__);
1844 goto out;
1845 }
1846
1847 retval = cpufreq_frequency_table_target(policy, freq_table,
1848 target_freq, relation, &index);
1849 if (unlikely(retval)) {
1850 pr_err("%s: Unable to find matching freq\n", __func__);
1851 goto out;
1852 }
1853
1854 if (freq_table[index].frequency == policy->cur) {
1855 retval = 0;
1856 goto out;
1857 }
1858
1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861 if (notify) {
1862 freqs.old = policy->cur;
1863 freqs.new = freq_table[index].frequency;
1864 freqs.flags = 0;
1865
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n",
1875 __func__, retval);
1876
1877 if (notify)
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879 }
1880
1881out:
1882 return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 unsigned int target_freq,
1888 unsigned int relation)
1889{
1890 int ret = -EINVAL;
1891
1892 down_write(&policy->rwsem);
1893
1894 ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896 up_write(&policy->rwsem);
1897
1898 return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 unsigned int event)
1908{
1909 int ret;
1910
1911 /* Only must be defined when default governor is known to have latency
1912 restrictions, like e.g. conservative or ondemand.
1913 That this is the case is already ensured in Kconfig
1914 */
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918 struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921 /* Don't start any governor operations if we are entering suspend */
1922 if (cpufreq_suspended)
1923 return 0;
1924
1925 if (policy->governor->max_transition_latency &&
1926 policy->cpuinfo.transition_latency >
1927 policy->governor->max_transition_latency) {
1928 if (!gov)
1929 return -EINVAL;
1930 else {
1931 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 policy->governor->name, gov->name);
1933 policy->governor = gov;
1934 }
1935 }
1936
1937 if (event == CPUFREQ_GOV_POLICY_INIT)
1938 if (!try_module_get(policy->governor->owner))
1939 return -EINVAL;
1940
1941 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 policy->cpu, event);
1943
1944 mutex_lock(&cpufreq_governor_lock);
1945 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 || (!policy->governor_enabled
1947 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 mutex_unlock(&cpufreq_governor_lock);
1949 return -EBUSY;
1950 }
1951
1952 if (event == CPUFREQ_GOV_STOP)
1953 policy->governor_enabled = false;
1954 else if (event == CPUFREQ_GOV_START)
1955 policy->governor_enabled = true;
1956
1957 mutex_unlock(&cpufreq_governor_lock);
1958
1959 ret = policy->governor->governor(policy, event);
1960
1961 if (!ret) {
1962 if (event == CPUFREQ_GOV_POLICY_INIT)
1963 policy->governor->initialized++;
1964 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 policy->governor->initialized--;
1966 } else {
1967 /* Restore original values */
1968 mutex_lock(&cpufreq_governor_lock);
1969 if (event == CPUFREQ_GOV_STOP)
1970 policy->governor_enabled = true;
1971 else if (event == CPUFREQ_GOV_START)
1972 policy->governor_enabled = false;
1973 mutex_unlock(&cpufreq_governor_lock);
1974 }
1975
1976 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 module_put(policy->governor->owner);
1979
1980 return ret;
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985 int err;
1986
1987 if (!governor)
1988 return -EINVAL;
1989
1990 if (cpufreq_disabled())
1991 return -ENODEV;
1992
1993 mutex_lock(&cpufreq_governor_mutex);
1994
1995 governor->initialized = 0;
1996 err = -EBUSY;
1997 if (__find_governor(governor->name) == NULL) {
1998 err = 0;
1999 list_add(&governor->governor_list, &cpufreq_governor_list);
2000 }
2001
2002 mutex_unlock(&cpufreq_governor_mutex);
2003 return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009 int cpu;
2010
2011 if (!governor)
2012 return;
2013
2014 if (cpufreq_disabled())
2015 return;
2016
2017 for_each_present_cpu(cpu) {
2018 if (cpu_online(cpu))
2019 continue;
2020 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 }
2023
2024 mutex_lock(&cpufreq_governor_mutex);
2025 list_del(&governor->governor_list);
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 * POLICY INTERFACE *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 * is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045 struct cpufreq_policy *cpu_policy;
2046 if (!policy)
2047 return -EINVAL;
2048
2049 cpu_policy = cpufreq_cpu_get(cpu);
2050 if (!cpu_policy)
2051 return -EINVAL;
2052
2053 memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055 cpufreq_cpu_put(cpu_policy);
2056 return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 struct cpufreq_policy *new_policy)
2066{
2067 struct cpufreq_governor *old_gov;
2068 int ret;
2069
2070 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075 if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 return -EINVAL;
2077
2078 /* verify the cpu speed can be set within this limit */
2079 ret = cpufreq_driver->verify(new_policy);
2080 if (ret)
2081 return ret;
2082
2083 /* adjust if necessary - all reasons */
2084 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 CPUFREQ_ADJUST, new_policy);
2086
2087 /* adjust if necessary - hardware incompatibility*/
2088 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091 /*
2092 * verify the cpu speed can be set within this limit, which might be
2093 * different to the first one
2094 */
2095 ret = cpufreq_driver->verify(new_policy);
2096 if (ret)
2097 return ret;
2098
2099 /* notification of the new policy */
2100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 CPUFREQ_NOTIFY, new_policy);
2102
2103 policy->min = new_policy->min;
2104 policy->max = new_policy->max;
2105
2106 pr_debug("new min and max freqs are %u - %u kHz\n",
2107 policy->min, policy->max);
2108
2109 if (cpufreq_driver->setpolicy) {
2110 policy->policy = new_policy->policy;
2111 pr_debug("setting range\n");
2112 return cpufreq_driver->setpolicy(new_policy);
2113 }
2114
2115 if (new_policy->governor == policy->governor)
2116 goto out;
2117
2118 pr_debug("governor switch\n");
2119
2120 /* save old, working values */
2121 old_gov = policy->governor;
2122 /* end old governor */
2123 if (old_gov) {
2124 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 up_write(&policy->rwsem);
2126 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 down_write(&policy->rwsem);
2128 }
2129
2130 /* start new governor */
2131 policy->governor = new_policy->governor;
2132 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 goto out;
2135
2136 up_write(&policy->rwsem);
2137 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 down_write(&policy->rwsem);
2139 }
2140
2141 /* new governor failed, so re-start old one */
2142 pr_debug("starting governor %s failed\n", policy->governor->name);
2143 if (old_gov) {
2144 policy->governor = old_gov;
2145 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 }
2148
2149 return -EINVAL;
2150
2151 out:
2152 pr_debug("governor: change or update limits\n");
2153 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 * @cpu: CPU which shall be re-evaluated
2159 *
2160 * Useful for policy notifiers which have different necessities
2161 * at different times.
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 struct cpufreq_policy new_policy;
2167 int ret;
2168
2169 if (!policy) {
2170 ret = -ENODEV;
2171 goto no_policy;
2172 }
2173
2174 down_write(&policy->rwsem);
2175
2176 pr_debug("updating policy for CPU %u\n", cpu);
2177 memcpy(&new_policy, policy, sizeof(*policy));
2178 new_policy.min = policy->user_policy.min;
2179 new_policy.max = policy->user_policy.max;
2180 new_policy.policy = policy->user_policy.policy;
2181 new_policy.governor = policy->user_policy.governor;
2182
2183 /*
2184 * BIOS might change freq behind our back
2185 * -> ask driver for current freq and notify governors about a change
2186 */
2187 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 new_policy.cur = cpufreq_driver->get(cpu);
2189 if (WARN_ON(!new_policy.cur)) {
2190 ret = -EIO;
2191 goto no_policy;
2192 }
2193
2194 if (!policy->cur) {
2195 pr_debug("Driver did not initialize current freq\n");
2196 policy->cur = new_policy.cur;
2197 } else {
2198 if (policy->cur != new_policy.cur && has_target())
2199 cpufreq_out_of_sync(cpu, policy->cur,
2200 new_policy.cur);
2201 }
2202 }
2203
2204 ret = cpufreq_set_policy(policy, &new_policy);
2205
2206 up_write(&policy->rwsem);
2207
2208 cpufreq_cpu_put(policy);
2209no_policy:
2210 return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 unsigned long action, void *hcpu)
2216{
2217 unsigned int cpu = (unsigned long)hcpu;
2218 struct device *dev;
2219
2220 dev = get_cpu_device(cpu);
2221 if (dev) {
2222 switch (action & ~CPU_TASKS_FROZEN) {
2223 case CPU_ONLINE:
2224 __cpufreq_add_dev(dev, NULL);
2225 break;
2226
2227 case CPU_DOWN_PREPARE:
2228 __cpufreq_remove_dev_prepare(dev, NULL);
2229 break;
2230
2231 case CPU_POST_DEAD:
2232 __cpufreq_remove_dev_finish(dev, NULL);
2233 break;
2234
2235 case CPU_DOWN_FAILED:
2236 __cpufreq_add_dev(dev, NULL);
2237 break;
2238 }
2239 }
2240 return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 .notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 * BOOST *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252 struct cpufreq_frequency_table *freq_table;
2253 struct cpufreq_policy *policy;
2254 int ret = -EINVAL;
2255
2256 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 if (freq_table) {
2259 ret = cpufreq_frequency_table_cpuinfo(policy,
2260 freq_table);
2261 if (ret) {
2262 pr_err("%s: Policy frequency update failed\n",
2263 __func__);
2264 break;
2265 }
2266 policy->user_policy.max = policy->max;
2267 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 }
2269 }
2270
2271 return ret;
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
2276 unsigned long flags;
2277 int ret = 0;
2278
2279 if (cpufreq_driver->boost_enabled == state)
2280 return 0;
2281
2282 write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 cpufreq_driver->boost_enabled = state;
2284 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286 ret = cpufreq_driver->set_boost(state);
2287 if (ret) {
2288 write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 cpufreq_driver->boost_enabled = !state;
2290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292 pr_err("%s: Cannot %s BOOST\n",
2293 __func__, state ? "enable" : "disable");
2294 }
2295
2296 return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301 if (likely(cpufreq_driver))
2302 return cpufreq_driver->boost_supported;
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310 return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2316 *********************************************************************/
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330 unsigned long flags;
2331 int ret;
2332
2333 if (cpufreq_disabled())
2334 return -ENODEV;
2335
2336 if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 !(driver_data->setpolicy || driver_data->target_index ||
2338 driver_data->target) ||
2339 (driver_data->setpolicy && (driver_data->target_index ||
2340 driver_data->target)))
2341 return -EINVAL;
2342
2343 pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345 if (driver_data->setpolicy)
2346 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348 write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 if (cpufreq_driver) {
2350 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 return -EEXIST;
2352 }
2353 cpufreq_driver = driver_data;
2354 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356 if (cpufreq_boost_supported()) {
2357 /*
2358 * Check if driver provides function to enable boost -
2359 * if not, use cpufreq_boost_set_sw as default
2360 */
2361 if (!cpufreq_driver->set_boost)
2362 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364 ret = cpufreq_sysfs_create_file(&boost.attr);
2365 if (ret) {
2366 pr_err("%s: cannot register global BOOST sysfs file\n",
2367 __func__);
2368 goto err_null_driver;
2369 }
2370 }
2371
2372 ret = subsys_interface_register(&cpufreq_interface);
2373 if (ret)
2374 goto err_boost_unreg;
2375
2376 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 int i;
2378 ret = -ENODEV;
2379
2380 /* check for at least one working CPU */
2381 for (i = 0; i < nr_cpu_ids; i++)
2382 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 ret = 0;
2384 break;
2385 }
2386
2387 /* if all ->init() calls failed, unregister */
2388 if (ret) {
2389 pr_debug("no CPU initialized for driver %s\n",
2390 driver_data->name);
2391 goto err_if_unreg;
2392 }
2393 }
2394
2395 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 pr_debug("driver %s up and running\n", driver_data->name);
2397
2398 return 0;
2399err_if_unreg:
2400 subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402 if (cpufreq_boost_supported())
2403 cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405 write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 cpufreq_driver = NULL;
2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422 unsigned long flags;
2423
2424 if (!cpufreq_driver || (driver != cpufreq_driver))
2425 return -EINVAL;
2426
2427 pr_debug("unregistering driver %s\n", driver->name);
2428
2429 subsys_interface_unregister(&cpufreq_interface);
2430 if (cpufreq_boost_supported())
2431 cpufreq_sysfs_remove_file(&boost.attr);
2432
2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435 down_write(&cpufreq_rwsem);
2436 write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438 cpufreq_driver = NULL;
2439
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 up_write(&cpufreq_rwsem);
2442
2443 return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
2449 if (cpufreq_disabled())
2450 return -ENODEV;
2451
2452 cpufreq_global_kobject = kobject_create();
2453 BUG_ON(!cpufreq_global_kobject);
2454
2455 return 0;
2456}
2457core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65 return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78 return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104 return off;
105}
106void disable_cpufreq(void)
107{
108 off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 kcpustat_cpu_fetch(&kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163 return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177{
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252 kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299}
300
301/*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352{
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(freqs->new, cpu);
391
392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, freqs);
394
395 cpufreq_stats_record_transition(policy, freqs->new);
396 policy->cur = freqs->new;
397 }
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403{
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415{
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(&policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(&policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(&policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449{
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(policy->related_cpus,
456 policy->cur,
457 arch_scale_freq_ref(policy->cpu));
458
459 spin_lock(&policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(&policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(&cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(&cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq, unsigned int relation)
538{
539 unsigned int idx;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543 if (!policy->freq_table)
544 return target_freq;
545
546 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 policy->cached_resolved_idx = idx;
548 policy->cached_target_freq = target_freq;
549 return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 unsigned int target_freq)
565{
566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572 unsigned int latency;
573
574 if (policy->transition_delay_us)
575 return policy->transition_delay_us;
576
577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 if (latency) {
579 unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580
581 /*
582 * If the platform already has high transition_latency, use it
583 * as-is.
584 */
585 if (latency > max_delay_us)
586 return latency;
587
588 /*
589 * For platforms that can change the frequency very fast (< 2
590 * us), the above formula gives a decent transition delay. But
591 * for platforms where transition_latency is in milliseconds, it
592 * ends up giving unrealistic values.
593 *
594 * Cap the default transition delay to 2 ms, which seems to be
595 * a reasonable amount of time after which we should reevaluate
596 * the frequency.
597 */
598 return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599 }
600
601 return LATENCY_MULTIPLIER;
602}
603EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604
605/*********************************************************************
606 * SYSFS INTERFACE *
607 *********************************************************************/
608static ssize_t show_boost(struct kobject *kobj,
609 struct kobj_attribute *attr, char *buf)
610{
611 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
612}
613
614static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615 const char *buf, size_t count)
616{
617 int ret, enable;
618
619 ret = sscanf(buf, "%d", &enable);
620 if (ret != 1 || enable < 0 || enable > 1)
621 return -EINVAL;
622
623 if (cpufreq_boost_trigger_state(enable)) {
624 pr_err("%s: Cannot %s BOOST!\n",
625 __func__, enable ? "enable" : "disable");
626 return -EINVAL;
627 }
628
629 pr_debug("%s: cpufreq BOOST %s\n",
630 __func__, enable ? "enabled" : "disabled");
631
632 return count;
633}
634define_one_global_rw(boost);
635
636static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
637{
638 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
639}
640
641static ssize_t store_local_boost(struct cpufreq_policy *policy,
642 const char *buf, size_t count)
643{
644 int ret, enable;
645
646 ret = kstrtoint(buf, 10, &enable);
647 if (ret || enable < 0 || enable > 1)
648 return -EINVAL;
649
650 if (!cpufreq_driver->boost_enabled)
651 return -EINVAL;
652
653 if (policy->boost_enabled == enable)
654 return count;
655
656 policy->boost_enabled = enable;
657
658 cpus_read_lock();
659 ret = cpufreq_driver->set_boost(policy, enable);
660 cpus_read_unlock();
661
662 if (ret) {
663 policy->boost_enabled = !policy->boost_enabled;
664 return ret;
665 }
666
667 return count;
668}
669
670static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
671
672static struct cpufreq_governor *find_governor(const char *str_governor)
673{
674 struct cpufreq_governor *t;
675
676 for_each_governor(t)
677 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
678 return t;
679
680 return NULL;
681}
682
683static struct cpufreq_governor *get_governor(const char *str_governor)
684{
685 struct cpufreq_governor *t;
686
687 mutex_lock(&cpufreq_governor_mutex);
688 t = find_governor(str_governor);
689 if (!t)
690 goto unlock;
691
692 if (!try_module_get(t->owner))
693 t = NULL;
694
695unlock:
696 mutex_unlock(&cpufreq_governor_mutex);
697
698 return t;
699}
700
701static unsigned int cpufreq_parse_policy(char *str_governor)
702{
703 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
704 return CPUFREQ_POLICY_PERFORMANCE;
705
706 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
707 return CPUFREQ_POLICY_POWERSAVE;
708
709 return CPUFREQ_POLICY_UNKNOWN;
710}
711
712/**
713 * cpufreq_parse_governor - parse a governor string only for has_target()
714 * @str_governor: Governor name.
715 */
716static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
717{
718 struct cpufreq_governor *t;
719
720 t = get_governor(str_governor);
721 if (t)
722 return t;
723
724 if (request_module("cpufreq_%s", str_governor))
725 return NULL;
726
727 return get_governor(str_governor);
728}
729
730/*
731 * cpufreq_per_cpu_attr_read() / show_##file_name() -
732 * print out cpufreq information
733 *
734 * Write out information from cpufreq_driver->policy[cpu]; object must be
735 * "unsigned int".
736 */
737
738#define show_one(file_name, object) \
739static ssize_t show_##file_name \
740(struct cpufreq_policy *policy, char *buf) \
741{ \
742 return sprintf(buf, "%u\n", policy->object); \
743}
744
745show_one(cpuinfo_min_freq, cpuinfo.min_freq);
746show_one(cpuinfo_max_freq, cpuinfo.max_freq);
747show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
748show_one(scaling_min_freq, min);
749show_one(scaling_max_freq, max);
750
751__weak unsigned int arch_freq_get_on_cpu(int cpu)
752{
753 return 0;
754}
755
756static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
757{
758 ssize_t ret;
759 unsigned int freq;
760
761 freq = arch_freq_get_on_cpu(policy->cpu);
762 if (freq)
763 ret = sprintf(buf, "%u\n", freq);
764 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
765 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
766 else
767 ret = sprintf(buf, "%u\n", policy->cur);
768 return ret;
769}
770
771/*
772 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
773 */
774#define store_one(file_name, object) \
775static ssize_t store_##file_name \
776(struct cpufreq_policy *policy, const char *buf, size_t count) \
777{ \
778 unsigned long val; \
779 int ret; \
780 \
781 ret = kstrtoul(buf, 0, &val); \
782 if (ret) \
783 return ret; \
784 \
785 ret = freq_qos_update_request(policy->object##_freq_req, val);\
786 return ret >= 0 ? count : ret; \
787}
788
789store_one(scaling_min_freq, min);
790store_one(scaling_max_freq, max);
791
792/*
793 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
794 */
795static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
796 char *buf)
797{
798 unsigned int cur_freq = __cpufreq_get(policy);
799
800 if (cur_freq)
801 return sprintf(buf, "%u\n", cur_freq);
802
803 return sprintf(buf, "<unknown>\n");
804}
805
806/*
807 * show_scaling_governor - show the current policy for the specified CPU
808 */
809static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
810{
811 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
812 return sprintf(buf, "powersave\n");
813 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
814 return sprintf(buf, "performance\n");
815 else if (policy->governor)
816 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
817 policy->governor->name);
818 return -EINVAL;
819}
820
821/*
822 * store_scaling_governor - store policy for the specified CPU
823 */
824static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
825 const char *buf, size_t count)
826{
827 char str_governor[16];
828 int ret;
829
830 ret = sscanf(buf, "%15s", str_governor);
831 if (ret != 1)
832 return -EINVAL;
833
834 if (cpufreq_driver->setpolicy) {
835 unsigned int new_pol;
836
837 new_pol = cpufreq_parse_policy(str_governor);
838 if (!new_pol)
839 return -EINVAL;
840
841 ret = cpufreq_set_policy(policy, NULL, new_pol);
842 } else {
843 struct cpufreq_governor *new_gov;
844
845 new_gov = cpufreq_parse_governor(str_governor);
846 if (!new_gov)
847 return -EINVAL;
848
849 ret = cpufreq_set_policy(policy, new_gov,
850 CPUFREQ_POLICY_UNKNOWN);
851
852 module_put(new_gov->owner);
853 }
854
855 return ret ? ret : count;
856}
857
858/*
859 * show_scaling_driver - show the cpufreq driver currently loaded
860 */
861static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
862{
863 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
864}
865
866/*
867 * show_scaling_available_governors - show the available CPUfreq governors
868 */
869static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
870 char *buf)
871{
872 ssize_t i = 0;
873 struct cpufreq_governor *t;
874
875 if (!has_target()) {
876 i += sprintf(buf, "performance powersave");
877 goto out;
878 }
879
880 mutex_lock(&cpufreq_governor_mutex);
881 for_each_governor(t) {
882 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
883 - (CPUFREQ_NAME_LEN + 2)))
884 break;
885 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
886 }
887 mutex_unlock(&cpufreq_governor_mutex);
888out:
889 i += sprintf(&buf[i], "\n");
890 return i;
891}
892
893ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
894{
895 ssize_t i = 0;
896 unsigned int cpu;
897
898 for_each_cpu(cpu, mask) {
899 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
900 if (i >= (PAGE_SIZE - 5))
901 break;
902 }
903
904 /* Remove the extra space at the end */
905 i--;
906
907 i += sprintf(&buf[i], "\n");
908 return i;
909}
910EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
911
912/*
913 * show_related_cpus - show the CPUs affected by each transition even if
914 * hw coordination is in use
915 */
916static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
917{
918 return cpufreq_show_cpus(policy->related_cpus, buf);
919}
920
921/*
922 * show_affected_cpus - show the CPUs affected by each transition
923 */
924static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
925{
926 return cpufreq_show_cpus(policy->cpus, buf);
927}
928
929static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
930 const char *buf, size_t count)
931{
932 unsigned int freq = 0;
933 unsigned int ret;
934
935 if (!policy->governor || !policy->governor->store_setspeed)
936 return -EINVAL;
937
938 ret = sscanf(buf, "%u", &freq);
939 if (ret != 1)
940 return -EINVAL;
941
942 policy->governor->store_setspeed(policy, freq);
943
944 return count;
945}
946
947static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
948{
949 if (!policy->governor || !policy->governor->show_setspeed)
950 return sprintf(buf, "<unsupported>\n");
951
952 return policy->governor->show_setspeed(policy, buf);
953}
954
955/*
956 * show_bios_limit - show the current cpufreq HW/BIOS limitation
957 */
958static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
959{
960 unsigned int limit;
961 int ret;
962 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
963 if (!ret)
964 return sprintf(buf, "%u\n", limit);
965 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
966}
967
968cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
969cpufreq_freq_attr_ro(cpuinfo_min_freq);
970cpufreq_freq_attr_ro(cpuinfo_max_freq);
971cpufreq_freq_attr_ro(cpuinfo_transition_latency);
972cpufreq_freq_attr_ro(scaling_available_governors);
973cpufreq_freq_attr_ro(scaling_driver);
974cpufreq_freq_attr_ro(scaling_cur_freq);
975cpufreq_freq_attr_ro(bios_limit);
976cpufreq_freq_attr_ro(related_cpus);
977cpufreq_freq_attr_ro(affected_cpus);
978cpufreq_freq_attr_rw(scaling_min_freq);
979cpufreq_freq_attr_rw(scaling_max_freq);
980cpufreq_freq_attr_rw(scaling_governor);
981cpufreq_freq_attr_rw(scaling_setspeed);
982
983static struct attribute *cpufreq_attrs[] = {
984 &cpuinfo_min_freq.attr,
985 &cpuinfo_max_freq.attr,
986 &cpuinfo_transition_latency.attr,
987 &scaling_min_freq.attr,
988 &scaling_max_freq.attr,
989 &affected_cpus.attr,
990 &related_cpus.attr,
991 &scaling_governor.attr,
992 &scaling_driver.attr,
993 &scaling_available_governors.attr,
994 &scaling_setspeed.attr,
995 NULL
996};
997ATTRIBUTE_GROUPS(cpufreq);
998
999#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000#define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003{
1004 struct cpufreq_policy *policy = to_policy(kobj);
1005 struct freq_attr *fattr = to_attr(attr);
1006 ssize_t ret = -EBUSY;
1007
1008 if (!fattr->show)
1009 return -EIO;
1010
1011 down_read(&policy->rwsem);
1012 if (likely(!policy_is_inactive(policy)))
1013 ret = fattr->show(policy, buf);
1014 up_read(&policy->rwsem);
1015
1016 return ret;
1017}
1018
1019static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020 const char *buf, size_t count)
1021{
1022 struct cpufreq_policy *policy = to_policy(kobj);
1023 struct freq_attr *fattr = to_attr(attr);
1024 ssize_t ret = -EBUSY;
1025
1026 if (!fattr->store)
1027 return -EIO;
1028
1029 down_write(&policy->rwsem);
1030 if (likely(!policy_is_inactive(policy)))
1031 ret = fattr->store(policy, buf, count);
1032 up_write(&policy->rwsem);
1033
1034 return ret;
1035}
1036
1037static void cpufreq_sysfs_release(struct kobject *kobj)
1038{
1039 struct cpufreq_policy *policy = to_policy(kobj);
1040 pr_debug("last reference is dropped\n");
1041 complete(&policy->kobj_unregister);
1042}
1043
1044static const struct sysfs_ops sysfs_ops = {
1045 .show = show,
1046 .store = store,
1047};
1048
1049static const struct kobj_type ktype_cpufreq = {
1050 .sysfs_ops = &sysfs_ops,
1051 .default_groups = cpufreq_groups,
1052 .release = cpufreq_sysfs_release,
1053};
1054
1055static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056 struct device *dev)
1057{
1058 if (unlikely(!dev))
1059 return;
1060
1061 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1062 return;
1063
1064 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1066 dev_err(dev, "cpufreq symlink creation failed\n");
1067}
1068
1069static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070 struct device *dev)
1071{
1072 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073 sysfs_remove_link(&dev->kobj, "cpufreq");
1074 cpumask_clear_cpu(cpu, policy->real_cpus);
1075}
1076
1077static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1078{
1079 struct freq_attr **drv_attr;
1080 int ret = 0;
1081
1082 /* set up files for this cpu device */
1083 drv_attr = cpufreq_driver->attr;
1084 while (drv_attr && *drv_attr) {
1085 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1086 if (ret)
1087 return ret;
1088 drv_attr++;
1089 }
1090 if (cpufreq_driver->get) {
1091 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1092 if (ret)
1093 return ret;
1094 }
1095
1096 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1097 if (ret)
1098 return ret;
1099
1100 if (cpufreq_driver->bios_limit) {
1101 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 if (cpufreq_boost_supported()) {
1107 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1108 if (ret)
1109 return ret;
1110 }
1111
1112 return 0;
1113}
1114
1115static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116{
1117 struct cpufreq_governor *gov = NULL;
1118 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119 int ret;
1120
1121 if (has_target()) {
1122 /* Update policy governor to the one used before hotplug. */
1123 gov = get_governor(policy->last_governor);
1124 if (gov) {
1125 pr_debug("Restoring governor %s for cpu %d\n",
1126 gov->name, policy->cpu);
1127 } else {
1128 gov = get_governor(default_governor);
1129 }
1130
1131 if (!gov) {
1132 gov = cpufreq_default_governor();
1133 __module_get(gov->owner);
1134 }
1135
1136 } else {
1137
1138 /* Use the default policy if there is no last_policy. */
1139 if (policy->last_policy) {
1140 pol = policy->last_policy;
1141 } else {
1142 pol = cpufreq_parse_policy(default_governor);
1143 /*
1144 * In case the default governor is neither "performance"
1145 * nor "powersave", fall back to the initial policy
1146 * value set by the driver.
1147 */
1148 if (pol == CPUFREQ_POLICY_UNKNOWN)
1149 pol = policy->policy;
1150 }
1151 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152 pol != CPUFREQ_POLICY_POWERSAVE)
1153 return -ENODATA;
1154 }
1155
1156 ret = cpufreq_set_policy(policy, gov, pol);
1157 if (gov)
1158 module_put(gov->owner);
1159
1160 return ret;
1161}
1162
1163static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1164{
1165 int ret = 0;
1166
1167 /* Has this CPU been taken care of already? */
1168 if (cpumask_test_cpu(cpu, policy->cpus))
1169 return 0;
1170
1171 down_write(&policy->rwsem);
1172 if (has_target())
1173 cpufreq_stop_governor(policy);
1174
1175 cpumask_set_cpu(cpu, policy->cpus);
1176
1177 if (has_target()) {
1178 ret = cpufreq_start_governor(policy);
1179 if (ret)
1180 pr_err("%s: Failed to start governor\n", __func__);
1181 }
1182 up_write(&policy->rwsem);
1183 return ret;
1184}
1185
1186void refresh_frequency_limits(struct cpufreq_policy *policy)
1187{
1188 if (!policy_is_inactive(policy)) {
1189 pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191 cpufreq_set_policy(policy, policy->governor, policy->policy);
1192 }
1193}
1194EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196static void handle_update(struct work_struct *work)
1197{
1198 struct cpufreq_policy *policy =
1199 container_of(work, struct cpufreq_policy, update);
1200
1201 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202 down_write(&policy->rwsem);
1203 refresh_frequency_limits(policy);
1204 up_write(&policy->rwsem);
1205}
1206
1207static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208 void *data)
1209{
1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1211
1212 schedule_work(&policy->update);
1213 return 0;
1214}
1215
1216static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217 void *data)
1218{
1219 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221 schedule_work(&policy->update);
1222 return 0;
1223}
1224
1225static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226{
1227 struct kobject *kobj;
1228 struct completion *cmp;
1229
1230 down_write(&policy->rwsem);
1231 cpufreq_stats_free_table(policy);
1232 kobj = &policy->kobj;
1233 cmp = &policy->kobj_unregister;
1234 up_write(&policy->rwsem);
1235 kobject_put(kobj);
1236
1237 /*
1238 * We need to make sure that the underlying kobj is
1239 * actually not referenced anymore by anybody before we
1240 * proceed with unloading.
1241 */
1242 pr_debug("waiting for dropping of refcount\n");
1243 wait_for_completion(cmp);
1244 pr_debug("wait complete\n");
1245}
1246
1247static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248{
1249 struct cpufreq_policy *policy;
1250 struct device *dev = get_cpu_device(cpu);
1251 int ret;
1252
1253 if (!dev)
1254 return NULL;
1255
1256 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1257 if (!policy)
1258 return NULL;
1259
1260 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1261 goto err_free_policy;
1262
1263 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1264 goto err_free_cpumask;
1265
1266 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1267 goto err_free_rcpumask;
1268
1269 init_completion(&policy->kobj_unregister);
1270 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1271 cpufreq_global_kobject, "policy%u", cpu);
1272 if (ret) {
1273 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274 /*
1275 * The entire policy object will be freed below, but the extra
1276 * memory allocated for the kobject name needs to be freed by
1277 * releasing the kobject.
1278 */
1279 kobject_put(&policy->kobj);
1280 goto err_free_real_cpus;
1281 }
1282
1283 freq_constraints_init(&policy->constraints);
1284
1285 policy->nb_min.notifier_call = cpufreq_notifier_min;
1286 policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1289 &policy->nb_min);
1290 if (ret) {
1291 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292 ret, cpu);
1293 goto err_kobj_remove;
1294 }
1295
1296 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1297 &policy->nb_max);
1298 if (ret) {
1299 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300 ret, cpu);
1301 goto err_min_qos_notifier;
1302 }
1303
1304 INIT_LIST_HEAD(&policy->policy_list);
1305 init_rwsem(&policy->rwsem);
1306 spin_lock_init(&policy->transition_lock);
1307 init_waitqueue_head(&policy->transition_wait);
1308 INIT_WORK(&policy->update, handle_update);
1309
1310 policy->cpu = cpu;
1311 return policy;
1312
1313err_min_qos_notifier:
1314 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1315 &policy->nb_min);
1316err_kobj_remove:
1317 cpufreq_policy_put_kobj(policy);
1318err_free_real_cpus:
1319 free_cpumask_var(policy->real_cpus);
1320err_free_rcpumask:
1321 free_cpumask_var(policy->related_cpus);
1322err_free_cpumask:
1323 free_cpumask_var(policy->cpus);
1324err_free_policy:
1325 kfree(policy);
1326
1327 return NULL;
1328}
1329
1330static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331{
1332 unsigned long flags;
1333 int cpu;
1334
1335 /*
1336 * The callers must ensure the policy is inactive by now, to avoid any
1337 * races with show()/store() callbacks.
1338 */
1339 if (unlikely(!policy_is_inactive(policy)))
1340 pr_warn("%s: Freeing active policy\n", __func__);
1341
1342 /* Remove policy from list */
1343 write_lock_irqsave(&cpufreq_driver_lock, flags);
1344 list_del(&policy->policy_list);
1345
1346 for_each_cpu(cpu, policy->related_cpus)
1347 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1349
1350 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1351 &policy->nb_max);
1352 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1353 &policy->nb_min);
1354
1355 /* Cancel any pending policy->update work before freeing the policy. */
1356 cancel_work_sync(&policy->update);
1357
1358 if (policy->max_freq_req) {
1359 /*
1360 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361 * notification, since CPUFREQ_CREATE_POLICY notification was
1362 * sent after adding max_freq_req earlier.
1363 */
1364 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1365 CPUFREQ_REMOVE_POLICY, policy);
1366 freq_qos_remove_request(policy->max_freq_req);
1367 }
1368
1369 freq_qos_remove_request(policy->min_freq_req);
1370 kfree(policy->min_freq_req);
1371
1372 cpufreq_policy_put_kobj(policy);
1373 free_cpumask_var(policy->real_cpus);
1374 free_cpumask_var(policy->related_cpus);
1375 free_cpumask_var(policy->cpus);
1376 kfree(policy);
1377}
1378
1379static int cpufreq_online(unsigned int cpu)
1380{
1381 struct cpufreq_policy *policy;
1382 bool new_policy;
1383 unsigned long flags;
1384 unsigned int j;
1385 int ret;
1386
1387 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1388
1389 /* Check if this CPU already has a policy to manage it */
1390 policy = per_cpu(cpufreq_cpu_data, cpu);
1391 if (policy) {
1392 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393 if (!policy_is_inactive(policy))
1394 return cpufreq_add_policy_cpu(policy, cpu);
1395
1396 /* This is the only online CPU for the policy. Start over. */
1397 new_policy = false;
1398 down_write(&policy->rwsem);
1399 policy->cpu = cpu;
1400 policy->governor = NULL;
1401 } else {
1402 new_policy = true;
1403 policy = cpufreq_policy_alloc(cpu);
1404 if (!policy)
1405 return -ENOMEM;
1406 down_write(&policy->rwsem);
1407 }
1408
1409 if (!new_policy && cpufreq_driver->online) {
1410 /* Recover policy->cpus using related_cpus */
1411 cpumask_copy(policy->cpus, policy->related_cpus);
1412
1413 ret = cpufreq_driver->online(policy);
1414 if (ret) {
1415 pr_debug("%s: %d: initialization failed\n", __func__,
1416 __LINE__);
1417 goto out_exit_policy;
1418 }
1419 } else {
1420 cpumask_copy(policy->cpus, cpumask_of(cpu));
1421
1422 /*
1423 * Call driver. From then on the cpufreq must be able
1424 * to accept all calls to ->verify and ->setpolicy for this CPU.
1425 */
1426 ret = cpufreq_driver->init(policy);
1427 if (ret) {
1428 pr_debug("%s: %d: initialization failed\n", __func__,
1429 __LINE__);
1430 goto out_free_policy;
1431 }
1432
1433 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436 /*
1437 * The initialization has succeeded and the policy is online.
1438 * If there is a problem with its frequency table, take it
1439 * offline and drop it.
1440 */
1441 ret = cpufreq_table_validate_and_sort(policy);
1442 if (ret)
1443 goto out_offline_policy;
1444
1445 /* related_cpus should at least include policy->cpus. */
1446 cpumask_copy(policy->related_cpus, policy->cpus);
1447 }
1448
1449 /*
1450 * affected cpus must always be the one, which are online. We aren't
1451 * managing offline cpus here.
1452 */
1453 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1454
1455 if (new_policy) {
1456 for_each_cpu(j, policy->related_cpus) {
1457 per_cpu(cpufreq_cpu_data, j) = policy;
1458 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1459 }
1460
1461 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1462 GFP_KERNEL);
1463 if (!policy->min_freq_req) {
1464 ret = -ENOMEM;
1465 goto out_destroy_policy;
1466 }
1467
1468 ret = freq_qos_add_request(&policy->constraints,
1469 policy->min_freq_req, FREQ_QOS_MIN,
1470 FREQ_QOS_MIN_DEFAULT_VALUE);
1471 if (ret < 0) {
1472 /*
1473 * So we don't call freq_qos_remove_request() for an
1474 * uninitialized request.
1475 */
1476 kfree(policy->min_freq_req);
1477 policy->min_freq_req = NULL;
1478 goto out_destroy_policy;
1479 }
1480
1481 /*
1482 * This must be initialized right here to avoid calling
1483 * freq_qos_remove_request() on uninitialized request in case
1484 * of errors.
1485 */
1486 policy->max_freq_req = policy->min_freq_req + 1;
1487
1488 ret = freq_qos_add_request(&policy->constraints,
1489 policy->max_freq_req, FREQ_QOS_MAX,
1490 FREQ_QOS_MAX_DEFAULT_VALUE);
1491 if (ret < 0) {
1492 policy->max_freq_req = NULL;
1493 goto out_destroy_policy;
1494 }
1495
1496 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1497 CPUFREQ_CREATE_POLICY, policy);
1498 }
1499
1500 if (cpufreq_driver->get && has_target()) {
1501 policy->cur = cpufreq_driver->get(policy->cpu);
1502 if (!policy->cur) {
1503 ret = -EIO;
1504 pr_err("%s: ->get() failed\n", __func__);
1505 goto out_destroy_policy;
1506 }
1507 }
1508
1509 /*
1510 * Sometimes boot loaders set CPU frequency to a value outside of
1511 * frequency table present with cpufreq core. In such cases CPU might be
1512 * unstable if it has to run on that frequency for long duration of time
1513 * and so its better to set it to a frequency which is specified in
1514 * freq-table. This also makes cpufreq stats inconsistent as
1515 * cpufreq-stats would fail to register because current frequency of CPU
1516 * isn't found in freq-table.
1517 *
1518 * Because we don't want this change to effect boot process badly, we go
1519 * for the next freq which is >= policy->cur ('cur' must be set by now,
1520 * otherwise we will end up setting freq to lowest of the table as 'cur'
1521 * is initialized to zero).
1522 *
1523 * We are passing target-freq as "policy->cur - 1" otherwise
1524 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525 * equal to target-freq.
1526 */
1527 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528 && has_target()) {
1529 unsigned int old_freq = policy->cur;
1530
1531 /* Are we running at unknown frequency ? */
1532 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1533 if (ret == -EINVAL) {
1534 ret = __cpufreq_driver_target(policy, old_freq - 1,
1535 CPUFREQ_RELATION_L);
1536
1537 /*
1538 * Reaching here after boot in a few seconds may not
1539 * mean that system will remain stable at "unknown"
1540 * frequency for longer duration. Hence, a BUG_ON().
1541 */
1542 BUG_ON(ret);
1543 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544 __func__, policy->cpu, old_freq, policy->cur);
1545 }
1546 }
1547
1548 if (new_policy) {
1549 ret = cpufreq_add_dev_interface(policy);
1550 if (ret)
1551 goto out_destroy_policy;
1552
1553 cpufreq_stats_create_table(policy);
1554
1555 write_lock_irqsave(&cpufreq_driver_lock, flags);
1556 list_add(&policy->policy_list, &cpufreq_policy_list);
1557 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559 /*
1560 * Register with the energy model before
1561 * sugov_eas_rebuild_sd() is called, which will result
1562 * in rebuilding of the sched domains, which should only be done
1563 * once the energy model is properly initialized for the policy
1564 * first.
1565 *
1566 * Also, this should be called before the policy is registered
1567 * with cooling framework.
1568 */
1569 if (cpufreq_driver->register_em)
1570 cpufreq_driver->register_em(policy);
1571 }
1572
1573 ret = cpufreq_init_policy(policy);
1574 if (ret) {
1575 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576 __func__, cpu, ret);
1577 goto out_destroy_policy;
1578 }
1579
1580 up_write(&policy->rwsem);
1581
1582 kobject_uevent(&policy->kobj, KOBJ_ADD);
1583
1584 /* Callback for handling stuff after policy is ready */
1585 if (cpufreq_driver->ready)
1586 cpufreq_driver->ready(policy);
1587
1588 /* Register cpufreq cooling only for a new policy */
1589 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1590 policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592 pr_debug("initialization complete\n");
1593
1594 return 0;
1595
1596out_destroy_policy:
1597 for_each_cpu(j, policy->real_cpus)
1598 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1599
1600out_offline_policy:
1601 if (cpufreq_driver->offline)
1602 cpufreq_driver->offline(policy);
1603
1604out_exit_policy:
1605 if (cpufreq_driver->exit)
1606 cpufreq_driver->exit(policy);
1607
1608out_free_policy:
1609 cpumask_clear(policy->cpus);
1610 up_write(&policy->rwsem);
1611
1612 cpufreq_policy_free(policy);
1613 return ret;
1614}
1615
1616/**
1617 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618 * @dev: CPU device.
1619 * @sif: Subsystem interface structure pointer (not used)
1620 */
1621static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622{
1623 struct cpufreq_policy *policy;
1624 unsigned cpu = dev->id;
1625 int ret;
1626
1627 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1628
1629 if (cpu_online(cpu)) {
1630 ret = cpufreq_online(cpu);
1631 if (ret)
1632 return ret;
1633 }
1634
1635 /* Create sysfs link on CPU registration */
1636 policy = per_cpu(cpufreq_cpu_data, cpu);
1637 if (policy)
1638 add_cpu_dev_symlink(policy, cpu, dev);
1639
1640 return 0;
1641}
1642
1643static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1644{
1645 int ret;
1646
1647 if (has_target())
1648 cpufreq_stop_governor(policy);
1649
1650 cpumask_clear_cpu(cpu, policy->cpus);
1651
1652 if (!policy_is_inactive(policy)) {
1653 /* Nominate a new CPU if necessary. */
1654 if (cpu == policy->cpu)
1655 policy->cpu = cpumask_any(policy->cpus);
1656
1657 /* Start the governor again for the active policy. */
1658 if (has_target()) {
1659 ret = cpufreq_start_governor(policy);
1660 if (ret)
1661 pr_err("%s: Failed to start governor\n", __func__);
1662 }
1663
1664 return;
1665 }
1666
1667 if (has_target())
1668 strscpy(policy->last_governor, policy->governor->name,
1669 CPUFREQ_NAME_LEN);
1670 else
1671 policy->last_policy = policy->policy;
1672
1673 if (has_target())
1674 cpufreq_exit_governor(policy);
1675
1676 /*
1677 * Perform the ->offline() during light-weight tear-down, as
1678 * that allows fast recovery when the CPU comes back.
1679 */
1680 if (cpufreq_driver->offline) {
1681 cpufreq_driver->offline(policy);
1682 return;
1683 }
1684
1685 if (cpufreq_driver->exit)
1686 cpufreq_driver->exit(policy);
1687
1688 policy->freq_table = NULL;
1689}
1690
1691static int cpufreq_offline(unsigned int cpu)
1692{
1693 struct cpufreq_policy *policy;
1694
1695 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1696
1697 policy = cpufreq_cpu_get_raw(cpu);
1698 if (!policy) {
1699 pr_debug("%s: No cpu_data found\n", __func__);
1700 return 0;
1701 }
1702
1703 down_write(&policy->rwsem);
1704
1705 __cpufreq_offline(cpu, policy);
1706
1707 up_write(&policy->rwsem);
1708 return 0;
1709}
1710
1711/*
1712 * cpufreq_remove_dev - remove a CPU device
1713 *
1714 * Removes the cpufreq interface for a CPU device.
1715 */
1716static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1717{
1718 unsigned int cpu = dev->id;
1719 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1720
1721 if (!policy)
1722 return;
1723
1724 down_write(&policy->rwsem);
1725
1726 if (cpu_online(cpu))
1727 __cpufreq_offline(cpu, policy);
1728
1729 remove_cpu_dev_symlink(policy, cpu, dev);
1730
1731 if (!cpumask_empty(policy->real_cpus)) {
1732 up_write(&policy->rwsem);
1733 return;
1734 }
1735
1736 /*
1737 * Unregister cpufreq cooling once all the CPUs of the policy are
1738 * removed.
1739 */
1740 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1741 cpufreq_cooling_unregister(policy->cdev);
1742 policy->cdev = NULL;
1743 }
1744
1745 /* We did light-weight exit earlier, do full tear down now */
1746 if (cpufreq_driver->offline && cpufreq_driver->exit)
1747 cpufreq_driver->exit(policy);
1748
1749 up_write(&policy->rwsem);
1750
1751 cpufreq_policy_free(policy);
1752}
1753
1754/**
1755 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1756 * @policy: Policy managing CPUs.
1757 * @new_freq: New CPU frequency.
1758 *
1759 * Adjust to the current frequency first and clean up later by either calling
1760 * cpufreq_update_policy(), or scheduling handle_update().
1761 */
1762static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1763 unsigned int new_freq)
1764{
1765 struct cpufreq_freqs freqs;
1766
1767 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1768 policy->cur, new_freq);
1769
1770 freqs.old = policy->cur;
1771 freqs.new = new_freq;
1772
1773 cpufreq_freq_transition_begin(policy, &freqs);
1774 cpufreq_freq_transition_end(policy, &freqs, 0);
1775}
1776
1777static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1778{
1779 unsigned int new_freq;
1780
1781 new_freq = cpufreq_driver->get(policy->cpu);
1782 if (!new_freq)
1783 return 0;
1784
1785 /*
1786 * If fast frequency switching is used with the given policy, the check
1787 * against policy->cur is pointless, so skip it in that case.
1788 */
1789 if (policy->fast_switch_enabled || !has_target())
1790 return new_freq;
1791
1792 if (policy->cur != new_freq) {
1793 /*
1794 * For some platforms, the frequency returned by hardware may be
1795 * slightly different from what is provided in the frequency
1796 * table, for example hardware may return 499 MHz instead of 500
1797 * MHz. In such cases it is better to avoid getting into
1798 * unnecessary frequency updates.
1799 */
1800 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1801 return policy->cur;
1802
1803 cpufreq_out_of_sync(policy, new_freq);
1804 if (update)
1805 schedule_work(&policy->update);
1806 }
1807
1808 return new_freq;
1809}
1810
1811/**
1812 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1813 * @cpu: CPU number
1814 *
1815 * This is the last known freq, without actually getting it from the driver.
1816 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1817 */
1818unsigned int cpufreq_quick_get(unsigned int cpu)
1819{
1820 struct cpufreq_policy *policy;
1821 unsigned int ret_freq = 0;
1822 unsigned long flags;
1823
1824 read_lock_irqsave(&cpufreq_driver_lock, flags);
1825
1826 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1827 ret_freq = cpufreq_driver->get(cpu);
1828 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829 return ret_freq;
1830 }
1831
1832 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1833
1834 policy = cpufreq_cpu_get(cpu);
1835 if (policy) {
1836 ret_freq = policy->cur;
1837 cpufreq_cpu_put(policy);
1838 }
1839
1840 return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get);
1843
1844/**
1845 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1846 * @cpu: CPU number
1847 *
1848 * Just return the max possible frequency for a given CPU.
1849 */
1850unsigned int cpufreq_quick_get_max(unsigned int cpu)
1851{
1852 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853 unsigned int ret_freq = 0;
1854
1855 if (policy) {
1856 ret_freq = policy->max;
1857 cpufreq_cpu_put(policy);
1858 }
1859
1860 return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_quick_get_max);
1863
1864/**
1865 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1866 * @cpu: CPU number
1867 *
1868 * The default return value is the max_freq field of cpuinfo.
1869 */
1870__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1871{
1872 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1873 unsigned int ret_freq = 0;
1874
1875 if (policy) {
1876 ret_freq = policy->cpuinfo.max_freq;
1877 cpufreq_cpu_put(policy);
1878 }
1879
1880 return ret_freq;
1881}
1882EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1883
1884static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1885{
1886 if (unlikely(policy_is_inactive(policy)))
1887 return 0;
1888
1889 return cpufreq_verify_current_freq(policy, true);
1890}
1891
1892/**
1893 * cpufreq_get - get the current CPU frequency (in kHz)
1894 * @cpu: CPU number
1895 *
1896 * Get the CPU current (static) CPU frequency
1897 */
1898unsigned int cpufreq_get(unsigned int cpu)
1899{
1900 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1901 unsigned int ret_freq = 0;
1902
1903 if (policy) {
1904 down_read(&policy->rwsem);
1905 if (cpufreq_driver->get)
1906 ret_freq = __cpufreq_get(policy);
1907 up_read(&policy->rwsem);
1908
1909 cpufreq_cpu_put(policy);
1910 }
1911
1912 return ret_freq;
1913}
1914EXPORT_SYMBOL(cpufreq_get);
1915
1916static struct subsys_interface cpufreq_interface = {
1917 .name = "cpufreq",
1918 .subsys = &cpu_subsys,
1919 .add_dev = cpufreq_add_dev,
1920 .remove_dev = cpufreq_remove_dev,
1921};
1922
1923/*
1924 * In case platform wants some specific frequency to be configured
1925 * during suspend..
1926 */
1927int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1928{
1929 int ret;
1930
1931 if (!policy->suspend_freq) {
1932 pr_debug("%s: suspend_freq not defined\n", __func__);
1933 return 0;
1934 }
1935
1936 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1937 policy->suspend_freq);
1938
1939 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1940 CPUFREQ_RELATION_H);
1941 if (ret)
1942 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1943 __func__, policy->suspend_freq, ret);
1944
1945 return ret;
1946}
1947EXPORT_SYMBOL(cpufreq_generic_suspend);
1948
1949/**
1950 * cpufreq_suspend() - Suspend CPUFreq governors.
1951 *
1952 * Called during system wide Suspend/Hibernate cycles for suspending governors
1953 * as some platforms can't change frequency after this point in suspend cycle.
1954 * Because some of the devices (like: i2c, regulators, etc) they use for
1955 * changing frequency are suspended quickly after this point.
1956 */
1957void cpufreq_suspend(void)
1958{
1959 struct cpufreq_policy *policy;
1960
1961 if (!cpufreq_driver)
1962 return;
1963
1964 if (!has_target() && !cpufreq_driver->suspend)
1965 goto suspend;
1966
1967 pr_debug("%s: Suspending Governors\n", __func__);
1968
1969 for_each_active_policy(policy) {
1970 if (has_target()) {
1971 down_write(&policy->rwsem);
1972 cpufreq_stop_governor(policy);
1973 up_write(&policy->rwsem);
1974 }
1975
1976 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1977 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1978 cpufreq_driver->name);
1979 }
1980
1981suspend:
1982 cpufreq_suspended = true;
1983}
1984
1985/**
1986 * cpufreq_resume() - Resume CPUFreq governors.
1987 *
1988 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1989 * are suspended with cpufreq_suspend().
1990 */
1991void cpufreq_resume(void)
1992{
1993 struct cpufreq_policy *policy;
1994 int ret;
1995
1996 if (!cpufreq_driver)
1997 return;
1998
1999 if (unlikely(!cpufreq_suspended))
2000 return;
2001
2002 cpufreq_suspended = false;
2003
2004 if (!has_target() && !cpufreq_driver->resume)
2005 return;
2006
2007 pr_debug("%s: Resuming Governors\n", __func__);
2008
2009 for_each_active_policy(policy) {
2010 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2011 pr_err("%s: Failed to resume driver: %s\n", __func__,
2012 cpufreq_driver->name);
2013 } else if (has_target()) {
2014 down_write(&policy->rwsem);
2015 ret = cpufreq_start_governor(policy);
2016 up_write(&policy->rwsem);
2017
2018 if (ret)
2019 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2020 __func__, policy->cpu);
2021 }
2022 }
2023}
2024
2025/**
2026 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2027 * @flags: Flags to test against the current cpufreq driver's flags.
2028 *
2029 * Assumes that the driver is there, so callers must ensure that this is the
2030 * case.
2031 */
2032bool cpufreq_driver_test_flags(u16 flags)
2033{
2034 return !!(cpufreq_driver->flags & flags);
2035}
2036
2037/**
2038 * cpufreq_get_current_driver - Return the current driver's name.
2039 *
2040 * Return the name string of the currently registered cpufreq driver or NULL if
2041 * none.
2042 */
2043const char *cpufreq_get_current_driver(void)
2044{
2045 if (cpufreq_driver)
2046 return cpufreq_driver->name;
2047
2048 return NULL;
2049}
2050EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2051
2052/**
2053 * cpufreq_get_driver_data - Return current driver data.
2054 *
2055 * Return the private data of the currently registered cpufreq driver, or NULL
2056 * if no cpufreq driver has been registered.
2057 */
2058void *cpufreq_get_driver_data(void)
2059{
2060 if (cpufreq_driver)
2061 return cpufreq_driver->driver_data;
2062
2063 return NULL;
2064}
2065EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2066
2067/*********************************************************************
2068 * NOTIFIER LISTS INTERFACE *
2069 *********************************************************************/
2070
2071/**
2072 * cpufreq_register_notifier - Register a notifier with cpufreq.
2073 * @nb: notifier function to register.
2074 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2075 *
2076 * Add a notifier to one of two lists: either a list of notifiers that run on
2077 * clock rate changes (once before and once after every transition), or a list
2078 * of notifiers that ron on cpufreq policy changes.
2079 *
2080 * This function may sleep and it has the same return values as
2081 * blocking_notifier_chain_register().
2082 */
2083int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2084{
2085 int ret;
2086
2087 if (cpufreq_disabled())
2088 return -EINVAL;
2089
2090 switch (list) {
2091 case CPUFREQ_TRANSITION_NOTIFIER:
2092 mutex_lock(&cpufreq_fast_switch_lock);
2093
2094 if (cpufreq_fast_switch_count > 0) {
2095 mutex_unlock(&cpufreq_fast_switch_lock);
2096 return -EBUSY;
2097 }
2098 ret = srcu_notifier_chain_register(
2099 &cpufreq_transition_notifier_list, nb);
2100 if (!ret)
2101 cpufreq_fast_switch_count--;
2102
2103 mutex_unlock(&cpufreq_fast_switch_lock);
2104 break;
2105 case CPUFREQ_POLICY_NOTIFIER:
2106 ret = blocking_notifier_chain_register(
2107 &cpufreq_policy_notifier_list, nb);
2108 break;
2109 default:
2110 ret = -EINVAL;
2111 }
2112
2113 return ret;
2114}
2115EXPORT_SYMBOL(cpufreq_register_notifier);
2116
2117/**
2118 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2119 * @nb: notifier block to be unregistered.
2120 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2121 *
2122 * Remove a notifier from one of the cpufreq notifier lists.
2123 *
2124 * This function may sleep and it has the same return values as
2125 * blocking_notifier_chain_unregister().
2126 */
2127int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2128{
2129 int ret;
2130
2131 if (cpufreq_disabled())
2132 return -EINVAL;
2133
2134 switch (list) {
2135 case CPUFREQ_TRANSITION_NOTIFIER:
2136 mutex_lock(&cpufreq_fast_switch_lock);
2137
2138 ret = srcu_notifier_chain_unregister(
2139 &cpufreq_transition_notifier_list, nb);
2140 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2141 cpufreq_fast_switch_count++;
2142
2143 mutex_unlock(&cpufreq_fast_switch_lock);
2144 break;
2145 case CPUFREQ_POLICY_NOTIFIER:
2146 ret = blocking_notifier_chain_unregister(
2147 &cpufreq_policy_notifier_list, nb);
2148 break;
2149 default:
2150 ret = -EINVAL;
2151 }
2152
2153 return ret;
2154}
2155EXPORT_SYMBOL(cpufreq_unregister_notifier);
2156
2157
2158/*********************************************************************
2159 * GOVERNORS *
2160 *********************************************************************/
2161
2162/**
2163 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2164 * @policy: cpufreq policy to switch the frequency for.
2165 * @target_freq: New frequency to set (may be approximate).
2166 *
2167 * Carry out a fast frequency switch without sleeping.
2168 *
2169 * The driver's ->fast_switch() callback invoked by this function must be
2170 * suitable for being called from within RCU-sched read-side critical sections
2171 * and it is expected to select the minimum available frequency greater than or
2172 * equal to @target_freq (CPUFREQ_RELATION_L).
2173 *
2174 * This function must not be called if policy->fast_switch_enabled is unset.
2175 *
2176 * Governors calling this function must guarantee that it will never be invoked
2177 * twice in parallel for the same policy and that it will never be called in
2178 * parallel with either ->target() or ->target_index() for the same policy.
2179 *
2180 * Returns the actual frequency set for the CPU.
2181 *
2182 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2183 * error condition, the hardware configuration must be preserved.
2184 */
2185unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2186 unsigned int target_freq)
2187{
2188 unsigned int freq;
2189 int cpu;
2190
2191 target_freq = clamp_val(target_freq, policy->min, policy->max);
2192 freq = cpufreq_driver->fast_switch(policy, target_freq);
2193
2194 if (!freq)
2195 return 0;
2196
2197 policy->cur = freq;
2198 arch_set_freq_scale(policy->related_cpus, freq,
2199 arch_scale_freq_ref(policy->cpu));
2200 cpufreq_stats_record_transition(policy, freq);
2201
2202 if (trace_cpu_frequency_enabled()) {
2203 for_each_cpu(cpu, policy->cpus)
2204 trace_cpu_frequency(freq, cpu);
2205 }
2206
2207 return freq;
2208}
2209EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2210
2211/**
2212 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2213 * @cpu: Target CPU.
2214 * @min_perf: Minimum (required) performance level (units of @capacity).
2215 * @target_perf: Target (desired) performance level (units of @capacity).
2216 * @capacity: Capacity of the target CPU.
2217 *
2218 * Carry out a fast performance level switch of @cpu without sleeping.
2219 *
2220 * The driver's ->adjust_perf() callback invoked by this function must be
2221 * suitable for being called from within RCU-sched read-side critical sections
2222 * and it is expected to select a suitable performance level equal to or above
2223 * @min_perf and preferably equal to or below @target_perf.
2224 *
2225 * This function must not be called if policy->fast_switch_enabled is unset.
2226 *
2227 * Governors calling this function must guarantee that it will never be invoked
2228 * twice in parallel for the same CPU and that it will never be called in
2229 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2230 * the same CPU.
2231 */
2232void cpufreq_driver_adjust_perf(unsigned int cpu,
2233 unsigned long min_perf,
2234 unsigned long target_perf,
2235 unsigned long capacity)
2236{
2237 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2238}
2239
2240/**
2241 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2242 *
2243 * Return 'true' if the ->adjust_perf callback is present for the
2244 * current driver or 'false' otherwise.
2245 */
2246bool cpufreq_driver_has_adjust_perf(void)
2247{
2248 return !!cpufreq_driver->adjust_perf;
2249}
2250
2251/* Must set freqs->new to intermediate frequency */
2252static int __target_intermediate(struct cpufreq_policy *policy,
2253 struct cpufreq_freqs *freqs, int index)
2254{
2255 int ret;
2256
2257 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2258
2259 /* We don't need to switch to intermediate freq */
2260 if (!freqs->new)
2261 return 0;
2262
2263 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2264 __func__, policy->cpu, freqs->old, freqs->new);
2265
2266 cpufreq_freq_transition_begin(policy, freqs);
2267 ret = cpufreq_driver->target_intermediate(policy, index);
2268 cpufreq_freq_transition_end(policy, freqs, ret);
2269
2270 if (ret)
2271 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2272 __func__, ret);
2273
2274 return ret;
2275}
2276
2277static int __target_index(struct cpufreq_policy *policy, int index)
2278{
2279 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2280 unsigned int restore_freq, intermediate_freq = 0;
2281 unsigned int newfreq = policy->freq_table[index].frequency;
2282 int retval = -EINVAL;
2283 bool notify;
2284
2285 if (newfreq == policy->cur)
2286 return 0;
2287
2288 /* Save last value to restore later on errors */
2289 restore_freq = policy->cur;
2290
2291 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2292 if (notify) {
2293 /* Handle switching to intermediate frequency */
2294 if (cpufreq_driver->get_intermediate) {
2295 retval = __target_intermediate(policy, &freqs, index);
2296 if (retval)
2297 return retval;
2298
2299 intermediate_freq = freqs.new;
2300 /* Set old freq to intermediate */
2301 if (intermediate_freq)
2302 freqs.old = freqs.new;
2303 }
2304
2305 freqs.new = newfreq;
2306 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2307 __func__, policy->cpu, freqs.old, freqs.new);
2308
2309 cpufreq_freq_transition_begin(policy, &freqs);
2310 }
2311
2312 retval = cpufreq_driver->target_index(policy, index);
2313 if (retval)
2314 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2315 retval);
2316
2317 if (notify) {
2318 cpufreq_freq_transition_end(policy, &freqs, retval);
2319
2320 /*
2321 * Failed after setting to intermediate freq? Driver should have
2322 * reverted back to initial frequency and so should we. Check
2323 * here for intermediate_freq instead of get_intermediate, in
2324 * case we haven't switched to intermediate freq at all.
2325 */
2326 if (unlikely(retval && intermediate_freq)) {
2327 freqs.old = intermediate_freq;
2328 freqs.new = restore_freq;
2329 cpufreq_freq_transition_begin(policy, &freqs);
2330 cpufreq_freq_transition_end(policy, &freqs, 0);
2331 }
2332 }
2333
2334 return retval;
2335}
2336
2337int __cpufreq_driver_target(struct cpufreq_policy *policy,
2338 unsigned int target_freq,
2339 unsigned int relation)
2340{
2341 unsigned int old_target_freq = target_freq;
2342
2343 if (cpufreq_disabled())
2344 return -ENODEV;
2345
2346 target_freq = __resolve_freq(policy, target_freq, relation);
2347
2348 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2349 policy->cpu, target_freq, relation, old_target_freq);
2350
2351 /*
2352 * This might look like a redundant call as we are checking it again
2353 * after finding index. But it is left intentionally for cases where
2354 * exactly same freq is called again and so we can save on few function
2355 * calls.
2356 */
2357 if (target_freq == policy->cur &&
2358 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2359 return 0;
2360
2361 if (cpufreq_driver->target) {
2362 /*
2363 * If the driver hasn't setup a single inefficient frequency,
2364 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2365 */
2366 if (!policy->efficiencies_available)
2367 relation &= ~CPUFREQ_RELATION_E;
2368
2369 return cpufreq_driver->target(policy, target_freq, relation);
2370 }
2371
2372 if (!cpufreq_driver->target_index)
2373 return -EINVAL;
2374
2375 return __target_index(policy, policy->cached_resolved_idx);
2376}
2377EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2378
2379int cpufreq_driver_target(struct cpufreq_policy *policy,
2380 unsigned int target_freq,
2381 unsigned int relation)
2382{
2383 int ret;
2384
2385 down_write(&policy->rwsem);
2386
2387 ret = __cpufreq_driver_target(policy, target_freq, relation);
2388
2389 up_write(&policy->rwsem);
2390
2391 return ret;
2392}
2393EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2394
2395__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2396{
2397 return NULL;
2398}
2399
2400static int cpufreq_init_governor(struct cpufreq_policy *policy)
2401{
2402 int ret;
2403
2404 /* Don't start any governor operations if we are entering suspend */
2405 if (cpufreq_suspended)
2406 return 0;
2407 /*
2408 * Governor might not be initiated here if ACPI _PPC changed
2409 * notification happened, so check it.
2410 */
2411 if (!policy->governor)
2412 return -EINVAL;
2413
2414 /* Platform doesn't want dynamic frequency switching ? */
2415 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2416 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2417 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2418
2419 if (gov) {
2420 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2421 policy->governor->name, gov->name);
2422 policy->governor = gov;
2423 } else {
2424 return -EINVAL;
2425 }
2426 }
2427
2428 if (!try_module_get(policy->governor->owner))
2429 return -EINVAL;
2430
2431 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433 if (policy->governor->init) {
2434 ret = policy->governor->init(policy);
2435 if (ret) {
2436 module_put(policy->governor->owner);
2437 return ret;
2438 }
2439 }
2440
2441 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2442
2443 return 0;
2444}
2445
2446static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2447{
2448 if (cpufreq_suspended || !policy->governor)
2449 return;
2450
2451 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2452
2453 if (policy->governor->exit)
2454 policy->governor->exit(policy);
2455
2456 module_put(policy->governor->owner);
2457}
2458
2459int cpufreq_start_governor(struct cpufreq_policy *policy)
2460{
2461 int ret;
2462
2463 if (cpufreq_suspended)
2464 return 0;
2465
2466 if (!policy->governor)
2467 return -EINVAL;
2468
2469 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471 if (cpufreq_driver->get)
2472 cpufreq_verify_current_freq(policy, false);
2473
2474 if (policy->governor->start) {
2475 ret = policy->governor->start(policy);
2476 if (ret)
2477 return ret;
2478 }
2479
2480 if (policy->governor->limits)
2481 policy->governor->limits(policy);
2482
2483 return 0;
2484}
2485
2486void cpufreq_stop_governor(struct cpufreq_policy *policy)
2487{
2488 if (cpufreq_suspended || !policy->governor)
2489 return;
2490
2491 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2492
2493 if (policy->governor->stop)
2494 policy->governor->stop(policy);
2495}
2496
2497static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2498{
2499 if (cpufreq_suspended || !policy->governor)
2500 return;
2501
2502 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2503
2504 if (policy->governor->limits)
2505 policy->governor->limits(policy);
2506}
2507
2508int cpufreq_register_governor(struct cpufreq_governor *governor)
2509{
2510 int err;
2511
2512 if (!governor)
2513 return -EINVAL;
2514
2515 if (cpufreq_disabled())
2516 return -ENODEV;
2517
2518 mutex_lock(&cpufreq_governor_mutex);
2519
2520 err = -EBUSY;
2521 if (!find_governor(governor->name)) {
2522 err = 0;
2523 list_add(&governor->governor_list, &cpufreq_governor_list);
2524 }
2525
2526 mutex_unlock(&cpufreq_governor_mutex);
2527 return err;
2528}
2529EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2530
2531void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2532{
2533 struct cpufreq_policy *policy;
2534 unsigned long flags;
2535
2536 if (!governor)
2537 return;
2538
2539 if (cpufreq_disabled())
2540 return;
2541
2542 /* clear last_governor for all inactive policies */
2543 read_lock_irqsave(&cpufreq_driver_lock, flags);
2544 for_each_inactive_policy(policy) {
2545 if (!strcmp(policy->last_governor, governor->name)) {
2546 policy->governor = NULL;
2547 strcpy(policy->last_governor, "\0");
2548 }
2549 }
2550 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2551
2552 mutex_lock(&cpufreq_governor_mutex);
2553 list_del(&governor->governor_list);
2554 mutex_unlock(&cpufreq_governor_mutex);
2555}
2556EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2557
2558
2559/*********************************************************************
2560 * POLICY INTERFACE *
2561 *********************************************************************/
2562
2563/**
2564 * cpufreq_get_policy - get the current cpufreq_policy
2565 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2566 * is written
2567 * @cpu: CPU to find the policy for
2568 *
2569 * Reads the current cpufreq policy.
2570 */
2571int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2572{
2573 struct cpufreq_policy *cpu_policy;
2574 if (!policy)
2575 return -EINVAL;
2576
2577 cpu_policy = cpufreq_cpu_get(cpu);
2578 if (!cpu_policy)
2579 return -EINVAL;
2580
2581 memcpy(policy, cpu_policy, sizeof(*policy));
2582
2583 cpufreq_cpu_put(cpu_policy);
2584 return 0;
2585}
2586EXPORT_SYMBOL(cpufreq_get_policy);
2587
2588/**
2589 * cpufreq_set_policy - Modify cpufreq policy parameters.
2590 * @policy: Policy object to modify.
2591 * @new_gov: Policy governor pointer.
2592 * @new_pol: Policy value (for drivers with built-in governors).
2593 *
2594 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2595 * limits to be set for the policy, update @policy with the verified limits
2596 * values and either invoke the driver's ->setpolicy() callback (if present) or
2597 * carry out a governor update for @policy. That is, run the current governor's
2598 * ->limits() callback (if @new_gov points to the same object as the one in
2599 * @policy) or replace the governor for @policy with @new_gov.
2600 *
2601 * The cpuinfo part of @policy is not updated by this function.
2602 */
2603static int cpufreq_set_policy(struct cpufreq_policy *policy,
2604 struct cpufreq_governor *new_gov,
2605 unsigned int new_pol)
2606{
2607 struct cpufreq_policy_data new_data;
2608 struct cpufreq_governor *old_gov;
2609 int ret;
2610
2611 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2612 new_data.freq_table = policy->freq_table;
2613 new_data.cpu = policy->cpu;
2614 /*
2615 * PM QoS framework collects all the requests from users and provide us
2616 * the final aggregated value here.
2617 */
2618 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2619 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2620
2621 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2622 new_data.cpu, new_data.min, new_data.max);
2623
2624 /*
2625 * Verify that the CPU speed can be set within these limits and make sure
2626 * that min <= max.
2627 */
2628 ret = cpufreq_driver->verify(&new_data);
2629 if (ret)
2630 return ret;
2631
2632 /*
2633 * Resolve policy min/max to available frequencies. It ensures
2634 * no frequency resolution will neither overshoot the requested maximum
2635 * nor undershoot the requested minimum.
2636 */
2637 policy->min = new_data.min;
2638 policy->max = new_data.max;
2639 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2640 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2641 trace_cpu_frequency_limits(policy);
2642
2643 policy->cached_target_freq = UINT_MAX;
2644
2645 pr_debug("new min and max freqs are %u - %u kHz\n",
2646 policy->min, policy->max);
2647
2648 if (cpufreq_driver->setpolicy) {
2649 policy->policy = new_pol;
2650 pr_debug("setting range\n");
2651 return cpufreq_driver->setpolicy(policy);
2652 }
2653
2654 if (new_gov == policy->governor) {
2655 pr_debug("governor limits update\n");
2656 cpufreq_governor_limits(policy);
2657 return 0;
2658 }
2659
2660 pr_debug("governor switch\n");
2661
2662 /* save old, working values */
2663 old_gov = policy->governor;
2664 /* end old governor */
2665 if (old_gov) {
2666 cpufreq_stop_governor(policy);
2667 cpufreq_exit_governor(policy);
2668 }
2669
2670 /* start new governor */
2671 policy->governor = new_gov;
2672 ret = cpufreq_init_governor(policy);
2673 if (!ret) {
2674 ret = cpufreq_start_governor(policy);
2675 if (!ret) {
2676 pr_debug("governor change\n");
2677 return 0;
2678 }
2679 cpufreq_exit_governor(policy);
2680 }
2681
2682 /* new governor failed, so re-start old one */
2683 pr_debug("starting governor %s failed\n", policy->governor->name);
2684 if (old_gov) {
2685 policy->governor = old_gov;
2686 if (cpufreq_init_governor(policy))
2687 policy->governor = NULL;
2688 else
2689 cpufreq_start_governor(policy);
2690 }
2691
2692 return ret;
2693}
2694
2695/**
2696 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2697 * @cpu: CPU to re-evaluate the policy for.
2698 *
2699 * Update the current frequency for the cpufreq policy of @cpu and use
2700 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2701 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2702 * for the policy in question, among other things.
2703 */
2704void cpufreq_update_policy(unsigned int cpu)
2705{
2706 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2707
2708 if (!policy)
2709 return;
2710
2711 /*
2712 * BIOS might change freq behind our back
2713 * -> ask driver for current freq and notify governors about a change
2714 */
2715 if (cpufreq_driver->get && has_target() &&
2716 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2717 goto unlock;
2718
2719 refresh_frequency_limits(policy);
2720
2721unlock:
2722 cpufreq_cpu_release(policy);
2723}
2724EXPORT_SYMBOL(cpufreq_update_policy);
2725
2726/**
2727 * cpufreq_update_limits - Update policy limits for a given CPU.
2728 * @cpu: CPU to update the policy limits for.
2729 *
2730 * Invoke the driver's ->update_limits callback if present or call
2731 * cpufreq_update_policy() for @cpu.
2732 */
2733void cpufreq_update_limits(unsigned int cpu)
2734{
2735 if (cpufreq_driver->update_limits)
2736 cpufreq_driver->update_limits(cpu);
2737 else
2738 cpufreq_update_policy(cpu);
2739}
2740EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2741
2742/*********************************************************************
2743 * BOOST *
2744 *********************************************************************/
2745static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2746{
2747 int ret;
2748
2749 if (!policy->freq_table)
2750 return -ENXIO;
2751
2752 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2753 if (ret) {
2754 pr_err("%s: Policy frequency update failed\n", __func__);
2755 return ret;
2756 }
2757
2758 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2759 if (ret < 0)
2760 return ret;
2761
2762 return 0;
2763}
2764
2765int cpufreq_boost_trigger_state(int state)
2766{
2767 struct cpufreq_policy *policy;
2768 unsigned long flags;
2769 int ret = 0;
2770
2771 if (cpufreq_driver->boost_enabled == state)
2772 return 0;
2773
2774 write_lock_irqsave(&cpufreq_driver_lock, flags);
2775 cpufreq_driver->boost_enabled = state;
2776 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2777
2778 cpus_read_lock();
2779 for_each_active_policy(policy) {
2780 policy->boost_enabled = state;
2781 ret = cpufreq_driver->set_boost(policy, state);
2782 if (ret) {
2783 policy->boost_enabled = !policy->boost_enabled;
2784 goto err_reset_state;
2785 }
2786 }
2787 cpus_read_unlock();
2788
2789 return 0;
2790
2791err_reset_state:
2792 cpus_read_unlock();
2793
2794 write_lock_irqsave(&cpufreq_driver_lock, flags);
2795 cpufreq_driver->boost_enabled = !state;
2796 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2797
2798 pr_err("%s: Cannot %s BOOST\n",
2799 __func__, state ? "enable" : "disable");
2800
2801 return ret;
2802}
2803
2804static bool cpufreq_boost_supported(void)
2805{
2806 return cpufreq_driver->set_boost;
2807}
2808
2809static int create_boost_sysfs_file(void)
2810{
2811 int ret;
2812
2813 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2814 if (ret)
2815 pr_err("%s: cannot register global BOOST sysfs file\n",
2816 __func__);
2817
2818 return ret;
2819}
2820
2821static void remove_boost_sysfs_file(void)
2822{
2823 if (cpufreq_boost_supported())
2824 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2825}
2826
2827int cpufreq_enable_boost_support(void)
2828{
2829 if (!cpufreq_driver)
2830 return -EINVAL;
2831
2832 if (cpufreq_boost_supported())
2833 return 0;
2834
2835 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2836
2837 /* This will get removed on driver unregister */
2838 return create_boost_sysfs_file();
2839}
2840EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2841
2842int cpufreq_boost_enabled(void)
2843{
2844 return cpufreq_driver->boost_enabled;
2845}
2846EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2847
2848/*********************************************************************
2849 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2850 *********************************************************************/
2851static enum cpuhp_state hp_online;
2852
2853static int cpuhp_cpufreq_online(unsigned int cpu)
2854{
2855 cpufreq_online(cpu);
2856
2857 return 0;
2858}
2859
2860static int cpuhp_cpufreq_offline(unsigned int cpu)
2861{
2862 cpufreq_offline(cpu);
2863
2864 return 0;
2865}
2866
2867/**
2868 * cpufreq_register_driver - register a CPU Frequency driver
2869 * @driver_data: A struct cpufreq_driver containing the values#
2870 * submitted by the CPU Frequency driver.
2871 *
2872 * Registers a CPU Frequency driver to this core code. This code
2873 * returns zero on success, -EEXIST when another driver got here first
2874 * (and isn't unregistered in the meantime).
2875 *
2876 */
2877int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2878{
2879 unsigned long flags;
2880 int ret;
2881
2882 if (cpufreq_disabled())
2883 return -ENODEV;
2884
2885 /*
2886 * The cpufreq core depends heavily on the availability of device
2887 * structure, make sure they are available before proceeding further.
2888 */
2889 if (!get_cpu_device(0))
2890 return -EPROBE_DEFER;
2891
2892 if (!driver_data || !driver_data->verify || !driver_data->init ||
2893 !(driver_data->setpolicy || driver_data->target_index ||
2894 driver_data->target) ||
2895 (driver_data->setpolicy && (driver_data->target_index ||
2896 driver_data->target)) ||
2897 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2898 (!driver_data->online != !driver_data->offline) ||
2899 (driver_data->adjust_perf && !driver_data->fast_switch))
2900 return -EINVAL;
2901
2902 pr_debug("trying to register driver %s\n", driver_data->name);
2903
2904 /* Protect against concurrent CPU online/offline. */
2905 cpus_read_lock();
2906
2907 write_lock_irqsave(&cpufreq_driver_lock, flags);
2908 if (cpufreq_driver) {
2909 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2910 ret = -EEXIST;
2911 goto out;
2912 }
2913 cpufreq_driver = driver_data;
2914 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2915
2916 /*
2917 * Mark support for the scheduler's frequency invariance engine for
2918 * drivers that implement target(), target_index() or fast_switch().
2919 */
2920 if (!cpufreq_driver->setpolicy) {
2921 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2922 pr_debug("supports frequency invariance");
2923 }
2924
2925 if (driver_data->setpolicy)
2926 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2927
2928 if (cpufreq_boost_supported()) {
2929 ret = create_boost_sysfs_file();
2930 if (ret)
2931 goto err_null_driver;
2932 }
2933
2934 ret = subsys_interface_register(&cpufreq_interface);
2935 if (ret)
2936 goto err_boost_unreg;
2937
2938 if (unlikely(list_empty(&cpufreq_policy_list))) {
2939 /* if all ->init() calls failed, unregister */
2940 ret = -ENODEV;
2941 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2942 driver_data->name);
2943 goto err_if_unreg;
2944 }
2945
2946 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2947 "cpufreq:online",
2948 cpuhp_cpufreq_online,
2949 cpuhp_cpufreq_offline);
2950 if (ret < 0)
2951 goto err_if_unreg;
2952 hp_online = ret;
2953 ret = 0;
2954
2955 pr_debug("driver %s up and running\n", driver_data->name);
2956 goto out;
2957
2958err_if_unreg:
2959 subsys_interface_unregister(&cpufreq_interface);
2960err_boost_unreg:
2961 remove_boost_sysfs_file();
2962err_null_driver:
2963 write_lock_irqsave(&cpufreq_driver_lock, flags);
2964 cpufreq_driver = NULL;
2965 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2966out:
2967 cpus_read_unlock();
2968 return ret;
2969}
2970EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2971
2972/*
2973 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2974 *
2975 * Unregister the current CPUFreq driver. Only call this if you have
2976 * the right to do so, i.e. if you have succeeded in initialising before!
2977 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2978 * currently not initialised.
2979 */
2980void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2981{
2982 unsigned long flags;
2983
2984 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2985 return;
2986
2987 pr_debug("unregistering driver %s\n", driver->name);
2988
2989 /* Protect against concurrent cpu hotplug */
2990 cpus_read_lock();
2991 subsys_interface_unregister(&cpufreq_interface);
2992 remove_boost_sysfs_file();
2993 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2994 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2995
2996 write_lock_irqsave(&cpufreq_driver_lock, flags);
2997
2998 cpufreq_driver = NULL;
2999
3000 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3001 cpus_read_unlock();
3002}
3003EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3004
3005static int __init cpufreq_core_init(void)
3006{
3007 struct cpufreq_governor *gov = cpufreq_default_governor();
3008 struct device *dev_root;
3009
3010 if (cpufreq_disabled())
3011 return -ENODEV;
3012
3013 dev_root = bus_get_dev_root(&cpu_subsys);
3014 if (dev_root) {
3015 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3016 put_device(dev_root);
3017 }
3018 BUG_ON(!cpufreq_global_kobject);
3019
3020 if (!strlen(default_governor))
3021 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3022
3023 return 0;
3024}
3025module_param(off, int, 0444);
3026module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3027core_initcall(cpufreq_core_init);