Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 
 
 16
 17unsigned long blk_max_low_pfn;
 18EXPORT_SYMBOL(blk_max_low_pfn);
 19
 20unsigned long blk_max_pfn;
 21
 22/**
 23 * blk_queue_prep_rq - set a prepare_request function for queue
 24 * @q:		queue
 25 * @pfn:	prepare_request function
 26 *
 27 * It's possible for a queue to register a prepare_request callback which
 28 * is invoked before the request is handed to the request_fn. The goal of
 29 * the function is to prepare a request for I/O, it can be used to build a
 30 * cdb from the request data for instance.
 31 *
 32 */
 33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 34{
 35	q->prep_rq_fn = pfn;
 36}
 37EXPORT_SYMBOL(blk_queue_prep_rq);
 38
 39/**
 40 * blk_queue_unprep_rq - set an unprepare_request function for queue
 41 * @q:		queue
 42 * @ufn:	unprepare_request function
 43 *
 44 * It's possible for a queue to register an unprepare_request callback
 45 * which is invoked before the request is finally completed. The goal
 46 * of the function is to deallocate any data that was allocated in the
 47 * prepare_request callback.
 48 *
 
 
 49 */
 50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 51{
 52	q->unprep_rq_fn = ufn;
 53}
 54EXPORT_SYMBOL(blk_queue_unprep_rq);
 
 
 
 
 55
 56/**
 57 * blk_queue_merge_bvec - set a merge_bvec function for queue
 58 * @q:		queue
 59 * @mbfn:	merge_bvec_fn
 60 *
 61 * Usually queues have static limitations on the max sectors or segments that
 62 * we can put in a request. Stacking drivers may have some settings that
 63 * are dynamic, and thus we have to query the queue whether it is ok to
 64 * add a new bio_vec to a bio at a given offset or not. If the block device
 65 * has such limitations, it needs to register a merge_bvec_fn to control
 66 * the size of bio's sent to it. Note that a block device *must* allow a
 67 * single page to be added to an empty bio. The block device driver may want
 68 * to use the bio_split() function to deal with these bio's. By default
 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 70 * honored.
 71 */
 72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
 73{
 74	q->merge_bvec_fn = mbfn;
 75}
 76EXPORT_SYMBOL(blk_queue_merge_bvec);
 77
 78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 
 79{
 80	q->softirq_done_fn = fn;
 
 
 
 
 
 81}
 82EXPORT_SYMBOL(blk_queue_softirq_done);
 83
 84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 85{
 86	q->rq_timeout = timeout;
 87}
 88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 
 
 
 
 
 89
 90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 91{
 92	q->rq_timed_out_fn = fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93}
 94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 95
 96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 
 
 
 
 97{
 98	q->lld_busy_fn = fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102/**
103 * blk_set_default_limits - reset limits to default values
104 * @lim:  the queue_limits structure to reset
105 *
106 * Description:
107 *   Returns a queue_limit struct to its default state.
108 */
109void blk_set_default_limits(struct queue_limits *lim)
110{
111	lim->max_segments = BLK_MAX_SEGMENTS;
112	lim->max_integrity_segments = 0;
113	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116	lim->max_write_same_sectors = 0;
117	lim->max_discard_sectors = 0;
118	lim->discard_granularity = 0;
119	lim->discard_alignment = 0;
120	lim->discard_misaligned = 0;
121	lim->discard_zeroes_data = 0;
122	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
123	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
124	lim->alignment_offset = 0;
125	lim->io_opt = 0;
126	lim->misaligned = 0;
127	lim->cluster = 1;
128}
129EXPORT_SYMBOL(blk_set_default_limits);
130
131/**
132 * blk_set_stacking_limits - set default limits for stacking devices
133 * @lim:  the queue_limits structure to reset
 
134 *
135 * Description:
136 *   Returns a queue_limit struct to its default state. Should be used
137 *   by stacking drivers like DM that have no internal limits.
 
138 */
139void blk_set_stacking_limits(struct queue_limits *lim)
140{
141	blk_set_default_limits(lim);
142
143	/* Inherit limits from component devices */
144	lim->discard_zeroes_data = 1;
145	lim->max_segments = USHRT_MAX;
146	lim->max_hw_sectors = UINT_MAX;
147	lim->max_segment_size = UINT_MAX;
148	lim->max_sectors = UINT_MAX;
149	lim->max_write_same_sectors = UINT_MAX;
 
 
150}
151EXPORT_SYMBOL(blk_set_stacking_limits);
152
153/**
154 * blk_queue_make_request - define an alternate make_request function for a device
155 * @q:  the request queue for the device to be affected
156 * @mfn: the alternate make_request function
157 *
158 * Description:
159 *    The normal way for &struct bios to be passed to a device
160 *    driver is for them to be collected into requests on a request
161 *    queue, and then to allow the device driver to select requests
162 *    off that queue when it is ready.  This works well for many block
163 *    devices. However some block devices (typically virtual devices
164 *    such as md or lvm) do not benefit from the processing on the
165 *    request queue, and are served best by having the requests passed
166 *    directly to them.  This can be achieved by providing a function
167 *    to blk_queue_make_request().
168 *
169 * Caveat:
170 *    The driver that does this *must* be able to deal appropriately
171 *    with buffers in "highmemory". This can be accomplished by either calling
172 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
173 *    blk_queue_bounce() to create a buffer in normal memory.
174 **/
175void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
176{
177	/*
178	 * set defaults
179	 */
180	q->nr_requests = BLKDEV_MAX_RQ;
181
182	q->make_request_fn = mfn;
183	blk_queue_dma_alignment(q, 511);
184	blk_queue_congestion_threshold(q);
185	q->nr_batching = BLK_BATCH_REQ;
186
187	blk_set_default_limits(&q->limits);
188
189	/*
190	 * by default assume old behaviour and bounce for any highmem page
191	 */
192	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
193}
194EXPORT_SYMBOL(blk_queue_make_request);
195
196/**
197 * blk_queue_bounce_limit - set bounce buffer limit for queue
198 * @q: the request queue for the device
199 * @max_addr: the maximum address the device can handle
200 *
201 * Description:
202 *    Different hardware can have different requirements as to what pages
203 *    it can do I/O directly to. A low level driver can call
204 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
205 *    buffers for doing I/O to pages residing above @max_addr.
206 **/
207void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
208{
209	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
210	int dma = 0;
211
212	q->bounce_gfp = GFP_NOIO;
213#if BITS_PER_LONG == 64
214	/*
215	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
216	 * some IOMMUs can handle everything, but I don't know of a
217	 * way to test this here.
218	 */
219	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
220		dma = 1;
221	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
222#else
223	if (b_pfn < blk_max_low_pfn)
224		dma = 1;
225	q->limits.bounce_pfn = b_pfn;
226#endif
227	if (dma) {
228		init_emergency_isa_pool();
229		q->bounce_gfp = GFP_NOIO | GFP_DMA;
230		q->limits.bounce_pfn = b_pfn;
231	}
232}
233EXPORT_SYMBOL(blk_queue_bounce_limit);
234
235/**
236 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
237 * @limits: the queue limits
238 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
239 *
240 * Description:
241 *    Enables a low level driver to set a hard upper limit,
242 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
243 *    the device driver based upon the combined capabilities of I/O
244 *    controller and storage device.
 
 
 
245 *
246 *    max_sectors is a soft limit imposed by the block layer for
247 *    filesystem type requests.  This value can be overridden on a
248 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
249 *    The soft limit can not exceed max_hw_sectors.
250 **/
251void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
252{
253	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
254		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
255		printk(KERN_INFO "%s: set to minimum %d\n",
256		       __func__, max_hw_sectors);
 
 
257	}
258
 
 
259	limits->max_hw_sectors = max_hw_sectors;
260	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
261				    BLK_DEF_MAX_SECTORS);
 
 
 
 
 
 
 
 
 
 
 
 
 
262}
263EXPORT_SYMBOL(blk_limits_max_hw_sectors);
264
265/**
266 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
267 * @q:  the request queue for the device
268 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
269 *
270 * Description:
271 *    See description for blk_limits_max_hw_sectors().
 
 
 
 
272 **/
273void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
274{
275	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
276}
277EXPORT_SYMBOL(blk_queue_max_hw_sectors);
278
279/**
280 * blk_queue_max_discard_sectors - set max sectors for a single discard
281 * @q:  the request queue for the device
282 * @max_discard_sectors: maximum number of sectors to discard
283 **/
284void blk_queue_max_discard_sectors(struct request_queue *q,
285		unsigned int max_discard_sectors)
286{
287	q->limits.max_discard_sectors = max_discard_sectors;
 
 
 
 
288}
289EXPORT_SYMBOL(blk_queue_max_discard_sectors);
290
291/**
292 * blk_queue_max_write_same_sectors - set max sectors for a single write same
293 * @q:  the request queue for the device
294 * @max_write_same_sectors: maximum number of sectors to write per command
295 **/
296void blk_queue_max_write_same_sectors(struct request_queue *q,
297				      unsigned int max_write_same_sectors)
298{
299	q->limits.max_write_same_sectors = max_write_same_sectors;
300}
301EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303/**
304 * blk_queue_max_segments - set max hw segments for a request for this queue
305 * @q:  the request queue for the device
306 * @max_segments:  max number of segments
307 *
308 * Description:
309 *    Enables a low level driver to set an upper limit on the number of
310 *    hw data segments in a request.
311 **/
312void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
313{
314	if (!max_segments) {
315		max_segments = 1;
316		printk(KERN_INFO "%s: set to minimum %d\n",
317		       __func__, max_segments);
318	}
319
320	q->limits.max_segments = max_segments;
321}
322EXPORT_SYMBOL(blk_queue_max_segments);
323
324/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
326 * @q:  the request queue for the device
327 * @max_size:  max size of segment in bytes
328 *
329 * Description:
330 *    Enables a low level driver to set an upper limit on the size of a
331 *    coalesced segment
332 **/
333void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
334{
335	if (max_size < PAGE_CACHE_SIZE) {
336		max_size = PAGE_CACHE_SIZE;
337		printk(KERN_INFO "%s: set to minimum %d\n",
338		       __func__, max_size);
339	}
340
 
 
 
341	q->limits.max_segment_size = max_size;
342}
343EXPORT_SYMBOL(blk_queue_max_segment_size);
344
345/**
346 * blk_queue_logical_block_size - set logical block size for the queue
347 * @q:  the request queue for the device
348 * @size:  the logical block size, in bytes
349 *
350 * Description:
351 *   This should be set to the lowest possible block size that the
352 *   storage device can address.  The default of 512 covers most
353 *   hardware.
354 **/
355void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
356{
357	q->limits.logical_block_size = size;
358
359	if (q->limits.physical_block_size < size)
360		q->limits.physical_block_size = size;
361
362	if (q->limits.io_min < q->limits.physical_block_size)
363		q->limits.io_min = q->limits.physical_block_size;
 
 
 
 
 
 
 
 
 
 
 
364}
365EXPORT_SYMBOL(blk_queue_logical_block_size);
366
367/**
368 * blk_queue_physical_block_size - set physical block size for the queue
369 * @q:  the request queue for the device
370 * @size:  the physical block size, in bytes
371 *
372 * Description:
373 *   This should be set to the lowest possible sector size that the
374 *   hardware can operate on without reverting to read-modify-write
375 *   operations.
376 */
377void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
378{
379	q->limits.physical_block_size = size;
380
381	if (q->limits.physical_block_size < q->limits.logical_block_size)
382		q->limits.physical_block_size = q->limits.logical_block_size;
383
 
 
 
384	if (q->limits.io_min < q->limits.physical_block_size)
385		q->limits.io_min = q->limits.physical_block_size;
386}
387EXPORT_SYMBOL(blk_queue_physical_block_size);
388
389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390 * blk_queue_alignment_offset - set physical block alignment offset
391 * @q:	the request queue for the device
392 * @offset: alignment offset in bytes
393 *
394 * Description:
395 *   Some devices are naturally misaligned to compensate for things like
396 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
397 *   should call this function for devices whose first sector is not
398 *   naturally aligned.
399 */
400void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
401{
402	q->limits.alignment_offset =
403		offset & (q->limits.physical_block_size - 1);
404	q->limits.misaligned = 0;
405}
406EXPORT_SYMBOL(blk_queue_alignment_offset);
407
 
 
 
 
 
 
408/**
409 * blk_limits_io_min - set minimum request size for a device
410 * @limits: the queue limits
411 * @min:  smallest I/O size in bytes
412 *
413 * Description:
414 *   Some devices have an internal block size bigger than the reported
415 *   hardware sector size.  This function can be used to signal the
416 *   smallest I/O the device can perform without incurring a performance
417 *   penalty.
418 */
419void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
420{
421	limits->io_min = min;
422
423	if (limits->io_min < limits->logical_block_size)
424		limits->io_min = limits->logical_block_size;
425
426	if (limits->io_min < limits->physical_block_size)
427		limits->io_min = limits->physical_block_size;
428}
429EXPORT_SYMBOL(blk_limits_io_min);
430
431/**
432 * blk_queue_io_min - set minimum request size for the queue
433 * @q:	the request queue for the device
434 * @min:  smallest I/O size in bytes
435 *
436 * Description:
437 *   Storage devices may report a granularity or preferred minimum I/O
438 *   size which is the smallest request the device can perform without
439 *   incurring a performance penalty.  For disk drives this is often the
440 *   physical block size.  For RAID arrays it is often the stripe chunk
441 *   size.  A properly aligned multiple of minimum_io_size is the
442 *   preferred request size for workloads where a high number of I/O
443 *   operations is desired.
444 */
445void blk_queue_io_min(struct request_queue *q, unsigned int min)
446{
447	blk_limits_io_min(&q->limits, min);
448}
449EXPORT_SYMBOL(blk_queue_io_min);
450
451/**
452 * blk_limits_io_opt - set optimal request size for a device
453 * @limits: the queue limits
454 * @opt:  smallest I/O size in bytes
455 *
456 * Description:
457 *   Storage devices may report an optimal I/O size, which is the
458 *   device's preferred unit for sustained I/O.  This is rarely reported
459 *   for disk drives.  For RAID arrays it is usually the stripe width or
460 *   the internal track size.  A properly aligned multiple of
461 *   optimal_io_size is the preferred request size for workloads where
462 *   sustained throughput is desired.
463 */
464void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
465{
466	limits->io_opt = opt;
467}
468EXPORT_SYMBOL(blk_limits_io_opt);
469
470/**
471 * blk_queue_io_opt - set optimal request size for the queue
472 * @q:	the request queue for the device
473 * @opt:  optimal request size in bytes
474 *
475 * Description:
476 *   Storage devices may report an optimal I/O size, which is the
477 *   device's preferred unit for sustained I/O.  This is rarely reported
478 *   for disk drives.  For RAID arrays it is usually the stripe width or
479 *   the internal track size.  A properly aligned multiple of
480 *   optimal_io_size is the preferred request size for workloads where
481 *   sustained throughput is desired.
482 */
483void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
484{
485	blk_limits_io_opt(&q->limits, opt);
 
 
 
 
486}
487EXPORT_SYMBOL(blk_queue_io_opt);
488
489/**
490 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
491 * @t:	the stacking driver (top)
492 * @b:  the underlying device (bottom)
493 **/
494void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
495{
496	blk_stack_limits(&t->limits, &b->limits, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497}
498EXPORT_SYMBOL(blk_queue_stack_limits);
499
500/**
501 * blk_stack_limits - adjust queue_limits for stacked devices
502 * @t:	the stacking driver limits (top device)
503 * @b:  the underlying queue limits (bottom, component device)
504 * @start:  first data sector within component device
505 *
506 * Description:
507 *    This function is used by stacking drivers like MD and DM to ensure
508 *    that all component devices have compatible block sizes and
509 *    alignments.  The stacking driver must provide a queue_limits
510 *    struct (top) and then iteratively call the stacking function for
511 *    all component (bottom) devices.  The stacking function will
512 *    attempt to combine the values and ensure proper alignment.
513 *
514 *    Returns 0 if the top and bottom queue_limits are compatible.  The
515 *    top device's block sizes and alignment offsets may be adjusted to
516 *    ensure alignment with the bottom device. If no compatible sizes
517 *    and alignments exist, -1 is returned and the resulting top
518 *    queue_limits will have the misaligned flag set to indicate that
519 *    the alignment_offset is undefined.
520 */
521int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
522		     sector_t start)
523{
524	unsigned int top, bottom, alignment, ret = 0;
525
526	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 
 
527	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
528	t->max_write_same_sectors = min(t->max_write_same_sectors,
529					b->max_write_same_sectors);
530	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 
 
 
531
532	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
533					    b->seg_boundary_mask);
 
 
534
535	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 
 
536	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
537						 b->max_integrity_segments);
538
539	t->max_segment_size = min_not_zero(t->max_segment_size,
540					   b->max_segment_size);
541
542	t->misaligned |= b->misaligned;
543
544	alignment = queue_limit_alignment_offset(b, start);
545
546	/* Bottom device has different alignment.  Check that it is
547	 * compatible with the current top alignment.
548	 */
549	if (t->alignment_offset != alignment) {
550
551		top = max(t->physical_block_size, t->io_min)
552			+ t->alignment_offset;
553		bottom = max(b->physical_block_size, b->io_min) + alignment;
554
555		/* Verify that top and bottom intervals line up */
556		if (max(top, bottom) & (min(top, bottom) - 1)) {
557			t->misaligned = 1;
558			ret = -1;
559		}
560	}
561
562	t->logical_block_size = max(t->logical_block_size,
563				    b->logical_block_size);
564
565	t->physical_block_size = max(t->physical_block_size,
566				     b->physical_block_size);
567
568	t->io_min = max(t->io_min, b->io_min);
569	t->io_opt = lcm(t->io_opt, b->io_opt);
 
570
571	t->cluster &= b->cluster;
572	t->discard_zeroes_data &= b->discard_zeroes_data;
 
573
574	/* Physical block size a multiple of the logical block size? */
575	if (t->physical_block_size & (t->logical_block_size - 1)) {
576		t->physical_block_size = t->logical_block_size;
577		t->misaligned = 1;
578		ret = -1;
579	}
580
581	/* Minimum I/O a multiple of the physical block size? */
582	if (t->io_min & (t->physical_block_size - 1)) {
583		t->io_min = t->physical_block_size;
584		t->misaligned = 1;
585		ret = -1;
586	}
587
588	/* Optimal I/O a multiple of the physical block size? */
589	if (t->io_opt & (t->physical_block_size - 1)) {
590		t->io_opt = 0;
591		t->misaligned = 1;
592		ret = -1;
593	}
594
 
 
 
 
 
 
 
595	t->raid_partial_stripes_expensive =
596		max(t->raid_partial_stripes_expensive,
597		    b->raid_partial_stripes_expensive);
598
599	/* Find lowest common alignment_offset */
600	t->alignment_offset = lcm(t->alignment_offset, alignment)
601		& (max(t->physical_block_size, t->io_min) - 1);
602
603	/* Verify that new alignment_offset is on a logical block boundary */
604	if (t->alignment_offset & (t->logical_block_size - 1)) {
605		t->misaligned = 1;
606		ret = -1;
607	}
608
 
 
 
 
609	/* Discard alignment and granularity */
610	if (b->discard_granularity) {
611		alignment = queue_limit_discard_alignment(b, start);
612
613		if (t->discard_granularity != 0 &&
614		    t->discard_alignment != alignment) {
615			top = t->discard_granularity + t->discard_alignment;
616			bottom = b->discard_granularity + alignment;
617
618			/* Verify that top and bottom intervals line up */
619			if ((max(top, bottom) % min(top, bottom)) != 0)
620				t->discard_misaligned = 1;
621		}
622
623		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
624						      b->max_discard_sectors);
 
 
625		t->discard_granularity = max(t->discard_granularity,
626					     b->discard_granularity);
627		t->discard_alignment = lcm(t->discard_alignment, alignment) %
628			t->discard_granularity;
629	}
630
 
 
 
 
 
 
 
 
631	return ret;
632}
633EXPORT_SYMBOL(blk_stack_limits);
634
635/**
636 * bdev_stack_limits - adjust queue limits for stacked drivers
637 * @t:	the stacking driver limits (top device)
638 * @bdev:  the component block_device (bottom)
639 * @start:  first data sector within component device
640 *
641 * Description:
642 *    Merges queue limits for a top device and a block_device.  Returns
643 *    0 if alignment didn't change.  Returns -1 if adding the bottom
644 *    device caused misalignment.
645 */
646int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
647		      sector_t start)
648{
649	struct request_queue *bq = bdev_get_queue(bdev);
650
651	start += get_start_sect(bdev);
652
653	return blk_stack_limits(t, &bq->limits, start);
654}
655EXPORT_SYMBOL(bdev_stack_limits);
656
657/**
658 * disk_stack_limits - adjust queue limits for stacked drivers
659 * @disk:  MD/DM gendisk (top)
660 * @bdev:  the underlying block device (bottom)
661 * @offset:  offset to beginning of data within component device
 
662 *
663 * Description:
664 *    Merges the limits for a top level gendisk and a bottom level
665 *    block_device.
 
 
 
 
666 */
667void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
668		       sector_t offset)
669{
670	struct request_queue *t = disk->queue;
671
672	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
673		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
674
675		disk_name(disk, 0, top);
676		bdevname(bdev, bottom);
677
678		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
679		       top, bottom);
680	}
681}
682EXPORT_SYMBOL(disk_stack_limits);
683
684/**
685 * blk_queue_dma_pad - set pad mask
686 * @q:     the request queue for the device
687 * @mask:  pad mask
688 *
689 * Set dma pad mask.
690 *
691 * Appending pad buffer to a request modifies the last entry of a
692 * scatter list such that it includes the pad buffer.
693 **/
694void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
695{
696	q->dma_pad_mask = mask;
697}
698EXPORT_SYMBOL(blk_queue_dma_pad);
699
700/**
701 * blk_queue_update_dma_pad - update pad mask
702 * @q:     the request queue for the device
703 * @mask:  pad mask
704 *
705 * Update dma pad mask.
706 *
707 * Appending pad buffer to a request modifies the last entry of a
708 * scatter list such that it includes the pad buffer.
709 **/
710void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
711{
712	if (mask > q->dma_pad_mask)
713		q->dma_pad_mask = mask;
714}
715EXPORT_SYMBOL(blk_queue_update_dma_pad);
716
717/**
718 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
719 * @q:  the request queue for the device
720 * @dma_drain_needed: fn which returns non-zero if drain is necessary
721 * @buf:	physically contiguous buffer
722 * @size:	size of the buffer in bytes
723 *
724 * Some devices have excess DMA problems and can't simply discard (or
725 * zero fill) the unwanted piece of the transfer.  They have to have a
726 * real area of memory to transfer it into.  The use case for this is
727 * ATAPI devices in DMA mode.  If the packet command causes a transfer
728 * bigger than the transfer size some HBAs will lock up if there
729 * aren't DMA elements to contain the excess transfer.  What this API
730 * does is adjust the queue so that the buf is always appended
731 * silently to the scatterlist.
732 *
733 * Note: This routine adjusts max_hw_segments to make room for appending
734 * the drain buffer.  If you call blk_queue_max_segments() after calling
735 * this routine, you must set the limit to one fewer than your device
736 * can support otherwise there won't be room for the drain buffer.
737 */
738int blk_queue_dma_drain(struct request_queue *q,
739			       dma_drain_needed_fn *dma_drain_needed,
740			       void *buf, unsigned int size)
741{
742	if (queue_max_segments(q) < 2)
743		return -EINVAL;
744	/* make room for appending the drain */
745	blk_queue_max_segments(q, queue_max_segments(q) - 1);
746	q->dma_drain_needed = dma_drain_needed;
747	q->dma_drain_buffer = buf;
748	q->dma_drain_size = size;
749
750	return 0;
751}
752EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
753
754/**
755 * blk_queue_segment_boundary - set boundary rules for segment merging
756 * @q:  the request queue for the device
757 * @mask:  the memory boundary mask
758 **/
759void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
760{
761	if (mask < PAGE_CACHE_SIZE - 1) {
762		mask = PAGE_CACHE_SIZE - 1;
763		printk(KERN_INFO "%s: set to minimum %lx\n",
764		       __func__, mask);
765	}
766
767	q->limits.seg_boundary_mask = mask;
 
 
 
 
 
 
 
768}
769EXPORT_SYMBOL(blk_queue_segment_boundary);
770
771/**
772 * blk_queue_dma_alignment - set dma length and memory alignment
773 * @q:     the request queue for the device
774 * @mask:  alignment mask
775 *
776 * description:
777 *    set required memory and length alignment for direct dma transactions.
778 *    this is used when building direct io requests for the queue.
779 *
780 **/
781void blk_queue_dma_alignment(struct request_queue *q, int mask)
782{
783	q->dma_alignment = mask;
784}
785EXPORT_SYMBOL(blk_queue_dma_alignment);
786
787/**
788 * blk_queue_update_dma_alignment - update dma length and memory alignment
789 * @q:     the request queue for the device
790 * @mask:  alignment mask
791 *
792 * description:
793 *    update required memory and length alignment for direct dma transactions.
794 *    If the requested alignment is larger than the current alignment, then
795 *    the current queue alignment is updated to the new value, otherwise it
796 *    is left alone.  The design of this is to allow multiple objects
797 *    (driver, device, transport etc) to set their respective
798 *    alignments without having them interfere.
799 *
800 **/
801void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
802{
803	BUG_ON(mask > PAGE_SIZE);
804
805	if (mask > q->dma_alignment)
806		q->dma_alignment = mask;
807}
808EXPORT_SYMBOL(blk_queue_update_dma_alignment);
809
810/**
811 * blk_queue_flush - configure queue's cache flush capability
812 * @q:		the request queue for the device
813 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
814 *
815 * Tell block layer cache flush capability of @q.  If it supports
816 * flushing, REQ_FLUSH should be set.  If it supports bypassing
817 * write cache for individual writes, REQ_FUA should be set.
818 */
819void blk_queue_flush(struct request_queue *q, unsigned int flush)
820{
821	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822
823	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
824		flush &= ~REQ_FUA;
825
826	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
827}
828EXPORT_SYMBOL_GPL(blk_queue_flush);
829
830void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
 
 
 
 
831{
832	q->flush_not_queueable = !queueable;
 
 
 
 
 
 
 
 
 
833}
834EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
835
836static int __init blk_settings_init(void)
837{
838	blk_max_low_pfn = max_low_pfn - 1;
839	blk_max_pfn = max_pfn - 1;
840	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841}
842subsys_initcall(blk_settings_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to setting various queue properties from drivers
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/bio.h>
   9#include <linux/blkdev.h>
  10#include <linux/pagemap.h>
  11#include <linux/backing-dev-defs.h>
  12#include <linux/gcd.h>
  13#include <linux/lcm.h>
  14#include <linux/jiffies.h>
  15#include <linux/gfp.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "blk.h"
  19#include "blk-rq-qos.h"
  20#include "blk-wbt.h"
  21
  22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23{
  24	q->rq_timeout = timeout;
  25}
  26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  27
  28/**
  29 * blk_set_stacking_limits - set default limits for stacking devices
  30 * @lim:  the queue_limits structure to reset
 
 
 
 
 
 
  31 *
  32 * Prepare queue limits for applying limits from underlying devices using
  33 * blk_stack_limits().
  34 */
  35void blk_set_stacking_limits(struct queue_limits *lim)
  36{
  37	memset(lim, 0, sizeof(*lim));
  38	lim->logical_block_size = SECTOR_SIZE;
  39	lim->physical_block_size = SECTOR_SIZE;
  40	lim->io_min = SECTOR_SIZE;
  41	lim->discard_granularity = SECTOR_SIZE;
  42	lim->dma_alignment = SECTOR_SIZE - 1;
  43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  44
  45	/* Inherit limits from component devices */
  46	lim->max_segments = USHRT_MAX;
  47	lim->max_discard_segments = USHRT_MAX;
  48	lim->max_hw_sectors = UINT_MAX;
  49	lim->max_segment_size = UINT_MAX;
  50	lim->max_sectors = UINT_MAX;
  51	lim->max_dev_sectors = UINT_MAX;
  52	lim->max_write_zeroes_sectors = UINT_MAX;
  53	lim->max_zone_append_sectors = UINT_MAX;
  54	lim->max_user_discard_sectors = UINT_MAX;
 
 
 
 
 
 
 
 
 
  55}
  56EXPORT_SYMBOL(blk_set_stacking_limits);
  57
  58static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
  59		struct queue_limits *lim)
  60{
  61	/*
  62	 * For read-ahead of large files to be effective, we need to read ahead
  63	 * at least twice the optimal I/O size.
  64	 */
  65	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
  66	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
  67}
 
  68
  69static int blk_validate_zoned_limits(struct queue_limits *lim)
  70{
  71	if (!lim->zoned) {
  72		if (WARN_ON_ONCE(lim->max_open_zones) ||
  73		    WARN_ON_ONCE(lim->max_active_zones) ||
  74		    WARN_ON_ONCE(lim->zone_write_granularity) ||
  75		    WARN_ON_ONCE(lim->max_zone_append_sectors))
  76			return -EINVAL;
  77		return 0;
  78	}
  79
  80	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
  81		return -EINVAL;
  82
  83	if (lim->zone_write_granularity < lim->logical_block_size)
  84		lim->zone_write_granularity = lim->logical_block_size;
  85
  86	if (lim->max_zone_append_sectors) {
  87		/*
  88		 * The Zone Append size is limited by the maximum I/O size
  89		 * and the zone size given that it can't span zones.
  90		 */
  91		lim->max_zone_append_sectors =
  92			min3(lim->max_hw_sectors,
  93			     lim->max_zone_append_sectors,
  94			     lim->chunk_sectors);
  95	}
  96
  97	return 0;
  98}
 
  99
 100/*
 101 * Check that the limits in lim are valid, initialize defaults for unset
 102 * values, and cap values based on others where needed.
 103 */
 104static int blk_validate_limits(struct queue_limits *lim)
 105{
 106	unsigned int max_hw_sectors;
 107
 108	/*
 109	 * Unless otherwise specified, default to 512 byte logical blocks and a
 110	 * physical block size equal to the logical block size.
 111	 */
 112	if (!lim->logical_block_size)
 113		lim->logical_block_size = SECTOR_SIZE;
 114	if (lim->physical_block_size < lim->logical_block_size)
 115		lim->physical_block_size = lim->logical_block_size;
 116
 117	/*
 118	 * The minimum I/O size defaults to the physical block size unless
 119	 * explicitly overridden.
 120	 */
 121	if (lim->io_min < lim->physical_block_size)
 122		lim->io_min = lim->physical_block_size;
 123
 124	/*
 125	 * max_hw_sectors has a somewhat weird default for historical reason,
 126	 * but driver really should set their own instead of relying on this
 127	 * value.
 128	 *
 129	 * The block layer relies on the fact that every driver can
 130	 * handle at lest a page worth of data per I/O, and needs the value
 131	 * aligned to the logical block size.
 132	 */
 133	if (!lim->max_hw_sectors)
 134		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 135	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
 136		return -EINVAL;
 137	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
 138			lim->logical_block_size >> SECTOR_SHIFT);
 139
 140	/*
 141	 * The actual max_sectors value is a complex beast and also takes the
 142	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
 143	 * value into account.  The ->max_sectors value is always calculated
 144	 * from these, so directly setting it won't have any effect.
 145	 */
 146	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
 147				lim->max_dev_sectors);
 148	if (lim->max_user_sectors) {
 149		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
 150			return -EINVAL;
 151		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
 152	} else {
 153		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
 154	}
 155	lim->max_sectors = round_down(lim->max_sectors,
 156			lim->logical_block_size >> SECTOR_SHIFT);
 157
 158	/*
 159	 * Random default for the maximum number of segments.  Driver should not
 160	 * rely on this and set their own.
 161	 */
 162	if (!lim->max_segments)
 163		lim->max_segments = BLK_MAX_SEGMENTS;
 164
 165	lim->max_discard_sectors =
 166		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
 167
 168	if (!lim->max_discard_segments)
 169		lim->max_discard_segments = 1;
 170
 171	if (lim->discard_granularity < lim->physical_block_size)
 172		lim->discard_granularity = lim->physical_block_size;
 173
 174	/*
 175	 * By default there is no limit on the segment boundary alignment,
 176	 * but if there is one it can't be smaller than the page size as
 177	 * that would break all the normal I/O patterns.
 178	 */
 179	if (!lim->seg_boundary_mask)
 180		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 181	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
 182		return -EINVAL;
 183
 184	/*
 185	 * Stacking device may have both virtual boundary and max segment
 186	 * size limit, so allow this setting now, and long-term the two
 187	 * might need to move out of stacking limits since we have immutable
 188	 * bvec and lower layer bio splitting is supposed to handle the two
 189	 * correctly.
 190	 */
 191	if (lim->virt_boundary_mask) {
 192		if (!lim->max_segment_size)
 193			lim->max_segment_size = UINT_MAX;
 194	} else {
 195		/*
 196		 * The maximum segment size has an odd historic 64k default that
 197		 * drivers probably should override.  Just like the I/O size we
 198		 * require drivers to at least handle a full page per segment.
 199		 */
 200		if (!lim->max_segment_size)
 201			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 202		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
 203			return -EINVAL;
 204	}
 205
 206	/*
 207	 * We require drivers to at least do logical block aligned I/O, but
 208	 * historically could not check for that due to the separate calls
 209	 * to set the limits.  Once the transition is finished the check
 210	 * below should be narrowed down to check the logical block size.
 211	 */
 212	if (!lim->dma_alignment)
 213		lim->dma_alignment = SECTOR_SIZE - 1;
 214	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
 215		return -EINVAL;
 216
 217	if (lim->alignment_offset) {
 218		lim->alignment_offset &= (lim->physical_block_size - 1);
 219		lim->misaligned = 0;
 220	}
 221
 222	return blk_validate_zoned_limits(lim);
 223}
 
 224
 225/*
 226 * Set the default limits for a newly allocated queue.  @lim contains the
 227 * initial limits set by the driver, which could be no limit in which case
 228 * all fields are cleared to zero.
 
 
 229 */
 230int blk_set_default_limits(struct queue_limits *lim)
 231{
 232	/*
 233	 * Most defaults are set by capping the bounds in blk_validate_limits,
 234	 * but max_user_discard_sectors is special and needs an explicit
 235	 * initialization to the max value here.
 236	 */
 237	lim->max_user_discard_sectors = UINT_MAX;
 238	return blk_validate_limits(lim);
 
 
 
 
 
 
 
 
 
 
 239}
 
 240
 241/**
 242 * queue_limits_commit_update - commit an atomic update of queue limits
 243 * @q:		queue to update
 244 * @lim:	limits to apply
 245 *
 246 * Apply the limits in @lim that were obtained from queue_limits_start_update()
 247 * and updated by the caller to @q.
 248 *
 249 * Returns 0 if successful, else a negative error code.
 250 */
 251int queue_limits_commit_update(struct request_queue *q,
 252		struct queue_limits *lim)
 253	__releases(q->limits_lock)
 254{
 255	int error = blk_validate_limits(lim);
 256
 257	if (!error) {
 258		q->limits = *lim;
 259		if (q->disk)
 260			blk_apply_bdi_limits(q->disk->bdi, lim);
 261	}
 262	mutex_unlock(&q->limits_lock);
 263	return error;
 264}
 265EXPORT_SYMBOL_GPL(queue_limits_commit_update);
 266
 267/**
 268 * queue_limits_set - apply queue limits to queue
 269 * @q:		queue to update
 270 * @lim:	limits to apply
 271 *
 272 * Apply the limits in @lim that were freshly initialized to @q.
 273 * To update existing limits use queue_limits_start_update() and
 274 * queue_limits_commit_update() instead.
 
 
 
 
 
 
 
 275 *
 276 * Returns 0 if successful, else a negative error code.
 277 */
 278int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
 
 
 
 
 279{
 280	mutex_lock(&q->limits_lock);
 281	return queue_limits_commit_update(q, lim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282}
 283EXPORT_SYMBOL_GPL(queue_limits_set);
 284
 285/**
 286 * blk_queue_bounce_limit - set bounce buffer limit for queue
 287 * @q: the request queue for the device
 288 * @bounce: bounce limit to enforce
 289 *
 290 * Description:
 291 *    Force bouncing for ISA DMA ranges or highmem.
 292 *
 293 *    DEPRECATED, don't use in new code.
 294 **/
 295void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 296{
 297	q->limits.bounce = bounce;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299EXPORT_SYMBOL(blk_queue_bounce_limit);
 300
 301/**
 302 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 303 * @q:  the request queue for the device
 304 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 305 *
 306 * Description:
 307 *    Enables a low level driver to set a hard upper limit,
 308 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 309 *    the device driver based upon the capabilities of the I/O
 310 *    controller.
 311 *
 312 *    max_dev_sectors is a hard limit imposed by the storage device for
 313 *    READ/WRITE requests. It is set by the disk driver.
 314 *
 315 *    max_sectors is a soft limit imposed by the block layer for
 316 *    filesystem type requests.  This value can be overridden on a
 317 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 318 *    The soft limit can not exceed max_hw_sectors.
 319 **/
 320void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 321{
 322	struct queue_limits *limits = &q->limits;
 323	unsigned int max_sectors;
 324
 325	if ((max_hw_sectors << 9) < PAGE_SIZE) {
 326		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 327		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
 328	}
 329
 330	max_hw_sectors = round_down(max_hw_sectors,
 331				    limits->logical_block_size >> SECTOR_SHIFT);
 332	limits->max_hw_sectors = max_hw_sectors;
 333
 334	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 335
 336	if (limits->max_user_sectors)
 337		max_sectors = min(max_sectors, limits->max_user_sectors);
 338	else
 339		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
 340
 341	max_sectors = round_down(max_sectors,
 342				 limits->logical_block_size >> SECTOR_SHIFT);
 343	limits->max_sectors = max_sectors;
 344
 345	if (!q->disk)
 346		return;
 347	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 348}
 349EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 350
 351/**
 352 * blk_queue_chunk_sectors - set size of the chunk for this queue
 353 * @q:  the request queue for the device
 354 * @chunk_sectors:  chunk sectors in the usual 512b unit
 355 *
 356 * Description:
 357 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 358 *    this limit and prevent merging across chunks. Note that the block layer
 359 *    must accept a page worth of data at any offset. So if the crossing of
 360 *    chunks is a hard limitation in the driver, it must still be prepared
 361 *    to split single page bios.
 362 **/
 363void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 364{
 365	q->limits.chunk_sectors = chunk_sectors;
 366}
 367EXPORT_SYMBOL(blk_queue_chunk_sectors);
 368
 369/**
 370 * blk_queue_max_discard_sectors - set max sectors for a single discard
 371 * @q:  the request queue for the device
 372 * @max_discard_sectors: maximum number of sectors to discard
 373 **/
 374void blk_queue_max_discard_sectors(struct request_queue *q,
 375		unsigned int max_discard_sectors)
 376{
 377	struct queue_limits *lim = &q->limits;
 378
 379	lim->max_hw_discard_sectors = max_discard_sectors;
 380	lim->max_discard_sectors =
 381		min(max_discard_sectors, lim->max_user_discard_sectors);
 382}
 383EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 384
 385/**
 386 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
 387 * @q:  the request queue for the device
 388 * @max_sectors: maximum number of sectors to secure_erase
 389 **/
 390void blk_queue_max_secure_erase_sectors(struct request_queue *q,
 391		unsigned int max_sectors)
 392{
 393	q->limits.max_secure_erase_sectors = max_sectors;
 394}
 395EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
 396
 397/**
 398 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 399 *                                      write zeroes
 400 * @q:  the request queue for the device
 401 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 402 **/
 403void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 404		unsigned int max_write_zeroes_sectors)
 405{
 406	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 407}
 408EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 409
 410/**
 411 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
 412 * @q:  the request queue for the device
 413 * @max_zone_append_sectors: maximum number of sectors to write per command
 414 **/
 415void blk_queue_max_zone_append_sectors(struct request_queue *q,
 416		unsigned int max_zone_append_sectors)
 417{
 418	unsigned int max_sectors;
 419
 420	if (WARN_ON(!blk_queue_is_zoned(q)))
 421		return;
 422
 423	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
 424	max_sectors = min(q->limits.chunk_sectors, max_sectors);
 425
 426	/*
 427	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
 428	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
 429	 * or the max_hw_sectors limit not set.
 430	 */
 431	WARN_ON(!max_sectors);
 432
 433	q->limits.max_zone_append_sectors = max_sectors;
 434}
 435EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
 436
 437/**
 438 * blk_queue_max_segments - set max hw segments for a request for this queue
 439 * @q:  the request queue for the device
 440 * @max_segments:  max number of segments
 441 *
 442 * Description:
 443 *    Enables a low level driver to set an upper limit on the number of
 444 *    hw data segments in a request.
 445 **/
 446void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 447{
 448	if (!max_segments) {
 449		max_segments = 1;
 450		pr_info("%s: set to minimum %u\n", __func__, max_segments);
 
 451	}
 452
 453	q->limits.max_segments = max_segments;
 454}
 455EXPORT_SYMBOL(blk_queue_max_segments);
 456
 457/**
 458 * blk_queue_max_discard_segments - set max segments for discard requests
 459 * @q:  the request queue for the device
 460 * @max_segments:  max number of segments
 461 *
 462 * Description:
 463 *    Enables a low level driver to set an upper limit on the number of
 464 *    segments in a discard request.
 465 **/
 466void blk_queue_max_discard_segments(struct request_queue *q,
 467		unsigned short max_segments)
 468{
 469	q->limits.max_discard_segments = max_segments;
 470}
 471EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 472
 473/**
 474 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 475 * @q:  the request queue for the device
 476 * @max_size:  max size of segment in bytes
 477 *
 478 * Description:
 479 *    Enables a low level driver to set an upper limit on the size of a
 480 *    coalesced segment
 481 **/
 482void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 483{
 484	if (max_size < PAGE_SIZE) {
 485		max_size = PAGE_SIZE;
 486		pr_info("%s: set to minimum %u\n", __func__, max_size);
 
 487	}
 488
 489	/* see blk_queue_virt_boundary() for the explanation */
 490	WARN_ON_ONCE(q->limits.virt_boundary_mask);
 491
 492	q->limits.max_segment_size = max_size;
 493}
 494EXPORT_SYMBOL(blk_queue_max_segment_size);
 495
 496/**
 497 * blk_queue_logical_block_size - set logical block size for the queue
 498 * @q:  the request queue for the device
 499 * @size:  the logical block size, in bytes
 500 *
 501 * Description:
 502 *   This should be set to the lowest possible block size that the
 503 *   storage device can address.  The default of 512 covers most
 504 *   hardware.
 505 **/
 506void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
 507{
 508	struct queue_limits *limits = &q->limits;
 509
 510	limits->logical_block_size = size;
 
 511
 512	if (limits->discard_granularity < limits->logical_block_size)
 513		limits->discard_granularity = limits->logical_block_size;
 514
 515	if (limits->physical_block_size < size)
 516		limits->physical_block_size = size;
 517
 518	if (limits->io_min < limits->physical_block_size)
 519		limits->io_min = limits->physical_block_size;
 520
 521	limits->max_hw_sectors =
 522		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
 523	limits->max_sectors =
 524		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
 525}
 526EXPORT_SYMBOL(blk_queue_logical_block_size);
 527
 528/**
 529 * blk_queue_physical_block_size - set physical block size for the queue
 530 * @q:  the request queue for the device
 531 * @size:  the physical block size, in bytes
 532 *
 533 * Description:
 534 *   This should be set to the lowest possible sector size that the
 535 *   hardware can operate on without reverting to read-modify-write
 536 *   operations.
 537 */
 538void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 539{
 540	q->limits.physical_block_size = size;
 541
 542	if (q->limits.physical_block_size < q->limits.logical_block_size)
 543		q->limits.physical_block_size = q->limits.logical_block_size;
 544
 545	if (q->limits.discard_granularity < q->limits.physical_block_size)
 546		q->limits.discard_granularity = q->limits.physical_block_size;
 547
 548	if (q->limits.io_min < q->limits.physical_block_size)
 549		q->limits.io_min = q->limits.physical_block_size;
 550}
 551EXPORT_SYMBOL(blk_queue_physical_block_size);
 552
 553/**
 554 * blk_queue_zone_write_granularity - set zone write granularity for the queue
 555 * @q:  the request queue for the zoned device
 556 * @size:  the zone write granularity size, in bytes
 557 *
 558 * Description:
 559 *   This should be set to the lowest possible size allowing to write in
 560 *   sequential zones of a zoned block device.
 561 */
 562void blk_queue_zone_write_granularity(struct request_queue *q,
 563				      unsigned int size)
 564{
 565	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 566		return;
 567
 568	q->limits.zone_write_granularity = size;
 569
 570	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
 571		q->limits.zone_write_granularity = q->limits.logical_block_size;
 572}
 573EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
 574
 575/**
 576 * blk_queue_alignment_offset - set physical block alignment offset
 577 * @q:	the request queue for the device
 578 * @offset: alignment offset in bytes
 579 *
 580 * Description:
 581 *   Some devices are naturally misaligned to compensate for things like
 582 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 583 *   should call this function for devices whose first sector is not
 584 *   naturally aligned.
 585 */
 586void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 587{
 588	q->limits.alignment_offset =
 589		offset & (q->limits.physical_block_size - 1);
 590	q->limits.misaligned = 0;
 591}
 592EXPORT_SYMBOL(blk_queue_alignment_offset);
 593
 594void disk_update_readahead(struct gendisk *disk)
 595{
 596	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
 597}
 598EXPORT_SYMBOL_GPL(disk_update_readahead);
 599
 600/**
 601 * blk_limits_io_min - set minimum request size for a device
 602 * @limits: the queue limits
 603 * @min:  smallest I/O size in bytes
 604 *
 605 * Description:
 606 *   Some devices have an internal block size bigger than the reported
 607 *   hardware sector size.  This function can be used to signal the
 608 *   smallest I/O the device can perform without incurring a performance
 609 *   penalty.
 610 */
 611void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 612{
 613	limits->io_min = min;
 614
 615	if (limits->io_min < limits->logical_block_size)
 616		limits->io_min = limits->logical_block_size;
 617
 618	if (limits->io_min < limits->physical_block_size)
 619		limits->io_min = limits->physical_block_size;
 620}
 621EXPORT_SYMBOL(blk_limits_io_min);
 622
 623/**
 624 * blk_queue_io_min - set minimum request size for the queue
 625 * @q:	the request queue for the device
 626 * @min:  smallest I/O size in bytes
 627 *
 628 * Description:
 629 *   Storage devices may report a granularity or preferred minimum I/O
 630 *   size which is the smallest request the device can perform without
 631 *   incurring a performance penalty.  For disk drives this is often the
 632 *   physical block size.  For RAID arrays it is often the stripe chunk
 633 *   size.  A properly aligned multiple of minimum_io_size is the
 634 *   preferred request size for workloads where a high number of I/O
 635 *   operations is desired.
 636 */
 637void blk_queue_io_min(struct request_queue *q, unsigned int min)
 638{
 639	blk_limits_io_min(&q->limits, min);
 640}
 641EXPORT_SYMBOL(blk_queue_io_min);
 642
 643/**
 644 * blk_limits_io_opt - set optimal request size for a device
 645 * @limits: the queue limits
 646 * @opt:  smallest I/O size in bytes
 647 *
 648 * Description:
 649 *   Storage devices may report an optimal I/O size, which is the
 650 *   device's preferred unit for sustained I/O.  This is rarely reported
 651 *   for disk drives.  For RAID arrays it is usually the stripe width or
 652 *   the internal track size.  A properly aligned multiple of
 653 *   optimal_io_size is the preferred request size for workloads where
 654 *   sustained throughput is desired.
 655 */
 656void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 657{
 658	limits->io_opt = opt;
 659}
 660EXPORT_SYMBOL(blk_limits_io_opt);
 661
 662/**
 663 * blk_queue_io_opt - set optimal request size for the queue
 664 * @q:	the request queue for the device
 665 * @opt:  optimal request size in bytes
 666 *
 667 * Description:
 668 *   Storage devices may report an optimal I/O size, which is the
 669 *   device's preferred unit for sustained I/O.  This is rarely reported
 670 *   for disk drives.  For RAID arrays it is usually the stripe width or
 671 *   the internal track size.  A properly aligned multiple of
 672 *   optimal_io_size is the preferred request size for workloads where
 673 *   sustained throughput is desired.
 674 */
 675void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 676{
 677	blk_limits_io_opt(&q->limits, opt);
 678	if (!q->disk)
 679		return;
 680	q->disk->bdi->ra_pages =
 681		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 682}
 683EXPORT_SYMBOL(blk_queue_io_opt);
 684
 685static int queue_limit_alignment_offset(const struct queue_limits *lim,
 686		sector_t sector)
 
 
 
 
 687{
 688	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
 689	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
 690		<< SECTOR_SHIFT;
 691
 692	return (granularity + lim->alignment_offset - alignment) % granularity;
 693}
 694
 695static unsigned int queue_limit_discard_alignment(
 696		const struct queue_limits *lim, sector_t sector)
 697{
 698	unsigned int alignment, granularity, offset;
 699
 700	if (!lim->max_discard_sectors)
 701		return 0;
 702
 703	/* Why are these in bytes, not sectors? */
 704	alignment = lim->discard_alignment >> SECTOR_SHIFT;
 705	granularity = lim->discard_granularity >> SECTOR_SHIFT;
 706	if (!granularity)
 707		return 0;
 708
 709	/* Offset of the partition start in 'granularity' sectors */
 710	offset = sector_div(sector, granularity);
 711
 712	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
 713	offset = (granularity + alignment - offset) % granularity;
 714
 715	/* Turn it back into bytes, gaah */
 716	return offset << SECTOR_SHIFT;
 717}
 718
 719static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
 720{
 721	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
 722	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
 723		sectors = PAGE_SIZE >> SECTOR_SHIFT;
 724	return sectors;
 725}
 
 726
 727/**
 728 * blk_stack_limits - adjust queue_limits for stacked devices
 729 * @t:	the stacking driver limits (top device)
 730 * @b:  the underlying queue limits (bottom, component device)
 731 * @start:  first data sector within component device
 732 *
 733 * Description:
 734 *    This function is used by stacking drivers like MD and DM to ensure
 735 *    that all component devices have compatible block sizes and
 736 *    alignments.  The stacking driver must provide a queue_limits
 737 *    struct (top) and then iteratively call the stacking function for
 738 *    all component (bottom) devices.  The stacking function will
 739 *    attempt to combine the values and ensure proper alignment.
 740 *
 741 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 742 *    top device's block sizes and alignment offsets may be adjusted to
 743 *    ensure alignment with the bottom device. If no compatible sizes
 744 *    and alignments exist, -1 is returned and the resulting top
 745 *    queue_limits will have the misaligned flag set to indicate that
 746 *    the alignment_offset is undefined.
 747 */
 748int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 749		     sector_t start)
 750{
 751	unsigned int top, bottom, alignment, ret = 0;
 752
 753	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 754	t->max_user_sectors = min_not_zero(t->max_user_sectors,
 755			b->max_user_sectors);
 756	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 757	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 758	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 759					b->max_write_zeroes_sectors);
 760	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
 761					b->max_zone_append_sectors);
 762	t->bounce = max(t->bounce, b->bounce);
 763
 764	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 765					    b->seg_boundary_mask);
 766	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 767					    b->virt_boundary_mask);
 768
 769	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 770	t->max_discard_segments = min_not_zero(t->max_discard_segments,
 771					       b->max_discard_segments);
 772	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 773						 b->max_integrity_segments);
 774
 775	t->max_segment_size = min_not_zero(t->max_segment_size,
 776					   b->max_segment_size);
 777
 778	t->misaligned |= b->misaligned;
 779
 780	alignment = queue_limit_alignment_offset(b, start);
 781
 782	/* Bottom device has different alignment.  Check that it is
 783	 * compatible with the current top alignment.
 784	 */
 785	if (t->alignment_offset != alignment) {
 786
 787		top = max(t->physical_block_size, t->io_min)
 788			+ t->alignment_offset;
 789		bottom = max(b->physical_block_size, b->io_min) + alignment;
 790
 791		/* Verify that top and bottom intervals line up */
 792		if (max(top, bottom) % min(top, bottom)) {
 793			t->misaligned = 1;
 794			ret = -1;
 795		}
 796	}
 797
 798	t->logical_block_size = max(t->logical_block_size,
 799				    b->logical_block_size);
 800
 801	t->physical_block_size = max(t->physical_block_size,
 802				     b->physical_block_size);
 803
 804	t->io_min = max(t->io_min, b->io_min);
 805	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 806	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
 807
 808	/* Set non-power-of-2 compatible chunk_sectors boundary */
 809	if (b->chunk_sectors)
 810		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
 811
 812	/* Physical block size a multiple of the logical block size? */
 813	if (t->physical_block_size & (t->logical_block_size - 1)) {
 814		t->physical_block_size = t->logical_block_size;
 815		t->misaligned = 1;
 816		ret = -1;
 817	}
 818
 819	/* Minimum I/O a multiple of the physical block size? */
 820	if (t->io_min & (t->physical_block_size - 1)) {
 821		t->io_min = t->physical_block_size;
 822		t->misaligned = 1;
 823		ret = -1;
 824	}
 825
 826	/* Optimal I/O a multiple of the physical block size? */
 827	if (t->io_opt & (t->physical_block_size - 1)) {
 828		t->io_opt = 0;
 829		t->misaligned = 1;
 830		ret = -1;
 831	}
 832
 833	/* chunk_sectors a multiple of the physical block size? */
 834	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
 835		t->chunk_sectors = 0;
 836		t->misaligned = 1;
 837		ret = -1;
 838	}
 839
 840	t->raid_partial_stripes_expensive =
 841		max(t->raid_partial_stripes_expensive,
 842		    b->raid_partial_stripes_expensive);
 843
 844	/* Find lowest common alignment_offset */
 845	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 846		% max(t->physical_block_size, t->io_min);
 847
 848	/* Verify that new alignment_offset is on a logical block boundary */
 849	if (t->alignment_offset & (t->logical_block_size - 1)) {
 850		t->misaligned = 1;
 851		ret = -1;
 852	}
 853
 854	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
 855	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
 856	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
 857
 858	/* Discard alignment and granularity */
 859	if (b->discard_granularity) {
 860		alignment = queue_limit_discard_alignment(b, start);
 861
 862		if (t->discard_granularity != 0 &&
 863		    t->discard_alignment != alignment) {
 864			top = t->discard_granularity + t->discard_alignment;
 865			bottom = b->discard_granularity + alignment;
 866
 867			/* Verify that top and bottom intervals line up */
 868			if ((max(top, bottom) % min(top, bottom)) != 0)
 869				t->discard_misaligned = 1;
 870		}
 871
 872		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 873						      b->max_discard_sectors);
 874		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 875							 b->max_hw_discard_sectors);
 876		t->discard_granularity = max(t->discard_granularity,
 877					     b->discard_granularity);
 878		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 879			t->discard_granularity;
 880	}
 881	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
 882						   b->max_secure_erase_sectors);
 883	t->zone_write_granularity = max(t->zone_write_granularity,
 884					b->zone_write_granularity);
 885	t->zoned = max(t->zoned, b->zoned);
 886	if (!t->zoned) {
 887		t->zone_write_granularity = 0;
 888		t->max_zone_append_sectors = 0;
 889	}
 890	return ret;
 891}
 892EXPORT_SYMBOL(blk_stack_limits);
 893
 894/**
 895 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
 896 * @t:	the stacking driver limits (top device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897 * @bdev:  the underlying block device (bottom)
 898 * @offset:  offset to beginning of data within component device
 899 * @pfx: prefix to use for warnings logged
 900 *
 901 * Description:
 902 *    This function is used by stacking drivers like MD and DM to ensure
 903 *    that all component devices have compatible block sizes and
 904 *    alignments.  The stacking driver must provide a queue_limits
 905 *    struct (top) and then iteratively call the stacking function for
 906 *    all component (bottom) devices.  The stacking function will
 907 *    attempt to combine the values and ensure proper alignment.
 908 */
 909void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
 910		sector_t offset, const char *pfx)
 911{
 912	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
 913			get_start_sect(bdev) + offset))
 914		pr_notice("%s: Warning: Device %pg is misaligned\n",
 915			pfx, bdev);
 
 
 
 
 
 
 
 916}
 917EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919/**
 920 * blk_queue_update_dma_pad - update pad mask
 921 * @q:     the request queue for the device
 922 * @mask:  pad mask
 923 *
 924 * Update dma pad mask.
 925 *
 926 * Appending pad buffer to a request modifies the last entry of a
 927 * scatter list such that it includes the pad buffer.
 928 **/
 929void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 930{
 931	if (mask > q->dma_pad_mask)
 932		q->dma_pad_mask = mask;
 933}
 934EXPORT_SYMBOL(blk_queue_update_dma_pad);
 935
 936/**
 937 * blk_queue_segment_boundary - set boundary rules for segment merging
 938 * @q:  the request queue for the device
 939 * @mask:  the memory boundary mask
 940 **/
 941void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942{
 943	if (mask < PAGE_SIZE - 1) {
 944		mask = PAGE_SIZE - 1;
 945		pr_info("%s: set to minimum %lx\n", __func__, mask);
 946	}
 
 
 
 947
 948	q->limits.seg_boundary_mask = mask;
 949}
 950EXPORT_SYMBOL(blk_queue_segment_boundary);
 951
 952/**
 953 * blk_queue_virt_boundary - set boundary rules for bio merging
 954 * @q:  the request queue for the device
 955 * @mask:  the memory boundary mask
 956 **/
 957void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 958{
 959	q->limits.virt_boundary_mask = mask;
 
 
 
 
 960
 961	/*
 962	 * Devices that require a virtual boundary do not support scatter/gather
 963	 * I/O natively, but instead require a descriptor list entry for each
 964	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
 965	 * of that they are not limited by our notion of "segment size".
 966	 */
 967	if (mask)
 968		q->limits.max_segment_size = UINT_MAX;
 969}
 970EXPORT_SYMBOL(blk_queue_virt_boundary);
 971
 972/**
 973 * blk_queue_dma_alignment - set dma length and memory alignment
 974 * @q:     the request queue for the device
 975 * @mask:  alignment mask
 976 *
 977 * description:
 978 *    set required memory and length alignment for direct dma transactions.
 979 *    this is used when building direct io requests for the queue.
 980 *
 981 **/
 982void blk_queue_dma_alignment(struct request_queue *q, int mask)
 983{
 984	q->limits.dma_alignment = mask;
 985}
 986EXPORT_SYMBOL(blk_queue_dma_alignment);
 987
 988/**
 989 * blk_queue_update_dma_alignment - update dma length and memory alignment
 990 * @q:     the request queue for the device
 991 * @mask:  alignment mask
 992 *
 993 * description:
 994 *    update required memory and length alignment for direct dma transactions.
 995 *    If the requested alignment is larger than the current alignment, then
 996 *    the current queue alignment is updated to the new value, otherwise it
 997 *    is left alone.  The design of this is to allow multiple objects
 998 *    (driver, device, transport etc) to set their respective
 999 *    alignments without having them interfere.
1000 *
1001 **/
1002void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1003{
1004	BUG_ON(mask > PAGE_SIZE);
1005
1006	if (mask > q->limits.dma_alignment)
1007		q->limits.dma_alignment = mask;
1008}
1009EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1010
1011/**
1012 * blk_set_queue_depth - tell the block layer about the device queue depth
1013 * @q:		the request queue for the device
1014 * @depth:		queue depth
1015 *
 
 
 
1016 */
1017void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1018{
1019	q->queue_depth = depth;
1020	rq_qos_queue_depth_changed(q);
1021}
1022EXPORT_SYMBOL(blk_set_queue_depth);
1023
1024/**
1025 * blk_queue_write_cache - configure queue's write cache
1026 * @q:		the request queue for the device
1027 * @wc:		write back cache on or off
1028 * @fua:	device supports FUA writes, if true
1029 *
1030 * Tell the block layer about the write cache of @q.
1031 */
1032void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1033{
1034	if (wc) {
1035		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
1036		blk_queue_flag_set(QUEUE_FLAG_WC, q);
1037	} else {
1038		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
1039		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
1040	}
1041	if (fua)
1042		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
1043	else
1044		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
1045}
1046EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1047
1048/**
1049 * blk_queue_required_elevator_features - Set a queue required elevator features
1050 * @q:		the request queue for the target device
1051 * @features:	Required elevator features OR'ed together
1052 *
1053 * Tell the block layer that for the device controlled through @q, only the
1054 * only elevators that can be used are those that implement at least the set of
1055 * features specified by @features.
1056 */
1057void blk_queue_required_elevator_features(struct request_queue *q,
1058					  unsigned int features)
1059{
1060	q->required_elevator_features = features;
1061}
1062EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
1063
1064/**
1065 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1066 * @q:		the request queue for the device
1067 * @dev:	the device pointer for dma
1068 *
1069 * Tell the block layer about merging the segments by dma map of @q.
1070 */
1071bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1072				       struct device *dev)
1073{
1074	unsigned long boundary = dma_get_merge_boundary(dev);
1075
1076	if (!boundary)
1077		return false;
1078
1079	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
1080	blk_queue_virt_boundary(q, boundary);
1081
1082	return true;
1083}
1084EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1085
1086/**
1087 * disk_set_zoned - inidicate a zoned device
1088 * @disk:	gendisk to configure
1089 */
1090void disk_set_zoned(struct gendisk *disk)
1091{
1092	struct request_queue *q = disk->queue;
1093
1094	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1095
1096	/*
1097	 * Set the zone write granularity to the device logical block
1098	 * size by default. The driver can change this value if needed.
1099	 */
1100	q->limits.zoned = true;
1101	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
1102}
1103EXPORT_SYMBOL_GPL(disk_set_zoned);
1104
1105int bdev_alignment_offset(struct block_device *bdev)
1106{
1107	struct request_queue *q = bdev_get_queue(bdev);
1108
1109	if (q->limits.misaligned)
1110		return -1;
1111	if (bdev_is_partition(bdev))
1112		return queue_limit_alignment_offset(&q->limits,
1113				bdev->bd_start_sect);
1114	return q->limits.alignment_offset;
1115}
1116EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1117
1118unsigned int bdev_discard_alignment(struct block_device *bdev)
1119{
1120	struct request_queue *q = bdev_get_queue(bdev);
1121
1122	if (bdev_is_partition(bdev))
1123		return queue_limit_discard_alignment(&q->limits,
1124				bdev->bd_start_sect);
1125	return q->limits.discard_alignment;
1126}
1127EXPORT_SYMBOL_GPL(bdev_discard_alignment);