Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Functions related to segment and merge handling
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/bio.h>
  7#include <linux/blkdev.h>
 
  8#include <linux/scatterlist.h>
 
 
 
 
  9
 10#include "blk.h"
 
 
 
 11
 12static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
 13					     struct bio *bio)
 14{
 15	struct bio_vec bv, bvprv = { NULL };
 16	int cluster, high, highprv = 1;
 17	unsigned int seg_size, nr_phys_segs;
 18	struct bio *fbio, *bbio;
 19	struct bvec_iter iter;
 20
 21	if (!bio)
 22		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24	/*
 25	 * This should probably be returning 0, but blk_add_request_payload()
 26	 * (Christoph!!!!)
 27	 */
 28	if (bio->bi_rw & REQ_DISCARD)
 29		return 1;
 
 30
 31	if (bio->bi_rw & REQ_WRITE_SAME)
 32		return 1;
 
 
 33
 34	fbio = bio;
 35	cluster = blk_queue_cluster(q);
 36	seg_size = 0;
 37	nr_phys_segs = 0;
 38	for_each_bio(bio) {
 39		bio_for_each_segment(bv, bio, iter) {
 40			/*
 41			 * the trick here is making sure that a high page is
 42			 * never considered part of another segment, since that
 43			 * might change with the bounce page.
 44			 */
 45			high = page_to_pfn(bv.bv_page) > queue_bounce_pfn(q);
 46			if (!high && !highprv && cluster) {
 47				if (seg_size + bv.bv_len
 48				    > queue_max_segment_size(q))
 49					goto new_segment;
 50				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
 51					goto new_segment;
 52				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
 53					goto new_segment;
 54
 55				seg_size += bv.bv_len;
 56				bvprv = bv;
 57				continue;
 58			}
 59new_segment:
 60			if (nr_phys_segs == 1 && seg_size >
 61			    fbio->bi_seg_front_size)
 62				fbio->bi_seg_front_size = seg_size;
 63
 64			nr_phys_segs++;
 65			bvprv = bv;
 66			seg_size = bv.bv_len;
 67			highprv = high;
 68		}
 69		bbio = bio;
 70	}
 71
 72	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
 73		fbio->bi_seg_front_size = seg_size;
 74	if (seg_size > bbio->bi_seg_back_size)
 75		bbio->bi_seg_back_size = seg_size;
 
 
 
 
 
 
 
 76
 77	return nr_phys_segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 78}
 79
 80void blk_recalc_rq_segments(struct request *rq)
 81{
 82	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio);
 83}
 84
 85void blk_recount_segments(struct request_queue *q, struct bio *bio)
 86{
 87	struct bio *nxt = bio->bi_next;
 88
 89	bio->bi_next = NULL;
 90	bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio);
 91	bio->bi_next = nxt;
 92	bio->bi_flags |= (1 << BIO_SEG_VALID);
 93}
 94EXPORT_SYMBOL(blk_recount_segments);
 95
 96static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
 97				   struct bio *nxt)
 
 
 
 
 98{
 99	struct bio_vec end_bv = { NULL }, nxt_bv;
100	struct bvec_iter iter;
101
102	if (!blk_queue_cluster(q))
103		return 0;
 
 
 
 
 
104
105	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
106	    queue_max_segment_size(q))
107		return 0;
108
109	if (!bio_has_data(bio))
110		return 1;
111
112	bio_for_each_segment(end_bv, bio, iter)
113		if (end_bv.bv_len == iter.bi_size)
114			break;
 
 
115
116	nxt_bv = bio_iovec(nxt);
 
117
118	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
119		return 0;
120
121	/*
122	 * bio and nxt are contiguous in memory; check if the queue allows
123	 * these two to be merged into one
124	 */
125	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
126		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
128	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129}
130
131static inline void
132__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
133		     struct scatterlist *sglist, struct bio_vec *bvprv,
134		     struct scatterlist **sg, int *nsegs, int *cluster)
 
 
 
 
 
 
135{
 
136
137	int nbytes = bvec->bv_len;
138
139	if (*sg && *cluster) {
140		if ((*sg)->length + nbytes > queue_max_segment_size(q))
141			goto new_segment;
142
143		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
144			goto new_segment;
145		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
146			goto new_segment;
147
148		(*sg)->length += nbytes;
149	} else {
150new_segment:
151		if (!*sg)
152			*sg = sglist;
153		else {
154			/*
155			 * If the driver previously mapped a shorter
156			 * list, we could see a termination bit
157			 * prematurely unless it fully inits the sg
158			 * table on each mapping. We KNOW that there
159			 * must be more entries here or the driver
160			 * would be buggy, so force clear the
161			 * termination bit to avoid doing a full
162			 * sg_init_table() in drivers for each command.
163			 */
164			sg_unmark_end(*sg);
165			*sg = sg_next(*sg);
166		}
 
 
 
 
 
 
 
 
 
 
 
 
167
168		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
169		(*nsegs)++;
 
 
 
 
 
170	}
171	*bvprv = *bvec;
 
 
 
 
172}
173
174static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
175			     struct scatterlist *sglist,
176			     struct scatterlist **sg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177{
178	struct bio_vec bvec, bvprv = { NULL };
179	struct bvec_iter iter;
180	int nsegs, cluster;
181
182	nsegs = 0;
183	cluster = blk_queue_cluster(q);
184
185	if (bio->bi_rw & REQ_DISCARD) {
186		/*
187		 * This is a hack - drivers should be neither modifying the
188		 * biovec, nor relying on bi_vcnt - but because of
189		 * blk_add_request_payload(), a discard bio may or may not have
190		 * a payload we need to set up here (thank you Christoph) and
191		 * bi_vcnt is really the only way of telling if we need to.
192		 */
 
 
193
194		if (bio->bi_vcnt)
195			goto single_segment;
 
 
 
 
 
 
 
 
196
197		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198	}
199
200	if (bio->bi_rw & REQ_WRITE_SAME) {
201single_segment:
202		*sg = sglist;
203		bvec = bio_iovec(bio);
204		sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205		return 1;
 
 
 
 
206	}
207
208	for_each_bio(bio)
209		bio_for_each_segment(bvec, bio, iter)
210			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
211					     &nsegs, &cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return nsegs;
214}
215
216/*
217 * map a request to scatterlist, return number of sg entries setup. Caller
218 * must make sure sg can hold rq->nr_phys_segments entries
219 */
220int blk_rq_map_sg(struct request_queue *q, struct request *rq,
221		  struct scatterlist *sglist)
222{
223	struct scatterlist *sg = NULL;
224	int nsegs = 0;
225
226	if (rq->bio)
227		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
 
 
228
229	if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
230	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
231		unsigned int pad_len =
232			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
233
234		sg->length += pad_len;
235		rq->extra_len += pad_len;
236	}
237
238	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
239		if (rq->cmd_flags & REQ_WRITE)
240			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
241
242		sg->page_link &= ~0x02;
243		sg = sg_next(sg);
244		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
245			    q->dma_drain_size,
246			    ((unsigned long)q->dma_drain_buffer) &
247			    (PAGE_SIZE - 1));
248		nsegs++;
249		rq->extra_len += q->dma_drain_size;
250	}
251
252	if (sg)
253		sg_mark_end(sg);
 
 
 
254
255	return nsegs;
256}
257EXPORT_SYMBOL(blk_rq_map_sg);
258
259/**
260 * blk_bio_map_sg - map a bio to a scatterlist
261 * @q: request_queue in question
262 * @bio: bio being mapped
263 * @sglist: scatterlist being mapped
264 *
265 * Note:
266 *    Caller must make sure sg can hold bio->bi_phys_segments entries
267 *
268 * Will return the number of sg entries setup
269 */
270int blk_bio_map_sg(struct request_queue *q, struct bio *bio,
271		   struct scatterlist *sglist)
272{
273	struct scatterlist *sg = NULL;
274	int nsegs;
275	struct bio *next = bio->bi_next;
276	bio->bi_next = NULL;
277
278	nsegs = __blk_bios_map_sg(q, bio, sglist, &sg);
279	bio->bi_next = next;
280	if (sg)
281		sg_mark_end(sg);
282
283	BUG_ON(bio->bi_phys_segments && nsegs > bio->bi_phys_segments);
284	return nsegs;
 
 
 
 
 
 
 
 
285}
286EXPORT_SYMBOL(blk_bio_map_sg);
287
288static inline int ll_new_hw_segment(struct request_queue *q,
289				    struct request *req,
290				    struct bio *bio)
291{
292	int nr_phys_segs = bio_phys_segments(q, bio);
 
293
294	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
295		goto no_merge;
296
297	if (bio_integrity(bio) && blk_integrity_merge_bio(q, req, bio))
 
 
 
 
298		goto no_merge;
299
300	/*
301	 * This will form the start of a new hw segment.  Bump both
302	 * counters.
303	 */
304	req->nr_phys_segments += nr_phys_segs;
305	return 1;
306
307no_merge:
308	req->cmd_flags |= REQ_NOMERGE;
309	if (req == q->last_merge)
310		q->last_merge = NULL;
311	return 0;
312}
313
314int ll_back_merge_fn(struct request_queue *q, struct request *req,
315		     struct bio *bio)
316{
 
 
 
 
 
 
 
317	if (blk_rq_sectors(req) + bio_sectors(bio) >
318	    blk_rq_get_max_sectors(req)) {
319		req->cmd_flags |= REQ_NOMERGE;
320		if (req == q->last_merge)
321			q->last_merge = NULL;
322		return 0;
323	}
324	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
325		blk_recount_segments(q, req->biotail);
326	if (!bio_flagged(bio, BIO_SEG_VALID))
327		blk_recount_segments(q, bio);
328
329	return ll_new_hw_segment(q, req, bio);
330}
331
332int ll_front_merge_fn(struct request_queue *q, struct request *req,
333		      struct bio *bio)
334{
 
 
 
 
 
 
 
335	if (blk_rq_sectors(req) + bio_sectors(bio) >
336	    blk_rq_get_max_sectors(req)) {
337		req->cmd_flags |= REQ_NOMERGE;
338		if (req == q->last_merge)
339			q->last_merge = NULL;
340		return 0;
341	}
342	if (!bio_flagged(bio, BIO_SEG_VALID))
343		blk_recount_segments(q, bio);
344	if (!bio_flagged(req->bio, BIO_SEG_VALID))
345		blk_recount_segments(q, req->bio);
346
347	return ll_new_hw_segment(q, req, bio);
348}
349
350/*
351 * blk-mq uses req->special to carry normal driver per-request payload, it
352 * does not indicate a prepared command that we cannot merge with.
353 */
354static bool req_no_special_merge(struct request *req)
355{
356	struct request_queue *q = req->q;
357
358	return !q->mq_ops && req->special;
 
 
 
 
 
 
 
 
 
 
359}
360
361static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
362				struct request *next)
363{
364	int total_phys_segments;
365	unsigned int seg_size =
366		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
367
368	/*
369	 * First check if the either of the requests are re-queued
370	 * requests.  Can't merge them if they are.
371	 */
372	if (req_no_special_merge(req) || req_no_special_merge(next))
373		return 0;
374
375	/*
376	 * Will it become too large?
377	 */
378	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
379	    blk_rq_get_max_sectors(req))
380		return 0;
381
382	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
383	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
384		if (req->nr_phys_segments == 1)
385			req->bio->bi_seg_front_size = seg_size;
386		if (next->nr_phys_segments == 1)
387			next->biotail->bi_seg_back_size = seg_size;
388		total_phys_segments--;
389	}
390
391	if (total_phys_segments > queue_max_segments(q))
392		return 0;
393
394	if (blk_integrity_rq(req) && blk_integrity_merge_rq(q, req, next))
 
 
 
395		return 0;
396
397	/* Merge is OK... */
398	req->nr_phys_segments = total_phys_segments;
399	return 1;
400}
401
402/**
403 * blk_rq_set_mixed_merge - mark a request as mixed merge
404 * @rq: request to mark as mixed merge
405 *
406 * Description:
407 *     @rq is about to be mixed merged.  Make sure the attributes
408 *     which can be mixed are set in each bio and mark @rq as mixed
409 *     merged.
410 */
411void blk_rq_set_mixed_merge(struct request *rq)
412{
413	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
414	struct bio *bio;
415
416	if (rq->cmd_flags & REQ_MIXED_MERGE)
417		return;
418
419	/*
420	 * @rq will no longer represent mixable attributes for all the
421	 * contained bios.  It will just track those of the first one.
422	 * Distributes the attributs to each bio.
423	 */
424	for (bio = rq->bio; bio; bio = bio->bi_next) {
425		WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
426			     (bio->bi_rw & REQ_FAILFAST_MASK) != ff);
427		bio->bi_rw |= ff;
428	}
429	rq->cmd_flags |= REQ_MIXED_MERGE;
430}
431
432static void blk_account_io_merge(struct request *req)
433{
434	if (blk_do_io_stat(req)) {
435		struct hd_struct *part;
436		int cpu;
437
438		cpu = part_stat_lock();
439		part = req->part;
440
441		part_round_stats(cpu, part);
442		part_dec_in_flight(part, rq_data_dir(req));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443
444		hd_struct_put(part);
 
 
 
 
 
 
445		part_stat_unlock();
446	}
447}
448
 
 
 
 
 
 
 
 
 
 
 
449/*
450 * Has to be called with the request spinlock acquired
 
451 */
452static int attempt_merge(struct request_queue *q, struct request *req,
453			  struct request *next)
454{
455	if (!rq_mergeable(req) || !rq_mergeable(next))
456		return 0;
457
458	if (!blk_check_merge_flags(req->cmd_flags, next->cmd_flags))
459		return 0;
460
461	/*
462	 * not contiguous
463	 */
464	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
465		return 0;
466
467	if (rq_data_dir(req) != rq_data_dir(next)
468	    || req->rq_disk != next->rq_disk
469	    || req_no_special_merge(next))
470		return 0;
471
472	if (req->cmd_flags & REQ_WRITE_SAME &&
473	    !blk_write_same_mergeable(req->bio, next->bio))
474		return 0;
475
476	/*
477	 * If we are allowed to merge, then append bio list
478	 * from next to rq and release next. merge_requests_fn
479	 * will have updated segment counts, update sector
480	 * counts here.
 
481	 */
482	if (!ll_merge_requests_fn(q, req, next))
483		return 0;
 
 
 
 
 
 
 
 
 
 
 
484
485	/*
486	 * If failfast settings disagree or any of the two is already
487	 * a mixed merge, mark both as mixed before proceeding.  This
488	 * makes sure that all involved bios have mixable attributes
489	 * set properly.
490	 */
491	if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
492	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
493	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
494		blk_rq_set_mixed_merge(req);
495		blk_rq_set_mixed_merge(next);
496	}
497
498	/*
499	 * At this point we have either done a back merge
500	 * or front merge. We need the smaller start_time of
501	 * the merged requests to be the current request
502	 * for accounting purposes.
503	 */
504	if (time_after(req->start_time, next->start_time))
505		req->start_time = next->start_time;
506
507	req->biotail->bi_next = next->bio;
508	req->biotail = next->biotail;
509
510	req->__data_len += blk_rq_bytes(next);
511
512	elv_merge_requests(q, req, next);
 
 
 
513
514	/*
515	 * 'next' is going away, so update stats accordingly
516	 */
517	blk_account_io_merge(next);
518
519	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
520	if (blk_rq_cpu_valid(next))
521		req->cpu = next->cpu;
522
523	/* owner-ship of bio passed from next to req */
 
 
 
524	next->bio = NULL;
525	__blk_put_request(q, next);
526	return 1;
527}
528
529int attempt_back_merge(struct request_queue *q, struct request *rq)
 
530{
531	struct request *next = elv_latter_request(q, rq);
532
533	if (next)
534		return attempt_merge(q, rq, next);
535
536	return 0;
537}
538
539int attempt_front_merge(struct request_queue *q, struct request *rq)
 
540{
541	struct request *prev = elv_former_request(q, rq);
542
543	if (prev)
544		return attempt_merge(q, prev, rq);
545
546	return 0;
547}
548
549int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
550			  struct request *next)
 
 
 
 
 
551{
552	return attempt_merge(q, rq, next);
553}
554
555bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
556{
557	if (!rq_mergeable(rq) || !bio_mergeable(bio))
558		return false;
559
560	if (!blk_check_merge_flags(rq->cmd_flags, bio->bi_rw))
561		return false;
562
563	/* different data direction or already started, don't merge */
564	if (bio_data_dir(bio) != rq_data_dir(rq))
565		return false;
566
567	/* must be same device and not a special request */
568	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
569		return false;
570
571	/* only merge integrity protected bio into ditto rq */
572	if (bio_integrity(bio) != blk_integrity_rq(rq))
573		return false;
574
575	/* must be using the same buffer */
576	if (rq->cmd_flags & REQ_WRITE_SAME &&
577	    !blk_write_same_mergeable(rq->bio, bio))
 
 
 
 
 
 
578		return false;
579
580	return true;
581}
582
583int blk_try_merge(struct request *rq, struct bio *bio)
584{
585	if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 
 
586		return ELEVATOR_BACK_MERGE;
587	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
588		return ELEVATOR_FRONT_MERGE;
589	return ELEVATOR_NO_MERGE;
590}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to segment and merge handling
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/blk-integrity.h>
  10#include <linux/scatterlist.h>
  11#include <linux/part_stat.h>
  12#include <linux/blk-cgroup.h>
  13
  14#include <trace/events/block.h>
  15
  16#include "blk.h"
  17#include "blk-mq-sched.h"
  18#include "blk-rq-qos.h"
  19#include "blk-throttle.h"
  20
  21static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
 
  22{
  23	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
  24}
 
 
 
  25
  26static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
  27{
  28	struct bvec_iter iter = bio->bi_iter;
  29	int idx;
  30
  31	bio_get_first_bvec(bio, bv);
  32	if (bv->bv_len == bio->bi_iter.bi_size)
  33		return;		/* this bio only has a single bvec */
  34
  35	bio_advance_iter(bio, &iter, iter.bi_size);
  36
  37	if (!iter.bi_bvec_done)
  38		idx = iter.bi_idx - 1;
  39	else	/* in the middle of bvec */
  40		idx = iter.bi_idx;
  41
  42	*bv = bio->bi_io_vec[idx];
  43
  44	/*
  45	 * iter.bi_bvec_done records actual length of the last bvec
  46	 * if this bio ends in the middle of one io vector
  47	 */
  48	if (iter.bi_bvec_done)
  49		bv->bv_len = iter.bi_bvec_done;
  50}
  51
  52static inline bool bio_will_gap(struct request_queue *q,
  53		struct request *prev_rq, struct bio *prev, struct bio *next)
  54{
  55	struct bio_vec pb, nb;
  56
  57	if (!bio_has_data(prev) || !queue_virt_boundary(q))
  58		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60	/*
  61	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
  62	 * is quite difficult to respect the sg gap limit.  We work hard to
  63	 * merge a huge number of small single bios in case of mkfs.
  64	 */
  65	if (prev_rq)
  66		bio_get_first_bvec(prev_rq->bio, &pb);
  67	else
  68		bio_get_first_bvec(prev, &pb);
  69	if (pb.bv_offset & queue_virt_boundary(q))
  70		return true;
  71
  72	/*
  73	 * We don't need to worry about the situation that the merged segment
  74	 * ends in unaligned virt boundary:
  75	 *
  76	 * - if 'pb' ends aligned, the merged segment ends aligned
  77	 * - if 'pb' ends unaligned, the next bio must include
  78	 *   one single bvec of 'nb', otherwise the 'nb' can't
  79	 *   merge with 'pb'
  80	 */
  81	bio_get_last_bvec(prev, &pb);
  82	bio_get_first_bvec(next, &nb);
  83	if (biovec_phys_mergeable(q, &pb, &nb))
  84		return false;
  85	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
  86}
  87
  88static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
  89{
  90	return bio_will_gap(req->q, req, req->biotail, bio);
  91}
  92
  93static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
  94{
  95	return bio_will_gap(req->q, NULL, bio, req->bio);
 
 
 
 
 
  96}
 
  97
  98/*
  99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 100 * is defined as 'unsigned int', meantime it has to be aligned to with the
 101 * logical block size, which is the minimum accepted unit by hardware.
 102 */
 103static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
 104{
 105	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
 106}
 107
 108static struct bio *bio_split_discard(struct bio *bio,
 109				     const struct queue_limits *lim,
 110				     unsigned *nsegs, struct bio_set *bs)
 111{
 112	unsigned int max_discard_sectors, granularity;
 113	sector_t tmp;
 114	unsigned split_sectors;
 115
 116	*nsegs = 1;
 
 
 117
 118	granularity = max(lim->discard_granularity >> 9, 1U);
 
 119
 120	max_discard_sectors =
 121		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
 122	max_discard_sectors -= max_discard_sectors % granularity;
 123	if (unlikely(!max_discard_sectors))
 124		return NULL;
 125
 126	if (bio_sectors(bio) <= max_discard_sectors)
 127		return NULL;
 128
 129	split_sectors = max_discard_sectors;
 
 130
 131	/*
 132	 * If the next starting sector would be misaligned, stop the discard at
 133	 * the previous aligned sector.
 134	 */
 135	tmp = bio->bi_iter.bi_sector + split_sectors -
 136		((lim->discard_alignment >> 9) % granularity);
 137	tmp = sector_div(tmp, granularity);
 138
 139	if (split_sectors > tmp)
 140		split_sectors -= tmp;
 141
 142	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 143}
 144
 145static struct bio *bio_split_write_zeroes(struct bio *bio,
 146					  const struct queue_limits *lim,
 147					  unsigned *nsegs, struct bio_set *bs)
 148{
 149	*nsegs = 0;
 150	if (!lim->max_write_zeroes_sectors)
 151		return NULL;
 152	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
 153		return NULL;
 154	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
 155}
 156
 157/*
 158 * Return the maximum number of sectors from the start of a bio that may be
 159 * submitted as a single request to a block device. If enough sectors remain,
 160 * align the end to the physical block size. Otherwise align the end to the
 161 * logical block size. This approach minimizes the number of non-aligned
 162 * requests that are submitted to a block device if the start of a bio is not
 163 * aligned to a physical block boundary.
 164 */
 165static inline unsigned get_max_io_size(struct bio *bio,
 166				       const struct queue_limits *lim)
 167{
 168	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
 169	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
 170	unsigned max_sectors = lim->max_sectors, start, end;
 171
 172	if (lim->chunk_sectors) {
 173		max_sectors = min(max_sectors,
 174			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
 175					       lim->chunk_sectors));
 176	}
 177
 178	start = bio->bi_iter.bi_sector & (pbs - 1);
 179	end = (start + max_sectors) & ~(pbs - 1);
 180	if (end > start)
 181		return end - start;
 182	return max_sectors & ~(lbs - 1);
 183}
 184
 185/**
 186 * get_max_segment_size() - maximum number of bytes to add as a single segment
 187 * @lim: Request queue limits.
 188 * @start_page: See below.
 189 * @offset: Offset from @start_page where to add a segment.
 190 *
 191 * Returns the maximum number of bytes that can be added as a single segment.
 192 */
 193static inline unsigned get_max_segment_size(const struct queue_limits *lim,
 194		struct page *start_page, unsigned long offset)
 195{
 196	unsigned long mask = lim->seg_boundary_mask;
 197
 198	offset = mask & (page_to_phys(start_page) + offset);
 199
 200	/*
 201	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
 202	 * after having calculated the minimum.
 203	 */
 204	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
 205}
 206
 207/**
 208 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 209 * @lim:      [in] queue limits to split based on
 210 * @bv:       [in] bvec to examine
 211 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 212 *            by the number of segments from @bv that may be appended to that
 213 *            bio without exceeding @max_segs
 214 * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
 215 *            by the number of bytes from @bv that may be appended to that
 216 *            bio without exceeding @max_bytes
 217 * @max_segs: [in] upper bound for *@nsegs
 218 * @max_bytes: [in] upper bound for *@bytes
 219 *
 220 * When splitting a bio, it can happen that a bvec is encountered that is too
 221 * big to fit in a single segment and hence that it has to be split in the
 222 * middle. This function verifies whether or not that should happen. The value
 223 * %true is returned if and only if appending the entire @bv to a bio with
 224 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 225 * the block driver.
 226 */
 227static bool bvec_split_segs(const struct queue_limits *lim,
 228		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
 229		unsigned max_segs, unsigned max_bytes)
 230{
 231	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
 232	unsigned len = min(bv->bv_len, max_len);
 233	unsigned total_len = 0;
 234	unsigned seg_size = 0;
 235
 236	while (len && *nsegs < max_segs) {
 237		seg_size = get_max_segment_size(lim, bv->bv_page,
 238						bv->bv_offset + total_len);
 239		seg_size = min(seg_size, len);
 240
 
 241		(*nsegs)++;
 242		total_len += seg_size;
 243		len -= seg_size;
 244
 245		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
 246			break;
 247	}
 248
 249	*bytes += total_len;
 250
 251	/* tell the caller to split the bvec if it is too big to fit */
 252	return len > 0 || bv->bv_len > max_len;
 253}
 254
 255/**
 256 * bio_split_rw - split a bio in two bios
 257 * @bio:  [in] bio to be split
 258 * @lim:  [in] queue limits to split based on
 259 * @segs: [out] number of segments in the bio with the first half of the sectors
 260 * @bs:	  [in] bio set to allocate the clone from
 261 * @max_bytes: [in] maximum number of bytes per bio
 262 *
 263 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 264 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 265 * following is guaranteed for the cloned bio:
 266 * - That it has at most @max_bytes worth of data
 267 * - That it has at most queue_max_segments(@q) segments.
 268 *
 269 * Except for discard requests the cloned bio will point at the bi_io_vec of
 270 * the original bio. It is the responsibility of the caller to ensure that the
 271 * original bio is not freed before the cloned bio. The caller is also
 272 * responsible for ensuring that @bs is only destroyed after processing of the
 273 * split bio has finished.
 274 */
 275struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
 276		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
 277{
 278	struct bio_vec bv, bvprv, *bvprvp = NULL;
 279	struct bvec_iter iter;
 280	unsigned nsegs = 0, bytes = 0;
 
 
 
 281
 282	bio_for_each_bvec(bv, bio, iter) {
 283		/*
 284		 * If the queue doesn't support SG gaps and adding this
 285		 * offset would create a gap, disallow it.
 
 
 
 286		 */
 287		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
 288			goto split;
 289
 290		if (nsegs < lim->max_segments &&
 291		    bytes + bv.bv_len <= max_bytes &&
 292		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 293			nsegs++;
 294			bytes += bv.bv_len;
 295		} else {
 296			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
 297					lim->max_segments, max_bytes))
 298				goto split;
 299		}
 300
 301		bvprv = bv;
 302		bvprvp = &bvprv;
 303	}
 304
 305	*segs = nsegs;
 306	return NULL;
 307split:
 308	/*
 309	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
 310	 * with EAGAIN if splitting is required and return an error pointer.
 311	 */
 312	if (bio->bi_opf & REQ_NOWAIT) {
 313		bio->bi_status = BLK_STS_AGAIN;
 314		bio_endio(bio);
 315		return ERR_PTR(-EAGAIN);
 316	}
 317
 318	*segs = nsegs;
 319
 320	/*
 321	 * Individual bvecs might not be logical block aligned. Round down the
 322	 * split size so that each bio is properly block size aligned, even if
 323	 * we do not use the full hardware limits.
 324	 */
 325	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
 326
 327	/*
 328	 * Bio splitting may cause subtle trouble such as hang when doing sync
 329	 * iopoll in direct IO routine. Given performance gain of iopoll for
 330	 * big IO can be trival, disable iopoll when split needed.
 331	 */
 332	bio_clear_polled(bio);
 333	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
 334}
 335EXPORT_SYMBOL_GPL(bio_split_rw);
 336
 337/**
 338 * __bio_split_to_limits - split a bio to fit the queue limits
 339 * @bio:     bio to be split
 340 * @lim:     queue limits to split based on
 341 * @nr_segs: returns the number of segments in the returned bio
 342 *
 343 * Check if @bio needs splitting based on the queue limits, and if so split off
 344 * a bio fitting the limits from the beginning of @bio and return it.  @bio is
 345 * shortened to the remainder and re-submitted.
 346 *
 347 * The split bio is allocated from @q->bio_split, which is provided by the
 348 * block layer.
 349 */
 350struct bio *__bio_split_to_limits(struct bio *bio,
 351				  const struct queue_limits *lim,
 352				  unsigned int *nr_segs)
 353{
 354	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
 355	struct bio *split;
 356
 357	switch (bio_op(bio)) {
 358	case REQ_OP_DISCARD:
 359	case REQ_OP_SECURE_ERASE:
 360		split = bio_split_discard(bio, lim, nr_segs, bs);
 361		break;
 362	case REQ_OP_WRITE_ZEROES:
 363		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
 364		break;
 365	default:
 366		split = bio_split_rw(bio, lim, nr_segs, bs,
 367				get_max_io_size(bio, lim) << SECTOR_SHIFT);
 368		if (IS_ERR(split))
 369			return NULL;
 370		break;
 371	}
 372
 373	if (split) {
 374		/* there isn't chance to merge the split bio */
 375		split->bi_opf |= REQ_NOMERGE;
 376
 377		blkcg_bio_issue_init(split);
 378		bio_chain(split, bio);
 379		trace_block_split(split, bio->bi_iter.bi_sector);
 380		submit_bio_noacct(bio);
 381		return split;
 382	}
 383	return bio;
 384}
 385
 386/**
 387 * bio_split_to_limits - split a bio to fit the queue limits
 388 * @bio:     bio to be split
 389 *
 390 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
 391 * if so split off a bio fitting the limits from the beginning of @bio and
 392 * return it.  @bio is shortened to the remainder and re-submitted.
 393 *
 394 * The split bio is allocated from @q->bio_split, which is provided by the
 395 * block layer.
 396 */
 397struct bio *bio_split_to_limits(struct bio *bio)
 398{
 399	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
 400	unsigned int nr_segs;
 401
 402	if (bio_may_exceed_limits(bio, lim))
 403		return __bio_split_to_limits(bio, lim, &nr_segs);
 404	return bio;
 405}
 406EXPORT_SYMBOL(bio_split_to_limits);
 407
 408unsigned int blk_recalc_rq_segments(struct request *rq)
 409{
 410	unsigned int nr_phys_segs = 0;
 411	unsigned int bytes = 0;
 412	struct req_iterator iter;
 413	struct bio_vec bv;
 414
 415	if (!rq->bio)
 416		return 0;
 417
 418	switch (bio_op(rq->bio)) {
 419	case REQ_OP_DISCARD:
 420	case REQ_OP_SECURE_ERASE:
 421		if (queue_max_discard_segments(rq->q) > 1) {
 422			struct bio *bio = rq->bio;
 423
 424			for_each_bio(bio)
 425				nr_phys_segs++;
 426			return nr_phys_segs;
 427		}
 428		return 1;
 429	case REQ_OP_WRITE_ZEROES:
 430		return 0;
 431	default:
 432		break;
 433	}
 434
 435	rq_for_each_bvec(bv, rq, iter)
 436		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
 437				UINT_MAX, UINT_MAX);
 438	return nr_phys_segs;
 439}
 440
 441static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 442		struct scatterlist *sglist)
 443{
 444	if (!*sg)
 445		return sglist;
 446
 447	/*
 448	 * If the driver previously mapped a shorter list, we could see a
 449	 * termination bit prematurely unless it fully inits the sg table
 450	 * on each mapping. We KNOW that there must be more entries here
 451	 * or the driver would be buggy, so force clear the termination bit
 452	 * to avoid doing a full sg_init_table() in drivers for each command.
 453	 */
 454	sg_unmark_end(*sg);
 455	return sg_next(*sg);
 456}
 457
 458static unsigned blk_bvec_map_sg(struct request_queue *q,
 459		struct bio_vec *bvec, struct scatterlist *sglist,
 460		struct scatterlist **sg)
 461{
 462	unsigned nbytes = bvec->bv_len;
 463	unsigned nsegs = 0, total = 0;
 464
 465	while (nbytes > 0) {
 466		unsigned offset = bvec->bv_offset + total;
 467		unsigned len = min(get_max_segment_size(&q->limits,
 468				   bvec->bv_page, offset), nbytes);
 469		struct page *page = bvec->bv_page;
 470
 471		/*
 472		 * Unfortunately a fair number of drivers barf on scatterlists
 473		 * that have an offset larger than PAGE_SIZE, despite other
 474		 * subsystems dealing with that invariant just fine.  For now
 475		 * stick to the legacy format where we never present those from
 476		 * the block layer, but the code below should be removed once
 477		 * these offenders (mostly MMC/SD drivers) are fixed.
 478		 */
 479		page += (offset >> PAGE_SHIFT);
 480		offset &= ~PAGE_MASK;
 481
 482		*sg = blk_next_sg(sg, sglist);
 483		sg_set_page(*sg, page, len, offset);
 484
 485		total += len;
 486		nbytes -= len;
 487		nsegs++;
 488	}
 489
 490	return nsegs;
 491}
 492
 493static inline int __blk_bvec_map_sg(struct bio_vec bv,
 494		struct scatterlist *sglist, struct scatterlist **sg)
 495{
 496	*sg = blk_next_sg(sg, sglist);
 497	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 498	return 1;
 499}
 500
 501/* only try to merge bvecs into one sg if they are from two bios */
 502static inline bool
 503__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 504			   struct bio_vec *bvprv, struct scatterlist **sg)
 505{
 506
 507	int nbytes = bvec->bv_len;
 508
 509	if (!*sg)
 510		return false;
 511
 512	if ((*sg)->length + nbytes > queue_max_segment_size(q))
 513		return false;
 514
 515	if (!biovec_phys_mergeable(q, bvprv, bvec))
 516		return false;
 517
 518	(*sg)->length += nbytes;
 519
 520	return true;
 521}
 522
 523static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 524			     struct scatterlist *sglist,
 525			     struct scatterlist **sg)
 526{
 527	struct bio_vec bvec, bvprv = { NULL };
 528	struct bvec_iter iter;
 529	int nsegs = 0;
 530	bool new_bio = false;
 531
 532	for_each_bio(bio) {
 533		bio_for_each_bvec(bvec, bio, iter) {
 534			/*
 535			 * Only try to merge bvecs from two bios given we
 536			 * have done bio internal merge when adding pages
 537			 * to bio
 538			 */
 539			if (new_bio &&
 540			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 541				goto next_bvec;
 542
 543			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 544				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 545			else
 546				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 547 next_bvec:
 548			new_bio = false;
 549		}
 550		if (likely(bio->bi_iter.bi_size)) {
 551			bvprv = bvec;
 552			new_bio = true;
 553		}
 554	}
 555
 556	return nsegs;
 557}
 558
 559/*
 560 * map a request to scatterlist, return number of sg entries setup. Caller
 561 * must make sure sg can hold rq->nr_phys_segments entries
 562 */
 563int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
 564		struct scatterlist *sglist, struct scatterlist **last_sg)
 565{
 
 566	int nsegs = 0;
 567
 568	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 569		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
 570	else if (rq->bio)
 571		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 572
 573	if (*last_sg)
 574		sg_mark_end(*last_sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575
 576	/*
 577	 * Something must have been wrong if the figured number of
 578	 * segment is bigger than number of req's physical segments
 579	 */
 580	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 581
 582	return nsegs;
 583}
 584EXPORT_SYMBOL(__blk_rq_map_sg);
 585
 586static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
 587						  sector_t offset)
 588{
 589	struct request_queue *q = rq->q;
 590	unsigned int max_sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591
 592	if (blk_rq_is_passthrough(rq))
 593		return q->limits.max_hw_sectors;
 594
 595	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
 596	if (!q->limits.chunk_sectors ||
 597	    req_op(rq) == REQ_OP_DISCARD ||
 598	    req_op(rq) == REQ_OP_SECURE_ERASE)
 599		return max_sectors;
 600	return min(max_sectors,
 601		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
 602}
 
 603
 604static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 605		unsigned int nr_phys_segs)
 
 606{
 607	if (!blk_cgroup_mergeable(req, bio))
 608		goto no_merge;
 609
 610	if (blk_integrity_merge_bio(req->q, req, bio) == false)
 611		goto no_merge;
 612
 613	/* discard request merge won't add new segment */
 614	if (req_op(req) == REQ_OP_DISCARD)
 615		return 1;
 616
 617	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
 618		goto no_merge;
 619
 620	/*
 621	 * This will form the start of a new hw segment.  Bump both
 622	 * counters.
 623	 */
 624	req->nr_phys_segments += nr_phys_segs;
 625	return 1;
 626
 627no_merge:
 628	req_set_nomerge(req->q, req);
 
 
 629	return 0;
 630}
 631
 632int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
 633{
 634	if (req_gap_back_merge(req, bio))
 635		return 0;
 636	if (blk_integrity_rq(req) &&
 637	    integrity_req_gap_back_merge(req, bio))
 638		return 0;
 639	if (!bio_crypt_ctx_back_mergeable(req, bio))
 640		return 0;
 641	if (blk_rq_sectors(req) + bio_sectors(bio) >
 642	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 643		req_set_nomerge(req->q, req);
 
 
 644		return 0;
 645	}
 
 
 
 
 646
 647	return ll_new_hw_segment(req, bio, nr_segs);
 648}
 649
 650static int ll_front_merge_fn(struct request *req, struct bio *bio,
 651		unsigned int nr_segs)
 652{
 653	if (req_gap_front_merge(req, bio))
 654		return 0;
 655	if (blk_integrity_rq(req) &&
 656	    integrity_req_gap_front_merge(req, bio))
 657		return 0;
 658	if (!bio_crypt_ctx_front_mergeable(req, bio))
 659		return 0;
 660	if (blk_rq_sectors(req) + bio_sectors(bio) >
 661	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 662		req_set_nomerge(req->q, req);
 
 
 663		return 0;
 664	}
 
 
 
 
 665
 666	return ll_new_hw_segment(req, bio, nr_segs);
 667}
 668
 669static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 670		struct request *next)
 
 
 
 671{
 672	unsigned short segments = blk_rq_nr_discard_segments(req);
 673
 674	if (segments >= queue_max_discard_segments(q))
 675		goto no_merge;
 676	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 677	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 678		goto no_merge;
 679
 680	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 681	return true;
 682no_merge:
 683	req_set_nomerge(q, req);
 684	return false;
 685}
 686
 687static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 688				struct request *next)
 689{
 690	int total_phys_segments;
 
 
 691
 692	if (req_gap_back_merge(req, next->bio))
 
 
 
 
 693		return 0;
 694
 695	/*
 696	 * Will it become too large?
 697	 */
 698	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 699	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 700		return 0;
 701
 702	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 703	if (total_phys_segments > blk_rq_get_max_segments(req))
 704		return 0;
 
 
 
 
 
 705
 706	if (!blk_cgroup_mergeable(req, next->bio))
 707		return 0;
 708
 709	if (blk_integrity_merge_rq(q, req, next) == false)
 710		return 0;
 711
 712	if (!bio_crypt_ctx_merge_rq(req, next))
 713		return 0;
 714
 715	/* Merge is OK... */
 716	req->nr_phys_segments = total_phys_segments;
 717	return 1;
 718}
 719
 720/**
 721 * blk_rq_set_mixed_merge - mark a request as mixed merge
 722 * @rq: request to mark as mixed merge
 723 *
 724 * Description:
 725 *     @rq is about to be mixed merged.  Make sure the attributes
 726 *     which can be mixed are set in each bio and mark @rq as mixed
 727 *     merged.
 728 */
 729static void blk_rq_set_mixed_merge(struct request *rq)
 730{
 731	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 732	struct bio *bio;
 733
 734	if (rq->rq_flags & RQF_MIXED_MERGE)
 735		return;
 736
 737	/*
 738	 * @rq will no longer represent mixable attributes for all the
 739	 * contained bios.  It will just track those of the first one.
 740	 * Distributes the attributs to each bio.
 741	 */
 742	for (bio = rq->bio; bio; bio = bio->bi_next) {
 743		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 744			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 745		bio->bi_opf |= ff;
 746	}
 747	rq->rq_flags |= RQF_MIXED_MERGE;
 748}
 749
 750static inline blk_opf_t bio_failfast(const struct bio *bio)
 751{
 752	if (bio->bi_opf & REQ_RAHEAD)
 753		return REQ_FAILFAST_MASK;
 
 754
 755	return bio->bi_opf & REQ_FAILFAST_MASK;
 756}
 757
 758/*
 759 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
 760 * as failfast, and request's failfast has to be updated in case of
 761 * front merge.
 762 */
 763static inline void blk_update_mixed_merge(struct request *req,
 764		struct bio *bio, bool front_merge)
 765{
 766	if (req->rq_flags & RQF_MIXED_MERGE) {
 767		if (bio->bi_opf & REQ_RAHEAD)
 768			bio->bi_opf |= REQ_FAILFAST_MASK;
 769
 770		if (front_merge) {
 771			req->cmd_flags &= ~REQ_FAILFAST_MASK;
 772			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
 773		}
 774	}
 775}
 776
 777static void blk_account_io_merge_request(struct request *req)
 778{
 779	if (blk_do_io_stat(req)) {
 780		part_stat_lock();
 781		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 782		part_stat_local_dec(req->part,
 783				    in_flight[op_is_write(req_op(req))]);
 784		part_stat_unlock();
 785	}
 786}
 787
 788static enum elv_merge blk_try_req_merge(struct request *req,
 789					struct request *next)
 790{
 791	if (blk_discard_mergable(req))
 792		return ELEVATOR_DISCARD_MERGE;
 793	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 794		return ELEVATOR_BACK_MERGE;
 795
 796	return ELEVATOR_NO_MERGE;
 797}
 798
 799/*
 800 * For non-mq, this has to be called with the request spinlock acquired.
 801 * For mq with scheduling, the appropriate queue wide lock should be held.
 802 */
 803static struct request *attempt_merge(struct request_queue *q,
 804				     struct request *req, struct request *next)
 805{
 806	if (!rq_mergeable(req) || !rq_mergeable(next))
 807		return NULL;
 808
 809	if (req_op(req) != req_op(next))
 810		return NULL;
 811
 812	if (rq_data_dir(req) != rq_data_dir(next))
 813		return NULL;
 
 
 
 814
 815	/* Don't merge requests with different write hints. */
 816	if (req->write_hint != next->write_hint)
 817		return NULL;
 
 818
 819	if (req->ioprio != next->ioprio)
 820		return NULL;
 
 821
 822	/*
 823	 * If we are allowed to merge, then append bio list
 824	 * from next to rq and release next. merge_requests_fn
 825	 * will have updated segment counts, update sector
 826	 * counts here. Handle DISCARDs separately, as they
 827	 * have separate settings.
 828	 */
 829
 830	switch (blk_try_req_merge(req, next)) {
 831	case ELEVATOR_DISCARD_MERGE:
 832		if (!req_attempt_discard_merge(q, req, next))
 833			return NULL;
 834		break;
 835	case ELEVATOR_BACK_MERGE:
 836		if (!ll_merge_requests_fn(q, req, next))
 837			return NULL;
 838		break;
 839	default:
 840		return NULL;
 841	}
 842
 843	/*
 844	 * If failfast settings disagree or any of the two is already
 845	 * a mixed merge, mark both as mixed before proceeding.  This
 846	 * makes sure that all involved bios have mixable attributes
 847	 * set properly.
 848	 */
 849	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 850	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
 851	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
 852		blk_rq_set_mixed_merge(req);
 853		blk_rq_set_mixed_merge(next);
 854	}
 855
 856	/*
 857	 * At this point we have either done a back merge or front merge. We
 858	 * need the smaller start_time_ns of the merged requests to be the
 859	 * current request for accounting purposes.
 
 860	 */
 861	if (next->start_time_ns < req->start_time_ns)
 862		req->start_time_ns = next->start_time_ns;
 863
 864	req->biotail->bi_next = next->bio;
 865	req->biotail = next->biotail;
 866
 867	req->__data_len += blk_rq_bytes(next);
 868
 869	if (!blk_discard_mergable(req))
 870		elv_merge_requests(q, req, next);
 871
 872	blk_crypto_rq_put_keyslot(next);
 873
 874	/*
 875	 * 'next' is going away, so update stats accordingly
 876	 */
 877	blk_account_io_merge_request(next);
 878
 879	trace_block_rq_merge(next);
 
 
 880
 881	/*
 882	 * ownership of bio passed from next to req, return 'next' for
 883	 * the caller to free
 884	 */
 885	next->bio = NULL;
 886	return next;
 
 887}
 888
 889static struct request *attempt_back_merge(struct request_queue *q,
 890		struct request *rq)
 891{
 892	struct request *next = elv_latter_request(q, rq);
 893
 894	if (next)
 895		return attempt_merge(q, rq, next);
 896
 897	return NULL;
 898}
 899
 900static struct request *attempt_front_merge(struct request_queue *q,
 901		struct request *rq)
 902{
 903	struct request *prev = elv_former_request(q, rq);
 904
 905	if (prev)
 906		return attempt_merge(q, prev, rq);
 907
 908	return NULL;
 909}
 910
 911/*
 912 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 913 * otherwise. The caller is responsible for freeing 'next' if the merge
 914 * happened.
 915 */
 916bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 917			   struct request *next)
 918{
 919	return attempt_merge(q, rq, next);
 920}
 921
 922bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 923{
 924	if (!rq_mergeable(rq) || !bio_mergeable(bio))
 925		return false;
 926
 927	if (req_op(rq) != bio_op(bio))
 928		return false;
 929
 930	/* different data direction or already started, don't merge */
 931	if (bio_data_dir(bio) != rq_data_dir(rq))
 932		return false;
 933
 934	/* don't merge across cgroup boundaries */
 935	if (!blk_cgroup_mergeable(rq, bio))
 936		return false;
 937
 938	/* only merge integrity protected bio into ditto rq */
 939	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 940		return false;
 941
 942	/* Only merge if the crypt contexts are compatible */
 943	if (!bio_crypt_rq_ctx_compatible(rq, bio))
 944		return false;
 945
 946	/* Don't merge requests with different write hints. */
 947	if (rq->write_hint != bio->bi_write_hint)
 948		return false;
 949
 950	if (rq->ioprio != bio_prio(bio))
 951		return false;
 952
 953	return true;
 954}
 955
 956enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 957{
 958	if (blk_discard_mergable(rq))
 959		return ELEVATOR_DISCARD_MERGE;
 960	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 961		return ELEVATOR_BACK_MERGE;
 962	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 963		return ELEVATOR_FRONT_MERGE;
 964	return ELEVATOR_NO_MERGE;
 965}
 966
 967static void blk_account_io_merge_bio(struct request *req)
 968{
 969	if (!blk_do_io_stat(req))
 970		return;
 971
 972	part_stat_lock();
 973	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 974	part_stat_unlock();
 975}
 976
 977enum bio_merge_status {
 978	BIO_MERGE_OK,
 979	BIO_MERGE_NONE,
 980	BIO_MERGE_FAILED,
 981};
 982
 983static enum bio_merge_status bio_attempt_back_merge(struct request *req,
 984		struct bio *bio, unsigned int nr_segs)
 985{
 986	const blk_opf_t ff = bio_failfast(bio);
 987
 988	if (!ll_back_merge_fn(req, bio, nr_segs))
 989		return BIO_MERGE_FAILED;
 990
 991	trace_block_bio_backmerge(bio);
 992	rq_qos_merge(req->q, req, bio);
 993
 994	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 995		blk_rq_set_mixed_merge(req);
 996
 997	blk_update_mixed_merge(req, bio, false);
 998
 999	req->biotail->bi_next = bio;
1000	req->biotail = bio;
1001	req->__data_len += bio->bi_iter.bi_size;
1002
1003	bio_crypt_free_ctx(bio);
1004
1005	blk_account_io_merge_bio(req);
1006	return BIO_MERGE_OK;
1007}
1008
1009static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1010		struct bio *bio, unsigned int nr_segs)
1011{
1012	const blk_opf_t ff = bio_failfast(bio);
1013
1014	if (!ll_front_merge_fn(req, bio, nr_segs))
1015		return BIO_MERGE_FAILED;
1016
1017	trace_block_bio_frontmerge(bio);
1018	rq_qos_merge(req->q, req, bio);
1019
1020	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1021		blk_rq_set_mixed_merge(req);
1022
1023	blk_update_mixed_merge(req, bio, true);
1024
1025	bio->bi_next = req->bio;
1026	req->bio = bio;
1027
1028	req->__sector = bio->bi_iter.bi_sector;
1029	req->__data_len += bio->bi_iter.bi_size;
1030
1031	bio_crypt_do_front_merge(req, bio);
1032
1033	blk_account_io_merge_bio(req);
1034	return BIO_MERGE_OK;
1035}
1036
1037static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1038		struct request *req, struct bio *bio)
1039{
1040	unsigned short segments = blk_rq_nr_discard_segments(req);
1041
1042	if (segments >= queue_max_discard_segments(q))
1043		goto no_merge;
1044	if (blk_rq_sectors(req) + bio_sectors(bio) >
1045	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1046		goto no_merge;
1047
1048	rq_qos_merge(q, req, bio);
1049
1050	req->biotail->bi_next = bio;
1051	req->biotail = bio;
1052	req->__data_len += bio->bi_iter.bi_size;
1053	req->nr_phys_segments = segments + 1;
1054
1055	blk_account_io_merge_bio(req);
1056	return BIO_MERGE_OK;
1057no_merge:
1058	req_set_nomerge(q, req);
1059	return BIO_MERGE_FAILED;
1060}
1061
1062static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1063						   struct request *rq,
1064						   struct bio *bio,
1065						   unsigned int nr_segs,
1066						   bool sched_allow_merge)
1067{
1068	if (!blk_rq_merge_ok(rq, bio))
1069		return BIO_MERGE_NONE;
1070
1071	switch (blk_try_merge(rq, bio)) {
1072	case ELEVATOR_BACK_MERGE:
1073		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1074			return bio_attempt_back_merge(rq, bio, nr_segs);
1075		break;
1076	case ELEVATOR_FRONT_MERGE:
1077		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1078			return bio_attempt_front_merge(rq, bio, nr_segs);
1079		break;
1080	case ELEVATOR_DISCARD_MERGE:
1081		return bio_attempt_discard_merge(q, rq, bio);
1082	default:
1083		return BIO_MERGE_NONE;
1084	}
1085
1086	return BIO_MERGE_FAILED;
1087}
1088
1089/**
1090 * blk_attempt_plug_merge - try to merge with %current's plugged list
1091 * @q: request_queue new bio is being queued at
1092 * @bio: new bio being queued
1093 * @nr_segs: number of segments in @bio
1094 * from the passed in @q already in the plug list
1095 *
1096 * Determine whether @bio being queued on @q can be merged with the previous
1097 * request on %current's plugged list.  Returns %true if merge was successful,
1098 * otherwise %false.
1099 *
1100 * Plugging coalesces IOs from the same issuer for the same purpose without
1101 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1102 * than scheduling, and the request, while may have elvpriv data, is not
1103 * added on the elevator at this point.  In addition, we don't have
1104 * reliable access to the elevator outside queue lock.  Only check basic
1105 * merging parameters without querying the elevator.
1106 *
1107 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1108 */
1109bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1110		unsigned int nr_segs)
1111{
1112	struct blk_plug *plug;
1113	struct request *rq;
1114
1115	plug = blk_mq_plug(bio);
1116	if (!plug || rq_list_empty(plug->mq_list))
1117		return false;
1118
1119	rq_list_for_each(&plug->mq_list, rq) {
1120		if (rq->q == q) {
1121			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1122			    BIO_MERGE_OK)
1123				return true;
1124			break;
1125		}
1126
1127		/*
1128		 * Only keep iterating plug list for merges if we have multiple
1129		 * queues
1130		 */
1131		if (!plug->multiple_queues)
1132			break;
1133	}
1134	return false;
1135}
1136
1137/*
1138 * Iterate list of requests and see if we can merge this bio with any
1139 * of them.
1140 */
1141bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1142			struct bio *bio, unsigned int nr_segs)
1143{
1144	struct request *rq;
1145	int checked = 8;
1146
1147	list_for_each_entry_reverse(rq, list, queuelist) {
1148		if (!checked--)
1149			break;
1150
1151		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1152		case BIO_MERGE_NONE:
1153			continue;
1154		case BIO_MERGE_OK:
1155			return true;
1156		case BIO_MERGE_FAILED:
1157			return false;
1158		}
1159
1160	}
1161
1162	return false;
1163}
1164EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1165
1166bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1167		unsigned int nr_segs, struct request **merged_request)
1168{
1169	struct request *rq;
1170
1171	switch (elv_merge(q, &rq, bio)) {
1172	case ELEVATOR_BACK_MERGE:
1173		if (!blk_mq_sched_allow_merge(q, rq, bio))
1174			return false;
1175		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1176			return false;
1177		*merged_request = attempt_back_merge(q, rq);
1178		if (!*merged_request)
1179			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1180		return true;
1181	case ELEVATOR_FRONT_MERGE:
1182		if (!blk_mq_sched_allow_merge(q, rq, bio))
1183			return false;
1184		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1185			return false;
1186		*merged_request = attempt_front_merge(q, rq);
1187		if (!*merged_request)
1188			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1189		return true;
1190	case ELEVATOR_DISCARD_MERGE:
1191		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1192	default:
1193		return false;
1194	}
1195}
1196EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);