Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/export.h>
   3#include <linux/bvec.h>
   4#include <linux/fault-inject-usercopy.h>
   5#include <linux/uio.h>
   6#include <linux/pagemap.h>
   7#include <linux/highmem.h>
   8#include <linux/slab.h>
   9#include <linux/vmalloc.h>
  10#include <linux/splice.h>
  11#include <linux/compat.h>
  12#include <linux/scatterlist.h>
  13#include <linux/instrumented.h>
  14#include <linux/iov_iter.h>
  15
  16static __always_inline
  17size_t copy_to_user_iter(void __user *iter_to, size_t progress,
  18			 size_t len, void *from, void *priv2)
  19{
  20	if (should_fail_usercopy())
  21		return len;
  22	if (access_ok(iter_to, len)) {
  23		from += progress;
  24		instrument_copy_to_user(iter_to, from, len);
  25		len = raw_copy_to_user(iter_to, from, len);
  26	}
  27	return len;
  28}
  29
  30static __always_inline
  31size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
  32				 size_t len, void *from, void *priv2)
  33{
  34	ssize_t res;
  35
  36	if (should_fail_usercopy())
  37		return len;
  38
  39	from += progress;
  40	res = copy_to_user_nofault(iter_to, from, len);
  41	return res < 0 ? len : res;
  42}
  43
  44static __always_inline
  45size_t copy_from_user_iter(void __user *iter_from, size_t progress,
  46			   size_t len, void *to, void *priv2)
  47{
  48	size_t res = len;
  49
  50	if (should_fail_usercopy())
  51		return len;
  52	if (access_ok(iter_from, len)) {
  53		to += progress;
  54		instrument_copy_from_user_before(to, iter_from, len);
  55		res = raw_copy_from_user(to, iter_from, len);
  56		instrument_copy_from_user_after(to, iter_from, len, res);
  57	}
  58	return res;
  59}
  60
  61static __always_inline
  62size_t memcpy_to_iter(void *iter_to, size_t progress,
  63		      size_t len, void *from, void *priv2)
  64{
  65	memcpy(iter_to, from + progress, len);
  66	return 0;
  67}
  68
  69static __always_inline
  70size_t memcpy_from_iter(void *iter_from, size_t progress,
  71			size_t len, void *to, void *priv2)
  72{
  73	memcpy(to + progress, iter_from, len);
  74	return 0;
  75}
  76
  77/*
  78 * fault_in_iov_iter_readable - fault in iov iterator for reading
  79 * @i: iterator
  80 * @size: maximum length
  81 *
  82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
  83 * @size.  For each iovec, fault in each page that constitutes the iovec.
  84 *
  85 * Returns the number of bytes not faulted in (like copy_to_user() and
  86 * copy_from_user()).
  87 *
  88 * Always returns 0 for non-userspace iterators.
  89 */
  90size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
  91{
  92	if (iter_is_ubuf(i)) {
  93		size_t n = min(size, iov_iter_count(i));
  94		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
  95		return size - n;
  96	} else if (iter_is_iovec(i)) {
  97		size_t count = min(size, iov_iter_count(i));
  98		const struct iovec *p;
  99		size_t skip;
 100
 101		size -= count;
 102		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 103			size_t len = min(count, p->iov_len - skip);
 104			size_t ret;
 105
 106			if (unlikely(!len))
 107				continue;
 108			ret = fault_in_readable(p->iov_base + skip, len);
 109			count -= len - ret;
 110			if (ret)
 111				break;
 112		}
 113		return count + size;
 114	}
 115	return 0;
 116}
 117EXPORT_SYMBOL(fault_in_iov_iter_readable);
 118
 119/*
 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
 121 * @i: iterator
 122 * @size: maximum length
 123 *
 124 * Faults in the iterator using get_user_pages(), i.e., without triggering
 125 * hardware page faults.  This is primarily useful when we already know that
 126 * some or all of the pages in @i aren't in memory.
 127 *
 128 * Returns the number of bytes not faulted in, like copy_to_user() and
 129 * copy_from_user().
 130 *
 131 * Always returns 0 for non-user-space iterators.
 132 */
 133size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
 134{
 135	if (iter_is_ubuf(i)) {
 136		size_t n = min(size, iov_iter_count(i));
 137		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
 138		return size - n;
 139	} else if (iter_is_iovec(i)) {
 140		size_t count = min(size, iov_iter_count(i));
 141		const struct iovec *p;
 142		size_t skip;
 143
 144		size -= count;
 145		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 146			size_t len = min(count, p->iov_len - skip);
 147			size_t ret;
 148
 149			if (unlikely(!len))
 150				continue;
 151			ret = fault_in_safe_writeable(p->iov_base + skip, len);
 152			count -= len - ret;
 153			if (ret)
 154				break;
 155		}
 156		return count + size;
 157	}
 158	return 0;
 159}
 160EXPORT_SYMBOL(fault_in_iov_iter_writeable);
 161
 162void iov_iter_init(struct iov_iter *i, unsigned int direction,
 163			const struct iovec *iov, unsigned long nr_segs,
 164			size_t count)
 165{
 166	WARN_ON(direction & ~(READ | WRITE));
 167	*i = (struct iov_iter) {
 168		.iter_type = ITER_IOVEC,
 169		.nofault = false,
 170		.data_source = direction,
 171		.__iov = iov,
 172		.nr_segs = nr_segs,
 173		.iov_offset = 0,
 174		.count = count
 175	};
 176}
 177EXPORT_SYMBOL(iov_iter_init);
 178
 179size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 180{
 181	if (WARN_ON_ONCE(i->data_source))
 182		return 0;
 183	if (user_backed_iter(i))
 184		might_fault();
 185	return iterate_and_advance(i, bytes, (void *)addr,
 186				   copy_to_user_iter, memcpy_to_iter);
 187}
 188EXPORT_SYMBOL(_copy_to_iter);
 189
 190#ifdef CONFIG_ARCH_HAS_COPY_MC
 191static __always_inline
 192size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
 193			    size_t len, void *from, void *priv2)
 194{
 195	if (access_ok(iter_to, len)) {
 196		from += progress;
 197		instrument_copy_to_user(iter_to, from, len);
 198		len = copy_mc_to_user(iter_to, from, len);
 199	}
 200	return len;
 201}
 202
 203static __always_inline
 204size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
 205			 size_t len, void *from, void *priv2)
 206{
 207	return copy_mc_to_kernel(iter_to, from + progress, len);
 208}
 209
 210/**
 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
 212 * @addr: source kernel address
 213 * @bytes: total transfer length
 214 * @i: destination iterator
 215 *
 216 * The pmem driver deploys this for the dax operation
 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
 219 * successfully copied.
 220 *
 221 * The main differences between this and typical _copy_to_iter().
 222 *
 223 * * Typical tail/residue handling after a fault retries the copy
 224 *   byte-by-byte until the fault happens again. Re-triggering machine
 225 *   checks is potentially fatal so the implementation uses source
 226 *   alignment and poison alignment assumptions to avoid re-triggering
 227 *   hardware exceptions.
 228 *
 229 * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
 230 *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
 231 *
 232 * Return: number of bytes copied (may be %0)
 233 */
 234size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 235{
 236	if (WARN_ON_ONCE(i->data_source))
 237		return 0;
 238	if (user_backed_iter(i))
 239		might_fault();
 240	return iterate_and_advance(i, bytes, (void *)addr,
 241				   copy_to_user_iter_mc, memcpy_to_iter_mc);
 242}
 243EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
 244#endif /* CONFIG_ARCH_HAS_COPY_MC */
 245
 246static __always_inline
 247size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 248{
 249	return iterate_and_advance(i, bytes, addr,
 250				   copy_from_user_iter, memcpy_from_iter);
 251}
 252
 253size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 254{
 255	if (WARN_ON_ONCE(!i->data_source))
 256		return 0;
 257
 258	if (user_backed_iter(i))
 259		might_fault();
 260	return __copy_from_iter(addr, bytes, i);
 261}
 262EXPORT_SYMBOL(_copy_from_iter);
 263
 264static __always_inline
 265size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
 266				   size_t len, void *to, void *priv2)
 267{
 268	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
 269}
 270
 271size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 272{
 273	if (WARN_ON_ONCE(!i->data_source))
 274		return 0;
 275
 276	return iterate_and_advance(i, bytes, addr,
 277				   copy_from_user_iter_nocache,
 278				   memcpy_from_iter);
 279}
 280EXPORT_SYMBOL(_copy_from_iter_nocache);
 281
 282#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 283static __always_inline
 284size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
 285				      size_t len, void *to, void *priv2)
 286{
 287	return __copy_from_user_flushcache(to + progress, iter_from, len);
 288}
 289
 290static __always_inline
 291size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
 292				   size_t len, void *to, void *priv2)
 293{
 294	memcpy_flushcache(to + progress, iter_from, len);
 295	return 0;
 296}
 297
 298/**
 299 * _copy_from_iter_flushcache - write destination through cpu cache
 300 * @addr: destination kernel address
 301 * @bytes: total transfer length
 302 * @i: source iterator
 303 *
 304 * The pmem driver arranges for filesystem-dax to use this facility via
 305 * dax_copy_from_iter() for ensuring that writes to persistent memory
 306 * are flushed through the CPU cache. It is differentiated from
 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
 308 * all iterator types. The _copy_from_iter_nocache() only attempts to
 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
 310 * instructions that strand dirty-data in the cache.
 311 *
 312 * Return: number of bytes copied (may be %0)
 313 */
 314size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 315{
 316	if (WARN_ON_ONCE(!i->data_source))
 317		return 0;
 318
 319	return iterate_and_advance(i, bytes, addr,
 320				   copy_from_user_iter_flushcache,
 321				   memcpy_from_iter_flushcache);
 322}
 323EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 324#endif
 325
 326static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 327{
 328	struct page *head;
 329	size_t v = n + offset;
 330
 331	/*
 332	 * The general case needs to access the page order in order
 333	 * to compute the page size.
 334	 * However, we mostly deal with order-0 pages and thus can
 335	 * avoid a possible cache line miss for requests that fit all
 336	 * page orders.
 337	 */
 338	if (n <= v && v <= PAGE_SIZE)
 339		return true;
 340
 341	head = compound_head(page);
 342	v += (page - head) << PAGE_SHIFT;
 343
 344	if (WARN_ON(n > v || v > page_size(head)))
 345		return false;
 346	return true;
 347}
 348
 349size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 350			 struct iov_iter *i)
 351{
 352	size_t res = 0;
 353	if (!page_copy_sane(page, offset, bytes))
 354		return 0;
 355	if (WARN_ON_ONCE(i->data_source))
 356		return 0;
 357	page += offset / PAGE_SIZE; // first subpage
 358	offset %= PAGE_SIZE;
 359	while (1) {
 360		void *kaddr = kmap_local_page(page);
 361		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 362		n = _copy_to_iter(kaddr + offset, n, i);
 363		kunmap_local(kaddr);
 364		res += n;
 365		bytes -= n;
 366		if (!bytes || !n)
 367			break;
 368		offset += n;
 369		if (offset == PAGE_SIZE) {
 370			page++;
 371			offset = 0;
 372		}
 373	}
 374	return res;
 375}
 376EXPORT_SYMBOL(copy_page_to_iter);
 377
 378size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
 379				 struct iov_iter *i)
 380{
 381	size_t res = 0;
 382
 383	if (!page_copy_sane(page, offset, bytes))
 384		return 0;
 385	if (WARN_ON_ONCE(i->data_source))
 386		return 0;
 387	page += offset / PAGE_SIZE; // first subpage
 388	offset %= PAGE_SIZE;
 389	while (1) {
 390		void *kaddr = kmap_local_page(page);
 391		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 392
 393		n = iterate_and_advance(i, n, kaddr + offset,
 394					copy_to_user_iter_nofault,
 395					memcpy_to_iter);
 396		kunmap_local(kaddr);
 397		res += n;
 398		bytes -= n;
 399		if (!bytes || !n)
 400			break;
 401		offset += n;
 402		if (offset == PAGE_SIZE) {
 403			page++;
 404			offset = 0;
 405		}
 406	}
 407	return res;
 408}
 409EXPORT_SYMBOL(copy_page_to_iter_nofault);
 410
 411size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 412			 struct iov_iter *i)
 413{
 414	size_t res = 0;
 415	if (!page_copy_sane(page, offset, bytes))
 416		return 0;
 417	page += offset / PAGE_SIZE; // first subpage
 418	offset %= PAGE_SIZE;
 419	while (1) {
 420		void *kaddr = kmap_local_page(page);
 421		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 422		n = _copy_from_iter(kaddr + offset, n, i);
 423		kunmap_local(kaddr);
 424		res += n;
 425		bytes -= n;
 426		if (!bytes || !n)
 427			break;
 428		offset += n;
 429		if (offset == PAGE_SIZE) {
 430			page++;
 431			offset = 0;
 432		}
 433	}
 434	return res;
 435}
 436EXPORT_SYMBOL(copy_page_from_iter);
 437
 438static __always_inline
 439size_t zero_to_user_iter(void __user *iter_to, size_t progress,
 440			 size_t len, void *priv, void *priv2)
 441{
 442	return clear_user(iter_to, len);
 443}
 444
 445static __always_inline
 446size_t zero_to_iter(void *iter_to, size_t progress,
 447		    size_t len, void *priv, void *priv2)
 448{
 449	memset(iter_to, 0, len);
 450	return 0;
 451}
 452
 453size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 454{
 455	return iterate_and_advance(i, bytes, NULL,
 456				   zero_to_user_iter, zero_to_iter);
 457}
 458EXPORT_SYMBOL(iov_iter_zero);
 459
 460size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
 461		size_t bytes, struct iov_iter *i)
 462{
 463	size_t n, copied = 0;
 464
 465	if (!page_copy_sane(page, offset, bytes))
 466		return 0;
 467	if (WARN_ON_ONCE(!i->data_source))
 468		return 0;
 469
 470	do {
 471		char *p;
 472
 473		n = bytes - copied;
 474		if (PageHighMem(page)) {
 475			page += offset / PAGE_SIZE;
 476			offset %= PAGE_SIZE;
 477			n = min_t(size_t, n, PAGE_SIZE - offset);
 478		}
 479
 480		p = kmap_atomic(page) + offset;
 481		n = __copy_from_iter(p, n, i);
 482		kunmap_atomic(p);
 483		copied += n;
 484		offset += n;
 485	} while (PageHighMem(page) && copied != bytes && n > 0);
 486
 487	return copied;
 488}
 489EXPORT_SYMBOL(copy_page_from_iter_atomic);
 490
 491static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
 492{
 493	const struct bio_vec *bvec, *end;
 494
 495	if (!i->count)
 496		return;
 497	i->count -= size;
 498
 499	size += i->iov_offset;
 500
 501	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
 502		if (likely(size < bvec->bv_len))
 503			break;
 504		size -= bvec->bv_len;
 505	}
 506	i->iov_offset = size;
 507	i->nr_segs -= bvec - i->bvec;
 508	i->bvec = bvec;
 509}
 510
 511static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
 512{
 513	const struct iovec *iov, *end;
 514
 515	if (!i->count)
 516		return;
 517	i->count -= size;
 518
 519	size += i->iov_offset; // from beginning of current segment
 520	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
 521		if (likely(size < iov->iov_len))
 522			break;
 523		size -= iov->iov_len;
 524	}
 525	i->iov_offset = size;
 526	i->nr_segs -= iov - iter_iov(i);
 527	i->__iov = iov;
 528}
 529
 530void iov_iter_advance(struct iov_iter *i, size_t size)
 531{
 532	if (unlikely(i->count < size))
 533		size = i->count;
 534	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
 535		i->iov_offset += size;
 536		i->count -= size;
 537	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
 538		/* iovec and kvec have identical layouts */
 539		iov_iter_iovec_advance(i, size);
 540	} else if (iov_iter_is_bvec(i)) {
 541		iov_iter_bvec_advance(i, size);
 542	} else if (iov_iter_is_discard(i)) {
 543		i->count -= size;
 544	}
 545}
 546EXPORT_SYMBOL(iov_iter_advance);
 547
 548void iov_iter_revert(struct iov_iter *i, size_t unroll)
 549{
 550	if (!unroll)
 551		return;
 552	if (WARN_ON(unroll > MAX_RW_COUNT))
 553		return;
 554	i->count += unroll;
 555	if (unlikely(iov_iter_is_discard(i)))
 556		return;
 557	if (unroll <= i->iov_offset) {
 558		i->iov_offset -= unroll;
 559		return;
 560	}
 561	unroll -= i->iov_offset;
 562	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
 563		BUG(); /* We should never go beyond the start of the specified
 564			* range since we might then be straying into pages that
 565			* aren't pinned.
 566			*/
 567	} else if (iov_iter_is_bvec(i)) {
 568		const struct bio_vec *bvec = i->bvec;
 569		while (1) {
 570			size_t n = (--bvec)->bv_len;
 571			i->nr_segs++;
 572			if (unroll <= n) {
 573				i->bvec = bvec;
 574				i->iov_offset = n - unroll;
 575				return;
 576			}
 577			unroll -= n;
 578		}
 579	} else { /* same logics for iovec and kvec */
 580		const struct iovec *iov = iter_iov(i);
 581		while (1) {
 582			size_t n = (--iov)->iov_len;
 583			i->nr_segs++;
 584			if (unroll <= n) {
 585				i->__iov = iov;
 586				i->iov_offset = n - unroll;
 587				return;
 588			}
 589			unroll -= n;
 590		}
 591	}
 592}
 593EXPORT_SYMBOL(iov_iter_revert);
 594
 595/*
 596 * Return the count of just the current iov_iter segment.
 597 */
 598size_t iov_iter_single_seg_count(const struct iov_iter *i)
 599{
 600	if (i->nr_segs > 1) {
 601		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 602			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
 603		if (iov_iter_is_bvec(i))
 604			return min(i->count, i->bvec->bv_len - i->iov_offset);
 605	}
 606	return i->count;
 607}
 608EXPORT_SYMBOL(iov_iter_single_seg_count);
 609
 610void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
 611			const struct kvec *kvec, unsigned long nr_segs,
 612			size_t count)
 613{
 614	WARN_ON(direction & ~(READ | WRITE));
 615	*i = (struct iov_iter){
 616		.iter_type = ITER_KVEC,
 617		.data_source = direction,
 618		.kvec = kvec,
 619		.nr_segs = nr_segs,
 620		.iov_offset = 0,
 621		.count = count
 622	};
 623}
 624EXPORT_SYMBOL(iov_iter_kvec);
 625
 626void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
 627			const struct bio_vec *bvec, unsigned long nr_segs,
 628			size_t count)
 629{
 630	WARN_ON(direction & ~(READ | WRITE));
 631	*i = (struct iov_iter){
 632		.iter_type = ITER_BVEC,
 633		.data_source = direction,
 634		.bvec = bvec,
 635		.nr_segs = nr_segs,
 636		.iov_offset = 0,
 637		.count = count
 638	};
 639}
 640EXPORT_SYMBOL(iov_iter_bvec);
 641
 642/**
 643 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
 644 * @i: The iterator to initialise.
 645 * @direction: The direction of the transfer.
 646 * @xarray: The xarray to access.
 647 * @start: The start file position.
 648 * @count: The size of the I/O buffer in bytes.
 649 *
 650 * Set up an I/O iterator to either draw data out of the pages attached to an
 651 * inode or to inject data into those pages.  The pages *must* be prevented
 652 * from evaporation, either by taking a ref on them or locking them by the
 653 * caller.
 654 */
 655void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
 656		     struct xarray *xarray, loff_t start, size_t count)
 657{
 658	BUG_ON(direction & ~1);
 659	*i = (struct iov_iter) {
 660		.iter_type = ITER_XARRAY,
 661		.data_source = direction,
 662		.xarray = xarray,
 663		.xarray_start = start,
 664		.count = count,
 665		.iov_offset = 0
 666	};
 667}
 668EXPORT_SYMBOL(iov_iter_xarray);
 669
 670/**
 671 * iov_iter_discard - Initialise an I/O iterator that discards data
 672 * @i: The iterator to initialise.
 673 * @direction: The direction of the transfer.
 674 * @count: The size of the I/O buffer in bytes.
 675 *
 676 * Set up an I/O iterator that just discards everything that's written to it.
 677 * It's only available as a READ iterator.
 678 */
 679void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
 680{
 681	BUG_ON(direction != READ);
 682	*i = (struct iov_iter){
 683		.iter_type = ITER_DISCARD,
 684		.data_source = false,
 685		.count = count,
 686		.iov_offset = 0
 687	};
 688}
 689EXPORT_SYMBOL(iov_iter_discard);
 690
 691static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
 692				   unsigned len_mask)
 693{
 694	const struct iovec *iov = iter_iov(i);
 695	size_t size = i->count;
 696	size_t skip = i->iov_offset;
 697
 698	do {
 699		size_t len = iov->iov_len - skip;
 700
 701		if (len > size)
 702			len = size;
 703		if (len & len_mask)
 704			return false;
 705		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
 706			return false;
 707
 708		iov++;
 709		size -= len;
 710		skip = 0;
 711	} while (size);
 712
 713	return true;
 714}
 715
 716static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
 717				  unsigned len_mask)
 718{
 719	const struct bio_vec *bvec = i->bvec;
 720	unsigned skip = i->iov_offset;
 721	size_t size = i->count;
 722
 723	do {
 724		size_t len = bvec->bv_len;
 725
 726		if (len > size)
 727			len = size;
 728		if (len & len_mask)
 729			return false;
 730		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
 731			return false;
 732
 733		bvec++;
 734		size -= len;
 735		skip = 0;
 736	} while (size);
 737
 738	return true;
 739}
 740
 741/**
 742 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
 743 * 	are aligned to the parameters.
 744 *
 745 * @i: &struct iov_iter to restore
 746 * @addr_mask: bit mask to check against the iov element's addresses
 747 * @len_mask: bit mask to check against the iov element's lengths
 748 *
 749 * Return: false if any addresses or lengths intersect with the provided masks
 750 */
 751bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
 752			 unsigned len_mask)
 753{
 754	if (likely(iter_is_ubuf(i))) {
 755		if (i->count & len_mask)
 756			return false;
 757		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
 758			return false;
 759		return true;
 760	}
 761
 762	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 763		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
 764
 765	if (iov_iter_is_bvec(i))
 766		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
 767
 768	if (iov_iter_is_xarray(i)) {
 769		if (i->count & len_mask)
 770			return false;
 771		if ((i->xarray_start + i->iov_offset) & addr_mask)
 772			return false;
 773	}
 774
 775	return true;
 776}
 777EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
 778
 779static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
 780{
 781	const struct iovec *iov = iter_iov(i);
 782	unsigned long res = 0;
 783	size_t size = i->count;
 784	size_t skip = i->iov_offset;
 785
 786	do {
 787		size_t len = iov->iov_len - skip;
 788		if (len) {
 789			res |= (unsigned long)iov->iov_base + skip;
 790			if (len > size)
 791				len = size;
 792			res |= len;
 793			size -= len;
 794		}
 795		iov++;
 796		skip = 0;
 797	} while (size);
 798	return res;
 799}
 800
 801static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
 802{
 803	const struct bio_vec *bvec = i->bvec;
 804	unsigned res = 0;
 805	size_t size = i->count;
 806	unsigned skip = i->iov_offset;
 807
 808	do {
 809		size_t len = bvec->bv_len - skip;
 810		res |= (unsigned long)bvec->bv_offset + skip;
 811		if (len > size)
 812			len = size;
 813		res |= len;
 814		bvec++;
 815		size -= len;
 816		skip = 0;
 817	} while (size);
 818
 819	return res;
 820}
 821
 822unsigned long iov_iter_alignment(const struct iov_iter *i)
 823{
 824	if (likely(iter_is_ubuf(i))) {
 825		size_t size = i->count;
 826		if (size)
 827			return ((unsigned long)i->ubuf + i->iov_offset) | size;
 828		return 0;
 829	}
 830
 831	/* iovec and kvec have identical layouts */
 832	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 833		return iov_iter_alignment_iovec(i);
 834
 835	if (iov_iter_is_bvec(i))
 836		return iov_iter_alignment_bvec(i);
 837
 838	if (iov_iter_is_xarray(i))
 839		return (i->xarray_start + i->iov_offset) | i->count;
 840
 841	return 0;
 842}
 843EXPORT_SYMBOL(iov_iter_alignment);
 844
 845unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
 846{
 847	unsigned long res = 0;
 848	unsigned long v = 0;
 849	size_t size = i->count;
 850	unsigned k;
 851
 852	if (iter_is_ubuf(i))
 853		return 0;
 854
 855	if (WARN_ON(!iter_is_iovec(i)))
 856		return ~0U;
 857
 858	for (k = 0; k < i->nr_segs; k++) {
 859		const struct iovec *iov = iter_iov(i) + k;
 860		if (iov->iov_len) {
 861			unsigned long base = (unsigned long)iov->iov_base;
 862			if (v) // if not the first one
 863				res |= base | v; // this start | previous end
 864			v = base + iov->iov_len;
 865			if (size <= iov->iov_len)
 866				break;
 867			size -= iov->iov_len;
 868		}
 869	}
 870	return res;
 871}
 872EXPORT_SYMBOL(iov_iter_gap_alignment);
 873
 874static int want_pages_array(struct page ***res, size_t size,
 875			    size_t start, unsigned int maxpages)
 876{
 877	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
 878
 879	if (count > maxpages)
 880		count = maxpages;
 881	WARN_ON(!count);	// caller should've prevented that
 882	if (!*res) {
 883		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
 884		if (!*res)
 885			return 0;
 886	}
 887	return count;
 888}
 889
 890static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
 891					  pgoff_t index, unsigned int nr_pages)
 892{
 893	XA_STATE(xas, xa, index);
 894	struct page *page;
 895	unsigned int ret = 0;
 896
 897	rcu_read_lock();
 898	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 899		if (xas_retry(&xas, page))
 900			continue;
 901
 902		/* Has the page moved or been split? */
 903		if (unlikely(page != xas_reload(&xas))) {
 904			xas_reset(&xas);
 905			continue;
 906		}
 907
 908		pages[ret] = find_subpage(page, xas.xa_index);
 909		get_page(pages[ret]);
 910		if (++ret == nr_pages)
 911			break;
 912	}
 913	rcu_read_unlock();
 914	return ret;
 915}
 916
 917static ssize_t iter_xarray_get_pages(struct iov_iter *i,
 918				     struct page ***pages, size_t maxsize,
 919				     unsigned maxpages, size_t *_start_offset)
 920{
 921	unsigned nr, offset, count;
 922	pgoff_t index;
 923	loff_t pos;
 924
 925	pos = i->xarray_start + i->iov_offset;
 926	index = pos >> PAGE_SHIFT;
 927	offset = pos & ~PAGE_MASK;
 928	*_start_offset = offset;
 929
 930	count = want_pages_array(pages, maxsize, offset, maxpages);
 931	if (!count)
 932		return -ENOMEM;
 933	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
 934	if (nr == 0)
 935		return 0;
 936
 937	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
 938	i->iov_offset += maxsize;
 939	i->count -= maxsize;
 940	return maxsize;
 941}
 942
 943/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
 944static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
 945{
 946	size_t skip;
 947	long k;
 948
 949	if (iter_is_ubuf(i))
 950		return (unsigned long)i->ubuf + i->iov_offset;
 951
 952	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
 953		const struct iovec *iov = iter_iov(i) + k;
 954		size_t len = iov->iov_len - skip;
 955
 956		if (unlikely(!len))
 957			continue;
 958		if (*size > len)
 959			*size = len;
 960		return (unsigned long)iov->iov_base + skip;
 961	}
 962	BUG(); // if it had been empty, we wouldn't get called
 963}
 964
 965/* must be done on non-empty ITER_BVEC one */
 966static struct page *first_bvec_segment(const struct iov_iter *i,
 967				       size_t *size, size_t *start)
 968{
 969	struct page *page;
 970	size_t skip = i->iov_offset, len;
 971
 972	len = i->bvec->bv_len - skip;
 973	if (*size > len)
 974		*size = len;
 975	skip += i->bvec->bv_offset;
 976	page = i->bvec->bv_page + skip / PAGE_SIZE;
 977	*start = skip % PAGE_SIZE;
 978	return page;
 979}
 980
 981static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
 982		   struct page ***pages, size_t maxsize,
 983		   unsigned int maxpages, size_t *start)
 984{
 985	unsigned int n, gup_flags = 0;
 986
 987	if (maxsize > i->count)
 988		maxsize = i->count;
 989	if (!maxsize)
 990		return 0;
 991	if (maxsize > MAX_RW_COUNT)
 992		maxsize = MAX_RW_COUNT;
 993
 994	if (likely(user_backed_iter(i))) {
 995		unsigned long addr;
 996		int res;
 997
 998		if (iov_iter_rw(i) != WRITE)
 999			gup_flags |= FOLL_WRITE;
1000		if (i->nofault)
1001			gup_flags |= FOLL_NOFAULT;
1002
1003		addr = first_iovec_segment(i, &maxsize);
1004		*start = addr % PAGE_SIZE;
1005		addr &= PAGE_MASK;
1006		n = want_pages_array(pages, maxsize, *start, maxpages);
1007		if (!n)
1008			return -ENOMEM;
1009		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1010		if (unlikely(res <= 0))
1011			return res;
1012		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1013		iov_iter_advance(i, maxsize);
1014		return maxsize;
1015	}
1016	if (iov_iter_is_bvec(i)) {
1017		struct page **p;
1018		struct page *page;
1019
1020		page = first_bvec_segment(i, &maxsize, start);
1021		n = want_pages_array(pages, maxsize, *start, maxpages);
1022		if (!n)
1023			return -ENOMEM;
1024		p = *pages;
1025		for (int k = 0; k < n; k++)
1026			get_page(p[k] = page + k);
1027		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1028		i->count -= maxsize;
1029		i->iov_offset += maxsize;
1030		if (i->iov_offset == i->bvec->bv_len) {
1031			i->iov_offset = 0;
1032			i->bvec++;
1033			i->nr_segs--;
1034		}
1035		return maxsize;
1036	}
1037	if (iov_iter_is_xarray(i))
1038		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1039	return -EFAULT;
1040}
1041
1042ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1043		size_t maxsize, unsigned maxpages, size_t *start)
1044{
1045	if (!maxpages)
1046		return 0;
1047	BUG_ON(!pages);
1048
1049	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1050}
1051EXPORT_SYMBOL(iov_iter_get_pages2);
1052
1053ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1054		struct page ***pages, size_t maxsize, size_t *start)
1055{
1056	ssize_t len;
1057
1058	*pages = NULL;
1059
1060	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1061	if (len <= 0) {
1062		kvfree(*pages);
1063		*pages = NULL;
1064	}
1065	return len;
1066}
1067EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1068
1069static int iov_npages(const struct iov_iter *i, int maxpages)
1070{
1071	size_t skip = i->iov_offset, size = i->count;
1072	const struct iovec *p;
1073	int npages = 0;
1074
1075	for (p = iter_iov(i); size; skip = 0, p++) {
1076		unsigned offs = offset_in_page(p->iov_base + skip);
1077		size_t len = min(p->iov_len - skip, size);
1078
1079		if (len) {
1080			size -= len;
1081			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1082			if (unlikely(npages > maxpages))
1083				return maxpages;
1084		}
1085	}
1086	return npages;
1087}
1088
1089static int bvec_npages(const struct iov_iter *i, int maxpages)
1090{
1091	size_t skip = i->iov_offset, size = i->count;
1092	const struct bio_vec *p;
1093	int npages = 0;
1094
1095	for (p = i->bvec; size; skip = 0, p++) {
1096		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1097		size_t len = min(p->bv_len - skip, size);
1098
1099		size -= len;
1100		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1101		if (unlikely(npages > maxpages))
1102			return maxpages;
1103	}
1104	return npages;
1105}
1106
1107int iov_iter_npages(const struct iov_iter *i, int maxpages)
1108{
1109	if (unlikely(!i->count))
1110		return 0;
1111	if (likely(iter_is_ubuf(i))) {
1112		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1113		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1114		return min(npages, maxpages);
1115	}
1116	/* iovec and kvec have identical layouts */
1117	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1118		return iov_npages(i, maxpages);
1119	if (iov_iter_is_bvec(i))
1120		return bvec_npages(i, maxpages);
1121	if (iov_iter_is_xarray(i)) {
1122		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1123		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1124		return min(npages, maxpages);
1125	}
1126	return 0;
1127}
1128EXPORT_SYMBOL(iov_iter_npages);
1129
1130const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1131{
1132	*new = *old;
1133	if (iov_iter_is_bvec(new))
1134		return new->bvec = kmemdup(new->bvec,
1135				    new->nr_segs * sizeof(struct bio_vec),
1136				    flags);
1137	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1138		/* iovec and kvec have identical layout */
1139		return new->__iov = kmemdup(new->__iov,
1140				   new->nr_segs * sizeof(struct iovec),
1141				   flags);
1142	return NULL;
1143}
1144EXPORT_SYMBOL(dup_iter);
1145
1146static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1147		const struct iovec __user *uvec, u32 nr_segs)
1148{
1149	const struct compat_iovec __user *uiov =
1150		(const struct compat_iovec __user *)uvec;
1151	int ret = -EFAULT;
1152	u32 i;
1153
1154	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1155		return -EFAULT;
1156
1157	for (i = 0; i < nr_segs; i++) {
1158		compat_uptr_t buf;
1159		compat_ssize_t len;
1160
1161		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1162		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1163
1164		/* check for compat_size_t not fitting in compat_ssize_t .. */
1165		if (len < 0) {
1166			ret = -EINVAL;
1167			goto uaccess_end;
1168		}
1169		iov[i].iov_base = compat_ptr(buf);
1170		iov[i].iov_len = len;
1171	}
1172
1173	ret = 0;
1174uaccess_end:
1175	user_access_end();
1176	return ret;
1177}
1178
1179static __noclone int copy_iovec_from_user(struct iovec *iov,
1180		const struct iovec __user *uiov, unsigned long nr_segs)
1181{
1182	int ret = -EFAULT;
1183
1184	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1185		return -EFAULT;
1186
1187	do {
1188		void __user *buf;
1189		ssize_t len;
1190
1191		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1192		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1193
1194		/* check for size_t not fitting in ssize_t .. */
1195		if (unlikely(len < 0)) {
1196			ret = -EINVAL;
1197			goto uaccess_end;
1198		}
1199		iov->iov_base = buf;
1200		iov->iov_len = len;
1201
1202		uiov++; iov++;
1203	} while (--nr_segs);
1204
1205	ret = 0;
1206uaccess_end:
1207	user_access_end();
1208	return ret;
1209}
1210
1211struct iovec *iovec_from_user(const struct iovec __user *uvec,
1212		unsigned long nr_segs, unsigned long fast_segs,
1213		struct iovec *fast_iov, bool compat)
1214{
1215	struct iovec *iov = fast_iov;
1216	int ret;
1217
1218	/*
1219	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1220	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1221	 * traditionally returned zero for zero segments, so...
1222	 */
1223	if (nr_segs == 0)
1224		return iov;
1225	if (nr_segs > UIO_MAXIOV)
1226		return ERR_PTR(-EINVAL);
1227	if (nr_segs > fast_segs) {
1228		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1229		if (!iov)
1230			return ERR_PTR(-ENOMEM);
1231	}
1232
1233	if (unlikely(compat))
1234		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1235	else
1236		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1237	if (ret) {
1238		if (iov != fast_iov)
1239			kfree(iov);
1240		return ERR_PTR(ret);
1241	}
1242
1243	return iov;
1244}
1245
1246/*
1247 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1248 */
1249static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1250				   struct iovec **iovp, struct iov_iter *i,
1251				   bool compat)
1252{
1253	struct iovec *iov = *iovp;
1254	ssize_t ret;
1255
1256	if (compat)
1257		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1258	else
1259		ret = copy_iovec_from_user(iov, uvec, 1);
1260	if (unlikely(ret))
1261		return ret;
1262
1263	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1264	if (unlikely(ret))
1265		return ret;
1266	*iovp = NULL;
1267	return i->count;
1268}
1269
1270ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1271		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1272		 struct iov_iter *i, bool compat)
1273{
1274	ssize_t total_len = 0;
1275	unsigned long seg;
1276	struct iovec *iov;
1277
1278	if (nr_segs == 1)
1279		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1280
1281	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1282	if (IS_ERR(iov)) {
1283		*iovp = NULL;
1284		return PTR_ERR(iov);
1285	}
1286
1287	/*
1288	 * According to the Single Unix Specification we should return EINVAL if
1289	 * an element length is < 0 when cast to ssize_t or if the total length
1290	 * would overflow the ssize_t return value of the system call.
1291	 *
1292	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1293	 * overflow case.
1294	 */
1295	for (seg = 0; seg < nr_segs; seg++) {
1296		ssize_t len = (ssize_t)iov[seg].iov_len;
1297
1298		if (!access_ok(iov[seg].iov_base, len)) {
1299			if (iov != *iovp)
1300				kfree(iov);
1301			*iovp = NULL;
1302			return -EFAULT;
1303		}
1304
1305		if (len > MAX_RW_COUNT - total_len) {
1306			len = MAX_RW_COUNT - total_len;
1307			iov[seg].iov_len = len;
1308		}
1309		total_len += len;
1310	}
1311
1312	iov_iter_init(i, type, iov, nr_segs, total_len);
1313	if (iov == *iovp)
1314		*iovp = NULL;
1315	else
1316		*iovp = iov;
1317	return total_len;
1318}
1319
1320/**
1321 * import_iovec() - Copy an array of &struct iovec from userspace
1322 *     into the kernel, check that it is valid, and initialize a new
1323 *     &struct iov_iter iterator to access it.
1324 *
1325 * @type: One of %READ or %WRITE.
1326 * @uvec: Pointer to the userspace array.
1327 * @nr_segs: Number of elements in userspace array.
1328 * @fast_segs: Number of elements in @iov.
1329 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1330 *     on-stack) kernel array.
1331 * @i: Pointer to iterator that will be initialized on success.
1332 *
1333 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1334 * then this function places %NULL in *@iov on return. Otherwise, a new
1335 * array will be allocated and the result placed in *@iov. This means that
1336 * the caller may call kfree() on *@iov regardless of whether the small
1337 * on-stack array was used or not (and regardless of whether this function
1338 * returns an error or not).
1339 *
1340 * Return: Negative error code on error, bytes imported on success
1341 */
1342ssize_t import_iovec(int type, const struct iovec __user *uvec,
1343		 unsigned nr_segs, unsigned fast_segs,
1344		 struct iovec **iovp, struct iov_iter *i)
1345{
1346	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1347			      in_compat_syscall());
1348}
1349EXPORT_SYMBOL(import_iovec);
1350
1351int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1352{
1353	if (len > MAX_RW_COUNT)
1354		len = MAX_RW_COUNT;
1355	if (unlikely(!access_ok(buf, len)))
1356		return -EFAULT;
1357
1358	iov_iter_ubuf(i, rw, buf, len);
1359	return 0;
1360}
1361EXPORT_SYMBOL_GPL(import_ubuf);
1362
1363/**
1364 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1365 *     iov_iter_save_state() was called.
1366 *
1367 * @i: &struct iov_iter to restore
1368 * @state: state to restore from
1369 *
1370 * Used after iov_iter_save_state() to bring restore @i, if operations may
1371 * have advanced it.
1372 *
1373 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1374 */
1375void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1376{
1377	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1378			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1379		return;
1380	i->iov_offset = state->iov_offset;
1381	i->count = state->count;
1382	if (iter_is_ubuf(i))
1383		return;
1384	/*
1385	 * For the *vec iters, nr_segs + iov is constant - if we increment
1386	 * the vec, then we also decrement the nr_segs count. Hence we don't
1387	 * need to track both of these, just one is enough and we can deduct
1388	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1389	 * size, so we can just increment the iov pointer as they are unionzed.
1390	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1391	 * not. Be safe and handle it separately.
1392	 */
1393	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1394	if (iov_iter_is_bvec(i))
1395		i->bvec -= state->nr_segs - i->nr_segs;
1396	else
1397		i->__iov -= state->nr_segs - i->nr_segs;
1398	i->nr_segs = state->nr_segs;
1399}
1400
1401/*
1402 * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1403 * get references on the pages, nor does it get a pin on them.
1404 */
1405static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1406					     struct page ***pages, size_t maxsize,
1407					     unsigned int maxpages,
1408					     iov_iter_extraction_t extraction_flags,
1409					     size_t *offset0)
1410{
1411	struct page *page, **p;
1412	unsigned int nr = 0, offset;
1413	loff_t pos = i->xarray_start + i->iov_offset;
1414	pgoff_t index = pos >> PAGE_SHIFT;
1415	XA_STATE(xas, i->xarray, index);
1416
1417	offset = pos & ~PAGE_MASK;
1418	*offset0 = offset;
1419
1420	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1421	if (!maxpages)
1422		return -ENOMEM;
1423	p = *pages;
1424
1425	rcu_read_lock();
1426	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1427		if (xas_retry(&xas, page))
1428			continue;
1429
1430		/* Has the page moved or been split? */
1431		if (unlikely(page != xas_reload(&xas))) {
1432			xas_reset(&xas);
1433			continue;
1434		}
1435
1436		p[nr++] = find_subpage(page, xas.xa_index);
1437		if (nr == maxpages)
1438			break;
1439	}
1440	rcu_read_unlock();
1441
1442	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1443	iov_iter_advance(i, maxsize);
1444	return maxsize;
1445}
1446
1447/*
1448 * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1449 * not get references on the pages, nor does it get a pin on them.
1450 */
1451static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1452					   struct page ***pages, size_t maxsize,
1453					   unsigned int maxpages,
1454					   iov_iter_extraction_t extraction_flags,
1455					   size_t *offset0)
1456{
1457	struct page **p, *page;
1458	size_t skip = i->iov_offset, offset, size;
1459	int k;
1460
1461	for (;;) {
1462		if (i->nr_segs == 0)
1463			return 0;
1464		size = min(maxsize, i->bvec->bv_len - skip);
1465		if (size)
1466			break;
1467		i->iov_offset = 0;
1468		i->nr_segs--;
1469		i->bvec++;
1470		skip = 0;
1471	}
1472
1473	skip += i->bvec->bv_offset;
1474	page = i->bvec->bv_page + skip / PAGE_SIZE;
1475	offset = skip % PAGE_SIZE;
1476	*offset0 = offset;
1477
1478	maxpages = want_pages_array(pages, size, offset, maxpages);
1479	if (!maxpages)
1480		return -ENOMEM;
1481	p = *pages;
1482	for (k = 0; k < maxpages; k++)
1483		p[k] = page + k;
1484
1485	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1486	iov_iter_advance(i, size);
1487	return size;
1488}
1489
1490/*
1491 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1492 * This does not get references on the pages, nor does it get a pin on them.
1493 */
1494static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1495					   struct page ***pages, size_t maxsize,
1496					   unsigned int maxpages,
1497					   iov_iter_extraction_t extraction_flags,
1498					   size_t *offset0)
1499{
1500	struct page **p, *page;
1501	const void *kaddr;
1502	size_t skip = i->iov_offset, offset, len, size;
1503	int k;
1504
1505	for (;;) {
1506		if (i->nr_segs == 0)
1507			return 0;
1508		size = min(maxsize, i->kvec->iov_len - skip);
1509		if (size)
1510			break;
1511		i->iov_offset = 0;
1512		i->nr_segs--;
1513		i->kvec++;
1514		skip = 0;
1515	}
1516
1517	kaddr = i->kvec->iov_base + skip;
1518	offset = (unsigned long)kaddr & ~PAGE_MASK;
1519	*offset0 = offset;
1520
1521	maxpages = want_pages_array(pages, size, offset, maxpages);
1522	if (!maxpages)
1523		return -ENOMEM;
1524	p = *pages;
1525
1526	kaddr -= offset;
1527	len = offset + size;
1528	for (k = 0; k < maxpages; k++) {
1529		size_t seg = min_t(size_t, len, PAGE_SIZE);
1530
1531		if (is_vmalloc_or_module_addr(kaddr))
1532			page = vmalloc_to_page(kaddr);
1533		else
1534			page = virt_to_page(kaddr);
1535
1536		p[k] = page;
1537		len -= seg;
1538		kaddr += PAGE_SIZE;
1539	}
1540
1541	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1542	iov_iter_advance(i, size);
1543	return size;
1544}
1545
1546/*
1547 * Extract a list of contiguous pages from a user iterator and get a pin on
1548 * each of them.  This should only be used if the iterator is user-backed
1549 * (IOBUF/UBUF).
1550 *
1551 * It does not get refs on the pages, but the pages must be unpinned by the
1552 * caller once the transfer is complete.
1553 *
1554 * This is safe to be used where background IO/DMA *is* going to be modifying
1555 * the buffer; using a pin rather than a ref makes forces fork() to give the
1556 * child a copy of the page.
1557 */
1558static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1559					   struct page ***pages,
1560					   size_t maxsize,
1561					   unsigned int maxpages,
1562					   iov_iter_extraction_t extraction_flags,
1563					   size_t *offset0)
1564{
1565	unsigned long addr;
1566	unsigned int gup_flags = 0;
1567	size_t offset;
1568	int res;
1569
1570	if (i->data_source == ITER_DEST)
1571		gup_flags |= FOLL_WRITE;
1572	if (extraction_flags & ITER_ALLOW_P2PDMA)
1573		gup_flags |= FOLL_PCI_P2PDMA;
1574	if (i->nofault)
1575		gup_flags |= FOLL_NOFAULT;
1576
1577	addr = first_iovec_segment(i, &maxsize);
1578	*offset0 = offset = addr % PAGE_SIZE;
1579	addr &= PAGE_MASK;
1580	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1581	if (!maxpages)
1582		return -ENOMEM;
1583	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1584	if (unlikely(res <= 0))
1585		return res;
1586	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1587	iov_iter_advance(i, maxsize);
1588	return maxsize;
1589}
1590
1591/**
1592 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1593 * @i: The iterator to extract from
1594 * @pages: Where to return the list of pages
1595 * @maxsize: The maximum amount of iterator to extract
1596 * @maxpages: The maximum size of the list of pages
1597 * @extraction_flags: Flags to qualify request
1598 * @offset0: Where to return the starting offset into (*@pages)[0]
1599 *
1600 * Extract a list of contiguous pages from the current point of the iterator,
1601 * advancing the iterator.  The maximum number of pages and the maximum amount
1602 * of page contents can be set.
1603 *
1604 * If *@pages is NULL, a page list will be allocated to the required size and
1605 * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1606 * that the caller allocated a page list at least @maxpages in size and this
1607 * will be filled in.
1608 *
1609 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1610 * be allowed on the pages extracted.
1611 *
1612 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1613 * should be performed.
1614 *
1615 * Extra refs or pins on the pages may be obtained as follows:
1616 *
1617 *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1618 *      added to the pages, but refs will not be taken.
1619 *      iov_iter_extract_will_pin() will return true.
1620 *
1621 *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1622 *      merely listed; no extra refs or pins are obtained.
1623 *      iov_iter_extract_will_pin() will return 0.
1624 *
1625 * Note also:
1626 *
1627 *  (*) Use with ITER_DISCARD is not supported as that has no content.
1628 *
1629 * On success, the function sets *@pages to the new pagelist, if allocated, and
1630 * sets *offset0 to the offset into the first page.
1631 *
1632 * It may also return -ENOMEM and -EFAULT.
1633 */
1634ssize_t iov_iter_extract_pages(struct iov_iter *i,
1635			       struct page ***pages,
1636			       size_t maxsize,
1637			       unsigned int maxpages,
1638			       iov_iter_extraction_t extraction_flags,
1639			       size_t *offset0)
1640{
1641	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1642	if (!maxsize)
1643		return 0;
1644
1645	if (likely(user_backed_iter(i)))
1646		return iov_iter_extract_user_pages(i, pages, maxsize,
1647						   maxpages, extraction_flags,
1648						   offset0);
1649	if (iov_iter_is_kvec(i))
1650		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1651						   maxpages, extraction_flags,
1652						   offset0);
1653	if (iov_iter_is_bvec(i))
1654		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1655						   maxpages, extraction_flags,
1656						   offset0);
1657	if (iov_iter_is_xarray(i))
1658		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1659						     maxpages, extraction_flags,
1660						     offset0);
1661	return -EFAULT;
1662}
1663EXPORT_SYMBOL_GPL(iov_iter_extract_pages);