Loading...
1/*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
7#include "../perf.h"
8#include "../builtin.h"
9#include "../util/util.h"
10#include "../util/parse-options.h"
11
12#include "bench.h"
13
14#include <errno.h>
15#include <sched.h>
16#include <stdio.h>
17#include <assert.h>
18#include <malloc.h>
19#include <signal.h>
20#include <stdlib.h>
21#include <string.h>
22#include <unistd.h>
23#include <pthread.h>
24#include <sys/mman.h>
25#include <sys/time.h>
26#include <sys/wait.h>
27#include <sys/prctl.h>
28#include <sys/types.h>
29
30#include <numa.h>
31#include <numaif.h>
32
33/*
34 * Regular printout to the terminal, supressed if -q is specified:
35 */
36#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37
38/*
39 * Debug printf:
40 */
41#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42
43struct thread_data {
44 int curr_cpu;
45 cpu_set_t bind_cpumask;
46 int bind_node;
47 u8 *process_data;
48 int process_nr;
49 int thread_nr;
50 int task_nr;
51 unsigned int loops_done;
52 u64 val;
53 u64 runtime_ns;
54 pthread_mutex_t *process_lock;
55};
56
57/* Parameters set by options: */
58
59struct params {
60 /* Startup synchronization: */
61 bool serialize_startup;
62
63 /* Task hierarchy: */
64 int nr_proc;
65 int nr_threads;
66
67 /* Working set sizes: */
68 const char *mb_global_str;
69 const char *mb_proc_str;
70 const char *mb_proc_locked_str;
71 const char *mb_thread_str;
72
73 double mb_global;
74 double mb_proc;
75 double mb_proc_locked;
76 double mb_thread;
77
78 /* Access patterns to the working set: */
79 bool data_reads;
80 bool data_writes;
81 bool data_backwards;
82 bool data_zero_memset;
83 bool data_rand_walk;
84 u32 nr_loops;
85 u32 nr_secs;
86 u32 sleep_usecs;
87
88 /* Working set initialization: */
89 bool init_zero;
90 bool init_random;
91 bool init_cpu0;
92
93 /* Misc options: */
94 int show_details;
95 int run_all;
96 int thp;
97
98 long bytes_global;
99 long bytes_process;
100 long bytes_process_locked;
101 long bytes_thread;
102
103 int nr_tasks;
104 bool show_quiet;
105
106 bool show_convergence;
107 bool measure_convergence;
108
109 int perturb_secs;
110 int nr_cpus;
111 int nr_nodes;
112
113 /* Affinity options -C and -N: */
114 char *cpu_list_str;
115 char *node_list_str;
116};
117
118
119/* Global, read-writable area, accessible to all processes and threads: */
120
121struct global_info {
122 u8 *data;
123
124 pthread_mutex_t startup_mutex;
125 int nr_tasks_started;
126
127 pthread_mutex_t startup_done_mutex;
128
129 pthread_mutex_t start_work_mutex;
130 int nr_tasks_working;
131
132 pthread_mutex_t stop_work_mutex;
133 u64 bytes_done;
134
135 struct thread_data *threads;
136
137 /* Convergence latency measurement: */
138 bool all_converged;
139 bool stop_work;
140
141 int print_once;
142
143 struct params p;
144};
145
146static struct global_info *g = NULL;
147
148static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150
151struct params p0;
152
153static const struct option options[] = {
154 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
155 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
156
157 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
158 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
159 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
161
162 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"),
163 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"),
164 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
165
166 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
167 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
168 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
169 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
171
172
173 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
174 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
175 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
176 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
177
178 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
179 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
180 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
183 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"),
184 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185
186 /* Special option string parsing callbacks: */
187 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188 "bind the first N tasks to these specific cpus (the rest is unbound)",
189 parse_cpus_opt),
190 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
192 parse_nodes_opt),
193 OPT_END()
194};
195
196static const char * const bench_numa_usage[] = {
197 "perf bench numa <options>",
198 NULL
199};
200
201static const char * const numa_usage[] = {
202 "perf bench numa mem [<options>]",
203 NULL
204};
205
206static cpu_set_t bind_to_cpu(int target_cpu)
207{
208 cpu_set_t orig_mask, mask;
209 int ret;
210
211 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212 BUG_ON(ret);
213
214 CPU_ZERO(&mask);
215
216 if (target_cpu == -1) {
217 int cpu;
218
219 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220 CPU_SET(cpu, &mask);
221 } else {
222 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223 CPU_SET(target_cpu, &mask);
224 }
225
226 ret = sched_setaffinity(0, sizeof(mask), &mask);
227 BUG_ON(ret);
228
229 return orig_mask;
230}
231
232static cpu_set_t bind_to_node(int target_node)
233{
234 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235 cpu_set_t orig_mask, mask;
236 int cpu;
237 int ret;
238
239 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240 BUG_ON(!cpus_per_node);
241
242 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243 BUG_ON(ret);
244
245 CPU_ZERO(&mask);
246
247 if (target_node == -1) {
248 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249 CPU_SET(cpu, &mask);
250 } else {
251 int cpu_start = (target_node + 0) * cpus_per_node;
252 int cpu_stop = (target_node + 1) * cpus_per_node;
253
254 BUG_ON(cpu_stop > g->p.nr_cpus);
255
256 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257 CPU_SET(cpu, &mask);
258 }
259
260 ret = sched_setaffinity(0, sizeof(mask), &mask);
261 BUG_ON(ret);
262
263 return orig_mask;
264}
265
266static void bind_to_cpumask(cpu_set_t mask)
267{
268 int ret;
269
270 ret = sched_setaffinity(0, sizeof(mask), &mask);
271 BUG_ON(ret);
272}
273
274static void mempol_restore(void)
275{
276 int ret;
277
278 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279
280 BUG_ON(ret);
281}
282
283static void bind_to_memnode(int node)
284{
285 unsigned long nodemask;
286 int ret;
287
288 if (node == -1)
289 return;
290
291 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292 nodemask = 1L << node;
293
294 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296
297 BUG_ON(ret);
298}
299
300#define HPSIZE (2*1024*1024)
301
302#define set_taskname(fmt...) \
303do { \
304 char name[20]; \
305 \
306 snprintf(name, 20, fmt); \
307 prctl(PR_SET_NAME, name); \
308} while (0)
309
310static u8 *alloc_data(ssize_t bytes0, int map_flags,
311 int init_zero, int init_cpu0, int thp, int init_random)
312{
313 cpu_set_t orig_mask;
314 ssize_t bytes;
315 u8 *buf;
316 int ret;
317
318 if (!bytes0)
319 return NULL;
320
321 /* Allocate and initialize all memory on CPU#0: */
322 if (init_cpu0) {
323 orig_mask = bind_to_node(0);
324 bind_to_memnode(0);
325 }
326
327 bytes = bytes0 + HPSIZE;
328
329 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330 BUG_ON(buf == (void *)-1);
331
332 if (map_flags == MAP_PRIVATE) {
333 if (thp > 0) {
334 ret = madvise(buf, bytes, MADV_HUGEPAGE);
335 if (ret && !g->print_once) {
336 g->print_once = 1;
337 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338 }
339 }
340 if (thp < 0) {
341 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342 if (ret && !g->print_once) {
343 g->print_once = 1;
344 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345 }
346 }
347 }
348
349 if (init_zero) {
350 bzero(buf, bytes);
351 } else {
352 /* Initialize random contents, different in each word: */
353 if (init_random) {
354 u64 *wbuf = (void *)buf;
355 long off = rand();
356 long i;
357
358 for (i = 0; i < bytes/8; i++)
359 wbuf[i] = i + off;
360 }
361 }
362
363 /* Align to 2MB boundary: */
364 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365
366 /* Restore affinity: */
367 if (init_cpu0) {
368 bind_to_cpumask(orig_mask);
369 mempol_restore();
370 }
371
372 return buf;
373}
374
375static void free_data(void *data, ssize_t bytes)
376{
377 int ret;
378
379 if (!data)
380 return;
381
382 ret = munmap(data, bytes);
383 BUG_ON(ret);
384}
385
386/*
387 * Create a shared memory buffer that can be shared between processes, zeroed:
388 */
389static void * zalloc_shared_data(ssize_t bytes)
390{
391 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
392}
393
394/*
395 * Create a shared memory buffer that can be shared between processes:
396 */
397static void * setup_shared_data(ssize_t bytes)
398{
399 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
400}
401
402/*
403 * Allocate process-local memory - this will either be shared between
404 * threads of this process, or only be accessed by this thread:
405 */
406static void * setup_private_data(ssize_t bytes)
407{
408 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
409}
410
411/*
412 * Return a process-shared (global) mutex:
413 */
414static void init_global_mutex(pthread_mutex_t *mutex)
415{
416 pthread_mutexattr_t attr;
417
418 pthread_mutexattr_init(&attr);
419 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420 pthread_mutex_init(mutex, &attr);
421}
422
423static int parse_cpu_list(const char *arg)
424{
425 p0.cpu_list_str = strdup(arg);
426
427 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428
429 return 0;
430}
431
432static int parse_setup_cpu_list(void)
433{
434 struct thread_data *td;
435 char *str0, *str;
436 int t;
437
438 if (!g->p.cpu_list_str)
439 return 0;
440
441 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442
443 str0 = str = strdup(g->p.cpu_list_str);
444 t = 0;
445
446 BUG_ON(!str);
447
448 tprintf("# binding tasks to CPUs:\n");
449 tprintf("# ");
450
451 while (true) {
452 int bind_cpu, bind_cpu_0, bind_cpu_1;
453 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454 int bind_len;
455 int step;
456 int mul;
457
458 tok = strsep(&str, ",");
459 if (!tok)
460 break;
461
462 tok_end = strstr(tok, "-");
463
464 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465 if (!tok_end) {
466 /* Single CPU specified: */
467 bind_cpu_0 = bind_cpu_1 = atol(tok);
468 } else {
469 /* CPU range specified (for example: "5-11"): */
470 bind_cpu_0 = atol(tok);
471 bind_cpu_1 = atol(tok_end + 1);
472 }
473
474 step = 1;
475 tok_step = strstr(tok, "#");
476 if (tok_step) {
477 step = atol(tok_step + 1);
478 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479 }
480
481 /*
482 * Mask length.
483 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484 * where the _4 means the next 4 CPUs are allowed.
485 */
486 bind_len = 1;
487 tok_len = strstr(tok, "_");
488 if (tok_len) {
489 bind_len = atol(tok_len + 1);
490 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491 }
492
493 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494 mul = 1;
495 tok_mul = strstr(tok, "x");
496 if (tok_mul) {
497 mul = atol(tok_mul + 1);
498 BUG_ON(mul <= 0);
499 }
500
501 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502
503 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505 return -1;
506 }
507
508 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509 BUG_ON(bind_cpu_0 > bind_cpu_1);
510
511 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512 int i;
513
514 for (i = 0; i < mul; i++) {
515 int cpu;
516
517 if (t >= g->p.nr_tasks) {
518 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519 goto out;
520 }
521 td = g->threads + t;
522
523 if (t)
524 tprintf(",");
525 if (bind_len > 1) {
526 tprintf("%2d/%d", bind_cpu, bind_len);
527 } else {
528 tprintf("%2d", bind_cpu);
529 }
530
531 CPU_ZERO(&td->bind_cpumask);
532 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534 CPU_SET(cpu, &td->bind_cpumask);
535 }
536 t++;
537 }
538 }
539 }
540out:
541
542 tprintf("\n");
543
544 if (t < g->p.nr_tasks)
545 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
546
547 free(str0);
548 return 0;
549}
550
551static int parse_cpus_opt(const struct option *opt __maybe_unused,
552 const char *arg, int unset __maybe_unused)
553{
554 if (!arg)
555 return -1;
556
557 return parse_cpu_list(arg);
558}
559
560static int parse_node_list(const char *arg)
561{
562 p0.node_list_str = strdup(arg);
563
564 dprintf("got NODE list: {%s}\n", p0.node_list_str);
565
566 return 0;
567}
568
569static int parse_setup_node_list(void)
570{
571 struct thread_data *td;
572 char *str0, *str;
573 int t;
574
575 if (!g->p.node_list_str)
576 return 0;
577
578 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
579
580 str0 = str = strdup(g->p.node_list_str);
581 t = 0;
582
583 BUG_ON(!str);
584
585 tprintf("# binding tasks to NODEs:\n");
586 tprintf("# ");
587
588 while (true) {
589 int bind_node, bind_node_0, bind_node_1;
590 char *tok, *tok_end, *tok_step, *tok_mul;
591 int step;
592 int mul;
593
594 tok = strsep(&str, ",");
595 if (!tok)
596 break;
597
598 tok_end = strstr(tok, "-");
599
600 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601 if (!tok_end) {
602 /* Single NODE specified: */
603 bind_node_0 = bind_node_1 = atol(tok);
604 } else {
605 /* NODE range specified (for example: "5-11"): */
606 bind_node_0 = atol(tok);
607 bind_node_1 = atol(tok_end + 1);
608 }
609
610 step = 1;
611 tok_step = strstr(tok, "#");
612 if (tok_step) {
613 step = atol(tok_step + 1);
614 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
615 }
616
617 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618 mul = 1;
619 tok_mul = strstr(tok, "x");
620 if (tok_mul) {
621 mul = atol(tok_mul + 1);
622 BUG_ON(mul <= 0);
623 }
624
625 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
626
627 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629 return -1;
630 }
631
632 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633 BUG_ON(bind_node_0 > bind_node_1);
634
635 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636 int i;
637
638 for (i = 0; i < mul; i++) {
639 if (t >= g->p.nr_tasks) {
640 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641 goto out;
642 }
643 td = g->threads + t;
644
645 if (!t)
646 tprintf(" %2d", bind_node);
647 else
648 tprintf(",%2d", bind_node);
649
650 td->bind_node = bind_node;
651 t++;
652 }
653 }
654 }
655out:
656
657 tprintf("\n");
658
659 if (t < g->p.nr_tasks)
660 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661
662 free(str0);
663 return 0;
664}
665
666static int parse_nodes_opt(const struct option *opt __maybe_unused,
667 const char *arg, int unset __maybe_unused)
668{
669 if (!arg)
670 return -1;
671
672 return parse_node_list(arg);
673
674 return 0;
675}
676
677#define BIT(x) (1ul << x)
678
679static inline uint32_t lfsr_32(uint32_t lfsr)
680{
681 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
683}
684
685/*
686 * Make sure there's real data dependency to RAM (when read
687 * accesses are enabled), so the compiler, the CPU and the
688 * kernel (KSM, zero page, etc.) cannot optimize away RAM
689 * accesses:
690 */
691static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
692{
693 if (g->p.data_reads)
694 val += *data;
695 if (g->p.data_writes)
696 *data = val + 1;
697 return val;
698}
699
700/*
701 * The worker process does two types of work, a forwards going
702 * loop and a backwards going loop.
703 *
704 * We do this so that on multiprocessor systems we do not create
705 * a 'train' of processing, with highly synchronized processes,
706 * skewing the whole benchmark.
707 */
708static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
709{
710 long words = bytes/sizeof(u64);
711 u64 *data = (void *)__data;
712 long chunk_0, chunk_1;
713 u64 *d0, *d, *d1;
714 long off;
715 long i;
716
717 BUG_ON(!data && words);
718 BUG_ON(data && !words);
719
720 if (!data)
721 return val;
722
723 /* Very simple memset() work variant: */
724 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725 bzero(data, bytes);
726 return val;
727 }
728
729 /* Spread out by PID/TID nr and by loop nr: */
730 chunk_0 = words/nr_max;
731 chunk_1 = words/g->p.nr_loops;
732 off = nr*chunk_0 + loop*chunk_1;
733
734 while (off >= words)
735 off -= words;
736
737 if (g->p.data_rand_walk) {
738 u32 lfsr = nr + loop + val;
739 int j;
740
741 for (i = 0; i < words/1024; i++) {
742 long start, end;
743
744 lfsr = lfsr_32(lfsr);
745
746 start = lfsr % words;
747 end = min(start + 1024, words-1);
748
749 if (g->p.data_zero_memset) {
750 bzero(data + start, (end-start) * sizeof(u64));
751 } else {
752 for (j = start; j < end; j++)
753 val = access_data(data + j, val);
754 }
755 }
756 } else if (!g->p.data_backwards || (nr + loop) & 1) {
757
758 d0 = data + off;
759 d = data + off + 1;
760 d1 = data + words;
761
762 /* Process data forwards: */
763 for (;;) {
764 if (unlikely(d >= d1))
765 d = data;
766 if (unlikely(d == d0))
767 break;
768
769 val = access_data(d, val);
770
771 d++;
772 }
773 } else {
774 /* Process data backwards: */
775
776 d0 = data + off;
777 d = data + off - 1;
778 d1 = data + words;
779
780 /* Process data forwards: */
781 for (;;) {
782 if (unlikely(d < data))
783 d = data + words-1;
784 if (unlikely(d == d0))
785 break;
786
787 val = access_data(d, val);
788
789 d--;
790 }
791 }
792
793 return val;
794}
795
796static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
797{
798 unsigned int cpu;
799
800 cpu = sched_getcpu();
801
802 g->threads[task_nr].curr_cpu = cpu;
803 prctl(0, bytes_worked);
804}
805
806#define MAX_NR_NODES 64
807
808/*
809 * Count the number of nodes a process's threads
810 * are spread out on.
811 *
812 * A count of 1 means that the process is compressed
813 * to a single node. A count of g->p.nr_nodes means it's
814 * spread out on the whole system.
815 */
816static int count_process_nodes(int process_nr)
817{
818 char node_present[MAX_NR_NODES] = { 0, };
819 int nodes;
820 int n, t;
821
822 for (t = 0; t < g->p.nr_threads; t++) {
823 struct thread_data *td;
824 int task_nr;
825 int node;
826
827 task_nr = process_nr*g->p.nr_threads + t;
828 td = g->threads + task_nr;
829
830 node = numa_node_of_cpu(td->curr_cpu);
831 node_present[node] = 1;
832 }
833
834 nodes = 0;
835
836 for (n = 0; n < MAX_NR_NODES; n++)
837 nodes += node_present[n];
838
839 return nodes;
840}
841
842/*
843 * Count the number of distinct process-threads a node contains.
844 *
845 * A count of 1 means that the node contains only a single
846 * process. If all nodes on the system contain at most one
847 * process then we are well-converged.
848 */
849static int count_node_processes(int node)
850{
851 int processes = 0;
852 int t, p;
853
854 for (p = 0; p < g->p.nr_proc; p++) {
855 for (t = 0; t < g->p.nr_threads; t++) {
856 struct thread_data *td;
857 int task_nr;
858 int n;
859
860 task_nr = p*g->p.nr_threads + t;
861 td = g->threads + task_nr;
862
863 n = numa_node_of_cpu(td->curr_cpu);
864 if (n == node) {
865 processes++;
866 break;
867 }
868 }
869 }
870
871 return processes;
872}
873
874static void calc_convergence_compression(int *strong)
875{
876 unsigned int nodes_min, nodes_max;
877 int p;
878
879 nodes_min = -1;
880 nodes_max = 0;
881
882 for (p = 0; p < g->p.nr_proc; p++) {
883 unsigned int nodes = count_process_nodes(p);
884
885 nodes_min = min(nodes, nodes_min);
886 nodes_max = max(nodes, nodes_max);
887 }
888
889 /* Strong convergence: all threads compress on a single node: */
890 if (nodes_min == 1 && nodes_max == 1) {
891 *strong = 1;
892 } else {
893 *strong = 0;
894 tprintf(" {%d-%d}", nodes_min, nodes_max);
895 }
896}
897
898static void calc_convergence(double runtime_ns_max, double *convergence)
899{
900 unsigned int loops_done_min, loops_done_max;
901 int process_groups;
902 int nodes[MAX_NR_NODES];
903 int distance;
904 int nr_min;
905 int nr_max;
906 int strong;
907 int sum;
908 int nr;
909 int node;
910 int cpu;
911 int t;
912
913 if (!g->p.show_convergence && !g->p.measure_convergence)
914 return;
915
916 for (node = 0; node < g->p.nr_nodes; node++)
917 nodes[node] = 0;
918
919 loops_done_min = -1;
920 loops_done_max = 0;
921
922 for (t = 0; t < g->p.nr_tasks; t++) {
923 struct thread_data *td = g->threads + t;
924 unsigned int loops_done;
925
926 cpu = td->curr_cpu;
927
928 /* Not all threads have written it yet: */
929 if (cpu < 0)
930 continue;
931
932 node = numa_node_of_cpu(cpu);
933
934 nodes[node]++;
935
936 loops_done = td->loops_done;
937 loops_done_min = min(loops_done, loops_done_min);
938 loops_done_max = max(loops_done, loops_done_max);
939 }
940
941 nr_max = 0;
942 nr_min = g->p.nr_tasks;
943 sum = 0;
944
945 for (node = 0; node < g->p.nr_nodes; node++) {
946 nr = nodes[node];
947 nr_min = min(nr, nr_min);
948 nr_max = max(nr, nr_max);
949 sum += nr;
950 }
951 BUG_ON(nr_min > nr_max);
952
953 BUG_ON(sum > g->p.nr_tasks);
954
955 if (0 && (sum < g->p.nr_tasks))
956 return;
957
958 /*
959 * Count the number of distinct process groups present
960 * on nodes - when we are converged this will decrease
961 * to g->p.nr_proc:
962 */
963 process_groups = 0;
964
965 for (node = 0; node < g->p.nr_nodes; node++) {
966 int processes = count_node_processes(node);
967
968 nr = nodes[node];
969 tprintf(" %2d/%-2d", nr, processes);
970
971 process_groups += processes;
972 }
973
974 distance = nr_max - nr_min;
975
976 tprintf(" [%2d/%-2d]", distance, process_groups);
977
978 tprintf(" l:%3d-%-3d (%3d)",
979 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
980
981 if (loops_done_min && loops_done_max) {
982 double skew = 1.0 - (double)loops_done_min/loops_done_max;
983
984 tprintf(" [%4.1f%%]", skew * 100.0);
985 }
986
987 calc_convergence_compression(&strong);
988
989 if (strong && process_groups == g->p.nr_proc) {
990 if (!*convergence) {
991 *convergence = runtime_ns_max;
992 tprintf(" (%6.1fs converged)\n", *convergence/1e9);
993 if (g->p.measure_convergence) {
994 g->all_converged = true;
995 g->stop_work = true;
996 }
997 }
998 } else {
999 if (*convergence) {
1000 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1001 *convergence = 0;
1002 }
1003 tprintf("\n");
1004 }
1005}
1006
1007static void show_summary(double runtime_ns_max, int l, double *convergence)
1008{
1009 tprintf("\r # %5.1f%% [%.1f mins]",
1010 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1011
1012 calc_convergence(runtime_ns_max, convergence);
1013
1014 if (g->p.show_details >= 0)
1015 fflush(stdout);
1016}
1017
1018static void *worker_thread(void *__tdata)
1019{
1020 struct thread_data *td = __tdata;
1021 struct timeval start0, start, stop, diff;
1022 int process_nr = td->process_nr;
1023 int thread_nr = td->thread_nr;
1024 unsigned long last_perturbance;
1025 int task_nr = td->task_nr;
1026 int details = g->p.show_details;
1027 int first_task, last_task;
1028 double convergence = 0;
1029 u64 val = td->val;
1030 double runtime_ns_max;
1031 u8 *global_data;
1032 u8 *process_data;
1033 u8 *thread_data;
1034 u64 bytes_done;
1035 long work_done;
1036 u32 l;
1037
1038 bind_to_cpumask(td->bind_cpumask);
1039 bind_to_memnode(td->bind_node);
1040
1041 set_taskname("thread %d/%d", process_nr, thread_nr);
1042
1043 global_data = g->data;
1044 process_data = td->process_data;
1045 thread_data = setup_private_data(g->p.bytes_thread);
1046
1047 bytes_done = 0;
1048
1049 last_task = 0;
1050 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1051 last_task = 1;
1052
1053 first_task = 0;
1054 if (process_nr == 0 && thread_nr == 0)
1055 first_task = 1;
1056
1057 if (details >= 2) {
1058 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1059 process_nr, thread_nr, global_data, process_data, thread_data);
1060 }
1061
1062 if (g->p.serialize_startup) {
1063 pthread_mutex_lock(&g->startup_mutex);
1064 g->nr_tasks_started++;
1065 pthread_mutex_unlock(&g->startup_mutex);
1066
1067 /* Here we will wait for the main process to start us all at once: */
1068 pthread_mutex_lock(&g->start_work_mutex);
1069 g->nr_tasks_working++;
1070
1071 /* Last one wake the main process: */
1072 if (g->nr_tasks_working == g->p.nr_tasks)
1073 pthread_mutex_unlock(&g->startup_done_mutex);
1074
1075 pthread_mutex_unlock(&g->start_work_mutex);
1076 }
1077
1078 gettimeofday(&start0, NULL);
1079
1080 start = stop = start0;
1081 last_perturbance = start.tv_sec;
1082
1083 for (l = 0; l < g->p.nr_loops; l++) {
1084 start = stop;
1085
1086 if (g->stop_work)
1087 break;
1088
1089 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1090 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1091 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1092
1093 if (g->p.sleep_usecs) {
1094 pthread_mutex_lock(td->process_lock);
1095 usleep(g->p.sleep_usecs);
1096 pthread_mutex_unlock(td->process_lock);
1097 }
1098 /*
1099 * Amount of work to be done under a process-global lock:
1100 */
1101 if (g->p.bytes_process_locked) {
1102 pthread_mutex_lock(td->process_lock);
1103 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1104 pthread_mutex_unlock(td->process_lock);
1105 }
1106
1107 work_done = g->p.bytes_global + g->p.bytes_process +
1108 g->p.bytes_process_locked + g->p.bytes_thread;
1109
1110 update_curr_cpu(task_nr, work_done);
1111 bytes_done += work_done;
1112
1113 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1114 continue;
1115
1116 td->loops_done = l;
1117
1118 gettimeofday(&stop, NULL);
1119
1120 /* Check whether our max runtime timed out: */
1121 if (g->p.nr_secs) {
1122 timersub(&stop, &start0, &diff);
1123 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1124 g->stop_work = true;
1125 break;
1126 }
1127 }
1128
1129 /* Update the summary at most once per second: */
1130 if (start.tv_sec == stop.tv_sec)
1131 continue;
1132
1133 /*
1134 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1135 * by migrating to CPU#0:
1136 */
1137 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1138 cpu_set_t orig_mask;
1139 int target_cpu;
1140 int this_cpu;
1141
1142 last_perturbance = stop.tv_sec;
1143
1144 /*
1145 * Depending on where we are running, move into
1146 * the other half of the system, to create some
1147 * real disturbance:
1148 */
1149 this_cpu = g->threads[task_nr].curr_cpu;
1150 if (this_cpu < g->p.nr_cpus/2)
1151 target_cpu = g->p.nr_cpus-1;
1152 else
1153 target_cpu = 0;
1154
1155 orig_mask = bind_to_cpu(target_cpu);
1156
1157 /* Here we are running on the target CPU already */
1158 if (details >= 1)
1159 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1160
1161 bind_to_cpumask(orig_mask);
1162 }
1163
1164 if (details >= 3) {
1165 timersub(&stop, &start, &diff);
1166 runtime_ns_max = diff.tv_sec * 1000000000;
1167 runtime_ns_max += diff.tv_usec * 1000;
1168
1169 if (details >= 0) {
1170 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1171 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1172 }
1173 fflush(stdout);
1174 }
1175 if (!last_task)
1176 continue;
1177
1178 timersub(&stop, &start0, &diff);
1179 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1180 runtime_ns_max += diff.tv_usec * 1000ULL;
1181
1182 show_summary(runtime_ns_max, l, &convergence);
1183 }
1184
1185 gettimeofday(&stop, NULL);
1186 timersub(&stop, &start0, &diff);
1187 td->runtime_ns = diff.tv_sec * 1000000000ULL;
1188 td->runtime_ns += diff.tv_usec * 1000ULL;
1189
1190 free_data(thread_data, g->p.bytes_thread);
1191
1192 pthread_mutex_lock(&g->stop_work_mutex);
1193 g->bytes_done += bytes_done;
1194 pthread_mutex_unlock(&g->stop_work_mutex);
1195
1196 return NULL;
1197}
1198
1199/*
1200 * A worker process starts a couple of threads:
1201 */
1202static void worker_process(int process_nr)
1203{
1204 pthread_mutex_t process_lock;
1205 struct thread_data *td;
1206 pthread_t *pthreads;
1207 u8 *process_data;
1208 int task_nr;
1209 int ret;
1210 int t;
1211
1212 pthread_mutex_init(&process_lock, NULL);
1213 set_taskname("process %d", process_nr);
1214
1215 /*
1216 * Pick up the memory policy and the CPU binding of our first thread,
1217 * so that we initialize memory accordingly:
1218 */
1219 task_nr = process_nr*g->p.nr_threads;
1220 td = g->threads + task_nr;
1221
1222 bind_to_memnode(td->bind_node);
1223 bind_to_cpumask(td->bind_cpumask);
1224
1225 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1226 process_data = setup_private_data(g->p.bytes_process);
1227
1228 if (g->p.show_details >= 3) {
1229 printf(" # process %2d global mem: %p, process mem: %p\n",
1230 process_nr, g->data, process_data);
1231 }
1232
1233 for (t = 0; t < g->p.nr_threads; t++) {
1234 task_nr = process_nr*g->p.nr_threads + t;
1235 td = g->threads + task_nr;
1236
1237 td->process_data = process_data;
1238 td->process_nr = process_nr;
1239 td->thread_nr = t;
1240 td->task_nr = task_nr;
1241 td->val = rand();
1242 td->curr_cpu = -1;
1243 td->process_lock = &process_lock;
1244
1245 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1246 BUG_ON(ret);
1247 }
1248
1249 for (t = 0; t < g->p.nr_threads; t++) {
1250 ret = pthread_join(pthreads[t], NULL);
1251 BUG_ON(ret);
1252 }
1253
1254 free_data(process_data, g->p.bytes_process);
1255 free(pthreads);
1256}
1257
1258static void print_summary(void)
1259{
1260 if (g->p.show_details < 0)
1261 return;
1262
1263 printf("\n ###\n");
1264 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1265 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1266 printf(" # %5dx %5ldMB global shared mem operations\n",
1267 g->p.nr_loops, g->p.bytes_global/1024/1024);
1268 printf(" # %5dx %5ldMB process shared mem operations\n",
1269 g->p.nr_loops, g->p.bytes_process/1024/1024);
1270 printf(" # %5dx %5ldMB thread local mem operations\n",
1271 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1272
1273 printf(" ###\n");
1274
1275 printf("\n ###\n"); fflush(stdout);
1276}
1277
1278static void init_thread_data(void)
1279{
1280 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1281 int t;
1282
1283 g->threads = zalloc_shared_data(size);
1284
1285 for (t = 0; t < g->p.nr_tasks; t++) {
1286 struct thread_data *td = g->threads + t;
1287 int cpu;
1288
1289 /* Allow all nodes by default: */
1290 td->bind_node = -1;
1291
1292 /* Allow all CPUs by default: */
1293 CPU_ZERO(&td->bind_cpumask);
1294 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1295 CPU_SET(cpu, &td->bind_cpumask);
1296 }
1297}
1298
1299static void deinit_thread_data(void)
1300{
1301 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302
1303 free_data(g->threads, size);
1304}
1305
1306static int init(void)
1307{
1308 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1309
1310 /* Copy over options: */
1311 g->p = p0;
1312
1313 g->p.nr_cpus = numa_num_configured_cpus();
1314
1315 g->p.nr_nodes = numa_max_node() + 1;
1316
1317 /* char array in count_process_nodes(): */
1318 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1319
1320 if (g->p.show_quiet && !g->p.show_details)
1321 g->p.show_details = -1;
1322
1323 /* Some memory should be specified: */
1324 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1325 return -1;
1326
1327 if (g->p.mb_global_str) {
1328 g->p.mb_global = atof(g->p.mb_global_str);
1329 BUG_ON(g->p.mb_global < 0);
1330 }
1331
1332 if (g->p.mb_proc_str) {
1333 g->p.mb_proc = atof(g->p.mb_proc_str);
1334 BUG_ON(g->p.mb_proc < 0);
1335 }
1336
1337 if (g->p.mb_proc_locked_str) {
1338 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1339 BUG_ON(g->p.mb_proc_locked < 0);
1340 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1341 }
1342
1343 if (g->p.mb_thread_str) {
1344 g->p.mb_thread = atof(g->p.mb_thread_str);
1345 BUG_ON(g->p.mb_thread < 0);
1346 }
1347
1348 BUG_ON(g->p.nr_threads <= 0);
1349 BUG_ON(g->p.nr_proc <= 0);
1350
1351 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1352
1353 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1354 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1355 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1356 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1357
1358 g->data = setup_shared_data(g->p.bytes_global);
1359
1360 /* Startup serialization: */
1361 init_global_mutex(&g->start_work_mutex);
1362 init_global_mutex(&g->startup_mutex);
1363 init_global_mutex(&g->startup_done_mutex);
1364 init_global_mutex(&g->stop_work_mutex);
1365
1366 init_thread_data();
1367
1368 tprintf("#\n");
1369 if (parse_setup_cpu_list() || parse_setup_node_list())
1370 return -1;
1371 tprintf("#\n");
1372
1373 print_summary();
1374
1375 return 0;
1376}
1377
1378static void deinit(void)
1379{
1380 free_data(g->data, g->p.bytes_global);
1381 g->data = NULL;
1382
1383 deinit_thread_data();
1384
1385 free_data(g, sizeof(*g));
1386 g = NULL;
1387}
1388
1389/*
1390 * Print a short or long result, depending on the verbosity setting:
1391 */
1392static void print_res(const char *name, double val,
1393 const char *txt_unit, const char *txt_short, const char *txt_long)
1394{
1395 if (!name)
1396 name = "main,";
1397
1398 if (g->p.show_quiet)
1399 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1400 else
1401 printf(" %14.3f %s\n", val, txt_long);
1402}
1403
1404static int __bench_numa(const char *name)
1405{
1406 struct timeval start, stop, diff;
1407 u64 runtime_ns_min, runtime_ns_sum;
1408 pid_t *pids, pid, wpid;
1409 double delta_runtime;
1410 double runtime_avg;
1411 double runtime_sec_max;
1412 double runtime_sec_min;
1413 int wait_stat;
1414 double bytes;
1415 int i, t;
1416
1417 if (init())
1418 return -1;
1419
1420 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1421 pid = -1;
1422
1423 /* All threads try to acquire it, this way we can wait for them to start up: */
1424 pthread_mutex_lock(&g->start_work_mutex);
1425
1426 if (g->p.serialize_startup) {
1427 tprintf(" #\n");
1428 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1429 }
1430
1431 gettimeofday(&start, NULL);
1432
1433 for (i = 0; i < g->p.nr_proc; i++) {
1434 pid = fork();
1435 dprintf(" # process %2d: PID %d\n", i, pid);
1436
1437 BUG_ON(pid < 0);
1438 if (!pid) {
1439 /* Child process: */
1440 worker_process(i);
1441
1442 exit(0);
1443 }
1444 pids[i] = pid;
1445
1446 }
1447 /* Wait for all the threads to start up: */
1448 while (g->nr_tasks_started != g->p.nr_tasks)
1449 usleep(1000);
1450
1451 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1452
1453 if (g->p.serialize_startup) {
1454 double startup_sec;
1455
1456 pthread_mutex_lock(&g->startup_done_mutex);
1457
1458 /* This will start all threads: */
1459 pthread_mutex_unlock(&g->start_work_mutex);
1460
1461 /* This mutex is locked - the last started thread will wake us: */
1462 pthread_mutex_lock(&g->startup_done_mutex);
1463
1464 gettimeofday(&stop, NULL);
1465
1466 timersub(&stop, &start, &diff);
1467
1468 startup_sec = diff.tv_sec * 1000000000.0;
1469 startup_sec += diff.tv_usec * 1000.0;
1470 startup_sec /= 1e9;
1471
1472 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1473 tprintf(" #\n");
1474
1475 start = stop;
1476 pthread_mutex_unlock(&g->startup_done_mutex);
1477 } else {
1478 gettimeofday(&start, NULL);
1479 }
1480
1481 /* Parent process: */
1482
1483
1484 for (i = 0; i < g->p.nr_proc; i++) {
1485 wpid = waitpid(pids[i], &wait_stat, 0);
1486 BUG_ON(wpid < 0);
1487 BUG_ON(!WIFEXITED(wait_stat));
1488
1489 }
1490
1491 runtime_ns_sum = 0;
1492 runtime_ns_min = -1LL;
1493
1494 for (t = 0; t < g->p.nr_tasks; t++) {
1495 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1496
1497 runtime_ns_sum += thread_runtime_ns;
1498 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1499 }
1500
1501 gettimeofday(&stop, NULL);
1502 timersub(&stop, &start, &diff);
1503
1504 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1505
1506 tprintf("\n ###\n");
1507 tprintf("\n");
1508
1509 runtime_sec_max = diff.tv_sec * 1000000000.0;
1510 runtime_sec_max += diff.tv_usec * 1000.0;
1511 runtime_sec_max /= 1e9;
1512
1513 runtime_sec_min = runtime_ns_min/1e9;
1514
1515 bytes = g->bytes_done;
1516 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1517
1518 if (g->p.measure_convergence) {
1519 print_res(name, runtime_sec_max,
1520 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1521 }
1522
1523 print_res(name, runtime_sec_max,
1524 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1525
1526 print_res(name, runtime_sec_min,
1527 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1528
1529 print_res(name, runtime_avg,
1530 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1531
1532 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1533 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1534 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1535
1536 print_res(name, bytes / g->p.nr_tasks / 1e9,
1537 "GB,", "data/thread", "GB data processed, per thread");
1538
1539 print_res(name, bytes / 1e9,
1540 "GB,", "data-total", "GB data processed, total");
1541
1542 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1543 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1544
1545 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1546 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1547
1548 print_res(name, bytes / runtime_sec_max / 1e9,
1549 "GB/sec,", "total-speed", "GB/sec total speed");
1550
1551 free(pids);
1552
1553 deinit();
1554
1555 return 0;
1556}
1557
1558#define MAX_ARGS 50
1559
1560static int command_size(const char **argv)
1561{
1562 int size = 0;
1563
1564 while (*argv) {
1565 size++;
1566 argv++;
1567 }
1568
1569 BUG_ON(size >= MAX_ARGS);
1570
1571 return size;
1572}
1573
1574static void init_params(struct params *p, const char *name, int argc, const char **argv)
1575{
1576 int i;
1577
1578 printf("\n # Running %s \"perf bench numa", name);
1579
1580 for (i = 0; i < argc; i++)
1581 printf(" %s", argv[i]);
1582
1583 printf("\"\n");
1584
1585 memset(p, 0, sizeof(*p));
1586
1587 /* Initialize nonzero defaults: */
1588
1589 p->serialize_startup = 1;
1590 p->data_reads = true;
1591 p->data_writes = true;
1592 p->data_backwards = true;
1593 p->data_rand_walk = true;
1594 p->nr_loops = -1;
1595 p->init_random = true;
1596 p->mb_global_str = "1";
1597 p->nr_proc = 1;
1598 p->nr_threads = 1;
1599 p->nr_secs = 5;
1600 p->run_all = argc == 1;
1601}
1602
1603static int run_bench_numa(const char *name, const char **argv)
1604{
1605 int argc = command_size(argv);
1606
1607 init_params(&p0, name, argc, argv);
1608 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1609 if (argc)
1610 goto err;
1611
1612 if (__bench_numa(name))
1613 goto err;
1614
1615 return 0;
1616
1617err:
1618 return -1;
1619}
1620
1621#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1622#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1623
1624#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1625#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1626
1627#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1628#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1629
1630/*
1631 * The built-in test-suite executed by "perf bench numa -a".
1632 *
1633 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1634 */
1635static const char *tests[][MAX_ARGS] = {
1636 /* Basic single-stream NUMA bandwidth measurements: */
1637 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1638 "-C" , "0", "-M", "0", OPT_BW_RAM },
1639 { "RAM-bw-local-NOTHP,",
1640 "mem", "-p", "1", "-t", "1", "-P", "1024",
1641 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1642 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1643 "-C" , "0", "-M", "1", OPT_BW_RAM },
1644
1645 /* 2-stream NUMA bandwidth measurements: */
1646 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1647 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1648 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1649 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1650
1651 /* Cross-stream NUMA bandwidth measurement: */
1652 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1653 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1654
1655 /* Convergence latency measurements: */
1656 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1657 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1658 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1659 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1660 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1661 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1662 { " 4x4-convergence-NOTHP,",
1663 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1664 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1665 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1666 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1667 { " 8x4-convergence-NOTHP,",
1668 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1669 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1670 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1671 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1672 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1673 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1674
1675 /* Various NUMA process/thread layout bandwidth measurements: */
1676 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1677 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1678 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1679 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1680 { " 8x1-bw-process-NOTHP,",
1681 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1682 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1683
1684 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1685 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1686 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1687 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1688
1689 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1690 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1691 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1692 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1693 { " 4x8-bw-thread-NOTHP,",
1694 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1695 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1696 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1697
1698 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1699 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1700
1701 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1702 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1703 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1704 { "numa01-bw-thread-NOTHP,",
1705 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1706};
1707
1708static int bench_all(void)
1709{
1710 int nr = ARRAY_SIZE(tests);
1711 int ret;
1712 int i;
1713
1714 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1715 BUG_ON(ret < 0);
1716
1717 for (i = 0; i < nr; i++) {
1718 run_bench_numa(tests[i][0], tests[i] + 1);
1719 }
1720
1721 printf("\n");
1722
1723 return 0;
1724}
1725
1726int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1727{
1728 init_params(&p0, "main,", argc, argv);
1729 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1730 if (argc)
1731 goto err;
1732
1733 if (p0.run_all)
1734 return bench_all();
1735
1736 if (__bench_numa(NULL))
1737 goto err;
1738
1739 return 0;
1740
1741err:
1742 usage_with_options(numa_usage, options);
1743 return -1;
1744}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9
10#include <subcmd/parse-options.h>
11#include "../util/cloexec.h"
12
13#include "bench.h"
14
15#include <errno.h>
16#include <sched.h>
17#include <stdio.h>
18#include <assert.h>
19#include <debug.h>
20#include <malloc.h>
21#include <signal.h>
22#include <stdlib.h>
23#include <string.h>
24#include <unistd.h>
25#include <sys/mman.h>
26#include <sys/time.h>
27#include <sys/resource.h>
28#include <sys/wait.h>
29#include <sys/prctl.h>
30#include <sys/types.h>
31#include <linux/kernel.h>
32#include <linux/time64.h>
33#include <linux/numa.h>
34#include <linux/zalloc.h>
35
36#include "../util/header.h"
37#include "../util/mutex.h"
38#include <numa.h>
39#include <numaif.h>
40
41#ifndef RUSAGE_THREAD
42# define RUSAGE_THREAD 1
43#endif
44
45/*
46 * Regular printout to the terminal, suppressed if -q is specified:
47 */
48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
49
50/*
51 * Debug printf:
52 */
53#undef dprintf
54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
55
56struct thread_data {
57 int curr_cpu;
58 cpu_set_t *bind_cpumask;
59 int bind_node;
60 u8 *process_data;
61 int process_nr;
62 int thread_nr;
63 int task_nr;
64 unsigned int loops_done;
65 u64 val;
66 u64 runtime_ns;
67 u64 system_time_ns;
68 u64 user_time_ns;
69 double speed_gbs;
70 struct mutex *process_lock;
71};
72
73/* Parameters set by options: */
74
75struct params {
76 /* Startup synchronization: */
77 bool serialize_startup;
78
79 /* Task hierarchy: */
80 int nr_proc;
81 int nr_threads;
82
83 /* Working set sizes: */
84 const char *mb_global_str;
85 const char *mb_proc_str;
86 const char *mb_proc_locked_str;
87 const char *mb_thread_str;
88
89 double mb_global;
90 double mb_proc;
91 double mb_proc_locked;
92 double mb_thread;
93
94 /* Access patterns to the working set: */
95 bool data_reads;
96 bool data_writes;
97 bool data_backwards;
98 bool data_zero_memset;
99 bool data_rand_walk;
100 u32 nr_loops;
101 u32 nr_secs;
102 u32 sleep_usecs;
103
104 /* Working set initialization: */
105 bool init_zero;
106 bool init_random;
107 bool init_cpu0;
108
109 /* Misc options: */
110 int show_details;
111 int run_all;
112 int thp;
113
114 long bytes_global;
115 long bytes_process;
116 long bytes_process_locked;
117 long bytes_thread;
118
119 int nr_tasks;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 struct mutex startup_mutex;
140 struct cond startup_cond;
141 int nr_tasks_started;
142
143 struct mutex start_work_mutex;
144 struct cond start_work_cond;
145 int nr_tasks_working;
146 bool start_work;
147
148 struct mutex stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160};
161
162static struct global_info *g = NULL;
163
164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167struct params p0;
168
169static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &quiet,
201 "quiet mode (do not show any warnings or messages)"),
202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
203
204 /* Special option string parsing callbacks: */
205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
206 "bind the first N tasks to these specific cpus (the rest is unbound)",
207 parse_cpus_opt),
208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
209 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
210 parse_nodes_opt),
211 OPT_END()
212};
213
214static const char * const bench_numa_usage[] = {
215 "perf bench numa <options>",
216 NULL
217};
218
219static const char * const numa_usage[] = {
220 "perf bench numa mem [<options>]",
221 NULL
222};
223
224/*
225 * To get number of numa nodes present.
226 */
227static int nr_numa_nodes(void)
228{
229 int i, nr_nodes = 0;
230
231 for (i = 0; i < g->p.nr_nodes; i++) {
232 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
233 nr_nodes++;
234 }
235
236 return nr_nodes;
237}
238
239/*
240 * To check if given numa node is present.
241 */
242static int is_node_present(int node)
243{
244 return numa_bitmask_isbitset(numa_nodes_ptr, node);
245}
246
247/*
248 * To check given numa node has cpus.
249 */
250static bool node_has_cpus(int node)
251{
252 struct bitmask *cpumask = numa_allocate_cpumask();
253 bool ret = false; /* fall back to nocpus */
254 int cpu;
255
256 BUG_ON(!cpumask);
257 if (!numa_node_to_cpus(node, cpumask)) {
258 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
259 if (numa_bitmask_isbitset(cpumask, cpu)) {
260 ret = true;
261 break;
262 }
263 }
264 }
265 numa_free_cpumask(cpumask);
266
267 return ret;
268}
269
270static cpu_set_t *bind_to_cpu(int target_cpu)
271{
272 int nrcpus = numa_num_possible_cpus();
273 cpu_set_t *orig_mask, *mask;
274 size_t size;
275
276 orig_mask = CPU_ALLOC(nrcpus);
277 BUG_ON(!orig_mask);
278 size = CPU_ALLOC_SIZE(nrcpus);
279 CPU_ZERO_S(size, orig_mask);
280
281 if (sched_getaffinity(0, size, orig_mask))
282 goto err_out;
283
284 mask = CPU_ALLOC(nrcpus);
285 if (!mask)
286 goto err_out;
287
288 CPU_ZERO_S(size, mask);
289
290 if (target_cpu == -1) {
291 int cpu;
292
293 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
294 CPU_SET_S(cpu, size, mask);
295 } else {
296 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
297 goto err;
298
299 CPU_SET_S(target_cpu, size, mask);
300 }
301
302 if (sched_setaffinity(0, size, mask))
303 goto err;
304
305 return orig_mask;
306
307err:
308 CPU_FREE(mask);
309err_out:
310 CPU_FREE(orig_mask);
311
312 /* BUG_ON due to failure in allocation of orig_mask/mask */
313 BUG_ON(-1);
314 return NULL;
315}
316
317static cpu_set_t *bind_to_node(int target_node)
318{
319 int nrcpus = numa_num_possible_cpus();
320 size_t size;
321 cpu_set_t *orig_mask, *mask;
322 int cpu;
323
324 orig_mask = CPU_ALLOC(nrcpus);
325 BUG_ON(!orig_mask);
326 size = CPU_ALLOC_SIZE(nrcpus);
327 CPU_ZERO_S(size, orig_mask);
328
329 if (sched_getaffinity(0, size, orig_mask))
330 goto err_out;
331
332 mask = CPU_ALLOC(nrcpus);
333 if (!mask)
334 goto err_out;
335
336 CPU_ZERO_S(size, mask);
337
338 if (target_node == NUMA_NO_NODE) {
339 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
340 CPU_SET_S(cpu, size, mask);
341 } else {
342 struct bitmask *cpumask = numa_allocate_cpumask();
343
344 if (!cpumask)
345 goto err;
346
347 if (!numa_node_to_cpus(target_node, cpumask)) {
348 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
349 if (numa_bitmask_isbitset(cpumask, cpu))
350 CPU_SET_S(cpu, size, mask);
351 }
352 }
353 numa_free_cpumask(cpumask);
354 }
355
356 if (sched_setaffinity(0, size, mask))
357 goto err;
358
359 return orig_mask;
360
361err:
362 CPU_FREE(mask);
363err_out:
364 CPU_FREE(orig_mask);
365
366 /* BUG_ON due to failure in allocation of orig_mask/mask */
367 BUG_ON(-1);
368 return NULL;
369}
370
371static void bind_to_cpumask(cpu_set_t *mask)
372{
373 int ret;
374 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
375
376 ret = sched_setaffinity(0, size, mask);
377 if (ret) {
378 CPU_FREE(mask);
379 BUG_ON(ret);
380 }
381}
382
383static void mempol_restore(void)
384{
385 int ret;
386
387 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
388
389 BUG_ON(ret);
390}
391
392static void bind_to_memnode(int node)
393{
394 struct bitmask *node_mask;
395 int ret;
396
397 if (node == NUMA_NO_NODE)
398 return;
399
400 node_mask = numa_allocate_nodemask();
401 BUG_ON(!node_mask);
402
403 numa_bitmask_clearall(node_mask);
404 numa_bitmask_setbit(node_mask, node);
405
406 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
407 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
408
409 numa_bitmask_free(node_mask);
410 BUG_ON(ret);
411}
412
413#define HPSIZE (2*1024*1024)
414
415#define set_taskname(fmt...) \
416do { \
417 char name[20]; \
418 \
419 snprintf(name, 20, fmt); \
420 prctl(PR_SET_NAME, name); \
421} while (0)
422
423static u8 *alloc_data(ssize_t bytes0, int map_flags,
424 int init_zero, int init_cpu0, int thp, int init_random)
425{
426 cpu_set_t *orig_mask = NULL;
427 ssize_t bytes;
428 u8 *buf;
429 int ret;
430
431 if (!bytes0)
432 return NULL;
433
434 /* Allocate and initialize all memory on CPU#0: */
435 if (init_cpu0) {
436 int node = numa_node_of_cpu(0);
437
438 orig_mask = bind_to_node(node);
439 bind_to_memnode(node);
440 }
441
442 bytes = bytes0 + HPSIZE;
443
444 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
445 BUG_ON(buf == (void *)-1);
446
447 if (map_flags == MAP_PRIVATE) {
448 if (thp > 0) {
449 ret = madvise(buf, bytes, MADV_HUGEPAGE);
450 if (ret && !g->print_once) {
451 g->print_once = 1;
452 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
453 }
454 }
455 if (thp < 0) {
456 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
457 if (ret && !g->print_once) {
458 g->print_once = 1;
459 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
460 }
461 }
462 }
463
464 if (init_zero) {
465 bzero(buf, bytes);
466 } else {
467 /* Initialize random contents, different in each word: */
468 if (init_random) {
469 u64 *wbuf = (void *)buf;
470 long off = rand();
471 long i;
472
473 for (i = 0; i < bytes/8; i++)
474 wbuf[i] = i + off;
475 }
476 }
477
478 /* Align to 2MB boundary: */
479 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
480
481 /* Restore affinity: */
482 if (init_cpu0) {
483 bind_to_cpumask(orig_mask);
484 CPU_FREE(orig_mask);
485 mempol_restore();
486 }
487
488 return buf;
489}
490
491static void free_data(void *data, ssize_t bytes)
492{
493 int ret;
494
495 if (!data)
496 return;
497
498 ret = munmap(data, bytes);
499 BUG_ON(ret);
500}
501
502/*
503 * Create a shared memory buffer that can be shared between processes, zeroed:
504 */
505static void * zalloc_shared_data(ssize_t bytes)
506{
507 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
508}
509
510/*
511 * Create a shared memory buffer that can be shared between processes:
512 */
513static void * setup_shared_data(ssize_t bytes)
514{
515 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
516}
517
518/*
519 * Allocate process-local memory - this will either be shared between
520 * threads of this process, or only be accessed by this thread:
521 */
522static void * setup_private_data(ssize_t bytes)
523{
524 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
525}
526
527static int parse_cpu_list(const char *arg)
528{
529 p0.cpu_list_str = strdup(arg);
530
531 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
532
533 return 0;
534}
535
536static int parse_setup_cpu_list(void)
537{
538 struct thread_data *td;
539 char *str0, *str;
540 int t;
541
542 if (!g->p.cpu_list_str)
543 return 0;
544
545 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
546
547 str0 = str = strdup(g->p.cpu_list_str);
548 t = 0;
549
550 BUG_ON(!str);
551
552 tprintf("# binding tasks to CPUs:\n");
553 tprintf("# ");
554
555 while (true) {
556 int bind_cpu, bind_cpu_0, bind_cpu_1;
557 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
558 int bind_len;
559 int step;
560 int mul;
561
562 tok = strsep(&str, ",");
563 if (!tok)
564 break;
565
566 tok_end = strstr(tok, "-");
567
568 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
569 if (!tok_end) {
570 /* Single CPU specified: */
571 bind_cpu_0 = bind_cpu_1 = atol(tok);
572 } else {
573 /* CPU range specified (for example: "5-11"): */
574 bind_cpu_0 = atol(tok);
575 bind_cpu_1 = atol(tok_end + 1);
576 }
577
578 step = 1;
579 tok_step = strstr(tok, "#");
580 if (tok_step) {
581 step = atol(tok_step + 1);
582 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
583 }
584
585 /*
586 * Mask length.
587 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
588 * where the _4 means the next 4 CPUs are allowed.
589 */
590 bind_len = 1;
591 tok_len = strstr(tok, "_");
592 if (tok_len) {
593 bind_len = atol(tok_len + 1);
594 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
595 }
596
597 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
598 mul = 1;
599 tok_mul = strstr(tok, "x");
600 if (tok_mul) {
601 mul = atol(tok_mul + 1);
602 BUG_ON(mul <= 0);
603 }
604
605 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
606
607 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
608 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
609 return -1;
610 }
611
612 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
613 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
614 return -1;
615 }
616
617 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
618 BUG_ON(bind_cpu_0 > bind_cpu_1);
619
620 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
621 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
622 int i;
623
624 for (i = 0; i < mul; i++) {
625 int cpu;
626
627 if (t >= g->p.nr_tasks) {
628 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
629 goto out;
630 }
631 td = g->threads + t;
632
633 if (t)
634 tprintf(",");
635 if (bind_len > 1) {
636 tprintf("%2d/%d", bind_cpu, bind_len);
637 } else {
638 tprintf("%2d", bind_cpu);
639 }
640
641 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
642 BUG_ON(!td->bind_cpumask);
643 CPU_ZERO_S(size, td->bind_cpumask);
644 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
645 if (cpu < 0 || cpu >= g->p.nr_cpus) {
646 CPU_FREE(td->bind_cpumask);
647 BUG_ON(-1);
648 }
649 CPU_SET_S(cpu, size, td->bind_cpumask);
650 }
651 t++;
652 }
653 }
654 }
655out:
656
657 tprintf("\n");
658
659 if (t < g->p.nr_tasks)
660 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661
662 free(str0);
663 return 0;
664}
665
666static int parse_cpus_opt(const struct option *opt __maybe_unused,
667 const char *arg, int unset __maybe_unused)
668{
669 if (!arg)
670 return -1;
671
672 return parse_cpu_list(arg);
673}
674
675static int parse_node_list(const char *arg)
676{
677 p0.node_list_str = strdup(arg);
678
679 dprintf("got NODE list: {%s}\n", p0.node_list_str);
680
681 return 0;
682}
683
684static int parse_setup_node_list(void)
685{
686 struct thread_data *td;
687 char *str0, *str;
688 int t;
689
690 if (!g->p.node_list_str)
691 return 0;
692
693 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
694
695 str0 = str = strdup(g->p.node_list_str);
696 t = 0;
697
698 BUG_ON(!str);
699
700 tprintf("# binding tasks to NODEs:\n");
701 tprintf("# ");
702
703 while (true) {
704 int bind_node, bind_node_0, bind_node_1;
705 char *tok, *tok_end, *tok_step, *tok_mul;
706 int step;
707 int mul;
708
709 tok = strsep(&str, ",");
710 if (!tok)
711 break;
712
713 tok_end = strstr(tok, "-");
714
715 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
716 if (!tok_end) {
717 /* Single NODE specified: */
718 bind_node_0 = bind_node_1 = atol(tok);
719 } else {
720 /* NODE range specified (for example: "5-11"): */
721 bind_node_0 = atol(tok);
722 bind_node_1 = atol(tok_end + 1);
723 }
724
725 step = 1;
726 tok_step = strstr(tok, "#");
727 if (tok_step) {
728 step = atol(tok_step + 1);
729 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
730 }
731
732 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
733 mul = 1;
734 tok_mul = strstr(tok, "x");
735 if (tok_mul) {
736 mul = atol(tok_mul + 1);
737 BUG_ON(mul <= 0);
738 }
739
740 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
741
742 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
743 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
744 return -1;
745 }
746
747 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
748 BUG_ON(bind_node_0 > bind_node_1);
749
750 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
751 int i;
752
753 for (i = 0; i < mul; i++) {
754 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
755 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
756 goto out;
757 }
758 td = g->threads + t;
759
760 if (!t)
761 tprintf(" %2d", bind_node);
762 else
763 tprintf(",%2d", bind_node);
764
765 td->bind_node = bind_node;
766 t++;
767 }
768 }
769 }
770out:
771
772 tprintf("\n");
773
774 if (t < g->p.nr_tasks)
775 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
776
777 free(str0);
778 return 0;
779}
780
781static int parse_nodes_opt(const struct option *opt __maybe_unused,
782 const char *arg, int unset __maybe_unused)
783{
784 if (!arg)
785 return -1;
786
787 return parse_node_list(arg);
788}
789
790static inline uint32_t lfsr_32(uint32_t lfsr)
791{
792 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
793 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
794}
795
796/*
797 * Make sure there's real data dependency to RAM (when read
798 * accesses are enabled), so the compiler, the CPU and the
799 * kernel (KSM, zero page, etc.) cannot optimize away RAM
800 * accesses:
801 */
802static inline u64 access_data(u64 *data, u64 val)
803{
804 if (g->p.data_reads)
805 val += *data;
806 if (g->p.data_writes)
807 *data = val + 1;
808 return val;
809}
810
811/*
812 * The worker process does two types of work, a forwards going
813 * loop and a backwards going loop.
814 *
815 * We do this so that on multiprocessor systems we do not create
816 * a 'train' of processing, with highly synchronized processes,
817 * skewing the whole benchmark.
818 */
819static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
820{
821 long words = bytes/sizeof(u64);
822 u64 *data = (void *)__data;
823 long chunk_0, chunk_1;
824 u64 *d0, *d, *d1;
825 long off;
826 long i;
827
828 BUG_ON(!data && words);
829 BUG_ON(data && !words);
830
831 if (!data)
832 return val;
833
834 /* Very simple memset() work variant: */
835 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
836 bzero(data, bytes);
837 return val;
838 }
839
840 /* Spread out by PID/TID nr and by loop nr: */
841 chunk_0 = words/nr_max;
842 chunk_1 = words/g->p.nr_loops;
843 off = nr*chunk_0 + loop*chunk_1;
844
845 while (off >= words)
846 off -= words;
847
848 if (g->p.data_rand_walk) {
849 u32 lfsr = nr + loop + val;
850 long j;
851
852 for (i = 0; i < words/1024; i++) {
853 long start, end;
854
855 lfsr = lfsr_32(lfsr);
856
857 start = lfsr % words;
858 end = min(start + 1024, words-1);
859
860 if (g->p.data_zero_memset) {
861 bzero(data + start, (end-start) * sizeof(u64));
862 } else {
863 for (j = start; j < end; j++)
864 val = access_data(data + j, val);
865 }
866 }
867 } else if (!g->p.data_backwards || (nr + loop) & 1) {
868 /* Process data forwards: */
869
870 d0 = data + off;
871 d = data + off + 1;
872 d1 = data + words;
873
874 for (;;) {
875 if (unlikely(d >= d1))
876 d = data;
877 if (unlikely(d == d0))
878 break;
879
880 val = access_data(d, val);
881
882 d++;
883 }
884 } else {
885 /* Process data backwards: */
886
887 d0 = data + off;
888 d = data + off - 1;
889 d1 = data + words;
890
891 for (;;) {
892 if (unlikely(d < data))
893 d = data + words-1;
894 if (unlikely(d == d0))
895 break;
896
897 val = access_data(d, val);
898
899 d--;
900 }
901 }
902
903 return val;
904}
905
906static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
907{
908 unsigned int cpu;
909
910 cpu = sched_getcpu();
911
912 g->threads[task_nr].curr_cpu = cpu;
913 prctl(0, bytes_worked);
914}
915
916/*
917 * Count the number of nodes a process's threads
918 * are spread out on.
919 *
920 * A count of 1 means that the process is compressed
921 * to a single node. A count of g->p.nr_nodes means it's
922 * spread out on the whole system.
923 */
924static int count_process_nodes(int process_nr)
925{
926 char *node_present;
927 int nodes;
928 int n, t;
929
930 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
931 BUG_ON(!node_present);
932 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
933 node_present[nodes] = 0;
934
935 for (t = 0; t < g->p.nr_threads; t++) {
936 struct thread_data *td;
937 int task_nr;
938 int node;
939
940 task_nr = process_nr*g->p.nr_threads + t;
941 td = g->threads + task_nr;
942
943 node = numa_node_of_cpu(td->curr_cpu);
944 if (node < 0) /* curr_cpu was likely still -1 */ {
945 free(node_present);
946 return 0;
947 }
948
949 node_present[node] = 1;
950 }
951
952 nodes = 0;
953
954 for (n = 0; n < g->p.nr_nodes; n++)
955 nodes += node_present[n];
956
957 free(node_present);
958 return nodes;
959}
960
961/*
962 * Count the number of distinct process-threads a node contains.
963 *
964 * A count of 1 means that the node contains only a single
965 * process. If all nodes on the system contain at most one
966 * process then we are well-converged.
967 */
968static int count_node_processes(int node)
969{
970 int processes = 0;
971 int t, p;
972
973 for (p = 0; p < g->p.nr_proc; p++) {
974 for (t = 0; t < g->p.nr_threads; t++) {
975 struct thread_data *td;
976 int task_nr;
977 int n;
978
979 task_nr = p*g->p.nr_threads + t;
980 td = g->threads + task_nr;
981
982 n = numa_node_of_cpu(td->curr_cpu);
983 if (n == node) {
984 processes++;
985 break;
986 }
987 }
988 }
989
990 return processes;
991}
992
993static void calc_convergence_compression(int *strong)
994{
995 unsigned int nodes_min, nodes_max;
996 int p;
997
998 nodes_min = -1;
999 nodes_max = 0;
1000
1001 for (p = 0; p < g->p.nr_proc; p++) {
1002 unsigned int nodes = count_process_nodes(p);
1003
1004 if (!nodes) {
1005 *strong = 0;
1006 return;
1007 }
1008
1009 nodes_min = min(nodes, nodes_min);
1010 nodes_max = max(nodes, nodes_max);
1011 }
1012
1013 /* Strong convergence: all threads compress on a single node: */
1014 if (nodes_min == 1 && nodes_max == 1) {
1015 *strong = 1;
1016 } else {
1017 *strong = 0;
1018 tprintf(" {%d-%d}", nodes_min, nodes_max);
1019 }
1020}
1021
1022static void calc_convergence(double runtime_ns_max, double *convergence)
1023{
1024 unsigned int loops_done_min, loops_done_max;
1025 int process_groups;
1026 int *nodes;
1027 int distance;
1028 int nr_min;
1029 int nr_max;
1030 int strong;
1031 int sum;
1032 int nr;
1033 int node;
1034 int cpu;
1035 int t;
1036
1037 if (!g->p.show_convergence && !g->p.measure_convergence)
1038 return;
1039
1040 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1041 BUG_ON(!nodes);
1042 for (node = 0; node < g->p.nr_nodes; node++)
1043 nodes[node] = 0;
1044
1045 loops_done_min = -1;
1046 loops_done_max = 0;
1047
1048 for (t = 0; t < g->p.nr_tasks; t++) {
1049 struct thread_data *td = g->threads + t;
1050 unsigned int loops_done;
1051
1052 cpu = td->curr_cpu;
1053
1054 /* Not all threads have written it yet: */
1055 if (cpu < 0)
1056 continue;
1057
1058 node = numa_node_of_cpu(cpu);
1059
1060 nodes[node]++;
1061
1062 loops_done = td->loops_done;
1063 loops_done_min = min(loops_done, loops_done_min);
1064 loops_done_max = max(loops_done, loops_done_max);
1065 }
1066
1067 nr_max = 0;
1068 nr_min = g->p.nr_tasks;
1069 sum = 0;
1070
1071 for (node = 0; node < g->p.nr_nodes; node++) {
1072 if (!is_node_present(node))
1073 continue;
1074 nr = nodes[node];
1075 nr_min = min(nr, nr_min);
1076 nr_max = max(nr, nr_max);
1077 sum += nr;
1078 }
1079 BUG_ON(nr_min > nr_max);
1080
1081 BUG_ON(sum > g->p.nr_tasks);
1082
1083 if (0 && (sum < g->p.nr_tasks)) {
1084 free(nodes);
1085 return;
1086 }
1087
1088 /*
1089 * Count the number of distinct process groups present
1090 * on nodes - when we are converged this will decrease
1091 * to g->p.nr_proc:
1092 */
1093 process_groups = 0;
1094
1095 for (node = 0; node < g->p.nr_nodes; node++) {
1096 int processes;
1097
1098 if (!is_node_present(node))
1099 continue;
1100 processes = count_node_processes(node);
1101 nr = nodes[node];
1102 tprintf(" %2d/%-2d", nr, processes);
1103
1104 process_groups += processes;
1105 }
1106
1107 distance = nr_max - nr_min;
1108
1109 tprintf(" [%2d/%-2d]", distance, process_groups);
1110
1111 tprintf(" l:%3d-%-3d (%3d)",
1112 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1113
1114 if (loops_done_min && loops_done_max) {
1115 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1116
1117 tprintf(" [%4.1f%%]", skew * 100.0);
1118 }
1119
1120 calc_convergence_compression(&strong);
1121
1122 if (strong && process_groups == g->p.nr_proc) {
1123 if (!*convergence) {
1124 *convergence = runtime_ns_max;
1125 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1126 if (g->p.measure_convergence) {
1127 g->all_converged = true;
1128 g->stop_work = true;
1129 }
1130 }
1131 } else {
1132 if (*convergence) {
1133 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1134 *convergence = 0;
1135 }
1136 tprintf("\n");
1137 }
1138
1139 free(nodes);
1140}
1141
1142static void show_summary(double runtime_ns_max, int l, double *convergence)
1143{
1144 tprintf("\r # %5.1f%% [%.1f mins]",
1145 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1146
1147 calc_convergence(runtime_ns_max, convergence);
1148
1149 if (g->p.show_details >= 0)
1150 fflush(stdout);
1151}
1152
1153static void *worker_thread(void *__tdata)
1154{
1155 struct thread_data *td = __tdata;
1156 struct timeval start0, start, stop, diff;
1157 int process_nr = td->process_nr;
1158 int thread_nr = td->thread_nr;
1159 unsigned long last_perturbance;
1160 int task_nr = td->task_nr;
1161 int details = g->p.show_details;
1162 int first_task, last_task;
1163 double convergence = 0;
1164 u64 val = td->val;
1165 double runtime_ns_max;
1166 u8 *global_data;
1167 u8 *process_data;
1168 u8 *thread_data;
1169 u64 bytes_done, secs;
1170 long work_done;
1171 u32 l;
1172 struct rusage rusage;
1173
1174 bind_to_cpumask(td->bind_cpumask);
1175 bind_to_memnode(td->bind_node);
1176
1177 set_taskname("thread %d/%d", process_nr, thread_nr);
1178
1179 global_data = g->data;
1180 process_data = td->process_data;
1181 thread_data = setup_private_data(g->p.bytes_thread);
1182
1183 bytes_done = 0;
1184
1185 last_task = 0;
1186 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1187 last_task = 1;
1188
1189 first_task = 0;
1190 if (process_nr == 0 && thread_nr == 0)
1191 first_task = 1;
1192
1193 if (details >= 2) {
1194 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1195 process_nr, thread_nr, global_data, process_data, thread_data);
1196 }
1197
1198 if (g->p.serialize_startup) {
1199 mutex_lock(&g->startup_mutex);
1200 g->nr_tasks_started++;
1201 /* The last thread wakes the main process. */
1202 if (g->nr_tasks_started == g->p.nr_tasks)
1203 cond_signal(&g->startup_cond);
1204
1205 mutex_unlock(&g->startup_mutex);
1206
1207 /* Here we will wait for the main process to start us all at once: */
1208 mutex_lock(&g->start_work_mutex);
1209 g->start_work = false;
1210 g->nr_tasks_working++;
1211 while (!g->start_work)
1212 cond_wait(&g->start_work_cond, &g->start_work_mutex);
1213
1214 mutex_unlock(&g->start_work_mutex);
1215 }
1216
1217 gettimeofday(&start0, NULL);
1218
1219 start = stop = start0;
1220 last_perturbance = start.tv_sec;
1221
1222 for (l = 0; l < g->p.nr_loops; l++) {
1223 start = stop;
1224
1225 if (g->stop_work)
1226 break;
1227
1228 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1229 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1230 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1231
1232 if (g->p.sleep_usecs) {
1233 mutex_lock(td->process_lock);
1234 usleep(g->p.sleep_usecs);
1235 mutex_unlock(td->process_lock);
1236 }
1237 /*
1238 * Amount of work to be done under a process-global lock:
1239 */
1240 if (g->p.bytes_process_locked) {
1241 mutex_lock(td->process_lock);
1242 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1243 mutex_unlock(td->process_lock);
1244 }
1245
1246 work_done = g->p.bytes_global + g->p.bytes_process +
1247 g->p.bytes_process_locked + g->p.bytes_thread;
1248
1249 update_curr_cpu(task_nr, work_done);
1250 bytes_done += work_done;
1251
1252 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1253 continue;
1254
1255 td->loops_done = l;
1256
1257 gettimeofday(&stop, NULL);
1258
1259 /* Check whether our max runtime timed out: */
1260 if (g->p.nr_secs) {
1261 timersub(&stop, &start0, &diff);
1262 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1263 g->stop_work = true;
1264 break;
1265 }
1266 }
1267
1268 /* Update the summary at most once per second: */
1269 if (start.tv_sec == stop.tv_sec)
1270 continue;
1271
1272 /*
1273 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1274 * by migrating to CPU#0:
1275 */
1276 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1277 cpu_set_t *orig_mask;
1278 int target_cpu;
1279 int this_cpu;
1280
1281 last_perturbance = stop.tv_sec;
1282
1283 /*
1284 * Depending on where we are running, move into
1285 * the other half of the system, to create some
1286 * real disturbance:
1287 */
1288 this_cpu = g->threads[task_nr].curr_cpu;
1289 if (this_cpu < g->p.nr_cpus/2)
1290 target_cpu = g->p.nr_cpus-1;
1291 else
1292 target_cpu = 0;
1293
1294 orig_mask = bind_to_cpu(target_cpu);
1295
1296 /* Here we are running on the target CPU already */
1297 if (details >= 1)
1298 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1299
1300 bind_to_cpumask(orig_mask);
1301 CPU_FREE(orig_mask);
1302 }
1303
1304 if (details >= 3) {
1305 timersub(&stop, &start, &diff);
1306 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1307 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1308
1309 if (details >= 0) {
1310 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1311 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1312 }
1313 fflush(stdout);
1314 }
1315 if (!last_task)
1316 continue;
1317
1318 timersub(&stop, &start0, &diff);
1319 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1320 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1321
1322 show_summary(runtime_ns_max, l, &convergence);
1323 }
1324
1325 gettimeofday(&stop, NULL);
1326 timersub(&stop, &start0, &diff);
1327 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1328 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1329 secs = td->runtime_ns / NSEC_PER_SEC;
1330 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1331
1332 getrusage(RUSAGE_THREAD, &rusage);
1333 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1334 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1335 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1336 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1337
1338 free_data(thread_data, g->p.bytes_thread);
1339
1340 mutex_lock(&g->stop_work_mutex);
1341 g->bytes_done += bytes_done;
1342 mutex_unlock(&g->stop_work_mutex);
1343
1344 return NULL;
1345}
1346
1347/*
1348 * A worker process starts a couple of threads:
1349 */
1350static void worker_process(int process_nr)
1351{
1352 struct mutex process_lock;
1353 struct thread_data *td;
1354 pthread_t *pthreads;
1355 u8 *process_data;
1356 int task_nr;
1357 int ret;
1358 int t;
1359
1360 mutex_init(&process_lock);
1361 set_taskname("process %d", process_nr);
1362
1363 /*
1364 * Pick up the memory policy and the CPU binding of our first thread,
1365 * so that we initialize memory accordingly:
1366 */
1367 task_nr = process_nr*g->p.nr_threads;
1368 td = g->threads + task_nr;
1369
1370 bind_to_memnode(td->bind_node);
1371 bind_to_cpumask(td->bind_cpumask);
1372
1373 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1374 process_data = setup_private_data(g->p.bytes_process);
1375
1376 if (g->p.show_details >= 3) {
1377 printf(" # process %2d global mem: %p, process mem: %p\n",
1378 process_nr, g->data, process_data);
1379 }
1380
1381 for (t = 0; t < g->p.nr_threads; t++) {
1382 task_nr = process_nr*g->p.nr_threads + t;
1383 td = g->threads + task_nr;
1384
1385 td->process_data = process_data;
1386 td->process_nr = process_nr;
1387 td->thread_nr = t;
1388 td->task_nr = task_nr;
1389 td->val = rand();
1390 td->curr_cpu = -1;
1391 td->process_lock = &process_lock;
1392
1393 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1394 BUG_ON(ret);
1395 }
1396
1397 for (t = 0; t < g->p.nr_threads; t++) {
1398 ret = pthread_join(pthreads[t], NULL);
1399 BUG_ON(ret);
1400 }
1401
1402 free_data(process_data, g->p.bytes_process);
1403 free(pthreads);
1404}
1405
1406static void print_summary(void)
1407{
1408 if (g->p.show_details < 0)
1409 return;
1410
1411 printf("\n ###\n");
1412 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1413 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1414 printf(" # %5dx %5ldMB global shared mem operations\n",
1415 g->p.nr_loops, g->p.bytes_global/1024/1024);
1416 printf(" # %5dx %5ldMB process shared mem operations\n",
1417 g->p.nr_loops, g->p.bytes_process/1024/1024);
1418 printf(" # %5dx %5ldMB thread local mem operations\n",
1419 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1420
1421 printf(" ###\n");
1422
1423 printf("\n ###\n"); fflush(stdout);
1424}
1425
1426static void init_thread_data(void)
1427{
1428 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1429 int t;
1430
1431 g->threads = zalloc_shared_data(size);
1432
1433 for (t = 0; t < g->p.nr_tasks; t++) {
1434 struct thread_data *td = g->threads + t;
1435 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1436 int cpu;
1437
1438 /* Allow all nodes by default: */
1439 td->bind_node = NUMA_NO_NODE;
1440
1441 /* Allow all CPUs by default: */
1442 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1443 BUG_ON(!td->bind_cpumask);
1444 CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1445 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1446 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1447 }
1448}
1449
1450static void deinit_thread_data(void)
1451{
1452 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453 int t;
1454
1455 /* Free the bind_cpumask allocated for thread_data */
1456 for (t = 0; t < g->p.nr_tasks; t++) {
1457 struct thread_data *td = g->threads + t;
1458 CPU_FREE(td->bind_cpumask);
1459 }
1460
1461 free_data(g->threads, size);
1462}
1463
1464static int init(void)
1465{
1466 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1467
1468 /* Copy over options: */
1469 g->p = p0;
1470
1471 g->p.nr_cpus = numa_num_configured_cpus();
1472
1473 g->p.nr_nodes = numa_max_node() + 1;
1474
1475 /* char array in count_process_nodes(): */
1476 BUG_ON(g->p.nr_nodes < 0);
1477
1478 if (quiet && !g->p.show_details)
1479 g->p.show_details = -1;
1480
1481 /* Some memory should be specified: */
1482 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1483 return -1;
1484
1485 if (g->p.mb_global_str) {
1486 g->p.mb_global = atof(g->p.mb_global_str);
1487 BUG_ON(g->p.mb_global < 0);
1488 }
1489
1490 if (g->p.mb_proc_str) {
1491 g->p.mb_proc = atof(g->p.mb_proc_str);
1492 BUG_ON(g->p.mb_proc < 0);
1493 }
1494
1495 if (g->p.mb_proc_locked_str) {
1496 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1497 BUG_ON(g->p.mb_proc_locked < 0);
1498 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1499 }
1500
1501 if (g->p.mb_thread_str) {
1502 g->p.mb_thread = atof(g->p.mb_thread_str);
1503 BUG_ON(g->p.mb_thread < 0);
1504 }
1505
1506 BUG_ON(g->p.nr_threads <= 0);
1507 BUG_ON(g->p.nr_proc <= 0);
1508
1509 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1510
1511 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1512 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1513 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1514 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1515
1516 g->data = setup_shared_data(g->p.bytes_global);
1517
1518 /* Startup serialization: */
1519 mutex_init_pshared(&g->start_work_mutex);
1520 cond_init_pshared(&g->start_work_cond);
1521 mutex_init_pshared(&g->startup_mutex);
1522 cond_init_pshared(&g->startup_cond);
1523 mutex_init_pshared(&g->stop_work_mutex);
1524
1525 init_thread_data();
1526
1527 tprintf("#\n");
1528 if (parse_setup_cpu_list() || parse_setup_node_list())
1529 return -1;
1530 tprintf("#\n");
1531
1532 print_summary();
1533
1534 return 0;
1535}
1536
1537static void deinit(void)
1538{
1539 free_data(g->data, g->p.bytes_global);
1540 g->data = NULL;
1541
1542 deinit_thread_data();
1543
1544 free_data(g, sizeof(*g));
1545 g = NULL;
1546}
1547
1548/*
1549 * Print a short or long result, depending on the verbosity setting:
1550 */
1551static void print_res(const char *name, double val,
1552 const char *txt_unit, const char *txt_short, const char *txt_long)
1553{
1554 if (!name)
1555 name = "main,";
1556
1557 if (!quiet)
1558 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1559 else
1560 printf(" %14.3f %s\n", val, txt_long);
1561}
1562
1563static int __bench_numa(const char *name)
1564{
1565 struct timeval start, stop, diff;
1566 u64 runtime_ns_min, runtime_ns_sum;
1567 pid_t *pids, pid, wpid;
1568 double delta_runtime;
1569 double runtime_avg;
1570 double runtime_sec_max;
1571 double runtime_sec_min;
1572 int wait_stat;
1573 double bytes;
1574 int i, t, p;
1575
1576 if (init())
1577 return -1;
1578
1579 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1580 pid = -1;
1581
1582 if (g->p.serialize_startup) {
1583 tprintf(" #\n");
1584 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1585 }
1586
1587 gettimeofday(&start, NULL);
1588
1589 for (i = 0; i < g->p.nr_proc; i++) {
1590 pid = fork();
1591 dprintf(" # process %2d: PID %d\n", i, pid);
1592
1593 BUG_ON(pid < 0);
1594 if (!pid) {
1595 /* Child process: */
1596 worker_process(i);
1597
1598 exit(0);
1599 }
1600 pids[i] = pid;
1601
1602 }
1603
1604 if (g->p.serialize_startup) {
1605 bool threads_ready = false;
1606 double startup_sec;
1607
1608 /*
1609 * Wait for all the threads to start up. The last thread will
1610 * signal this process.
1611 */
1612 mutex_lock(&g->startup_mutex);
1613 while (g->nr_tasks_started != g->p.nr_tasks)
1614 cond_wait(&g->startup_cond, &g->startup_mutex);
1615
1616 mutex_unlock(&g->startup_mutex);
1617
1618 /* Wait for all threads to be at the start_work_cond. */
1619 while (!threads_ready) {
1620 mutex_lock(&g->start_work_mutex);
1621 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1622 mutex_unlock(&g->start_work_mutex);
1623 if (!threads_ready)
1624 usleep(1);
1625 }
1626
1627 gettimeofday(&stop, NULL);
1628
1629 timersub(&stop, &start, &diff);
1630
1631 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1632 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1633 startup_sec /= NSEC_PER_SEC;
1634
1635 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1636 tprintf(" #\n");
1637
1638 start = stop;
1639 /* Start all threads running. */
1640 mutex_lock(&g->start_work_mutex);
1641 g->start_work = true;
1642 mutex_unlock(&g->start_work_mutex);
1643 cond_broadcast(&g->start_work_cond);
1644 } else {
1645 gettimeofday(&start, NULL);
1646 }
1647
1648 /* Parent process: */
1649
1650
1651 for (i = 0; i < g->p.nr_proc; i++) {
1652 wpid = waitpid(pids[i], &wait_stat, 0);
1653 BUG_ON(wpid < 0);
1654 BUG_ON(!WIFEXITED(wait_stat));
1655
1656 }
1657
1658 runtime_ns_sum = 0;
1659 runtime_ns_min = -1LL;
1660
1661 for (t = 0; t < g->p.nr_tasks; t++) {
1662 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1663
1664 runtime_ns_sum += thread_runtime_ns;
1665 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1666 }
1667
1668 gettimeofday(&stop, NULL);
1669 timersub(&stop, &start, &diff);
1670
1671 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1672
1673 tprintf("\n ###\n");
1674 tprintf("\n");
1675
1676 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1677 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1678 runtime_sec_max /= NSEC_PER_SEC;
1679
1680 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1681
1682 bytes = g->bytes_done;
1683 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1684
1685 if (g->p.measure_convergence) {
1686 print_res(name, runtime_sec_max,
1687 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1688 }
1689
1690 print_res(name, runtime_sec_max,
1691 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1692
1693 print_res(name, runtime_sec_min,
1694 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1695
1696 print_res(name, runtime_avg,
1697 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1698
1699 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1700 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1701 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1702
1703 print_res(name, bytes / g->p.nr_tasks / 1e9,
1704 "GB,", "data/thread", "GB data processed, per thread");
1705
1706 print_res(name, bytes / 1e9,
1707 "GB,", "data-total", "GB data processed, total");
1708
1709 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1710 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1711
1712 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1713 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1714
1715 print_res(name, bytes / runtime_sec_max / 1e9,
1716 "GB/sec,", "total-speed", "GB/sec total speed");
1717
1718 if (g->p.show_details >= 2) {
1719 char tname[14 + 2 * 11 + 1];
1720 struct thread_data *td;
1721 for (p = 0; p < g->p.nr_proc; p++) {
1722 for (t = 0; t < g->p.nr_threads; t++) {
1723 memset(tname, 0, sizeof(tname));
1724 td = g->threads + p*g->p.nr_threads + t;
1725 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1726 print_res(tname, td->speed_gbs,
1727 "GB/sec", "thread-speed", "GB/sec/thread speed");
1728 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1729 "secs", "thread-system-time", "system CPU time/thread");
1730 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1731 "secs", "thread-user-time", "user CPU time/thread");
1732 }
1733 }
1734 }
1735
1736 free(pids);
1737
1738 deinit();
1739
1740 return 0;
1741}
1742
1743#define MAX_ARGS 50
1744
1745static int command_size(const char **argv)
1746{
1747 int size = 0;
1748
1749 while (*argv) {
1750 size++;
1751 argv++;
1752 }
1753
1754 BUG_ON(size >= MAX_ARGS);
1755
1756 return size;
1757}
1758
1759static void init_params(struct params *p, const char *name, int argc, const char **argv)
1760{
1761 int i;
1762
1763 printf("\n # Running %s \"perf bench numa", name);
1764
1765 for (i = 0; i < argc; i++)
1766 printf(" %s", argv[i]);
1767
1768 printf("\"\n");
1769
1770 memset(p, 0, sizeof(*p));
1771
1772 /* Initialize nonzero defaults: */
1773
1774 p->serialize_startup = 1;
1775 p->data_reads = true;
1776 p->data_writes = true;
1777 p->data_backwards = true;
1778 p->data_rand_walk = true;
1779 p->nr_loops = -1;
1780 p->init_random = true;
1781 p->mb_global_str = "1";
1782 p->nr_proc = 1;
1783 p->nr_threads = 1;
1784 p->nr_secs = 5;
1785 p->run_all = argc == 1;
1786}
1787
1788static int run_bench_numa(const char *name, const char **argv)
1789{
1790 int argc = command_size(argv);
1791
1792 init_params(&p0, name, argc, argv);
1793 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1794 if (argc)
1795 goto err;
1796
1797 if (__bench_numa(name))
1798 goto err;
1799
1800 return 0;
1801
1802err:
1803 return -1;
1804}
1805
1806#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1807#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1808
1809#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1810#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1811
1812#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1813#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1814
1815/*
1816 * The built-in test-suite executed by "perf bench numa -a".
1817 *
1818 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1819 */
1820static const char *tests[][MAX_ARGS] = {
1821 /* Basic single-stream NUMA bandwidth measurements: */
1822 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1823 "-C" , "0", "-M", "0", OPT_BW_RAM },
1824 { "RAM-bw-local-NOTHP,",
1825 "mem", "-p", "1", "-t", "1", "-P", "1024",
1826 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1827 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1828 "-C" , "0", "-M", "1", OPT_BW_RAM },
1829
1830 /* 2-stream NUMA bandwidth measurements: */
1831 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1832 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1833 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1834 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1835
1836 /* Cross-stream NUMA bandwidth measurement: */
1837 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1838 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1839
1840 /* Convergence latency measurements: */
1841 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1842 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1843 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1844 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1845 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1846 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1847 { " 4x4-convergence-NOTHP,",
1848 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1849 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1850 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1851 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1852 { " 8x4-convergence-NOTHP,",
1853 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1854 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1855 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1856 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1857 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1858 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1859
1860 /* Various NUMA process/thread layout bandwidth measurements: */
1861 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1862 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1863 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1864 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1865 { " 8x1-bw-process-NOTHP,",
1866 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1867 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1868
1869 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1870 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1871 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1872 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1873
1874 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1875 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1876 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1877 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1878 { " 4x8-bw-process-NOTHP,",
1879 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1880 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1881 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1882
1883 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1884 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1885
1886 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1887 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1888 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1889 { "numa01-bw-thread-NOTHP,",
1890 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1891};
1892
1893static int bench_all(void)
1894{
1895 int nr = ARRAY_SIZE(tests);
1896 int ret;
1897 int i;
1898
1899 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1900 BUG_ON(ret < 0);
1901
1902 for (i = 0; i < nr; i++) {
1903 run_bench_numa(tests[i][0], tests[i] + 1);
1904 }
1905
1906 printf("\n");
1907
1908 return 0;
1909}
1910
1911int bench_numa(int argc, const char **argv)
1912{
1913 init_params(&p0, "main,", argc, argv);
1914 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1915 if (argc)
1916 goto err;
1917
1918 if (p0.run_all)
1919 return bench_all();
1920
1921 if (__bench_numa(NULL))
1922 goto err;
1923
1924 return 0;
1925
1926err:
1927 usage_with_options(numa_usage, options);
1928 return -1;
1929}