Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
 
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
 
 
 
 
 
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
 
 
 
 
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	psched_tdiff_t latency;
  81	psched_tdiff_t jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 
 
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 
 
 
 
 
 
 
 
 138};
 139
 140/* Time stamp put into socket buffer control block
 141 * Only valid when skbs are in our internal t(ime)fifo queue.
 
 
 
 
 142 */
 143struct netem_skb_cb {
 144	psched_time_t	time_to_send;
 145	ktime_t		tstamp_save;
 146};
 147
 148/* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
 149 * to hold a rb_node structure.
 150 *
 151 * If struct sk_buff layout is changed, the following checks will complain.
 152 */
 153static struct rb_node *netem_rb_node(struct sk_buff *skb)
 154{
 155	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
 156	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
 157		     offsetof(struct sk_buff, next) + sizeof(skb->next));
 158	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
 159		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
 160	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
 161					      sizeof(skb->prev) +
 162					      sizeof(skb->tstamp));
 163	return (struct rb_node *)&skb->next;
 164}
 165
 166static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 167{
 168	return (struct sk_buff *)rb;
 169}
 170
 171static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 172{
 173	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 174	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 175	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 176}
 177
 178/* init_crandom - initialize correlated random number generator
 179 * Use entropy source for initial seed.
 180 */
 181static void init_crandom(struct crndstate *state, unsigned long rho)
 182{
 183	state->rho = rho;
 184	state->last = prandom_u32();
 185}
 186
 187/* get_crandom - correlated random number generator
 188 * Next number depends on last value.
 189 * rho is scaled to avoid floating point.
 190 */
 191static u32 get_crandom(struct crndstate *state)
 192{
 193	u64 value, rho;
 194	unsigned long answer;
 
 195
 196	if (state->rho == 0)	/* no correlation */
 197		return prandom_u32();
 198
 199	value = prandom_u32();
 200	rho = (u64)state->rho + 1;
 201	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 202	state->last = answer;
 203	return answer;
 204}
 205
 206/* loss_4state - 4-state model loss generator
 207 * Generates losses according to the 4-state Markov chain adopted in
 208 * the GI (General and Intuitive) loss model.
 209 */
 210static bool loss_4state(struct netem_sched_data *q)
 211{
 212	struct clgstate *clg = &q->clg;
 213	u32 rnd = prandom_u32();
 214
 215	/*
 216	 * Makes a comparison between rnd and the transition
 217	 * probabilities outgoing from the current state, then decides the
 218	 * next state and if the next packet has to be transmitted or lost.
 219	 * The four states correspond to:
 220	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 221	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 222	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 223	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 224	 */
 225	switch (clg->state) {
 226	case TX_IN_GAP_PERIOD:
 227		if (rnd < clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 231			clg->state = LOST_IN_GAP_PERIOD;
 232			return true;
 233		} else if (clg->a1 + clg->a4 < rnd) {
 234			clg->state = TX_IN_GAP_PERIOD;
 235		}
 236
 237		break;
 238	case TX_IN_BURST_PERIOD:
 239		if (rnd < clg->a5) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		} else {
 243			clg->state = TX_IN_BURST_PERIOD;
 244		}
 245
 246		break;
 247	case LOST_IN_GAP_PERIOD:
 248		if (rnd < clg->a3)
 249			clg->state = TX_IN_BURST_PERIOD;
 250		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 251			clg->state = TX_IN_GAP_PERIOD;
 252		} else if (clg->a2 + clg->a3 < rnd) {
 253			clg->state = LOST_IN_GAP_PERIOD;
 254			return true;
 255		}
 256		break;
 257	case LOST_IN_BURST_PERIOD:
 258		clg->state = TX_IN_GAP_PERIOD;
 259		break;
 260	}
 261
 262	return false;
 263}
 264
 265/* loss_gilb_ell - Gilbert-Elliot model loss generator
 266 * Generates losses according to the Gilbert-Elliot loss model or
 267 * its special cases  (Gilbert or Simple Gilbert)
 268 *
 269 * Makes a comparison between random number and the transition
 270 * probabilities outgoing from the current state, then decides the
 271 * next state. A second random number is extracted and the comparison
 272 * with the loss probability of the current state decides if the next
 273 * packet will be transmitted or lost.
 274 */
 275static bool loss_gilb_ell(struct netem_sched_data *q)
 276{
 277	struct clgstate *clg = &q->clg;
 
 278
 279	switch (clg->state) {
 280	case GOOD_STATE:
 281		if (prandom_u32() < clg->a1)
 282			clg->state = BAD_STATE;
 283		if (prandom_u32() < clg->a4)
 284			return true;
 285		break;
 286	case BAD_STATE:
 287		if (prandom_u32() < clg->a2)
 288			clg->state = GOOD_STATE;
 289		if (prandom_u32() > clg->a3)
 290			return true;
 291	}
 292
 293	return false;
 294}
 295
 296static bool loss_event(struct netem_sched_data *q)
 297{
 298	switch (q->loss_model) {
 299	case CLG_RANDOM:
 300		/* Random packet drop 0 => none, ~0 => all */
 301		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 302
 303	case CLG_4_STATES:
 304		/* 4state loss model algorithm (used also for GI model)
 305		* Extracts a value from the markov 4 state loss generator,
 306		* if it is 1 drops a packet and if needed writes the event in
 307		* the kernel logs
 308		*/
 309		return loss_4state(q);
 310
 311	case CLG_GILB_ELL:
 312		/* Gilbert-Elliot loss model algorithm
 313		* Extracts a value from the Gilbert-Elliot loss generator,
 314		* if it is 1 drops a packet and if needed writes the event in
 315		* the kernel logs
 316		*/
 317		return loss_gilb_ell(q);
 318	}
 319
 320	return false;	/* not reached */
 321}
 322
 323
 324/* tabledist - return a pseudo-randomly distributed value with mean mu and
 325 * std deviation sigma.  Uses table lookup to approximate the desired
 326 * distribution, and a uniformly-distributed pseudo-random source.
 327 */
 328static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 329				struct crndstate *state,
 330				const struct disttable *dist)
 
 331{
 332	psched_tdiff_t x;
 333	long t;
 334	u32 rnd;
 335
 336	if (sigma == 0)
 337		return mu;
 338
 339	rnd = get_crandom(state);
 340
 341	/* default uniform distribution */
 342	if (dist == NULL)
 343		return (rnd % (2*sigma)) - sigma + mu;
 344
 345	t = dist->table[rnd % dist->size];
 346	x = (sigma % NETEM_DIST_SCALE) * t;
 347	if (x >= 0)
 348		x += NETEM_DIST_SCALE/2;
 349	else
 350		x -= NETEM_DIST_SCALE/2;
 351
 352	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 353}
 354
 355static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 356{
 357	u64 ticks;
 358
 359	len += q->packet_overhead;
 360
 361	if (q->cell_size) {
 362		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 363
 364		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 365			cells++;
 366		len = cells * (q->cell_size + q->cell_overhead);
 367	}
 368
 369	ticks = (u64)len * NSEC_PER_SEC;
 370
 371	do_div(ticks, q->rate);
 372	return PSCHED_NS2TICKS(ticks);
 373}
 374
 375static void tfifo_reset(struct Qdisc *sch)
 376{
 377	struct netem_sched_data *q = qdisc_priv(sch);
 378	struct rb_node *p;
 379
 380	while ((p = rb_first(&q->t_root))) {
 381		struct sk_buff *skb = netem_rb_to_skb(p);
 382
 383		rb_erase(p, &q->t_root);
 384		skb->next = NULL;
 385		skb->prev = NULL;
 386		kfree_skb(skb);
 387	}
 
 
 
 
 388}
 389
 390static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 391{
 392	struct netem_sched_data *q = qdisc_priv(sch);
 393	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 394	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 395
 396	while (*p) {
 397		struct sk_buff *skb;
 398
 399		parent = *p;
 400		skb = netem_rb_to_skb(parent);
 401		if (tnext >= netem_skb_cb(skb)->time_to_send)
 402			p = &parent->rb_right;
 403		else
 404			p = &parent->rb_left;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405	}
 406	rb_link_node(netem_rb_node(nskb), parent, p);
 407	rb_insert_color(netem_rb_node(nskb), &q->t_root);
 408	sch->q.qlen++;
 409}
 410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411/*
 412 * Insert one skb into qdisc.
 413 * Note: parent depends on return value to account for queue length.
 414 * 	NET_XMIT_DROP: queue length didn't change.
 415 *      NET_XMIT_SUCCESS: one skb was queued.
 416 */
 417static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
 418{
 419	struct netem_sched_data *q = qdisc_priv(sch);
 420	/* We don't fill cb now as skb_unshare() may invalidate it */
 421	struct netem_skb_cb *cb;
 422	struct sk_buff *skb2;
 
 
 423	int count = 1;
 
 
 
 
 
 424
 425	/* Random duplication */
 426	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 427		++count;
 428
 429	/* Drop packet? */
 430	if (loss_event(q)) {
 431		if (q->ecn && INET_ECN_set_ce(skb))
 432			sch->qstats.drops++; /* mark packet */
 433		else
 434			--count;
 435	}
 436	if (count == 0) {
 437		sch->qstats.drops++;
 438		kfree_skb(skb);
 439		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 440	}
 441
 442	/* If a delay is expected, orphan the skb. (orphaning usually takes
 443	 * place at TX completion time, so _before_ the link transit delay)
 444	 */
 445	if (q->latency || q->jitter)
 446		skb_orphan_partial(skb);
 447
 448	/*
 449	 * If we need to duplicate packet, then re-insert at top of the
 450	 * qdisc tree, since parent queuer expects that only one
 451	 * skb will be queued.
 452	 */
 453	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 454		struct Qdisc *rootq = qdisc_root(sch);
 455		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 456		q->duplicate = 0;
 457
 458		qdisc_enqueue_root(skb2, rootq);
 
 459		q->duplicate = dupsave;
 
 460	}
 461
 462	/*
 463	 * Randomized packet corruption.
 464	 * Make copy if needed since we are modifying
 465	 * If packet is going to be hardware checksummed, then
 466	 * do it now in software before we mangle it.
 467	 */
 468	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 469		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 470		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 471		     skb_checksum_help(skb)))
 472			return qdisc_drop(skb, sch);
 
 
 
 
 473
 474		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 475			1<<(prandom_u32() % 8);
 
 
 
 
 
 
 
 
 
 
 
 
 476	}
 477
 478	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 479		return qdisc_reshape_fail(skb, sch);
 
 
 
 
 480
 481	sch->qstats.backlog += qdisc_pkt_len(skb);
 482
 483	cb = netem_skb_cb(skb);
 484	if (q->gap == 0 ||		/* not doing reordering */
 485	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 486	    q->reorder < get_crandom(&q->reorder_cor)) {
 487		psched_time_t now;
 488		psched_tdiff_t delay;
 489
 490		delay = tabledist(q->latency, q->jitter,
 491				  &q->delay_cor, q->delay_dist);
 492
 493		now = psched_get_time();
 494
 495		if (q->rate) {
 496			struct sk_buff *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498			if (!skb_queue_empty(&sch->q))
 499				last = skb_peek_tail(&sch->q);
 500			else
 501				last = netem_rb_to_skb(rb_last(&q->t_root));
 502			if (last) {
 503				/*
 504				 * Last packet in queue is reference point (now),
 505				 * calculate this time bonus and subtract
 506				 * from delay.
 507				 */
 508				delay -= netem_skb_cb(last)->time_to_send - now;
 509				delay = max_t(psched_tdiff_t, 0, delay);
 510				now = netem_skb_cb(last)->time_to_send;
 511			}
 512
 513			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 514		}
 515
 516		cb->time_to_send = now + delay;
 517		cb->tstamp_save = skb->tstamp;
 518		++q->counter;
 519		tfifo_enqueue(skb, sch);
 520	} else {
 521		/*
 522		 * Do re-ordering by putting one out of N packets at the front
 523		 * of the queue.
 524		 */
 525		cb->time_to_send = psched_get_time();
 526		q->counter = 0;
 527
 528		__skb_queue_head(&sch->q, skb);
 529		sch->qstats.requeues++;
 530	}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532	return NET_XMIT_SUCCESS;
 533}
 534
 535static unsigned int netem_drop(struct Qdisc *sch)
 
 
 
 
 536{
 537	struct netem_sched_data *q = qdisc_priv(sch);
 538	unsigned int len;
 539
 540	len = qdisc_queue_drop(sch);
 
 
 
 
 
 
 
 
 541
 542	if (!len) {
 543		struct rb_node *p = rb_first(&q->t_root);
 
 
 544
 545		if (p) {
 546			struct sk_buff *skb = netem_rb_to_skb(p);
 
 
 547
 548			rb_erase(p, &q->t_root);
 549			sch->q.qlen--;
 550			skb->next = NULL;
 551			skb->prev = NULL;
 552			len = qdisc_pkt_len(skb);
 553			sch->qstats.backlog -= len;
 554			kfree_skb(skb);
 555		}
 556	}
 557	if (!len && q->qdisc && q->qdisc->ops->drop)
 558	    len = q->qdisc->ops->drop(q->qdisc);
 559	if (len)
 560		sch->qstats.drops++;
 561
 562	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563}
 564
 565static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 566{
 567	struct netem_sched_data *q = qdisc_priv(sch);
 568	struct sk_buff *skb;
 569	struct rb_node *p;
 570
 571	if (qdisc_is_throttled(sch))
 572		return NULL;
 573
 574tfifo_dequeue:
 575	skb = __skb_dequeue(&sch->q);
 576	if (skb) {
 
 577deliver:
 578		sch->qstats.backlog -= qdisc_pkt_len(skb);
 579		qdisc_unthrottled(sch);
 580		qdisc_bstats_update(sch, skb);
 581		return skb;
 582	}
 583	p = rb_first(&q->t_root);
 584	if (p) {
 585		psched_time_t time_to_send;
 586
 587		skb = netem_rb_to_skb(p);
 588
 589		/* if more time remaining? */
 590		time_to_send = netem_skb_cb(skb)->time_to_send;
 591		if (time_to_send <= psched_get_time()) {
 592			rb_erase(p, &q->t_root);
 593
 
 
 594			sch->q.qlen--;
 
 595			skb->next = NULL;
 596			skb->prev = NULL;
 597			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 598
 599#ifdef CONFIG_NET_CLS_ACT
 600			/*
 601			 * If it's at ingress let's pretend the delay is
 602			 * from the network (tstamp will be updated).
 603			 */
 604			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 605				skb->tstamp.tv64 = 0;
 606#endif
 607
 608			if (q->qdisc) {
 609				int err = qdisc_enqueue(skb, q->qdisc);
 
 
 
 
 
 610
 611				if (unlikely(err != NET_XMIT_SUCCESS)) {
 612					if (net_xmit_drop_count(err)) {
 613						sch->qstats.drops++;
 614						qdisc_tree_decrease_qlen(sch, 1);
 615					}
 
 
 
 
 
 
 
 616				}
 617				goto tfifo_dequeue;
 618			}
 619			goto deliver;
 620		}
 621
 622		if (q->qdisc) {
 623			skb = q->qdisc->ops->dequeue(q->qdisc);
 624			if (skb)
 625				goto deliver;
 626		}
 627		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 
 
 
 628	}
 629
 630	if (q->qdisc) {
 631		skb = q->qdisc->ops->dequeue(q->qdisc);
 632		if (skb)
 633			goto deliver;
 634	}
 635	return NULL;
 636}
 637
 638static void netem_reset(struct Qdisc *sch)
 639{
 640	struct netem_sched_data *q = qdisc_priv(sch);
 641
 642	qdisc_reset_queue(sch);
 643	tfifo_reset(sch);
 644	if (q->qdisc)
 645		qdisc_reset(q->qdisc);
 646	qdisc_watchdog_cancel(&q->watchdog);
 647}
 648
 649static void dist_free(struct disttable *d)
 650{
 651	if (d) {
 652		if (is_vmalloc_addr(d))
 653			vfree(d);
 654		else
 655			kfree(d);
 656	}
 657}
 658
 659/*
 660 * Distribution data is a variable size payload containing
 661 * signed 16 bit values.
 662 */
 663static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 
 664{
 665	struct netem_sched_data *q = qdisc_priv(sch);
 666	size_t n = nla_len(attr)/sizeof(__s16);
 667	const __s16 *data = nla_data(attr);
 668	spinlock_t *root_lock;
 669	struct disttable *d;
 670	int i;
 671	size_t s;
 672
 673	if (n > NETEM_DIST_MAX)
 674		return -EINVAL;
 675
 676	s = sizeof(struct disttable) + n * sizeof(s16);
 677	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 678	if (!d)
 679		d = vmalloc(s);
 680	if (!d)
 681		return -ENOMEM;
 682
 683	d->size = n;
 684	for (i = 0; i < n; i++)
 685		d->table[i] = data[i];
 686
 687	root_lock = qdisc_root_sleeping_lock(sch);
 
 
 688
 689	spin_lock_bh(root_lock);
 690	swap(q->delay_dist, d);
 691	spin_unlock_bh(root_lock);
 692
 693	dist_free(d);
 694	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695}
 696
 697static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 698{
 699	const struct tc_netem_corr *c = nla_data(attr);
 700
 701	init_crandom(&q->delay_cor, c->delay_corr);
 702	init_crandom(&q->loss_cor, c->loss_corr);
 703	init_crandom(&q->dup_cor, c->dup_corr);
 704}
 705
 706static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 707{
 708	const struct tc_netem_reorder *r = nla_data(attr);
 709
 710	q->reorder = r->probability;
 711	init_crandom(&q->reorder_cor, r->correlation);
 712}
 713
 714static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 715{
 716	const struct tc_netem_corrupt *r = nla_data(attr);
 717
 718	q->corrupt = r->probability;
 719	init_crandom(&q->corrupt_cor, r->correlation);
 720}
 721
 722static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 723{
 724	const struct tc_netem_rate *r = nla_data(attr);
 725
 726	q->rate = r->rate;
 727	q->packet_overhead = r->packet_overhead;
 728	q->cell_size = r->cell_size;
 729	q->cell_overhead = r->cell_overhead;
 730	if (q->cell_size)
 731		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 732	else
 733		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 734}
 735
 736static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 737{
 738	const struct nlattr *la;
 739	int rem;
 740
 741	nla_for_each_nested(la, attr, rem) {
 742		u16 type = nla_type(la);
 743
 744		switch (type) {
 745		case NETEM_LOSS_GI: {
 746			const struct tc_netem_gimodel *gi = nla_data(la);
 747
 748			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 749				pr_info("netem: incorrect gi model size\n");
 750				return -EINVAL;
 751			}
 752
 753			q->loss_model = CLG_4_STATES;
 754
 755			q->clg.state = TX_IN_GAP_PERIOD;
 756			q->clg.a1 = gi->p13;
 757			q->clg.a2 = gi->p31;
 758			q->clg.a3 = gi->p32;
 759			q->clg.a4 = gi->p14;
 760			q->clg.a5 = gi->p23;
 761			break;
 762		}
 763
 764		case NETEM_LOSS_GE: {
 765			const struct tc_netem_gemodel *ge = nla_data(la);
 766
 767			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 768				pr_info("netem: incorrect ge model size\n");
 769				return -EINVAL;
 770			}
 771
 772			q->loss_model = CLG_GILB_ELL;
 773			q->clg.state = GOOD_STATE;
 774			q->clg.a1 = ge->p;
 775			q->clg.a2 = ge->r;
 776			q->clg.a3 = ge->h;
 777			q->clg.a4 = ge->k1;
 778			break;
 779		}
 780
 781		default:
 782			pr_info("netem: unknown loss type %u\n", type);
 783			return -EINVAL;
 784		}
 785	}
 786
 787	return 0;
 788}
 789
 790static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 791	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 792	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 793	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 794	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 795	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 796	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 797	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 
 
 
 
 798};
 799
 800static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 801		      const struct nla_policy *policy, int len)
 802{
 803	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 804
 805	if (nested_len < 0) {
 806		pr_info("netem: invalid attributes len %d\n", nested_len);
 807		return -EINVAL;
 808	}
 809
 810	if (nested_len >= nla_attr_size(0))
 811		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 812				 nested_len, policy);
 
 813
 814	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 815	return 0;
 816}
 817
 818/* Parse netlink message to set options */
 819static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 
 820{
 821	struct netem_sched_data *q = qdisc_priv(sch);
 822	struct nlattr *tb[TCA_NETEM_MAX + 1];
 
 
 823	struct tc_netem_qopt *qopt;
 824	struct clgstate old_clg;
 825	int old_loss_model = CLG_RANDOM;
 826	int ret;
 827
 828	if (opt == NULL)
 829		return -EINVAL;
 830
 831	qopt = nla_data(opt);
 832	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 833	if (ret < 0)
 834		return ret;
 835
 
 
 
 
 
 
 
 
 
 
 
 
 
 836	/* backup q->clg and q->loss_model */
 837	old_clg = q->clg;
 838	old_loss_model = q->loss_model;
 839
 840	if (tb[TCA_NETEM_LOSS]) {
 841		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 842		if (ret) {
 843			q->loss_model = old_loss_model;
 844			return ret;
 
 845		}
 846	} else {
 847		q->loss_model = CLG_RANDOM;
 848	}
 849
 850	if (tb[TCA_NETEM_DELAY_DIST]) {
 851		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 852		if (ret) {
 853			/* recover clg and loss_model, in case of
 854			 * q->clg and q->loss_model were modified
 855			 * in get_loss_clg()
 856			 */
 857			q->clg = old_clg;
 858			q->loss_model = old_loss_model;
 859			return ret;
 860		}
 861	}
 862
 863	sch->limit = qopt->limit;
 864
 865	q->latency = qopt->latency;
 866	q->jitter = qopt->jitter;
 867	q->limit = qopt->limit;
 868	q->gap = qopt->gap;
 869	q->counter = 0;
 870	q->loss = qopt->loss;
 871	q->duplicate = qopt->duplicate;
 872
 873	/* for compatibility with earlier versions.
 874	 * if gap is set, need to assume 100% probability
 875	 */
 876	if (q->gap)
 877		q->reorder = ~0;
 878
 879	if (tb[TCA_NETEM_CORR])
 880		get_correlation(q, tb[TCA_NETEM_CORR]);
 881
 882	if (tb[TCA_NETEM_REORDER])
 883		get_reorder(q, tb[TCA_NETEM_REORDER]);
 884
 885	if (tb[TCA_NETEM_CORRUPT])
 886		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 887
 888	if (tb[TCA_NETEM_RATE])
 889		get_rate(q, tb[TCA_NETEM_RATE]);
 890
 891	if (tb[TCA_NETEM_RATE64])
 892		q->rate = max_t(u64, q->rate,
 893				nla_get_u64(tb[TCA_NETEM_RATE64]));
 894
 
 
 
 
 
 
 895	if (tb[TCA_NETEM_ECN])
 896		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	return ret;
 899}
 900
 901static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 
 902{
 903	struct netem_sched_data *q = qdisc_priv(sch);
 904	int ret;
 905
 
 
 906	if (!opt)
 907		return -EINVAL;
 908
 909	qdisc_watchdog_init(&q->watchdog, sch);
 910
 911	q->loss_model = CLG_RANDOM;
 912	ret = netem_change(sch, opt);
 913	if (ret)
 914		pr_info("netem: change failed\n");
 915	return ret;
 916}
 917
 918static void netem_destroy(struct Qdisc *sch)
 919{
 920	struct netem_sched_data *q = qdisc_priv(sch);
 921
 922	qdisc_watchdog_cancel(&q->watchdog);
 923	if (q->qdisc)
 924		qdisc_destroy(q->qdisc);
 925	dist_free(q->delay_dist);
 
 926}
 927
 928static int dump_loss_model(const struct netem_sched_data *q,
 929			   struct sk_buff *skb)
 930{
 931	struct nlattr *nest;
 932
 933	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 934	if (nest == NULL)
 935		goto nla_put_failure;
 936
 937	switch (q->loss_model) {
 938	case CLG_RANDOM:
 939		/* legacy loss model */
 940		nla_nest_cancel(skb, nest);
 941		return 0;	/* no data */
 942
 943	case CLG_4_STATES: {
 944		struct tc_netem_gimodel gi = {
 945			.p13 = q->clg.a1,
 946			.p31 = q->clg.a2,
 947			.p32 = q->clg.a3,
 948			.p14 = q->clg.a4,
 949			.p23 = q->clg.a5,
 950		};
 951
 952		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 953			goto nla_put_failure;
 954		break;
 955	}
 956	case CLG_GILB_ELL: {
 957		struct tc_netem_gemodel ge = {
 958			.p = q->clg.a1,
 959			.r = q->clg.a2,
 960			.h = q->clg.a3,
 961			.k1 = q->clg.a4,
 962		};
 963
 964		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 965			goto nla_put_failure;
 966		break;
 967	}
 968	}
 969
 970	nla_nest_end(skb, nest);
 971	return 0;
 972
 973nla_put_failure:
 974	nla_nest_cancel(skb, nest);
 975	return -1;
 976}
 977
 978static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 979{
 980	const struct netem_sched_data *q = qdisc_priv(sch);
 981	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 982	struct tc_netem_qopt qopt;
 983	struct tc_netem_corr cor;
 984	struct tc_netem_reorder reorder;
 985	struct tc_netem_corrupt corrupt;
 986	struct tc_netem_rate rate;
 
 987
 988	qopt.latency = q->latency;
 989	qopt.jitter = q->jitter;
 
 
 990	qopt.limit = q->limit;
 991	qopt.loss = q->loss;
 992	qopt.gap = q->gap;
 993	qopt.duplicate = q->duplicate;
 994	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 995		goto nla_put_failure;
 996
 
 
 
 
 
 
 997	cor.delay_corr = q->delay_cor.rho;
 998	cor.loss_corr = q->loss_cor.rho;
 999	cor.dup_corr = q->dup_cor.rho;
1000	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1001		goto nla_put_failure;
1002
1003	reorder.probability = q->reorder;
1004	reorder.correlation = q->reorder_cor.rho;
1005	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1006		goto nla_put_failure;
1007
1008	corrupt.probability = q->corrupt;
1009	corrupt.correlation = q->corrupt_cor.rho;
1010	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1011		goto nla_put_failure;
1012
1013	if (q->rate >= (1ULL << 32)) {
1014		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
 
1015			goto nla_put_failure;
1016		rate.rate = ~0U;
1017	} else {
1018		rate.rate = q->rate;
1019	}
1020	rate.packet_overhead = q->packet_overhead;
1021	rate.cell_size = q->cell_size;
1022	rate.cell_overhead = q->cell_overhead;
1023	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1024		goto nla_put_failure;
1025
1026	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1027		goto nla_put_failure;
1028
1029	if (dump_loss_model(q, skb) != 0)
1030		goto nla_put_failure;
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	return nla_nest_end(skb, nla);
1033
1034nla_put_failure:
1035	nlmsg_trim(skb, nla);
1036	return -1;
1037}
1038
1039static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1040			  struct sk_buff *skb, struct tcmsg *tcm)
1041{
1042	struct netem_sched_data *q = qdisc_priv(sch);
1043
1044	if (cl != 1 || !q->qdisc) 	/* only one class */
1045		return -ENOENT;
1046
1047	tcm->tcm_handle |= TC_H_MIN(1);
1048	tcm->tcm_info = q->qdisc->handle;
1049
1050	return 0;
1051}
1052
1053static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1054		     struct Qdisc **old)
1055{
1056	struct netem_sched_data *q = qdisc_priv(sch);
1057
1058	sch_tree_lock(sch);
1059	*old = q->qdisc;
1060	q->qdisc = new;
1061	if (*old) {
1062		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1063		qdisc_reset(*old);
1064	}
1065	sch_tree_unlock(sch);
1066
1067	return 0;
1068}
1069
1070static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1071{
1072	struct netem_sched_data *q = qdisc_priv(sch);
1073	return q->qdisc;
1074}
1075
1076static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1077{
1078	return 1;
1079}
1080
1081static void netem_put(struct Qdisc *sch, unsigned long arg)
1082{
1083}
1084
1085static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1086{
1087	if (!walker->stop) {
1088		if (walker->count >= walker->skip)
1089			if (walker->fn(sch, 1, walker) < 0) {
1090				walker->stop = 1;
1091				return;
1092			}
1093		walker->count++;
1094	}
1095}
1096
1097static const struct Qdisc_class_ops netem_class_ops = {
1098	.graft		=	netem_graft,
1099	.leaf		=	netem_leaf,
1100	.get		=	netem_get,
1101	.put		=	netem_put,
1102	.walk		=	netem_walk,
1103	.dump		=	netem_dump_class,
1104};
1105
1106static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1107	.id		=	"netem",
1108	.cl_ops		=	&netem_class_ops,
1109	.priv_size	=	sizeof(struct netem_sched_data),
1110	.enqueue	=	netem_enqueue,
1111	.dequeue	=	netem_dequeue,
1112	.peek		=	qdisc_peek_dequeued,
1113	.drop		=	netem_drop,
1114	.init		=	netem_init,
1115	.reset		=	netem_reset,
1116	.destroy	=	netem_destroy,
1117	.change		=	netem_change,
1118	.dump		=	netem_dump,
1119	.owner		=	THIS_MODULE,
1120};
1121
1122
1123static int __init netem_module_init(void)
1124{
1125	pr_info("netem: version " VERSION "\n");
1126	return register_qdisc(&netem_qdisc_ops);
1127}
1128static void __exit netem_module_exit(void)
1129{
1130	unregister_qdisc(&netem_qdisc_ops);
1131}
1132module_init(netem_module_init)
1133module_exit(netem_module_exit)
1134MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
 
 
 
 
 
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
  24#include <net/gso.h>
  25#include <net/netlink.h>
  26#include <net/pkt_sched.h>
  27#include <net/inet_ecn.h>
  28
  29#define VERSION "1.3"
  30
  31/*	Network Emulation Queuing algorithm.
  32	====================================
  33
  34	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  35		 Network Emulation Tool
  36		 [2] Luigi Rizzo, DummyNet for FreeBSD
  37
  38	 ----------------------------------------------------------------
  39
  40	 This started out as a simple way to delay outgoing packets to
  41	 test TCP but has grown to include most of the functionality
  42	 of a full blown network emulator like NISTnet. It can delay
  43	 packets and add random jitter (and correlation). The random
  44	 distribution can be loaded from a table as well to provide
  45	 normal, Pareto, or experimental curves. Packet loss,
  46	 duplication, and reordering can also be emulated.
  47
  48	 This qdisc does not do classification that can be handled in
  49	 layering other disciplines.  It does not need to do bandwidth
  50	 control either since that can be handled by using token
  51	 bucket or other rate control.
  52
  53     Correlated Loss Generator models
  54
  55	Added generation of correlated loss according to the
  56	"Gilbert-Elliot" model, a 4-state markov model.
  57
  58	References:
  59	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  60	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  61	and intuitive loss model for packet networks and its implementation
  62	in the Netem module in the Linux kernel", available in [1]
  63
  64	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  65		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  66*/
  67
  68struct disttable {
  69	u32  size;
  70	s16 table[] __counted_by(size);
  71};
  72
  73struct netem_sched_data {
  74	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  75	struct rb_root t_root;
  76
  77	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  78	struct sk_buff	*t_head;
  79	struct sk_buff	*t_tail;
  80
  81	/* optional qdisc for classful handling (NULL at netem init) */
  82	struct Qdisc	*qdisc;
  83
  84	struct qdisc_watchdog watchdog;
  85
  86	s64 latency;
  87	s64 jitter;
  88
  89	u32 loss;
  90	u32 ecn;
  91	u32 limit;
  92	u32 counter;
  93	u32 gap;
  94	u32 duplicate;
  95	u32 reorder;
  96	u32 corrupt;
  97	u64 rate;
  98	s32 packet_overhead;
  99	u32 cell_size;
 100	struct reciprocal_value cell_size_reciprocal;
 101	s32 cell_overhead;
 102
 103	struct crndstate {
 104		u32 last;
 105		u32 rho;
 106	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 107
 108	struct prng  {
 109		u64 seed;
 110		struct rnd_state prng_state;
 111	} prng;
 112
 113	struct disttable *delay_dist;
 114
 115	enum  {
 116		CLG_RANDOM,
 117		CLG_4_STATES,
 118		CLG_GILB_ELL,
 119	} loss_model;
 120
 121	enum {
 122		TX_IN_GAP_PERIOD = 1,
 123		TX_IN_BURST_PERIOD,
 124		LOST_IN_GAP_PERIOD,
 125		LOST_IN_BURST_PERIOD,
 126	} _4_state_model;
 127
 128	enum {
 129		GOOD_STATE = 1,
 130		BAD_STATE,
 131	} GE_state_model;
 132
 133	/* Correlated Loss Generation models */
 134	struct clgstate {
 135		/* state of the Markov chain */
 136		u8 state;
 137
 138		/* 4-states and Gilbert-Elliot models */
 139		u32 a1;	/* p13 for 4-states or p for GE */
 140		u32 a2;	/* p31 for 4-states or r for GE */
 141		u32 a3;	/* p32 for 4-states or h for GE */
 142		u32 a4;	/* p14 for 4-states or 1-k for GE */
 143		u32 a5; /* p23 used only in 4-states */
 144	} clg;
 145
 146	struct tc_netem_slot slot_config;
 147	struct slotstate {
 148		u64 slot_next;
 149		s32 packets_left;
 150		s32 bytes_left;
 151	} slot;
 152
 153	struct disttable *slot_dist;
 154};
 155
 156/* Time stamp put into socket buffer control block
 157 * Only valid when skbs are in our internal t(ime)fifo queue.
 158 *
 159 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 160 * and skb->next & skb->prev are scratch space for a qdisc,
 161 * we save skb->tstamp value in skb->cb[] before destroying it.
 162 */
 163struct netem_skb_cb {
 164	u64	        time_to_send;
 
 165};
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 168{
 169	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 170	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 171	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 172}
 173
 174/* init_crandom - initialize correlated random number generator
 175 * Use entropy source for initial seed.
 176 */
 177static void init_crandom(struct crndstate *state, unsigned long rho)
 178{
 179	state->rho = rho;
 180	state->last = get_random_u32();
 181}
 182
 183/* get_crandom - correlated random number generator
 184 * Next number depends on last value.
 185 * rho is scaled to avoid floating point.
 186 */
 187static u32 get_crandom(struct crndstate *state, struct prng *p)
 188{
 189	u64 value, rho;
 190	unsigned long answer;
 191	struct rnd_state *s = &p->prng_state;
 192
 193	if (!state || state->rho == 0)	/* no correlation */
 194		return prandom_u32_state(s);
 195
 196	value = prandom_u32_state(s);
 197	rho = (u64)state->rho + 1;
 198	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 199	state->last = answer;
 200	return answer;
 201}
 202
 203/* loss_4state - 4-state model loss generator
 204 * Generates losses according to the 4-state Markov chain adopted in
 205 * the GI (General and Intuitive) loss model.
 206 */
 207static bool loss_4state(struct netem_sched_data *q)
 208{
 209	struct clgstate *clg = &q->clg;
 210	u32 rnd = prandom_u32_state(&q->prng.prng_state);
 211
 212	/*
 213	 * Makes a comparison between rnd and the transition
 214	 * probabilities outgoing from the current state, then decides the
 215	 * next state and if the next packet has to be transmitted or lost.
 216	 * The four states correspond to:
 217	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 218	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
 219	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
 220	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
 221	 */
 222	switch (clg->state) {
 223	case TX_IN_GAP_PERIOD:
 224		if (rnd < clg->a4) {
 225			clg->state = LOST_IN_GAP_PERIOD;
 226			return true;
 227		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a1 + clg->a4 < rnd) {
 231			clg->state = TX_IN_GAP_PERIOD;
 232		}
 233
 234		break;
 235	case TX_IN_BURST_PERIOD:
 236		if (rnd < clg->a5) {
 237			clg->state = LOST_IN_BURST_PERIOD;
 238			return true;
 239		} else {
 240			clg->state = TX_IN_BURST_PERIOD;
 241		}
 242
 243		break;
 244	case LOST_IN_BURST_PERIOD:
 245		if (rnd < clg->a3)
 246			clg->state = TX_IN_BURST_PERIOD;
 247		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 248			clg->state = TX_IN_GAP_PERIOD;
 249		} else if (clg->a2 + clg->a3 < rnd) {
 250			clg->state = LOST_IN_BURST_PERIOD;
 251			return true;
 252		}
 253		break;
 254	case LOST_IN_GAP_PERIOD:
 255		clg->state = TX_IN_GAP_PERIOD;
 256		break;
 257	}
 258
 259	return false;
 260}
 261
 262/* loss_gilb_ell - Gilbert-Elliot model loss generator
 263 * Generates losses according to the Gilbert-Elliot loss model or
 264 * its special cases  (Gilbert or Simple Gilbert)
 265 *
 266 * Makes a comparison between random number and the transition
 267 * probabilities outgoing from the current state, then decides the
 268 * next state. A second random number is extracted and the comparison
 269 * with the loss probability of the current state decides if the next
 270 * packet will be transmitted or lost.
 271 */
 272static bool loss_gilb_ell(struct netem_sched_data *q)
 273{
 274	struct clgstate *clg = &q->clg;
 275	struct rnd_state *s = &q->prng.prng_state;
 276
 277	switch (clg->state) {
 278	case GOOD_STATE:
 279		if (prandom_u32_state(s) < clg->a1)
 280			clg->state = BAD_STATE;
 281		if (prandom_u32_state(s) < clg->a4)
 282			return true;
 283		break;
 284	case BAD_STATE:
 285		if (prandom_u32_state(s) < clg->a2)
 286			clg->state = GOOD_STATE;
 287		if (prandom_u32_state(s) > clg->a3)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static bool loss_event(struct netem_sched_data *q)
 295{
 296	switch (q->loss_model) {
 297	case CLG_RANDOM:
 298		/* Random packet drop 0 => none, ~0 => all */
 299		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
 300
 301	case CLG_4_STATES:
 302		/* 4state loss model algorithm (used also for GI model)
 303		* Extracts a value from the markov 4 state loss generator,
 304		* if it is 1 drops a packet and if needed writes the event in
 305		* the kernel logs
 306		*/
 307		return loss_4state(q);
 308
 309	case CLG_GILB_ELL:
 310		/* Gilbert-Elliot loss model algorithm
 311		* Extracts a value from the Gilbert-Elliot loss generator,
 312		* if it is 1 drops a packet and if needed writes the event in
 313		* the kernel logs
 314		*/
 315		return loss_gilb_ell(q);
 316	}
 317
 318	return false;	/* not reached */
 319}
 320
 321
 322/* tabledist - return a pseudo-randomly distributed value with mean mu and
 323 * std deviation sigma.  Uses table lookup to approximate the desired
 324 * distribution, and a uniformly-distributed pseudo-random source.
 325 */
 326static s64 tabledist(s64 mu, s32 sigma,
 327		     struct crndstate *state,
 328		     struct prng *prng,
 329		     const struct disttable *dist)
 330{
 331	s64 x;
 332	long t;
 333	u32 rnd;
 334
 335	if (sigma == 0)
 336		return mu;
 337
 338	rnd = get_crandom(state, prng);
 339
 340	/* default uniform distribution */
 341	if (dist == NULL)
 342		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 343
 344	t = dist->table[rnd % dist->size];
 345	x = (sigma % NETEM_DIST_SCALE) * t;
 346	if (x >= 0)
 347		x += NETEM_DIST_SCALE/2;
 348	else
 349		x -= NETEM_DIST_SCALE/2;
 350
 351	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 352}
 353
 354static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 355{
 
 
 356	len += q->packet_overhead;
 357
 358	if (q->cell_size) {
 359		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 360
 361		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 362			cells++;
 363		len = cells * (q->cell_size + q->cell_overhead);
 364	}
 365
 366	return div64_u64(len * NSEC_PER_SEC, q->rate);
 
 
 
 367}
 368
 369static void tfifo_reset(struct Qdisc *sch)
 370{
 371	struct netem_sched_data *q = qdisc_priv(sch);
 372	struct rb_node *p = rb_first(&q->t_root);
 373
 374	while (p) {
 375		struct sk_buff *skb = rb_to_skb(p);
 376
 377		p = rb_next(p);
 378		rb_erase(&skb->rbnode, &q->t_root);
 379		rtnl_kfree_skbs(skb, skb);
 
 380	}
 381
 382	rtnl_kfree_skbs(q->t_head, q->t_tail);
 383	q->t_head = NULL;
 384	q->t_tail = NULL;
 385}
 386
 387static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 388{
 389	struct netem_sched_data *q = qdisc_priv(sch);
 390	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 
 391
 392	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 393		if (q->t_tail)
 394			q->t_tail->next = nskb;
 
 
 
 
 395		else
 396			q->t_head = nskb;
 397		q->t_tail = nskb;
 398	} else {
 399		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 400
 401		while (*p) {
 402			struct sk_buff *skb;
 403
 404			parent = *p;
 405			skb = rb_to_skb(parent);
 406			if (tnext >= netem_skb_cb(skb)->time_to_send)
 407				p = &parent->rb_right;
 408			else
 409				p = &parent->rb_left;
 410		}
 411		rb_link_node(&nskb->rbnode, parent, p);
 412		rb_insert_color(&nskb->rbnode, &q->t_root);
 413	}
 
 
 414	sch->q.qlen++;
 415}
 416
 417/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 418 * when we statistically choose to corrupt one, we instead segment it, returning
 419 * the first packet to be corrupted, and re-enqueue the remaining frames
 420 */
 421static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 422				     struct sk_buff **to_free)
 423{
 424	struct sk_buff *segs;
 425	netdev_features_t features = netif_skb_features(skb);
 426
 427	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 428
 429	if (IS_ERR_OR_NULL(segs)) {
 430		qdisc_drop(skb, sch, to_free);
 431		return NULL;
 432	}
 433	consume_skb(skb);
 434	return segs;
 435}
 436
 437/*
 438 * Insert one skb into qdisc.
 439 * Note: parent depends on return value to account for queue length.
 440 * 	NET_XMIT_DROP: queue length didn't change.
 441 *      NET_XMIT_SUCCESS: one skb was queued.
 442 */
 443static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 444			 struct sk_buff **to_free)
 445{
 446	struct netem_sched_data *q = qdisc_priv(sch);
 447	/* We don't fill cb now as skb_unshare() may invalidate it */
 448	struct netem_skb_cb *cb;
 449	struct sk_buff *skb2;
 450	struct sk_buff *segs = NULL;
 451	unsigned int prev_len = qdisc_pkt_len(skb);
 452	int count = 1;
 453	int rc = NET_XMIT_SUCCESS;
 454	int rc_drop = NET_XMIT_DROP;
 455
 456	/* Do not fool qdisc_drop_all() */
 457	skb->prev = NULL;
 458
 459	/* Random duplication */
 460	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
 461		++count;
 462
 463	/* Drop packet? */
 464	if (loss_event(q)) {
 465		if (q->ecn && INET_ECN_set_ce(skb))
 466			qdisc_qstats_drop(sch); /* mark packet */
 467		else
 468			--count;
 469	}
 470	if (count == 0) {
 471		qdisc_qstats_drop(sch);
 472		__qdisc_drop(skb, to_free);
 473		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 474	}
 475
 476	/* If a delay is expected, orphan the skb. (orphaning usually takes
 477	 * place at TX completion time, so _before_ the link transit delay)
 478	 */
 479	if (q->latency || q->jitter || q->rate)
 480		skb_orphan_partial(skb);
 481
 482	/*
 483	 * If we need to duplicate packet, then re-insert at top of the
 484	 * qdisc tree, since parent queuer expects that only one
 485	 * skb will be queued.
 486	 */
 487	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 488		struct Qdisc *rootq = qdisc_root_bh(sch);
 489		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 
 490
 491		q->duplicate = 0;
 492		rootq->enqueue(skb2, rootq, to_free);
 493		q->duplicate = dupsave;
 494		rc_drop = NET_XMIT_SUCCESS;
 495	}
 496
 497	/*
 498	 * Randomized packet corruption.
 499	 * Make copy if needed since we are modifying
 500	 * If packet is going to be hardware checksummed, then
 501	 * do it now in software before we mangle it.
 502	 */
 503	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
 504		if (skb_is_gso(skb)) {
 505			skb = netem_segment(skb, sch, to_free);
 506			if (!skb)
 507				return rc_drop;
 508			segs = skb->next;
 509			skb_mark_not_on_list(skb);
 510			qdisc_skb_cb(skb)->pkt_len = skb->len;
 511		}
 512
 513		skb = skb_unshare(skb, GFP_ATOMIC);
 514		if (unlikely(!skb)) {
 515			qdisc_qstats_drop(sch);
 516			goto finish_segs;
 517		}
 518		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 519		    skb_checksum_help(skb)) {
 520			qdisc_drop(skb, sch, to_free);
 521			skb = NULL;
 522			goto finish_segs;
 523		}
 524
 525		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
 526			1<<get_random_u32_below(8);
 527	}
 528
 529	if (unlikely(sch->q.qlen >= sch->limit)) {
 530		/* re-link segs, so that qdisc_drop_all() frees them all */
 531		skb->next = segs;
 532		qdisc_drop_all(skb, sch, to_free);
 533		return rc_drop;
 534	}
 535
 536	qdisc_qstats_backlog_inc(sch, skb);
 537
 538	cb = netem_skb_cb(skb);
 539	if (q->gap == 0 ||		/* not doing reordering */
 540	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 541	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
 542		u64 now;
 543		s64 delay;
 544
 545		delay = tabledist(q->latency, q->jitter,
 546				  &q->delay_cor, &q->prng, q->delay_dist);
 547
 548		now = ktime_get_ns();
 549
 550		if (q->rate) {
 551			struct netem_skb_cb *last = NULL;
 552
 553			if (sch->q.tail)
 554				last = netem_skb_cb(sch->q.tail);
 555			if (q->t_root.rb_node) {
 556				struct sk_buff *t_skb;
 557				struct netem_skb_cb *t_last;
 558
 559				t_skb = skb_rb_last(&q->t_root);
 560				t_last = netem_skb_cb(t_skb);
 561				if (!last ||
 562				    t_last->time_to_send > last->time_to_send)
 563					last = t_last;
 564			}
 565			if (q->t_tail) {
 566				struct netem_skb_cb *t_last =
 567					netem_skb_cb(q->t_tail);
 568
 569				if (!last ||
 570				    t_last->time_to_send > last->time_to_send)
 571					last = t_last;
 572			}
 573
 
 
 
 
 574			if (last) {
 575				/*
 576				 * Last packet in queue is reference point (now),
 577				 * calculate this time bonus and subtract
 578				 * from delay.
 579				 */
 580				delay -= last->time_to_send - now;
 581				delay = max_t(s64, 0, delay);
 582				now = last->time_to_send;
 583			}
 584
 585			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 586		}
 587
 588		cb->time_to_send = now + delay;
 
 589		++q->counter;
 590		tfifo_enqueue(skb, sch);
 591	} else {
 592		/*
 593		 * Do re-ordering by putting one out of N packets at the front
 594		 * of the queue.
 595		 */
 596		cb->time_to_send = ktime_get_ns();
 597		q->counter = 0;
 598
 599		__qdisc_enqueue_head(skb, &sch->q);
 600		sch->qstats.requeues++;
 601	}
 602
 603finish_segs:
 604	if (segs) {
 605		unsigned int len, last_len;
 606		int nb;
 607
 608		len = skb ? skb->len : 0;
 609		nb = skb ? 1 : 0;
 610
 611		while (segs) {
 612			skb2 = segs->next;
 613			skb_mark_not_on_list(segs);
 614			qdisc_skb_cb(segs)->pkt_len = segs->len;
 615			last_len = segs->len;
 616			rc = qdisc_enqueue(segs, sch, to_free);
 617			if (rc != NET_XMIT_SUCCESS) {
 618				if (net_xmit_drop_count(rc))
 619					qdisc_qstats_drop(sch);
 620			} else {
 621				nb++;
 622				len += last_len;
 623			}
 624			segs = skb2;
 625		}
 626		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 627		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 628	} else if (!skb) {
 629		return NET_XMIT_DROP;
 630	}
 631	return NET_XMIT_SUCCESS;
 632}
 633
 634/* Delay the next round with a new future slot with a
 635 * correct number of bytes and packets.
 636 */
 637
 638static void get_slot_next(struct netem_sched_data *q, u64 now)
 639{
 640	s64 next_delay;
 
 641
 642	if (!q->slot_dist)
 643		next_delay = q->slot_config.min_delay +
 644				(get_random_u32() *
 645				 (q->slot_config.max_delay -
 646				  q->slot_config.min_delay) >> 32);
 647	else
 648		next_delay = tabledist(q->slot_config.dist_delay,
 649				       (s32)(q->slot_config.dist_jitter),
 650				       NULL, &q->prng, q->slot_dist);
 651
 652	q->slot.slot_next = now + next_delay;
 653	q->slot.packets_left = q->slot_config.max_packets;
 654	q->slot.bytes_left = q->slot_config.max_bytes;
 655}
 656
 657static struct sk_buff *netem_peek(struct netem_sched_data *q)
 658{
 659	struct sk_buff *skb = skb_rb_first(&q->t_root);
 660	u64 t1, t2;
 661
 662	if (!skb)
 663		return q->t_head;
 664	if (!q->t_head)
 665		return skb;
 
 
 
 
 
 
 
 
 
 666
 667	t1 = netem_skb_cb(skb)->time_to_send;
 668	t2 = netem_skb_cb(q->t_head)->time_to_send;
 669	if (t1 < t2)
 670		return skb;
 671	return q->t_head;
 672}
 673
 674static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 675{
 676	if (skb == q->t_head) {
 677		q->t_head = skb->next;
 678		if (!q->t_head)
 679			q->t_tail = NULL;
 680	} else {
 681		rb_erase(&skb->rbnode, &q->t_root);
 682	}
 683}
 684
 685static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 686{
 687	struct netem_sched_data *q = qdisc_priv(sch);
 688	struct sk_buff *skb;
 
 
 
 
 689
 690tfifo_dequeue:
 691	skb = __qdisc_dequeue_head(&sch->q);
 692	if (skb) {
 693		qdisc_qstats_backlog_dec(sch, skb);
 694deliver:
 
 
 695		qdisc_bstats_update(sch, skb);
 696		return skb;
 697	}
 698	skb = netem_peek(q);
 699	if (skb) {
 700		u64 time_to_send;
 701		u64 now = ktime_get_ns();
 
 702
 703		/* if more time remaining? */
 704		time_to_send = netem_skb_cb(skb)->time_to_send;
 705		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 706			get_slot_next(q, now);
 707
 708		if (time_to_send <= now && q->slot.slot_next <= now) {
 709			netem_erase_head(q, skb);
 710			sch->q.qlen--;
 711			qdisc_qstats_backlog_dec(sch, skb);
 712			skb->next = NULL;
 713			skb->prev = NULL;
 714			/* skb->dev shares skb->rbnode area,
 715			 * we need to restore its value.
 
 
 
 
 716			 */
 717			skb->dev = qdisc_dev(sch);
 
 
 718
 719			if (q->slot.slot_next) {
 720				q->slot.packets_left--;
 721				q->slot.bytes_left -= qdisc_pkt_len(skb);
 722				if (q->slot.packets_left <= 0 ||
 723				    q->slot.bytes_left <= 0)
 724					get_slot_next(q, now);
 725			}
 726
 727			if (q->qdisc) {
 728				unsigned int pkt_len = qdisc_pkt_len(skb);
 729				struct sk_buff *to_free = NULL;
 730				int err;
 731
 732				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 733				kfree_skb_list(to_free);
 734				if (err != NET_XMIT_SUCCESS &&
 735				    net_xmit_drop_count(err)) {
 736					qdisc_qstats_drop(sch);
 737					qdisc_tree_reduce_backlog(sch, 1,
 738								  pkt_len);
 739				}
 740				goto tfifo_dequeue;
 741			}
 742			goto deliver;
 743		}
 744
 745		if (q->qdisc) {
 746			skb = q->qdisc->ops->dequeue(q->qdisc);
 747			if (skb)
 748				goto deliver;
 749		}
 750
 751		qdisc_watchdog_schedule_ns(&q->watchdog,
 752					   max(time_to_send,
 753					       q->slot.slot_next));
 754	}
 755
 756	if (q->qdisc) {
 757		skb = q->qdisc->ops->dequeue(q->qdisc);
 758		if (skb)
 759			goto deliver;
 760	}
 761	return NULL;
 762}
 763
 764static void netem_reset(struct Qdisc *sch)
 765{
 766	struct netem_sched_data *q = qdisc_priv(sch);
 767
 768	qdisc_reset_queue(sch);
 769	tfifo_reset(sch);
 770	if (q->qdisc)
 771		qdisc_reset(q->qdisc);
 772	qdisc_watchdog_cancel(&q->watchdog);
 773}
 774
 775static void dist_free(struct disttable *d)
 776{
 777	kvfree(d);
 
 
 
 
 
 778}
 779
 780/*
 781 * Distribution data is a variable size payload containing
 782 * signed 16 bit values.
 783 */
 784
 785static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
 786{
 
 787	size_t n = nla_len(attr)/sizeof(__s16);
 788	const __s16 *data = nla_data(attr);
 
 789	struct disttable *d;
 790	int i;
 
 791
 792	if (!n || n > NETEM_DIST_MAX)
 793		return -EINVAL;
 794
 795	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
 
 
 
 796	if (!d)
 797		return -ENOMEM;
 798
 799	d->size = n;
 800	for (i = 0; i < n; i++)
 801		d->table[i] = data[i];
 802
 803	*tbl = d;
 804	return 0;
 805}
 806
 807static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 808{
 809	const struct tc_netem_slot *c = nla_data(attr);
 810
 811	q->slot_config = *c;
 812	if (q->slot_config.max_packets == 0)
 813		q->slot_config.max_packets = INT_MAX;
 814	if (q->slot_config.max_bytes == 0)
 815		q->slot_config.max_bytes = INT_MAX;
 816
 817	/* capping dist_jitter to the range acceptable by tabledist() */
 818	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 819
 820	q->slot.packets_left = q->slot_config.max_packets;
 821	q->slot.bytes_left = q->slot_config.max_bytes;
 822	if (q->slot_config.min_delay | q->slot_config.max_delay |
 823	    q->slot_config.dist_jitter)
 824		q->slot.slot_next = ktime_get_ns();
 825	else
 826		q->slot.slot_next = 0;
 827}
 828
 829static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 830{
 831	const struct tc_netem_corr *c = nla_data(attr);
 832
 833	init_crandom(&q->delay_cor, c->delay_corr);
 834	init_crandom(&q->loss_cor, c->loss_corr);
 835	init_crandom(&q->dup_cor, c->dup_corr);
 836}
 837
 838static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 839{
 840	const struct tc_netem_reorder *r = nla_data(attr);
 841
 842	q->reorder = r->probability;
 843	init_crandom(&q->reorder_cor, r->correlation);
 844}
 845
 846static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 847{
 848	const struct tc_netem_corrupt *r = nla_data(attr);
 849
 850	q->corrupt = r->probability;
 851	init_crandom(&q->corrupt_cor, r->correlation);
 852}
 853
 854static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 855{
 856	const struct tc_netem_rate *r = nla_data(attr);
 857
 858	q->rate = r->rate;
 859	q->packet_overhead = r->packet_overhead;
 860	q->cell_size = r->cell_size;
 861	q->cell_overhead = r->cell_overhead;
 862	if (q->cell_size)
 863		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 864	else
 865		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 866}
 867
 868static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 869{
 870	const struct nlattr *la;
 871	int rem;
 872
 873	nla_for_each_nested(la, attr, rem) {
 874		u16 type = nla_type(la);
 875
 876		switch (type) {
 877		case NETEM_LOSS_GI: {
 878			const struct tc_netem_gimodel *gi = nla_data(la);
 879
 880			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 881				pr_info("netem: incorrect gi model size\n");
 882				return -EINVAL;
 883			}
 884
 885			q->loss_model = CLG_4_STATES;
 886
 887			q->clg.state = TX_IN_GAP_PERIOD;
 888			q->clg.a1 = gi->p13;
 889			q->clg.a2 = gi->p31;
 890			q->clg.a3 = gi->p32;
 891			q->clg.a4 = gi->p14;
 892			q->clg.a5 = gi->p23;
 893			break;
 894		}
 895
 896		case NETEM_LOSS_GE: {
 897			const struct tc_netem_gemodel *ge = nla_data(la);
 898
 899			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 900				pr_info("netem: incorrect ge model size\n");
 901				return -EINVAL;
 902			}
 903
 904			q->loss_model = CLG_GILB_ELL;
 905			q->clg.state = GOOD_STATE;
 906			q->clg.a1 = ge->p;
 907			q->clg.a2 = ge->r;
 908			q->clg.a3 = ge->h;
 909			q->clg.a4 = ge->k1;
 910			break;
 911		}
 912
 913		default:
 914			pr_info("netem: unknown loss type %u\n", type);
 915			return -EINVAL;
 916		}
 917	}
 918
 919	return 0;
 920}
 921
 922static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 923	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 924	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 925	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 926	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 927	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 928	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 929	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 930	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 931	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 932	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 933	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
 934};
 935
 936static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 937		      const struct nla_policy *policy, int len)
 938{
 939	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 940
 941	if (nested_len < 0) {
 942		pr_info("netem: invalid attributes len %d\n", nested_len);
 943		return -EINVAL;
 944	}
 945
 946	if (nested_len >= nla_attr_size(0))
 947		return nla_parse_deprecated(tb, maxtype,
 948					    nla_data(nla) + NLA_ALIGN(len),
 949					    nested_len, policy, NULL);
 950
 951	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 952	return 0;
 953}
 954
 955/* Parse netlink message to set options */
 956static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 957			struct netlink_ext_ack *extack)
 958{
 959	struct netem_sched_data *q = qdisc_priv(sch);
 960	struct nlattr *tb[TCA_NETEM_MAX + 1];
 961	struct disttable *delay_dist = NULL;
 962	struct disttable *slot_dist = NULL;
 963	struct tc_netem_qopt *qopt;
 964	struct clgstate old_clg;
 965	int old_loss_model = CLG_RANDOM;
 966	int ret;
 967
 
 
 
 968	qopt = nla_data(opt);
 969	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 970	if (ret < 0)
 971		return ret;
 972
 973	if (tb[TCA_NETEM_DELAY_DIST]) {
 974		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
 975		if (ret)
 976			goto table_free;
 977	}
 978
 979	if (tb[TCA_NETEM_SLOT_DIST]) {
 980		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
 981		if (ret)
 982			goto table_free;
 983	}
 984
 985	sch_tree_lock(sch);
 986	/* backup q->clg and q->loss_model */
 987	old_clg = q->clg;
 988	old_loss_model = q->loss_model;
 989
 990	if (tb[TCA_NETEM_LOSS]) {
 991		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 992		if (ret) {
 993			q->loss_model = old_loss_model;
 994			q->clg = old_clg;
 995			goto unlock;
 996		}
 997	} else {
 998		q->loss_model = CLG_RANDOM;
 999	}
1000
1001	if (delay_dist)
1002		swap(q->delay_dist, delay_dist);
1003	if (slot_dist)
1004		swap(q->slot_dist, slot_dist);
 
 
 
 
 
 
 
 
 
1005	sch->limit = qopt->limit;
1006
1007	q->latency = PSCHED_TICKS2NS(qopt->latency);
1008	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1009	q->limit = qopt->limit;
1010	q->gap = qopt->gap;
1011	q->counter = 0;
1012	q->loss = qopt->loss;
1013	q->duplicate = qopt->duplicate;
1014
1015	/* for compatibility with earlier versions.
1016	 * if gap is set, need to assume 100% probability
1017	 */
1018	if (q->gap)
1019		q->reorder = ~0;
1020
1021	if (tb[TCA_NETEM_CORR])
1022		get_correlation(q, tb[TCA_NETEM_CORR]);
1023
1024	if (tb[TCA_NETEM_REORDER])
1025		get_reorder(q, tb[TCA_NETEM_REORDER]);
1026
1027	if (tb[TCA_NETEM_CORRUPT])
1028		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1029
1030	if (tb[TCA_NETEM_RATE])
1031		get_rate(q, tb[TCA_NETEM_RATE]);
1032
1033	if (tb[TCA_NETEM_RATE64])
1034		q->rate = max_t(u64, q->rate,
1035				nla_get_u64(tb[TCA_NETEM_RATE64]));
1036
1037	if (tb[TCA_NETEM_LATENCY64])
1038		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1039
1040	if (tb[TCA_NETEM_JITTER64])
1041		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1042
1043	if (tb[TCA_NETEM_ECN])
1044		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1045
1046	if (tb[TCA_NETEM_SLOT])
1047		get_slot(q, tb[TCA_NETEM_SLOT]);
1048
1049	/* capping jitter to the range acceptable by tabledist() */
1050	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1051
1052	if (tb[TCA_NETEM_PRNG_SEED])
1053		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1054	else
1055		q->prng.seed = get_random_u64();
1056	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1057
1058unlock:
1059	sch_tree_unlock(sch);
1060
1061table_free:
1062	dist_free(delay_dist);
1063	dist_free(slot_dist);
1064	return ret;
1065}
1066
1067static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1068		      struct netlink_ext_ack *extack)
1069{
1070	struct netem_sched_data *q = qdisc_priv(sch);
1071	int ret;
1072
1073	qdisc_watchdog_init(&q->watchdog, sch);
1074
1075	if (!opt)
1076		return -EINVAL;
1077
 
 
1078	q->loss_model = CLG_RANDOM;
1079	ret = netem_change(sch, opt, extack);
1080	if (ret)
1081		pr_info("netem: change failed\n");
1082	return ret;
1083}
1084
1085static void netem_destroy(struct Qdisc *sch)
1086{
1087	struct netem_sched_data *q = qdisc_priv(sch);
1088
1089	qdisc_watchdog_cancel(&q->watchdog);
1090	if (q->qdisc)
1091		qdisc_put(q->qdisc);
1092	dist_free(q->delay_dist);
1093	dist_free(q->slot_dist);
1094}
1095
1096static int dump_loss_model(const struct netem_sched_data *q,
1097			   struct sk_buff *skb)
1098{
1099	struct nlattr *nest;
1100
1101	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1102	if (nest == NULL)
1103		goto nla_put_failure;
1104
1105	switch (q->loss_model) {
1106	case CLG_RANDOM:
1107		/* legacy loss model */
1108		nla_nest_cancel(skb, nest);
1109		return 0;	/* no data */
1110
1111	case CLG_4_STATES: {
1112		struct tc_netem_gimodel gi = {
1113			.p13 = q->clg.a1,
1114			.p31 = q->clg.a2,
1115			.p32 = q->clg.a3,
1116			.p14 = q->clg.a4,
1117			.p23 = q->clg.a5,
1118		};
1119
1120		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1121			goto nla_put_failure;
1122		break;
1123	}
1124	case CLG_GILB_ELL: {
1125		struct tc_netem_gemodel ge = {
1126			.p = q->clg.a1,
1127			.r = q->clg.a2,
1128			.h = q->clg.a3,
1129			.k1 = q->clg.a4,
1130		};
1131
1132		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1133			goto nla_put_failure;
1134		break;
1135	}
1136	}
1137
1138	nla_nest_end(skb, nest);
1139	return 0;
1140
1141nla_put_failure:
1142	nla_nest_cancel(skb, nest);
1143	return -1;
1144}
1145
1146static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1147{
1148	const struct netem_sched_data *q = qdisc_priv(sch);
1149	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1150	struct tc_netem_qopt qopt;
1151	struct tc_netem_corr cor;
1152	struct tc_netem_reorder reorder;
1153	struct tc_netem_corrupt corrupt;
1154	struct tc_netem_rate rate;
1155	struct tc_netem_slot slot;
1156
1157	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1158			     UINT_MAX);
1159	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1160			    UINT_MAX);
1161	qopt.limit = q->limit;
1162	qopt.loss = q->loss;
1163	qopt.gap = q->gap;
1164	qopt.duplicate = q->duplicate;
1165	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1166		goto nla_put_failure;
1167
1168	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1169		goto nla_put_failure;
1170
1171	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1172		goto nla_put_failure;
1173
1174	cor.delay_corr = q->delay_cor.rho;
1175	cor.loss_corr = q->loss_cor.rho;
1176	cor.dup_corr = q->dup_cor.rho;
1177	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1178		goto nla_put_failure;
1179
1180	reorder.probability = q->reorder;
1181	reorder.correlation = q->reorder_cor.rho;
1182	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1183		goto nla_put_failure;
1184
1185	corrupt.probability = q->corrupt;
1186	corrupt.correlation = q->corrupt_cor.rho;
1187	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1188		goto nla_put_failure;
1189
1190	if (q->rate >= (1ULL << 32)) {
1191		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1192				      TCA_NETEM_PAD))
1193			goto nla_put_failure;
1194		rate.rate = ~0U;
1195	} else {
1196		rate.rate = q->rate;
1197	}
1198	rate.packet_overhead = q->packet_overhead;
1199	rate.cell_size = q->cell_size;
1200	rate.cell_overhead = q->cell_overhead;
1201	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1202		goto nla_put_failure;
1203
1204	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1205		goto nla_put_failure;
1206
1207	if (dump_loss_model(q, skb) != 0)
1208		goto nla_put_failure;
1209
1210	if (q->slot_config.min_delay | q->slot_config.max_delay |
1211	    q->slot_config.dist_jitter) {
1212		slot = q->slot_config;
1213		if (slot.max_packets == INT_MAX)
1214			slot.max_packets = 0;
1215		if (slot.max_bytes == INT_MAX)
1216			slot.max_bytes = 0;
1217		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1218			goto nla_put_failure;
1219	}
1220
1221	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1222			      TCA_NETEM_PAD))
1223		goto nla_put_failure;
1224
1225	return nla_nest_end(skb, nla);
1226
1227nla_put_failure:
1228	nlmsg_trim(skb, nla);
1229	return -1;
1230}
1231
1232static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1233			  struct sk_buff *skb, struct tcmsg *tcm)
1234{
1235	struct netem_sched_data *q = qdisc_priv(sch);
1236
1237	if (cl != 1 || !q->qdisc) 	/* only one class */
1238		return -ENOENT;
1239
1240	tcm->tcm_handle |= TC_H_MIN(1);
1241	tcm->tcm_info = q->qdisc->handle;
1242
1243	return 0;
1244}
1245
1246static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1247		     struct Qdisc **old, struct netlink_ext_ack *extack)
1248{
1249	struct netem_sched_data *q = qdisc_priv(sch);
1250
1251	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
 
 
 
 
 
 
1252	return 0;
1253}
1254
1255static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1256{
1257	struct netem_sched_data *q = qdisc_priv(sch);
1258	return q->qdisc;
1259}
1260
1261static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1262{
1263	return 1;
1264}
1265
 
 
 
 
1266static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1267{
1268	if (!walker->stop) {
1269		if (!tc_qdisc_stats_dump(sch, 1, walker))
1270			return;
 
 
 
 
1271	}
1272}
1273
1274static const struct Qdisc_class_ops netem_class_ops = {
1275	.graft		=	netem_graft,
1276	.leaf		=	netem_leaf,
1277	.find		=	netem_find,
 
1278	.walk		=	netem_walk,
1279	.dump		=	netem_dump_class,
1280};
1281
1282static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1283	.id		=	"netem",
1284	.cl_ops		=	&netem_class_ops,
1285	.priv_size	=	sizeof(struct netem_sched_data),
1286	.enqueue	=	netem_enqueue,
1287	.dequeue	=	netem_dequeue,
1288	.peek		=	qdisc_peek_dequeued,
 
1289	.init		=	netem_init,
1290	.reset		=	netem_reset,
1291	.destroy	=	netem_destroy,
1292	.change		=	netem_change,
1293	.dump		=	netem_dump,
1294	.owner		=	THIS_MODULE,
1295};
1296
1297
1298static int __init netem_module_init(void)
1299{
1300	pr_info("netem: version " VERSION "\n");
1301	return register_qdisc(&netem_qdisc_ops);
1302}
1303static void __exit netem_module_exit(void)
1304{
1305	unregister_qdisc(&netem_qdisc_ops);
1306}
1307module_init(netem_module_init)
1308module_exit(netem_module_exit)
1309MODULE_LICENSE("GPL");
1310MODULE_DESCRIPTION("Network characteristics emulator qdisc");