Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Flow Queue PIE discipline
  3 *
  4 * Copyright (C) 2019 Mohit P. Tahiliani <tahiliani@nitk.edu.in>
  5 * Copyright (C) 2019 Sachin D. Patil <sdp.sachin@gmail.com>
  6 * Copyright (C) 2019 V. Saicharan <vsaicharan1998@gmail.com>
  7 * Copyright (C) 2019 Mohit Bhasi <mohitbhasi1998@gmail.com>
  8 * Copyright (C) 2019 Leslie Monis <lesliemonis@gmail.com>
  9 * Copyright (C) 2019 Gautam Ramakrishnan <gautamramk@gmail.com>
 10 */
 11
 12#include <linux/jhash.h>
 13#include <linux/sizes.h>
 14#include <linux/vmalloc.h>
 15#include <net/pkt_cls.h>
 16#include <net/pie.h>
 17
 18/* Flow Queue PIE
 19 *
 20 * Principles:
 21 *   - Packets are classified on flows.
 22 *   - This is a Stochastic model (as we use a hash, several flows might
 23 *                                 be hashed to the same slot)
 24 *   - Each flow has a PIE managed queue.
 25 *   - Flows are linked onto two (Round Robin) lists,
 26 *     so that new flows have priority on old ones.
 27 *   - For a given flow, packets are not reordered.
 28 *   - Drops during enqueue only.
 29 *   - ECN capability is off by default.
 30 *   - ECN threshold (if ECN is enabled) is at 10% by default.
 31 *   - Uses timestamps to calculate queue delay by default.
 32 */
 33
 34/**
 35 * struct fq_pie_flow - contains data for each flow
 36 * @vars:	pie vars associated with the flow
 37 * @deficit:	number of remaining byte credits
 38 * @backlog:	size of data in the flow
 39 * @qlen:	number of packets in the flow
 40 * @flowchain:	flowchain for the flow
 41 * @head:	first packet in the flow
 42 * @tail:	last packet in the flow
 43 */
 44struct fq_pie_flow {
 45	struct pie_vars vars;
 46	s32 deficit;
 47	u32 backlog;
 48	u32 qlen;
 49	struct list_head flowchain;
 50	struct sk_buff *head;
 51	struct sk_buff *tail;
 52};
 53
 54struct fq_pie_sched_data {
 55	struct tcf_proto __rcu *filter_list; /* optional external classifier */
 56	struct tcf_block *block;
 57	struct fq_pie_flow *flows;
 58	struct Qdisc *sch;
 59	struct list_head old_flows;
 60	struct list_head new_flows;
 61	struct pie_params p_params;
 62	u32 ecn_prob;
 63	u32 flows_cnt;
 64	u32 flows_cursor;
 65	u32 quantum;
 66	u32 memory_limit;
 67	u32 new_flow_count;
 68	u32 memory_usage;
 69	u32 overmemory;
 70	struct pie_stats stats;
 71	struct timer_list adapt_timer;
 72};
 73
 74static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q,
 75				struct sk_buff *skb)
 76{
 77	return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
 78}
 79
 80static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch,
 81				    int *qerr)
 82{
 83	struct fq_pie_sched_data *q = qdisc_priv(sch);
 84	struct tcf_proto *filter;
 85	struct tcf_result res;
 86	int result;
 87
 88	if (TC_H_MAJ(skb->priority) == sch->handle &&
 89	    TC_H_MIN(skb->priority) > 0 &&
 90	    TC_H_MIN(skb->priority) <= q->flows_cnt)
 91		return TC_H_MIN(skb->priority);
 92
 93	filter = rcu_dereference_bh(q->filter_list);
 94	if (!filter)
 95		return fq_pie_hash(q, skb) + 1;
 96
 97	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 98	result = tcf_classify(skb, NULL, filter, &res, false);
 99	if (result >= 0) {
100#ifdef CONFIG_NET_CLS_ACT
101		switch (result) {
102		case TC_ACT_STOLEN:
103		case TC_ACT_QUEUED:
104		case TC_ACT_TRAP:
105			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
106			fallthrough;
107		case TC_ACT_SHOT:
108			return 0;
109		}
110#endif
111		if (TC_H_MIN(res.classid) <= q->flows_cnt)
112			return TC_H_MIN(res.classid);
113	}
114	return 0;
115}
116
117/* add skb to flow queue (tail add) */
118static inline void flow_queue_add(struct fq_pie_flow *flow,
119				  struct sk_buff *skb)
120{
121	if (!flow->head)
122		flow->head = skb;
123	else
124		flow->tail->next = skb;
125	flow->tail = skb;
126	skb->next = NULL;
127}
128
129static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
130				struct sk_buff **to_free)
131{
132	struct fq_pie_sched_data *q = qdisc_priv(sch);
133	struct fq_pie_flow *sel_flow;
134	int ret;
135	u8 memory_limited = false;
136	u8 enqueue = false;
137	u32 pkt_len;
138	u32 idx;
139
140	/* Classifies packet into corresponding flow */
141	idx = fq_pie_classify(skb, sch, &ret);
142	if (idx == 0) {
143		if (ret & __NET_XMIT_BYPASS)
144			qdisc_qstats_drop(sch);
145		__qdisc_drop(skb, to_free);
146		return ret;
147	}
148	idx--;
149
150	sel_flow = &q->flows[idx];
151	/* Checks whether adding a new packet would exceed memory limit */
152	get_pie_cb(skb)->mem_usage = skb->truesize;
153	memory_limited = q->memory_usage > q->memory_limit + skb->truesize;
154
155	/* Checks if the qdisc is full */
156	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
157		q->stats.overlimit++;
158		goto out;
159	} else if (unlikely(memory_limited)) {
160		q->overmemory++;
161	}
162
163	if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars,
164			    sel_flow->backlog, skb->len)) {
165		enqueue = true;
166	} else if (q->p_params.ecn &&
167		   sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob &&
168		   INET_ECN_set_ce(skb)) {
169		/* If packet is ecn capable, mark it if drop probability
170		 * is lower than the parameter ecn_prob, else drop it.
171		 */
172		q->stats.ecn_mark++;
173		enqueue = true;
174	}
175	if (enqueue) {
176		/* Set enqueue time only when dq_rate_estimator is disabled. */
177		if (!q->p_params.dq_rate_estimator)
178			pie_set_enqueue_time(skb);
179
180		pkt_len = qdisc_pkt_len(skb);
181		q->stats.packets_in++;
182		q->memory_usage += skb->truesize;
183		sch->qstats.backlog += pkt_len;
184		sch->q.qlen++;
185		flow_queue_add(sel_flow, skb);
186		if (list_empty(&sel_flow->flowchain)) {
187			list_add_tail(&sel_flow->flowchain, &q->new_flows);
188			q->new_flow_count++;
189			sel_flow->deficit = q->quantum;
190			sel_flow->qlen = 0;
191			sel_flow->backlog = 0;
192		}
193		sel_flow->qlen++;
194		sel_flow->backlog += pkt_len;
195		return NET_XMIT_SUCCESS;
196	}
197out:
198	q->stats.dropped++;
199	sel_flow->vars.accu_prob = 0;
200	__qdisc_drop(skb, to_free);
201	qdisc_qstats_drop(sch);
202	return NET_XMIT_CN;
203}
204
205static const struct netlink_range_validation fq_pie_q_range = {
206	.min = 1,
207	.max = 1 << 20,
208};
209
210static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = {
211	[TCA_FQ_PIE_LIMIT]		= {.type = NLA_U32},
212	[TCA_FQ_PIE_FLOWS]		= {.type = NLA_U32},
213	[TCA_FQ_PIE_TARGET]		= {.type = NLA_U32},
214	[TCA_FQ_PIE_TUPDATE]		= {.type = NLA_U32},
215	[TCA_FQ_PIE_ALPHA]		= {.type = NLA_U32},
216	[TCA_FQ_PIE_BETA]		= {.type = NLA_U32},
217	[TCA_FQ_PIE_QUANTUM]		=
218			NLA_POLICY_FULL_RANGE(NLA_U32, &fq_pie_q_range),
219	[TCA_FQ_PIE_MEMORY_LIMIT]	= {.type = NLA_U32},
220	[TCA_FQ_PIE_ECN_PROB]		= {.type = NLA_U32},
221	[TCA_FQ_PIE_ECN]		= {.type = NLA_U32},
222	[TCA_FQ_PIE_BYTEMODE]		= {.type = NLA_U32},
223	[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
224};
225
226static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow)
227{
228	struct sk_buff *skb = flow->head;
229
230	flow->head = skb->next;
231	skb->next = NULL;
232	return skb;
233}
234
235static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch)
236{
237	struct fq_pie_sched_data *q = qdisc_priv(sch);
238	struct sk_buff *skb = NULL;
239	struct fq_pie_flow *flow;
240	struct list_head *head;
241	u32 pkt_len;
242
243begin:
244	head = &q->new_flows;
245	if (list_empty(head)) {
246		head = &q->old_flows;
247		if (list_empty(head))
248			return NULL;
249	}
250
251	flow = list_first_entry(head, struct fq_pie_flow, flowchain);
252	/* Flow has exhausted all its credits */
253	if (flow->deficit <= 0) {
254		flow->deficit += q->quantum;
255		list_move_tail(&flow->flowchain, &q->old_flows);
256		goto begin;
257	}
258
259	if (flow->head) {
260		skb = dequeue_head(flow);
261		pkt_len = qdisc_pkt_len(skb);
262		sch->qstats.backlog -= pkt_len;
263		sch->q.qlen--;
264		qdisc_bstats_update(sch, skb);
265	}
266
267	if (!skb) {
268		/* force a pass through old_flows to prevent starvation */
269		if (head == &q->new_flows && !list_empty(&q->old_flows))
270			list_move_tail(&flow->flowchain, &q->old_flows);
271		else
272			list_del_init(&flow->flowchain);
273		goto begin;
274	}
275
276	flow->qlen--;
277	flow->deficit -= pkt_len;
278	flow->backlog -= pkt_len;
279	q->memory_usage -= get_pie_cb(skb)->mem_usage;
280	pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog);
281	return skb;
282}
283
284static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt,
285			 struct netlink_ext_ack *extack)
286{
287	struct fq_pie_sched_data *q = qdisc_priv(sch);
288	struct nlattr *tb[TCA_FQ_PIE_MAX + 1];
289	unsigned int len_dropped = 0;
290	unsigned int num_dropped = 0;
291	int err;
292
293	err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack);
294	if (err < 0)
295		return err;
296
297	sch_tree_lock(sch);
298	if (tb[TCA_FQ_PIE_LIMIT]) {
299		u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]);
300
301		q->p_params.limit = limit;
302		sch->limit = limit;
303	}
304	if (tb[TCA_FQ_PIE_FLOWS]) {
305		if (q->flows) {
306			NL_SET_ERR_MSG_MOD(extack,
307					   "Number of flows cannot be changed");
308			goto flow_error;
309		}
310		q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]);
311		if (!q->flows_cnt || q->flows_cnt > 65536) {
312			NL_SET_ERR_MSG_MOD(extack,
313					   "Number of flows must range in [1..65536]");
314			goto flow_error;
315		}
316	}
317
318	/* convert from microseconds to pschedtime */
319	if (tb[TCA_FQ_PIE_TARGET]) {
320		/* target is in us */
321		u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]);
322
323		/* convert to pschedtime */
324		q->p_params.target =
325			PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
326	}
327
328	/* tupdate is in jiffies */
329	if (tb[TCA_FQ_PIE_TUPDATE])
330		q->p_params.tupdate =
331			usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE]));
332
333	if (tb[TCA_FQ_PIE_ALPHA])
334		q->p_params.alpha = nla_get_u32(tb[TCA_FQ_PIE_ALPHA]);
335
336	if (tb[TCA_FQ_PIE_BETA])
337		q->p_params.beta = nla_get_u32(tb[TCA_FQ_PIE_BETA]);
338
339	if (tb[TCA_FQ_PIE_QUANTUM])
340		q->quantum = nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]);
341
342	if (tb[TCA_FQ_PIE_MEMORY_LIMIT])
343		q->memory_limit = nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]);
344
345	if (tb[TCA_FQ_PIE_ECN_PROB])
346		q->ecn_prob = nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]);
347
348	if (tb[TCA_FQ_PIE_ECN])
349		q->p_params.ecn = nla_get_u32(tb[TCA_FQ_PIE_ECN]);
350
351	if (tb[TCA_FQ_PIE_BYTEMODE])
352		q->p_params.bytemode = nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]);
353
354	if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR])
355		q->p_params.dq_rate_estimator =
356			nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]);
357
358	/* Drop excess packets if new limit is lower */
359	while (sch->q.qlen > sch->limit) {
360		struct sk_buff *skb = fq_pie_qdisc_dequeue(sch);
361
362		len_dropped += qdisc_pkt_len(skb);
363		num_dropped += 1;
364		rtnl_kfree_skbs(skb, skb);
365	}
366	qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped);
367
368	sch_tree_unlock(sch);
369	return 0;
370
371flow_error:
372	sch_tree_unlock(sch);
373	return -EINVAL;
374}
375
376static void fq_pie_timer(struct timer_list *t)
377{
378	struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer);
379	unsigned long next, tupdate;
380	struct Qdisc *sch = q->sch;
381	spinlock_t *root_lock; /* to lock qdisc for probability calculations */
382	int max_cnt, i;
383
384	rcu_read_lock();
385	root_lock = qdisc_lock(qdisc_root_sleeping(sch));
386	spin_lock(root_lock);
387
388	/* Limit this expensive loop to 2048 flows per round. */
389	max_cnt = min_t(int, q->flows_cnt - q->flows_cursor, 2048);
390	for (i = 0; i < max_cnt; i++) {
391		pie_calculate_probability(&q->p_params,
392					  &q->flows[q->flows_cursor].vars,
393					  q->flows[q->flows_cursor].backlog);
394		q->flows_cursor++;
395	}
396
397	tupdate = q->p_params.tupdate;
398	next = 0;
399	if (q->flows_cursor >= q->flows_cnt) {
400		q->flows_cursor = 0;
401		next = tupdate;
402	}
403	if (tupdate)
404		mod_timer(&q->adapt_timer, jiffies + next);
405	spin_unlock(root_lock);
406	rcu_read_unlock();
407}
408
409static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt,
410		       struct netlink_ext_ack *extack)
411{
412	struct fq_pie_sched_data *q = qdisc_priv(sch);
413	int err;
414	u32 idx;
415
416	pie_params_init(&q->p_params);
417	sch->limit = 10 * 1024;
418	q->p_params.limit = sch->limit;
419	q->quantum = psched_mtu(qdisc_dev(sch));
420	q->sch = sch;
421	q->ecn_prob = 10;
422	q->flows_cnt = 1024;
423	q->memory_limit = SZ_32M;
424
425	INIT_LIST_HEAD(&q->new_flows);
426	INIT_LIST_HEAD(&q->old_flows);
427	timer_setup(&q->adapt_timer, fq_pie_timer, 0);
428
429	if (opt) {
430		err = fq_pie_change(sch, opt, extack);
431
432		if (err)
433			return err;
434	}
435
436	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
437	if (err)
438		goto init_failure;
439
440	q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow),
441			    GFP_KERNEL);
442	if (!q->flows) {
443		err = -ENOMEM;
444		goto init_failure;
445	}
446	for (idx = 0; idx < q->flows_cnt; idx++) {
447		struct fq_pie_flow *flow = q->flows + idx;
448
449		INIT_LIST_HEAD(&flow->flowchain);
450		pie_vars_init(&flow->vars);
451	}
452
453	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
454
455	return 0;
456
457init_failure:
458	q->flows_cnt = 0;
459
460	return err;
461}
462
463static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb)
464{
465	struct fq_pie_sched_data *q = qdisc_priv(sch);
466	struct nlattr *opts;
467
468	opts = nla_nest_start(skb, TCA_OPTIONS);
469	if (!opts)
470		return -EMSGSIZE;
471
472	/* convert target from pschedtime to us */
473	if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, sch->limit) ||
474	    nla_put_u32(skb, TCA_FQ_PIE_FLOWS, q->flows_cnt) ||
475	    nla_put_u32(skb, TCA_FQ_PIE_TARGET,
476			((u32)PSCHED_TICKS2NS(q->p_params.target)) /
477			NSEC_PER_USEC) ||
478	    nla_put_u32(skb, TCA_FQ_PIE_TUPDATE,
479			jiffies_to_usecs(q->p_params.tupdate)) ||
480	    nla_put_u32(skb, TCA_FQ_PIE_ALPHA, q->p_params.alpha) ||
481	    nla_put_u32(skb, TCA_FQ_PIE_BETA, q->p_params.beta) ||
482	    nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, q->quantum) ||
483	    nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT, q->memory_limit) ||
484	    nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, q->ecn_prob) ||
485	    nla_put_u32(skb, TCA_FQ_PIE_ECN, q->p_params.ecn) ||
486	    nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, q->p_params.bytemode) ||
487	    nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR,
488			q->p_params.dq_rate_estimator))
489		goto nla_put_failure;
490
491	return nla_nest_end(skb, opts);
492
493nla_put_failure:
494	nla_nest_cancel(skb, opts);
495	return -EMSGSIZE;
496}
497
498static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
499{
500	struct fq_pie_sched_data *q = qdisc_priv(sch);
501	struct tc_fq_pie_xstats st = {
502		.packets_in	= q->stats.packets_in,
503		.overlimit	= q->stats.overlimit,
504		.overmemory	= q->overmemory,
505		.dropped	= q->stats.dropped,
506		.ecn_mark	= q->stats.ecn_mark,
507		.new_flow_count = q->new_flow_count,
508		.memory_usage   = q->memory_usage,
509	};
510	struct list_head *pos;
511
512	sch_tree_lock(sch);
513	list_for_each(pos, &q->new_flows)
514		st.new_flows_len++;
515
516	list_for_each(pos, &q->old_flows)
517		st.old_flows_len++;
518	sch_tree_unlock(sch);
519
520	return gnet_stats_copy_app(d, &st, sizeof(st));
521}
522
523static void fq_pie_reset(struct Qdisc *sch)
524{
525	struct fq_pie_sched_data *q = qdisc_priv(sch);
526	u32 idx;
527
528	INIT_LIST_HEAD(&q->new_flows);
529	INIT_LIST_HEAD(&q->old_flows);
530	for (idx = 0; idx < q->flows_cnt; idx++) {
531		struct fq_pie_flow *flow = q->flows + idx;
532
533		/* Removes all packets from flow */
534		rtnl_kfree_skbs(flow->head, flow->tail);
535		flow->head = NULL;
536
537		INIT_LIST_HEAD(&flow->flowchain);
538		pie_vars_init(&flow->vars);
539	}
540}
541
542static void fq_pie_destroy(struct Qdisc *sch)
543{
544	struct fq_pie_sched_data *q = qdisc_priv(sch);
545
546	tcf_block_put(q->block);
547	q->p_params.tupdate = 0;
548	del_timer_sync(&q->adapt_timer);
549	kvfree(q->flows);
550}
551
552static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = {
553	.id		= "fq_pie",
554	.priv_size	= sizeof(struct fq_pie_sched_data),
555	.enqueue	= fq_pie_qdisc_enqueue,
556	.dequeue	= fq_pie_qdisc_dequeue,
557	.peek		= qdisc_peek_dequeued,
558	.init		= fq_pie_init,
559	.destroy	= fq_pie_destroy,
560	.reset		= fq_pie_reset,
561	.change		= fq_pie_change,
562	.dump		= fq_pie_dump,
563	.dump_stats	= fq_pie_dump_stats,
564	.owner		= THIS_MODULE,
565};
566
567static int __init fq_pie_module_init(void)
568{
569	return register_qdisc(&fq_pie_qdisc_ops);
570}
571
572static void __exit fq_pie_module_exit(void)
573{
574	unregister_qdisc(&fq_pie_qdisc_ops);
575}
576
577module_init(fq_pie_module_init);
578module_exit(fq_pie_module_exit);
579
580MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)");
581MODULE_AUTHOR("Mohit P. Tahiliani");
582MODULE_LICENSE("GPL");