Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
   6#include <linux/bsearch.h>
   7
   8DEFINE_MUTEX(sched_domains_mutex);
   9
  10/* Protected by sched_domains_mutex: */
  11static cpumask_var_t sched_domains_tmpmask;
  12static cpumask_var_t sched_domains_tmpmask2;
  13
  14#ifdef CONFIG_SCHED_DEBUG
  15
  16static int __init sched_debug_setup(char *str)
  17{
  18	sched_debug_verbose = true;
  19
  20	return 0;
  21}
  22early_param("sched_verbose", sched_debug_setup);
  23
  24static inline bool sched_debug(void)
  25{
  26	return sched_debug_verbose;
  27}
  28
  29#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  30const struct sd_flag_debug sd_flag_debug[] = {
  31#include <linux/sched/sd_flags.h>
  32};
  33#undef SD_FLAG
  34
  35static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  36				  struct cpumask *groupmask)
  37{
  38	struct sched_group *group = sd->groups;
  39	unsigned long flags = sd->flags;
  40	unsigned int idx;
  41
  42	cpumask_clear(groupmask);
  43
  44	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  45	printk(KERN_CONT "span=%*pbl level=%s\n",
  46	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  47
  48	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  49		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  50	}
  51	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  52		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  53	}
  54
  55	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  56		unsigned int flag = BIT(idx);
  57		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  58
  59		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  60		    !(sd->child->flags & flag))
  61			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  62			       sd_flag_debug[idx].name);
  63
  64		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  65		    !(sd->parent->flags & flag))
  66			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  67			       sd_flag_debug[idx].name);
  68	}
  69
  70	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  71	do {
  72		if (!group) {
  73			printk("\n");
  74			printk(KERN_ERR "ERROR: group is NULL\n");
  75			break;
  76		}
  77
  78		if (cpumask_empty(sched_group_span(group))) {
  79			printk(KERN_CONT "\n");
  80			printk(KERN_ERR "ERROR: empty group\n");
  81			break;
  82		}
  83
  84		if (!(sd->flags & SD_OVERLAP) &&
  85		    cpumask_intersects(groupmask, sched_group_span(group))) {
  86			printk(KERN_CONT "\n");
  87			printk(KERN_ERR "ERROR: repeated CPUs\n");
  88			break;
  89		}
  90
  91		cpumask_or(groupmask, groupmask, sched_group_span(group));
  92
  93		printk(KERN_CONT " %d:{ span=%*pbl",
  94				group->sgc->id,
  95				cpumask_pr_args(sched_group_span(group)));
  96
  97		if ((sd->flags & SD_OVERLAP) &&
  98		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  99			printk(KERN_CONT " mask=%*pbl",
 100				cpumask_pr_args(group_balance_mask(group)));
 101		}
 102
 103		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 104			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 105
 106		if (group == sd->groups && sd->child &&
 107		    !cpumask_equal(sched_domain_span(sd->child),
 108				   sched_group_span(group))) {
 109			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 110		}
 111
 112		printk(KERN_CONT " }");
 113
 114		group = group->next;
 115
 116		if (group != sd->groups)
 117			printk(KERN_CONT ",");
 118
 119	} while (group != sd->groups);
 120	printk(KERN_CONT "\n");
 121
 122	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 123		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 124
 125	if (sd->parent &&
 126	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 127		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 128	return 0;
 129}
 130
 131static void sched_domain_debug(struct sched_domain *sd, int cpu)
 132{
 133	int level = 0;
 134
 135	if (!sched_debug_verbose)
 136		return;
 137
 138	if (!sd) {
 139		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 140		return;
 141	}
 142
 143	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 144
 145	for (;;) {
 146		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 147			break;
 148		level++;
 149		sd = sd->parent;
 150		if (!sd)
 151			break;
 152	}
 153}
 154#else /* !CONFIG_SCHED_DEBUG */
 155
 156# define sched_debug_verbose 0
 157# define sched_domain_debug(sd, cpu) do { } while (0)
 158static inline bool sched_debug(void)
 159{
 160	return false;
 161}
 162#endif /* CONFIG_SCHED_DEBUG */
 163
 164/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 165#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 166static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 167#include <linux/sched/sd_flags.h>
 1680;
 169#undef SD_FLAG
 170
 171static int sd_degenerate(struct sched_domain *sd)
 172{
 173	if (cpumask_weight(sched_domain_span(sd)) == 1)
 174		return 1;
 175
 176	/* Following flags need at least 2 groups */
 177	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 178	    (sd->groups != sd->groups->next))
 179		return 0;
 180
 181	/* Following flags don't use groups */
 182	if (sd->flags & (SD_WAKE_AFFINE))
 183		return 0;
 184
 185	return 1;
 186}
 187
 188static int
 189sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 190{
 191	unsigned long cflags = sd->flags, pflags = parent->flags;
 192
 193	if (sd_degenerate(parent))
 194		return 1;
 195
 196	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 197		return 0;
 198
 199	/* Flags needing groups don't count if only 1 group in parent */
 200	if (parent->groups == parent->groups->next)
 201		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 202
 203	if (~cflags & pflags)
 204		return 0;
 205
 206	return 1;
 207}
 208
 209#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 210DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 211static unsigned int sysctl_sched_energy_aware = 1;
 212static DEFINE_MUTEX(sched_energy_mutex);
 213static bool sched_energy_update;
 214
 215static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
 216{
 217	bool any_asym_capacity = false;
 218	struct cpufreq_policy *policy;
 219	struct cpufreq_governor *gov;
 220	int i;
 221
 222	/* EAS is enabled for asymmetric CPU capacity topologies. */
 223	for_each_cpu(i, cpu_mask) {
 224		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
 225			any_asym_capacity = true;
 226			break;
 227		}
 228	}
 229	if (!any_asym_capacity) {
 230		if (sched_debug()) {
 231			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
 232				cpumask_pr_args(cpu_mask));
 233		}
 234		return false;
 235	}
 236
 237	/* EAS definitely does *not* handle SMT */
 238	if (sched_smt_active()) {
 239		if (sched_debug()) {
 240			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
 241				cpumask_pr_args(cpu_mask));
 242		}
 243		return false;
 244	}
 245
 246	if (!arch_scale_freq_invariant()) {
 247		if (sched_debug()) {
 248			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
 249				cpumask_pr_args(cpu_mask));
 250		}
 251		return false;
 252	}
 253
 254	/* Do not attempt EAS if schedutil is not being used. */
 255	for_each_cpu(i, cpu_mask) {
 256		policy = cpufreq_cpu_get(i);
 257		if (!policy) {
 258			if (sched_debug()) {
 259				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
 260					cpumask_pr_args(cpu_mask), i);
 261			}
 262			return false;
 263		}
 264		gov = policy->governor;
 265		cpufreq_cpu_put(policy);
 266		if (gov != &schedutil_gov) {
 267			if (sched_debug()) {
 268				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
 269					cpumask_pr_args(cpu_mask));
 270			}
 271			return false;
 272		}
 273	}
 274
 275	return true;
 276}
 277
 278void rebuild_sched_domains_energy(void)
 279{
 280	mutex_lock(&sched_energy_mutex);
 281	sched_energy_update = true;
 282	rebuild_sched_domains();
 283	sched_energy_update = false;
 284	mutex_unlock(&sched_energy_mutex);
 285}
 286
 287#ifdef CONFIG_PROC_SYSCTL
 288static int sched_energy_aware_handler(struct ctl_table *table, int write,
 289		void *buffer, size_t *lenp, loff_t *ppos)
 290{
 291	int ret, state;
 292
 293	if (write && !capable(CAP_SYS_ADMIN))
 294		return -EPERM;
 295
 296	if (!sched_is_eas_possible(cpu_active_mask)) {
 297		if (write) {
 298			return -EOPNOTSUPP;
 299		} else {
 300			*lenp = 0;
 301			return 0;
 302		}
 303	}
 304
 305	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 306	if (!ret && write) {
 307		state = static_branch_unlikely(&sched_energy_present);
 308		if (state != sysctl_sched_energy_aware)
 309			rebuild_sched_domains_energy();
 310	}
 311
 312	return ret;
 313}
 314
 315static struct ctl_table sched_energy_aware_sysctls[] = {
 316	{
 317		.procname       = "sched_energy_aware",
 318		.data           = &sysctl_sched_energy_aware,
 319		.maxlen         = sizeof(unsigned int),
 320		.mode           = 0644,
 321		.proc_handler   = sched_energy_aware_handler,
 322		.extra1         = SYSCTL_ZERO,
 323		.extra2         = SYSCTL_ONE,
 324	},
 325	{}
 326};
 327
 328static int __init sched_energy_aware_sysctl_init(void)
 329{
 330	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 331	return 0;
 332}
 333
 334late_initcall(sched_energy_aware_sysctl_init);
 335#endif
 336
 337static void free_pd(struct perf_domain *pd)
 338{
 339	struct perf_domain *tmp;
 340
 341	while (pd) {
 342		tmp = pd->next;
 343		kfree(pd);
 344		pd = tmp;
 345	}
 346}
 347
 348static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 349{
 350	while (pd) {
 351		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 352			return pd;
 353		pd = pd->next;
 354	}
 355
 356	return NULL;
 357}
 358
 359static struct perf_domain *pd_init(int cpu)
 360{
 361	struct em_perf_domain *obj = em_cpu_get(cpu);
 362	struct perf_domain *pd;
 363
 364	if (!obj) {
 365		if (sched_debug())
 366			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 367		return NULL;
 368	}
 369
 370	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 371	if (!pd)
 372		return NULL;
 373	pd->em_pd = obj;
 374
 375	return pd;
 376}
 377
 378static void perf_domain_debug(const struct cpumask *cpu_map,
 379						struct perf_domain *pd)
 380{
 381	if (!sched_debug() || !pd)
 382		return;
 383
 384	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 385
 386	while (pd) {
 387		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 388				cpumask_first(perf_domain_span(pd)),
 389				cpumask_pr_args(perf_domain_span(pd)),
 390				em_pd_nr_perf_states(pd->em_pd));
 391		pd = pd->next;
 392	}
 393
 394	printk(KERN_CONT "\n");
 395}
 396
 397static void destroy_perf_domain_rcu(struct rcu_head *rp)
 398{
 399	struct perf_domain *pd;
 400
 401	pd = container_of(rp, struct perf_domain, rcu);
 402	free_pd(pd);
 403}
 404
 405static void sched_energy_set(bool has_eas)
 406{
 407	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 408		if (sched_debug())
 409			pr_info("%s: stopping EAS\n", __func__);
 410		static_branch_disable_cpuslocked(&sched_energy_present);
 411	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 412		if (sched_debug())
 413			pr_info("%s: starting EAS\n", __func__);
 414		static_branch_enable_cpuslocked(&sched_energy_present);
 415	}
 416}
 417
 418/*
 419 * EAS can be used on a root domain if it meets all the following conditions:
 420 *    1. an Energy Model (EM) is available;
 421 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 422 *    3. no SMT is detected.
 423 *    4. schedutil is driving the frequency of all CPUs of the rd;
 424 *    5. frequency invariance support is present;
 425 */
 426static bool build_perf_domains(const struct cpumask *cpu_map)
 427{
 428	int i;
 429	struct perf_domain *pd = NULL, *tmp;
 430	int cpu = cpumask_first(cpu_map);
 431	struct root_domain *rd = cpu_rq(cpu)->rd;
 432
 433	if (!sysctl_sched_energy_aware)
 434		goto free;
 435
 436	if (!sched_is_eas_possible(cpu_map))
 437		goto free;
 438
 439	for_each_cpu(i, cpu_map) {
 440		/* Skip already covered CPUs. */
 441		if (find_pd(pd, i))
 442			continue;
 443
 444		/* Create the new pd and add it to the local list. */
 445		tmp = pd_init(i);
 446		if (!tmp)
 447			goto free;
 448		tmp->next = pd;
 449		pd = tmp;
 450	}
 451
 452	perf_domain_debug(cpu_map, pd);
 453
 454	/* Attach the new list of performance domains to the root domain. */
 455	tmp = rd->pd;
 456	rcu_assign_pointer(rd->pd, pd);
 457	if (tmp)
 458		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 459
 460	return !!pd;
 461
 462free:
 463	free_pd(pd);
 464	tmp = rd->pd;
 465	rcu_assign_pointer(rd->pd, NULL);
 466	if (tmp)
 467		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 468
 469	return false;
 470}
 471#else
 472static void free_pd(struct perf_domain *pd) { }
 473#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 474
 475static void free_rootdomain(struct rcu_head *rcu)
 476{
 477	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 478
 479	cpupri_cleanup(&rd->cpupri);
 480	cpudl_cleanup(&rd->cpudl);
 481	free_cpumask_var(rd->dlo_mask);
 482	free_cpumask_var(rd->rto_mask);
 483	free_cpumask_var(rd->online);
 484	free_cpumask_var(rd->span);
 485	free_pd(rd->pd);
 486	kfree(rd);
 487}
 488
 489void rq_attach_root(struct rq *rq, struct root_domain *rd)
 490{
 491	struct root_domain *old_rd = NULL;
 492	struct rq_flags rf;
 493
 494	rq_lock_irqsave(rq, &rf);
 495
 496	if (rq->rd) {
 497		old_rd = rq->rd;
 498
 499		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 500			set_rq_offline(rq);
 501
 502		cpumask_clear_cpu(rq->cpu, old_rd->span);
 503
 504		/*
 505		 * If we dont want to free the old_rd yet then
 506		 * set old_rd to NULL to skip the freeing later
 507		 * in this function:
 508		 */
 509		if (!atomic_dec_and_test(&old_rd->refcount))
 510			old_rd = NULL;
 511	}
 512
 513	atomic_inc(&rd->refcount);
 514	rq->rd = rd;
 515
 516	cpumask_set_cpu(rq->cpu, rd->span);
 517	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 518		set_rq_online(rq);
 519
 520	rq_unlock_irqrestore(rq, &rf);
 521
 522	if (old_rd)
 523		call_rcu(&old_rd->rcu, free_rootdomain);
 524}
 525
 526void sched_get_rd(struct root_domain *rd)
 527{
 528	atomic_inc(&rd->refcount);
 529}
 530
 531void sched_put_rd(struct root_domain *rd)
 532{
 533	if (!atomic_dec_and_test(&rd->refcount))
 534		return;
 535
 536	call_rcu(&rd->rcu, free_rootdomain);
 537}
 538
 539static int init_rootdomain(struct root_domain *rd)
 540{
 541	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 542		goto out;
 543	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 544		goto free_span;
 545	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 546		goto free_online;
 547	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 548		goto free_dlo_mask;
 549
 550#ifdef HAVE_RT_PUSH_IPI
 551	rd->rto_cpu = -1;
 552	raw_spin_lock_init(&rd->rto_lock);
 553	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 554#endif
 555
 556	rd->visit_gen = 0;
 557	init_dl_bw(&rd->dl_bw);
 558	if (cpudl_init(&rd->cpudl) != 0)
 559		goto free_rto_mask;
 560
 561	if (cpupri_init(&rd->cpupri) != 0)
 562		goto free_cpudl;
 563	return 0;
 564
 565free_cpudl:
 566	cpudl_cleanup(&rd->cpudl);
 567free_rto_mask:
 568	free_cpumask_var(rd->rto_mask);
 569free_dlo_mask:
 570	free_cpumask_var(rd->dlo_mask);
 571free_online:
 572	free_cpumask_var(rd->online);
 573free_span:
 574	free_cpumask_var(rd->span);
 575out:
 576	return -ENOMEM;
 577}
 578
 579/*
 580 * By default the system creates a single root-domain with all CPUs as
 581 * members (mimicking the global state we have today).
 582 */
 583struct root_domain def_root_domain;
 584
 585void __init init_defrootdomain(void)
 586{
 587	init_rootdomain(&def_root_domain);
 588
 589	atomic_set(&def_root_domain.refcount, 1);
 590}
 591
 592static struct root_domain *alloc_rootdomain(void)
 593{
 594	struct root_domain *rd;
 595
 596	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 597	if (!rd)
 598		return NULL;
 599
 600	if (init_rootdomain(rd) != 0) {
 601		kfree(rd);
 602		return NULL;
 603	}
 604
 605	return rd;
 606}
 607
 608static void free_sched_groups(struct sched_group *sg, int free_sgc)
 609{
 610	struct sched_group *tmp, *first;
 611
 612	if (!sg)
 613		return;
 614
 615	first = sg;
 616	do {
 617		tmp = sg->next;
 618
 619		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 620			kfree(sg->sgc);
 621
 622		if (atomic_dec_and_test(&sg->ref))
 623			kfree(sg);
 624		sg = tmp;
 625	} while (sg != first);
 626}
 627
 628static void destroy_sched_domain(struct sched_domain *sd)
 629{
 630	/*
 631	 * A normal sched domain may have multiple group references, an
 632	 * overlapping domain, having private groups, only one.  Iterate,
 633	 * dropping group/capacity references, freeing where none remain.
 634	 */
 635	free_sched_groups(sd->groups, 1);
 636
 637	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 638		kfree(sd->shared);
 639	kfree(sd);
 640}
 641
 642static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 643{
 644	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 645
 646	while (sd) {
 647		struct sched_domain *parent = sd->parent;
 648		destroy_sched_domain(sd);
 649		sd = parent;
 650	}
 651}
 652
 653static void destroy_sched_domains(struct sched_domain *sd)
 654{
 655	if (sd)
 656		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 657}
 658
 659/*
 660 * Keep a special pointer to the highest sched_domain that has
 661 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 662 * allows us to avoid some pointer chasing select_idle_sibling().
 663 *
 664 * Also keep a unique ID per domain (we use the first CPU number in
 665 * the cpumask of the domain), this allows us to quickly tell if
 666 * two CPUs are in the same cache domain, see cpus_share_cache().
 667 */
 668DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 669DEFINE_PER_CPU(int, sd_llc_size);
 670DEFINE_PER_CPU(int, sd_llc_id);
 671DEFINE_PER_CPU(int, sd_share_id);
 672DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 673DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 674DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 675DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 676
 677DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 678DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
 679
 680static void update_top_cache_domain(int cpu)
 681{
 682	struct sched_domain_shared *sds = NULL;
 683	struct sched_domain *sd;
 684	int id = cpu;
 685	int size = 1;
 686
 687	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 688	if (sd) {
 689		id = cpumask_first(sched_domain_span(sd));
 690		size = cpumask_weight(sched_domain_span(sd));
 691		sds = sd->shared;
 692	}
 693
 694	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 695	per_cpu(sd_llc_size, cpu) = size;
 696	per_cpu(sd_llc_id, cpu) = id;
 697	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 698
 699	sd = lowest_flag_domain(cpu, SD_CLUSTER);
 700	if (sd)
 701		id = cpumask_first(sched_domain_span(sd));
 702
 703	/*
 704	 * This assignment should be placed after the sd_llc_id as
 705	 * we want this id equals to cluster id on cluster machines
 706	 * but equals to LLC id on non-Cluster machines.
 707	 */
 708	per_cpu(sd_share_id, cpu) = id;
 709
 710	sd = lowest_flag_domain(cpu, SD_NUMA);
 711	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 712
 713	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 714	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 715
 716	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 717	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 718}
 719
 720/*
 721 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 722 * hold the hotplug lock.
 723 */
 724static void
 725cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 726{
 727	struct rq *rq = cpu_rq(cpu);
 728	struct sched_domain *tmp;
 729
 730	/* Remove the sched domains which do not contribute to scheduling. */
 731	for (tmp = sd; tmp; ) {
 732		struct sched_domain *parent = tmp->parent;
 733		if (!parent)
 734			break;
 735
 736		if (sd_parent_degenerate(tmp, parent)) {
 737			tmp->parent = parent->parent;
 738
 739			if (parent->parent) {
 740				parent->parent->child = tmp;
 741				parent->parent->groups->flags = tmp->flags;
 742			}
 743
 744			/*
 745			 * Transfer SD_PREFER_SIBLING down in case of a
 746			 * degenerate parent; the spans match for this
 747			 * so the property transfers.
 748			 */
 749			if (parent->flags & SD_PREFER_SIBLING)
 750				tmp->flags |= SD_PREFER_SIBLING;
 751			destroy_sched_domain(parent);
 752		} else
 753			tmp = tmp->parent;
 754	}
 755
 756	if (sd && sd_degenerate(sd)) {
 757		tmp = sd;
 758		sd = sd->parent;
 759		destroy_sched_domain(tmp);
 760		if (sd) {
 761			struct sched_group *sg = sd->groups;
 762
 763			/*
 764			 * sched groups hold the flags of the child sched
 765			 * domain for convenience. Clear such flags since
 766			 * the child is being destroyed.
 767			 */
 768			do {
 769				sg->flags = 0;
 770			} while (sg != sd->groups);
 771
 772			sd->child = NULL;
 773		}
 774	}
 775
 776	sched_domain_debug(sd, cpu);
 777
 778	rq_attach_root(rq, rd);
 779	tmp = rq->sd;
 780	rcu_assign_pointer(rq->sd, sd);
 781	dirty_sched_domain_sysctl(cpu);
 782	destroy_sched_domains(tmp);
 783
 784	update_top_cache_domain(cpu);
 785}
 786
 787struct s_data {
 788	struct sched_domain * __percpu *sd;
 789	struct root_domain	*rd;
 790};
 791
 792enum s_alloc {
 793	sa_rootdomain,
 794	sa_sd,
 795	sa_sd_storage,
 796	sa_none,
 797};
 798
 799/*
 800 * Return the canonical balance CPU for this group, this is the first CPU
 801 * of this group that's also in the balance mask.
 802 *
 803 * The balance mask are all those CPUs that could actually end up at this
 804 * group. See build_balance_mask().
 805 *
 806 * Also see should_we_balance().
 807 */
 808int group_balance_cpu(struct sched_group *sg)
 809{
 810	return cpumask_first(group_balance_mask(sg));
 811}
 812
 813
 814/*
 815 * NUMA topology (first read the regular topology blurb below)
 816 *
 817 * Given a node-distance table, for example:
 818 *
 819 *   node   0   1   2   3
 820 *     0:  10  20  30  20
 821 *     1:  20  10  20  30
 822 *     2:  30  20  10  20
 823 *     3:  20  30  20  10
 824 *
 825 * which represents a 4 node ring topology like:
 826 *
 827 *   0 ----- 1
 828 *   |       |
 829 *   |       |
 830 *   |       |
 831 *   3 ----- 2
 832 *
 833 * We want to construct domains and groups to represent this. The way we go
 834 * about doing this is to build the domains on 'hops'. For each NUMA level we
 835 * construct the mask of all nodes reachable in @level hops.
 836 *
 837 * For the above NUMA topology that gives 3 levels:
 838 *
 839 * NUMA-2	0-3		0-3		0-3		0-3
 840 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 841 *
 842 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 843 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 844 *
 845 * NUMA-0	0		1		2		3
 846 *
 847 *
 848 * As can be seen; things don't nicely line up as with the regular topology.
 849 * When we iterate a domain in child domain chunks some nodes can be
 850 * represented multiple times -- hence the "overlap" naming for this part of
 851 * the topology.
 852 *
 853 * In order to minimize this overlap, we only build enough groups to cover the
 854 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 855 *
 856 * Because:
 857 *
 858 *  - the first group of each domain is its child domain; this
 859 *    gets us the first 0-1,3
 860 *  - the only uncovered node is 2, who's child domain is 1-3.
 861 *
 862 * However, because of the overlap, computing a unique CPU for each group is
 863 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 864 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 865 * end up at those groups (they would end up in group: 0-1,3).
 866 *
 867 * To correct this we have to introduce the group balance mask. This mask
 868 * will contain those CPUs in the group that can reach this group given the
 869 * (child) domain tree.
 870 *
 871 * With this we can once again compute balance_cpu and sched_group_capacity
 872 * relations.
 873 *
 874 * XXX include words on how balance_cpu is unique and therefore can be
 875 * used for sched_group_capacity links.
 876 *
 877 *
 878 * Another 'interesting' topology is:
 879 *
 880 *   node   0   1   2   3
 881 *     0:  10  20  20  30
 882 *     1:  20  10  20  20
 883 *     2:  20  20  10  20
 884 *     3:  30  20  20  10
 885 *
 886 * Which looks a little like:
 887 *
 888 *   0 ----- 1
 889 *   |     / |
 890 *   |   /   |
 891 *   | /     |
 892 *   2 ----- 3
 893 *
 894 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 895 * are not.
 896 *
 897 * This leads to a few particularly weird cases where the sched_domain's are
 898 * not of the same number for each CPU. Consider:
 899 *
 900 * NUMA-2	0-3						0-3
 901 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 902 *
 903 * NUMA-1	0-2		0-3		0-3		1-3
 904 *
 905 * NUMA-0	0		1		2		3
 906 *
 907 */
 908
 909
 910/*
 911 * Build the balance mask; it contains only those CPUs that can arrive at this
 912 * group and should be considered to continue balancing.
 913 *
 914 * We do this during the group creation pass, therefore the group information
 915 * isn't complete yet, however since each group represents a (child) domain we
 916 * can fully construct this using the sched_domain bits (which are already
 917 * complete).
 918 */
 919static void
 920build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 921{
 922	const struct cpumask *sg_span = sched_group_span(sg);
 923	struct sd_data *sdd = sd->private;
 924	struct sched_domain *sibling;
 925	int i;
 926
 927	cpumask_clear(mask);
 928
 929	for_each_cpu(i, sg_span) {
 930		sibling = *per_cpu_ptr(sdd->sd, i);
 931
 932		/*
 933		 * Can happen in the asymmetric case, where these siblings are
 934		 * unused. The mask will not be empty because those CPUs that
 935		 * do have the top domain _should_ span the domain.
 936		 */
 937		if (!sibling->child)
 938			continue;
 939
 940		/* If we would not end up here, we can't continue from here */
 941		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 942			continue;
 943
 944		cpumask_set_cpu(i, mask);
 945	}
 946
 947	/* We must not have empty masks here */
 948	WARN_ON_ONCE(cpumask_empty(mask));
 949}
 950
 951/*
 952 * XXX: This creates per-node group entries; since the load-balancer will
 953 * immediately access remote memory to construct this group's load-balance
 954 * statistics having the groups node local is of dubious benefit.
 955 */
 956static struct sched_group *
 957build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 958{
 959	struct sched_group *sg;
 960	struct cpumask *sg_span;
 961
 962	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 963			GFP_KERNEL, cpu_to_node(cpu));
 964
 965	if (!sg)
 966		return NULL;
 967
 968	sg_span = sched_group_span(sg);
 969	if (sd->child) {
 970		cpumask_copy(sg_span, sched_domain_span(sd->child));
 971		sg->flags = sd->child->flags;
 972	} else {
 973		cpumask_copy(sg_span, sched_domain_span(sd));
 974	}
 975
 976	atomic_inc(&sg->ref);
 977	return sg;
 978}
 979
 980static void init_overlap_sched_group(struct sched_domain *sd,
 981				     struct sched_group *sg)
 982{
 983	struct cpumask *mask = sched_domains_tmpmask2;
 984	struct sd_data *sdd = sd->private;
 985	struct cpumask *sg_span;
 986	int cpu;
 987
 988	build_balance_mask(sd, sg, mask);
 989	cpu = cpumask_first(mask);
 990
 991	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 992	if (atomic_inc_return(&sg->sgc->ref) == 1)
 993		cpumask_copy(group_balance_mask(sg), mask);
 994	else
 995		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 996
 997	/*
 998	 * Initialize sgc->capacity such that even if we mess up the
 999	 * domains and no possible iteration will get us here, we won't
1000	 * die on a /0 trap.
1001	 */
1002	sg_span = sched_group_span(sg);
1003	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1004	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1005	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1006}
1007
1008static struct sched_domain *
1009find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1010{
1011	/*
1012	 * The proper descendant would be the one whose child won't span out
1013	 * of sd
1014	 */
1015	while (sibling->child &&
1016	       !cpumask_subset(sched_domain_span(sibling->child),
1017			       sched_domain_span(sd)))
1018		sibling = sibling->child;
1019
1020	/*
1021	 * As we are referencing sgc across different topology level, we need
1022	 * to go down to skip those sched_domains which don't contribute to
1023	 * scheduling because they will be degenerated in cpu_attach_domain
1024	 */
1025	while (sibling->child &&
1026	       cpumask_equal(sched_domain_span(sibling->child),
1027			     sched_domain_span(sibling)))
1028		sibling = sibling->child;
1029
1030	return sibling;
1031}
1032
1033static int
1034build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1035{
1036	struct sched_group *first = NULL, *last = NULL, *sg;
1037	const struct cpumask *span = sched_domain_span(sd);
1038	struct cpumask *covered = sched_domains_tmpmask;
1039	struct sd_data *sdd = sd->private;
1040	struct sched_domain *sibling;
1041	int i;
1042
1043	cpumask_clear(covered);
1044
1045	for_each_cpu_wrap(i, span, cpu) {
1046		struct cpumask *sg_span;
1047
1048		if (cpumask_test_cpu(i, covered))
1049			continue;
1050
1051		sibling = *per_cpu_ptr(sdd->sd, i);
1052
1053		/*
1054		 * Asymmetric node setups can result in situations where the
1055		 * domain tree is of unequal depth, make sure to skip domains
1056		 * that already cover the entire range.
1057		 *
1058		 * In that case build_sched_domains() will have terminated the
1059		 * iteration early and our sibling sd spans will be empty.
1060		 * Domains should always include the CPU they're built on, so
1061		 * check that.
1062		 */
1063		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1064			continue;
1065
1066		/*
1067		 * Usually we build sched_group by sibling's child sched_domain
1068		 * But for machines whose NUMA diameter are 3 or above, we move
1069		 * to build sched_group by sibling's proper descendant's child
1070		 * domain because sibling's child sched_domain will span out of
1071		 * the sched_domain being built as below.
1072		 *
1073		 * Smallest diameter=3 topology is:
1074		 *
1075		 *   node   0   1   2   3
1076		 *     0:  10  20  30  40
1077		 *     1:  20  10  20  30
1078		 *     2:  30  20  10  20
1079		 *     3:  40  30  20  10
1080		 *
1081		 *   0 --- 1 --- 2 --- 3
1082		 *
1083		 * NUMA-3       0-3             N/A             N/A             0-3
1084		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1085		 *
1086		 * NUMA-2       0-2             0-3             0-3             1-3
1087		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1088		 *
1089		 * NUMA-1       0-1             0-2             1-3             2-3
1090		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1091		 *
1092		 * NUMA-0       0               1               2               3
1093		 *
1094		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1095		 * group span isn't a subset of the domain span.
1096		 */
1097		if (sibling->child &&
1098		    !cpumask_subset(sched_domain_span(sibling->child), span))
1099			sibling = find_descended_sibling(sd, sibling);
1100
1101		sg = build_group_from_child_sched_domain(sibling, cpu);
1102		if (!sg)
1103			goto fail;
1104
1105		sg_span = sched_group_span(sg);
1106		cpumask_or(covered, covered, sg_span);
1107
1108		init_overlap_sched_group(sibling, sg);
1109
1110		if (!first)
1111			first = sg;
1112		if (last)
1113			last->next = sg;
1114		last = sg;
1115		last->next = first;
1116	}
1117	sd->groups = first;
1118
1119	return 0;
1120
1121fail:
1122	free_sched_groups(first, 0);
1123
1124	return -ENOMEM;
1125}
1126
1127
1128/*
1129 * Package topology (also see the load-balance blurb in fair.c)
1130 *
1131 * The scheduler builds a tree structure to represent a number of important
1132 * topology features. By default (default_topology[]) these include:
1133 *
1134 *  - Simultaneous multithreading (SMT)
1135 *  - Multi-Core Cache (MC)
1136 *  - Package (PKG)
1137 *
1138 * Where the last one more or less denotes everything up to a NUMA node.
1139 *
1140 * The tree consists of 3 primary data structures:
1141 *
1142 *	sched_domain -> sched_group -> sched_group_capacity
1143 *	    ^ ^             ^ ^
1144 *          `-'             `-'
1145 *
1146 * The sched_domains are per-CPU and have a two way link (parent & child) and
1147 * denote the ever growing mask of CPUs belonging to that level of topology.
1148 *
1149 * Each sched_domain has a circular (double) linked list of sched_group's, each
1150 * denoting the domains of the level below (or individual CPUs in case of the
1151 * first domain level). The sched_group linked by a sched_domain includes the
1152 * CPU of that sched_domain [*].
1153 *
1154 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1155 *
1156 * CPU   0   1   2   3   4   5   6   7
1157 *
1158 * PKG  [                             ]
1159 * MC   [             ] [             ]
1160 * SMT  [     ] [     ] [     ] [     ]
1161 *
1162 *  - or -
1163 *
1164 * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1165 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1166 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1167 *
1168 * CPU   0   1   2   3   4   5   6   7
1169 *
1170 * One way to think about it is: sched_domain moves you up and down among these
1171 * topology levels, while sched_group moves you sideways through it, at child
1172 * domain granularity.
1173 *
1174 * sched_group_capacity ensures each unique sched_group has shared storage.
1175 *
1176 * There are two related construction problems, both require a CPU that
1177 * uniquely identify each group (for a given domain):
1178 *
1179 *  - The first is the balance_cpu (see should_we_balance() and the
1180 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1181 *    continue balancing at a higher domain.
1182 *
1183 *  - The second is the sched_group_capacity; we want all identical groups
1184 *    to share a single sched_group_capacity.
1185 *
1186 * Since these topologies are exclusive by construction. That is, its
1187 * impossible for an SMT thread to belong to multiple cores, and cores to
1188 * be part of multiple caches. There is a very clear and unique location
1189 * for each CPU in the hierarchy.
1190 *
1191 * Therefore computing a unique CPU for each group is trivial (the iteration
1192 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1193 * group), we can simply pick the first CPU in each group.
1194 *
1195 *
1196 * [*] in other words, the first group of each domain is its child domain.
1197 */
1198
1199static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1200{
1201	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1202	struct sched_domain *child = sd->child;
1203	struct sched_group *sg;
1204	bool already_visited;
1205
1206	if (child)
1207		cpu = cpumask_first(sched_domain_span(child));
1208
1209	sg = *per_cpu_ptr(sdd->sg, cpu);
1210	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1211
1212	/* Increase refcounts for claim_allocations: */
1213	already_visited = atomic_inc_return(&sg->ref) > 1;
1214	/* sgc visits should follow a similar trend as sg */
1215	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1216
1217	/* If we have already visited that group, it's already initialized. */
1218	if (already_visited)
1219		return sg;
1220
1221	if (child) {
1222		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1223		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1224		sg->flags = child->flags;
1225	} else {
1226		cpumask_set_cpu(cpu, sched_group_span(sg));
1227		cpumask_set_cpu(cpu, group_balance_mask(sg));
1228	}
1229
1230	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1231	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1232	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1233
1234	return sg;
1235}
1236
1237/*
1238 * build_sched_groups will build a circular linked list of the groups
1239 * covered by the given span, will set each group's ->cpumask correctly,
1240 * and will initialize their ->sgc.
1241 *
1242 * Assumes the sched_domain tree is fully constructed
1243 */
1244static int
1245build_sched_groups(struct sched_domain *sd, int cpu)
1246{
1247	struct sched_group *first = NULL, *last = NULL;
1248	struct sd_data *sdd = sd->private;
1249	const struct cpumask *span = sched_domain_span(sd);
1250	struct cpumask *covered;
1251	int i;
1252
1253	lockdep_assert_held(&sched_domains_mutex);
1254	covered = sched_domains_tmpmask;
1255
1256	cpumask_clear(covered);
1257
1258	for_each_cpu_wrap(i, span, cpu) {
1259		struct sched_group *sg;
1260
1261		if (cpumask_test_cpu(i, covered))
1262			continue;
1263
1264		sg = get_group(i, sdd);
1265
1266		cpumask_or(covered, covered, sched_group_span(sg));
1267
1268		if (!first)
1269			first = sg;
1270		if (last)
1271			last->next = sg;
1272		last = sg;
1273	}
1274	last->next = first;
1275	sd->groups = first;
1276
1277	return 0;
1278}
1279
1280/*
1281 * Initialize sched groups cpu_capacity.
1282 *
1283 * cpu_capacity indicates the capacity of sched group, which is used while
1284 * distributing the load between different sched groups in a sched domain.
1285 * Typically cpu_capacity for all the groups in a sched domain will be same
1286 * unless there are asymmetries in the topology. If there are asymmetries,
1287 * group having more cpu_capacity will pickup more load compared to the
1288 * group having less cpu_capacity.
1289 */
1290static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1291{
1292	struct sched_group *sg = sd->groups;
1293	struct cpumask *mask = sched_domains_tmpmask2;
1294
1295	WARN_ON(!sg);
1296
1297	do {
1298		int cpu, cores = 0, max_cpu = -1;
1299
1300		sg->group_weight = cpumask_weight(sched_group_span(sg));
1301
1302		cpumask_copy(mask, sched_group_span(sg));
1303		for_each_cpu(cpu, mask) {
1304			cores++;
1305#ifdef CONFIG_SCHED_SMT
1306			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1307#endif
1308		}
1309		sg->cores = cores;
1310
1311		if (!(sd->flags & SD_ASYM_PACKING))
1312			goto next;
1313
1314		for_each_cpu(cpu, sched_group_span(sg)) {
1315			if (max_cpu < 0)
1316				max_cpu = cpu;
1317			else if (sched_asym_prefer(cpu, max_cpu))
1318				max_cpu = cpu;
1319		}
1320		sg->asym_prefer_cpu = max_cpu;
1321
1322next:
1323		sg = sg->next;
1324	} while (sg != sd->groups);
1325
1326	if (cpu != group_balance_cpu(sg))
1327		return;
1328
1329	update_group_capacity(sd, cpu);
1330}
1331
1332/*
1333 * Asymmetric CPU capacity bits
1334 */
1335struct asym_cap_data {
1336	struct list_head link;
1337	unsigned long capacity;
1338	unsigned long cpus[];
1339};
1340
1341/*
1342 * Set of available CPUs grouped by their corresponding capacities
1343 * Each list entry contains a CPU mask reflecting CPUs that share the same
1344 * capacity.
1345 * The lifespan of data is unlimited.
1346 */
1347static LIST_HEAD(asym_cap_list);
1348
1349#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1350
1351/*
1352 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1353 * Provides sd_flags reflecting the asymmetry scope.
1354 */
1355static inline int
1356asym_cpu_capacity_classify(const struct cpumask *sd_span,
1357			   const struct cpumask *cpu_map)
1358{
1359	struct asym_cap_data *entry;
1360	int count = 0, miss = 0;
1361
1362	/*
1363	 * Count how many unique CPU capacities this domain spans across
1364	 * (compare sched_domain CPUs mask with ones representing  available
1365	 * CPUs capacities). Take into account CPUs that might be offline:
1366	 * skip those.
1367	 */
1368	list_for_each_entry(entry, &asym_cap_list, link) {
1369		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1370			++count;
1371		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1372			++miss;
1373	}
1374
1375	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1376
1377	/* No asymmetry detected */
1378	if (count < 2)
1379		return 0;
1380	/* Some of the available CPU capacity values have not been detected */
1381	if (miss)
1382		return SD_ASYM_CPUCAPACITY;
1383
1384	/* Full asymmetry */
1385	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1386
1387}
1388
1389static inline void asym_cpu_capacity_update_data(int cpu)
1390{
1391	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1392	struct asym_cap_data *entry = NULL;
1393
1394	list_for_each_entry(entry, &asym_cap_list, link) {
1395		if (capacity == entry->capacity)
1396			goto done;
1397	}
1398
1399	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1400	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1401		return;
1402	entry->capacity = capacity;
1403	list_add(&entry->link, &asym_cap_list);
1404done:
1405	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1406}
1407
1408/*
1409 * Build-up/update list of CPUs grouped by their capacities
1410 * An update requires explicit request to rebuild sched domains
1411 * with state indicating CPU topology changes.
1412 */
1413static void asym_cpu_capacity_scan(void)
1414{
1415	struct asym_cap_data *entry, *next;
1416	int cpu;
1417
1418	list_for_each_entry(entry, &asym_cap_list, link)
1419		cpumask_clear(cpu_capacity_span(entry));
1420
1421	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1422		asym_cpu_capacity_update_data(cpu);
1423
1424	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1425		if (cpumask_empty(cpu_capacity_span(entry))) {
1426			list_del(&entry->link);
1427			kfree(entry);
1428		}
1429	}
1430
1431	/*
1432	 * Only one capacity value has been detected i.e. this system is symmetric.
1433	 * No need to keep this data around.
1434	 */
1435	if (list_is_singular(&asym_cap_list)) {
1436		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1437		list_del(&entry->link);
1438		kfree(entry);
1439	}
1440}
1441
1442/*
1443 * Initializers for schedule domains
1444 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1445 */
1446
1447static int default_relax_domain_level = -1;
1448int sched_domain_level_max;
1449
1450static int __init setup_relax_domain_level(char *str)
1451{
1452	if (kstrtoint(str, 0, &default_relax_domain_level))
1453		pr_warn("Unable to set relax_domain_level\n");
1454
1455	return 1;
1456}
1457__setup("relax_domain_level=", setup_relax_domain_level);
1458
1459static void set_domain_attribute(struct sched_domain *sd,
1460				 struct sched_domain_attr *attr)
1461{
1462	int request;
1463
1464	if (!attr || attr->relax_domain_level < 0) {
1465		if (default_relax_domain_level < 0)
1466			return;
1467		request = default_relax_domain_level;
1468	} else
1469		request = attr->relax_domain_level;
1470
1471	if (sd->level > request) {
1472		/* Turn off idle balance on this domain: */
1473		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1474	}
1475}
1476
1477static void __sdt_free(const struct cpumask *cpu_map);
1478static int __sdt_alloc(const struct cpumask *cpu_map);
1479
1480static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1481				 const struct cpumask *cpu_map)
1482{
1483	switch (what) {
1484	case sa_rootdomain:
1485		if (!atomic_read(&d->rd->refcount))
1486			free_rootdomain(&d->rd->rcu);
1487		fallthrough;
1488	case sa_sd:
1489		free_percpu(d->sd);
1490		fallthrough;
1491	case sa_sd_storage:
1492		__sdt_free(cpu_map);
1493		fallthrough;
1494	case sa_none:
1495		break;
1496	}
1497}
1498
1499static enum s_alloc
1500__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1501{
1502	memset(d, 0, sizeof(*d));
1503
1504	if (__sdt_alloc(cpu_map))
1505		return sa_sd_storage;
1506	d->sd = alloc_percpu(struct sched_domain *);
1507	if (!d->sd)
1508		return sa_sd_storage;
1509	d->rd = alloc_rootdomain();
1510	if (!d->rd)
1511		return sa_sd;
1512
1513	return sa_rootdomain;
1514}
1515
1516/*
1517 * NULL the sd_data elements we've used to build the sched_domain and
1518 * sched_group structure so that the subsequent __free_domain_allocs()
1519 * will not free the data we're using.
1520 */
1521static void claim_allocations(int cpu, struct sched_domain *sd)
1522{
1523	struct sd_data *sdd = sd->private;
1524
1525	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1526	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1527
1528	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1529		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1530
1531	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1532		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1533
1534	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1535		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1536}
1537
1538#ifdef CONFIG_NUMA
1539enum numa_topology_type sched_numa_topology_type;
1540
1541static int			sched_domains_numa_levels;
1542static int			sched_domains_curr_level;
1543
1544int				sched_max_numa_distance;
1545static int			*sched_domains_numa_distance;
1546static struct cpumask		***sched_domains_numa_masks;
1547#endif
1548
1549/*
1550 * SD_flags allowed in topology descriptions.
1551 *
1552 * These flags are purely descriptive of the topology and do not prescribe
1553 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1554 * function:
1555 *
1556 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1557 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1558 *   SD_NUMA                - describes NUMA topologies
1559 *
1560 * Odd one out, which beside describing the topology has a quirk also
1561 * prescribes the desired behaviour that goes along with it:
1562 *
1563 *   SD_ASYM_PACKING        - describes SMT quirks
1564 */
1565#define TOPOLOGY_SD_FLAGS		\
1566	(SD_SHARE_CPUCAPACITY	|	\
1567	 SD_CLUSTER		|	\
1568	 SD_SHARE_PKG_RESOURCES |	\
1569	 SD_NUMA		|	\
1570	 SD_ASYM_PACKING)
1571
1572static struct sched_domain *
1573sd_init(struct sched_domain_topology_level *tl,
1574	const struct cpumask *cpu_map,
1575	struct sched_domain *child, int cpu)
1576{
1577	struct sd_data *sdd = &tl->data;
1578	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1579	int sd_id, sd_weight, sd_flags = 0;
1580	struct cpumask *sd_span;
1581
1582#ifdef CONFIG_NUMA
1583	/*
1584	 * Ugly hack to pass state to sd_numa_mask()...
1585	 */
1586	sched_domains_curr_level = tl->numa_level;
1587#endif
1588
1589	sd_weight = cpumask_weight(tl->mask(cpu));
1590
1591	if (tl->sd_flags)
1592		sd_flags = (*tl->sd_flags)();
1593	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1594			"wrong sd_flags in topology description\n"))
1595		sd_flags &= TOPOLOGY_SD_FLAGS;
1596
1597	*sd = (struct sched_domain){
1598		.min_interval		= sd_weight,
1599		.max_interval		= 2*sd_weight,
1600		.busy_factor		= 16,
1601		.imbalance_pct		= 117,
1602
1603		.cache_nice_tries	= 0,
1604
1605		.flags			= 1*SD_BALANCE_NEWIDLE
1606					| 1*SD_BALANCE_EXEC
1607					| 1*SD_BALANCE_FORK
1608					| 0*SD_BALANCE_WAKE
1609					| 1*SD_WAKE_AFFINE
1610					| 0*SD_SHARE_CPUCAPACITY
1611					| 0*SD_SHARE_PKG_RESOURCES
1612					| 0*SD_SERIALIZE
1613					| 1*SD_PREFER_SIBLING
1614					| 0*SD_NUMA
1615					| sd_flags
1616					,
1617
1618		.last_balance		= jiffies,
1619		.balance_interval	= sd_weight,
1620		.max_newidle_lb_cost	= 0,
1621		.last_decay_max_lb_cost	= jiffies,
1622		.child			= child,
1623#ifdef CONFIG_SCHED_DEBUG
1624		.name			= tl->name,
1625#endif
1626	};
1627
1628	sd_span = sched_domain_span(sd);
1629	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1630	sd_id = cpumask_first(sd_span);
1631
1632	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1633
1634	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1635		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1636		  "CPU capacity asymmetry not supported on SMT\n");
1637
1638	/*
1639	 * Convert topological properties into behaviour.
1640	 */
1641	/* Don't attempt to spread across CPUs of different capacities. */
1642	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1643		sd->child->flags &= ~SD_PREFER_SIBLING;
1644
1645	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1646		sd->imbalance_pct = 110;
1647
1648	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1649		sd->imbalance_pct = 117;
1650		sd->cache_nice_tries = 1;
1651
1652#ifdef CONFIG_NUMA
1653	} else if (sd->flags & SD_NUMA) {
1654		sd->cache_nice_tries = 2;
1655
1656		sd->flags &= ~SD_PREFER_SIBLING;
1657		sd->flags |= SD_SERIALIZE;
1658		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1659			sd->flags &= ~(SD_BALANCE_EXEC |
1660				       SD_BALANCE_FORK |
1661				       SD_WAKE_AFFINE);
1662		}
1663
1664#endif
1665	} else {
1666		sd->cache_nice_tries = 1;
1667	}
1668
1669	/*
1670	 * For all levels sharing cache; connect a sched_domain_shared
1671	 * instance.
1672	 */
1673	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1674		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1675		atomic_inc(&sd->shared->ref);
1676		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1677	}
1678
1679	sd->private = sdd;
1680
1681	return sd;
1682}
1683
1684/*
1685 * Topology list, bottom-up.
1686 */
1687static struct sched_domain_topology_level default_topology[] = {
1688#ifdef CONFIG_SCHED_SMT
1689	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1690#endif
1691
1692#ifdef CONFIG_SCHED_CLUSTER
1693	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1694#endif
1695
1696#ifdef CONFIG_SCHED_MC
1697	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1698#endif
1699	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1700	{ NULL, },
1701};
1702
1703static struct sched_domain_topology_level *sched_domain_topology =
1704	default_topology;
1705static struct sched_domain_topology_level *sched_domain_topology_saved;
1706
1707#define for_each_sd_topology(tl)			\
1708	for (tl = sched_domain_topology; tl->mask; tl++)
1709
1710void __init set_sched_topology(struct sched_domain_topology_level *tl)
1711{
1712	if (WARN_ON_ONCE(sched_smp_initialized))
1713		return;
1714
1715	sched_domain_topology = tl;
1716	sched_domain_topology_saved = NULL;
1717}
1718
1719#ifdef CONFIG_NUMA
1720
1721static const struct cpumask *sd_numa_mask(int cpu)
1722{
1723	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1724}
1725
1726static void sched_numa_warn(const char *str)
1727{
1728	static int done = false;
1729	int i,j;
1730
1731	if (done)
1732		return;
1733
1734	done = true;
1735
1736	printk(KERN_WARNING "ERROR: %s\n\n", str);
1737
1738	for (i = 0; i < nr_node_ids; i++) {
1739		printk(KERN_WARNING "  ");
1740		for (j = 0; j < nr_node_ids; j++) {
1741			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1742				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1743			else
1744				printk(KERN_CONT " %02d  ", node_distance(i,j));
1745		}
1746		printk(KERN_CONT "\n");
1747	}
1748	printk(KERN_WARNING "\n");
1749}
1750
1751bool find_numa_distance(int distance)
1752{
1753	bool found = false;
1754	int i, *distances;
1755
1756	if (distance == node_distance(0, 0))
1757		return true;
1758
1759	rcu_read_lock();
1760	distances = rcu_dereference(sched_domains_numa_distance);
1761	if (!distances)
1762		goto unlock;
1763	for (i = 0; i < sched_domains_numa_levels; i++) {
1764		if (distances[i] == distance) {
1765			found = true;
1766			break;
1767		}
1768	}
1769unlock:
1770	rcu_read_unlock();
1771
1772	return found;
1773}
1774
1775#define for_each_cpu_node_but(n, nbut)		\
1776	for_each_node_state(n, N_CPU)		\
1777		if (n == nbut)			\
1778			continue;		\
1779		else
1780
1781/*
1782 * A system can have three types of NUMA topology:
1783 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1784 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1785 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1786 *
1787 * The difference between a glueless mesh topology and a backplane
1788 * topology lies in whether communication between not directly
1789 * connected nodes goes through intermediary nodes (where programs
1790 * could run), or through backplane controllers. This affects
1791 * placement of programs.
1792 *
1793 * The type of topology can be discerned with the following tests:
1794 * - If the maximum distance between any nodes is 1 hop, the system
1795 *   is directly connected.
1796 * - If for two nodes A and B, located N > 1 hops away from each other,
1797 *   there is an intermediary node C, which is < N hops away from both
1798 *   nodes A and B, the system is a glueless mesh.
1799 */
1800static void init_numa_topology_type(int offline_node)
1801{
1802	int a, b, c, n;
1803
1804	n = sched_max_numa_distance;
1805
1806	if (sched_domains_numa_levels <= 2) {
1807		sched_numa_topology_type = NUMA_DIRECT;
1808		return;
1809	}
1810
1811	for_each_cpu_node_but(a, offline_node) {
1812		for_each_cpu_node_but(b, offline_node) {
1813			/* Find two nodes furthest removed from each other. */
1814			if (node_distance(a, b) < n)
1815				continue;
1816
1817			/* Is there an intermediary node between a and b? */
1818			for_each_cpu_node_but(c, offline_node) {
1819				if (node_distance(a, c) < n &&
1820				    node_distance(b, c) < n) {
1821					sched_numa_topology_type =
1822							NUMA_GLUELESS_MESH;
1823					return;
1824				}
1825			}
1826
1827			sched_numa_topology_type = NUMA_BACKPLANE;
1828			return;
1829		}
1830	}
1831
1832	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1833	sched_numa_topology_type = NUMA_DIRECT;
1834}
1835
1836
1837#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1838
1839void sched_init_numa(int offline_node)
1840{
1841	struct sched_domain_topology_level *tl;
1842	unsigned long *distance_map;
1843	int nr_levels = 0;
1844	int i, j;
1845	int *distances;
1846	struct cpumask ***masks;
1847
1848	/*
1849	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1850	 * unique distances in the node_distance() table.
1851	 */
1852	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1853	if (!distance_map)
1854		return;
1855
1856	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1857	for_each_cpu_node_but(i, offline_node) {
1858		for_each_cpu_node_but(j, offline_node) {
1859			int distance = node_distance(i, j);
1860
1861			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1862				sched_numa_warn("Invalid distance value range");
1863				bitmap_free(distance_map);
1864				return;
1865			}
1866
1867			bitmap_set(distance_map, distance, 1);
1868		}
1869	}
1870	/*
1871	 * We can now figure out how many unique distance values there are and
1872	 * allocate memory accordingly.
1873	 */
1874	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1875
1876	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1877	if (!distances) {
1878		bitmap_free(distance_map);
1879		return;
1880	}
1881
1882	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1883		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1884		distances[i] = j;
1885	}
1886	rcu_assign_pointer(sched_domains_numa_distance, distances);
1887
1888	bitmap_free(distance_map);
1889
1890	/*
1891	 * 'nr_levels' contains the number of unique distances
1892	 *
1893	 * The sched_domains_numa_distance[] array includes the actual distance
1894	 * numbers.
1895	 */
1896
1897	/*
1898	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1899	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1900	 * the array will contain less then 'nr_levels' members. This could be
1901	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1902	 * in other functions.
1903	 *
1904	 * We reset it to 'nr_levels' at the end of this function.
1905	 */
1906	sched_domains_numa_levels = 0;
1907
1908	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1909	if (!masks)
1910		return;
1911
1912	/*
1913	 * Now for each level, construct a mask per node which contains all
1914	 * CPUs of nodes that are that many hops away from us.
1915	 */
1916	for (i = 0; i < nr_levels; i++) {
1917		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1918		if (!masks[i])
1919			return;
1920
1921		for_each_cpu_node_but(j, offline_node) {
1922			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1923			int k;
1924
1925			if (!mask)
1926				return;
1927
1928			masks[i][j] = mask;
1929
1930			for_each_cpu_node_but(k, offline_node) {
1931				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1932					sched_numa_warn("Node-distance not symmetric");
1933
1934				if (node_distance(j, k) > sched_domains_numa_distance[i])
1935					continue;
1936
1937				cpumask_or(mask, mask, cpumask_of_node(k));
1938			}
1939		}
1940	}
1941	rcu_assign_pointer(sched_domains_numa_masks, masks);
1942
1943	/* Compute default topology size */
1944	for (i = 0; sched_domain_topology[i].mask; i++);
1945
1946	tl = kzalloc((i + nr_levels + 1) *
1947			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1948	if (!tl)
1949		return;
1950
1951	/*
1952	 * Copy the default topology bits..
1953	 */
1954	for (i = 0; sched_domain_topology[i].mask; i++)
1955		tl[i] = sched_domain_topology[i];
1956
1957	/*
1958	 * Add the NUMA identity distance, aka single NODE.
1959	 */
1960	tl[i++] = (struct sched_domain_topology_level){
1961		.mask = sd_numa_mask,
1962		.numa_level = 0,
1963		SD_INIT_NAME(NODE)
1964	};
1965
1966	/*
1967	 * .. and append 'j' levels of NUMA goodness.
1968	 */
1969	for (j = 1; j < nr_levels; i++, j++) {
1970		tl[i] = (struct sched_domain_topology_level){
1971			.mask = sd_numa_mask,
1972			.sd_flags = cpu_numa_flags,
1973			.flags = SDTL_OVERLAP,
1974			.numa_level = j,
1975			SD_INIT_NAME(NUMA)
1976		};
1977	}
1978
1979	sched_domain_topology_saved = sched_domain_topology;
1980	sched_domain_topology = tl;
1981
1982	sched_domains_numa_levels = nr_levels;
1983	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1984
1985	init_numa_topology_type(offline_node);
1986}
1987
1988
1989static void sched_reset_numa(void)
1990{
1991	int nr_levels, *distances;
1992	struct cpumask ***masks;
1993
1994	nr_levels = sched_domains_numa_levels;
1995	sched_domains_numa_levels = 0;
1996	sched_max_numa_distance = 0;
1997	sched_numa_topology_type = NUMA_DIRECT;
1998	distances = sched_domains_numa_distance;
1999	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2000	masks = sched_domains_numa_masks;
2001	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2002	if (distances || masks) {
2003		int i, j;
2004
2005		synchronize_rcu();
2006		kfree(distances);
2007		for (i = 0; i < nr_levels && masks; i++) {
2008			if (!masks[i])
2009				continue;
2010			for_each_node(j)
2011				kfree(masks[i][j]);
2012			kfree(masks[i]);
2013		}
2014		kfree(masks);
2015	}
2016	if (sched_domain_topology_saved) {
2017		kfree(sched_domain_topology);
2018		sched_domain_topology = sched_domain_topology_saved;
2019		sched_domain_topology_saved = NULL;
2020	}
2021}
2022
2023/*
2024 * Call with hotplug lock held
2025 */
2026void sched_update_numa(int cpu, bool online)
2027{
2028	int node;
2029
2030	node = cpu_to_node(cpu);
2031	/*
2032	 * Scheduler NUMA topology is updated when the first CPU of a
2033	 * node is onlined or the last CPU of a node is offlined.
2034	 */
2035	if (cpumask_weight(cpumask_of_node(node)) != 1)
2036		return;
2037
2038	sched_reset_numa();
2039	sched_init_numa(online ? NUMA_NO_NODE : node);
2040}
2041
2042void sched_domains_numa_masks_set(unsigned int cpu)
2043{
2044	int node = cpu_to_node(cpu);
2045	int i, j;
2046
2047	for (i = 0; i < sched_domains_numa_levels; i++) {
2048		for (j = 0; j < nr_node_ids; j++) {
2049			if (!node_state(j, N_CPU))
2050				continue;
2051
2052			/* Set ourselves in the remote node's masks */
2053			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2054				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2055		}
2056	}
2057}
2058
2059void sched_domains_numa_masks_clear(unsigned int cpu)
2060{
2061	int i, j;
2062
2063	for (i = 0; i < sched_domains_numa_levels; i++) {
2064		for (j = 0; j < nr_node_ids; j++) {
2065			if (sched_domains_numa_masks[i][j])
2066				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2067		}
2068	}
2069}
2070
2071/*
2072 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2073 *                             closest to @cpu from @cpumask.
2074 * cpumask: cpumask to find a cpu from
2075 * cpu: cpu to be close to
2076 *
2077 * returns: cpu, or nr_cpu_ids when nothing found.
2078 */
2079int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2080{
2081	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2082	struct cpumask ***masks;
2083
2084	rcu_read_lock();
2085	masks = rcu_dereference(sched_domains_numa_masks);
2086	if (!masks)
2087		goto unlock;
2088	for (i = 0; i < sched_domains_numa_levels; i++) {
2089		if (!masks[i][j])
2090			break;
2091		cpu = cpumask_any_and(cpus, masks[i][j]);
2092		if (cpu < nr_cpu_ids) {
2093			found = cpu;
2094			break;
2095		}
2096	}
2097unlock:
2098	rcu_read_unlock();
2099
2100	return found;
2101}
2102
2103struct __cmp_key {
2104	const struct cpumask *cpus;
2105	struct cpumask ***masks;
2106	int node;
2107	int cpu;
2108	int w;
2109};
2110
2111static int hop_cmp(const void *a, const void *b)
2112{
2113	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2114	struct __cmp_key *k = (struct __cmp_key *)a;
2115
2116	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2117		return 1;
2118
2119	if (b == k->masks) {
2120		k->w = 0;
2121		return 0;
2122	}
2123
2124	prev_hop = *((struct cpumask ***)b - 1);
2125	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2126	if (k->w <= k->cpu)
2127		return 0;
2128
2129	return -1;
2130}
2131
2132/**
2133 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2134 *                             from @cpus to @cpu, taking into account distance
2135 *                             from a given @node.
2136 * @cpus: cpumask to find a cpu from
2137 * @cpu: CPU to start searching
2138 * @node: NUMA node to order CPUs by distance
2139 *
2140 * Return: cpu, or nr_cpu_ids when nothing found.
2141 */
2142int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2143{
2144	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2145	struct cpumask ***hop_masks;
2146	int hop, ret = nr_cpu_ids;
2147
2148	if (node == NUMA_NO_NODE)
2149		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2150
2151	rcu_read_lock();
2152
2153	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2154	node = numa_nearest_node(node, N_CPU);
2155	k.node = node;
2156
2157	k.masks = rcu_dereference(sched_domains_numa_masks);
2158	if (!k.masks)
2159		goto unlock;
2160
2161	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2162	hop = hop_masks	- k.masks;
2163
2164	ret = hop ?
2165		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2166		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2167unlock:
2168	rcu_read_unlock();
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2172
2173/**
2174 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2175 *                         @node
2176 * @node: The node to count hops from.
2177 * @hops: Include CPUs up to that many hops away. 0 means local node.
2178 *
2179 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2180 * @node, an error value otherwise.
2181 *
2182 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2183 * read-side section, copy it if required beyond that.
2184 *
2185 * Note that not all hops are equal in distance; see sched_init_numa() for how
2186 * distances and masks are handled.
2187 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2188 * during the lifetime of the system (offline nodes are taken out of the masks).
2189 */
2190const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2191{
2192	struct cpumask ***masks;
2193
2194	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2195		return ERR_PTR(-EINVAL);
2196
2197	masks = rcu_dereference(sched_domains_numa_masks);
2198	if (!masks)
2199		return ERR_PTR(-EBUSY);
2200
2201	return masks[hops][node];
2202}
2203EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2204
2205#endif /* CONFIG_NUMA */
2206
2207static int __sdt_alloc(const struct cpumask *cpu_map)
2208{
2209	struct sched_domain_topology_level *tl;
2210	int j;
2211
2212	for_each_sd_topology(tl) {
2213		struct sd_data *sdd = &tl->data;
2214
2215		sdd->sd = alloc_percpu(struct sched_domain *);
2216		if (!sdd->sd)
2217			return -ENOMEM;
2218
2219		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2220		if (!sdd->sds)
2221			return -ENOMEM;
2222
2223		sdd->sg = alloc_percpu(struct sched_group *);
2224		if (!sdd->sg)
2225			return -ENOMEM;
2226
2227		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2228		if (!sdd->sgc)
2229			return -ENOMEM;
2230
2231		for_each_cpu(j, cpu_map) {
2232			struct sched_domain *sd;
2233			struct sched_domain_shared *sds;
2234			struct sched_group *sg;
2235			struct sched_group_capacity *sgc;
2236
2237			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2238					GFP_KERNEL, cpu_to_node(j));
2239			if (!sd)
2240				return -ENOMEM;
2241
2242			*per_cpu_ptr(sdd->sd, j) = sd;
2243
2244			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2245					GFP_KERNEL, cpu_to_node(j));
2246			if (!sds)
2247				return -ENOMEM;
2248
2249			*per_cpu_ptr(sdd->sds, j) = sds;
2250
2251			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2252					GFP_KERNEL, cpu_to_node(j));
2253			if (!sg)
2254				return -ENOMEM;
2255
2256			sg->next = sg;
2257
2258			*per_cpu_ptr(sdd->sg, j) = sg;
2259
2260			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2261					GFP_KERNEL, cpu_to_node(j));
2262			if (!sgc)
2263				return -ENOMEM;
2264
2265#ifdef CONFIG_SCHED_DEBUG
2266			sgc->id = j;
2267#endif
2268
2269			*per_cpu_ptr(sdd->sgc, j) = sgc;
2270		}
2271	}
2272
2273	return 0;
2274}
2275
2276static void __sdt_free(const struct cpumask *cpu_map)
2277{
2278	struct sched_domain_topology_level *tl;
2279	int j;
2280
2281	for_each_sd_topology(tl) {
2282		struct sd_data *sdd = &tl->data;
2283
2284		for_each_cpu(j, cpu_map) {
2285			struct sched_domain *sd;
2286
2287			if (sdd->sd) {
2288				sd = *per_cpu_ptr(sdd->sd, j);
2289				if (sd && (sd->flags & SD_OVERLAP))
2290					free_sched_groups(sd->groups, 0);
2291				kfree(*per_cpu_ptr(sdd->sd, j));
2292			}
2293
2294			if (sdd->sds)
2295				kfree(*per_cpu_ptr(sdd->sds, j));
2296			if (sdd->sg)
2297				kfree(*per_cpu_ptr(sdd->sg, j));
2298			if (sdd->sgc)
2299				kfree(*per_cpu_ptr(sdd->sgc, j));
2300		}
2301		free_percpu(sdd->sd);
2302		sdd->sd = NULL;
2303		free_percpu(sdd->sds);
2304		sdd->sds = NULL;
2305		free_percpu(sdd->sg);
2306		sdd->sg = NULL;
2307		free_percpu(sdd->sgc);
2308		sdd->sgc = NULL;
2309	}
2310}
2311
2312static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2313		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2314		struct sched_domain *child, int cpu)
2315{
2316	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2317
2318	if (child) {
2319		sd->level = child->level + 1;
2320		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2321		child->parent = sd;
2322
2323		if (!cpumask_subset(sched_domain_span(child),
2324				    sched_domain_span(sd))) {
2325			pr_err("BUG: arch topology borken\n");
2326#ifdef CONFIG_SCHED_DEBUG
2327			pr_err("     the %s domain not a subset of the %s domain\n",
2328					child->name, sd->name);
2329#endif
2330			/* Fixup, ensure @sd has at least @child CPUs. */
2331			cpumask_or(sched_domain_span(sd),
2332				   sched_domain_span(sd),
2333				   sched_domain_span(child));
2334		}
2335
2336	}
2337	set_domain_attribute(sd, attr);
2338
2339	return sd;
2340}
2341
2342/*
2343 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2344 * any two given CPUs at this (non-NUMA) topology level.
2345 */
2346static bool topology_span_sane(struct sched_domain_topology_level *tl,
2347			      const struct cpumask *cpu_map, int cpu)
2348{
2349	int i;
2350
2351	/* NUMA levels are allowed to overlap */
2352	if (tl->flags & SDTL_OVERLAP)
2353		return true;
2354
2355	/*
2356	 * Non-NUMA levels cannot partially overlap - they must be either
2357	 * completely equal or completely disjoint. Otherwise we can end up
2358	 * breaking the sched_group lists - i.e. a later get_group() pass
2359	 * breaks the linking done for an earlier span.
2360	 */
2361	for_each_cpu(i, cpu_map) {
2362		if (i == cpu)
2363			continue;
2364		/*
2365		 * We should 'and' all those masks with 'cpu_map' to exactly
2366		 * match the topology we're about to build, but that can only
2367		 * remove CPUs, which only lessens our ability to detect
2368		 * overlaps
2369		 */
2370		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2371		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2372			return false;
2373	}
2374
2375	return true;
2376}
2377
2378/*
2379 * Build sched domains for a given set of CPUs and attach the sched domains
2380 * to the individual CPUs
2381 */
2382static int
2383build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2384{
2385	enum s_alloc alloc_state = sa_none;
2386	struct sched_domain *sd;
2387	struct s_data d;
2388	struct rq *rq = NULL;
2389	int i, ret = -ENOMEM;
2390	bool has_asym = false;
2391	bool has_cluster = false;
2392
2393	if (WARN_ON(cpumask_empty(cpu_map)))
2394		goto error;
2395
2396	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2397	if (alloc_state != sa_rootdomain)
2398		goto error;
2399
2400	/* Set up domains for CPUs specified by the cpu_map: */
2401	for_each_cpu(i, cpu_map) {
2402		struct sched_domain_topology_level *tl;
2403
2404		sd = NULL;
2405		for_each_sd_topology(tl) {
2406
2407			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2408				goto error;
2409
2410			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2411
2412			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2413
2414			if (tl == sched_domain_topology)
2415				*per_cpu_ptr(d.sd, i) = sd;
2416			if (tl->flags & SDTL_OVERLAP)
2417				sd->flags |= SD_OVERLAP;
2418			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2419				break;
2420		}
2421	}
2422
2423	/* Build the groups for the domains */
2424	for_each_cpu(i, cpu_map) {
2425		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2426			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2427			if (sd->flags & SD_OVERLAP) {
2428				if (build_overlap_sched_groups(sd, i))
2429					goto error;
2430			} else {
2431				if (build_sched_groups(sd, i))
2432					goto error;
2433			}
2434		}
2435	}
2436
2437	/*
2438	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2439	 * imbalanced.
2440	 */
2441	for_each_cpu(i, cpu_map) {
2442		unsigned int imb = 0;
2443		unsigned int imb_span = 1;
2444
2445		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2446			struct sched_domain *child = sd->child;
2447
2448			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2449			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2450				struct sched_domain __rcu *top_p;
2451				unsigned int nr_llcs;
2452
2453				/*
2454				 * For a single LLC per node, allow an
2455				 * imbalance up to 12.5% of the node. This is
2456				 * arbitrary cutoff based two factors -- SMT and
2457				 * memory channels. For SMT-2, the intent is to
2458				 * avoid premature sharing of HT resources but
2459				 * SMT-4 or SMT-8 *may* benefit from a different
2460				 * cutoff. For memory channels, this is a very
2461				 * rough estimate of how many channels may be
2462				 * active and is based on recent CPUs with
2463				 * many cores.
2464				 *
2465				 * For multiple LLCs, allow an imbalance
2466				 * until multiple tasks would share an LLC
2467				 * on one node while LLCs on another node
2468				 * remain idle. This assumes that there are
2469				 * enough logical CPUs per LLC to avoid SMT
2470				 * factors and that there is a correlation
2471				 * between LLCs and memory channels.
2472				 */
2473				nr_llcs = sd->span_weight / child->span_weight;
2474				if (nr_llcs == 1)
2475					imb = sd->span_weight >> 3;
2476				else
2477					imb = nr_llcs;
2478				imb = max(1U, imb);
2479				sd->imb_numa_nr = imb;
2480
2481				/* Set span based on the first NUMA domain. */
2482				top_p = sd->parent;
2483				while (top_p && !(top_p->flags & SD_NUMA)) {
2484					top_p = top_p->parent;
2485				}
2486				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2487			} else {
2488				int factor = max(1U, (sd->span_weight / imb_span));
2489
2490				sd->imb_numa_nr = imb * factor;
2491			}
2492		}
2493	}
2494
2495	/* Calculate CPU capacity for physical packages and nodes */
2496	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2497		if (!cpumask_test_cpu(i, cpu_map))
2498			continue;
2499
2500		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2501			claim_allocations(i, sd);
2502			init_sched_groups_capacity(i, sd);
2503		}
2504	}
2505
2506	/* Attach the domains */
2507	rcu_read_lock();
2508	for_each_cpu(i, cpu_map) {
2509		unsigned long capacity;
2510
2511		rq = cpu_rq(i);
2512		sd = *per_cpu_ptr(d.sd, i);
2513
2514		capacity = arch_scale_cpu_capacity(i);
2515		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2516		if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
2517			WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
2518
2519		cpu_attach_domain(sd, d.rd, i);
2520
2521		if (lowest_flag_domain(i, SD_CLUSTER))
2522			has_cluster = true;
2523	}
2524	rcu_read_unlock();
2525
2526	if (has_asym)
2527		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2528
2529	if (has_cluster)
2530		static_branch_inc_cpuslocked(&sched_cluster_active);
2531
2532	if (rq && sched_debug_verbose) {
2533		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2534			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2535	}
2536
2537	ret = 0;
2538error:
2539	__free_domain_allocs(&d, alloc_state, cpu_map);
2540
2541	return ret;
2542}
2543
2544/* Current sched domains: */
2545static cpumask_var_t			*doms_cur;
2546
2547/* Number of sched domains in 'doms_cur': */
2548static int				ndoms_cur;
2549
2550/* Attributes of custom domains in 'doms_cur' */
2551static struct sched_domain_attr		*dattr_cur;
2552
2553/*
2554 * Special case: If a kmalloc() of a doms_cur partition (array of
2555 * cpumask) fails, then fallback to a single sched domain,
2556 * as determined by the single cpumask fallback_doms.
2557 */
2558static cpumask_var_t			fallback_doms;
2559
2560/*
2561 * arch_update_cpu_topology lets virtualized architectures update the
2562 * CPU core maps. It is supposed to return 1 if the topology changed
2563 * or 0 if it stayed the same.
2564 */
2565int __weak arch_update_cpu_topology(void)
2566{
2567	return 0;
2568}
2569
2570cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2571{
2572	int i;
2573	cpumask_var_t *doms;
2574
2575	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2576	if (!doms)
2577		return NULL;
2578	for (i = 0; i < ndoms; i++) {
2579		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580			free_sched_domains(doms, i);
2581			return NULL;
2582		}
2583	}
2584	return doms;
2585}
2586
2587void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2588{
2589	unsigned int i;
2590	for (i = 0; i < ndoms; i++)
2591		free_cpumask_var(doms[i]);
2592	kfree(doms);
2593}
2594
2595/*
2596 * Set up scheduler domains and groups.  For now this just excludes isolated
2597 * CPUs, but could be used to exclude other special cases in the future.
2598 */
2599int __init sched_init_domains(const struct cpumask *cpu_map)
2600{
2601	int err;
2602
2603	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2606
2607	arch_update_cpu_topology();
2608	asym_cpu_capacity_scan();
2609	ndoms_cur = 1;
2610	doms_cur = alloc_sched_domains(ndoms_cur);
2611	if (!doms_cur)
2612		doms_cur = &fallback_doms;
2613	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614	err = build_sched_domains(doms_cur[0], NULL);
2615
2616	return err;
2617}
2618
2619/*
2620 * Detach sched domains from a group of CPUs specified in cpu_map
2621 * These CPUs will now be attached to the NULL domain
2622 */
2623static void detach_destroy_domains(const struct cpumask *cpu_map)
2624{
2625	unsigned int cpu = cpumask_any(cpu_map);
2626	int i;
2627
2628	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2630
2631	if (static_branch_unlikely(&sched_cluster_active))
2632		static_branch_dec_cpuslocked(&sched_cluster_active);
2633
2634	rcu_read_lock();
2635	for_each_cpu(i, cpu_map)
2636		cpu_attach_domain(NULL, &def_root_domain, i);
2637	rcu_read_unlock();
2638}
2639
2640/* handle null as "default" */
2641static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642			struct sched_domain_attr *new, int idx_new)
2643{
2644	struct sched_domain_attr tmp;
2645
2646	/* Fast path: */
2647	if (!new && !cur)
2648		return 1;
2649
2650	tmp = SD_ATTR_INIT;
2651
2652	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653			new ? (new + idx_new) : &tmp,
2654			sizeof(struct sched_domain_attr));
2655}
2656
2657/*
2658 * Partition sched domains as specified by the 'ndoms_new'
2659 * cpumasks in the array doms_new[] of cpumasks. This compares
2660 * doms_new[] to the current sched domain partitioning, doms_cur[].
2661 * It destroys each deleted domain and builds each new domain.
2662 *
2663 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664 * The masks don't intersect (don't overlap.) We should setup one
2665 * sched domain for each mask. CPUs not in any of the cpumasks will
2666 * not be load balanced. If the same cpumask appears both in the
2667 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2668 * it as it is.
2669 *
2670 * The passed in 'doms_new' should be allocated using
2671 * alloc_sched_domains.  This routine takes ownership of it and will
2672 * free_sched_domains it when done with it. If the caller failed the
2673 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674 * and partition_sched_domains() will fallback to the single partition
2675 * 'fallback_doms', it also forces the domains to be rebuilt.
2676 *
2677 * If doms_new == NULL it will be replaced with cpu_online_mask.
2678 * ndoms_new == 0 is a special case for destroying existing domains,
2679 * and it will not create the default domain.
2680 *
2681 * Call with hotplug lock and sched_domains_mutex held
2682 */
2683void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684				    struct sched_domain_attr *dattr_new)
2685{
2686	bool __maybe_unused has_eas = false;
2687	int i, j, n;
2688	int new_topology;
2689
2690	lockdep_assert_held(&sched_domains_mutex);
2691
2692	/* Let the architecture update CPU core mappings: */
2693	new_topology = arch_update_cpu_topology();
2694	/* Trigger rebuilding CPU capacity asymmetry data */
2695	if (new_topology)
2696		asym_cpu_capacity_scan();
2697
2698	if (!doms_new) {
2699		WARN_ON_ONCE(dattr_new);
2700		n = 0;
2701		doms_new = alloc_sched_domains(1);
2702		if (doms_new) {
2703			n = 1;
2704			cpumask_and(doms_new[0], cpu_active_mask,
2705				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2706		}
2707	} else {
2708		n = ndoms_new;
2709	}
2710
2711	/* Destroy deleted domains: */
2712	for (i = 0; i < ndoms_cur; i++) {
2713		for (j = 0; j < n && !new_topology; j++) {
2714			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716				struct root_domain *rd;
2717
2718				/*
2719				 * This domain won't be destroyed and as such
2720				 * its dl_bw->total_bw needs to be cleared.  It
2721				 * will be recomputed in function
2722				 * update_tasks_root_domain().
2723				 */
2724				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2725				dl_clear_root_domain(rd);
2726				goto match1;
2727			}
2728		}
2729		/* No match - a current sched domain not in new doms_new[] */
2730		detach_destroy_domains(doms_cur[i]);
2731match1:
2732		;
2733	}
2734
2735	n = ndoms_cur;
2736	if (!doms_new) {
2737		n = 0;
2738		doms_new = &fallback_doms;
2739		cpumask_and(doms_new[0], cpu_active_mask,
2740			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2741	}
2742
2743	/* Build new domains: */
2744	for (i = 0; i < ndoms_new; i++) {
2745		for (j = 0; j < n && !new_topology; j++) {
2746			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2747			    dattrs_equal(dattr_new, i, dattr_cur, j))
2748				goto match2;
2749		}
2750		/* No match - add a new doms_new */
2751		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2752match2:
2753		;
2754	}
2755
2756#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2757	/* Build perf. domains: */
2758	for (i = 0; i < ndoms_new; i++) {
2759		for (j = 0; j < n && !sched_energy_update; j++) {
2760			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2761			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2762				has_eas = true;
2763				goto match3;
2764			}
2765		}
2766		/* No match - add perf. domains for a new rd */
2767		has_eas |= build_perf_domains(doms_new[i]);
2768match3:
2769		;
2770	}
2771	sched_energy_set(has_eas);
2772#endif
2773
2774	/* Remember the new sched domains: */
2775	if (doms_cur != &fallback_doms)
2776		free_sched_domains(doms_cur, ndoms_cur);
2777
2778	kfree(dattr_cur);
2779	doms_cur = doms_new;
2780	dattr_cur = dattr_new;
2781	ndoms_cur = ndoms_new;
2782
2783	update_sched_domain_debugfs();
2784}
2785
2786/*
2787 * Call with hotplug lock held
2788 */
2789void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2790			     struct sched_domain_attr *dattr_new)
2791{
2792	mutex_lock(&sched_domains_mutex);
2793	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2794	mutex_unlock(&sched_domains_mutex);
2795}