Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/tty.h>
  67#include <linux/binfmts.h>
  68#include <linux/highmem.h>
  69#include <linux/syscalls.h>
 
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
 
 
 
 
 
 
 
  74
  75#include "audit.h"
  76
  77/* flags stating the success for a syscall */
  78#define AUDITSC_INVALID 0
  79#define AUDITSC_SUCCESS 1
  80#define AUDITSC_FAILURE 2
  81
  82/* no execve audit message should be longer than this (userspace limits) */
 
  83#define MAX_EXECVE_AUDIT_LEN 7500
  84
  85/* max length to print of cmdline/proctitle value during audit */
  86#define MAX_PROCTITLE_AUDIT_LEN 128
  87
  88/* number of audit rules */
  89int audit_n_rules;
  90
  91/* determines whether we collect data for signals sent */
  92int audit_signals;
  93
  94struct audit_aux_data {
  95	struct audit_aux_data	*next;
  96	int			type;
  97};
  98
  99#define AUDIT_AUX_IPCPERM	0
 100
 101/* Number of target pids per aux struct. */
 102#define AUDIT_AUX_PIDS	16
 103
 104struct audit_aux_data_pids {
 105	struct audit_aux_data	d;
 106	pid_t			target_pid[AUDIT_AUX_PIDS];
 107	kuid_t			target_auid[AUDIT_AUX_PIDS];
 108	kuid_t			target_uid[AUDIT_AUX_PIDS];
 109	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 110	u32			target_sid[AUDIT_AUX_PIDS];
 111	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 112	int			pid_count;
 113};
 114
 115struct audit_aux_data_bprm_fcaps {
 116	struct audit_aux_data	d;
 117	struct audit_cap_data	fcap;
 118	unsigned int		fcap_ver;
 119	struct audit_cap_data	old_pcap;
 120	struct audit_cap_data	new_pcap;
 121};
 122
 123struct audit_tree_refs {
 124	struct audit_tree_refs *next;
 125	struct audit_chunk *c[31];
 126};
 127
 128static inline int open_arg(int flags, int mask)
 129{
 130	int n = ACC_MODE(flags);
 131	if (flags & (O_TRUNC | O_CREAT))
 132		n |= AUDIT_PERM_WRITE;
 133	return n & mask;
 134}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135
 136static int audit_match_perm(struct audit_context *ctx, int mask)
 137{
 138	unsigned n;
 
 139	if (unlikely(!ctx))
 140		return 0;
 141	n = ctx->major;
 142
 143	switch (audit_classify_syscall(ctx->arch, n)) {
 144	case 0:	/* native */
 145		if ((mask & AUDIT_PERM_WRITE) &&
 146		     audit_match_class(AUDIT_CLASS_WRITE, n))
 147			return 1;
 148		if ((mask & AUDIT_PERM_READ) &&
 149		     audit_match_class(AUDIT_CLASS_READ, n))
 150			return 1;
 151		if ((mask & AUDIT_PERM_ATTR) &&
 152		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 153			return 1;
 154		return 0;
 155	case 1: /* 32bit on biarch */
 156		if ((mask & AUDIT_PERM_WRITE) &&
 157		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 158			return 1;
 159		if ((mask & AUDIT_PERM_READ) &&
 160		     audit_match_class(AUDIT_CLASS_READ_32, n))
 161			return 1;
 162		if ((mask & AUDIT_PERM_ATTR) &&
 163		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 164			return 1;
 165		return 0;
 166	case 2: /* open */
 167		return mask & ACC_MODE(ctx->argv[1]);
 168	case 3: /* openat */
 169		return mask & ACC_MODE(ctx->argv[2]);
 170	case 4: /* socketcall */
 171		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 172	case 5: /* execve */
 173		return mask & AUDIT_PERM_EXEC;
 
 
 174	default:
 175		return 0;
 176	}
 177}
 178
 179static int audit_match_filetype(struct audit_context *ctx, int val)
 180{
 181	struct audit_names *n;
 182	umode_t mode = (umode_t)val;
 183
 184	if (unlikely(!ctx))
 185		return 0;
 186
 187	list_for_each_entry(n, &ctx->names_list, list) {
 188		if ((n->ino != -1) &&
 189		    ((n->mode & S_IFMT) == mode))
 190			return 1;
 191	}
 192
 193	return 0;
 194}
 195
 196/*
 197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 198 * ->first_trees points to its beginning, ->trees - to the current end of data.
 199 * ->tree_count is the number of free entries in array pointed to by ->trees.
 200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 201 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 202 * it's going to remain 1-element for almost any setup) until we free context itself.
 203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 204 */
 205
 206#ifdef CONFIG_AUDIT_TREE
 207static void audit_set_auditable(struct audit_context *ctx)
 208{
 209	if (!ctx->prio) {
 210		ctx->prio = 1;
 211		ctx->current_state = AUDIT_RECORD_CONTEXT;
 212	}
 213}
 214
 215static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 216{
 217	struct audit_tree_refs *p = ctx->trees;
 218	int left = ctx->tree_count;
 
 219	if (likely(left)) {
 220		p->c[--left] = chunk;
 221		ctx->tree_count = left;
 222		return 1;
 223	}
 224	if (!p)
 225		return 0;
 226	p = p->next;
 227	if (p) {
 228		p->c[30] = chunk;
 229		ctx->trees = p;
 230		ctx->tree_count = 30;
 231		return 1;
 232	}
 233	return 0;
 234}
 235
 236static int grow_tree_refs(struct audit_context *ctx)
 237{
 238	struct audit_tree_refs *p = ctx->trees;
 
 239	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 240	if (!ctx->trees) {
 241		ctx->trees = p;
 242		return 0;
 243	}
 244	if (p)
 245		p->next = ctx->trees;
 246	else
 247		ctx->first_trees = ctx->trees;
 248	ctx->tree_count = 31;
 249	return 1;
 250}
 251#endif
 252
 253static void unroll_tree_refs(struct audit_context *ctx,
 254		      struct audit_tree_refs *p, int count)
 255{
 256#ifdef CONFIG_AUDIT_TREE
 257	struct audit_tree_refs *q;
 258	int n;
 
 259	if (!p) {
 260		/* we started with empty chain */
 261		p = ctx->first_trees;
 262		count = 31;
 263		/* if the very first allocation has failed, nothing to do */
 264		if (!p)
 265			return;
 266	}
 267	n = count;
 268	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 269		while (n--) {
 270			audit_put_chunk(q->c[n]);
 271			q->c[n] = NULL;
 272		}
 273	}
 274	while (n-- > ctx->tree_count) {
 275		audit_put_chunk(q->c[n]);
 276		q->c[n] = NULL;
 277	}
 278	ctx->trees = p;
 279	ctx->tree_count = count;
 280#endif
 281}
 282
 283static void free_tree_refs(struct audit_context *ctx)
 284{
 285	struct audit_tree_refs *p, *q;
 
 286	for (p = ctx->first_trees; p; p = q) {
 287		q = p->next;
 288		kfree(p);
 289	}
 290}
 291
 292static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 293{
 294#ifdef CONFIG_AUDIT_TREE
 295	struct audit_tree_refs *p;
 296	int n;
 
 297	if (!tree)
 298		return 0;
 299	/* full ones */
 300	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 301		for (n = 0; n < 31; n++)
 302			if (audit_tree_match(p->c[n], tree))
 303				return 1;
 304	}
 305	/* partial */
 306	if (p) {
 307		for (n = ctx->tree_count; n < 31; n++)
 308			if (audit_tree_match(p->c[n], tree))
 309				return 1;
 310	}
 311#endif
 312	return 0;
 313}
 314
 315static int audit_compare_uid(kuid_t uid,
 316			     struct audit_names *name,
 317			     struct audit_field *f,
 318			     struct audit_context *ctx)
 319{
 320	struct audit_names *n;
 321	int rc;
 322 
 323	if (name) {
 324		rc = audit_uid_comparator(uid, f->op, name->uid);
 325		if (rc)
 326			return rc;
 327	}
 328 
 329	if (ctx) {
 330		list_for_each_entry(n, &ctx->names_list, list) {
 331			rc = audit_uid_comparator(uid, f->op, n->uid);
 332			if (rc)
 333				return rc;
 334		}
 335	}
 336	return 0;
 337}
 338
 339static int audit_compare_gid(kgid_t gid,
 340			     struct audit_names *name,
 341			     struct audit_field *f,
 342			     struct audit_context *ctx)
 343{
 344	struct audit_names *n;
 345	int rc;
 346 
 347	if (name) {
 348		rc = audit_gid_comparator(gid, f->op, name->gid);
 349		if (rc)
 350			return rc;
 351	}
 352 
 353	if (ctx) {
 354		list_for_each_entry(n, &ctx->names_list, list) {
 355			rc = audit_gid_comparator(gid, f->op, n->gid);
 356			if (rc)
 357				return rc;
 358		}
 359	}
 360	return 0;
 361}
 362
 363static int audit_field_compare(struct task_struct *tsk,
 364			       const struct cred *cred,
 365			       struct audit_field *f,
 366			       struct audit_context *ctx,
 367			       struct audit_names *name)
 368{
 369	switch (f->val) {
 370	/* process to file object comparisons */
 371	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 372		return audit_compare_uid(cred->uid, name, f, ctx);
 373	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 374		return audit_compare_gid(cred->gid, name, f, ctx);
 375	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 376		return audit_compare_uid(cred->euid, name, f, ctx);
 377	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 378		return audit_compare_gid(cred->egid, name, f, ctx);
 379	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 380		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 381	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 382		return audit_compare_uid(cred->suid, name, f, ctx);
 383	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 384		return audit_compare_gid(cred->sgid, name, f, ctx);
 385	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 386		return audit_compare_uid(cred->fsuid, name, f, ctx);
 387	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 388		return audit_compare_gid(cred->fsgid, name, f, ctx);
 389	/* uid comparisons */
 390	case AUDIT_COMPARE_UID_TO_AUID:
 391		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 
 392	case AUDIT_COMPARE_UID_TO_EUID:
 393		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 394	case AUDIT_COMPARE_UID_TO_SUID:
 395		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 396	case AUDIT_COMPARE_UID_TO_FSUID:
 397		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 398	/* auid comparisons */
 399	case AUDIT_COMPARE_AUID_TO_EUID:
 400		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 
 401	case AUDIT_COMPARE_AUID_TO_SUID:
 402		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 
 403	case AUDIT_COMPARE_AUID_TO_FSUID:
 404		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 405	/* euid comparisons */
 406	case AUDIT_COMPARE_EUID_TO_SUID:
 407		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 408	case AUDIT_COMPARE_EUID_TO_FSUID:
 409		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 410	/* suid comparisons */
 411	case AUDIT_COMPARE_SUID_TO_FSUID:
 412		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 413	/* gid comparisons */
 414	case AUDIT_COMPARE_GID_TO_EGID:
 415		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 416	case AUDIT_COMPARE_GID_TO_SGID:
 417		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 418	case AUDIT_COMPARE_GID_TO_FSGID:
 419		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 420	/* egid comparisons */
 421	case AUDIT_COMPARE_EGID_TO_SGID:
 422		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 423	case AUDIT_COMPARE_EGID_TO_FSGID:
 424		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 425	/* sgid comparison */
 426	case AUDIT_COMPARE_SGID_TO_FSGID:
 427		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 428	default:
 429		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 430		return 0;
 431	}
 432	return 0;
 433}
 434
 435/* Determine if any context name data matches a rule's watch data */
 436/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 437 * otherwise.
 438 *
 439 * If task_creation is true, this is an explicit indication that we are
 440 * filtering a task rule at task creation time.  This and tsk == current are
 441 * the only situations where tsk->cred may be accessed without an rcu read lock.
 442 */
 443static int audit_filter_rules(struct task_struct *tsk,
 444			      struct audit_krule *rule,
 445			      struct audit_context *ctx,
 446			      struct audit_names *name,
 447			      enum audit_state *state,
 448			      bool task_creation)
 449{
 450	const struct cred *cred;
 451	int i, need_sid = 1;
 452	u32 sid;
 
 
 
 
 453
 454	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 455
 456	for (i = 0; i < rule->field_count; i++) {
 457		struct audit_field *f = &rule->fields[i];
 458		struct audit_names *n;
 459		int result = 0;
 460		pid_t pid;
 461
 462		switch (f->type) {
 463		case AUDIT_PID:
 464			pid = task_pid_nr(tsk);
 465			result = audit_comparator(pid, f->op, f->val);
 466			break;
 467		case AUDIT_PPID:
 468			if (ctx) {
 469				if (!ctx->ppid)
 470					ctx->ppid = task_ppid_nr(tsk);
 471				result = audit_comparator(ctx->ppid, f->op, f->val);
 472			}
 473			break;
 
 
 
 
 
 474		case AUDIT_UID:
 475			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476			break;
 477		case AUDIT_EUID:
 478			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479			break;
 480		case AUDIT_SUID:
 481			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482			break;
 483		case AUDIT_FSUID:
 484			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485			break;
 486		case AUDIT_GID:
 487			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488			if (f->op == Audit_equal) {
 489				if (!result)
 490					result = in_group_p(f->gid);
 491			} else if (f->op == Audit_not_equal) {
 492				if (result)
 493					result = !in_group_p(f->gid);
 494			}
 495			break;
 496		case AUDIT_EGID:
 497			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498			if (f->op == Audit_equal) {
 499				if (!result)
 500					result = in_egroup_p(f->gid);
 501			} else if (f->op == Audit_not_equal) {
 502				if (result)
 503					result = !in_egroup_p(f->gid);
 504			}
 505			break;
 506		case AUDIT_SGID:
 507			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508			break;
 509		case AUDIT_FSGID:
 510			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511			break;
 
 
 
 
 512		case AUDIT_PERS:
 513			result = audit_comparator(tsk->personality, f->op, f->val);
 514			break;
 515		case AUDIT_ARCH:
 516			if (ctx)
 517				result = audit_comparator(ctx->arch, f->op, f->val);
 518			break;
 519
 520		case AUDIT_EXIT:
 521			if (ctx && ctx->return_valid)
 522				result = audit_comparator(ctx->return_code, f->op, f->val);
 523			break;
 524		case AUDIT_SUCCESS:
 525			if (ctx && ctx->return_valid) {
 526				if (f->val)
 527					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 528				else
 529					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 530			}
 531			break;
 532		case AUDIT_DEVMAJOR:
 533			if (name) {
 534				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 535				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 536					++result;
 537			} else if (ctx) {
 538				list_for_each_entry(n, &ctx->names_list, list) {
 539					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 540					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 541						++result;
 542						break;
 543					}
 544				}
 545			}
 546			break;
 547		case AUDIT_DEVMINOR:
 548			if (name) {
 549				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 550				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 551					++result;
 552			} else if (ctx) {
 553				list_for_each_entry(n, &ctx->names_list, list) {
 554					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 555					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_INODE:
 563			if (name)
 564				result = audit_comparator(name->ino, f->op, f->val);
 565			else if (ctx) {
 566				list_for_each_entry(n, &ctx->names_list, list) {
 567					if (audit_comparator(n->ino, f->op, f->val)) {
 568						++result;
 569						break;
 570					}
 571				}
 572			}
 573			break;
 574		case AUDIT_OBJ_UID:
 575			if (name) {
 576				result = audit_uid_comparator(name->uid, f->op, f->uid);
 577			} else if (ctx) {
 578				list_for_each_entry(n, &ctx->names_list, list) {
 579					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 580						++result;
 581						break;
 582					}
 583				}
 584			}
 585			break;
 586		case AUDIT_OBJ_GID:
 587			if (name) {
 588				result = audit_gid_comparator(name->gid, f->op, f->gid);
 589			} else if (ctx) {
 590				list_for_each_entry(n, &ctx->names_list, list) {
 591					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 592						++result;
 593						break;
 594					}
 595				}
 596			}
 597			break;
 598		case AUDIT_WATCH:
 599			if (name)
 600				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 601			break;
 602		case AUDIT_DIR:
 603			if (ctx)
 604				result = match_tree_refs(ctx, rule->tree);
 
 
 
 605			break;
 606		case AUDIT_LOGINUID:
 607			result = 0;
 608			if (ctx)
 609				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 610			break;
 611		case AUDIT_LOGINUID_SET:
 612			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 613			break;
 
 
 
 
 
 614		case AUDIT_SUBJ_USER:
 615		case AUDIT_SUBJ_ROLE:
 616		case AUDIT_SUBJ_TYPE:
 617		case AUDIT_SUBJ_SEN:
 618		case AUDIT_SUBJ_CLR:
 619			/* NOTE: this may return negative values indicating
 620			   a temporary error.  We simply treat this as a
 621			   match for now to avoid losing information that
 622			   may be wanted.   An error message will also be
 623			   logged upon error */
 624			if (f->lsm_rule) {
 625				if (need_sid) {
 626					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 627					need_sid = 0;
 628				}
 629				result = security_audit_rule_match(sid, f->type,
 630				                                  f->op,
 631				                                  f->lsm_rule,
 632				                                  ctx);
 633			}
 634			break;
 635		case AUDIT_OBJ_USER:
 636		case AUDIT_OBJ_ROLE:
 637		case AUDIT_OBJ_TYPE:
 638		case AUDIT_OBJ_LEV_LOW:
 639		case AUDIT_OBJ_LEV_HIGH:
 640			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 641			   also applies here */
 642			if (f->lsm_rule) {
 643				/* Find files that match */
 644				if (name) {
 645					result = security_audit_rule_match(
 646					           name->osid, f->type, f->op,
 647					           f->lsm_rule, ctx);
 
 
 648				} else if (ctx) {
 649					list_for_each_entry(n, &ctx->names_list, list) {
 650						if (security_audit_rule_match(n->osid, f->type,
 651									      f->op, f->lsm_rule,
 652									      ctx)) {
 
 
 653							++result;
 654							break;
 655						}
 656					}
 657				}
 658				/* Find ipc objects that match */
 659				if (!ctx || ctx->type != AUDIT_IPC)
 660					break;
 661				if (security_audit_rule_match(ctx->ipc.osid,
 662							      f->type, f->op,
 663							      f->lsm_rule, ctx))
 664					++result;
 665			}
 666			break;
 667		case AUDIT_ARG0:
 668		case AUDIT_ARG1:
 669		case AUDIT_ARG2:
 670		case AUDIT_ARG3:
 671			if (ctx)
 672				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 673			break;
 674		case AUDIT_FILTERKEY:
 675			/* ignore this field for filtering */
 676			result = 1;
 677			break;
 678		case AUDIT_PERM:
 679			result = audit_match_perm(ctx, f->val);
 
 
 680			break;
 681		case AUDIT_FILETYPE:
 682			result = audit_match_filetype(ctx, f->val);
 
 
 683			break;
 684		case AUDIT_FIELD_COMPARE:
 685			result = audit_field_compare(tsk, cred, f, ctx, name);
 686			break;
 687		}
 688		if (!result)
 689			return 0;
 690	}
 691
 692	if (ctx) {
 693		if (rule->prio <= ctx->prio)
 694			return 0;
 695		if (rule->filterkey) {
 696			kfree(ctx->filterkey);
 697			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 698		}
 699		ctx->prio = rule->prio;
 700	}
 701	switch (rule->action) {
 702	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 703	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 704	}
 705	return 1;
 706}
 707
 708/* At process creation time, we can determine if system-call auditing is
 709 * completely disabled for this task.  Since we only have the task
 710 * structure at this point, we can only check uid and gid.
 711 */
 712static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 713{
 714	struct audit_entry *e;
 715	enum audit_state   state;
 716
 717	rcu_read_lock();
 718	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 719		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 720				       &state, true)) {
 721			if (state == AUDIT_RECORD_CONTEXT)
 722				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 723			rcu_read_unlock();
 724			return state;
 725		}
 726	}
 727	rcu_read_unlock();
 728	return AUDIT_BUILD_CONTEXT;
 729}
 730
 731/* At syscall entry and exit time, this filter is called if the
 732 * audit_state is not low enough that auditing cannot take place, but is
 733 * also not high enough that we already know we have to write an audit
 734 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735 */
 736static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 737					     struct audit_context *ctx,
 738					     struct list_head *list)
 
 
 739{
 740	struct audit_entry *e;
 741	enum audit_state state;
 742
 743	if (audit_pid && tsk->tgid == audit_pid)
 744		return AUDIT_DISABLED;
 745
 746	rcu_read_lock();
 747	if (!list_empty(list)) {
 748		int word = AUDIT_WORD(ctx->major);
 749		int bit  = AUDIT_BIT(ctx->major);
 750
 751		list_for_each_entry_rcu(e, list, list) {
 752			if ((e->rule.mask[word] & bit) == bit &&
 753			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 754					       &state, false)) {
 755				rcu_read_unlock();
 756				ctx->current_state = state;
 757				return state;
 758			}
 759		}
 760	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	rcu_read_unlock();
 762	return AUDIT_BUILD_CONTEXT;
 763}
 764
 765/*
 766 * Given an audit_name check the inode hash table to see if they match.
 767 * Called holding the rcu read lock to protect the use of audit_inode_hash
 768 */
 769static int audit_filter_inode_name(struct task_struct *tsk,
 770				   struct audit_names *n,
 771				   struct audit_context *ctx) {
 772	int word, bit;
 773	int h = audit_hash_ino((u32)n->ino);
 774	struct list_head *list = &audit_inode_hash[h];
 775	struct audit_entry *e;
 776	enum audit_state state;
 777
 778	word = AUDIT_WORD(ctx->major);
 779	bit  = AUDIT_BIT(ctx->major);
 780
 781	if (list_empty(list))
 782		return 0;
 783
 784	list_for_each_entry_rcu(e, list, list) {
 785		if ((e->rule.mask[word] & bit) == bit &&
 786		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 787			ctx->current_state = state;
 788			return 1;
 789		}
 790	}
 791
 792	return 0;
 793}
 794
 795/* At syscall exit time, this filter is called if any audit_names have been
 796 * collected during syscall processing.  We only check rules in sublists at hash
 797 * buckets applicable to the inode numbers in audit_names.
 798 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 799 */
 800void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 801{
 802	struct audit_names *n;
 803
 804	if (audit_pid && tsk->tgid == audit_pid)
 805		return;
 806
 807	rcu_read_lock();
 808
 809	list_for_each_entry(n, &ctx->names_list, list) {
 810		if (audit_filter_inode_name(tsk, n, ctx))
 811			break;
 812	}
 813	rcu_read_unlock();
 814}
 815
 816/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 817static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 818						      int return_valid,
 819						      long return_code)
 820{
 821	struct audit_context *context = tsk->audit_context;
 822
 823	if (!context)
 824		return NULL;
 825	context->return_valid = return_valid;
 826
 827	/*
 828	 * we need to fix up the return code in the audit logs if the actual
 829	 * return codes are later going to be fixed up by the arch specific
 830	 * signal handlers
 831	 *
 832	 * This is actually a test for:
 833	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 834	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 835	 *
 836	 * but is faster than a bunch of ||
 837	 */
 838	if (unlikely(return_code <= -ERESTARTSYS) &&
 839	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 840	    (return_code != -ENOIOCTLCMD))
 841		context->return_code = -EINTR;
 842	else
 843		context->return_code  = return_code;
 844
 845	if (context->in_syscall && !context->dummy) {
 846		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 847		audit_filter_inodes(tsk, context);
 848	}
 849
 850	tsk->audit_context = NULL;
 851	return context;
 852}
 853
 854static inline void audit_proctitle_free(struct audit_context *context)
 855{
 856	kfree(context->proctitle.value);
 857	context->proctitle.value = NULL;
 858	context->proctitle.len = 0;
 859}
 860
 
 
 
 
 
 
 
 861static inline void audit_free_names(struct audit_context *context)
 862{
 863	struct audit_names *n, *next;
 864
 865#if AUDIT_DEBUG == 2
 866	if (context->put_count + context->ino_count != context->name_count) {
 867		int i = 0;
 868
 869		pr_err("%s:%d(:%d): major=%d in_syscall=%d"
 870		       " name_count=%d put_count=%d ino_count=%d"
 871		       " [NOT freeing]\n", __FILE__, __LINE__,
 872		       context->serial, context->major, context->in_syscall,
 873		       context->name_count, context->put_count,
 874		       context->ino_count);
 875		list_for_each_entry(n, &context->names_list, list) {
 876			pr_err("names[%d] = %p = %s\n", i++, n->name,
 877			       n->name->name ?: "(null)");
 878		}
 879		dump_stack();
 880		return;
 881	}
 882#endif
 883#if AUDIT_DEBUG
 884	context->put_count  = 0;
 885	context->ino_count  = 0;
 886#endif
 887
 888	list_for_each_entry_safe(n, next, &context->names_list, list) {
 889		list_del(&n->list);
 890		if (n->name && n->name_put)
 891			final_putname(n->name);
 892		if (n->should_free)
 893			kfree(n);
 894	}
 895	context->name_count = 0;
 896	path_put(&context->pwd);
 897	context->pwd.dentry = NULL;
 898	context->pwd.mnt = NULL;
 899}
 900
 901static inline void audit_free_aux(struct audit_context *context)
 902{
 903	struct audit_aux_data *aux;
 904
 905	while ((aux = context->aux)) {
 906		context->aux = aux->next;
 907		kfree(aux);
 908	}
 
 909	while ((aux = context->aux_pids)) {
 910		context->aux_pids = aux->next;
 911		kfree(aux);
 912	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914
 915static inline struct audit_context *audit_alloc_context(enum audit_state state)
 916{
 917	struct audit_context *context;
 918
 919	context = kzalloc(sizeof(*context), GFP_KERNEL);
 920	if (!context)
 921		return NULL;
 
 922	context->state = state;
 923	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 924	INIT_LIST_HEAD(&context->killed_trees);
 925	INIT_LIST_HEAD(&context->names_list);
 
 
 926	return context;
 927}
 928
 929/**
 930 * audit_alloc - allocate an audit context block for a task
 931 * @tsk: task
 932 *
 933 * Filter on the task information and allocate a per-task audit context
 934 * if necessary.  Doing so turns on system call auditing for the
 935 * specified task.  This is called from copy_process, so no lock is
 936 * needed.
 937 */
 938int audit_alloc(struct task_struct *tsk)
 939{
 940	struct audit_context *context;
 941	enum audit_state     state;
 942	char *key = NULL;
 943
 944	if (likely(!audit_ever_enabled))
 945		return 0; /* Return if not auditing. */
 946
 947	state = audit_filter_task(tsk, &key);
 948	if (state == AUDIT_DISABLED) {
 949		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 950		return 0;
 951	}
 952
 953	if (!(context = audit_alloc_context(state))) {
 
 954		kfree(key);
 955		audit_log_lost("out of memory in audit_alloc");
 956		return -ENOMEM;
 957	}
 958	context->filterkey = key;
 959
 960	tsk->audit_context  = context;
 961	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 962	return 0;
 963}
 964
 965static inline void audit_free_context(struct audit_context *context)
 966{
 967	audit_free_names(context);
 968	unroll_tree_refs(context, NULL, 0);
 
 969	free_tree_refs(context);
 970	audit_free_aux(context);
 971	kfree(context->filterkey);
 972	kfree(context->sockaddr);
 973	audit_proctitle_free(context);
 974	kfree(context);
 975}
 976
 977static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 978				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 979				 u32 sid, char *comm)
 980{
 981	struct audit_buffer *ab;
 982	char *ctx = NULL;
 983	u32 len;
 984	int rc = 0;
 985
 986	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 987	if (!ab)
 988		return rc;
 989
 990	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 991			 from_kuid(&init_user_ns, auid),
 992			 from_kuid(&init_user_ns, uid), sessionid);
 993	if (sid) {
 994		if (security_secid_to_secctx(sid, &ctx, &len)) {
 995			audit_log_format(ab, " obj=(none)");
 996			rc = 1;
 997		} else {
 998			audit_log_format(ab, " obj=%s", ctx);
 999			security_release_secctx(ctx, len);
1000		}
1001	}
1002	audit_log_format(ab, " ocomm=");
1003	audit_log_untrustedstring(ab, comm);
1004	audit_log_end(ab);
1005
1006	return rc;
1007}
1008
1009/*
1010 * to_send and len_sent accounting are very loose estimates.  We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundary)
1013 *
1014 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message.  In one 7500 byte message we can log up to
1017 * about 1000 min size arguments.  That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 */
1020static int audit_log_single_execve_arg(struct audit_context *context,
1021					struct audit_buffer **ab,
1022					int arg_num,
1023					size_t *len_sent,
1024					const char __user *p,
1025					char *buf)
1026{
1027	char arg_num_len_buf[12];
1028	const char __user *tmp_p = p;
1029	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1030	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031	size_t len, len_left, to_send;
1032	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033	unsigned int i, has_cntl = 0, too_long = 0;
1034	int ret;
1035
1036	/* strnlen_user includes the null we don't want to send */
1037	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038
1039	/*
1040	 * We just created this mm, if we can't find the strings
1041	 * we just copied into it something is _very_ wrong. Similar
1042	 * for strings that are too long, we should not have created
1043	 * any.
1044	 */
1045	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046		WARN_ON(1);
1047		send_sig(SIGKILL, current, 0);
1048		return -1;
 
 
 
 
 
 
 
1049	}
 
 
 
1050
1051	/* walk the whole argument looking for non-ascii chars */
 
 
 
 
 
 
1052	do {
1053		if (len_left > MAX_EXECVE_AUDIT_LEN)
1054			to_send = MAX_EXECVE_AUDIT_LEN;
1055		else
1056			to_send = len_left;
1057		ret = copy_from_user(buf, tmp_p, to_send);
1058		/*
1059		 * There is no reason for this copy to be short. We just
1060		 * copied them here, and the mm hasn't been exposed to user-
1061		 * space yet.
1062		 */
1063		if (ret) {
1064			WARN_ON(1);
1065			send_sig(SIGKILL, current, 0);
1066			return -1;
1067		}
1068		buf[to_send] = '\0';
1069		has_cntl = audit_string_contains_control(buf, to_send);
1070		if (has_cntl) {
1071			/*
1072			 * hex messages get logged as 2 bytes, so we can only
1073			 * send half as much in each message
1074			 */
1075			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077		}
1078		len_left -= to_send;
1079		tmp_p += to_send;
1080	} while (len_left > 0);
1081
1082	len_left = len;
1083
1084	if (len > max_execve_audit_len)
1085		too_long = 1;
1086
1087	/* rewalk the argument actually logging the message */
1088	for (i = 0; len_left > 0; i++) {
1089		int room_left;
1090
1091		if (len_left > max_execve_audit_len)
1092			to_send = max_execve_audit_len;
1093		else
1094			to_send = len_left;
1095
1096		/* do we have space left to send this argument in this ab? */
1097		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098		if (has_cntl)
1099			room_left -= (to_send * 2);
1100		else
1101			room_left -= to_send;
1102		if (room_left < 0) {
1103			*len_sent = 0;
1104			audit_log_end(*ab);
1105			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106			if (!*ab)
1107				return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108		}
1109
1110		/*
1111		 * first record needs to say how long the original string was
1112		 * so we can be sure nothing was lost.
1113		 */
1114		if ((i == 0) && (too_long))
1115			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116					 has_cntl ? 2*len : len);
 
 
1117
1118		/*
1119		 * normally arguments are small enough to fit and we already
1120		 * filled buf above when we checked for control characters
1121		 * so don't bother with another copy_from_user
1122		 */
1123		if (len >= max_execve_audit_len)
1124			ret = copy_from_user(buf, p, to_send);
1125		else
1126			ret = 0;
1127		if (ret) {
1128			WARN_ON(1);
1129			send_sig(SIGKILL, current, 0);
1130			return -1;
1131		}
1132		buf[to_send] = '\0';
1133
1134		/* actually log it */
1135		audit_log_format(*ab, " a%d", arg_num);
1136		if (too_long)
1137			audit_log_format(*ab, "[%d]", i);
1138		audit_log_format(*ab, "=");
1139		if (has_cntl)
1140			audit_log_n_hex(*ab, buf, to_send);
1141		else
1142			audit_log_string(*ab, buf);
1143
1144		p += to_send;
1145		len_left -= to_send;
1146		*len_sent += arg_num_len;
1147		if (has_cntl)
1148			*len_sent += to_send * 2;
1149		else
1150			*len_sent += to_send;
1151	}
1152	/* include the null we didn't log */
1153	return len + 1;
1154}
1155
1156static void audit_log_execve_info(struct audit_context *context,
1157				  struct audit_buffer **ab)
1158{
1159	int i, len;
1160	size_t len_sent = 0;
1161	const char __user *p;
1162	char *buf;
1163
1164	p = (const char __user *)current->mm->arg_start;
1165
1166	audit_log_format(*ab, "argc=%d", context->execve.argc);
1167
1168	/*
1169	 * we need some kernel buffer to hold the userspace args.  Just
1170	 * allocate one big one rather than allocating one of the right size
1171	 * for every single argument inside audit_log_single_execve_arg()
1172	 * should be <8k allocation so should be pretty safe.
1173	 */
1174	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1175	if (!buf) {
1176		audit_panic("out of memory for argv string");
1177		return;
1178	}
 
 
 
 
 
 
1179
1180	for (i = 0; i < context->execve.argc; i++) {
1181		len = audit_log_single_execve_arg(context, ab, i,
1182						  &len_sent, p, buf);
1183		if (len <= 0)
1184			break;
1185		p += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186	}
1187	kfree(buf);
1188}
1189
1190static void show_special(struct audit_context *context, int *call_panic)
1191{
1192	struct audit_buffer *ab;
1193	int i;
1194
1195	ab = audit_log_start(context, GFP_KERNEL, context->type);
1196	if (!ab)
1197		return;
1198
1199	switch (context->type) {
1200	case AUDIT_SOCKETCALL: {
1201		int nargs = context->socketcall.nargs;
 
1202		audit_log_format(ab, "nargs=%d", nargs);
1203		for (i = 0; i < nargs; i++)
1204			audit_log_format(ab, " a%d=%lx", i,
1205				context->socketcall.args[i]);
1206		break; }
1207	case AUDIT_IPC: {
1208		u32 osid = context->ipc.osid;
1209
1210		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1211				 from_kuid(&init_user_ns, context->ipc.uid),
1212				 from_kgid(&init_user_ns, context->ipc.gid),
1213				 context->ipc.mode);
1214		if (osid) {
1215			char *ctx = NULL;
1216			u32 len;
 
1217			if (security_secid_to_secctx(osid, &ctx, &len)) {
1218				audit_log_format(ab, " osid=%u", osid);
1219				*call_panic = 1;
1220			} else {
1221				audit_log_format(ab, " obj=%s", ctx);
1222				security_release_secctx(ctx, len);
1223			}
1224		}
1225		if (context->ipc.has_perm) {
1226			audit_log_end(ab);
1227			ab = audit_log_start(context, GFP_KERNEL,
1228					     AUDIT_IPC_SET_PERM);
1229			if (unlikely(!ab))
1230				return;
1231			audit_log_format(ab,
1232				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1233				context->ipc.qbytes,
1234				context->ipc.perm_uid,
1235				context->ipc.perm_gid,
1236				context->ipc.perm_mode);
1237		}
1238		break; }
1239	case AUDIT_MQ_OPEN: {
1240		audit_log_format(ab,
1241			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1242			"mq_msgsize=%ld mq_curmsgs=%ld",
1243			context->mq_open.oflag, context->mq_open.mode,
1244			context->mq_open.attr.mq_flags,
1245			context->mq_open.attr.mq_maxmsg,
1246			context->mq_open.attr.mq_msgsize,
1247			context->mq_open.attr.mq_curmsgs);
1248		break; }
1249	case AUDIT_MQ_SENDRECV: {
1250		audit_log_format(ab,
1251			"mqdes=%d msg_len=%zd msg_prio=%u "
1252			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1253			context->mq_sendrecv.mqdes,
1254			context->mq_sendrecv.msg_len,
1255			context->mq_sendrecv.msg_prio,
1256			context->mq_sendrecv.abs_timeout.tv_sec,
1257			context->mq_sendrecv.abs_timeout.tv_nsec);
1258		break; }
1259	case AUDIT_MQ_NOTIFY: {
1260		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1261				context->mq_notify.mqdes,
1262				context->mq_notify.sigev_signo);
1263		break; }
1264	case AUDIT_MQ_GETSETATTR: {
1265		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1266		audit_log_format(ab,
1267			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1268			"mq_curmsgs=%ld ",
1269			context->mq_getsetattr.mqdes,
1270			attr->mq_flags, attr->mq_maxmsg,
1271			attr->mq_msgsize, attr->mq_curmsgs);
1272		break; }
1273	case AUDIT_CAPSET: {
1274		audit_log_format(ab, "pid=%d", context->capset.pid);
1275		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1276		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1277		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1278		break; }
1279	case AUDIT_MMAP: {
 
1280		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1281				 context->mmap.flags);
1282		break; }
1283	case AUDIT_EXECVE: {
 
 
 
 
 
 
1284		audit_log_execve_info(context, &ab);
1285		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	}
1287	audit_log_end(ab);
1288}
1289
1290static inline int audit_proctitle_rtrim(char *proctitle, int len)
1291{
1292	char *end = proctitle + len - 1;
 
1293	while (end > proctitle && !isprint(*end))
1294		end--;
1295
1296	/* catch the case where proctitle is only 1 non-print character */
1297	len = end - proctitle + 1;
1298	len -= isprint(proctitle[len-1]) == 0;
1299	return len;
1300}
1301
1302static void audit_log_proctitle(struct task_struct *tsk,
1303			 struct audit_context *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304{
1305	int res;
1306	char *buf;
1307	char *msg = "(null)";
1308	int len = strlen(msg);
 
1309	struct audit_buffer *ab;
1310
1311	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1312	if (!ab)
1313		return;	/* audit_panic or being filtered */
1314
1315	audit_log_format(ab, "proctitle=");
1316
1317	/* Not  cached */
1318	if (!context->proctitle.value) {
1319		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1320		if (!buf)
1321			goto out;
1322		/* Historically called this from procfs naming */
1323		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1324		if (res == 0) {
1325			kfree(buf);
1326			goto out;
1327		}
1328		res = audit_proctitle_rtrim(buf, res);
1329		if (res == 0) {
1330			kfree(buf);
1331			goto out;
1332		}
1333		context->proctitle.value = buf;
1334		context->proctitle.len = res;
1335	}
1336	msg = context->proctitle.value;
1337	len = context->proctitle.len;
1338out:
1339	audit_log_n_untrustedstring(ab, msg, len);
1340	audit_log_end(ab);
1341}
1342
1343static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
1344{
1345	int i, call_panic = 0;
1346	struct audit_buffer *ab;
1347	struct audit_aux_data *aux;
1348	struct audit_names *n;
1349
1350	/* tsk == current */
1351	context->personality = tsk->personality;
1352
1353	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1354	if (!ab)
1355		return;		/* audit_panic has been called */
1356	audit_log_format(ab, "arch=%x syscall=%d",
1357			 context->arch, context->major);
1358	if (context->personality != PER_LINUX)
1359		audit_log_format(ab, " per=%lx", context->personality);
1360	if (context->return_valid)
1361		audit_log_format(ab, " success=%s exit=%ld",
1362				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1363				 context->return_code);
1364
1365	audit_log_format(ab,
1366			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1367			 context->argv[0],
1368			 context->argv[1],
1369			 context->argv[2],
1370			 context->argv[3],
1371			 context->name_count);
1372
1373	audit_log_task_info(ab, tsk);
1374	audit_log_key(ab, context->filterkey);
 
 
 
 
 
 
1375	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376
1377	for (aux = context->aux; aux; aux = aux->next) {
1378
1379		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1380		if (!ab)
1381			continue; /* audit_panic has been called */
1382
1383		switch (aux->type) {
1384
1385		case AUDIT_BPRM_FCAPS: {
1386			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1387			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1388			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1389			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1390			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1391			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1392			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1393			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1394			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1395			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1396			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1397			break; }
1398
1399		}
1400		audit_log_end(ab);
1401	}
1402
1403	if (context->type)
1404		show_special(context, &call_panic);
1405
1406	if (context->fds[0] >= 0) {
1407		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1408		if (ab) {
1409			audit_log_format(ab, "fd0=%d fd1=%d",
1410					context->fds[0], context->fds[1]);
1411			audit_log_end(ab);
1412		}
1413	}
1414
1415	if (context->sockaddr_len) {
1416		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1417		if (ab) {
1418			audit_log_format(ab, "saddr=");
1419			audit_log_n_hex(ab, (void *)context->sockaddr,
1420					context->sockaddr_len);
1421			audit_log_end(ab);
1422		}
1423	}
1424
1425	for (aux = context->aux_pids; aux; aux = aux->next) {
1426		struct audit_aux_data_pids *axs = (void *)aux;
1427
1428		for (i = 0; i < axs->pid_count; i++)
1429			if (audit_log_pid_context(context, axs->target_pid[i],
1430						  axs->target_auid[i],
1431						  axs->target_uid[i],
1432						  axs->target_sessionid[i],
1433						  axs->target_sid[i],
1434						  axs->target_comm[i]))
1435				call_panic = 1;
1436	}
1437
1438	if (context->target_pid &&
1439	    audit_log_pid_context(context, context->target_pid,
1440				  context->target_auid, context->target_uid,
1441				  context->target_sessionid,
1442				  context->target_sid, context->target_comm))
1443			call_panic = 1;
1444
1445	if (context->pwd.dentry && context->pwd.mnt) {
1446		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1447		if (ab) {
1448			audit_log_d_path(ab, " cwd=", &context->pwd);
1449			audit_log_end(ab);
1450		}
1451	}
1452
1453	i = 0;
1454	list_for_each_entry(n, &context->names_list, list) {
1455		if (n->hidden)
1456			continue;
1457		audit_log_name(context, n, NULL, i++, &call_panic);
1458	}
1459
1460	audit_log_proctitle(tsk, context);
 
1461
1462	/* Send end of event record to help user space know we are finished */
1463	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1464	if (ab)
1465		audit_log_end(ab);
1466	if (call_panic)
1467		audit_panic("error converting sid to string");
1468}
1469
1470/**
1471 * audit_free - free a per-task audit context
1472 * @tsk: task whose audit context block to free
1473 *
1474 * Called from copy_process and do_exit
1475 */
1476void __audit_free(struct task_struct *tsk)
1477{
1478	struct audit_context *context;
1479
1480	context = audit_take_context(tsk, 0, 0);
1481	if (!context)
1482		return;
1483
1484	/* Check for system calls that do not go through the exit
1485	 * function (e.g., exit_group), then free context block.
1486	 * We use GFP_ATOMIC here because we might be doing this
1487	 * in the context of the idle thread */
1488	/* that can happen only if we are called from do_exit() */
1489	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1490		audit_log_exit(context, tsk);
1491	if (!list_empty(&context->killed_trees))
1492		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493
 
1494	audit_free_context(context);
1495}
1496
1497/**
1498 * audit_syscall_entry - fill in an audit record at syscall entry
1499 * @arch: architecture type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500 * @major: major syscall type (function)
1501 * @a1: additional syscall register 1
1502 * @a2: additional syscall register 2
1503 * @a3: additional syscall register 3
1504 * @a4: additional syscall register 4
1505 *
1506 * Fill in audit context at syscall entry.  This only happens if the
1507 * audit context was created when the task was created and the state or
1508 * filters demand the audit context be built.  If the state from the
1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510 * then the record will be written at syscall exit time (otherwise, it
1511 * will only be written if another part of the kernel requests that it
1512 * be written).
1513 */
1514void __audit_syscall_entry(int arch, int major,
1515			 unsigned long a1, unsigned long a2,
1516			 unsigned long a3, unsigned long a4)
1517{
1518	struct task_struct *tsk = current;
1519	struct audit_context *context = tsk->audit_context;
1520	enum audit_state     state;
1521
1522	if (!context)
1523		return;
1524
1525	BUG_ON(context->in_syscall || context->name_count);
 
 
 
 
 
1526
1527	if (!audit_enabled)
 
1528		return;
1529
1530	context->arch	    = arch;
 
 
 
 
 
 
 
1531	context->major      = major;
1532	context->argv[0]    = a1;
1533	context->argv[1]    = a2;
1534	context->argv[2]    = a3;
1535	context->argv[3]    = a4;
1536
1537	state = context->state;
1538	context->dummy = !audit_n_rules;
1539	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540		context->prio = 0;
1541		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542	}
1543	if (state == AUDIT_DISABLED)
1544		return;
1545
1546	context->serial     = 0;
1547	context->ctime      = CURRENT_TIME;
1548	context->in_syscall = 1;
1549	context->current_state  = state;
1550	context->ppid       = 0;
1551}
1552
1553/**
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call.  If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information.  In call cases,
1562 * free the names stored from getname().
1563 */
1564void __audit_syscall_exit(int success, long return_code)
1565{
1566	struct task_struct *tsk = current;
1567	struct audit_context *context;
1568
1569	if (success)
1570		success = AUDITSC_SUCCESS;
1571	else
1572		success = AUDITSC_FAILURE;
1573
1574	context = audit_take_context(tsk, success, return_code);
1575	if (!context)
1576		return;
1577
1578	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579		audit_log_exit(context, tsk);
 
 
 
 
1580
1581	context->in_syscall = 0;
1582	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583
1584	if (!list_empty(&context->killed_trees))
1585		audit_kill_trees(&context->killed_trees);
1586
1587	audit_free_names(context);
1588	unroll_tree_refs(context, NULL, 0);
1589	audit_free_aux(context);
1590	context->aux = NULL;
1591	context->aux_pids = NULL;
1592	context->target_pid = 0;
1593	context->target_sid = 0;
1594	context->sockaddr_len = 0;
1595	context->type = 0;
1596	context->fds[0] = -1;
1597	if (context->state != AUDIT_RECORD_CONTEXT) {
1598		kfree(context->filterkey);
1599		context->filterkey = NULL;
1600	}
1601	tsk->audit_context = context;
1602}
1603
1604static inline void handle_one(const struct inode *inode)
1605{
1606#ifdef CONFIG_AUDIT_TREE
1607	struct audit_context *context;
1608	struct audit_tree_refs *p;
1609	struct audit_chunk *chunk;
1610	int count;
1611	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1612		return;
1613	context = current->audit_context;
1614	p = context->trees;
1615	count = context->tree_count;
1616	rcu_read_lock();
1617	chunk = audit_tree_lookup(inode);
1618	rcu_read_unlock();
1619	if (!chunk)
1620		return;
1621	if (likely(put_tree_ref(context, chunk)))
1622		return;
1623	if (unlikely(!grow_tree_refs(context))) {
1624		pr_warn("out of memory, audit has lost a tree reference\n");
1625		audit_set_auditable(context);
1626		audit_put_chunk(chunk);
1627		unroll_tree_refs(context, p, count);
1628		return;
1629	}
1630	put_tree_ref(context, chunk);
1631#endif
1632}
1633
1634static void handle_path(const struct dentry *dentry)
1635{
1636#ifdef CONFIG_AUDIT_TREE
1637	struct audit_context *context;
1638	struct audit_tree_refs *p;
1639	const struct dentry *d, *parent;
1640	struct audit_chunk *drop;
1641	unsigned long seq;
1642	int count;
1643
1644	context = current->audit_context;
1645	p = context->trees;
1646	count = context->tree_count;
1647retry:
1648	drop = NULL;
1649	d = dentry;
1650	rcu_read_lock();
1651	seq = read_seqbegin(&rename_lock);
1652	for(;;) {
1653		struct inode *inode = d->d_inode;
1654		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1655			struct audit_chunk *chunk;
 
1656			chunk = audit_tree_lookup(inode);
1657			if (chunk) {
1658				if (unlikely(!put_tree_ref(context, chunk))) {
1659					drop = chunk;
1660					break;
1661				}
1662			}
1663		}
1664		parent = d->d_parent;
1665		if (parent == d)
1666			break;
1667		d = parent;
1668	}
1669	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1670		rcu_read_unlock();
1671		if (!drop) {
1672			/* just a race with rename */
1673			unroll_tree_refs(context, p, count);
1674			goto retry;
1675		}
1676		audit_put_chunk(drop);
1677		if (grow_tree_refs(context)) {
1678			/* OK, got more space */
1679			unroll_tree_refs(context, p, count);
1680			goto retry;
1681		}
1682		/* too bad */
1683		pr_warn("out of memory, audit has lost a tree reference\n");
1684		unroll_tree_refs(context, p, count);
1685		audit_set_auditable(context);
1686		return;
1687	}
1688	rcu_read_unlock();
1689#endif
1690}
1691
1692static struct audit_names *audit_alloc_name(struct audit_context *context,
1693						unsigned char type)
1694{
1695	struct audit_names *aname;
1696
1697	if (context->name_count < AUDIT_NAMES) {
1698		aname = &context->preallocated_names[context->name_count];
1699		memset(aname, 0, sizeof(*aname));
1700	} else {
1701		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702		if (!aname)
1703			return NULL;
1704		aname->should_free = true;
1705	}
1706
1707	aname->ino = (unsigned long)-1;
1708	aname->type = type;
1709	list_add_tail(&aname->list, &context->names_list);
1710
1711	context->name_count++;
1712#if AUDIT_DEBUG
1713	context->ino_count++;
1714#endif
1715	return aname;
1716}
1717
1718/**
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1721 *
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1725 */
1726struct filename *
1727__audit_reusename(const __user char *uptr)
1728{
1729	struct audit_context *context = current->audit_context;
1730	struct audit_names *n;
1731
1732	list_for_each_entry(n, &context->names_list, list) {
1733		if (!n->name)
1734			continue;
1735		if (n->name->uptr == uptr)
 
1736			return n->name;
 
1737	}
1738	return NULL;
1739}
1740
1741/**
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1744 *
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1747 */
1748void __audit_getname(struct filename *name)
1749{
1750	struct audit_context *context = current->audit_context;
1751	struct audit_names *n;
1752
1753	if (!context->in_syscall) {
1754#if AUDIT_DEBUG == 2
1755		pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756		       __FILE__, __LINE__, context->serial, name);
1757		dump_stack();
1758#endif
1759		return;
1760	}
1761
1762#if AUDIT_DEBUG
1763	/* The filename _must_ have a populated ->name */
1764	BUG_ON(!name->name);
1765#endif
1766
1767	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768	if (!n)
1769		return;
1770
1771	n->name = name;
1772	n->name_len = AUDIT_NAME_FULL;
1773	n->name_put = true;
1774	name->aname = n;
 
 
1775
1776	if (!context->pwd.dentry)
1777		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778}
1779
1780/* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1782 *
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1786 */
1787void audit_putname(struct filename *name)
1788{
1789	struct audit_context *context = current->audit_context;
1790
1791	BUG_ON(!context);
1792	if (!name->aname || !context->in_syscall) {
1793#if AUDIT_DEBUG == 2
1794		pr_err("%s:%d(:%d): final_putname(%p)\n",
1795		       __FILE__, __LINE__, context->serial, name);
1796		if (context->name_count) {
1797			struct audit_names *n;
1798			int i = 0;
1799
1800			list_for_each_entry(n, &context->names_list, list)
1801				pr_err("name[%d] = %p = %s\n", i++, n->name,
1802				       n->name->name ?: "(null)");
1803			}
1804#endif
1805		final_putname(name);
1806	}
1807#if AUDIT_DEBUG
1808	else {
1809		++context->put_count;
1810		if (context->put_count > context->name_count) {
1811			pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812			       " name_count=%d put_count=%d\n",
1813			       __FILE__, __LINE__,
1814			       context->serial, context->major,
1815			       context->in_syscall, name->name,
1816			       context->name_count, context->put_count);
1817			dump_stack();
1818		}
1819	}
1820#endif
1821}
1822
1823/**
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1828 */
1829void __audit_inode(struct filename *name, const struct dentry *dentry,
1830		   unsigned int flags)
1831{
1832	struct audit_context *context = current->audit_context;
1833	const struct inode *inode = dentry->d_inode;
1834	struct audit_names *n;
1835	bool parent = flags & AUDIT_INODE_PARENT;
 
 
 
1836
1837	if (!context->in_syscall)
1838		return;
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840	if (!name)
1841		goto out_alloc;
1842
1843#if AUDIT_DEBUG
1844	/* The struct filename _must_ have a populated ->name */
1845	BUG_ON(!name->name);
1846#endif
1847	/*
1848	 * If we have a pointer to an audit_names entry already, then we can
1849	 * just use it directly if the type is correct.
1850	 */
1851	n = name->aname;
1852	if (n) {
1853		if (parent) {
1854			if (n->type == AUDIT_TYPE_PARENT ||
1855			    n->type == AUDIT_TYPE_UNKNOWN)
1856				goto out;
1857		} else {
1858			if (n->type != AUDIT_TYPE_PARENT)
1859				goto out;
1860		}
1861	}
1862
1863	list_for_each_entry_reverse(n, &context->names_list, list) {
1864		/* does the name pointer match? */
1865		if (!n->name || n->name->name != name->name)
 
 
 
 
 
 
 
 
 
1866			continue;
1867
1868		/* match the correct record type */
1869		if (parent) {
1870			if (n->type == AUDIT_TYPE_PARENT ||
1871			    n->type == AUDIT_TYPE_UNKNOWN)
1872				goto out;
1873		} else {
1874			if (n->type != AUDIT_TYPE_PARENT)
1875				goto out;
1876		}
1877	}
1878
1879out_alloc:
1880	/* unable to find the name from a previous getname(). Allocate a new
1881	 * anonymous entry.
1882	 */
1883	n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884	if (!n)
1885		return;
 
 
 
 
 
1886out:
1887	if (parent) {
1888		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889		n->type = AUDIT_TYPE_PARENT;
1890		if (flags & AUDIT_INODE_HIDDEN)
1891			n->hidden = true;
1892	} else {
1893		n->name_len = AUDIT_NAME_FULL;
1894		n->type = AUDIT_TYPE_NORMAL;
1895	}
1896	handle_path(dentry);
1897	audit_copy_inode(n, dentry, inode);
 
 
 
 
 
1898}
1899
1900/**
1901 * __audit_inode_child - collect inode info for created/removed objects
1902 * @parent: inode of dentry parent
1903 * @dentry: dentry being audited
1904 * @type:   AUDIT_TYPE_* value that we're looking for
1905 *
1906 * For syscalls that create or remove filesystem objects, audit_inode
1907 * can only collect information for the filesystem object's parent.
1908 * This call updates the audit context with the child's information.
1909 * Syscalls that create a new filesystem object must be hooked after
1910 * the object is created.  Syscalls that remove a filesystem object
1911 * must be hooked prior, in order to capture the target inode during
1912 * unsuccessful attempts.
1913 */
1914void __audit_inode_child(const struct inode *parent,
1915			 const struct dentry *dentry,
1916			 const unsigned char type)
1917{
1918	struct audit_context *context = current->audit_context;
1919	const struct inode *inode = dentry->d_inode;
1920	const char *dname = dentry->d_name.name;
1921	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
 
 
 
1922
1923	if (!context->in_syscall)
1924		return;
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926	if (inode)
1927		handle_one(inode);
1928
1929	/* look for a parent entry first */
1930	list_for_each_entry(n, &context->names_list, list) {
1931		if (!n->name || n->type != AUDIT_TYPE_PARENT)
 
 
1932			continue;
1933
1934		if (n->ino == parent->i_ino &&
1935		    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
 
 
 
1936			found_parent = n;
1937			break;
1938		}
1939	}
1940
 
 
1941	/* is there a matching child entry? */
1942	list_for_each_entry(n, &context->names_list, list) {
1943		/* can only match entries that have a name */
1944		if (!n->name || n->type != type)
1945			continue;
1946
1947		/* if we found a parent, make sure this one is a child of it */
1948		if (found_parent && (n->name != found_parent->name))
1949			continue;
1950
1951		if (!strcmp(dname, n->name->name) ||
1952		    !audit_compare_dname_path(dname, n->name->name,
1953						found_parent ?
1954						found_parent->name_len :
1955						AUDIT_NAME_FULL)) {
 
 
1956			found_child = n;
1957			break;
1958		}
1959	}
1960
1961	if (!found_parent) {
1962		/* create a new, "anonymous" parent record */
1963		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1964		if (!n)
1965			return;
1966		audit_copy_inode(n, NULL, parent);
1967	}
1968
1969	if (!found_child) {
1970		found_child = audit_alloc_name(context, type);
1971		if (!found_child)
1972			return;
1973
1974		/* Re-use the name belonging to the slot for a matching parent
1975		 * directory. All names for this context are relinquished in
1976		 * audit_free_names() */
1977		if (found_parent) {
1978			found_child->name = found_parent->name;
1979			found_child->name_len = AUDIT_NAME_FULL;
1980			/* don't call __putname() */
1981			found_child->name_put = false;
1982		}
1983	}
 
1984	if (inode)
1985		audit_copy_inode(found_child, dentry, inode);
1986	else
1987		found_child->ino = (unsigned long)-1;
1988}
1989EXPORT_SYMBOL_GPL(__audit_inode_child);
1990
1991/**
1992 * auditsc_get_stamp - get local copies of audit_context values
1993 * @ctx: audit_context for the task
1994 * @t: timespec to store time recorded in the audit_context
1995 * @serial: serial value that is recorded in the audit_context
1996 *
1997 * Also sets the context as auditable.
1998 */
1999int auditsc_get_stamp(struct audit_context *ctx,
2000		       struct timespec *t, unsigned int *serial)
2001{
2002	if (!ctx->in_syscall)
2003		return 0;
2004	if (!ctx->serial)
2005		ctx->serial = audit_serial();
2006	t->tv_sec  = ctx->ctime.tv_sec;
2007	t->tv_nsec = ctx->ctime.tv_nsec;
2008	*serial    = ctx->serial;
2009	if (!ctx->prio) {
2010		ctx->prio = 1;
2011		ctx->current_state = AUDIT_RECORD_CONTEXT;
2012	}
2013	return 1;
2014}
2015
2016/* global counter which is incremented every time something logs in */
2017static atomic_t session_id = ATOMIC_INIT(0);
2018
2019static int audit_set_loginuid_perm(kuid_t loginuid)
2020{
2021	/* if we are unset, we don't need privs */
2022	if (!audit_loginuid_set(current))
2023		return 0;
2024	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2026		return -EPERM;
2027	/* it is set, you need permission */
2028	if (!capable(CAP_AUDIT_CONTROL))
2029		return -EPERM;
2030	/* reject if this is not an unset and we don't allow that */
2031	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2032		return -EPERM;
2033	return 0;
2034}
2035
2036static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2037				   unsigned int oldsessionid, unsigned int sessionid,
2038				   int rc)
2039{
2040	struct audit_buffer *ab;
2041	uid_t uid, oldloginuid, loginuid;
2042
2043	if (!audit_enabled)
2044		return;
2045
2046	uid = from_kuid(&init_user_ns, task_uid(current));
2047	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2048	loginuid = from_kuid(&init_user_ns, kloginuid),
2049
2050	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2051	if (!ab)
2052		return;
2053	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2054	audit_log_task_context(ab);
2055	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2057	audit_log_end(ab);
2058}
2059
2060/**
2061 * audit_set_loginuid - set current task's audit_context loginuid
2062 * @loginuid: loginuid value
2063 *
2064 * Returns 0.
2065 *
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067 */
2068int audit_set_loginuid(kuid_t loginuid)
2069{
2070	struct task_struct *task = current;
2071	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072	kuid_t oldloginuid;
2073	int rc;
2074
2075	oldloginuid = audit_get_loginuid(current);
2076	oldsessionid = audit_get_sessionid(current);
2077
2078	rc = audit_set_loginuid_perm(loginuid);
2079	if (rc)
2080		goto out;
2081
2082	/* are we setting or clearing? */
2083	if (uid_valid(loginuid))
2084		sessionid = (unsigned int)atomic_inc_return(&session_id);
2085
2086	task->sessionid = sessionid;
2087	task->loginuid = loginuid;
2088out:
2089	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090	return rc;
2091}
2092
2093/**
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2095 * @oflag: open flag
2096 * @mode: mode bits
2097 * @attr: queue attributes
2098 *
2099 */
2100void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2101{
2102	struct audit_context *context = current->audit_context;
2103
2104	if (attr)
2105		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106	else
2107		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2108
2109	context->mq_open.oflag = oflag;
2110	context->mq_open.mode = mode;
2111
2112	context->type = AUDIT_MQ_OPEN;
2113}
2114
2115/**
2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
2120 * @abs_timeout: Message timeout in absolute time
2121 *
2122 */
2123void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124			const struct timespec *abs_timeout)
2125{
2126	struct audit_context *context = current->audit_context;
2127	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2128
2129	if (abs_timeout)
2130		memcpy(p, abs_timeout, sizeof(struct timespec));
2131	else
2132		memset(p, 0, sizeof(struct timespec));
2133
2134	context->mq_sendrecv.mqdes = mqdes;
2135	context->mq_sendrecv.msg_len = msg_len;
2136	context->mq_sendrecv.msg_prio = msg_prio;
2137
2138	context->type = AUDIT_MQ_SENDRECV;
2139}
2140
2141/**
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
2144 * @notification: Notification event
2145 *
2146 */
2147
2148void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2149{
2150	struct audit_context *context = current->audit_context;
2151
2152	if (notification)
2153		context->mq_notify.sigev_signo = notification->sigev_signo;
2154	else
2155		context->mq_notify.sigev_signo = 0;
2156
2157	context->mq_notify.mqdes = mqdes;
2158	context->type = AUDIT_MQ_NOTIFY;
2159}
2160
2161/**
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2164 * @mqstat: MQ flags
2165 *
2166 */
2167void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2168{
2169	struct audit_context *context = current->audit_context;
 
2170	context->mq_getsetattr.mqdes = mqdes;
2171	context->mq_getsetattr.mqstat = *mqstat;
2172	context->type = AUDIT_MQ_GETSETATTR;
2173}
2174
2175/**
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2178 *
2179 */
2180void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2181{
2182	struct audit_context *context = current->audit_context;
 
2183	context->ipc.uid = ipcp->uid;
2184	context->ipc.gid = ipcp->gid;
2185	context->ipc.mode = ipcp->mode;
2186	context->ipc.has_perm = 0;
2187	security_ipc_getsecid(ipcp, &context->ipc.osid);
2188	context->type = AUDIT_IPC;
2189}
2190
2191/**
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2197 *
2198 * Called only after audit_ipc_obj().
2199 */
2200void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2201{
2202	struct audit_context *context = current->audit_context;
2203
2204	context->ipc.qbytes = qbytes;
2205	context->ipc.perm_uid = uid;
2206	context->ipc.perm_gid = gid;
2207	context->ipc.perm_mode = mode;
2208	context->ipc.has_perm = 1;
2209}
2210
2211void __audit_bprm(struct linux_binprm *bprm)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	context->type = AUDIT_EXECVE;
2216	context->execve.argc = bprm->argc;
2217}
2218
2219
2220/**
2221 * audit_socketcall - record audit data for sys_socketcall
2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2223 * @args: args array
2224 *
2225 */
2226int __audit_socketcall(int nargs, unsigned long *args)
2227{
2228	struct audit_context *context = current->audit_context;
2229
2230	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231		return -EINVAL;
2232	context->type = AUDIT_SOCKETCALL;
2233	context->socketcall.nargs = nargs;
2234	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2235	return 0;
2236}
2237
2238/**
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2242 *
2243 */
2244void __audit_fd_pair(int fd1, int fd2)
2245{
2246	struct audit_context *context = current->audit_context;
 
2247	context->fds[0] = fd1;
2248	context->fds[1] = fd2;
2249}
2250
2251/**
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2255 *
2256 * Returns 0 for success or NULL context or < 0 on error.
2257 */
2258int __audit_sockaddr(int len, void *a)
2259{
2260	struct audit_context *context = current->audit_context;
2261
2262	if (!context->sockaddr) {
2263		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2264		if (!p)
2265			return -ENOMEM;
2266		context->sockaddr = p;
2267	}
2268
2269	context->sockaddr_len = len;
2270	memcpy(context->sockaddr, a, len);
2271	return 0;
2272}
2273
2274void __audit_ptrace(struct task_struct *t)
2275{
2276	struct audit_context *context = current->audit_context;
2277
2278	context->target_pid = task_pid_nr(t);
2279	context->target_auid = audit_get_loginuid(t);
2280	context->target_uid = task_uid(t);
2281	context->target_sessionid = audit_get_sessionid(t);
2282	security_task_getsecid(t, &context->target_sid);
2283	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2284}
2285
2286/**
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2290 *
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2293 */
2294int __audit_signal_info(int sig, struct task_struct *t)
2295{
2296	struct audit_aux_data_pids *axp;
2297	struct task_struct *tsk = current;
2298	struct audit_context *ctx = tsk->audit_context;
2299	kuid_t uid = current_uid(), t_uid = task_uid(t);
2300
2301	if (audit_pid && t->tgid == audit_pid) {
2302		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2303			audit_sig_pid = task_pid_nr(tsk);
2304			if (uid_valid(tsk->loginuid))
2305				audit_sig_uid = tsk->loginuid;
2306			else
2307				audit_sig_uid = uid;
2308			security_task_getsecid(tsk, &audit_sig_sid);
2309		}
2310		if (!audit_signals || audit_dummy_context())
2311			return 0;
2312	}
2313
2314	/* optimize the common case by putting first signal recipient directly
2315	 * in audit_context */
2316	if (!ctx->target_pid) {
2317		ctx->target_pid = task_tgid_nr(t);
2318		ctx->target_auid = audit_get_loginuid(t);
2319		ctx->target_uid = t_uid;
2320		ctx->target_sessionid = audit_get_sessionid(t);
2321		security_task_getsecid(t, &ctx->target_sid);
2322		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2323		return 0;
2324	}
2325
2326	axp = (void *)ctx->aux_pids;
2327	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329		if (!axp)
2330			return -ENOMEM;
2331
2332		axp->d.type = AUDIT_OBJ_PID;
2333		axp->d.next = ctx->aux_pids;
2334		ctx->aux_pids = (void *)axp;
2335	}
2336	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2337
2338	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2339	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2340	axp->target_uid[axp->pid_count] = t_uid;
2341	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2342	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2343	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2344	axp->pid_count++;
2345
2346	return 0;
2347}
2348
2349/**
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
2354 *
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2357 *
2358 * -Eric
2359 */
2360int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361			   const struct cred *new, const struct cred *old)
2362{
2363	struct audit_aux_data_bprm_fcaps *ax;
2364	struct audit_context *context = current->audit_context;
2365	struct cpu_vfs_cap_data vcaps;
2366	struct dentry *dentry;
2367
2368	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369	if (!ax)
2370		return -ENOMEM;
2371
2372	ax->d.type = AUDIT_BPRM_FCAPS;
2373	ax->d.next = context->aux;
2374	context->aux = (void *)ax;
2375
2376	dentry = dget(bprm->file->f_dentry);
2377	get_vfs_caps_from_disk(dentry, &vcaps);
2378	dput(dentry);
2379
2380	ax->fcap.permitted = vcaps.permitted;
2381	ax->fcap.inheritable = vcaps.inheritable;
2382	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2383	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384
2385	ax->old_pcap.permitted   = old->cap_permitted;
2386	ax->old_pcap.inheritable = old->cap_inheritable;
2387	ax->old_pcap.effective   = old->cap_effective;
 
2388
2389	ax->new_pcap.permitted   = new->cap_permitted;
2390	ax->new_pcap.inheritable = new->cap_inheritable;
2391	ax->new_pcap.effective   = new->cap_effective;
 
2392	return 0;
2393}
2394
2395/**
2396 * __audit_log_capset - store information about the arguments to the capset syscall
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
2399 *
2400 * Record the aguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2402 */
2403void __audit_log_capset(const struct cred *new, const struct cred *old)
2404{
2405	struct audit_context *context = current->audit_context;
2406	context->capset.pid = task_pid_nr(current);
 
2407	context->capset.cap.effective   = new->cap_effective;
2408	context->capset.cap.inheritable = new->cap_effective;
2409	context->capset.cap.permitted   = new->cap_permitted;
 
2410	context->type = AUDIT_CAPSET;
2411}
2412
2413void __audit_mmap_fd(int fd, int flags)
2414{
2415	struct audit_context *context = current->audit_context;
 
2416	context->mmap.fd = fd;
2417	context->mmap.flags = flags;
2418	context->type = AUDIT_MMAP;
2419}
2420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421static void audit_log_task(struct audit_buffer *ab)
2422{
2423	kuid_t auid, uid;
2424	kgid_t gid;
2425	unsigned int sessionid;
2426	struct mm_struct *mm = current->mm;
2427
2428	auid = audit_get_loginuid(current);
2429	sessionid = audit_get_sessionid(current);
2430	current_uid_gid(&uid, &gid);
2431
2432	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2433			 from_kuid(&init_user_ns, auid),
2434			 from_kuid(&init_user_ns, uid),
2435			 from_kgid(&init_user_ns, gid),
2436			 sessionid);
2437	audit_log_task_context(ab);
2438	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2439	audit_log_untrustedstring(ab, current->comm);
2440	if (mm) {
2441		down_read(&mm->mmap_sem);
2442		if (mm->exe_file)
2443			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2444		up_read(&mm->mmap_sem);
2445	} else
2446		audit_log_format(ab, " exe=(null)");
2447}
2448
2449/**
2450 * audit_core_dumps - record information about processes that end abnormally
2451 * @signr: signal value
2452 *
2453 * If a process ends with a core dump, something fishy is going on and we
2454 * should record the event for investigation.
2455 */
2456void audit_core_dumps(long signr)
2457{
2458	struct audit_buffer *ab;
2459
2460	if (!audit_enabled)
2461		return;
2462
2463	if (signr == SIGQUIT)	/* don't care for those */
2464		return;
2465
2466	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2467	if (unlikely(!ab))
2468		return;
2469	audit_log_task(ab);
2470	audit_log_format(ab, " sig=%ld", signr);
2471	audit_log_end(ab);
2472}
2473
2474void __audit_seccomp(unsigned long syscall, long signr, int code)
 
 
 
 
 
 
 
 
 
 
 
 
2475{
2476	struct audit_buffer *ab;
2477
2478	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2479	if (unlikely(!ab))
2480		return;
2481	audit_log_task(ab);
2482	audit_log_format(ab, " sig=%ld", signr);
2483	audit_log_format(ab, " syscall=%ld", syscall);
2484	audit_log_format(ab, " compat=%d", is_compat_task());
2485	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2486	audit_log_format(ab, " code=0x%x", code);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487	audit_log_end(ab);
2488}
2489
2490struct list_head *audit_killed_trees(void)
2491{
2492	struct audit_context *ctx = current->audit_context;
2493	if (likely(!ctx || !ctx->in_syscall))
2494		return NULL;
2495	return &ctx->killed_trees;
2496}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
 
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
 
 
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	u32			target_sid[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 149};
 150
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 336{
 337	struct audit_names *n;
 338	int rc;
 339
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	u32 sid;
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use security_current_getsecid_subj()
 678					 * here even though it always refs
 679					 * @current's creds
 680					 */
 681					security_current_getsecid_subj(&sid);
 682					need_sid = 0;
 683				}
 684				result = security_audit_rule_match(sid, f->type,
 685								   f->op,
 686								   f->lsm_rule);
 
 687			}
 688			break;
 689		case AUDIT_OBJ_USER:
 690		case AUDIT_OBJ_ROLE:
 691		case AUDIT_OBJ_TYPE:
 692		case AUDIT_OBJ_LEV_LOW:
 693		case AUDIT_OBJ_LEV_HIGH:
 694			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 695			   also applies here */
 696			if (f->lsm_rule) {
 697				/* Find files that match */
 698				if (name) {
 699					result = security_audit_rule_match(
 700								name->osid,
 701								f->type,
 702								f->op,
 703								f->lsm_rule);
 704				} else if (ctx) {
 705					list_for_each_entry(n, &ctx->names_list, list) {
 706						if (security_audit_rule_match(
 707								n->osid,
 708								f->type,
 709								f->op,
 710								f->lsm_rule)) {
 711							++result;
 712							break;
 713						}
 714					}
 715				}
 716				/* Find ipc objects that match */
 717				if (!ctx || ctx->type != AUDIT_IPC)
 718					break;
 719				if (security_audit_rule_match(ctx->ipc.osid,
 720							      f->type, f->op,
 721							      f->lsm_rule))
 722					++result;
 723			}
 724			break;
 725		case AUDIT_ARG0:
 726		case AUDIT_ARG1:
 727		case AUDIT_ARG2:
 728		case AUDIT_ARG3:
 729			if (ctx)
 730				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 731			break;
 732		case AUDIT_FILTERKEY:
 733			/* ignore this field for filtering */
 734			result = 1;
 735			break;
 736		case AUDIT_PERM:
 737			result = audit_match_perm(ctx, f->val);
 738			if (f->op == Audit_not_equal)
 739				result = !result;
 740			break;
 741		case AUDIT_FILETYPE:
 742			result = audit_match_filetype(ctx, f->val);
 743			if (f->op == Audit_not_equal)
 744				result = !result;
 745			break;
 746		case AUDIT_FIELD_COMPARE:
 747			result = audit_field_compare(tsk, cred, f, ctx, name);
 748			break;
 749		}
 750		if (!result)
 751			return 0;
 752	}
 753
 754	if (ctx) {
 
 
 755		if (rule->filterkey) {
 756			kfree(ctx->filterkey);
 757			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 758		}
 759		ctx->prio = rule->prio;
 760	}
 761	switch (rule->action) {
 762	case AUDIT_NEVER:
 763		*state = AUDIT_STATE_DISABLED;
 764		break;
 765	case AUDIT_ALWAYS:
 766		*state = AUDIT_STATE_RECORD;
 767		break;
 768	}
 769	return 1;
 770}
 771
 772/* At process creation time, we can determine if system-call auditing is
 773 * completely disabled for this task.  Since we only have the task
 774 * structure at this point, we can only check uid and gid.
 775 */
 776static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 777{
 778	struct audit_entry *e;
 779	enum audit_state   state;
 780
 781	rcu_read_lock();
 782	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 783		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 784				       &state, true)) {
 785			if (state == AUDIT_STATE_RECORD)
 786				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 787			rcu_read_unlock();
 788			return state;
 789		}
 790	}
 791	rcu_read_unlock();
 792	return AUDIT_STATE_BUILD;
 793}
 794
 795static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 796{
 797	int word, bit;
 798
 799	if (val > 0xffffffff)
 800		return false;
 801
 802	word = AUDIT_WORD(val);
 803	if (word >= AUDIT_BITMASK_SIZE)
 804		return false;
 805
 806	bit = AUDIT_BIT(val);
 807
 808	return rule->mask[word] & bit;
 809}
 810
 811/**
 812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 813 * @tsk: associated task
 814 * @ctx: audit context
 815 * @list: audit filter list
 816 * @name: audit_name (can be NULL)
 817 * @op: current syscall/uring_op
 818 *
 819 * Run the udit filters specified in @list against @tsk using @ctx,
 820 * @name, and @op, as necessary; the caller is responsible for ensuring
 821 * that the call is made while the RCU read lock is held. The @name
 822 * parameter can be NULL, but all others must be specified.
 823 * Returns 1/true if the filter finds a match, 0/false if none are found.
 824 */
 825static int __audit_filter_op(struct task_struct *tsk,
 826			   struct audit_context *ctx,
 827			   struct list_head *list,
 828			   struct audit_names *name,
 829			   unsigned long op)
 830{
 831	struct audit_entry *e;
 832	enum audit_state state;
 833
 834	list_for_each_entry_rcu(e, list, list) {
 835		if (audit_in_mask(&e->rule, op) &&
 836		    audit_filter_rules(tsk, &e->rule, ctx, name,
 837				       &state, false)) {
 838			ctx->current_state = state;
 839			return 1;
 
 
 
 
 
 
 
 
 
 
 840		}
 841	}
 842	return 0;
 843}
 844
 845/**
 846 * audit_filter_uring - apply filters to an io_uring operation
 847 * @tsk: associated task
 848 * @ctx: audit context
 849 */
 850static void audit_filter_uring(struct task_struct *tsk,
 851			       struct audit_context *ctx)
 852{
 853	if (auditd_test_task(tsk))
 854		return;
 855
 856	rcu_read_lock();
 857	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 858			NULL, ctx->uring_op);
 859	rcu_read_unlock();
 860}
 861
 862/* At syscall exit time, this filter is called if the audit_state is
 863 * not low enough that auditing cannot take place, but is also not
 864 * high enough that we already know we have to write an audit record
 865 * (i.e., the state is AUDIT_STATE_BUILD).
 866 */
 867static void audit_filter_syscall(struct task_struct *tsk,
 868				 struct audit_context *ctx)
 869{
 870	if (auditd_test_task(tsk))
 871		return;
 872
 873	rcu_read_lock();
 874	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 875			NULL, ctx->major);
 876	rcu_read_unlock();
 
 877}
 878
 879/*
 880 * Given an audit_name check the inode hash table to see if they match.
 881 * Called holding the rcu read lock to protect the use of audit_inode_hash
 882 */
 883static int audit_filter_inode_name(struct task_struct *tsk,
 884				   struct audit_names *n,
 885				   struct audit_context *ctx)
 886{
 887	int h = audit_hash_ino((u32)n->ino);
 888	struct list_head *list = &audit_inode_hash[h];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889
 890	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 891}
 892
 893/* At syscall exit time, this filter is called if any audit_names have been
 894 * collected during syscall processing.  We only check rules in sublists at hash
 895 * buckets applicable to the inode numbers in audit_names.
 896 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 897 */
 898void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 899{
 900	struct audit_names *n;
 901
 902	if (auditd_test_task(tsk))
 903		return;
 904
 905	rcu_read_lock();
 906
 907	list_for_each_entry(n, &ctx->names_list, list) {
 908		if (audit_filter_inode_name(tsk, n, ctx))
 909			break;
 910	}
 911	rcu_read_unlock();
 912}
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914static inline void audit_proctitle_free(struct audit_context *context)
 915{
 916	kfree(context->proctitle.value);
 917	context->proctitle.value = NULL;
 918	context->proctitle.len = 0;
 919}
 920
 921static inline void audit_free_module(struct audit_context *context)
 922{
 923	if (context->type == AUDIT_KERN_MODULE) {
 924		kfree(context->module.name);
 925		context->module.name = NULL;
 926	}
 927}
 928static inline void audit_free_names(struct audit_context *context)
 929{
 930	struct audit_names *n, *next;
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	list_for_each_entry_safe(n, next, &context->names_list, list) {
 933		list_del(&n->list);
 934		if (n->name)
 935			putname(n->name);
 936		if (n->should_free)
 937			kfree(n);
 938	}
 939	context->name_count = 0;
 940	path_put(&context->pwd);
 941	context->pwd.dentry = NULL;
 942	context->pwd.mnt = NULL;
 943}
 944
 945static inline void audit_free_aux(struct audit_context *context)
 946{
 947	struct audit_aux_data *aux;
 948
 949	while ((aux = context->aux)) {
 950		context->aux = aux->next;
 951		kfree(aux);
 952	}
 953	context->aux = NULL;
 954	while ((aux = context->aux_pids)) {
 955		context->aux_pids = aux->next;
 956		kfree(aux);
 957	}
 958	context->aux_pids = NULL;
 959}
 960
 961/**
 962 * audit_reset_context - reset a audit_context structure
 963 * @ctx: the audit_context to reset
 964 *
 965 * All fields in the audit_context will be reset to an initial state, all
 966 * references held by fields will be dropped, and private memory will be
 967 * released.  When this function returns the audit_context will be suitable
 968 * for reuse, so long as the passed context is not NULL or a dummy context.
 969 */
 970static void audit_reset_context(struct audit_context *ctx)
 971{
 972	if (!ctx)
 973		return;
 974
 975	/* if ctx is non-null, reset the "ctx->context" regardless */
 976	ctx->context = AUDIT_CTX_UNUSED;
 977	if (ctx->dummy)
 978		return;
 979
 980	/*
 981	 * NOTE: It shouldn't matter in what order we release the fields, so
 982	 *       release them in the order in which they appear in the struct;
 983	 *       this gives us some hope of quickly making sure we are
 984	 *       resetting the audit_context properly.
 985	 *
 986	 *       Other things worth mentioning:
 987	 *       - we don't reset "dummy"
 988	 *       - we don't reset "state", we do reset "current_state"
 989	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 990	 *       - much of this is likely overkill, but play it safe for now
 991	 *       - we really need to work on improving the audit_context struct
 992	 */
 993
 994	ctx->current_state = ctx->state;
 995	ctx->serial = 0;
 996	ctx->major = 0;
 997	ctx->uring_op = 0;
 998	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 999	memset(ctx->argv, 0, sizeof(ctx->argv));
1000	ctx->return_code = 0;
1001	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002	ctx->return_valid = AUDITSC_INVALID;
1003	audit_free_names(ctx);
1004	if (ctx->state != AUDIT_STATE_RECORD) {
1005		kfree(ctx->filterkey);
1006		ctx->filterkey = NULL;
1007	}
1008	audit_free_aux(ctx);
1009	kfree(ctx->sockaddr);
1010	ctx->sockaddr = NULL;
1011	ctx->sockaddr_len = 0;
1012	ctx->ppid = 0;
1013	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015	ctx->personality = 0;
1016	ctx->arch = 0;
1017	ctx->target_pid = 0;
1018	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019	ctx->target_sessionid = 0;
1020	ctx->target_sid = 0;
1021	ctx->target_comm[0] = '\0';
1022	unroll_tree_refs(ctx, NULL, 0);
1023	WARN_ON(!list_empty(&ctx->killed_trees));
1024	audit_free_module(ctx);
1025	ctx->fds[0] = -1;
1026	ctx->type = 0; /* reset last for audit_free_*() */
1027}
1028
1029static inline struct audit_context *audit_alloc_context(enum audit_state state)
1030{
1031	struct audit_context *context;
1032
1033	context = kzalloc(sizeof(*context), GFP_KERNEL);
1034	if (!context)
1035		return NULL;
1036	context->context = AUDIT_CTX_UNUSED;
1037	context->state = state;
1038	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039	INIT_LIST_HEAD(&context->killed_trees);
1040	INIT_LIST_HEAD(&context->names_list);
1041	context->fds[0] = -1;
1042	context->return_valid = AUDITSC_INVALID;
1043	return context;
1044}
1045
1046/**
1047 * audit_alloc - allocate an audit context block for a task
1048 * @tsk: task
1049 *
1050 * Filter on the task information and allocate a per-task audit context
1051 * if necessary.  Doing so turns on system call auditing for the
1052 * specified task.  This is called from copy_process, so no lock is
1053 * needed.
1054 */
1055int audit_alloc(struct task_struct *tsk)
1056{
1057	struct audit_context *context;
1058	enum audit_state     state;
1059	char *key = NULL;
1060
1061	if (likely(!audit_ever_enabled))
1062		return 0;
1063
1064	state = audit_filter_task(tsk, &key);
1065	if (state == AUDIT_STATE_DISABLED) {
1066		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1067		return 0;
1068	}
1069
1070	context = audit_alloc_context(state);
1071	if (!context) {
1072		kfree(key);
1073		audit_log_lost("out of memory in audit_alloc");
1074		return -ENOMEM;
1075	}
1076	context->filterkey = key;
1077
1078	audit_set_context(tsk, context);
1079	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1080	return 0;
1081}
1082
1083static inline void audit_free_context(struct audit_context *context)
1084{
1085	/* resetting is extra work, but it is likely just noise */
1086	audit_reset_context(context);
1087	audit_proctitle_free(context);
1088	free_tree_refs(context);
 
1089	kfree(context->filterkey);
 
 
1090	kfree(context);
1091}
1092
1093static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1095				 u32 sid, char *comm)
1096{
1097	struct audit_buffer *ab;
1098	char *ctx = NULL;
1099	u32 len;
1100	int rc = 0;
1101
1102	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1103	if (!ab)
1104		return rc;
1105
1106	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107			 from_kuid(&init_user_ns, auid),
1108			 from_kuid(&init_user_ns, uid), sessionid);
1109	if (sid) {
1110		if (security_secid_to_secctx(sid, &ctx, &len)) {
1111			audit_log_format(ab, " obj=(none)");
1112			rc = 1;
1113		} else {
1114			audit_log_format(ab, " obj=%s", ctx);
1115			security_release_secctx(ctx, len);
1116		}
1117	}
1118	audit_log_format(ab, " ocomm=");
1119	audit_log_untrustedstring(ab, comm);
1120	audit_log_end(ab);
1121
1122	return rc;
1123}
1124
1125static void audit_log_execve_info(struct audit_context *context,
1126				  struct audit_buffer **ab)
1127{
1128	long len_max;
1129	long len_rem;
1130	long len_full;
1131	long len_buf;
1132	long len_abuf = 0;
1133	long len_tmp;
1134	bool require_data;
1135	bool encode;
1136	unsigned int iter;
1137	unsigned int arg;
1138	char *buf_head;
1139	char *buf;
1140	const char __user *p = (const char __user *)current->mm->arg_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1143	 *       data we put in the audit record for this argument (see the
1144	 *       code below) ... at this point in time 96 is plenty */
1145	char abuf[96];
1146
1147	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148	 *       current value of 7500 is not as important as the fact that it
1149	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1150	 *       room if we go over a little bit in the logging below */
1151	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152	len_max = MAX_EXECVE_AUDIT_LEN;
1153
1154	/* scratch buffer to hold the userspace args */
1155	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156	if (!buf_head) {
1157		audit_panic("out of memory for argv string");
1158		return;
1159	}
1160	buf = buf_head;
1161
1162	audit_log_format(*ab, "argc=%d", context->execve.argc);
1163
1164	len_rem = len_max;
1165	len_buf = 0;
1166	len_full = 0;
1167	require_data = true;
1168	encode = false;
1169	iter = 0;
1170	arg = 0;
1171	do {
1172		/* NOTE: we don't ever want to trust this value for anything
1173		 *       serious, but the audit record format insists we
1174		 *       provide an argument length for really long arguments,
1175		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176		 *       to use strncpy_from_user() to obtain this value for
1177		 *       recording in the log, although we don't use it
1178		 *       anywhere here to avoid a double-fetch problem */
1179		if (len_full == 0)
1180			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1181
1182		/* read more data from userspace */
1183		if (require_data) {
1184			/* can we make more room in the buffer? */
1185			if (buf != buf_head) {
1186				memmove(buf_head, buf, len_buf);
1187				buf = buf_head;
1188			}
1189
1190			/* fetch as much as we can of the argument */
1191			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1192						    len_max - len_buf);
1193			if (len_tmp == -EFAULT) {
1194				/* unable to copy from userspace */
1195				send_sig(SIGKILL, current, 0);
1196				goto out;
1197			} else if (len_tmp == (len_max - len_buf)) {
1198				/* buffer is not large enough */
1199				require_data = true;
1200				/* NOTE: if we are going to span multiple
1201				 *       buffers force the encoding so we stand
1202				 *       a chance at a sane len_full value and
1203				 *       consistent record encoding */
1204				encode = true;
1205				len_full = len_full * 2;
1206				p += len_tmp;
1207			} else {
1208				require_data = false;
1209				if (!encode)
1210					encode = audit_string_contains_control(
1211								buf, len_tmp);
1212				/* try to use a trusted value for len_full */
1213				if (len_full < len_max)
1214					len_full = (encode ?
1215						    len_tmp * 2 : len_tmp);
1216				p += len_tmp + 1;
1217			}
1218			len_buf += len_tmp;
1219			buf_head[len_buf] = '\0';
1220
1221			/* length of the buffer in the audit record? */
1222			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1223		}
1224
1225		/* write as much as we can to the audit log */
1226		if (len_buf >= 0) {
1227			/* NOTE: some magic numbers here - basically if we
1228			 *       can't fit a reasonable amount of data into the
1229			 *       existing audit buffer, flush it and start with
1230			 *       a new buffer */
1231			if ((sizeof(abuf) + 8) > len_rem) {
1232				len_rem = len_max;
1233				audit_log_end(*ab);
1234				*ab = audit_log_start(context,
1235						      GFP_KERNEL, AUDIT_EXECVE);
1236				if (!*ab)
1237					goto out;
1238			}
1239
1240			/* create the non-arg portion of the arg record */
1241			len_tmp = 0;
1242			if (require_data || (iter > 0) ||
1243			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1244				if (iter == 0) {
1245					len_tmp += snprintf(&abuf[len_tmp],
1246							sizeof(abuf) - len_tmp,
1247							" a%d_len=%lu",
1248							arg, len_full);
1249				}
1250				len_tmp += snprintf(&abuf[len_tmp],
1251						    sizeof(abuf) - len_tmp,
1252						    " a%d[%d]=", arg, iter++);
1253			} else
1254				len_tmp += snprintf(&abuf[len_tmp],
1255						    sizeof(abuf) - len_tmp,
1256						    " a%d=", arg);
1257			WARN_ON(len_tmp >= sizeof(abuf));
1258			abuf[sizeof(abuf) - 1] = '\0';
1259
1260			/* log the arg in the audit record */
1261			audit_log_format(*ab, "%s", abuf);
1262			len_rem -= len_tmp;
1263			len_tmp = len_buf;
1264			if (encode) {
1265				if (len_abuf > len_rem)
1266					len_tmp = len_rem / 2; /* encoding */
1267				audit_log_n_hex(*ab, buf, len_tmp);
1268				len_rem -= len_tmp * 2;
1269				len_abuf -= len_tmp * 2;
1270			} else {
1271				if (len_abuf > len_rem)
1272					len_tmp = len_rem - 2; /* quotes */
1273				audit_log_n_string(*ab, buf, len_tmp);
1274				len_rem -= len_tmp + 2;
1275				/* don't subtract the "2" because we still need
1276				 * to add quotes to the remaining string */
1277				len_abuf -= len_tmp;
1278			}
1279			len_buf -= len_tmp;
1280			buf += len_tmp;
1281		}
1282
1283		/* ready to move to the next argument? */
1284		if ((len_buf == 0) && !require_data) {
1285			arg++;
1286			iter = 0;
1287			len_full = 0;
1288			require_data = true;
1289			encode = false;
1290		}
1291	} while (arg < context->execve.argc);
1292
1293	/* NOTE: the caller handles the final audit_log_end() call */
1294
1295out:
1296	kfree(buf_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297}
1298
1299static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300			  kernel_cap_t *cap)
1301{
1302	if (cap_isclear(*cap)) {
1303		audit_log_format(ab, " %s=0", prefix);
1304		return;
1305	}
1306	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1307}
 
 
1308
1309static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310{
1311	if (name->fcap_ver == -1) {
1312		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
 
 
 
 
 
1313		return;
1314	}
1315	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318			 name->fcap.fE, name->fcap_ver,
1319			 from_kuid(&init_user_ns, name->fcap.rootid));
1320}
1321
1322static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323{
1324	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325	const struct timespec64 *tk = &context->time.tk_injoffset;
1326	static const char * const ntp_name[] = {
1327		"offset",
1328		"freq",
1329		"status",
1330		"tai",
1331		"tick",
1332		"adjust",
1333	};
1334	int type;
1335
1336	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339				if (!*ab) {
1340					*ab = audit_log_start(context,
1341							GFP_KERNEL,
1342							AUDIT_TIME_ADJNTPVAL);
1343					if (!*ab)
1344						return;
1345				}
1346				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347						 ntp_name[type],
1348						 ntp->vals[type].oldval,
1349						 ntp->vals[type].newval);
1350				audit_log_end(*ab);
1351				*ab = NULL;
1352			}
1353		}
1354	}
1355	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356		if (!*ab) {
1357			*ab = audit_log_start(context, GFP_KERNEL,
1358					      AUDIT_TIME_INJOFFSET);
1359			if (!*ab)
1360				return;
1361		}
1362		audit_log_format(*ab, "sec=%lli nsec=%li",
1363				 (long long)tk->tv_sec, tk->tv_nsec);
1364		audit_log_end(*ab);
1365		*ab = NULL;
1366	}
 
1367}
1368
1369static void show_special(struct audit_context *context, int *call_panic)
1370{
1371	struct audit_buffer *ab;
1372	int i;
1373
1374	ab = audit_log_start(context, GFP_KERNEL, context->type);
1375	if (!ab)
1376		return;
1377
1378	switch (context->type) {
1379	case AUDIT_SOCKETCALL: {
1380		int nargs = context->socketcall.nargs;
1381
1382		audit_log_format(ab, "nargs=%d", nargs);
1383		for (i = 0; i < nargs; i++)
1384			audit_log_format(ab, " a%d=%lx", i,
1385				context->socketcall.args[i]);
1386		break; }
1387	case AUDIT_IPC: {
1388		u32 osid = context->ipc.osid;
1389
1390		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391				 from_kuid(&init_user_ns, context->ipc.uid),
1392				 from_kgid(&init_user_ns, context->ipc.gid),
1393				 context->ipc.mode);
1394		if (osid) {
1395			char *ctx = NULL;
1396			u32 len;
1397
1398			if (security_secid_to_secctx(osid, &ctx, &len)) {
1399				audit_log_format(ab, " osid=%u", osid);
1400				*call_panic = 1;
1401			} else {
1402				audit_log_format(ab, " obj=%s", ctx);
1403				security_release_secctx(ctx, len);
1404			}
1405		}
1406		if (context->ipc.has_perm) {
1407			audit_log_end(ab);
1408			ab = audit_log_start(context, GFP_KERNEL,
1409					     AUDIT_IPC_SET_PERM);
1410			if (unlikely(!ab))
1411				return;
1412			audit_log_format(ab,
1413				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414				context->ipc.qbytes,
1415				context->ipc.perm_uid,
1416				context->ipc.perm_gid,
1417				context->ipc.perm_mode);
1418		}
1419		break; }
1420	case AUDIT_MQ_OPEN:
1421		audit_log_format(ab,
1422			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423			"mq_msgsize=%ld mq_curmsgs=%ld",
1424			context->mq_open.oflag, context->mq_open.mode,
1425			context->mq_open.attr.mq_flags,
1426			context->mq_open.attr.mq_maxmsg,
1427			context->mq_open.attr.mq_msgsize,
1428			context->mq_open.attr.mq_curmsgs);
1429		break;
1430	case AUDIT_MQ_SENDRECV:
1431		audit_log_format(ab,
1432			"mqdes=%d msg_len=%zd msg_prio=%u "
1433			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434			context->mq_sendrecv.mqdes,
1435			context->mq_sendrecv.msg_len,
1436			context->mq_sendrecv.msg_prio,
1437			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438			context->mq_sendrecv.abs_timeout.tv_nsec);
1439		break;
1440	case AUDIT_MQ_NOTIFY:
1441		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442				context->mq_notify.mqdes,
1443				context->mq_notify.sigev_signo);
1444		break;
1445	case AUDIT_MQ_GETSETATTR: {
1446		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447
1448		audit_log_format(ab,
1449			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450			"mq_curmsgs=%ld ",
1451			context->mq_getsetattr.mqdes,
1452			attr->mq_flags, attr->mq_maxmsg,
1453			attr->mq_msgsize, attr->mq_curmsgs);
1454		break; }
1455	case AUDIT_CAPSET:
1456		audit_log_format(ab, "pid=%d", context->capset.pid);
1457		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461		break;
1462	case AUDIT_MMAP:
1463		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464				 context->mmap.flags);
1465		break;
1466	case AUDIT_OPENAT2:
1467		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468				 context->openat2.flags,
1469				 context->openat2.mode,
1470				 context->openat2.resolve);
1471		break;
1472	case AUDIT_EXECVE:
1473		audit_log_execve_info(context, &ab);
1474		break;
1475	case AUDIT_KERN_MODULE:
1476		audit_log_format(ab, "name=");
1477		if (context->module.name) {
1478			audit_log_untrustedstring(ab, context->module.name);
1479		} else
1480			audit_log_format(ab, "(null)");
1481
1482		break;
1483	case AUDIT_TIME_ADJNTPVAL:
1484	case AUDIT_TIME_INJOFFSET:
1485		/* this call deviates from the rest, eating the buffer */
1486		audit_log_time(context, &ab);
1487		break;
1488	}
1489	audit_log_end(ab);
1490}
1491
1492static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493{
1494	char *end = proctitle + len - 1;
1495
1496	while (end > proctitle && !isprint(*end))
1497		end--;
1498
1499	/* catch the case where proctitle is only 1 non-print character */
1500	len = end - proctitle + 1;
1501	len -= isprint(proctitle[len-1]) == 0;
1502	return len;
1503}
1504
1505/*
1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507 * @context: audit_context for the task
1508 * @n: audit_names structure with reportable details
1509 * @path: optional path to report instead of audit_names->name
1510 * @record_num: record number to report when handling a list of names
1511 * @call_panic: optional pointer to int that will be updated if secid fails
1512 */
1513static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514		    const struct path *path, int record_num, int *call_panic)
1515{
1516	struct audit_buffer *ab;
1517
1518	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1519	if (!ab)
1520		return;
1521
1522	audit_log_format(ab, "item=%d", record_num);
1523
1524	if (path)
1525		audit_log_d_path(ab, " name=", path);
1526	else if (n->name) {
1527		switch (n->name_len) {
1528		case AUDIT_NAME_FULL:
1529			/* log the full path */
1530			audit_log_format(ab, " name=");
1531			audit_log_untrustedstring(ab, n->name->name);
1532			break;
1533		case 0:
1534			/* name was specified as a relative path and the
1535			 * directory component is the cwd
1536			 */
1537			if (context->pwd.dentry && context->pwd.mnt)
1538				audit_log_d_path(ab, " name=", &context->pwd);
1539			else
1540				audit_log_format(ab, " name=(null)");
1541			break;
1542		default:
1543			/* log the name's directory component */
1544			audit_log_format(ab, " name=");
1545			audit_log_n_untrustedstring(ab, n->name->name,
1546						    n->name_len);
1547		}
1548	} else
1549		audit_log_format(ab, " name=(null)");
1550
1551	if (n->ino != AUDIT_INO_UNSET)
1552		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1553				 n->ino,
1554				 MAJOR(n->dev),
1555				 MINOR(n->dev),
1556				 n->mode,
1557				 from_kuid(&init_user_ns, n->uid),
1558				 from_kgid(&init_user_ns, n->gid),
1559				 MAJOR(n->rdev),
1560				 MINOR(n->rdev));
1561	if (n->osid != 0) {
1562		char *ctx = NULL;
1563		u32 len;
1564
1565		if (security_secid_to_secctx(
1566			n->osid, &ctx, &len)) {
1567			audit_log_format(ab, " osid=%u", n->osid);
1568			if (call_panic)
1569				*call_panic = 2;
1570		} else {
1571			audit_log_format(ab, " obj=%s", ctx);
1572			security_release_secctx(ctx, len);
1573		}
1574	}
1575
1576	/* log the audit_names record type */
1577	switch (n->type) {
1578	case AUDIT_TYPE_NORMAL:
1579		audit_log_format(ab, " nametype=NORMAL");
1580		break;
1581	case AUDIT_TYPE_PARENT:
1582		audit_log_format(ab, " nametype=PARENT");
1583		break;
1584	case AUDIT_TYPE_CHILD_DELETE:
1585		audit_log_format(ab, " nametype=DELETE");
1586		break;
1587	case AUDIT_TYPE_CHILD_CREATE:
1588		audit_log_format(ab, " nametype=CREATE");
1589		break;
1590	default:
1591		audit_log_format(ab, " nametype=UNKNOWN");
1592		break;
1593	}
1594
1595	audit_log_fcaps(ab, n);
1596	audit_log_end(ab);
1597}
1598
1599static void audit_log_proctitle(void)
1600{
1601	int res;
1602	char *buf;
1603	char *msg = "(null)";
1604	int len = strlen(msg);
1605	struct audit_context *context = audit_context();
1606	struct audit_buffer *ab;
1607
1608	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609	if (!ab)
1610		return;	/* audit_panic or being filtered */
1611
1612	audit_log_format(ab, "proctitle=");
1613
1614	/* Not  cached */
1615	if (!context->proctitle.value) {
1616		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617		if (!buf)
1618			goto out;
1619		/* Historically called this from procfs naming */
1620		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621		if (res == 0) {
1622			kfree(buf);
1623			goto out;
1624		}
1625		res = audit_proctitle_rtrim(buf, res);
1626		if (res == 0) {
1627			kfree(buf);
1628			goto out;
1629		}
1630		context->proctitle.value = buf;
1631		context->proctitle.len = res;
1632	}
1633	msg = context->proctitle.value;
1634	len = context->proctitle.len;
1635out:
1636	audit_log_n_untrustedstring(ab, msg, len);
1637	audit_log_end(ab);
1638}
1639
1640/**
1641 * audit_log_uring - generate a AUDIT_URINGOP record
1642 * @ctx: the audit context
1643 */
1644static void audit_log_uring(struct audit_context *ctx)
1645{
 
1646	struct audit_buffer *ab;
1647	const struct cred *cred;
 
 
 
 
1648
1649	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650	if (!ab)
1651		return;
1652	cred = current_cred();
1653	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654	if (ctx->return_valid != AUDITSC_INVALID)
 
 
1655		audit_log_format(ab, " success=%s exit=%ld",
1656				 (ctx->return_valid == AUDITSC_SUCCESS ?
1657				  "yes" : "no"),
1658				 ctx->return_code);
1659	audit_log_format(ab,
1660			 " items=%d"
1661			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663			 ctx->name_count,
1664			 task_ppid_nr(current), task_tgid_nr(current),
1665			 from_kuid(&init_user_ns, cred->uid),
1666			 from_kgid(&init_user_ns, cred->gid),
1667			 from_kuid(&init_user_ns, cred->euid),
1668			 from_kuid(&init_user_ns, cred->suid),
1669			 from_kuid(&init_user_ns, cred->fsuid),
1670			 from_kgid(&init_user_ns, cred->egid),
1671			 from_kgid(&init_user_ns, cred->sgid),
1672			 from_kgid(&init_user_ns, cred->fsgid));
1673	audit_log_task_context(ab);
1674	audit_log_key(ab, ctx->filterkey);
1675	audit_log_end(ab);
1676}
1677
1678static void audit_log_exit(void)
1679{
1680	int i, call_panic = 0;
1681	struct audit_context *context = audit_context();
1682	struct audit_buffer *ab;
1683	struct audit_aux_data *aux;
1684	struct audit_names *n;
1685
1686	context->personality = current->personality;
1687
1688	switch (context->context) {
1689	case AUDIT_CTX_SYSCALL:
1690		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691		if (!ab)
1692			return;
1693		audit_log_format(ab, "arch=%x syscall=%d",
1694				 context->arch, context->major);
1695		if (context->personality != PER_LINUX)
1696			audit_log_format(ab, " per=%lx", context->personality);
1697		if (context->return_valid != AUDITSC_INVALID)
1698			audit_log_format(ab, " success=%s exit=%ld",
1699					 (context->return_valid == AUDITSC_SUCCESS ?
1700					  "yes" : "no"),
1701					 context->return_code);
1702		audit_log_format(ab,
1703				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704				 context->argv[0],
1705				 context->argv[1],
1706				 context->argv[2],
1707				 context->argv[3],
1708				 context->name_count);
1709		audit_log_task_info(ab);
1710		audit_log_key(ab, context->filterkey);
1711		audit_log_end(ab);
1712		break;
1713	case AUDIT_CTX_URING:
1714		audit_log_uring(context);
1715		break;
1716	default:
1717		BUG();
1718		break;
1719	}
1720
1721	for (aux = context->aux; aux; aux = aux->next) {
1722
1723		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724		if (!ab)
1725			continue; /* audit_panic has been called */
1726
1727		switch (aux->type) {
1728
1729		case AUDIT_BPRM_FCAPS: {
1730			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731
1732			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744			audit_log_format(ab, " frootid=%d",
1745					 from_kuid(&init_user_ns,
1746						   axs->fcap.rootid));
1747			break; }
1748
1749		}
1750		audit_log_end(ab);
1751	}
1752
1753	if (context->type)
1754		show_special(context, &call_panic);
1755
1756	if (context->fds[0] >= 0) {
1757		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758		if (ab) {
1759			audit_log_format(ab, "fd0=%d fd1=%d",
1760					context->fds[0], context->fds[1]);
1761			audit_log_end(ab);
1762		}
1763	}
1764
1765	if (context->sockaddr_len) {
1766		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767		if (ab) {
1768			audit_log_format(ab, "saddr=");
1769			audit_log_n_hex(ab, (void *)context->sockaddr,
1770					context->sockaddr_len);
1771			audit_log_end(ab);
1772		}
1773	}
1774
1775	for (aux = context->aux_pids; aux; aux = aux->next) {
1776		struct audit_aux_data_pids *axs = (void *)aux;
1777
1778		for (i = 0; i < axs->pid_count; i++)
1779			if (audit_log_pid_context(context, axs->target_pid[i],
1780						  axs->target_auid[i],
1781						  axs->target_uid[i],
1782						  axs->target_sessionid[i],
1783						  axs->target_sid[i],
1784						  axs->target_comm[i]))
1785				call_panic = 1;
1786	}
1787
1788	if (context->target_pid &&
1789	    audit_log_pid_context(context, context->target_pid,
1790				  context->target_auid, context->target_uid,
1791				  context->target_sessionid,
1792				  context->target_sid, context->target_comm))
1793			call_panic = 1;
1794
1795	if (context->pwd.dentry && context->pwd.mnt) {
1796		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797		if (ab) {
1798			audit_log_d_path(ab, "cwd=", &context->pwd);
1799			audit_log_end(ab);
1800		}
1801	}
1802
1803	i = 0;
1804	list_for_each_entry(n, &context->names_list, list) {
1805		if (n->hidden)
1806			continue;
1807		audit_log_name(context, n, NULL, i++, &call_panic);
1808	}
1809
1810	if (context->context == AUDIT_CTX_SYSCALL)
1811		audit_log_proctitle();
1812
1813	/* Send end of event record to help user space know we are finished */
1814	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1815	if (ab)
1816		audit_log_end(ab);
1817	if (call_panic)
1818		audit_panic("error in audit_log_exit()");
1819}
1820
1821/**
1822 * __audit_free - free a per-task audit context
1823 * @tsk: task whose audit context block to free
1824 *
1825 * Called from copy_process, do_exit, and the io_uring code
1826 */
1827void __audit_free(struct task_struct *tsk)
1828{
1829	struct audit_context *context = tsk->audit_context;
1830
 
1831	if (!context)
1832		return;
1833
1834	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1835	if (!list_empty(&context->killed_trees))
1836		audit_kill_trees(context);
1837
1838	/* We are called either by do_exit() or the fork() error handling code;
1839	 * in the former case tsk == current and in the latter tsk is a
1840	 * random task_struct that doesn't have any meaningful data we
1841	 * need to log via audit_log_exit().
1842	 */
1843	if (tsk == current && !context->dummy) {
1844		context->return_valid = AUDITSC_INVALID;
1845		context->return_code = 0;
1846		if (context->context == AUDIT_CTX_SYSCALL) {
1847			audit_filter_syscall(tsk, context);
1848			audit_filter_inodes(tsk, context);
1849			if (context->current_state == AUDIT_STATE_RECORD)
1850				audit_log_exit();
1851		} else if (context->context == AUDIT_CTX_URING) {
1852			/* TODO: verify this case is real and valid */
1853			audit_filter_uring(tsk, context);
1854			audit_filter_inodes(tsk, context);
1855			if (context->current_state == AUDIT_STATE_RECORD)
1856				audit_log_uring(context);
1857		}
1858	}
1859
1860	audit_set_context(tsk, NULL);
1861	audit_free_context(context);
1862}
1863
1864/**
1865 * audit_return_fixup - fixup the return codes in the audit_context
1866 * @ctx: the audit_context
1867 * @success: true/false value to indicate if the operation succeeded or not
1868 * @code: operation return code
1869 *
1870 * We need to fixup the return code in the audit logs if the actual return
1871 * codes are later going to be fixed by the arch specific signal handlers.
1872 */
1873static void audit_return_fixup(struct audit_context *ctx,
1874			       int success, long code)
1875{
1876	/*
1877	 * This is actually a test for:
1878	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880	 *
1881	 * but is faster than a bunch of ||
1882	 */
1883	if (unlikely(code <= -ERESTARTSYS) &&
1884	    (code >= -ERESTART_RESTARTBLOCK) &&
1885	    (code != -ENOIOCTLCMD))
1886		ctx->return_code = -EINTR;
1887	else
1888		ctx->return_code  = code;
1889	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1890}
1891
1892/**
1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894 * @op: the io_uring opcode
1895 *
1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897 * operations.  This function should only ever be called from
1898 * audit_uring_entry() as we rely on the audit context checking present in that
1899 * function.
1900 */
1901void __audit_uring_entry(u8 op)
1902{
1903	struct audit_context *ctx = audit_context();
1904
1905	if (ctx->state == AUDIT_STATE_DISABLED)
1906		return;
1907
1908	/*
1909	 * NOTE: It's possible that we can be called from the process' context
1910	 *       before it returns to userspace, and before audit_syscall_exit()
1911	 *       is called.  In this case there is not much to do, just record
1912	 *       the io_uring details and return.
1913	 */
1914	ctx->uring_op = op;
1915	if (ctx->context == AUDIT_CTX_SYSCALL)
1916		return;
1917
1918	ctx->dummy = !audit_n_rules;
1919	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920		ctx->prio = 0;
1921
1922	ctx->context = AUDIT_CTX_URING;
1923	ctx->current_state = ctx->state;
1924	ktime_get_coarse_real_ts64(&ctx->ctime);
1925}
1926
1927/**
1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929 * @success: true/false value to indicate if the operation succeeded or not
1930 * @code: operation return code
1931 *
1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933 * operations.  This function should only ever be called from
1934 * audit_uring_exit() as we rely on the audit context checking present in that
1935 * function.
1936 */
1937void __audit_uring_exit(int success, long code)
1938{
1939	struct audit_context *ctx = audit_context();
1940
1941	if (ctx->dummy) {
1942		if (ctx->context != AUDIT_CTX_URING)
1943			return;
1944		goto out;
1945	}
1946
1947	audit_return_fixup(ctx, success, code);
1948	if (ctx->context == AUDIT_CTX_SYSCALL) {
1949		/*
1950		 * NOTE: See the note in __audit_uring_entry() about the case
1951		 *       where we may be called from process context before we
1952		 *       return to userspace via audit_syscall_exit().  In this
1953		 *       case we simply emit a URINGOP record and bail, the
1954		 *       normal syscall exit handling will take care of
1955		 *       everything else.
1956		 *       It is also worth mentioning that when we are called,
1957		 *       the current process creds may differ from the creds
1958		 *       used during the normal syscall processing; keep that
1959		 *       in mind if/when we move the record generation code.
1960		 */
1961
1962		/*
1963		 * We need to filter on the syscall info here to decide if we
1964		 * should emit a URINGOP record.  I know it seems odd but this
1965		 * solves the problem where users have a filter to block *all*
1966		 * syscall records in the "exit" filter; we want to preserve
1967		 * the behavior here.
1968		 */
1969		audit_filter_syscall(current, ctx);
1970		if (ctx->current_state != AUDIT_STATE_RECORD)
1971			audit_filter_uring(current, ctx);
1972		audit_filter_inodes(current, ctx);
1973		if (ctx->current_state != AUDIT_STATE_RECORD)
1974			return;
1975
1976		audit_log_uring(ctx);
1977		return;
1978	}
1979
1980	/* this may generate CONFIG_CHANGE records */
1981	if (!list_empty(&ctx->killed_trees))
1982		audit_kill_trees(ctx);
1983
1984	/* run through both filters to ensure we set the filterkey properly */
1985	audit_filter_uring(current, ctx);
1986	audit_filter_inodes(current, ctx);
1987	if (ctx->current_state != AUDIT_STATE_RECORD)
1988		goto out;
1989	audit_log_exit();
1990
1991out:
1992	audit_reset_context(ctx);
1993}
1994
1995/**
1996 * __audit_syscall_entry - fill in an audit record at syscall entry
1997 * @major: major syscall type (function)
1998 * @a1: additional syscall register 1
1999 * @a2: additional syscall register 2
2000 * @a3: additional syscall register 3
2001 * @a4: additional syscall register 4
2002 *
2003 * Fill in audit context at syscall entry.  This only happens if the
2004 * audit context was created when the task was created and the state or
2005 * filters demand the audit context be built.  If the state from the
2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007 * then the record will be written at syscall exit time (otherwise, it
2008 * will only be written if another part of the kernel requests that it
2009 * be written).
2010 */
2011void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012			   unsigned long a3, unsigned long a4)
 
2013{
2014	struct audit_context *context = audit_context();
 
2015	enum audit_state     state;
2016
2017	if (!audit_enabled || !context)
2018		return;
2019
2020	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021	WARN_ON(context->name_count);
2022	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023		audit_panic("unrecoverable error in audit_syscall_entry()");
2024		return;
2025	}
2026
2027	state = context->state;
2028	if (state == AUDIT_STATE_DISABLED)
2029		return;
2030
2031	context->dummy = !audit_n_rules;
2032	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033		context->prio = 0;
2034		if (auditd_test_task(current))
2035			return;
2036	}
2037
2038	context->arch	    = syscall_get_arch(current);
2039	context->major      = major;
2040	context->argv[0]    = a1;
2041	context->argv[1]    = a2;
2042	context->argv[2]    = a3;
2043	context->argv[3]    = a4;
2044	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2045	context->current_state  = state;
2046	ktime_get_coarse_real_ts64(&context->ctime);
2047}
2048
2049/**
2050 * __audit_syscall_exit - deallocate audit context after a system call
2051 * @success: success value of the syscall
2052 * @return_code: return value of the syscall
2053 *
2054 * Tear down after system call.  If the audit context has been marked as
2055 * auditable (either because of the AUDIT_STATE_RECORD state from
2056 * filtering, or because some other part of the kernel wrote an audit
2057 * message), then write out the syscall information.  In call cases,
2058 * free the names stored from getname().
2059 */
2060void __audit_syscall_exit(int success, long return_code)
2061{
2062	struct audit_context *context = audit_context();
 
2063
2064	if (!context || context->dummy ||
2065	    context->context != AUDIT_CTX_SYSCALL)
2066		goto out;
 
2067
2068	/* this may generate CONFIG_CHANGE records */
2069	if (!list_empty(&context->killed_trees))
2070		audit_kill_trees(context);
2071
2072	audit_return_fixup(context, success, return_code);
2073	/* run through both filters to ensure we set the filterkey properly */
2074	audit_filter_syscall(current, context);
2075	audit_filter_inodes(current, context);
2076	if (context->current_state != AUDIT_STATE_RECORD)
2077		goto out;
2078
2079	audit_log_exit();
 
2080
2081out:
2082	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083}
2084
2085static inline void handle_one(const struct inode *inode)
2086{
 
2087	struct audit_context *context;
2088	struct audit_tree_refs *p;
2089	struct audit_chunk *chunk;
2090	int count;
2091
2092	if (likely(!inode->i_fsnotify_marks))
2093		return;
2094	context = audit_context();
2095	p = context->trees;
2096	count = context->tree_count;
2097	rcu_read_lock();
2098	chunk = audit_tree_lookup(inode);
2099	rcu_read_unlock();
2100	if (!chunk)
2101		return;
2102	if (likely(put_tree_ref(context, chunk)))
2103		return;
2104	if (unlikely(!grow_tree_refs(context))) {
2105		pr_warn("out of memory, audit has lost a tree reference\n");
2106		audit_set_auditable(context);
2107		audit_put_chunk(chunk);
2108		unroll_tree_refs(context, p, count);
2109		return;
2110	}
2111	put_tree_ref(context, chunk);
 
2112}
2113
2114static void handle_path(const struct dentry *dentry)
2115{
 
2116	struct audit_context *context;
2117	struct audit_tree_refs *p;
2118	const struct dentry *d, *parent;
2119	struct audit_chunk *drop;
2120	unsigned long seq;
2121	int count;
2122
2123	context = audit_context();
2124	p = context->trees;
2125	count = context->tree_count;
2126retry:
2127	drop = NULL;
2128	d = dentry;
2129	rcu_read_lock();
2130	seq = read_seqbegin(&rename_lock);
2131	for (;;) {
2132		struct inode *inode = d_backing_inode(d);
2133
2134		if (inode && unlikely(inode->i_fsnotify_marks)) {
2135			struct audit_chunk *chunk;
2136
2137			chunk = audit_tree_lookup(inode);
2138			if (chunk) {
2139				if (unlikely(!put_tree_ref(context, chunk))) {
2140					drop = chunk;
2141					break;
2142				}
2143			}
2144		}
2145		parent = d->d_parent;
2146		if (parent == d)
2147			break;
2148		d = parent;
2149	}
2150	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2151		rcu_read_unlock();
2152		if (!drop) {
2153			/* just a race with rename */
2154			unroll_tree_refs(context, p, count);
2155			goto retry;
2156		}
2157		audit_put_chunk(drop);
2158		if (grow_tree_refs(context)) {
2159			/* OK, got more space */
2160			unroll_tree_refs(context, p, count);
2161			goto retry;
2162		}
2163		/* too bad */
2164		pr_warn("out of memory, audit has lost a tree reference\n");
2165		unroll_tree_refs(context, p, count);
2166		audit_set_auditable(context);
2167		return;
2168	}
2169	rcu_read_unlock();
 
2170}
2171
2172static struct audit_names *audit_alloc_name(struct audit_context *context,
2173						unsigned char type)
2174{
2175	struct audit_names *aname;
2176
2177	if (context->name_count < AUDIT_NAMES) {
2178		aname = &context->preallocated_names[context->name_count];
2179		memset(aname, 0, sizeof(*aname));
2180	} else {
2181		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182		if (!aname)
2183			return NULL;
2184		aname->should_free = true;
2185	}
2186
2187	aname->ino = AUDIT_INO_UNSET;
2188	aname->type = type;
2189	list_add_tail(&aname->list, &context->names_list);
2190
2191	context->name_count++;
2192	if (!context->pwd.dentry)
2193		get_fs_pwd(current->fs, &context->pwd);
 
2194	return aname;
2195}
2196
2197/**
2198 * __audit_reusename - fill out filename with info from existing entry
2199 * @uptr: userland ptr to pathname
2200 *
2201 * Search the audit_names list for the current audit context. If there is an
2202 * existing entry with a matching "uptr" then return the filename
2203 * associated with that audit_name. If not, return NULL.
2204 */
2205struct filename *
2206__audit_reusename(const __user char *uptr)
2207{
2208	struct audit_context *context = audit_context();
2209	struct audit_names *n;
2210
2211	list_for_each_entry(n, &context->names_list, list) {
2212		if (!n->name)
2213			continue;
2214		if (n->name->uptr == uptr) {
2215			atomic_inc(&n->name->refcnt);
2216			return n->name;
2217		}
2218	}
2219	return NULL;
2220}
2221
2222/**
2223 * __audit_getname - add a name to the list
2224 * @name: name to add
2225 *
2226 * Add a name to the list of audit names for this context.
2227 * Called from fs/namei.c:getname().
2228 */
2229void __audit_getname(struct filename *name)
2230{
2231	struct audit_context *context = audit_context();
2232	struct audit_names *n;
2233
2234	if (context->context == AUDIT_CTX_UNUSED)
 
 
 
 
 
2235		return;
 
 
 
 
 
 
2236
2237	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2238	if (!n)
2239		return;
2240
2241	n->name = name;
2242	n->name_len = AUDIT_NAME_FULL;
 
2243	name->aname = n;
2244	atomic_inc(&name->refcnt);
2245}
2246
2247static inline int audit_copy_fcaps(struct audit_names *name,
2248				   const struct dentry *dentry)
2249{
2250	struct cpu_vfs_cap_data caps;
2251	int rc;
2252
2253	if (!dentry)
2254		return 0;
2255
2256	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2257	if (rc)
2258		return rc;
2259
2260	name->fcap.permitted = caps.permitted;
2261	name->fcap.inheritable = caps.inheritable;
2262	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263	name->fcap.rootid = caps.rootid;
2264	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265				VFS_CAP_REVISION_SHIFT;
2266
2267	return 0;
2268}
2269
2270/* Copy inode data into an audit_names. */
2271static void audit_copy_inode(struct audit_names *name,
2272			     const struct dentry *dentry,
2273			     struct inode *inode, unsigned int flags)
2274{
2275	name->ino   = inode->i_ino;
2276	name->dev   = inode->i_sb->s_dev;
2277	name->mode  = inode->i_mode;
2278	name->uid   = inode->i_uid;
2279	name->gid   = inode->i_gid;
2280	name->rdev  = inode->i_rdev;
2281	security_inode_getsecid(inode, &name->osid);
2282	if (flags & AUDIT_INODE_NOEVAL) {
2283		name->fcap_ver = -1;
2284		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2285	}
2286	audit_copy_fcaps(name, dentry);
2287}
2288
2289/**
2290 * __audit_inode - store the inode and device from a lookup
2291 * @name: name being audited
2292 * @dentry: dentry being audited
2293 * @flags: attributes for this particular entry
2294 */
2295void __audit_inode(struct filename *name, const struct dentry *dentry,
2296		   unsigned int flags)
2297{
2298	struct audit_context *context = audit_context();
2299	struct inode *inode = d_backing_inode(dentry);
2300	struct audit_names *n;
2301	bool parent = flags & AUDIT_INODE_PARENT;
2302	struct audit_entry *e;
2303	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304	int i;
2305
2306	if (context->context == AUDIT_CTX_UNUSED)
2307		return;
2308
2309	rcu_read_lock();
2310	list_for_each_entry_rcu(e, list, list) {
2311		for (i = 0; i < e->rule.field_count; i++) {
2312			struct audit_field *f = &e->rule.fields[i];
2313
2314			if (f->type == AUDIT_FSTYPE
2315			    && audit_comparator(inode->i_sb->s_magic,
2316						f->op, f->val)
2317			    && e->rule.action == AUDIT_NEVER) {
2318				rcu_read_unlock();
2319				return;
2320			}
2321		}
2322	}
2323	rcu_read_unlock();
2324
2325	if (!name)
2326		goto out_alloc;
2327
 
 
 
 
2328	/*
2329	 * If we have a pointer to an audit_names entry already, then we can
2330	 * just use it directly if the type is correct.
2331	 */
2332	n = name->aname;
2333	if (n) {
2334		if (parent) {
2335			if (n->type == AUDIT_TYPE_PARENT ||
2336			    n->type == AUDIT_TYPE_UNKNOWN)
2337				goto out;
2338		} else {
2339			if (n->type != AUDIT_TYPE_PARENT)
2340				goto out;
2341		}
2342	}
2343
2344	list_for_each_entry_reverse(n, &context->names_list, list) {
2345		if (n->ino) {
2346			/* valid inode number, use that for the comparison */
2347			if (n->ino != inode->i_ino ||
2348			    n->dev != inode->i_sb->s_dev)
2349				continue;
2350		} else if (n->name) {
2351			/* inode number has not been set, check the name */
2352			if (strcmp(n->name->name, name->name))
2353				continue;
2354		} else
2355			/* no inode and no name (?!) ... this is odd ... */
2356			continue;
2357
2358		/* match the correct record type */
2359		if (parent) {
2360			if (n->type == AUDIT_TYPE_PARENT ||
2361			    n->type == AUDIT_TYPE_UNKNOWN)
2362				goto out;
2363		} else {
2364			if (n->type != AUDIT_TYPE_PARENT)
2365				goto out;
2366		}
2367	}
2368
2369out_alloc:
2370	/* unable to find an entry with both a matching name and type */
2371	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
 
 
2372	if (!n)
2373		return;
2374	if (name) {
2375		n->name = name;
2376		atomic_inc(&name->refcnt);
2377	}
2378
2379out:
2380	if (parent) {
2381		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382		n->type = AUDIT_TYPE_PARENT;
2383		if (flags & AUDIT_INODE_HIDDEN)
2384			n->hidden = true;
2385	} else {
2386		n->name_len = AUDIT_NAME_FULL;
2387		n->type = AUDIT_TYPE_NORMAL;
2388	}
2389	handle_path(dentry);
2390	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391}
2392
2393void __audit_file(const struct file *file)
2394{
2395	__audit_inode(NULL, file->f_path.dentry, 0);
2396}
2397
2398/**
2399 * __audit_inode_child - collect inode info for created/removed objects
2400 * @parent: inode of dentry parent
2401 * @dentry: dentry being audited
2402 * @type:   AUDIT_TYPE_* value that we're looking for
2403 *
2404 * For syscalls that create or remove filesystem objects, audit_inode
2405 * can only collect information for the filesystem object's parent.
2406 * This call updates the audit context with the child's information.
2407 * Syscalls that create a new filesystem object must be hooked after
2408 * the object is created.  Syscalls that remove a filesystem object
2409 * must be hooked prior, in order to capture the target inode during
2410 * unsuccessful attempts.
2411 */
2412void __audit_inode_child(struct inode *parent,
2413			 const struct dentry *dentry,
2414			 const unsigned char type)
2415{
2416	struct audit_context *context = audit_context();
2417	struct inode *inode = d_backing_inode(dentry);
2418	const struct qstr *dname = &dentry->d_name;
2419	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420	struct audit_entry *e;
2421	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422	int i;
2423
2424	if (context->context == AUDIT_CTX_UNUSED)
2425		return;
2426
2427	rcu_read_lock();
2428	list_for_each_entry_rcu(e, list, list) {
2429		for (i = 0; i < e->rule.field_count; i++) {
2430			struct audit_field *f = &e->rule.fields[i];
2431
2432			if (f->type == AUDIT_FSTYPE
2433			    && audit_comparator(parent->i_sb->s_magic,
2434						f->op, f->val)
2435			    && e->rule.action == AUDIT_NEVER) {
2436				rcu_read_unlock();
2437				return;
2438			}
2439		}
2440	}
2441	rcu_read_unlock();
2442
2443	if (inode)
2444		handle_one(inode);
2445
2446	/* look for a parent entry first */
2447	list_for_each_entry(n, &context->names_list, list) {
2448		if (!n->name ||
2449		    (n->type != AUDIT_TYPE_PARENT &&
2450		     n->type != AUDIT_TYPE_UNKNOWN))
2451			continue;
2452
2453		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454		    !audit_compare_dname_path(dname,
2455					      n->name->name, n->name_len)) {
2456			if (n->type == AUDIT_TYPE_UNKNOWN)
2457				n->type = AUDIT_TYPE_PARENT;
2458			found_parent = n;
2459			break;
2460		}
2461	}
2462
2463	cond_resched();
2464
2465	/* is there a matching child entry? */
2466	list_for_each_entry(n, &context->names_list, list) {
2467		/* can only match entries that have a name */
2468		if (!n->name ||
2469		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
 
 
 
2470			continue;
2471
2472		if (!strcmp(dname->name, n->name->name) ||
2473		    !audit_compare_dname_path(dname, n->name->name,
2474						found_parent ?
2475						found_parent->name_len :
2476						AUDIT_NAME_FULL)) {
2477			if (n->type == AUDIT_TYPE_UNKNOWN)
2478				n->type = type;
2479			found_child = n;
2480			break;
2481		}
2482	}
2483
2484	if (!found_parent) {
2485		/* create a new, "anonymous" parent record */
2486		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487		if (!n)
2488			return;
2489		audit_copy_inode(n, NULL, parent, 0);
2490	}
2491
2492	if (!found_child) {
2493		found_child = audit_alloc_name(context, type);
2494		if (!found_child)
2495			return;
2496
2497		/* Re-use the name belonging to the slot for a matching parent
2498		 * directory. All names for this context are relinquished in
2499		 * audit_free_names() */
2500		if (found_parent) {
2501			found_child->name = found_parent->name;
2502			found_child->name_len = AUDIT_NAME_FULL;
2503			atomic_inc(&found_child->name->refcnt);
 
2504		}
2505	}
2506
2507	if (inode)
2508		audit_copy_inode(found_child, dentry, inode, 0);
2509	else
2510		found_child->ino = AUDIT_INO_UNSET;
2511}
2512EXPORT_SYMBOL_GPL(__audit_inode_child);
2513
2514/**
2515 * auditsc_get_stamp - get local copies of audit_context values
2516 * @ctx: audit_context for the task
2517 * @t: timespec64 to store time recorded in the audit_context
2518 * @serial: serial value that is recorded in the audit_context
2519 *
2520 * Also sets the context as auditable.
2521 */
2522int auditsc_get_stamp(struct audit_context *ctx,
2523		       struct timespec64 *t, unsigned int *serial)
2524{
2525	if (ctx->context == AUDIT_CTX_UNUSED)
2526		return 0;
2527	if (!ctx->serial)
2528		ctx->serial = audit_serial();
2529	t->tv_sec  = ctx->ctime.tv_sec;
2530	t->tv_nsec = ctx->ctime.tv_nsec;
2531	*serial    = ctx->serial;
2532	if (!ctx->prio) {
2533		ctx->prio = 1;
2534		ctx->current_state = AUDIT_STATE_RECORD;
2535	}
2536	return 1;
2537}
2538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539/**
2540 * __audit_mq_open - record audit data for a POSIX MQ open
2541 * @oflag: open flag
2542 * @mode: mode bits
2543 * @attr: queue attributes
2544 *
2545 */
2546void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2547{
2548	struct audit_context *context = audit_context();
2549
2550	if (attr)
2551		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2552	else
2553		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2554
2555	context->mq_open.oflag = oflag;
2556	context->mq_open.mode = mode;
2557
2558	context->type = AUDIT_MQ_OPEN;
2559}
2560
2561/**
2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563 * @mqdes: MQ descriptor
2564 * @msg_len: Message length
2565 * @msg_prio: Message priority
2566 * @abs_timeout: Message timeout in absolute time
2567 *
2568 */
2569void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570			const struct timespec64 *abs_timeout)
2571{
2572	struct audit_context *context = audit_context();
2573	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574
2575	if (abs_timeout)
2576		memcpy(p, abs_timeout, sizeof(*p));
2577	else
2578		memset(p, 0, sizeof(*p));
2579
2580	context->mq_sendrecv.mqdes = mqdes;
2581	context->mq_sendrecv.msg_len = msg_len;
2582	context->mq_sendrecv.msg_prio = msg_prio;
2583
2584	context->type = AUDIT_MQ_SENDRECV;
2585}
2586
2587/**
2588 * __audit_mq_notify - record audit data for a POSIX MQ notify
2589 * @mqdes: MQ descriptor
2590 * @notification: Notification event
2591 *
2592 */
2593
2594void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2595{
2596	struct audit_context *context = audit_context();
2597
2598	if (notification)
2599		context->mq_notify.sigev_signo = notification->sigev_signo;
2600	else
2601		context->mq_notify.sigev_signo = 0;
2602
2603	context->mq_notify.mqdes = mqdes;
2604	context->type = AUDIT_MQ_NOTIFY;
2605}
2606
2607/**
2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609 * @mqdes: MQ descriptor
2610 * @mqstat: MQ flags
2611 *
2612 */
2613void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2614{
2615	struct audit_context *context = audit_context();
2616
2617	context->mq_getsetattr.mqdes = mqdes;
2618	context->mq_getsetattr.mqstat = *mqstat;
2619	context->type = AUDIT_MQ_GETSETATTR;
2620}
2621
2622/**
2623 * __audit_ipc_obj - record audit data for ipc object
2624 * @ipcp: ipc permissions
2625 *
2626 */
2627void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2628{
2629	struct audit_context *context = audit_context();
2630
2631	context->ipc.uid = ipcp->uid;
2632	context->ipc.gid = ipcp->gid;
2633	context->ipc.mode = ipcp->mode;
2634	context->ipc.has_perm = 0;
2635	security_ipc_getsecid(ipcp, &context->ipc.osid);
2636	context->type = AUDIT_IPC;
2637}
2638
2639/**
2640 * __audit_ipc_set_perm - record audit data for new ipc permissions
2641 * @qbytes: msgq bytes
2642 * @uid: msgq user id
2643 * @gid: msgq group id
2644 * @mode: msgq mode (permissions)
2645 *
2646 * Called only after audit_ipc_obj().
2647 */
2648void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2649{
2650	struct audit_context *context = audit_context();
2651
2652	context->ipc.qbytes = qbytes;
2653	context->ipc.perm_uid = uid;
2654	context->ipc.perm_gid = gid;
2655	context->ipc.perm_mode = mode;
2656	context->ipc.has_perm = 1;
2657}
2658
2659void __audit_bprm(struct linux_binprm *bprm)
2660{
2661	struct audit_context *context = audit_context();
2662
2663	context->type = AUDIT_EXECVE;
2664	context->execve.argc = bprm->argc;
2665}
2666
2667
2668/**
2669 * __audit_socketcall - record audit data for sys_socketcall
2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671 * @args: args array
2672 *
2673 */
2674int __audit_socketcall(int nargs, unsigned long *args)
2675{
2676	struct audit_context *context = audit_context();
2677
2678	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2679		return -EINVAL;
2680	context->type = AUDIT_SOCKETCALL;
2681	context->socketcall.nargs = nargs;
2682	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2683	return 0;
2684}
2685
2686/**
2687 * __audit_fd_pair - record audit data for pipe and socketpair
2688 * @fd1: the first file descriptor
2689 * @fd2: the second file descriptor
2690 *
2691 */
2692void __audit_fd_pair(int fd1, int fd2)
2693{
2694	struct audit_context *context = audit_context();
2695
2696	context->fds[0] = fd1;
2697	context->fds[1] = fd2;
2698}
2699
2700/**
2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702 * @len: data length in user space
2703 * @a: data address in kernel space
2704 *
2705 * Returns 0 for success or NULL context or < 0 on error.
2706 */
2707int __audit_sockaddr(int len, void *a)
2708{
2709	struct audit_context *context = audit_context();
2710
2711	if (!context->sockaddr) {
2712		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713
2714		if (!p)
2715			return -ENOMEM;
2716		context->sockaddr = p;
2717	}
2718
2719	context->sockaddr_len = len;
2720	memcpy(context->sockaddr, a, len);
2721	return 0;
2722}
2723
2724void __audit_ptrace(struct task_struct *t)
2725{
2726	struct audit_context *context = audit_context();
2727
2728	context->target_pid = task_tgid_nr(t);
2729	context->target_auid = audit_get_loginuid(t);
2730	context->target_uid = task_uid(t);
2731	context->target_sessionid = audit_get_sessionid(t);
2732	security_task_getsecid_obj(t, &context->target_sid);
2733	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734}
2735
2736/**
2737 * audit_signal_info_syscall - record signal info for syscalls
 
2738 * @t: task being signaled
2739 *
2740 * If the audit subsystem is being terminated, record the task (pid)
2741 * and uid that is doing that.
2742 */
2743int audit_signal_info_syscall(struct task_struct *t)
2744{
2745	struct audit_aux_data_pids *axp;
2746	struct audit_context *ctx = audit_context();
2747	kuid_t t_uid = task_uid(t);
2748
2749	if (!audit_signals || audit_dummy_context())
2750		return 0;
 
 
 
 
 
 
 
 
 
 
 
2751
2752	/* optimize the common case by putting first signal recipient directly
2753	 * in audit_context */
2754	if (!ctx->target_pid) {
2755		ctx->target_pid = task_tgid_nr(t);
2756		ctx->target_auid = audit_get_loginuid(t);
2757		ctx->target_uid = t_uid;
2758		ctx->target_sessionid = audit_get_sessionid(t);
2759		security_task_getsecid_obj(t, &ctx->target_sid);
2760		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761		return 0;
2762	}
2763
2764	axp = (void *)ctx->aux_pids;
2765	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767		if (!axp)
2768			return -ENOMEM;
2769
2770		axp->d.type = AUDIT_OBJ_PID;
2771		axp->d.next = ctx->aux_pids;
2772		ctx->aux_pids = (void *)axp;
2773	}
2774	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2775
2776	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778	axp->target_uid[axp->pid_count] = t_uid;
2779	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2782	axp->pid_count++;
2783
2784	return 0;
2785}
2786
2787/**
2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789 * @bprm: pointer to the bprm being processed
2790 * @new: the proposed new credentials
2791 * @old: the old credentials
2792 *
2793 * Simply check if the proc already has the caps given by the file and if not
2794 * store the priv escalation info for later auditing at the end of the syscall
2795 *
2796 * -Eric
2797 */
2798int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799			   const struct cred *new, const struct cred *old)
2800{
2801	struct audit_aux_data_bprm_fcaps *ax;
2802	struct audit_context *context = audit_context();
2803	struct cpu_vfs_cap_data vcaps;
 
2804
2805	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806	if (!ax)
2807		return -ENOMEM;
2808
2809	ax->d.type = AUDIT_BPRM_FCAPS;
2810	ax->d.next = context->aux;
2811	context->aux = (void *)ax;
2812
2813	get_vfs_caps_from_disk(&nop_mnt_idmap,
2814			       bprm->file->f_path.dentry, &vcaps);
 
2815
2816	ax->fcap.permitted = vcaps.permitted;
2817	ax->fcap.inheritable = vcaps.inheritable;
2818	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819	ax->fcap.rootid = vcaps.rootid;
2820	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2821
2822	ax->old_pcap.permitted   = old->cap_permitted;
2823	ax->old_pcap.inheritable = old->cap_inheritable;
2824	ax->old_pcap.effective   = old->cap_effective;
2825	ax->old_pcap.ambient     = old->cap_ambient;
2826
2827	ax->new_pcap.permitted   = new->cap_permitted;
2828	ax->new_pcap.inheritable = new->cap_inheritable;
2829	ax->new_pcap.effective   = new->cap_effective;
2830	ax->new_pcap.ambient     = new->cap_ambient;
2831	return 0;
2832}
2833
2834/**
2835 * __audit_log_capset - store information about the arguments to the capset syscall
2836 * @new: the new credentials
2837 * @old: the old (current) credentials
2838 *
2839 * Record the arguments userspace sent to sys_capset for later printing by the
2840 * audit system if applicable
2841 */
2842void __audit_log_capset(const struct cred *new, const struct cred *old)
2843{
2844	struct audit_context *context = audit_context();
2845
2846	context->capset.pid = task_tgid_nr(current);
2847	context->capset.cap.effective   = new->cap_effective;
2848	context->capset.cap.inheritable = new->cap_effective;
2849	context->capset.cap.permitted   = new->cap_permitted;
2850	context->capset.cap.ambient     = new->cap_ambient;
2851	context->type = AUDIT_CAPSET;
2852}
2853
2854void __audit_mmap_fd(int fd, int flags)
2855{
2856	struct audit_context *context = audit_context();
2857
2858	context->mmap.fd = fd;
2859	context->mmap.flags = flags;
2860	context->type = AUDIT_MMAP;
2861}
2862
2863void __audit_openat2_how(struct open_how *how)
2864{
2865	struct audit_context *context = audit_context();
2866
2867	context->openat2.flags = how->flags;
2868	context->openat2.mode = how->mode;
2869	context->openat2.resolve = how->resolve;
2870	context->type = AUDIT_OPENAT2;
2871}
2872
2873void __audit_log_kern_module(char *name)
2874{
2875	struct audit_context *context = audit_context();
2876
2877	context->module.name = kstrdup(name, GFP_KERNEL);
2878	if (!context->module.name)
2879		audit_log_lost("out of memory in __audit_log_kern_module");
2880	context->type = AUDIT_KERN_MODULE;
2881}
2882
2883void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2884{
2885	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886	switch (friar->hdr.type) {
2887	case FAN_RESPONSE_INFO_NONE:
2888		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890			  response, FAN_RESPONSE_INFO_NONE);
2891		break;
2892	case FAN_RESPONSE_INFO_AUDIT_RULE:
2893		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895			  response, friar->hdr.type, friar->rule_number,
2896			  friar->subj_trust, friar->obj_trust);
2897	}
2898}
2899
2900void __audit_tk_injoffset(struct timespec64 offset)
2901{
2902	struct audit_context *context = audit_context();
2903
2904	/* only set type if not already set by NTP */
2905	if (!context->type)
2906		context->type = AUDIT_TIME_INJOFFSET;
2907	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908}
2909
2910void __audit_ntp_log(const struct audit_ntp_data *ad)
2911{
2912	struct audit_context *context = audit_context();
2913	int type;
2914
2915	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916		if (ad->vals[type].newval != ad->vals[type].oldval) {
2917			/* unconditionally set type, overwriting TK */
2918			context->type = AUDIT_TIME_ADJNTPVAL;
2919			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2920			break;
2921		}
2922}
2923
2924void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925		       enum audit_nfcfgop op, gfp_t gfp)
2926{
2927	struct audit_buffer *ab;
2928	char comm[sizeof(current->comm)];
2929
2930	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931	if (!ab)
2932		return;
2933	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934			 name, af, nentries, audit_nfcfgs[op].s);
2935
2936	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2937	audit_log_task_context(ab); /* subj= */
2938	audit_log_format(ab, " comm=");
2939	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940	audit_log_end(ab);
2941}
2942EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2943
2944static void audit_log_task(struct audit_buffer *ab)
2945{
2946	kuid_t auid, uid;
2947	kgid_t gid;
2948	unsigned int sessionid;
2949	char comm[sizeof(current->comm)];
2950
2951	auid = audit_get_loginuid(current);
2952	sessionid = audit_get_sessionid(current);
2953	current_uid_gid(&uid, &gid);
2954
2955	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956			 from_kuid(&init_user_ns, auid),
2957			 from_kuid(&init_user_ns, uid),
2958			 from_kgid(&init_user_ns, gid),
2959			 sessionid);
2960	audit_log_task_context(ab);
2961	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963	audit_log_d_path_exe(ab, current->mm);
 
 
 
 
 
 
2964}
2965
2966/**
2967 * audit_core_dumps - record information about processes that end abnormally
2968 * @signr: signal value
2969 *
2970 * If a process ends with a core dump, something fishy is going on and we
2971 * should record the event for investigation.
2972 */
2973void audit_core_dumps(long signr)
2974{
2975	struct audit_buffer *ab;
2976
2977	if (!audit_enabled)
2978		return;
2979
2980	if (signr == SIGQUIT)	/* don't care for those */
2981		return;
2982
2983	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2984	if (unlikely(!ab))
2985		return;
2986	audit_log_task(ab);
2987	audit_log_format(ab, " sig=%ld res=1", signr);
2988	audit_log_end(ab);
2989}
2990
2991/**
2992 * audit_seccomp - record information about a seccomp action
2993 * @syscall: syscall number
2994 * @signr: signal value
2995 * @code: the seccomp action
2996 *
2997 * Record the information associated with a seccomp action. Event filtering for
2998 * seccomp actions that are not to be logged is done in seccomp_log().
2999 * Therefore, this function forces auditing independent of the audit_enabled
3000 * and dummy context state because seccomp actions should be logged even when
3001 * audit is not in use.
3002 */
3003void audit_seccomp(unsigned long syscall, long signr, int code)
3004{
3005	struct audit_buffer *ab;
3006
3007	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3008	if (unlikely(!ab))
3009		return;
3010	audit_log_task(ab);
3011	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012			 signr, syscall_get_arch(current), syscall,
3013			 in_compat_syscall(), KSTK_EIP(current), code);
3014	audit_log_end(ab);
3015}
3016
3017void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018				  int res)
3019{
3020	struct audit_buffer *ab;
3021
3022	if (!audit_enabled)
3023		return;
3024
3025	ab = audit_log_start(audit_context(), GFP_KERNEL,
3026			     AUDIT_CONFIG_CHANGE);
3027	if (unlikely(!ab))
3028		return;
3029
3030	audit_log_format(ab,
3031			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032			 names, old_names, res);
3033	audit_log_end(ab);
3034}
3035
3036struct list_head *audit_killed_trees(void)
3037{
3038	struct audit_context *ctx = audit_context();
3039	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3040		return NULL;
3041	return &ctx->killed_trees;
3042}