Loading...
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include <linux/pci_hotplug.h>
37#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55 void __iomem *fp;
56 void __iomem *endp;
57 u8 temp1, temp2, temp3, temp4;
58 int status = 0;
59
60 endp = (end - sizeof(struct hrt) + 1);
61
62 for (fp = begin; fp <= endp; fp += 16) {
63 temp1 = readb(fp + SIG0);
64 temp2 = readb(fp + SIG1);
65 temp3 = readb(fp + SIG2);
66 temp4 = readb(fp + SIG3);
67 if (temp1 == '$' &&
68 temp2 == 'H' &&
69 temp3 == 'R' &&
70 temp4 == 'T') {
71 status = 1;
72 break;
73 }
74 }
75
76 if (!status)
77 fp = NULL;
78
79 dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 return fp;
81}
82
83
84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85{
86 struct pci_bus *child;
87 int num;
88
89 pci_lock_rescan_remove();
90
91 if (func->pci_dev == NULL)
92 func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
93
94 /* No pci device, we need to create it then */
95 if (func->pci_dev == NULL) {
96 dbg("INFO: pci_dev still null\n");
97
98 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99 if (num)
100 pci_bus_add_devices(ctrl->pci_dev->bus);
101
102 func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
103 if (func->pci_dev == NULL) {
104 dbg("ERROR: pci_dev still null\n");
105 goto out;
106 }
107 }
108
109 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110 pci_hp_add_bridge(func->pci_dev);
111 child = func->pci_dev->subordinate;
112 if (child)
113 pci_bus_add_devices(child);
114 }
115
116 pci_dev_put(func->pci_dev);
117
118 out:
119 pci_unlock_rescan_remove();
120 return 0;
121}
122
123
124int cpqhp_unconfigure_device(struct pci_func* func)
125{
126 int j;
127
128 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
129
130 pci_lock_rescan_remove();
131 for (j=0; j<8 ; j++) {
132 struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
133 if (temp) {
134 pci_dev_put(temp);
135 pci_stop_and_remove_bus_device(temp);
136 }
137 }
138 pci_unlock_rescan_remove();
139 return 0;
140}
141
142static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
143{
144 u32 vendID = 0;
145
146 if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
147 return -1;
148 if (vendID == 0xffffffff)
149 return -1;
150 return pci_bus_read_config_dword (bus, devfn, offset, value);
151}
152
153
154/*
155 * cpqhp_set_irq
156 *
157 * @bus_num: bus number of PCI device
158 * @dev_num: device number of PCI device
159 * @slot: pointer to u8 where slot number will be returned
160 */
161int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
162{
163 int rc = 0;
164
165 if (cpqhp_legacy_mode) {
166 struct pci_dev *fakedev;
167 struct pci_bus *fakebus;
168 u16 temp_word;
169
170 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
171 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
172 if (!fakedev || !fakebus) {
173 kfree(fakedev);
174 kfree(fakebus);
175 return -ENOMEM;
176 }
177
178 fakedev->devfn = dev_num << 3;
179 fakedev->bus = fakebus;
180 fakebus->number = bus_num;
181 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
182 __func__, dev_num, bus_num, int_pin, irq_num);
183 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
184 kfree(fakedev);
185 kfree(fakebus);
186 dbg("%s: rc %d\n", __func__, rc);
187 if (!rc)
188 return !rc;
189
190 /* set the Edge Level Control Register (ELCR) */
191 temp_word = inb(0x4d0);
192 temp_word |= inb(0x4d1) << 8;
193
194 temp_word |= 0x01 << irq_num;
195
196 /* This should only be for x86 as it sets the Edge Level
197 * Control Register
198 */
199 outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
200 0xFF00) >> 8), 0x4d1); rc = 0; }
201
202 return rc;
203}
204
205
206static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
207{
208 u16 tdevice;
209 u32 work;
210 u8 tbus;
211
212 ctrl->pci_bus->number = bus_num;
213
214 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
215 /* Scan for access first */
216 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
217 continue;
218 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
219 /* Yep we got one. Not a bridge ? */
220 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
221 *dev_num = tdevice;
222 dbg("found it !\n");
223 return 0;
224 }
225 }
226 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
227 /* Scan for access first */
228 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
229 continue;
230 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231 /* Yep we got one. bridge ? */
232 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234 /* XXX: no recursion, wtf? */
235 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 return 0;
237 }
238 }
239
240 return -1;
241}
242
243
244static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245{
246 int loop, len;
247 u32 work;
248 u8 tbus, tdevice, tslot;
249
250 len = cpqhp_routing_table_length();
251 for (loop = 0; loop < len; ++loop) {
252 tbus = cpqhp_routing_table->slots[loop].bus;
253 tdevice = cpqhp_routing_table->slots[loop].devfn;
254 tslot = cpqhp_routing_table->slots[loop].slot;
255
256 if (tslot == slot) {
257 *bus_num = tbus;
258 *dev_num = tdevice;
259 ctrl->pci_bus->number = tbus;
260 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
261 if (!nobridge || (work == 0xffffffff))
262 return 0;
263
264 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
265 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
266 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
267
268 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
269 pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
270 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
271 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
272 *bus_num = tbus;
273 return 0;
274 }
275 } else
276 return 0;
277 }
278 }
279 return -1;
280}
281
282
283int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
284{
285 /* plain (bridges allowed) */
286 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
287}
288
289
290/* More PCI configuration routines; this time centered around hotplug
291 * controller
292 */
293
294
295/*
296 * cpqhp_save_config
297 *
298 * Reads configuration for all slots in a PCI bus and saves info.
299 *
300 * Note: For non-hot plug buses, the slot # saved is the device #
301 *
302 * returns 0 if success
303 */
304int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
305{
306 long rc;
307 u8 class_code;
308 u8 header_type;
309 u32 ID;
310 u8 secondary_bus;
311 struct pci_func *new_slot;
312 int sub_bus;
313 int FirstSupported;
314 int LastSupported;
315 int max_functions;
316 int function;
317 u8 DevError;
318 int device = 0;
319 int cloop = 0;
320 int stop_it;
321 int index;
322
323 /* Decide which slots are supported */
324
325 if (is_hot_plug) {
326 /*
327 * is_hot_plug is the slot mask
328 */
329 FirstSupported = is_hot_plug >> 4;
330 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
331 } else {
332 FirstSupported = 0;
333 LastSupported = 0x1F;
334 }
335
336 /* Save PCI configuration space for all devices in supported slots */
337 ctrl->pci_bus->number = busnumber;
338 for (device = FirstSupported; device <= LastSupported; device++) {
339 ID = 0xFFFFFFFF;
340 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
341
342 if (ID == 0xFFFFFFFF) {
343 if (is_hot_plug) {
344 /* Setup slot structure with entry for empty
345 * slot
346 */
347 new_slot = cpqhp_slot_create(busnumber);
348 if (new_slot == NULL)
349 return 1;
350
351 new_slot->bus = (u8) busnumber;
352 new_slot->device = (u8) device;
353 new_slot->function = 0;
354 new_slot->is_a_board = 0;
355 new_slot->presence_save = 0;
356 new_slot->switch_save = 0;
357 }
358 continue;
359 }
360
361 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
362 if (rc)
363 return rc;
364
365 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
366 if (rc)
367 return rc;
368
369 /* If multi-function device, set max_functions to 8 */
370 if (header_type & 0x80)
371 max_functions = 8;
372 else
373 max_functions = 1;
374
375 function = 0;
376
377 do {
378 DevError = 0;
379 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
380 /* Recurse the subordinate bus
381 * get the subordinate bus number
382 */
383 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
384 if (rc) {
385 return rc;
386 } else {
387 sub_bus = (int) secondary_bus;
388
389 /* Save secondary bus cfg spc
390 * with this recursive call.
391 */
392 rc = cpqhp_save_config(ctrl, sub_bus, 0);
393 if (rc)
394 return rc;
395 ctrl->pci_bus->number = busnumber;
396 }
397 }
398
399 index = 0;
400 new_slot = cpqhp_slot_find(busnumber, device, index++);
401 while (new_slot &&
402 (new_slot->function != (u8) function))
403 new_slot = cpqhp_slot_find(busnumber, device, index++);
404
405 if (!new_slot) {
406 /* Setup slot structure. */
407 new_slot = cpqhp_slot_create(busnumber);
408 if (new_slot == NULL)
409 return 1;
410 }
411
412 new_slot->bus = (u8) busnumber;
413 new_slot->device = (u8) device;
414 new_slot->function = (u8) function;
415 new_slot->is_a_board = 1;
416 new_slot->switch_save = 0x10;
417 /* In case of unsupported board */
418 new_slot->status = DevError;
419 new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
420
421 for (cloop = 0; cloop < 0x20; cloop++) {
422 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
423 if (rc)
424 return rc;
425 }
426
427 pci_dev_put(new_slot->pci_dev);
428
429 function++;
430
431 stop_it = 0;
432
433 /* this loop skips to the next present function
434 * reading in Class Code and Header type.
435 */
436 while ((function < max_functions) && (!stop_it)) {
437 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
438 if (ID == 0xFFFFFFFF) {
439 function++;
440 continue;
441 }
442 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
443 if (rc)
444 return rc;
445
446 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
447 if (rc)
448 return rc;
449
450 stop_it++;
451 }
452
453 } while (function < max_functions);
454 } /* End of FOR loop */
455
456 return 0;
457}
458
459
460/*
461 * cpqhp_save_slot_config
462 *
463 * Saves configuration info for all PCI devices in a given slot
464 * including subordinate buses.
465 *
466 * returns 0 if success
467 */
468int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
469{
470 long rc;
471 u8 class_code;
472 u8 header_type;
473 u32 ID;
474 u8 secondary_bus;
475 int sub_bus;
476 int max_functions;
477 int function = 0;
478 int cloop = 0;
479 int stop_it;
480
481 ID = 0xFFFFFFFF;
482
483 ctrl->pci_bus->number = new_slot->bus;
484 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
485
486 if (ID == 0xFFFFFFFF)
487 return 2;
488
489 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
490 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
491
492 if (header_type & 0x80) /* Multi-function device */
493 max_functions = 8;
494 else
495 max_functions = 1;
496
497 while (function < max_functions) {
498 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
499 /* Recurse the subordinate bus */
500 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
501
502 sub_bus = (int) secondary_bus;
503
504 /* Save the config headers for the secondary
505 * bus.
506 */
507 rc = cpqhp_save_config(ctrl, sub_bus, 0);
508 if (rc)
509 return(rc);
510 ctrl->pci_bus->number = new_slot->bus;
511
512 }
513
514 new_slot->status = 0;
515
516 for (cloop = 0; cloop < 0x20; cloop++)
517 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
518
519 function++;
520
521 stop_it = 0;
522
523 /* this loop skips to the next present function
524 * reading in the Class Code and the Header type.
525 */
526 while ((function < max_functions) && (!stop_it)) {
527 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
528
529 if (ID == 0xFFFFFFFF)
530 function++;
531 else {
532 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
533 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
534 stop_it++;
535 }
536 }
537
538 }
539
540 return 0;
541}
542
543
544/*
545 * cpqhp_save_base_addr_length
546 *
547 * Saves the length of all base address registers for the
548 * specified slot. this is for hot plug REPLACE
549 *
550 * returns 0 if success
551 */
552int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
553{
554 u8 cloop;
555 u8 header_type;
556 u8 secondary_bus;
557 u8 type;
558 int sub_bus;
559 u32 temp_register;
560 u32 base;
561 u32 rc;
562 struct pci_func *next;
563 int index = 0;
564 struct pci_bus *pci_bus = ctrl->pci_bus;
565 unsigned int devfn;
566
567 func = cpqhp_slot_find(func->bus, func->device, index++);
568
569 while (func != NULL) {
570 pci_bus->number = func->bus;
571 devfn = PCI_DEVFN(func->device, func->function);
572
573 /* Check for Bridge */
574 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
575
576 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
577 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
578
579 sub_bus = (int) secondary_bus;
580
581 next = cpqhp_slot_list[sub_bus];
582
583 while (next != NULL) {
584 rc = cpqhp_save_base_addr_length(ctrl, next);
585 if (rc)
586 return rc;
587
588 next = next->next;
589 }
590 pci_bus->number = func->bus;
591
592 /* FIXME: this loop is duplicated in the non-bridge
593 * case. The two could be rolled together Figure out
594 * IO and memory base lengths
595 */
596 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
597 temp_register = 0xFFFFFFFF;
598 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
599 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
600 /* If this register is implemented */
601 if (base) {
602 if (base & 0x01L) {
603 /* IO base
604 * set base = amount of IO space
605 * requested
606 */
607 base = base & 0xFFFFFFFE;
608 base = (~base) + 1;
609
610 type = 1;
611 } else {
612 /* memory base */
613 base = base & 0xFFFFFFF0;
614 base = (~base) + 1;
615
616 type = 0;
617 }
618 } else {
619 base = 0x0L;
620 type = 0;
621 }
622
623 /* Save information in slot structure */
624 func->base_length[(cloop - 0x10) >> 2] =
625 base;
626 func->base_type[(cloop - 0x10) >> 2] = type;
627
628 } /* End of base register loop */
629
630 } else if ((header_type & 0x7F) == 0x00) {
631 /* Figure out IO and memory base lengths */
632 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
633 temp_register = 0xFFFFFFFF;
634 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
635 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
636
637 /* If this register is implemented */
638 if (base) {
639 if (base & 0x01L) {
640 /* IO base
641 * base = amount of IO space
642 * requested
643 */
644 base = base & 0xFFFFFFFE;
645 base = (~base) + 1;
646
647 type = 1;
648 } else {
649 /* memory base
650 * base = amount of memory
651 * space requested
652 */
653 base = base & 0xFFFFFFF0;
654 base = (~base) + 1;
655
656 type = 0;
657 }
658 } else {
659 base = 0x0L;
660 type = 0;
661 }
662
663 /* Save information in slot structure */
664 func->base_length[(cloop - 0x10) >> 2] = base;
665 func->base_type[(cloop - 0x10) >> 2] = type;
666
667 } /* End of base register loop */
668
669 } else { /* Some other unknown header type */
670 }
671
672 /* find the next device in this slot */
673 func = cpqhp_slot_find(func->bus, func->device, index++);
674 }
675
676 return(0);
677}
678
679
680/*
681 * cpqhp_save_used_resources
682 *
683 * Stores used resource information for existing boards. this is
684 * for boards that were in the system when this driver was loaded.
685 * this function is for hot plug ADD
686 *
687 * returns 0 if success
688 */
689int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
690{
691 u8 cloop;
692 u8 header_type;
693 u8 secondary_bus;
694 u8 temp_byte;
695 u8 b_base;
696 u8 b_length;
697 u16 command;
698 u16 save_command;
699 u16 w_base;
700 u16 w_length;
701 u32 temp_register;
702 u32 save_base;
703 u32 base;
704 int index = 0;
705 struct pci_resource *mem_node;
706 struct pci_resource *p_mem_node;
707 struct pci_resource *io_node;
708 struct pci_resource *bus_node;
709 struct pci_bus *pci_bus = ctrl->pci_bus;
710 unsigned int devfn;
711
712 func = cpqhp_slot_find(func->bus, func->device, index++);
713
714 while ((func != NULL) && func->is_a_board) {
715 pci_bus->number = func->bus;
716 devfn = PCI_DEVFN(func->device, func->function);
717
718 /* Save the command register */
719 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
720
721 /* disable card */
722 command = 0x00;
723 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
724
725 /* Check for Bridge */
726 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
727
728 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
729 /* Clear Bridge Control Register */
730 command = 0x00;
731 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
732 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
733 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
734
735 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
736 if (!bus_node)
737 return -ENOMEM;
738
739 bus_node->base = secondary_bus;
740 bus_node->length = temp_byte - secondary_bus + 1;
741
742 bus_node->next = func->bus_head;
743 func->bus_head = bus_node;
744
745 /* Save IO base and Limit registers */
746 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
747 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
748
749 if ((b_base <= b_length) && (save_command & 0x01)) {
750 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
751 if (!io_node)
752 return -ENOMEM;
753
754 io_node->base = (b_base & 0xF0) << 8;
755 io_node->length = (b_length - b_base + 0x10) << 8;
756
757 io_node->next = func->io_head;
758 func->io_head = io_node;
759 }
760
761 /* Save memory base and Limit registers */
762 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
763 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
764
765 if ((w_base <= w_length) && (save_command & 0x02)) {
766 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
767 if (!mem_node)
768 return -ENOMEM;
769
770 mem_node->base = w_base << 16;
771 mem_node->length = (w_length - w_base + 0x10) << 16;
772
773 mem_node->next = func->mem_head;
774 func->mem_head = mem_node;
775 }
776
777 /* Save prefetchable memory base and Limit registers */
778 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
779 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
780
781 if ((w_base <= w_length) && (save_command & 0x02)) {
782 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
783 if (!p_mem_node)
784 return -ENOMEM;
785
786 p_mem_node->base = w_base << 16;
787 p_mem_node->length = (w_length - w_base + 0x10) << 16;
788
789 p_mem_node->next = func->p_mem_head;
790 func->p_mem_head = p_mem_node;
791 }
792 /* Figure out IO and memory base lengths */
793 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
794 pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
795
796 temp_register = 0xFFFFFFFF;
797 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
798 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
799
800 temp_register = base;
801
802 /* If this register is implemented */
803 if (base) {
804 if (((base & 0x03L) == 0x01)
805 && (save_command & 0x01)) {
806 /* IO base
807 * set temp_register = amount
808 * of IO space requested
809 */
810 temp_register = base & 0xFFFFFFFE;
811 temp_register = (~temp_register) + 1;
812
813 io_node = kmalloc(sizeof(*io_node),
814 GFP_KERNEL);
815 if (!io_node)
816 return -ENOMEM;
817
818 io_node->base =
819 save_base & (~0x03L);
820 io_node->length = temp_register;
821
822 io_node->next = func->io_head;
823 func->io_head = io_node;
824 } else
825 if (((base & 0x0BL) == 0x08)
826 && (save_command & 0x02)) {
827 /* prefetchable memory base */
828 temp_register = base & 0xFFFFFFF0;
829 temp_register = (~temp_register) + 1;
830
831 p_mem_node = kmalloc(sizeof(*p_mem_node),
832 GFP_KERNEL);
833 if (!p_mem_node)
834 return -ENOMEM;
835
836 p_mem_node->base = save_base & (~0x0FL);
837 p_mem_node->length = temp_register;
838
839 p_mem_node->next = func->p_mem_head;
840 func->p_mem_head = p_mem_node;
841 } else
842 if (((base & 0x0BL) == 0x00)
843 && (save_command & 0x02)) {
844 /* prefetchable memory base */
845 temp_register = base & 0xFFFFFFF0;
846 temp_register = (~temp_register) + 1;
847
848 mem_node = kmalloc(sizeof(*mem_node),
849 GFP_KERNEL);
850 if (!mem_node)
851 return -ENOMEM;
852
853 mem_node->base = save_base & (~0x0FL);
854 mem_node->length = temp_register;
855
856 mem_node->next = func->mem_head;
857 func->mem_head = mem_node;
858 } else
859 return(1);
860 }
861 } /* End of base register loop */
862 /* Standard header */
863 } else if ((header_type & 0x7F) == 0x00) {
864 /* Figure out IO and memory base lengths */
865 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
866 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
867
868 temp_register = 0xFFFFFFFF;
869 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
870 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
871
872 temp_register = base;
873
874 /* If this register is implemented */
875 if (base) {
876 if (((base & 0x03L) == 0x01)
877 && (save_command & 0x01)) {
878 /* IO base
879 * set temp_register = amount
880 * of IO space requested
881 */
882 temp_register = base & 0xFFFFFFFE;
883 temp_register = (~temp_register) + 1;
884
885 io_node = kmalloc(sizeof(*io_node),
886 GFP_KERNEL);
887 if (!io_node)
888 return -ENOMEM;
889
890 io_node->base = save_base & (~0x01L);
891 io_node->length = temp_register;
892
893 io_node->next = func->io_head;
894 func->io_head = io_node;
895 } else
896 if (((base & 0x0BL) == 0x08)
897 && (save_command & 0x02)) {
898 /* prefetchable memory base */
899 temp_register = base & 0xFFFFFFF0;
900 temp_register = (~temp_register) + 1;
901
902 p_mem_node = kmalloc(sizeof(*p_mem_node),
903 GFP_KERNEL);
904 if (!p_mem_node)
905 return -ENOMEM;
906
907 p_mem_node->base = save_base & (~0x0FL);
908 p_mem_node->length = temp_register;
909
910 p_mem_node->next = func->p_mem_head;
911 func->p_mem_head = p_mem_node;
912 } else
913 if (((base & 0x0BL) == 0x00)
914 && (save_command & 0x02)) {
915 /* prefetchable memory base */
916 temp_register = base & 0xFFFFFFF0;
917 temp_register = (~temp_register) + 1;
918
919 mem_node = kmalloc(sizeof(*mem_node),
920 GFP_KERNEL);
921 if (!mem_node)
922 return -ENOMEM;
923
924 mem_node->base = save_base & (~0x0FL);
925 mem_node->length = temp_register;
926
927 mem_node->next = func->mem_head;
928 func->mem_head = mem_node;
929 } else
930 return(1);
931 }
932 } /* End of base register loop */
933 }
934
935 /* find the next device in this slot */
936 func = cpqhp_slot_find(func->bus, func->device, index++);
937 }
938
939 return 0;
940}
941
942
943/*
944 * cpqhp_configure_board
945 *
946 * Copies saved configuration information to one slot.
947 * this is called recursively for bridge devices.
948 * this is for hot plug REPLACE!
949 *
950 * returns 0 if success
951 */
952int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
953{
954 int cloop;
955 u8 header_type;
956 u8 secondary_bus;
957 int sub_bus;
958 struct pci_func *next;
959 u32 temp;
960 u32 rc;
961 int index = 0;
962 struct pci_bus *pci_bus = ctrl->pci_bus;
963 unsigned int devfn;
964
965 func = cpqhp_slot_find(func->bus, func->device, index++);
966
967 while (func != NULL) {
968 pci_bus->number = func->bus;
969 devfn = PCI_DEVFN(func->device, func->function);
970
971 /* Start at the top of config space so that the control
972 * registers are programmed last
973 */
974 for (cloop = 0x3C; cloop > 0; cloop -= 4)
975 pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
976
977 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
978
979 /* If this is a bridge device, restore subordinate devices */
980 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
981 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
982
983 sub_bus = (int) secondary_bus;
984
985 next = cpqhp_slot_list[sub_bus];
986
987 while (next != NULL) {
988 rc = cpqhp_configure_board(ctrl, next);
989 if (rc)
990 return rc;
991
992 next = next->next;
993 }
994 } else {
995
996 /* Check all the base Address Registers to make sure
997 * they are the same. If not, the board is different.
998 */
999
1000 for (cloop = 16; cloop < 40; cloop += 4) {
1001 pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1002
1003 if (temp != func->config_space[cloop >> 2]) {
1004 dbg("Config space compare failure!!! offset = %x\n", cloop);
1005 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1006 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1007 return 1;
1008 }
1009 }
1010 }
1011
1012 func->configured = 1;
1013
1014 func = cpqhp_slot_find(func->bus, func->device, index++);
1015 }
1016
1017 return 0;
1018}
1019
1020
1021/*
1022 * cpqhp_valid_replace
1023 *
1024 * this function checks to see if a board is the same as the
1025 * one it is replacing. this check will detect if the device's
1026 * vendor or device id's are the same
1027 *
1028 * returns 0 if the board is the same nonzero otherwise
1029 */
1030int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1031{
1032 u8 cloop;
1033 u8 header_type;
1034 u8 secondary_bus;
1035 u8 type;
1036 u32 temp_register = 0;
1037 u32 base;
1038 u32 rc;
1039 struct pci_func *next;
1040 int index = 0;
1041 struct pci_bus *pci_bus = ctrl->pci_bus;
1042 unsigned int devfn;
1043
1044 if (!func->is_a_board)
1045 return(ADD_NOT_SUPPORTED);
1046
1047 func = cpqhp_slot_find(func->bus, func->device, index++);
1048
1049 while (func != NULL) {
1050 pci_bus->number = func->bus;
1051 devfn = PCI_DEVFN(func->device, func->function);
1052
1053 pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1054
1055 /* No adapter present */
1056 if (temp_register == 0xFFFFFFFF)
1057 return(NO_ADAPTER_PRESENT);
1058
1059 if (temp_register != func->config_space[0])
1060 return(ADAPTER_NOT_SAME);
1061
1062 /* Check for same revision number and class code */
1063 pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1064
1065 /* Adapter not the same */
1066 if (temp_register != func->config_space[0x08 >> 2])
1067 return(ADAPTER_NOT_SAME);
1068
1069 /* Check for Bridge */
1070 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1071
1072 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1073 /* In order to continue checking, we must program the
1074 * bus registers in the bridge to respond to accesses
1075 * for its subordinate bus(es)
1076 */
1077
1078 temp_register = func->config_space[0x18 >> 2];
1079 pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1080
1081 secondary_bus = (temp_register >> 8) & 0xFF;
1082
1083 next = cpqhp_slot_list[secondary_bus];
1084
1085 while (next != NULL) {
1086 rc = cpqhp_valid_replace(ctrl, next);
1087 if (rc)
1088 return rc;
1089
1090 next = next->next;
1091 }
1092
1093 }
1094 /* Check to see if it is a standard config header */
1095 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1096 /* Check subsystem vendor and ID */
1097 pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1098
1099 if (temp_register != func->config_space[0x2C >> 2]) {
1100 /* If it's a SMART-2 and the register isn't
1101 * filled in, ignore the difference because
1102 * they just have an old rev of the firmware
1103 */
1104 if (!((func->config_space[0] == 0xAE100E11)
1105 && (temp_register == 0x00L)))
1106 return(ADAPTER_NOT_SAME);
1107 }
1108 /* Figure out IO and memory base lengths */
1109 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1110 temp_register = 0xFFFFFFFF;
1111 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1112 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1113
1114 /* If this register is implemented */
1115 if (base) {
1116 if (base & 0x01L) {
1117 /* IO base
1118 * set base = amount of IO
1119 * space requested
1120 */
1121 base = base & 0xFFFFFFFE;
1122 base = (~base) + 1;
1123
1124 type = 1;
1125 } else {
1126 /* memory base */
1127 base = base & 0xFFFFFFF0;
1128 base = (~base) + 1;
1129
1130 type = 0;
1131 }
1132 } else {
1133 base = 0x0L;
1134 type = 0;
1135 }
1136
1137 /* Check information in slot structure */
1138 if (func->base_length[(cloop - 0x10) >> 2] != base)
1139 return(ADAPTER_NOT_SAME);
1140
1141 if (func->base_type[(cloop - 0x10) >> 2] != type)
1142 return(ADAPTER_NOT_SAME);
1143
1144 } /* End of base register loop */
1145
1146 } /* End of (type 0 config space) else */
1147 else {
1148 /* this is not a type 0 or 1 config space header so
1149 * we don't know how to do it
1150 */
1151 return(DEVICE_TYPE_NOT_SUPPORTED);
1152 }
1153
1154 /* Get the next function */
1155 func = cpqhp_slot_find(func->bus, func->device, index++);
1156 }
1157
1158
1159 return 0;
1160}
1161
1162
1163/*
1164 * cpqhp_find_available_resources
1165 *
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1169 *
1170 * returns 0 if success
1171 */
1172int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173{
1174 u8 temp;
1175 u8 populated_slot;
1176 u8 bridged_slot;
1177 void __iomem *one_slot;
1178 void __iomem *rom_resource_table;
1179 struct pci_func *func = NULL;
1180 int i = 10, index;
1181 u32 temp_dword, rc;
1182 struct pci_resource *mem_node;
1183 struct pci_resource *p_mem_node;
1184 struct pci_resource *io_node;
1185 struct pci_resource *bus_node;
1186
1187 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188 dbg("rom_resource_table = %p\n", rom_resource_table);
1189
1190 if (rom_resource_table == NULL)
1191 return -ENODEV;
1192
1193 /* Sum all resources and setup resource maps */
1194 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195 dbg("unused_IRQ = %x\n", unused_IRQ);
1196
1197 temp = 0;
1198 while (unused_IRQ) {
1199 if (unused_IRQ & 1) {
1200 cpqhp_disk_irq = temp;
1201 break;
1202 }
1203 unused_IRQ = unused_IRQ >> 1;
1204 temp++;
1205 }
1206
1207 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208 unused_IRQ = unused_IRQ >> 1;
1209 temp++;
1210
1211 while (unused_IRQ) {
1212 if (unused_IRQ & 1) {
1213 cpqhp_nic_irq = temp;
1214 break;
1215 }
1216 unused_IRQ = unused_IRQ >> 1;
1217 temp++;
1218 }
1219
1220 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222
1223 temp = 0;
1224
1225 if (!cpqhp_nic_irq)
1226 cpqhp_nic_irq = ctrl->cfgspc_irq;
1227
1228 if (!cpqhp_disk_irq)
1229 cpqhp_disk_irq = ctrl->cfgspc_irq;
1230
1231 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1232
1233 rc = compaq_nvram_load(rom_start, ctrl);
1234 if (rc)
1235 return rc;
1236
1237 one_slot = rom_resource_table + sizeof (struct hrt);
1238
1239 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1240 dbg("number_of_entries = %d\n", i);
1241
1242 if (!readb(one_slot + SECONDARY_BUS))
1243 return 1;
1244
1245 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1246
1247 while (i && readb(one_slot + SECONDARY_BUS)) {
1248 u8 dev_func = readb(one_slot + DEV_FUNC);
1249 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1250 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1251 u8 max_bus = readb(one_slot + MAX_BUS);
1252 u16 io_base = readw(one_slot + IO_BASE);
1253 u16 io_length = readw(one_slot + IO_LENGTH);
1254 u16 mem_base = readw(one_slot + MEM_BASE);
1255 u16 mem_length = readw(one_slot + MEM_LENGTH);
1256 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1257 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1258
1259 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1260 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1261 primary_bus, secondary_bus, max_bus);
1262
1263 /* If this entry isn't for our controller's bus, ignore it */
1264 if (primary_bus != ctrl->bus) {
1265 i--;
1266 one_slot += sizeof (struct slot_rt);
1267 continue;
1268 }
1269 /* find out if this entry is for an occupied slot */
1270 ctrl->pci_bus->number = primary_bus;
1271 pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1272 dbg("temp_D_word = %x\n", temp_dword);
1273
1274 if (temp_dword != 0xFFFFFFFF) {
1275 index = 0;
1276 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1277
1278 while (func && (func->function != (dev_func & 0x07))) {
1279 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1280 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1281 }
1282
1283 /* If we can't find a match, skip this table entry */
1284 if (!func) {
1285 i--;
1286 one_slot += sizeof (struct slot_rt);
1287 continue;
1288 }
1289 /* this may not work and shouldn't be used */
1290 if (secondary_bus != primary_bus)
1291 bridged_slot = 1;
1292 else
1293 bridged_slot = 0;
1294
1295 populated_slot = 1;
1296 } else {
1297 populated_slot = 0;
1298 bridged_slot = 0;
1299 }
1300
1301
1302 /* If we've got a valid IO base, use it */
1303
1304 temp_dword = io_base + io_length;
1305
1306 if ((io_base) && (temp_dword < 0x10000)) {
1307 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1308 if (!io_node)
1309 return -ENOMEM;
1310
1311 io_node->base = io_base;
1312 io_node->length = io_length;
1313
1314 dbg("found io_node(base, length) = %x, %x\n",
1315 io_node->base, io_node->length);
1316 dbg("populated slot =%d \n", populated_slot);
1317 if (!populated_slot) {
1318 io_node->next = ctrl->io_head;
1319 ctrl->io_head = io_node;
1320 } else {
1321 io_node->next = func->io_head;
1322 func->io_head = io_node;
1323 }
1324 }
1325
1326 /* If we've got a valid memory base, use it */
1327 temp_dword = mem_base + mem_length;
1328 if ((mem_base) && (temp_dword < 0x10000)) {
1329 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1330 if (!mem_node)
1331 return -ENOMEM;
1332
1333 mem_node->base = mem_base << 16;
1334
1335 mem_node->length = mem_length << 16;
1336
1337 dbg("found mem_node(base, length) = %x, %x\n",
1338 mem_node->base, mem_node->length);
1339 dbg("populated slot =%d \n", populated_slot);
1340 if (!populated_slot) {
1341 mem_node->next = ctrl->mem_head;
1342 ctrl->mem_head = mem_node;
1343 } else {
1344 mem_node->next = func->mem_head;
1345 func->mem_head = mem_node;
1346 }
1347 }
1348
1349 /* If we've got a valid prefetchable memory base, and
1350 * the base + length isn't greater than 0xFFFF
1351 */
1352 temp_dword = pre_mem_base + pre_mem_length;
1353 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355 if (!p_mem_node)
1356 return -ENOMEM;
1357
1358 p_mem_node->base = pre_mem_base << 16;
1359
1360 p_mem_node->length = pre_mem_length << 16;
1361 dbg("found p_mem_node(base, length) = %x, %x\n",
1362 p_mem_node->base, p_mem_node->length);
1363 dbg("populated slot =%d \n", populated_slot);
1364
1365 if (!populated_slot) {
1366 p_mem_node->next = ctrl->p_mem_head;
1367 ctrl->p_mem_head = p_mem_node;
1368 } else {
1369 p_mem_node->next = func->p_mem_head;
1370 func->p_mem_head = p_mem_node;
1371 }
1372 }
1373
1374 /* If we've got a valid bus number, use it
1375 * The second condition is to ignore bus numbers on
1376 * populated slots that don't have PCI-PCI bridges
1377 */
1378 if (secondary_bus && (secondary_bus != primary_bus)) {
1379 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380 if (!bus_node)
1381 return -ENOMEM;
1382
1383 bus_node->base = secondary_bus;
1384 bus_node->length = max_bus - secondary_bus + 1;
1385 dbg("found bus_node(base, length) = %x, %x\n",
1386 bus_node->base, bus_node->length);
1387 dbg("populated slot =%d \n", populated_slot);
1388 if (!populated_slot) {
1389 bus_node->next = ctrl->bus_head;
1390 ctrl->bus_head = bus_node;
1391 } else {
1392 bus_node->next = func->bus_head;
1393 func->bus_head = bus_node;
1394 }
1395 }
1396
1397 i--;
1398 one_slot += sizeof (struct slot_rt);
1399 }
1400
1401 /* If all of the following fail, we don't have any resources for
1402 * hot plug add
1403 */
1404 rc = 1;
1405 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1406 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1407 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1408 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1409
1410 return rc;
1411}
1412
1413
1414/*
1415 * cpqhp_return_board_resources
1416 *
1417 * this routine returns all resources allocated to a board to
1418 * the available pool.
1419 *
1420 * returns 0 if success
1421 */
1422int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1423{
1424 int rc = 0;
1425 struct pci_resource *node;
1426 struct pci_resource *t_node;
1427 dbg("%s\n", __func__);
1428
1429 if (!func)
1430 return 1;
1431
1432 node = func->io_head;
1433 func->io_head = NULL;
1434 while (node) {
1435 t_node = node->next;
1436 return_resource(&(resources->io_head), node);
1437 node = t_node;
1438 }
1439
1440 node = func->mem_head;
1441 func->mem_head = NULL;
1442 while (node) {
1443 t_node = node->next;
1444 return_resource(&(resources->mem_head), node);
1445 node = t_node;
1446 }
1447
1448 node = func->p_mem_head;
1449 func->p_mem_head = NULL;
1450 while (node) {
1451 t_node = node->next;
1452 return_resource(&(resources->p_mem_head), node);
1453 node = t_node;
1454 }
1455
1456 node = func->bus_head;
1457 func->bus_head = NULL;
1458 while (node) {
1459 t_node = node->next;
1460 return_resource(&(resources->bus_head), node);
1461 node = t_node;
1462 }
1463
1464 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1465 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1466 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1467 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1468
1469 return rc;
1470}
1471
1472
1473/*
1474 * cpqhp_destroy_resource_list
1475 *
1476 * Puts node back in the resource list pointed to by head
1477 */
1478void cpqhp_destroy_resource_list (struct resource_lists * resources)
1479{
1480 struct pci_resource *res, *tres;
1481
1482 res = resources->io_head;
1483 resources->io_head = NULL;
1484
1485 while (res) {
1486 tres = res;
1487 res = res->next;
1488 kfree(tres);
1489 }
1490
1491 res = resources->mem_head;
1492 resources->mem_head = NULL;
1493
1494 while (res) {
1495 tres = res;
1496 res = res->next;
1497 kfree(tres);
1498 }
1499
1500 res = resources->p_mem_head;
1501 resources->p_mem_head = NULL;
1502
1503 while (res) {
1504 tres = res;
1505 res = res->next;
1506 kfree(tres);
1507 }
1508
1509 res = resources->bus_head;
1510 resources->bus_head = NULL;
1511
1512 while (res) {
1513 tres = res;
1514 res = res->next;
1515 kfree(tres);
1516 }
1517}
1518
1519
1520/*
1521 * cpqhp_destroy_board_resources
1522 *
1523 * Puts node back in the resource list pointed to by head
1524 */
1525void cpqhp_destroy_board_resources (struct pci_func * func)
1526{
1527 struct pci_resource *res, *tres;
1528
1529 res = func->io_head;
1530 func->io_head = NULL;
1531
1532 while (res) {
1533 tres = res;
1534 res = res->next;
1535 kfree(tres);
1536 }
1537
1538 res = func->mem_head;
1539 func->mem_head = NULL;
1540
1541 while (res) {
1542 tres = res;
1543 res = res->next;
1544 kfree(tres);
1545 }
1546
1547 res = func->p_mem_head;
1548 func->p_mem_head = NULL;
1549
1550 while (res) {
1551 tres = res;
1552 res = res->next;
1553 kfree(tres);
1554 }
1555
1556 res = func->bus_head;
1557 func->bus_head = NULL;
1558
1559 while (res) {
1560 tres = res;
1561 res = res->next;
1562 kfree(tres);
1563 }
1564}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Compaq Hot Plug Controller Driver
4 *
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
8 *
9 * All rights reserved.
10 *
11 * Send feedback to <greg@kroah.com>
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20#include <linux/proc_fs.h>
21#include <linux/pci.h>
22#include <linux/pci_hotplug.h>
23#include "../pci.h"
24#include "cpqphp.h"
25#include "cpqphp_nvram.h"
26
27
28u8 cpqhp_nic_irq;
29u8 cpqhp_disk_irq;
30
31static u16 unused_IRQ;
32
33/*
34 * detect_HRT_floating_pointer
35 *
36 * find the Hot Plug Resource Table in the specified region of memory.
37 *
38 */
39static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40{
41 void __iomem *fp;
42 void __iomem *endp;
43 u8 temp1, temp2, temp3, temp4;
44 int status = 0;
45
46 endp = (end - sizeof(struct hrt) + 1);
47
48 for (fp = begin; fp <= endp; fp += 16) {
49 temp1 = readb(fp + SIG0);
50 temp2 = readb(fp + SIG1);
51 temp3 = readb(fp + SIG2);
52 temp4 = readb(fp + SIG3);
53 if (temp1 == '$' &&
54 temp2 == 'H' &&
55 temp3 == 'R' &&
56 temp4 == 'T') {
57 status = 1;
58 break;
59 }
60 }
61
62 if (!status)
63 fp = NULL;
64
65 dbg("Discovered Hotplug Resource Table at %p\n", fp);
66 return fp;
67}
68
69
70int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71{
72 struct pci_bus *child;
73 int num;
74
75 pci_lock_rescan_remove();
76
77 if (func->pci_dev == NULL)
78 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
79 PCI_DEVFN(func->device,
80 func->function));
81
82 /* No pci device, we need to create it then */
83 if (func->pci_dev == NULL) {
84 dbg("INFO: pci_dev still null\n");
85
86 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87 if (num)
88 pci_bus_add_devices(ctrl->pci_dev->bus);
89
90 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
91 PCI_DEVFN(func->device,
92 func->function));
93 if (func->pci_dev == NULL) {
94 dbg("ERROR: pci_dev still null\n");
95 goto out;
96 }
97 }
98
99 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100 pci_hp_add_bridge(func->pci_dev);
101 child = func->pci_dev->subordinate;
102 if (child)
103 pci_bus_add_devices(child);
104 }
105
106 pci_dev_put(func->pci_dev);
107
108 out:
109 pci_unlock_rescan_remove();
110 return 0;
111}
112
113
114int cpqhp_unconfigure_device(struct pci_func *func)
115{
116 int j;
117
118 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119
120 pci_lock_rescan_remove();
121 for (j = 0; j < 8 ; j++) {
122 struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
123 func->bus,
124 PCI_DEVFN(func->device,
125 j));
126 if (temp) {
127 pci_dev_put(temp);
128 pci_stop_and_remove_bus_device(temp);
129 }
130 }
131 pci_unlock_rescan_remove();
132 return 0;
133}
134
135static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136{
137 u32 vendID = 0;
138
139 if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
140 return -1;
141 if (vendID == 0xffffffff)
142 return -1;
143 return pci_bus_read_config_dword(bus, devfn, offset, value);
144}
145
146
147/*
148 * cpqhp_set_irq
149 *
150 * @bus_num: bus number of PCI device
151 * @dev_num: device number of PCI device
152 * @slot: pointer to u8 where slot number will be returned
153 */
154int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
155{
156 int rc = 0;
157
158 if (cpqhp_legacy_mode) {
159 struct pci_dev *fakedev;
160 struct pci_bus *fakebus;
161 u16 temp_word;
162
163 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
164 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
165 if (!fakedev || !fakebus) {
166 kfree(fakedev);
167 kfree(fakebus);
168 return -ENOMEM;
169 }
170
171 fakedev->devfn = dev_num << 3;
172 fakedev->bus = fakebus;
173 fakebus->number = bus_num;
174 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175 __func__, dev_num, bus_num, int_pin, irq_num);
176 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
177 kfree(fakedev);
178 kfree(fakebus);
179 dbg("%s: rc %d\n", __func__, rc);
180 if (!rc)
181 return !rc;
182
183 /* set the Edge Level Control Register (ELCR) */
184 temp_word = inb(0x4d0);
185 temp_word |= inb(0x4d1) << 8;
186
187 temp_word |= 0x01 << irq_num;
188
189 /* This should only be for x86 as it sets the Edge Level
190 * Control Register
191 */
192 outb((u8)(temp_word & 0xFF), 0x4d0);
193 outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
194 rc = 0;
195 }
196
197 return rc;
198}
199
200
201static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
202{
203 u16 tdevice;
204 u32 work;
205 u8 tbus;
206
207 ctrl->pci_bus->number = bus_num;
208
209 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
210 /* Scan for access first */
211 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
212 continue;
213 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
214 /* Yep we got one. Not a bridge ? */
215 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
216 *dev_num = tdevice;
217 dbg("found it !\n");
218 return 0;
219 }
220 }
221 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
222 /* Scan for access first */
223 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
224 continue;
225 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
226 /* Yep we got one. bridge ? */
227 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
228 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
229 /* XXX: no recursion, wtf? */
230 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
231 return 0;
232 }
233 }
234
235 return -1;
236}
237
238
239static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
240{
241 int loop, len;
242 u32 work;
243 u8 tbus, tdevice, tslot;
244
245 len = cpqhp_routing_table_length();
246 for (loop = 0; loop < len; ++loop) {
247 tbus = cpqhp_routing_table->slots[loop].bus;
248 tdevice = cpqhp_routing_table->slots[loop].devfn;
249 tslot = cpqhp_routing_table->slots[loop].slot;
250
251 if (tslot == slot) {
252 *bus_num = tbus;
253 *dev_num = tdevice;
254 ctrl->pci_bus->number = tbus;
255 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
256 if (!nobridge || (work == 0xffffffff))
257 return 0;
258
259 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
260 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
261 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
262
263 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
264 pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
265 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
266 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
267 *bus_num = tbus;
268 return 0;
269 }
270 } else
271 return 0;
272 }
273 }
274 return -1;
275}
276
277
278int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
279{
280 /* plain (bridges allowed) */
281 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
282}
283
284
285/* More PCI configuration routines; this time centered around hotplug
286 * controller
287 */
288
289
290/*
291 * cpqhp_save_config
292 *
293 * Reads configuration for all slots in a PCI bus and saves info.
294 *
295 * Note: For non-hot plug buses, the slot # saved is the device #
296 *
297 * returns 0 if success
298 */
299int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
300{
301 long rc;
302 u8 class_code;
303 u8 header_type;
304 u32 ID;
305 u8 secondary_bus;
306 struct pci_func *new_slot;
307 int sub_bus;
308 int FirstSupported;
309 int LastSupported;
310 int max_functions;
311 int function;
312 u8 DevError;
313 int device = 0;
314 int cloop = 0;
315 int stop_it;
316 int index;
317 u16 devfn;
318
319 /* Decide which slots are supported */
320
321 if (is_hot_plug) {
322 /*
323 * is_hot_plug is the slot mask
324 */
325 FirstSupported = is_hot_plug >> 4;
326 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
327 } else {
328 FirstSupported = 0;
329 LastSupported = 0x1F;
330 }
331
332 /* Save PCI configuration space for all devices in supported slots */
333 ctrl->pci_bus->number = busnumber;
334 for (device = FirstSupported; device <= LastSupported; device++) {
335 ID = 0xFFFFFFFF;
336 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
337
338 if (ID == 0xFFFFFFFF) {
339 if (is_hot_plug) {
340 /* Setup slot structure with entry for empty
341 * slot
342 */
343 new_slot = cpqhp_slot_create(busnumber);
344 if (new_slot == NULL)
345 return 1;
346
347 new_slot->bus = (u8) busnumber;
348 new_slot->device = (u8) device;
349 new_slot->function = 0;
350 new_slot->is_a_board = 0;
351 new_slot->presence_save = 0;
352 new_slot->switch_save = 0;
353 }
354 continue;
355 }
356
357 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
358 if (rc)
359 return rc;
360
361 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
362 if (rc)
363 return rc;
364
365 /* If multi-function device, set max_functions to 8 */
366 if (header_type & PCI_HEADER_TYPE_MFD)
367 max_functions = 8;
368 else
369 max_functions = 1;
370
371 function = 0;
372
373 do {
374 DevError = 0;
375 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
376 /* Recurse the subordinate bus
377 * get the subordinate bus number
378 */
379 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
380 if (rc) {
381 return rc;
382 } else {
383 sub_bus = (int) secondary_bus;
384
385 /* Save secondary bus cfg spc
386 * with this recursive call.
387 */
388 rc = cpqhp_save_config(ctrl, sub_bus, 0);
389 if (rc)
390 return rc;
391 ctrl->pci_bus->number = busnumber;
392 }
393 }
394
395 index = 0;
396 new_slot = cpqhp_slot_find(busnumber, device, index++);
397 while (new_slot &&
398 (new_slot->function != (u8) function))
399 new_slot = cpqhp_slot_find(busnumber, device, index++);
400
401 if (!new_slot) {
402 /* Setup slot structure. */
403 new_slot = cpqhp_slot_create(busnumber);
404 if (new_slot == NULL)
405 return 1;
406 }
407
408 new_slot->bus = (u8) busnumber;
409 new_slot->device = (u8) device;
410 new_slot->function = (u8) function;
411 new_slot->is_a_board = 1;
412 new_slot->switch_save = 0x10;
413 /* In case of unsupported board */
414 new_slot->status = DevError;
415 devfn = (new_slot->device << 3) | new_slot->function;
416 new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
417 new_slot->bus, devfn);
418
419 for (cloop = 0; cloop < 0x20; cloop++) {
420 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
421 if (rc)
422 return rc;
423 }
424
425 pci_dev_put(new_slot->pci_dev);
426
427 function++;
428
429 stop_it = 0;
430
431 /* this loop skips to the next present function
432 * reading in Class Code and Header type.
433 */
434 while ((function < max_functions) && (!stop_it)) {
435 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
436 if (ID == 0xFFFFFFFF) {
437 function++;
438 continue;
439 }
440 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
441 if (rc)
442 return rc;
443
444 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
445 if (rc)
446 return rc;
447
448 stop_it++;
449 }
450
451 } while (function < max_functions);
452 } /* End of FOR loop */
453
454 return 0;
455}
456
457
458/*
459 * cpqhp_save_slot_config
460 *
461 * Saves configuration info for all PCI devices in a given slot
462 * including subordinate buses.
463 *
464 * returns 0 if success
465 */
466int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
467{
468 long rc;
469 u8 class_code;
470 u8 header_type;
471 u32 ID;
472 u8 secondary_bus;
473 int sub_bus;
474 int max_functions;
475 int function = 0;
476 int cloop;
477 int stop_it;
478
479 ID = 0xFFFFFFFF;
480
481 ctrl->pci_bus->number = new_slot->bus;
482 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
483
484 if (ID == 0xFFFFFFFF)
485 return 2;
486
487 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
488 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
489
490 if (header_type & PCI_HEADER_TYPE_MFD)
491 max_functions = 8;
492 else
493 max_functions = 1;
494
495 while (function < max_functions) {
496 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
497 /* Recurse the subordinate bus */
498 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
499
500 sub_bus = (int) secondary_bus;
501
502 /* Save the config headers for the secondary
503 * bus.
504 */
505 rc = cpqhp_save_config(ctrl, sub_bus, 0);
506 if (rc)
507 return(rc);
508 ctrl->pci_bus->number = new_slot->bus;
509
510 }
511
512 new_slot->status = 0;
513
514 for (cloop = 0; cloop < 0x20; cloop++)
515 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
516
517 function++;
518
519 stop_it = 0;
520
521 /* this loop skips to the next present function
522 * reading in the Class Code and the Header type.
523 */
524 while ((function < max_functions) && (!stop_it)) {
525 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
526
527 if (ID == 0xFFFFFFFF)
528 function++;
529 else {
530 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
531 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
532 stop_it++;
533 }
534 }
535
536 }
537
538 return 0;
539}
540
541
542/*
543 * cpqhp_save_base_addr_length
544 *
545 * Saves the length of all base address registers for the
546 * specified slot. this is for hot plug REPLACE
547 *
548 * returns 0 if success
549 */
550int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
551{
552 u8 cloop;
553 u8 header_type;
554 u8 secondary_bus;
555 u8 type;
556 int sub_bus;
557 u32 temp_register;
558 u32 base;
559 u32 rc;
560 struct pci_func *next;
561 int index = 0;
562 struct pci_bus *pci_bus = ctrl->pci_bus;
563 unsigned int devfn;
564
565 func = cpqhp_slot_find(func->bus, func->device, index++);
566
567 while (func != NULL) {
568 pci_bus->number = func->bus;
569 devfn = PCI_DEVFN(func->device, func->function);
570
571 /* Check for Bridge */
572 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
573
574 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
575 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
576
577 sub_bus = (int) secondary_bus;
578
579 next = cpqhp_slot_list[sub_bus];
580
581 while (next != NULL) {
582 rc = cpqhp_save_base_addr_length(ctrl, next);
583 if (rc)
584 return rc;
585
586 next = next->next;
587 }
588 pci_bus->number = func->bus;
589
590 /* FIXME: this loop is duplicated in the non-bridge
591 * case. The two could be rolled together Figure out
592 * IO and memory base lengths
593 */
594 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
595 temp_register = 0xFFFFFFFF;
596 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
597 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
598 /* If this register is implemented */
599 if (base) {
600 if (base & 0x01L) {
601 /* IO base
602 * set base = amount of IO space
603 * requested
604 */
605 base = base & 0xFFFFFFFE;
606 base = (~base) + 1;
607
608 type = 1;
609 } else {
610 /* memory base */
611 base = base & 0xFFFFFFF0;
612 base = (~base) + 1;
613
614 type = 0;
615 }
616 } else {
617 base = 0x0L;
618 type = 0;
619 }
620
621 /* Save information in slot structure */
622 func->base_length[(cloop - 0x10) >> 2] =
623 base;
624 func->base_type[(cloop - 0x10) >> 2] = type;
625
626 } /* End of base register loop */
627
628 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
629 /* Figure out IO and memory base lengths */
630 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
631 temp_register = 0xFFFFFFFF;
632 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
633 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
634
635 /* If this register is implemented */
636 if (base) {
637 if (base & 0x01L) {
638 /* IO base
639 * base = amount of IO space
640 * requested
641 */
642 base = base & 0xFFFFFFFE;
643 base = (~base) + 1;
644
645 type = 1;
646 } else {
647 /* memory base
648 * base = amount of memory
649 * space requested
650 */
651 base = base & 0xFFFFFFF0;
652 base = (~base) + 1;
653
654 type = 0;
655 }
656 } else {
657 base = 0x0L;
658 type = 0;
659 }
660
661 /* Save information in slot structure */
662 func->base_length[(cloop - 0x10) >> 2] = base;
663 func->base_type[(cloop - 0x10) >> 2] = type;
664
665 } /* End of base register loop */
666
667 } else { /* Some other unknown header type */
668 }
669
670 /* find the next device in this slot */
671 func = cpqhp_slot_find(func->bus, func->device, index++);
672 }
673
674 return(0);
675}
676
677
678/*
679 * cpqhp_save_used_resources
680 *
681 * Stores used resource information for existing boards. this is
682 * for boards that were in the system when this driver was loaded.
683 * this function is for hot plug ADD
684 *
685 * returns 0 if success
686 */
687int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
688{
689 u8 cloop;
690 u8 header_type;
691 u8 secondary_bus;
692 u8 temp_byte;
693 u8 b_base;
694 u8 b_length;
695 u16 command;
696 u16 save_command;
697 u16 w_base;
698 u16 w_length;
699 u32 temp_register;
700 u32 save_base;
701 u32 base;
702 int index = 0;
703 struct pci_resource *mem_node;
704 struct pci_resource *p_mem_node;
705 struct pci_resource *io_node;
706 struct pci_resource *bus_node;
707 struct pci_bus *pci_bus = ctrl->pci_bus;
708 unsigned int devfn;
709
710 func = cpqhp_slot_find(func->bus, func->device, index++);
711
712 while ((func != NULL) && func->is_a_board) {
713 pci_bus->number = func->bus;
714 devfn = PCI_DEVFN(func->device, func->function);
715
716 /* Save the command register */
717 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
718
719 /* disable card */
720 command = 0x00;
721 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
722
723 /* Check for Bridge */
724 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
725
726 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
727 /* Clear Bridge Control Register */
728 command = 0x00;
729 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
730 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
731 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
732
733 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
734 if (!bus_node)
735 return -ENOMEM;
736
737 bus_node->base = secondary_bus;
738 bus_node->length = temp_byte - secondary_bus + 1;
739
740 bus_node->next = func->bus_head;
741 func->bus_head = bus_node;
742
743 /* Save IO base and Limit registers */
744 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
745 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
746
747 if ((b_base <= b_length) && (save_command & 0x01)) {
748 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
749 if (!io_node)
750 return -ENOMEM;
751
752 io_node->base = (b_base & 0xF0) << 8;
753 io_node->length = (b_length - b_base + 0x10) << 8;
754
755 io_node->next = func->io_head;
756 func->io_head = io_node;
757 }
758
759 /* Save memory base and Limit registers */
760 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
761 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
762
763 if ((w_base <= w_length) && (save_command & 0x02)) {
764 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
765 if (!mem_node)
766 return -ENOMEM;
767
768 mem_node->base = w_base << 16;
769 mem_node->length = (w_length - w_base + 0x10) << 16;
770
771 mem_node->next = func->mem_head;
772 func->mem_head = mem_node;
773 }
774
775 /* Save prefetchable memory base and Limit registers */
776 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
777 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
778
779 if ((w_base <= w_length) && (save_command & 0x02)) {
780 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
781 if (!p_mem_node)
782 return -ENOMEM;
783
784 p_mem_node->base = w_base << 16;
785 p_mem_node->length = (w_length - w_base + 0x10) << 16;
786
787 p_mem_node->next = func->p_mem_head;
788 func->p_mem_head = p_mem_node;
789 }
790 /* Figure out IO and memory base lengths */
791 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
792 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
793
794 temp_register = 0xFFFFFFFF;
795 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
796 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
797
798 temp_register = base;
799
800 /* If this register is implemented */
801 if (base) {
802 if (((base & 0x03L) == 0x01)
803 && (save_command & 0x01)) {
804 /* IO base
805 * set temp_register = amount
806 * of IO space requested
807 */
808 temp_register = base & 0xFFFFFFFE;
809 temp_register = (~temp_register) + 1;
810
811 io_node = kmalloc(sizeof(*io_node),
812 GFP_KERNEL);
813 if (!io_node)
814 return -ENOMEM;
815
816 io_node->base =
817 save_base & (~0x03L);
818 io_node->length = temp_register;
819
820 io_node->next = func->io_head;
821 func->io_head = io_node;
822 } else
823 if (((base & 0x0BL) == 0x08)
824 && (save_command & 0x02)) {
825 /* prefetchable memory base */
826 temp_register = base & 0xFFFFFFF0;
827 temp_register = (~temp_register) + 1;
828
829 p_mem_node = kmalloc(sizeof(*p_mem_node),
830 GFP_KERNEL);
831 if (!p_mem_node)
832 return -ENOMEM;
833
834 p_mem_node->base = save_base & (~0x0FL);
835 p_mem_node->length = temp_register;
836
837 p_mem_node->next = func->p_mem_head;
838 func->p_mem_head = p_mem_node;
839 } else
840 if (((base & 0x0BL) == 0x00)
841 && (save_command & 0x02)) {
842 /* prefetchable memory base */
843 temp_register = base & 0xFFFFFFF0;
844 temp_register = (~temp_register) + 1;
845
846 mem_node = kmalloc(sizeof(*mem_node),
847 GFP_KERNEL);
848 if (!mem_node)
849 return -ENOMEM;
850
851 mem_node->base = save_base & (~0x0FL);
852 mem_node->length = temp_register;
853
854 mem_node->next = func->mem_head;
855 func->mem_head = mem_node;
856 } else
857 return(1);
858 }
859 } /* End of base register loop */
860 /* Standard header */
861 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
862 /* Figure out IO and memory base lengths */
863 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
864 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
865
866 temp_register = 0xFFFFFFFF;
867 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
868 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
869
870 temp_register = base;
871
872 /* If this register is implemented */
873 if (base) {
874 if (((base & 0x03L) == 0x01)
875 && (save_command & 0x01)) {
876 /* IO base
877 * set temp_register = amount
878 * of IO space requested
879 */
880 temp_register = base & 0xFFFFFFFE;
881 temp_register = (~temp_register) + 1;
882
883 io_node = kmalloc(sizeof(*io_node),
884 GFP_KERNEL);
885 if (!io_node)
886 return -ENOMEM;
887
888 io_node->base = save_base & (~0x01L);
889 io_node->length = temp_register;
890
891 io_node->next = func->io_head;
892 func->io_head = io_node;
893 } else
894 if (((base & 0x0BL) == 0x08)
895 && (save_command & 0x02)) {
896 /* prefetchable memory base */
897 temp_register = base & 0xFFFFFFF0;
898 temp_register = (~temp_register) + 1;
899
900 p_mem_node = kmalloc(sizeof(*p_mem_node),
901 GFP_KERNEL);
902 if (!p_mem_node)
903 return -ENOMEM;
904
905 p_mem_node->base = save_base & (~0x0FL);
906 p_mem_node->length = temp_register;
907
908 p_mem_node->next = func->p_mem_head;
909 func->p_mem_head = p_mem_node;
910 } else
911 if (((base & 0x0BL) == 0x00)
912 && (save_command & 0x02)) {
913 /* prefetchable memory base */
914 temp_register = base & 0xFFFFFFF0;
915 temp_register = (~temp_register) + 1;
916
917 mem_node = kmalloc(sizeof(*mem_node),
918 GFP_KERNEL);
919 if (!mem_node)
920 return -ENOMEM;
921
922 mem_node->base = save_base & (~0x0FL);
923 mem_node->length = temp_register;
924
925 mem_node->next = func->mem_head;
926 func->mem_head = mem_node;
927 } else
928 return(1);
929 }
930 } /* End of base register loop */
931 }
932
933 /* find the next device in this slot */
934 func = cpqhp_slot_find(func->bus, func->device, index++);
935 }
936
937 return 0;
938}
939
940
941/*
942 * cpqhp_configure_board
943 *
944 * Copies saved configuration information to one slot.
945 * this is called recursively for bridge devices.
946 * this is for hot plug REPLACE!
947 *
948 * returns 0 if success
949 */
950int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
951{
952 int cloop;
953 u8 header_type;
954 u8 secondary_bus;
955 int sub_bus;
956 struct pci_func *next;
957 u32 temp;
958 u32 rc;
959 int index = 0;
960 struct pci_bus *pci_bus = ctrl->pci_bus;
961 unsigned int devfn;
962
963 func = cpqhp_slot_find(func->bus, func->device, index++);
964
965 while (func != NULL) {
966 pci_bus->number = func->bus;
967 devfn = PCI_DEVFN(func->device, func->function);
968
969 /* Start at the top of config space so that the control
970 * registers are programmed last
971 */
972 for (cloop = 0x3C; cloop > 0; cloop -= 4)
973 pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
974
975 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
976
977 /* If this is a bridge device, restore subordinate devices */
978 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
979 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
980
981 sub_bus = (int) secondary_bus;
982
983 next = cpqhp_slot_list[sub_bus];
984
985 while (next != NULL) {
986 rc = cpqhp_configure_board(ctrl, next);
987 if (rc)
988 return rc;
989
990 next = next->next;
991 }
992 } else {
993
994 /* Check all the base Address Registers to make sure
995 * they are the same. If not, the board is different.
996 */
997
998 for (cloop = 16; cloop < 40; cloop += 4) {
999 pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1000
1001 if (temp != func->config_space[cloop >> 2]) {
1002 dbg("Config space compare failure!!! offset = %x\n", cloop);
1003 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005 return 1;
1006 }
1007 }
1008 }
1009
1010 func->configured = 1;
1011
1012 func = cpqhp_slot_find(func->bus, func->device, index++);
1013 }
1014
1015 return 0;
1016}
1017
1018
1019/*
1020 * cpqhp_valid_replace
1021 *
1022 * this function checks to see if a board is the same as the
1023 * one it is replacing. this check will detect if the device's
1024 * vendor or device id's are the same
1025 *
1026 * returns 0 if the board is the same nonzero otherwise
1027 */
1028int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029{
1030 u8 cloop;
1031 u8 header_type;
1032 u8 secondary_bus;
1033 u8 type;
1034 u32 temp_register = 0;
1035 u32 base;
1036 u32 rc;
1037 struct pci_func *next;
1038 int index = 0;
1039 struct pci_bus *pci_bus = ctrl->pci_bus;
1040 unsigned int devfn;
1041
1042 if (!func->is_a_board)
1043 return(ADD_NOT_SUPPORTED);
1044
1045 func = cpqhp_slot_find(func->bus, func->device, index++);
1046
1047 while (func != NULL) {
1048 pci_bus->number = func->bus;
1049 devfn = PCI_DEVFN(func->device, func->function);
1050
1051 pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1052
1053 /* No adapter present */
1054 if (temp_register == 0xFFFFFFFF)
1055 return(NO_ADAPTER_PRESENT);
1056
1057 if (temp_register != func->config_space[0])
1058 return(ADAPTER_NOT_SAME);
1059
1060 /* Check for same revision number and class code */
1061 pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1062
1063 /* Adapter not the same */
1064 if (temp_register != func->config_space[0x08 >> 2])
1065 return(ADAPTER_NOT_SAME);
1066
1067 /* Check for Bridge */
1068 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1069
1070 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1071 /* In order to continue checking, we must program the
1072 * bus registers in the bridge to respond to accesses
1073 * for its subordinate bus(es)
1074 */
1075
1076 temp_register = func->config_space[0x18 >> 2];
1077 pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1078
1079 secondary_bus = (temp_register >> 8) & 0xFF;
1080
1081 next = cpqhp_slot_list[secondary_bus];
1082
1083 while (next != NULL) {
1084 rc = cpqhp_valid_replace(ctrl, next);
1085 if (rc)
1086 return rc;
1087
1088 next = next->next;
1089 }
1090
1091 }
1092 /* Check to see if it is a standard config header */
1093 else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1094 /* Check subsystem vendor and ID */
1095 pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1096
1097 if (temp_register != func->config_space[0x2C >> 2]) {
1098 /* If it's a SMART-2 and the register isn't
1099 * filled in, ignore the difference because
1100 * they just have an old rev of the firmware
1101 */
1102 if (!((func->config_space[0] == 0xAE100E11)
1103 && (temp_register == 0x00L)))
1104 return(ADAPTER_NOT_SAME);
1105 }
1106 /* Figure out IO and memory base lengths */
1107 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108 temp_register = 0xFFFFFFFF;
1109 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1110 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1111
1112 /* If this register is implemented */
1113 if (base) {
1114 if (base & 0x01L) {
1115 /* IO base
1116 * set base = amount of IO
1117 * space requested
1118 */
1119 base = base & 0xFFFFFFFE;
1120 base = (~base) + 1;
1121
1122 type = 1;
1123 } else {
1124 /* memory base */
1125 base = base & 0xFFFFFFF0;
1126 base = (~base) + 1;
1127
1128 type = 0;
1129 }
1130 } else {
1131 base = 0x0L;
1132 type = 0;
1133 }
1134
1135 /* Check information in slot structure */
1136 if (func->base_length[(cloop - 0x10) >> 2] != base)
1137 return(ADAPTER_NOT_SAME);
1138
1139 if (func->base_type[(cloop - 0x10) >> 2] != type)
1140 return(ADAPTER_NOT_SAME);
1141
1142 } /* End of base register loop */
1143
1144 } /* End of (type 0 config space) else */
1145 else {
1146 /* this is not a type 0 or 1 config space header so
1147 * we don't know how to do it
1148 */
1149 return(DEVICE_TYPE_NOT_SUPPORTED);
1150 }
1151
1152 /* Get the next function */
1153 func = cpqhp_slot_find(func->bus, func->device, index++);
1154 }
1155
1156
1157 return 0;
1158}
1159
1160
1161/*
1162 * cpqhp_find_available_resources
1163 *
1164 * Finds available memory, IO, and IRQ resources for programming
1165 * devices which may be added to the system
1166 * this function is for hot plug ADD!
1167 *
1168 * returns 0 if success
1169 */
1170int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171{
1172 u8 temp;
1173 u8 populated_slot;
1174 u8 bridged_slot;
1175 void __iomem *one_slot;
1176 void __iomem *rom_resource_table;
1177 struct pci_func *func = NULL;
1178 int i = 10, index;
1179 u32 temp_dword, rc;
1180 struct pci_resource *mem_node;
1181 struct pci_resource *p_mem_node;
1182 struct pci_resource *io_node;
1183 struct pci_resource *bus_node;
1184
1185 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1186 dbg("rom_resource_table = %p\n", rom_resource_table);
1187
1188 if (rom_resource_table == NULL)
1189 return -ENODEV;
1190
1191 /* Sum all resources and setup resource maps */
1192 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1193 dbg("unused_IRQ = %x\n", unused_IRQ);
1194
1195 temp = 0;
1196 while (unused_IRQ) {
1197 if (unused_IRQ & 1) {
1198 cpqhp_disk_irq = temp;
1199 break;
1200 }
1201 unused_IRQ = unused_IRQ >> 1;
1202 temp++;
1203 }
1204
1205 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206 unused_IRQ = unused_IRQ >> 1;
1207 temp++;
1208
1209 while (unused_IRQ) {
1210 if (unused_IRQ & 1) {
1211 cpqhp_nic_irq = temp;
1212 break;
1213 }
1214 unused_IRQ = unused_IRQ >> 1;
1215 temp++;
1216 }
1217
1218 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1220
1221 temp = 0;
1222
1223 if (!cpqhp_nic_irq)
1224 cpqhp_nic_irq = ctrl->cfgspc_irq;
1225
1226 if (!cpqhp_disk_irq)
1227 cpqhp_disk_irq = ctrl->cfgspc_irq;
1228
1229 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230
1231 rc = compaq_nvram_load(rom_start, ctrl);
1232 if (rc)
1233 return rc;
1234
1235 one_slot = rom_resource_table + sizeof(struct hrt);
1236
1237 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1238 dbg("number_of_entries = %d\n", i);
1239
1240 if (!readb(one_slot + SECONDARY_BUS))
1241 return 1;
1242
1243 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244
1245 while (i && readb(one_slot + SECONDARY_BUS)) {
1246 u8 dev_func = readb(one_slot + DEV_FUNC);
1247 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1248 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1249 u8 max_bus = readb(one_slot + MAX_BUS);
1250 u16 io_base = readw(one_slot + IO_BASE);
1251 u16 io_length = readw(one_slot + IO_LENGTH);
1252 u16 mem_base = readw(one_slot + MEM_BASE);
1253 u16 mem_length = readw(one_slot + MEM_LENGTH);
1254 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1255 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1256
1257 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1258 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259 primary_bus, secondary_bus, max_bus);
1260
1261 /* If this entry isn't for our controller's bus, ignore it */
1262 if (primary_bus != ctrl->bus) {
1263 i--;
1264 one_slot += sizeof(struct slot_rt);
1265 continue;
1266 }
1267 /* find out if this entry is for an occupied slot */
1268 ctrl->pci_bus->number = primary_bus;
1269 pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1270 dbg("temp_D_word = %x\n", temp_dword);
1271
1272 if (temp_dword != 0xFFFFFFFF) {
1273 index = 0;
1274 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1275
1276 while (func && (func->function != (dev_func & 0x07))) {
1277 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1279 }
1280
1281 /* If we can't find a match, skip this table entry */
1282 if (!func) {
1283 i--;
1284 one_slot += sizeof(struct slot_rt);
1285 continue;
1286 }
1287 /* this may not work and shouldn't be used */
1288 if (secondary_bus != primary_bus)
1289 bridged_slot = 1;
1290 else
1291 bridged_slot = 0;
1292
1293 populated_slot = 1;
1294 } else {
1295 populated_slot = 0;
1296 bridged_slot = 0;
1297 }
1298
1299
1300 /* If we've got a valid IO base, use it */
1301
1302 temp_dword = io_base + io_length;
1303
1304 if ((io_base) && (temp_dword < 0x10000)) {
1305 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1306 if (!io_node)
1307 return -ENOMEM;
1308
1309 io_node->base = io_base;
1310 io_node->length = io_length;
1311
1312 dbg("found io_node(base, length) = %x, %x\n",
1313 io_node->base, io_node->length);
1314 dbg("populated slot =%d \n", populated_slot);
1315 if (!populated_slot) {
1316 io_node->next = ctrl->io_head;
1317 ctrl->io_head = io_node;
1318 } else {
1319 io_node->next = func->io_head;
1320 func->io_head = io_node;
1321 }
1322 }
1323
1324 /* If we've got a valid memory base, use it */
1325 temp_dword = mem_base + mem_length;
1326 if ((mem_base) && (temp_dword < 0x10000)) {
1327 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1328 if (!mem_node)
1329 return -ENOMEM;
1330
1331 mem_node->base = mem_base << 16;
1332
1333 mem_node->length = mem_length << 16;
1334
1335 dbg("found mem_node(base, length) = %x, %x\n",
1336 mem_node->base, mem_node->length);
1337 dbg("populated slot =%d \n", populated_slot);
1338 if (!populated_slot) {
1339 mem_node->next = ctrl->mem_head;
1340 ctrl->mem_head = mem_node;
1341 } else {
1342 mem_node->next = func->mem_head;
1343 func->mem_head = mem_node;
1344 }
1345 }
1346
1347 /* If we've got a valid prefetchable memory base, and
1348 * the base + length isn't greater than 0xFFFF
1349 */
1350 temp_dword = pre_mem_base + pre_mem_length;
1351 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1353 if (!p_mem_node)
1354 return -ENOMEM;
1355
1356 p_mem_node->base = pre_mem_base << 16;
1357
1358 p_mem_node->length = pre_mem_length << 16;
1359 dbg("found p_mem_node(base, length) = %x, %x\n",
1360 p_mem_node->base, p_mem_node->length);
1361 dbg("populated slot =%d \n", populated_slot);
1362
1363 if (!populated_slot) {
1364 p_mem_node->next = ctrl->p_mem_head;
1365 ctrl->p_mem_head = p_mem_node;
1366 } else {
1367 p_mem_node->next = func->p_mem_head;
1368 func->p_mem_head = p_mem_node;
1369 }
1370 }
1371
1372 /* If we've got a valid bus number, use it
1373 * The second condition is to ignore bus numbers on
1374 * populated slots that don't have PCI-PCI bridges
1375 */
1376 if (secondary_bus && (secondary_bus != primary_bus)) {
1377 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1378 if (!bus_node)
1379 return -ENOMEM;
1380
1381 bus_node->base = secondary_bus;
1382 bus_node->length = max_bus - secondary_bus + 1;
1383 dbg("found bus_node(base, length) = %x, %x\n",
1384 bus_node->base, bus_node->length);
1385 dbg("populated slot =%d \n", populated_slot);
1386 if (!populated_slot) {
1387 bus_node->next = ctrl->bus_head;
1388 ctrl->bus_head = bus_node;
1389 } else {
1390 bus_node->next = func->bus_head;
1391 func->bus_head = bus_node;
1392 }
1393 }
1394
1395 i--;
1396 one_slot += sizeof(struct slot_rt);
1397 }
1398
1399 /* If all of the following fail, we don't have any resources for
1400 * hot plug add
1401 */
1402 rc = 1;
1403 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407
1408 return rc;
1409}
1410
1411
1412/*
1413 * cpqhp_return_board_resources
1414 *
1415 * this routine returns all resources allocated to a board to
1416 * the available pool.
1417 *
1418 * returns 0 if success
1419 */
1420int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421{
1422 int rc = 0;
1423 struct pci_resource *node;
1424 struct pci_resource *t_node;
1425 dbg("%s\n", __func__);
1426
1427 if (!func)
1428 return 1;
1429
1430 node = func->io_head;
1431 func->io_head = NULL;
1432 while (node) {
1433 t_node = node->next;
1434 return_resource(&(resources->io_head), node);
1435 node = t_node;
1436 }
1437
1438 node = func->mem_head;
1439 func->mem_head = NULL;
1440 while (node) {
1441 t_node = node->next;
1442 return_resource(&(resources->mem_head), node);
1443 node = t_node;
1444 }
1445
1446 node = func->p_mem_head;
1447 func->p_mem_head = NULL;
1448 while (node) {
1449 t_node = node->next;
1450 return_resource(&(resources->p_mem_head), node);
1451 node = t_node;
1452 }
1453
1454 node = func->bus_head;
1455 func->bus_head = NULL;
1456 while (node) {
1457 t_node = node->next;
1458 return_resource(&(resources->bus_head), node);
1459 node = t_node;
1460 }
1461
1462 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466
1467 return rc;
1468}
1469
1470
1471/*
1472 * cpqhp_destroy_resource_list
1473 *
1474 * Puts node back in the resource list pointed to by head
1475 */
1476void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477{
1478 struct pci_resource *res, *tres;
1479
1480 res = resources->io_head;
1481 resources->io_head = NULL;
1482
1483 while (res) {
1484 tres = res;
1485 res = res->next;
1486 kfree(tres);
1487 }
1488
1489 res = resources->mem_head;
1490 resources->mem_head = NULL;
1491
1492 while (res) {
1493 tres = res;
1494 res = res->next;
1495 kfree(tres);
1496 }
1497
1498 res = resources->p_mem_head;
1499 resources->p_mem_head = NULL;
1500
1501 while (res) {
1502 tres = res;
1503 res = res->next;
1504 kfree(tres);
1505 }
1506
1507 res = resources->bus_head;
1508 resources->bus_head = NULL;
1509
1510 while (res) {
1511 tres = res;
1512 res = res->next;
1513 kfree(tres);
1514 }
1515}
1516
1517
1518/*
1519 * cpqhp_destroy_board_resources
1520 *
1521 * Puts node back in the resource list pointed to by head
1522 */
1523void cpqhp_destroy_board_resources(struct pci_func *func)
1524{
1525 struct pci_resource *res, *tres;
1526
1527 res = func->io_head;
1528 func->io_head = NULL;
1529
1530 while (res) {
1531 tres = res;
1532 res = res->next;
1533 kfree(tres);
1534 }
1535
1536 res = func->mem_head;
1537 func->mem_head = NULL;
1538
1539 while (res) {
1540 tres = res;
1541 res = res->next;
1542 kfree(tres);
1543 }
1544
1545 res = func->p_mem_head;
1546 func->p_mem_head = NULL;
1547
1548 while (res) {
1549 tres = res;
1550 res = res->next;
1551 kfree(tres);
1552 }
1553
1554 res = func->bus_head;
1555 func->bus_head = NULL;
1556
1557 while (res) {
1558 tres = res;
1559 res = res->next;
1560 kfree(tres);
1561 }
1562}