Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
 
 
 
  39#include "core.h"
 
 
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
 
  43
  44#include "mmc_ops.h"
  45#include "sd_ops.h"
  46#include "sdio_ops.h"
  47
  48/* If the device is not responding */
  49#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  50
  51/*
  52 * Background operations can take a long time, depending on the housekeeping
  53 * operations the card has to perform.
  54 */
  55#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  56
  57static struct workqueue_struct *workqueue;
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68/*
  69 * Internal function. Schedule delayed work in the MMC work queue.
  70 */
  71static int mmc_schedule_delayed_work(struct delayed_work *work,
  72				     unsigned long delay)
  73{
  74	return queue_delayed_work(workqueue, work, delay);
  75}
  76
  77/*
  78 * Internal function. Flush all scheduled work from the MMC work queue.
  79 */
  80static void mmc_flush_scheduled_work(void)
  81{
  82	flush_workqueue(workqueue);
  83}
  84
  85#ifdef CONFIG_FAIL_MMC_REQUEST
  86
  87/*
  88 * Internal function. Inject random data errors.
  89 * If mmc_data is NULL no errors are injected.
  90 */
  91static void mmc_should_fail_request(struct mmc_host *host,
  92				    struct mmc_request *mrq)
  93{
  94	struct mmc_command *cmd = mrq->cmd;
  95	struct mmc_data *data = mrq->data;
  96	static const int data_errors[] = {
  97		-ETIMEDOUT,
  98		-EILSEQ,
  99		-EIO,
 100	};
 101
 102	if (!data)
 103		return;
 104
 105	if (cmd->error || data->error ||
 106	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 107		return;
 108
 109	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 110	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 111}
 112
 113#else /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_should_fail_request(struct mmc_host *host,
 116					   struct mmc_request *mrq)
 117{
 118}
 119
 120#endif /* CONFIG_FAIL_MMC_REQUEST */
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/**
 123 *	mmc_request_done - finish processing an MMC request
 124 *	@host: MMC host which completed request
 125 *	@mrq: MMC request which request
 126 *
 127 *	MMC drivers should call this function when they have completed
 128 *	their processing of a request.
 129 */
 130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 131{
 132	struct mmc_command *cmd = mrq->cmd;
 133	int err = cmd->error;
 134
 
 
 
 
 
 
 
 
 135	if (err && cmd->retries && mmc_host_is_spi(host)) {
 136		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 137			cmd->retries = 0;
 138	}
 139
 140	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 141		/*
 142		 * Request starter must handle retries - see
 143		 * mmc_wait_for_req_done().
 144		 */
 145		if (mrq->done)
 146			mrq->done(mrq);
 147	} else {
 
 
 
 
 
 
 
 
 
 148		mmc_should_fail_request(host, mrq);
 149
 150		led_trigger_event(host->led, LED_OFF);
 
 
 
 
 
 
 
 
 
 151
 152		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 153			mmc_hostname(host), cmd->opcode, err,
 154			cmd->resp[0], cmd->resp[1],
 155			cmd->resp[2], cmd->resp[3]);
 156
 157		if (mrq->data) {
 158			pr_debug("%s:     %d bytes transferred: %d\n",
 159				mmc_hostname(host),
 160				mrq->data->bytes_xfered, mrq->data->error);
 161		}
 162
 163		if (mrq->stop) {
 164			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 165				mmc_hostname(host), mrq->stop->opcode,
 166				mrq->stop->error,
 167				mrq->stop->resp[0], mrq->stop->resp[1],
 168				mrq->stop->resp[2], mrq->stop->resp[3]);
 169		}
 170
 171		if (mrq->done)
 172			mrq->done(mrq);
 173
 174		mmc_host_clk_release(host);
 175	}
 
 
 
 
 
 
 176}
 177
 178EXPORT_SYMBOL(mmc_request_done);
 179
 180static void
 181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 182{
 183#ifdef CONFIG_MMC_DEBUG
 184	unsigned int i, sz;
 185	struct scatterlist *sg;
 186#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 
 
 
 
 
 
 
 
 
 
 
 188	if (mrq->sbc) {
 189		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 190			 mmc_hostname(host), mrq->sbc->opcode,
 191			 mrq->sbc->arg, mrq->sbc->flags);
 192	}
 193
 194	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 195		 mmc_hostname(host), mrq->cmd->opcode,
 196		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 197
 198	if (mrq->data) {
 199		pr_debug("%s:     blksz %d blocks %d flags %08x "
 200			"tsac %d ms nsac %d\n",
 201			mmc_hostname(host), mrq->data->blksz,
 202			mrq->data->blocks, mrq->data->flags,
 203			mrq->data->timeout_ns / 1000000,
 204			mrq->data->timeout_clks);
 205	}
 206
 207	if (mrq->stop) {
 208		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 209			 mmc_hostname(host), mrq->stop->opcode,
 210			 mrq->stop->arg, mrq->stop->flags);
 211	}
 
 212
 213	WARN_ON(!host->claimed);
 
 
 
 214
 215	mrq->cmd->error = 0;
 216	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 217	if (mrq->data) {
 218		BUG_ON(mrq->data->blksz > host->max_blk_size);
 219		BUG_ON(mrq->data->blocks > host->max_blk_count);
 220		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 221			host->max_req_size);
 222
 223#ifdef CONFIG_MMC_DEBUG
 224		sz = 0;
 225		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 226			sz += sg->length;
 227		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 228#endif
 229
 230		mrq->cmd->data = mrq->data;
 231		mrq->data->error = 0;
 232		mrq->data->mrq = mrq;
 233		if (mrq->stop) {
 234			mrq->data->stop = mrq->stop;
 235			mrq->stop->error = 0;
 236			mrq->stop->mrq = mrq;
 237		}
 238	}
 239	mmc_host_clk_hold(host);
 240	led_trigger_event(host->led, LED_FULL);
 241	host->ops->request(host, mrq);
 242}
 243
 244/**
 245 *	mmc_start_bkops - start BKOPS for supported cards
 246 *	@card: MMC card to start BKOPS
 247 *	@form_exception: A flag to indicate if this function was
 248 *			 called due to an exception raised by the card
 249 *
 250 *	Start background operations whenever requested.
 251 *	When the urgent BKOPS bit is set in a R1 command response
 252 *	then background operations should be started immediately.
 253*/
 254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 255{
 256	int err;
 257	int timeout;
 258	bool use_busy_signal;
 259
 260	BUG_ON(!card);
 261
 262	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 263		return;
 264
 265	err = mmc_read_bkops_status(card);
 266	if (err) {
 267		pr_err("%s: Failed to read bkops status: %d\n",
 268		       mmc_hostname(card->host), err);
 269		return;
 270	}
 271
 272	if (!card->ext_csd.raw_bkops_status)
 273		return;
 274
 275	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 276	    from_exception)
 277		return;
 278
 279	mmc_claim_host(card->host);
 280	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 281		timeout = MMC_BKOPS_MAX_TIMEOUT;
 282		use_busy_signal = true;
 283	} else {
 284		timeout = 0;
 285		use_busy_signal = false;
 286	}
 287
 288	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 289			EXT_CSD_BKOPS_START, 1, timeout,
 290			use_busy_signal, true, false);
 291	if (err) {
 292		pr_warn("%s: Error %d starting bkops\n",
 293			mmc_hostname(card->host), err);
 294		goto out;
 295	}
 296
 297	/*
 298	 * For urgent bkops status (LEVEL_2 and more)
 299	 * bkops executed synchronously, otherwise
 300	 * the operation is in progress
 301	 */
 302	if (!use_busy_signal)
 303		mmc_card_set_doing_bkops(card);
 304out:
 305	mmc_release_host(card->host);
 306}
 307EXPORT_SYMBOL(mmc_start_bkops);
 308
 309/*
 310 * mmc_wait_data_done() - done callback for data request
 311 * @mrq: done data request
 312 *
 313 * Wakes up mmc context, passed as a callback to host controller driver
 314 */
 315static void mmc_wait_data_done(struct mmc_request *mrq)
 316{
 317	mrq->host->context_info.is_done_rcv = true;
 318	wake_up_interruptible(&mrq->host->context_info.wait);
 319}
 
 320
 321static void mmc_wait_done(struct mmc_request *mrq)
 322{
 323	complete(&mrq->completion);
 324}
 325
 326/*
 327 *__mmc_start_data_req() - starts data request
 328 * @host: MMC host to start the request
 329 * @mrq: data request to start
 330 *
 331 * Sets the done callback to be called when request is completed by the card.
 332 * Starts data mmc request execution
 333 */
 334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 335{
 336	mrq->done = mmc_wait_data_done;
 337	mrq->host = host;
 338	if (mmc_card_removed(host->card)) {
 339		mrq->cmd->error = -ENOMEDIUM;
 340		mmc_wait_data_done(mrq);
 341		return -ENOMEDIUM;
 342	}
 343	mmc_start_request(host, mrq);
 344
 345	return 0;
 
 
 
 
 
 346}
 347
 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 
 
 
 
 350	init_completion(&mrq->completion);
 351	mrq->done = mmc_wait_done;
 352	if (mmc_card_removed(host->card)) {
 353		mrq->cmd->error = -ENOMEDIUM;
 
 
 
 354		complete(&mrq->completion);
 355		return -ENOMEDIUM;
 356	}
 357	mmc_start_request(host, mrq);
 358	return 0;
 359}
 360
 361/*
 362 * mmc_wait_for_data_req_done() - wait for request completed
 363 * @host: MMC host to prepare the command.
 364 * @mrq: MMC request to wait for
 365 *
 366 * Blocks MMC context till host controller will ack end of data request
 367 * execution or new request notification arrives from the block layer.
 368 * Handles command retries.
 369 *
 370 * Returns enum mmc_blk_status after checking errors.
 371 */
 372static int mmc_wait_for_data_req_done(struct mmc_host *host,
 373				      struct mmc_request *mrq,
 374				      struct mmc_async_req *next_req)
 375{
 376	struct mmc_command *cmd;
 377	struct mmc_context_info *context_info = &host->context_info;
 378	int err;
 379	unsigned long flags;
 380
 381	while (1) {
 382		wait_event_interruptible(context_info->wait,
 383				(context_info->is_done_rcv ||
 384				 context_info->is_new_req));
 385		spin_lock_irqsave(&context_info->lock, flags);
 386		context_info->is_waiting_last_req = false;
 387		spin_unlock_irqrestore(&context_info->lock, flags);
 388		if (context_info->is_done_rcv) {
 389			context_info->is_done_rcv = false;
 390			context_info->is_new_req = false;
 391			cmd = mrq->cmd;
 392
 393			if (!cmd->error || !cmd->retries ||
 394			    mmc_card_removed(host->card)) {
 395				err = host->areq->err_check(host->card,
 396							    host->areq);
 397				break; /* return err */
 398			} else {
 399				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 400					mmc_hostname(host),
 401					cmd->opcode, cmd->error);
 402				cmd->retries--;
 403				cmd->error = 0;
 404				host->ops->request(host, mrq);
 405				continue; /* wait for done/new event again */
 406			}
 407		} else if (context_info->is_new_req) {
 408			context_info->is_new_req = false;
 409			if (!next_req) {
 410				err = MMC_BLK_NEW_REQUEST;
 411				break; /* return err */
 412			}
 413		}
 414	}
 415	return err;
 416}
 417
 418static void mmc_wait_for_req_done(struct mmc_host *host,
 419				  struct mmc_request *mrq)
 420{
 421	struct mmc_command *cmd;
 422
 423	while (1) {
 424		wait_for_completion(&mrq->completion);
 425
 426		cmd = mrq->cmd;
 427
 428		/*
 429		 * If host has timed out waiting for the sanitize
 430		 * to complete, card might be still in programming state
 431		 * so let's try to bring the card out of programming
 432		 * state.
 433		 */
 434		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 435			if (!mmc_interrupt_hpi(host->card)) {
 436				pr_warning("%s: %s: Interrupted sanitize\n",
 437					   mmc_hostname(host), __func__);
 438				cmd->error = 0;
 439				break;
 440			} else {
 441				pr_err("%s: %s: Failed to interrupt sanitize\n",
 442				       mmc_hostname(host), __func__);
 443			}
 444		}
 445		if (!cmd->error || !cmd->retries ||
 446		    mmc_card_removed(host->card))
 447			break;
 448
 
 
 449		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 450			 mmc_hostname(host), cmd->opcode, cmd->error);
 451		cmd->retries--;
 452		cmd->error = 0;
 453		host->ops->request(host, mrq);
 454	}
 455}
 456
 457/**
 458 *	mmc_pre_req - Prepare for a new request
 459 *	@host: MMC host to prepare command
 460 *	@mrq: MMC request to prepare for
 461 *	@is_first_req: true if there is no previous started request
 462 *                     that may run in parellel to this call, otherwise false
 463 *
 464 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 465 *	host prepare for the new request. Preparation of a request may be
 466 *	performed while another request is running on the host.
 467 */
 468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 469		 bool is_first_req)
 470{
 471	if (host->ops->pre_req) {
 472		mmc_host_clk_hold(host);
 473		host->ops->pre_req(host, mrq, is_first_req);
 474		mmc_host_clk_release(host);
 475	}
 476}
 
 477
 478/**
 479 *	mmc_post_req - Post process a completed request
 480 *	@host: MMC host to post process command
 481 *	@mrq: MMC request to post process for
 482 *	@err: Error, if non zero, clean up any resources made in pre_req
 483 *
 484 *	Let the host post process a completed request. Post processing of
 485 *	a request may be performed while another reuqest is running.
 486 */
 487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 488			 int err)
 489{
 490	if (host->ops->post_req) {
 491		mmc_host_clk_hold(host);
 492		host->ops->post_req(host, mrq, err);
 493		mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	}
 
 495}
 
 496
 497/**
 498 *	mmc_start_req - start a non-blocking request
 499 *	@host: MMC host to start command
 500 *	@areq: async request to start
 501 *	@error: out parameter returns 0 for success, otherwise non zero
 502 *
 503 *	Start a new MMC custom command request for a host.
 504 *	If there is on ongoing async request wait for completion
 505 *	of that request and start the new one and return.
 506 *	Does not wait for the new request to complete.
 507 *
 508 *      Returns the completed request, NULL in case of none completed.
 509 *	Wait for the an ongoing request (previoulsy started) to complete and
 510 *	return the completed request. If there is no ongoing request, NULL
 511 *	is returned without waiting. NULL is not an error condition.
 512 */
 513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 514				    struct mmc_async_req *areq, int *error)
 515{
 516	int err = 0;
 517	int start_err = 0;
 518	struct mmc_async_req *data = host->areq;
 519
 520	/* Prepare a new request */
 521	if (areq)
 522		mmc_pre_req(host, areq->mrq, !host->areq);
 523
 524	if (host->areq) {
 525		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 526		if (err == MMC_BLK_NEW_REQUEST) {
 527			if (error)
 528				*error = err;
 529			/*
 530			 * The previous request was not completed,
 531			 * nothing to return
 532			 */
 533			return NULL;
 534		}
 535		/*
 536		 * Check BKOPS urgency for each R1 response
 537		 */
 538		if (host->card && mmc_card_mmc(host->card) &&
 539		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 540		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 541		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 542			mmc_start_bkops(host->card, true);
 543	}
 544
 545	if (!err && areq)
 546		start_err = __mmc_start_data_req(host, areq->mrq);
 547
 548	if (host->areq)
 549		mmc_post_req(host, host->areq->mrq, 0);
 550
 551	 /* Cancel a prepared request if it was not started. */
 552	if ((err || start_err) && areq)
 553		mmc_post_req(host, areq->mrq, -EINVAL);
 554
 555	if (err)
 556		host->areq = NULL;
 557	else
 558		host->areq = areq;
 
 
 
 
 
 559
 560	if (error)
 561		*error = err;
 562	return data;
 
 
 
 
 563}
 564EXPORT_SYMBOL(mmc_start_req);
 565
 566/**
 567 *	mmc_wait_for_req - start a request and wait for completion
 568 *	@host: MMC host to start command
 569 *	@mrq: MMC request to start
 570 *
 571 *	Start a new MMC custom command request for a host, and wait
 572 *	for the command to complete. Does not attempt to parse the
 573 *	response.
 574 */
 575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 576{
 577	__mmc_start_req(host, mrq);
 578	mmc_wait_for_req_done(host, mrq);
 579}
 580EXPORT_SYMBOL(mmc_wait_for_req);
 581
 582/**
 583 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 584 *	@card: the MMC card associated with the HPI transfer
 
 
 
 585 *
 586 *	Issued High Priority Interrupt, and check for card status
 587 *	until out-of prg-state.
 
 
 588 */
 589int mmc_interrupt_hpi(struct mmc_card *card)
 590{
 
 591	int err;
 592	u32 status;
 593	unsigned long prg_wait;
 594
 595	BUG_ON(!card);
 596
 597	if (!card->ext_csd.hpi_en) {
 598		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 599		return 1;
 600	}
 
 601
 602	mmc_claim_host(card->host);
 603	err = mmc_send_status(card, &status);
 604	if (err) {
 605		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 606		goto out;
 607	}
 608
 609	switch (R1_CURRENT_STATE(status)) {
 610	case R1_STATE_IDLE:
 611	case R1_STATE_READY:
 612	case R1_STATE_STBY:
 613	case R1_STATE_TRAN:
 614		/*
 615		 * In idle and transfer states, HPI is not needed and the caller
 616		 * can issue the next intended command immediately
 617		 */
 618		goto out;
 619	case R1_STATE_PRG:
 620		break;
 621	default:
 622		/* In all other states, it's illegal to issue HPI */
 623		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 624			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 625		err = -EINVAL;
 626		goto out;
 627	}
 628
 629	err = mmc_send_hpi_cmd(card, &status);
 630	if (err)
 631		goto out;
 632
 633	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 634	do {
 635		err = mmc_send_status(card, &status);
 
 
 
 
 636
 637		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 638			break;
 639		if (time_after(jiffies, prg_wait))
 640			err = -ETIMEDOUT;
 641	} while (!err);
 
 642
 643out:
 644	mmc_release_host(card->host);
 645	return err;
 646}
 647EXPORT_SYMBOL(mmc_interrupt_hpi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649/**
 650 *	mmc_wait_for_cmd - start a command and wait for completion
 651 *	@host: MMC host to start command
 652 *	@cmd: MMC command to start
 653 *	@retries: maximum number of retries
 654 *
 655 *	Start a new MMC command for a host, and wait for the command
 656 *	to complete.  Return any error that occurred while the command
 657 *	was executing.  Do not attempt to parse the response.
 658 */
 659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 660{
 661	struct mmc_request mrq = {NULL};
 662
 663	WARN_ON(!host->claimed);
 664
 665	memset(cmd->resp, 0, sizeof(cmd->resp));
 666	cmd->retries = retries;
 667
 668	mrq.cmd = cmd;
 669	cmd->data = NULL;
 670
 671	mmc_wait_for_req(host, &mrq);
 672
 673	return cmd->error;
 674}
 675
 676EXPORT_SYMBOL(mmc_wait_for_cmd);
 677
 678/**
 679 *	mmc_stop_bkops - stop ongoing BKOPS
 680 *	@card: MMC card to check BKOPS
 681 *
 682 *	Send HPI command to stop ongoing background operations to
 683 *	allow rapid servicing of foreground operations, e.g. read/
 684 *	writes. Wait until the card comes out of the programming state
 685 *	to avoid errors in servicing read/write requests.
 686 */
 687int mmc_stop_bkops(struct mmc_card *card)
 688{
 689	int err = 0;
 690
 691	BUG_ON(!card);
 692	err = mmc_interrupt_hpi(card);
 693
 694	/*
 695	 * If err is EINVAL, we can't issue an HPI.
 696	 * It should complete the BKOPS.
 697	 */
 698	if (!err || (err == -EINVAL)) {
 699		mmc_card_clr_doing_bkops(card);
 700		err = 0;
 701	}
 702
 703	return err;
 704}
 705EXPORT_SYMBOL(mmc_stop_bkops);
 706
 707int mmc_read_bkops_status(struct mmc_card *card)
 708{
 709	int err;
 710	u8 *ext_csd;
 711
 712	/*
 713	 * In future work, we should consider storing the entire ext_csd.
 714	 */
 715	ext_csd = kmalloc(512, GFP_KERNEL);
 716	if (!ext_csd) {
 717		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 718		       mmc_hostname(card->host));
 719		return -ENOMEM;
 720	}
 721
 722	mmc_claim_host(card->host);
 723	err = mmc_send_ext_csd(card, ext_csd);
 724	mmc_release_host(card->host);
 725	if (err)
 726		goto out;
 727
 728	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 729	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 730out:
 731	kfree(ext_csd);
 732	return err;
 733}
 734EXPORT_SYMBOL(mmc_read_bkops_status);
 735
 736/**
 737 *	mmc_set_data_timeout - set the timeout for a data command
 738 *	@data: data phase for command
 739 *	@card: the MMC card associated with the data transfer
 740 *
 741 *	Computes the data timeout parameters according to the
 742 *	correct algorithm given the card type.
 743 */
 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 745{
 746	unsigned int mult;
 747
 748	/*
 749	 * SDIO cards only define an upper 1 s limit on access.
 750	 */
 751	if (mmc_card_sdio(card)) {
 752		data->timeout_ns = 1000000000;
 753		data->timeout_clks = 0;
 754		return;
 755	}
 756
 757	/*
 758	 * SD cards use a 100 multiplier rather than 10
 759	 */
 760	mult = mmc_card_sd(card) ? 100 : 10;
 761
 762	/*
 763	 * Scale up the multiplier (and therefore the timeout) by
 764	 * the r2w factor for writes.
 765	 */
 766	if (data->flags & MMC_DATA_WRITE)
 767		mult <<= card->csd.r2w_factor;
 768
 769	data->timeout_ns = card->csd.tacc_ns * mult;
 770	data->timeout_clks = card->csd.tacc_clks * mult;
 771
 772	/*
 773	 * SD cards also have an upper limit on the timeout.
 774	 */
 775	if (mmc_card_sd(card)) {
 776		unsigned int timeout_us, limit_us;
 777
 778		timeout_us = data->timeout_ns / 1000;
 779		if (mmc_host_clk_rate(card->host))
 780			timeout_us += data->timeout_clks * 1000 /
 781				(mmc_host_clk_rate(card->host) / 1000);
 782
 783		if (data->flags & MMC_DATA_WRITE)
 784			/*
 785			 * The MMC spec "It is strongly recommended
 786			 * for hosts to implement more than 500ms
 787			 * timeout value even if the card indicates
 788			 * the 250ms maximum busy length."  Even the
 789			 * previous value of 300ms is known to be
 790			 * insufficient for some cards.
 791			 */
 792			limit_us = 3000000;
 793		else
 794			limit_us = 100000;
 795
 796		/*
 797		 * SDHC cards always use these fixed values.
 798		 */
 799		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 800			data->timeout_ns = limit_us * 1000;
 801			data->timeout_clks = 0;
 802		}
 
 
 
 
 803	}
 804
 805	/*
 806	 * Some cards require longer data read timeout than indicated in CSD.
 807	 * Address this by setting the read timeout to a "reasonably high"
 808	 * value. For the cards tested, 300ms has proven enough. If necessary,
 809	 * this value can be increased if other problematic cards require this.
 810	 */
 811	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 812		data->timeout_ns = 300000000;
 813		data->timeout_clks = 0;
 814	}
 815
 816	/*
 817	 * Some cards need very high timeouts if driven in SPI mode.
 818	 * The worst observed timeout was 900ms after writing a
 819	 * continuous stream of data until the internal logic
 820	 * overflowed.
 821	 */
 822	if (mmc_host_is_spi(card->host)) {
 823		if (data->flags & MMC_DATA_WRITE) {
 824			if (data->timeout_ns < 1000000000)
 825				data->timeout_ns = 1000000000;	/* 1s */
 826		} else {
 827			if (data->timeout_ns < 100000000)
 828				data->timeout_ns =  100000000;	/* 100ms */
 829		}
 830	}
 831}
 832EXPORT_SYMBOL(mmc_set_data_timeout);
 833
 834/**
 835 *	mmc_align_data_size - pads a transfer size to a more optimal value
 836 *	@card: the MMC card associated with the data transfer
 837 *	@sz: original transfer size
 838 *
 839 *	Pads the original data size with a number of extra bytes in
 840 *	order to avoid controller bugs and/or performance hits
 841 *	(e.g. some controllers revert to PIO for certain sizes).
 842 *
 843 *	Returns the improved size, which might be unmodified.
 844 *
 845 *	Note that this function is only relevant when issuing a
 846 *	single scatter gather entry.
 847 */
 848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 849{
 850	/*
 851	 * FIXME: We don't have a system for the controller to tell
 852	 * the core about its problems yet, so for now we just 32-bit
 853	 * align the size.
 854	 */
 855	sz = ((sz + 3) / 4) * 4;
 856
 857	return sz;
 
 
 
 
 
 
 
 
 
 
 
 858}
 859EXPORT_SYMBOL(mmc_align_data_size);
 860
 861/**
 862 *	__mmc_claim_host - exclusively claim a host
 863 *	@host: mmc host to claim
 
 
 864 *	@abort: whether or not the operation should be aborted
 865 *
 866 *	Claim a host for a set of operations.  If @abort is non null and
 867 *	dereference a non-zero value then this will return prematurely with
 868 *	that non-zero value without acquiring the lock.  Returns zero
 869 *	with the lock held otherwise.
 870 */
 871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 872{
 
 873	DECLARE_WAITQUEUE(wait, current);
 874	unsigned long flags;
 875	int stop;
 
 876
 877	might_sleep();
 878
 879	add_wait_queue(&host->wq, &wait);
 880	spin_lock_irqsave(&host->lock, flags);
 881	while (1) {
 882		set_current_state(TASK_UNINTERRUPTIBLE);
 883		stop = abort ? atomic_read(abort) : 0;
 884		if (stop || !host->claimed || host->claimer == current)
 885			break;
 886		spin_unlock_irqrestore(&host->lock, flags);
 887		schedule();
 888		spin_lock_irqsave(&host->lock, flags);
 889	}
 890	set_current_state(TASK_RUNNING);
 891	if (!stop) {
 892		host->claimed = 1;
 893		host->claimer = current;
 894		host->claim_cnt += 1;
 
 
 895	} else
 896		wake_up(&host->wq);
 897	spin_unlock_irqrestore(&host->lock, flags);
 898	remove_wait_queue(&host->wq, &wait);
 899	if (host->ops->enable && !stop && host->claim_cnt == 1)
 900		host->ops->enable(host);
 
 
 901	return stop;
 902}
 903
 904EXPORT_SYMBOL(__mmc_claim_host);
 905
 906/**
 907 *	mmc_release_host - release a host
 908 *	@host: mmc host to release
 909 *
 910 *	Release a MMC host, allowing others to claim the host
 911 *	for their operations.
 912 */
 913void mmc_release_host(struct mmc_host *host)
 914{
 915	unsigned long flags;
 916
 917	WARN_ON(!host->claimed);
 918
 919	if (host->ops->disable && host->claim_cnt == 1)
 920		host->ops->disable(host);
 921
 922	spin_lock_irqsave(&host->lock, flags);
 923	if (--host->claim_cnt) {
 924		/* Release for nested claim */
 925		spin_unlock_irqrestore(&host->lock, flags);
 926	} else {
 927		host->claimed = 0;
 
 928		host->claimer = NULL;
 929		spin_unlock_irqrestore(&host->lock, flags);
 930		wake_up(&host->wq);
 
 
 
 
 
 931	}
 932}
 933EXPORT_SYMBOL(mmc_release_host);
 934
 935/*
 936 * This is a helper function, which fetches a runtime pm reference for the
 937 * card device and also claims the host.
 938 */
 939void mmc_get_card(struct mmc_card *card)
 940{
 941	pm_runtime_get_sync(&card->dev);
 942	mmc_claim_host(card->host);
 943}
 944EXPORT_SYMBOL(mmc_get_card);
 945
 946/*
 947 * This is a helper function, which releases the host and drops the runtime
 948 * pm reference for the card device.
 949 */
 950void mmc_put_card(struct mmc_card *card)
 951{
 952	mmc_release_host(card->host);
 
 
 
 
 953	pm_runtime_mark_last_busy(&card->dev);
 954	pm_runtime_put_autosuspend(&card->dev);
 955}
 956EXPORT_SYMBOL(mmc_put_card);
 957
 958/*
 959 * Internal function that does the actual ios call to the host driver,
 960 * optionally printing some debug output.
 961 */
 962static inline void mmc_set_ios(struct mmc_host *host)
 963{
 964	struct mmc_ios *ios = &host->ios;
 965
 966	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 967		"width %u timing %u\n",
 968		 mmc_hostname(host), ios->clock, ios->bus_mode,
 969		 ios->power_mode, ios->chip_select, ios->vdd,
 970		 ios->bus_width, ios->timing);
 971
 972	if (ios->clock > 0)
 973		mmc_set_ungated(host);
 974	host->ops->set_ios(host, ios);
 975}
 976
 977/*
 978 * Control chip select pin on a host.
 979 */
 980void mmc_set_chip_select(struct mmc_host *host, int mode)
 981{
 982	mmc_host_clk_hold(host);
 983	host->ios.chip_select = mode;
 984	mmc_set_ios(host);
 985	mmc_host_clk_release(host);
 986}
 987
 988/*
 989 * Sets the host clock to the highest possible frequency that
 990 * is below "hz".
 991 */
 992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 993{
 994	WARN_ON(hz < host->f_min);
 995
 996	if (hz > host->f_max)
 997		hz = host->f_max;
 998
 999	host->ios.clock = hz;
1000	mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005	mmc_host_clk_hold(host);
1006	__mmc_set_clock(host, hz);
1007	mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&host->clk_lock, flags);
1019	host->clk_old = host->ios.clock;
1020	host->ios.clock = 0;
1021	host->clk_gated = true;
1022	spin_unlock_irqrestore(&host->clk_lock, flags);
1023	mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032	/*
1033	 * We should previously have gated the clock, so the clock shall
1034	 * be 0 here! The clock may however be 0 during initialization,
1035	 * when some request operations are performed before setting
1036	 * the frequency. When ungate is requested in that situation
1037	 * we just ignore the call.
1038	 */
1039	if (host->clk_old) {
1040		BUG_ON(host->ios.clock);
1041		/* This call will also set host->clk_gated to false */
1042		__mmc_set_clock(host, host->clk_old);
1043	}
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048	unsigned long flags;
 
 
 
1049
1050	/*
1051	 * We've been given a new frequency while the clock is gated,
1052	 * so make sure we regard this as ungating it.
1053	 */
1054	spin_lock_irqsave(&host->clk_lock, flags);
1055	host->clk_gated = false;
1056	spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070	mmc_host_clk_hold(host);
1071	host->ios.bus_mode = mode;
1072	mmc_set_ios(host);
1073	mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.bus_width = width;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd:	voltage (mV)
1090 * @low_bits:	prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104	const int max_bit = ilog2(MMC_VDD_35_36);
1105	int bit;
1106
1107	if (vdd < 1650 || vdd > 3600)
1108		return -EINVAL;
1109
1110	if (vdd >= 1650 && vdd <= 1950)
1111		return ilog2(MMC_VDD_165_195);
1112
1113	if (low_bits)
1114		vdd -= 1;
1115
1116	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117	bit = (vdd - 2000) / 100 + 8;
1118	if (bit > max_bit)
1119		return max_bit;
1120	return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min:	minimum voltage value (mV)
1126 * @vdd_max:	maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138	u32 mask = 0;
1139
1140	if (vdd_max < vdd_min)
1141		return 0;
1142
1143	/* Prefer high bits for the boundary vdd_max values. */
1144	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145	if (vdd_max < 0)
1146		return 0;
1147
1148	/* Prefer low bits for the boundary vdd_min values. */
1149	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150	if (vdd_min < 0)
1151		return 0;
1152
1153	/* Fill the mask, from max bit to min bit. */
1154	while (vdd_max >= vdd_min)
1155		mask |= 1 << vdd_max--;
1156
1157	return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173	const u32 *voltage_ranges;
1174	int num_ranges, i;
1175
1176	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178	if (!voltage_ranges || !num_ranges) {
1179		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180		return -EINVAL;
1181	}
1182
1183	for (i = 0; i < num_ranges; i++) {
1184		const int j = i * 2;
1185		u32 ocr_mask;
1186
1187		ocr_mask = mmc_vddrange_to_ocrmask(
1188				be32_to_cpu(voltage_ranges[j]),
1189				be32_to_cpu(voltage_ranges[j + 1]));
1190		if (!ocr_mask) {
1191			pr_err("%s: voltage-range #%d is invalid\n",
1192				np->full_name, i);
1193			return -EINVAL;
1194		}
1195		*mask |= ocr_mask;
1196	}
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator.  This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217	int			result = 0;
1218	int			count;
1219	int			i;
1220
1221	count = regulator_count_voltages(supply);
1222	if (count < 0)
1223		return count;
1224
1225	for (i = 0; i < count; i++) {
1226		int		vdd_uV;
1227		int		vdd_mV;
1228
1229		vdd_uV = regulator_list_voltage(supply, i);
1230		if (vdd_uV <= 0)
1231			continue;
1232
1233		vdd_mV = vdd_uV / 1000;
1234		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235	}
1236
1237	return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage.  This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254			struct regulator *supply,
1255			unsigned short vdd_bit)
1256{
1257	int			result = 0;
1258	int			min_uV, max_uV;
1259
1260	if (vdd_bit) {
1261		int		tmp;
1262		int		voltage;
1263
1264		/*
1265		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266		 * bits this regulator doesn't quite support ... don't
1267		 * be too picky, most cards and regulators are OK with
1268		 * a 0.1V range goof (it's a small error percentage).
1269		 */
1270		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271		if (tmp == 0) {
1272			min_uV = 1650 * 1000;
1273			max_uV = 1950 * 1000;
1274		} else {
1275			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276			max_uV = min_uV + 100 * 1000;
1277		}
1278
1279		/*
1280		 * If we're using a fixed/static regulator, don't call
1281		 * regulator_set_voltage; it would fail.
1282		 */
1283		voltage = regulator_get_voltage(supply);
1284
1285		if (!regulator_can_change_voltage(supply))
1286			min_uV = max_uV = voltage;
1287
1288		if (voltage < 0)
1289			result = voltage;
1290		else if (voltage < min_uV || voltage > max_uV)
1291			result = regulator_set_voltage(supply, min_uV, max_uV);
1292		else
1293			result = 0;
1294
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315	struct device *dev = mmc_dev(mmc);
1316	struct regulator *supply;
1317	int ret;
1318
1319	supply = devm_regulator_get(dev, "vmmc");
1320	mmc->supply.vmmc = supply;
1321	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323	if (IS_ERR(supply))
1324		return PTR_ERR(supply);
1325
1326	ret = mmc_regulator_get_ocrmask(supply);
1327	if (ret > 0)
1328		mmc->ocr_avail = ret;
1329	else
1330		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332	return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344	int bit;
1345
1346	/*
1347	 * Sanity check the voltages that the card claims to
1348	 * support.
1349	 */
1350	if (ocr & 0x7F) {
1351		dev_warn(mmc_dev(host),
1352		"card claims to support voltages below defined range\n");
1353		ocr &= ~0x7F;
1354	}
1355
1356	ocr &= host->ocr_avail;
1357	if (!ocr) {
1358		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359		return 0;
1360	}
1361
1362	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363		bit = ffs(ocr) - 1;
1364		ocr &= 3 << bit;
1365		mmc_power_cycle(host, ocr);
1366	} else {
1367		bit = fls(ocr) - 1;
1368		ocr &= 3 << bit;
 
 
 
 
 
 
1369		if (bit != host->ios.vdd)
1370			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371	}
1372
1373	return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378	int err = 0;
1379	int old_signal_voltage = host->ios.signal_voltage;
1380
1381	host->ios.signal_voltage = signal_voltage;
1382	if (host->ops->start_signal_voltage_switch) {
1383		mmc_host_clk_hold(host);
1384		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385		mmc_host_clk_release(host);
1386	}
1387
1388	if (err)
1389		host->ios.signal_voltage = old_signal_voltage;
1390
1391	return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397	struct mmc_command cmd = {0};
1398	int err = 0;
1399	u32 clock;
 
 
 
 
 
1400
1401	BUG_ON(!host);
 
 
1402
1403	/*
1404	 * Send CMD11 only if the request is to switch the card to
1405	 * 1.8V signalling.
1406	 */
1407	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * If we cannot switch voltages, return failure so the caller
1412	 * can continue without UHS mode
1413	 */
1414	if (!host->ops->start_signal_voltage_switch)
1415		return -EPERM;
1416	if (!host->ops->card_busy)
1417		pr_warning("%s: cannot verify signal voltage switch\n",
1418				mmc_hostname(host));
1419
1420	cmd.opcode = SD_SWITCH_VOLTAGE;
1421	cmd.arg = 0;
1422	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424	err = mmc_wait_for_cmd(host, &cmd, 0);
1425	if (err)
1426		return err;
1427
1428	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429		return -EIO;
1430
1431	mmc_host_clk_hold(host);
1432	/*
1433	 * The card should drive cmd and dat[0:3] low immediately
1434	 * after the response of cmd11, but wait 1 ms to be sure
1435	 */
1436	mmc_delay(1);
1437	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438		err = -EAGAIN;
1439		goto power_cycle;
1440	}
1441	/*
1442	 * During a signal voltage level switch, the clock must be gated
1443	 * for 5 ms according to the SD spec
1444	 */
1445	clock = host->ios.clock;
1446	host->ios.clock = 0;
1447	mmc_set_ios(host);
1448
1449	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450		/*
1451		 * Voltages may not have been switched, but we've already
1452		 * sent CMD11, so a power cycle is required anyway
1453		 */
1454		err = -EAGAIN;
1455		goto power_cycle;
1456	}
1457
1458	/* Keep clock gated for at least 5 ms */
1459	mmc_delay(5);
1460	host->ios.clock = clock;
1461	mmc_set_ios(host);
1462
1463	/* Wait for at least 1 ms according to spec */
1464	mmc_delay(1);
1465
1466	/*
1467	 * Failure to switch is indicated by the card holding
1468	 * dat[0:3] low
1469	 */
1470	if (host->ops->card_busy && host->ops->card_busy(host))
1471		err = -EAGAIN;
1472
1473power_cycle:
1474	if (err) {
1475		pr_debug("%s: Signal voltage switch failed, "
1476			"power cycling card\n", mmc_hostname(host));
1477		mmc_power_cycle(host, ocr);
1478	}
1479
1480	mmc_host_clk_release(host);
1481
1482	return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490	mmc_host_clk_hold(host);
1491	host->ios.timing = timing;
1492	mmc_set_ios(host);
1493	mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501	mmc_host_clk_hold(host);
1502	host->ios.drv_type = drv_type;
1503	mmc_set_ios(host);
1504	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507/*
1508 * Apply power to the MMC stack.  This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise.  Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520	if (host->ios.power_mode == MMC_POWER_ON)
1521		return;
1522
1523	mmc_host_clk_hold(host);
1524
1525	host->ios.vdd = fls(ocr) - 1;
1526	if (mmc_host_is_spi(host))
1527		host->ios.chip_select = MMC_CS_HIGH;
1528	else
1529		host->ios.chip_select = MMC_CS_DONTCARE;
1530	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531	host->ios.power_mode = MMC_POWER_UP;
1532	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533	host->ios.timing = MMC_TIMING_LEGACY;
1534	mmc_set_ios(host);
1535
1536	/* Set signal voltage to 3.3V */
1537	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539	/*
1540	 * This delay should be sufficient to allow the power supply
1541	 * to reach the minimum voltage.
1542	 */
1543	mmc_delay(10);
 
 
1544
1545	host->ios.clock = host->f_init;
1546
1547	host->ios.power_mode = MMC_POWER_ON;
1548	mmc_set_ios(host);
1549
1550	/*
1551	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552	 * time required to reach a stable voltage.
1553	 */
1554	mmc_delay(10);
1555
1556	mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561	if (host->ios.power_mode == MMC_POWER_OFF)
1562		return;
1563
1564	mmc_host_clk_hold(host);
1565
1566	host->ios.clock = 0;
1567	host->ios.vdd = 0;
1568
1569	if (!mmc_host_is_spi(host)) {
1570		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571		host->ios.chip_select = MMC_CS_DONTCARE;
1572	}
1573	host->ios.power_mode = MMC_POWER_OFF;
1574	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575	host->ios.timing = MMC_TIMING_LEGACY;
1576	mmc_set_ios(host);
1577
1578	/*
1579	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580	 * XO-1.5, require a short delay after poweroff before the card
1581	 * can be successfully turned on again.
1582	 */
1583	mmc_delay(1);
1584
1585	mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590	mmc_power_off(host);
1591	/* Wait at least 1 ms according to SD spec */
1592	mmc_delay(1);
1593	mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601	BUG_ON(!host);
1602	BUG_ON(host->bus_refs);
1603	BUG_ON(!host->bus_dead);
1604
1605	host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&host->lock, flags);
1616	host->bus_refs++;
1617	spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&host->lock, flags);
1629	host->bus_refs--;
1630	if ((host->bus_refs == 0) && host->bus_ops)
1631		__mmc_release_bus(host);
1632	spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641	unsigned long flags;
1642
1643	BUG_ON(!host);
1644	BUG_ON(!ops);
1645
1646	WARN_ON(!host->claimed);
1647
1648	spin_lock_irqsave(&host->lock, flags);
1649
1650	BUG_ON(host->bus_ops);
1651	BUG_ON(host->bus_refs);
1652
1653	host->bus_ops = ops;
1654	host->bus_refs = 1;
1655	host->bus_dead = 0;
1656
1657	spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665	unsigned long flags;
1666
1667	BUG_ON(!host);
1668
1669	WARN_ON(!host->claimed);
1670	WARN_ON(!host->bus_ops);
1671
1672	spin_lock_irqsave(&host->lock, flags);
1673
1674	host->bus_dead = 1;
1675
1676	spin_unlock_irqrestore(&host->lock, flags);
1677
1678	mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682				bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685	unsigned long flags;
1686	spin_lock_irqsave(&host->lock, flags);
1687	WARN_ON(host->removed);
1688	spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691	/*
1692	 * If the device is configured as wakeup, we prevent a new sleep for
1693	 * 5 s to give provision for user space to consume the event.
 
1694	 */
1695	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696		device_can_wakeup(mmc_dev(host)))
1697		pm_wakeup_event(mmc_dev(host), 5000);
1698
1699	host->detect_change = 1;
1700	mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 *	mmc_detect_change - process change of state on a MMC socket
1705 *	@host: host which changed state.
1706 *	@delay: optional delay to wait before detection (jiffies)
1707 *
1708 *	MMC drivers should call this when they detect a card has been
1709 *	inserted or removed. The MMC layer will confirm that any
1710 *	present card is still functional, and initialize any newly
1711 *	inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715	_mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721	unsigned int sz;
1722
1723	if (is_power_of_2(card->erase_size))
1724		card->erase_shift = ffs(card->erase_size) - 1;
1725	else
1726		card->erase_shift = 0;
1727
1728	/*
1729	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730	 * card.  That is not desirable because it can take a long time
1731	 * (minutes) potentially delaying more important I/O, and also the
1732	 * timeout calculations become increasingly hugely over-estimated.
1733	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734	 * to that size and alignment.
1735	 *
1736	 * For SD cards that define Allocation Unit size, limit erases to one
1737	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738	 * Erase Size, whether it is switched on or not, limit to that size.
1739	 * Otherwise just have a stab at a good value.  For modern cards it
1740	 * will end up being 4MiB.  Note that if the value is too small, it
1741	 * can end up taking longer to erase.
1742	 */
1743	if (mmc_card_sd(card) && card->ssr.au) {
1744		card->pref_erase = card->ssr.au;
1745		card->erase_shift = ffs(card->ssr.au) - 1;
1746	} else if (card->ext_csd.hc_erase_size) {
1747		card->pref_erase = card->ext_csd.hc_erase_size;
1748	} else {
1749		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750		if (sz < 128)
1751			card->pref_erase = 512 * 1024 / 512;
1752		else if (sz < 512)
1753			card->pref_erase = 1024 * 1024 / 512;
1754		else if (sz < 1024)
1755			card->pref_erase = 2 * 1024 * 1024 / 512;
1756		else
1757			card->pref_erase = 4 * 1024 * 1024 / 512;
1758		if (card->pref_erase < card->erase_size)
1759			card->pref_erase = card->erase_size;
1760		else {
1761			sz = card->pref_erase % card->erase_size;
1762			if (sz)
1763				card->pref_erase += card->erase_size - sz;
1764		}
1765	}
 
 
 
 
 
 
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769				          unsigned int arg, unsigned int qty)
1770{
1771	unsigned int erase_timeout;
1772
1773	if (arg == MMC_DISCARD_ARG ||
1774	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775		erase_timeout = card->ext_csd.trim_timeout;
1776	} else if (card->ext_csd.erase_group_def & 1) {
1777		/* High Capacity Erase Group Size uses HC timeouts */
1778		if (arg == MMC_TRIM_ARG)
1779			erase_timeout = card->ext_csd.trim_timeout;
1780		else
1781			erase_timeout = card->ext_csd.hc_erase_timeout;
1782	} else {
1783		/* CSD Erase Group Size uses write timeout */
1784		unsigned int mult = (10 << card->csd.r2w_factor);
1785		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786		unsigned int timeout_us;
1787
1788		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789		if (card->csd.tacc_ns < 1000000)
1790			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791		else
1792			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794		/*
1795		 * ios.clock is only a target.  The real clock rate might be
1796		 * less but not that much less, so fudge it by multiplying by 2.
1797		 */
1798		timeout_clks <<= 1;
1799		timeout_us += (timeout_clks * 1000) /
1800			      (mmc_host_clk_rate(card->host) / 1000);
1801
1802		erase_timeout = timeout_us / 1000;
1803
1804		/*
1805		 * Theoretically, the calculation could underflow so round up
1806		 * to 1ms in that case.
1807		 */
1808		if (!erase_timeout)
1809			erase_timeout = 1;
1810	}
1811
1812	/* Multiplier for secure operations */
1813	if (arg & MMC_SECURE_ARGS) {
1814		if (arg == MMC_SECURE_ERASE_ARG)
1815			erase_timeout *= card->ext_csd.sec_erase_mult;
1816		else
1817			erase_timeout *= card->ext_csd.sec_trim_mult;
1818	}
1819
1820	erase_timeout *= qty;
1821
1822	/*
1823	 * Ensure at least a 1 second timeout for SPI as per
1824	 * 'mmc_set_data_timeout()'
1825	 */
1826	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827		erase_timeout = 1000;
1828
1829	return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833					 unsigned int arg,
1834					 unsigned int qty)
1835{
1836	unsigned int erase_timeout;
1837
 
 
 
 
 
 
1838	if (card->ssr.erase_timeout) {
1839		/* Erase timeout specified in SD Status Register (SSR) */
1840		erase_timeout = card->ssr.erase_timeout * qty +
1841				card->ssr.erase_offset;
1842	} else {
1843		/*
1844		 * Erase timeout not specified in SD Status Register (SSR) so
1845		 * use 250ms per write block.
1846		 */
1847		erase_timeout = 250 * qty;
1848	}
1849
1850	/* Must not be less than 1 second */
1851	if (erase_timeout < 1000)
1852		erase_timeout = 1000;
1853
1854	return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858				      unsigned int arg,
1859				      unsigned int qty)
1860{
1861	if (mmc_card_sd(card))
1862		return mmc_sd_erase_timeout(card, arg, qty);
1863	else
1864		return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868			unsigned int to, unsigned int arg)
1869{
1870	struct mmc_command cmd = {0};
1871	unsigned int qty = 0;
1872	unsigned long timeout;
1873	int err;
1874
 
 
1875	/*
1876	 * qty is used to calculate the erase timeout which depends on how many
1877	 * erase groups (or allocation units in SD terminology) are affected.
1878	 * We count erasing part of an erase group as one erase group.
1879	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880	 * erase group size is almost certainly also power of 2, but it does not
1881	 * seem to insist on that in the JEDEC standard, so we fall back to
1882	 * division in that case.  SD may not specify an allocation unit size,
1883	 * in which case the timeout is based on the number of write blocks.
1884	 *
1885	 * Note that the timeout for secure trim 2 will only be correct if the
1886	 * number of erase groups specified is the same as the total of all
1887	 * preceding secure trim 1 commands.  Since the power may have been
1888	 * lost since the secure trim 1 commands occurred, it is generally
1889	 * impossible to calculate the secure trim 2 timeout correctly.
1890	 */
1891	if (card->erase_shift)
1892		qty += ((to >> card->erase_shift) -
1893			(from >> card->erase_shift)) + 1;
1894	else if (mmc_card_sd(card))
1895		qty += to - from + 1;
1896	else
1897		qty += ((to / card->erase_size) -
1898			(from / card->erase_size)) + 1;
1899
1900	if (!mmc_card_blockaddr(card)) {
1901		from <<= 9;
1902		to <<= 9;
1903	}
1904
1905	if (mmc_card_sd(card))
1906		cmd.opcode = SD_ERASE_WR_BLK_START;
1907	else
1908		cmd.opcode = MMC_ERASE_GROUP_START;
1909	cmd.arg = from;
1910	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912	if (err) {
1913		pr_err("mmc_erase: group start error %d, "
1914		       "status %#x\n", err, cmd.resp[0]);
1915		err = -EIO;
1916		goto out;
1917	}
1918
1919	memset(&cmd, 0, sizeof(struct mmc_command));
1920	if (mmc_card_sd(card))
1921		cmd.opcode = SD_ERASE_WR_BLK_END;
1922	else
1923		cmd.opcode = MMC_ERASE_GROUP_END;
1924	cmd.arg = to;
1925	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927	if (err) {
1928		pr_err("mmc_erase: group end error %d, status %#x\n",
1929		       err, cmd.resp[0]);
1930		err = -EIO;
1931		goto out;
1932	}
1933
1934	memset(&cmd, 0, sizeof(struct mmc_command));
1935	cmd.opcode = MMC_ERASE;
1936	cmd.arg = arg;
1937	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
 
1939	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940	if (err) {
1941		pr_err("mmc_erase: erase error %d, status %#x\n",
1942		       err, cmd.resp[0]);
1943		err = -EIO;
1944		goto out;
1945	}
1946
1947	if (mmc_host_is_spi(card->host))
1948		goto out;
1949
1950	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951	do {
1952		memset(&cmd, 0, sizeof(struct mmc_command));
1953		cmd.opcode = MMC_SEND_STATUS;
1954		cmd.arg = card->rca << 16;
1955		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956		/* Do not retry else we can't see errors */
1957		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959			pr_err("error %d requesting status %#x\n",
1960				err, cmd.resp[0]);
1961			err = -EIO;
1962			goto out;
1963		}
1964
1965		/* Timeout if the device never becomes ready for data and
1966		 * never leaves the program state.
1967		 */
1968		if (time_after(jiffies, timeout)) {
1969			pr_err("%s: Card stuck in programming state! %s\n",
1970				mmc_hostname(card->host), __func__);
1971			err =  -EIO;
1972			goto out;
1973		}
1974
1975	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
 
1978	return err;
1979}
1980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991	      unsigned int arg)
1992{
1993	unsigned int rem, to = from + nr;
 
1994
1995	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996	    !(card->csd.cmdclass & CCC_ERASE))
1997		return -EOPNOTSUPP;
1998
1999	if (!card->erase_size)
2000		return -EOPNOTSUPP;
2001
2002	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003		return -EOPNOTSUPP;
2004
2005	if ((arg & MMC_SECURE_ARGS) &&
2006	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007		return -EOPNOTSUPP;
2008
2009	if ((arg & MMC_TRIM_ARGS) &&
2010	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011		return -EOPNOTSUPP;
2012
2013	if (arg == MMC_SECURE_ERASE_ARG) {
2014		if (from % card->erase_size || nr % card->erase_size)
2015			return -EINVAL;
2016	}
2017
2018	if (arg == MMC_ERASE_ARG) {
2019		rem = from % card->erase_size;
2020		if (rem) {
2021			rem = card->erase_size - rem;
2022			from += rem;
2023			if (nr > rem)
2024				nr -= rem;
2025			else
2026				return 0;
2027		}
2028		rem = nr % card->erase_size;
2029		if (rem)
2030			nr -= rem;
2031	}
2032
2033	if (nr == 0)
2034		return 0;
2035
2036	to = from + nr;
2037
2038	if (to <= from)
2039		return -EINVAL;
2040
2041	/* 'from' and 'to' are inclusive */
2042	to -= 1;
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050	if ((card->host->caps & MMC_CAP_ERASE) &&
2051	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052		return 1;
2053	return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
2060		return 1;
2061	return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067	/*
2068	 * As there's no way to detect the discard support bit at v4.5
2069	 * use the s/w feature support filed.
2070	 */
2071	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072		return 1;
2073	return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080		return 0;
2081	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082		return 1;
2083	return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
2090		return 1;
2091	return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096			    unsigned int nr)
2097{
2098	if (!card->erase_size)
2099		return 0;
2100	if (from % card->erase_size || nr % card->erase_size)
2101		return 0;
2102	return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107					    unsigned int arg)
2108{
2109	struct mmc_host *host = card->host;
2110	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111	unsigned int last_timeout = 0;
 
 
2112
2113	if (card->erase_shift)
2114		max_qty = UINT_MAX >> card->erase_shift;
2115	else if (mmc_card_sd(card))
 
2116		max_qty = UINT_MAX;
2117	else
 
2118		max_qty = UINT_MAX / card->erase_size;
 
 
2119
2120	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
2121	do {
2122		y = 0;
2123		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124			timeout = mmc_erase_timeout(card, arg, qty + x);
2125			if (timeout > host->max_busy_timeout)
 
2126				break;
 
2127			if (timeout < last_timeout)
2128				break;
2129			last_timeout = timeout;
2130			y = x;
2131		}
2132		qty += y;
2133	} while (y);
2134
2135	if (!qty)
2136		return 0;
2137
 
 
 
 
 
 
 
 
 
 
2138	if (qty == 1)
2139		return 1;
 
 
2140
2141	/* Convert qty to sectors */
2142	if (card->erase_shift)
2143		max_discard = --qty << card->erase_shift;
2144	else if (mmc_card_sd(card))
2145		max_discard = qty;
2146	else
2147		max_discard = --qty * card->erase_size;
2148
2149	return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154	struct mmc_host *host = card->host;
2155	unsigned int max_discard, max_trim;
2156
2157	if (!host->max_busy_timeout)
2158		return UINT_MAX;
2159
2160	/*
2161	 * Without erase_group_def set, MMC erase timeout depends on clock
2162	 * frequence which can change.  In that case, the best choice is
2163	 * just the preferred erase size.
2164	 */
2165	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166		return card->pref_erase;
2167
2168	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169	if (mmc_can_trim(card)) {
2170		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171		if (max_trim < max_discard)
2172			max_discard = max_trim;
2173	} else if (max_discard < card->erase_size) {
2174		max_discard = 0;
2175	}
2176	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177		 mmc_hostname(host), max_discard, host->max_busy_timeout);
 
2178	return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
 
 
 
 
 
 
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184	struct mmc_command cmd = {0};
2185
2186	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
2187		return 0;
2188
2189	cmd.opcode = MMC_SET_BLOCKLEN;
2190	cmd.arg = blocklen;
2191	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197			bool is_rel_write)
2198{
2199	struct mmc_command cmd = {0};
2200
2201	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202	cmd.arg = blockcount & 0x0000FFFF;
2203	if (is_rel_write)
2204		cmd.arg |= 1 << 31;
2205	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
 
 
2213		return;
2214	mmc_host_clk_hold(host);
2215	host->ops->hw_reset(host);
2216	mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
 
 
 
 
 
 
 
 
 
 
2220{
2221	u8 rst_n_function;
 
2222
2223	if (!mmc_card_mmc(card))
2224		return 0;
2225	rst_n_function = card->ext_csd.rst_n_function;
2226	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227		return 0;
2228	return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234	struct mmc_card *card = host->card;
2235
2236	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237		return -EOPNOTSUPP;
2238
2239	if (!card)
2240		return -EINVAL;
2241
2242	if (!mmc_can_reset(card))
2243		return -EOPNOTSUPP;
2244
2245	mmc_host_clk_hold(host);
2246	mmc_set_clock(host, host->f_init);
2247
2248	host->ops->hw_reset(host);
2249
2250	/* If the reset has happened, then a status command will fail */
2251	if (check) {
2252		struct mmc_command cmd = {0};
2253		int err;
2254
2255		cmd.opcode = MMC_SEND_STATUS;
2256		if (!mmc_host_is_spi(card->host))
2257			cmd.arg = card->rca << 16;
2258		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260		if (!err) {
2261			mmc_host_clk_release(host);
2262			return -ENOSYS;
2263		}
2264	}
2265
2266	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267	if (mmc_host_is_spi(host)) {
2268		host->ios.chip_select = MMC_CS_HIGH;
2269		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270	} else {
2271		host->ios.chip_select = MMC_CS_DONTCARE;
2272		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273	}
2274	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275	host->ios.timing = MMC_TIMING_LEGACY;
2276	mmc_set_ios(host);
2277
2278	mmc_host_clk_release(host);
2279
2280	return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285	return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291	return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297	host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300	pr_info("%s: %s: trying to init card at %u Hz\n",
2301		mmc_hostname(host), __func__, host->f_init);
2302#endif
2303	mmc_power_up(host, host->ocr_avail);
2304
2305	/*
2306	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307	 * do a hardware reset if possible.
2308	 */
2309	mmc_hw_reset_for_init(host);
2310
2311	/*
2312	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313	 * if the card is being re-initialized, just send it.  CMD52
2314	 * should be ignored by SD/eMMC cards.
 
2315	 */
2316	sdio_reset(host);
 
 
2317	mmc_go_idle(host);
2318
2319	mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
 
2320
2321	/* Order's important: probe SDIO, then SD, then MMC */
2322	if (!mmc_attach_sdio(host))
2323		return 0;
2324	if (!mmc_attach_sd(host))
2325		return 0;
2326	if (!mmc_attach_mmc(host))
2327		return 0;
 
 
 
 
 
2328
 
2329	mmc_power_off(host);
2330	return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335	int ret;
2336
2337	if (host->caps & MMC_CAP_NONREMOVABLE)
2338		return 0;
2339
2340	if (!host->card || mmc_card_removed(host->card))
2341		return 1;
2342
2343	ret = host->bus_ops->alive(host);
2344
2345	/*
2346	 * Card detect status and alive check may be out of sync if card is
2347	 * removed slowly, when card detect switch changes while card/slot
2348	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350	 * detect work 200ms later for this case.
2351	 */
2352	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353		mmc_detect_change(host, msecs_to_jiffies(200));
2354		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355	}
2356
2357	if (ret) {
2358		mmc_card_set_removed(host->card);
2359		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360	}
2361
2362	return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367	struct mmc_card *card = host->card;
2368	int ret;
2369
2370	WARN_ON(!host->claimed);
2371
2372	if (!card)
2373		return 1;
2374
 
 
 
2375	ret = mmc_card_removed(card);
2376	/*
2377	 * The card will be considered unchanged unless we have been asked to
2378	 * detect a change or host requires polling to provide card detection.
2379	 */
2380	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381		return ret;
2382
2383	host->detect_change = 0;
2384	if (!ret) {
2385		ret = _mmc_detect_card_removed(host);
2386		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387			/*
2388			 * Schedule a detect work as soon as possible to let a
2389			 * rescan handle the card removal.
2390			 */
2391			cancel_delayed_work(&host->detect);
2392			_mmc_detect_change(host, 0, false);
2393		}
2394	}
2395
2396	return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400void mmc_rescan(struct work_struct *work)
2401{
2402	struct mmc_host *host =
2403		container_of(work, struct mmc_host, detect.work);
2404	int i;
2405
2406	if (host->rescan_disable)
2407		return;
2408
2409	/* If there is a non-removable card registered, only scan once */
2410	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411		return;
2412	host->rescan_entered = 1;
2413
2414	mmc_bus_get(host);
 
 
 
 
 
2415
2416	/*
2417	 * if there is a _removable_ card registered, check whether it is
2418	 * still present
2419	 */
2420	if (host->bus_ops && !host->bus_dead
2421	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422		host->bus_ops->detect(host);
2423
2424	host->detect_change = 0;
2425
2426	/*
2427	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428	 * the card is no longer present.
2429	 */
2430	mmc_bus_put(host);
2431	mmc_bus_get(host);
2432
2433	/* if there still is a card present, stop here */
2434	if (host->bus_ops != NULL) {
2435		mmc_bus_put(host);
2436		goto out;
2437	}
2438
2439	/*
2440	 * Only we can add a new handler, so it's safe to
2441	 * release the lock here.
2442	 */
2443	mmc_bus_put(host);
2444
2445	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446			host->ops->get_cd(host) == 0) {
2447		mmc_claim_host(host);
2448		mmc_power_off(host);
2449		mmc_release_host(host);
2450		goto out;
2451	}
2452
2453	mmc_claim_host(host);
 
 
 
 
 
2454	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2456			break;
2457		if (freqs[i] <= host->f_min)
2458			break;
2459	}
 
 
 
 
 
 
 
 
 
 
 
2460	mmc_release_host(host);
2461
2462 out:
2463	if (host->caps & MMC_CAP_NEEDS_POLL)
2464		mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469	host->f_init = max(freqs[0], host->f_min);
2470	host->rescan_disable = 0;
2471	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472		mmc_power_off(host);
2473	else
2474		mmc_power_up(host, host->ocr_avail);
 
 
 
2475	mmc_gpiod_request_cd_irq(host);
2476	_mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482	unsigned long flags;
2483	spin_lock_irqsave(&host->lock, flags);
2484	host->removed = 1;
2485	spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487	if (host->slot.cd_irq >= 0)
2488		disable_irq(host->slot.cd_irq);
 
2489
2490	host->rescan_disable = 1;
2491	cancel_delayed_work_sync(&host->detect);
2492	mmc_flush_scheduled_work();
 
 
 
 
2493
2494	/* clear pm flags now and let card drivers set them as needed */
2495	host->pm_flags = 0;
2496
2497	mmc_bus_get(host);
2498	if (host->bus_ops && !host->bus_dead) {
2499		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500		host->bus_ops->remove(host);
2501		mmc_claim_host(host);
2502		mmc_detach_bus(host);
2503		mmc_power_off(host);
2504		mmc_release_host(host);
2505		mmc_bus_put(host);
2506		return;
2507	}
2508	mmc_bus_put(host);
2509
2510	BUG_ON(host->card);
2511
2512	mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517	int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523	mmc_bus_get(host);
2524
2525	if (!host->bus_ops || host->bus_dead) {
2526		mmc_bus_put(host);
2527		return -EINVAL;
2528	}
2529
2530	if (host->bus_ops->power_save)
2531		ret = host->bus_ops->power_save(host);
2532
2533	mmc_bus_put(host);
2534
 
2535	mmc_power_off(host);
2536
2537	return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543	int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549	mmc_bus_get(host);
2550
2551	if (!host->bus_ops || host->bus_dead) {
2552		mmc_bus_put(host);
2553		return -EINVAL;
2554	}
2555
2556	mmc_power_up(host, host->card->ocr);
2557	ret = host->bus_ops->power_restore(host);
2558
2559	mmc_bus_put(host);
2560
2561	return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570	int err = 0;
2571
2572	if (mmc_card_mmc(card) &&
2573			(card->ext_csd.cache_size > 0) &&
2574			(card->ext_csd.cache_ctrl & 1)) {
2575		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576				EXT_CSD_FLUSH_CACHE, 1, 0);
2577		if (err)
2578			pr_err("%s: cache flush error %d\n",
2579					mmc_hostname(card->host), err);
2580	}
2581
2582	return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590   to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593					unsigned long mode, void *unused)
2594{
2595	struct mmc_host *host = container_of(
2596		notify_block, struct mmc_host, pm_notify);
2597	unsigned long flags;
2598	int err = 0;
2599
2600	switch (mode) {
2601	case PM_HIBERNATION_PREPARE:
2602	case PM_SUSPEND_PREPARE:
2603		spin_lock_irqsave(&host->lock, flags);
2604		host->rescan_disable = 1;
2605		spin_unlock_irqrestore(&host->lock, flags);
2606		cancel_delayed_work_sync(&host->detect);
2607
2608		if (!host->bus_ops)
2609			break;
2610
2611		/* Validate prerequisites for suspend */
2612		if (host->bus_ops->pre_suspend)
2613			err = host->bus_ops->pre_suspend(host);
2614		if (!err)
2615			break;
2616
2617		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618		host->bus_ops->remove(host);
2619		mmc_claim_host(host);
2620		mmc_detach_bus(host);
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		host->pm_flags = 0;
2624		break;
2625
2626	case PM_POST_SUSPEND:
2627	case PM_POST_HIBERNATION:
2628	case PM_POST_RESTORE:
2629
2630		spin_lock_irqsave(&host->lock, flags);
2631		host->rescan_disable = 0;
2632		spin_unlock_irqrestore(&host->lock, flags);
2633		_mmc_detect_change(host, 0, false);
2634
2635	}
2636
2637	return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651	spin_lock_init(&host->context_info.lock);
2652	host->context_info.is_new_req = false;
2653	host->context_info.is_done_rcv = false;
2654	host->context_info.is_waiting_last_req = false;
2655	init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660	int ret;
2661
2662	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663	if (!workqueue)
2664		return -ENOMEM;
2665
2666	ret = mmc_register_bus();
2667	if (ret)
2668		goto destroy_workqueue;
2669
2670	ret = mmc_register_host_class();
2671	if (ret)
2672		goto unregister_bus;
2673
2674	ret = sdio_register_bus();
2675	if (ret)
2676		goto unregister_host_class;
2677
2678	return 0;
2679
2680unregister_host_class:
2681	mmc_unregister_host_class();
2682unregister_bus:
2683	mmc_unregister_bus();
2684destroy_workqueue:
2685	destroy_workqueue(workqueue);
2686
2687	return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692	sdio_unregister_bus();
2693	mmc_unregister_host_class();
2694	mmc_unregister_bus();
2695	destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
 
 
 
 
 
  53
 
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
 
 
 
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
 
 
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 
 
 
 
 
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 
 
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 336{
 337	int err;
 
 
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 
 
 
 
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 
 347
 348	WARN_ON(!host->claimed);
 
 
 
 
 
 
 
 
 
 
 
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 
 
 
 
 
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 
 
 356
 357	return 0;
 
 
 
 
 
 
 
 
 
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 
 
 
 
 
 
 
 
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 
 
 
 
 
 
 
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 
 392	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 
 418
 419	mmc_retune_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 
 
 
 
 
 
 
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 
 482{
 483	mmc_should_fail_request(host, mrq);
 
 
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 
 
 
 
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 
 
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 
 
 
 
 
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
 
 
 557
 558	memset(&cmd, 0, sizeof(cmd));
 559	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 560	cmd.arg          = 1; /* Discard entire queue */
 561	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 562	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 563	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 564	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 565
 566	host->cqe_ops->cqe_recovery_finish(host);
 567
 568	if (err)
 569		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 570
 571	mmc_retune_release(host);
 572
 
 
 573	return err;
 574}
 575EXPORT_SYMBOL(mmc_cqe_recovery);
 576
 577/**
 578 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 579 *	@host: MMC host
 580 *	@mrq: MMC request
 581 *
 582 *	mmc_is_req_done() is used with requests that have
 583 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 584 *	starting a request and before waiting for it to complete. That is,
 585 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 586 *	and before mmc_wait_for_req_done(). If it is called at other times the
 587 *	result is not meaningful.
 588 */
 589bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 590{
 591	return completion_done(&mrq->completion);
 592}
 593EXPORT_SYMBOL(mmc_is_req_done);
 594
 595/**
 596 *	mmc_wait_for_req - start a request and wait for completion
 597 *	@host: MMC host to start command
 598 *	@mrq: MMC request to start
 599 *
 600 *	Start a new MMC custom command request for a host, and wait
 601 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 602 *	requests, the transfer is ongoing and the caller can issue further
 603 *	commands that do not use the data lines, and then wait by calling
 604 *	mmc_wait_for_req_done().
 605 *	Does not attempt to parse the response.
 606 */
 607void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 608{
 609	__mmc_start_req(host, mrq);
 610
 611	if (!mrq->cap_cmd_during_tfr)
 612		mmc_wait_for_req_done(host, mrq);
 613}
 614EXPORT_SYMBOL(mmc_wait_for_req);
 615
 616/**
 617 *	mmc_wait_for_cmd - start a command and wait for completion
 618 *	@host: MMC host to start command
 619 *	@cmd: MMC command to start
 620 *	@retries: maximum number of retries
 621 *
 622 *	Start a new MMC command for a host, and wait for the command
 623 *	to complete.  Return any error that occurred while the command
 624 *	was executing.  Do not attempt to parse the response.
 625 */
 626int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 627{
 628	struct mmc_request mrq = {};
 629
 630	WARN_ON(!host->claimed);
 631
 632	memset(cmd->resp, 0, sizeof(cmd->resp));
 633	cmd->retries = retries;
 634
 635	mrq.cmd = cmd;
 636	cmd->data = NULL;
 637
 638	mmc_wait_for_req(host, &mrq);
 639
 640	return cmd->error;
 641}
 642
 643EXPORT_SYMBOL(mmc_wait_for_cmd);
 644
 645/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646 *	mmc_set_data_timeout - set the timeout for a data command
 647 *	@data: data phase for command
 648 *	@card: the MMC card associated with the data transfer
 649 *
 650 *	Computes the data timeout parameters according to the
 651 *	correct algorithm given the card type.
 652 */
 653void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 654{
 655	unsigned int mult;
 656
 657	/*
 658	 * SDIO cards only define an upper 1 s limit on access.
 659	 */
 660	if (mmc_card_sdio(card)) {
 661		data->timeout_ns = 1000000000;
 662		data->timeout_clks = 0;
 663		return;
 664	}
 665
 666	/*
 667	 * SD cards use a 100 multiplier rather than 10
 668	 */
 669	mult = mmc_card_sd(card) ? 100 : 10;
 670
 671	/*
 672	 * Scale up the multiplier (and therefore the timeout) by
 673	 * the r2w factor for writes.
 674	 */
 675	if (data->flags & MMC_DATA_WRITE)
 676		mult <<= card->csd.r2w_factor;
 677
 678	data->timeout_ns = card->csd.taac_ns * mult;
 679	data->timeout_clks = card->csd.taac_clks * mult;
 680
 681	/*
 682	 * SD cards also have an upper limit on the timeout.
 683	 */
 684	if (mmc_card_sd(card)) {
 685		unsigned int timeout_us, limit_us;
 686
 687		timeout_us = data->timeout_ns / 1000;
 688		if (card->host->ios.clock)
 689			timeout_us += data->timeout_clks * 1000 /
 690				(card->host->ios.clock / 1000);
 691
 692		if (data->flags & MMC_DATA_WRITE)
 693			/*
 694			 * The MMC spec "It is strongly recommended
 695			 * for hosts to implement more than 500ms
 696			 * timeout value even if the card indicates
 697			 * the 250ms maximum busy length."  Even the
 698			 * previous value of 300ms is known to be
 699			 * insufficient for some cards.
 700			 */
 701			limit_us = 3000000;
 702		else
 703			limit_us = 100000;
 704
 705		/*
 706		 * SDHC cards always use these fixed values.
 707		 */
 708		if (timeout_us > limit_us) {
 709			data->timeout_ns = limit_us * 1000;
 710			data->timeout_clks = 0;
 711		}
 712
 713		/* assign limit value if invalid */
 714		if (timeout_us == 0)
 715			data->timeout_ns = limit_us * 1000;
 716	}
 717
 718	/*
 719	 * Some cards require longer data read timeout than indicated in CSD.
 720	 * Address this by setting the read timeout to a "reasonably high"
 721	 * value. For the cards tested, 600ms has proven enough. If necessary,
 722	 * this value can be increased if other problematic cards require this.
 723	 */
 724	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 725		data->timeout_ns = 600000000;
 726		data->timeout_clks = 0;
 727	}
 728
 729	/*
 730	 * Some cards need very high timeouts if driven in SPI mode.
 731	 * The worst observed timeout was 900ms after writing a
 732	 * continuous stream of data until the internal logic
 733	 * overflowed.
 734	 */
 735	if (mmc_host_is_spi(card->host)) {
 736		if (data->flags & MMC_DATA_WRITE) {
 737			if (data->timeout_ns < 1000000000)
 738				data->timeout_ns = 1000000000;	/* 1s */
 739		} else {
 740			if (data->timeout_ns < 100000000)
 741				data->timeout_ns =  100000000;	/* 100ms */
 742		}
 743	}
 744}
 745EXPORT_SYMBOL(mmc_set_data_timeout);
 746
 747/*
 748 * Allow claiming an already claimed host if the context is the same or there is
 749 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 750 */
 751static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 752				   struct task_struct *task)
 753{
 754	return host->claimer == ctx ||
 755	       (!ctx && task && host->claimer->task == task);
 756}
 
 
 
 757
 758static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 759				       struct mmc_ctx *ctx,
 760				       struct task_struct *task)
 761{
 762	if (!host->claimer) {
 763		if (ctx)
 764			host->claimer = ctx;
 765		else
 766			host->claimer = &host->default_ctx;
 767	}
 768	if (task)
 769		host->claimer->task = task;
 770}
 
 771
 772/**
 773 *	__mmc_claim_host - exclusively claim a host
 774 *	@host: mmc host to claim
 775 *	@ctx: context that claims the host or NULL in which case the default
 776 *	context will be used
 777 *	@abort: whether or not the operation should be aborted
 778 *
 779 *	Claim a host for a set of operations.  If @abort is non null and
 780 *	dereference a non-zero value then this will return prematurely with
 781 *	that non-zero value without acquiring the lock.  Returns zero
 782 *	with the lock held otherwise.
 783 */
 784int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 785		     atomic_t *abort)
 786{
 787	struct task_struct *task = ctx ? NULL : current;
 788	DECLARE_WAITQUEUE(wait, current);
 789	unsigned long flags;
 790	int stop;
 791	bool pm = false;
 792
 793	might_sleep();
 794
 795	add_wait_queue(&host->wq, &wait);
 796	spin_lock_irqsave(&host->lock, flags);
 797	while (1) {
 798		set_current_state(TASK_UNINTERRUPTIBLE);
 799		stop = abort ? atomic_read(abort) : 0;
 800		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 801			break;
 802		spin_unlock_irqrestore(&host->lock, flags);
 803		schedule();
 804		spin_lock_irqsave(&host->lock, flags);
 805	}
 806	set_current_state(TASK_RUNNING);
 807	if (!stop) {
 808		host->claimed = 1;
 809		mmc_ctx_set_claimer(host, ctx, task);
 810		host->claim_cnt += 1;
 811		if (host->claim_cnt == 1)
 812			pm = true;
 813	} else
 814		wake_up(&host->wq);
 815	spin_unlock_irqrestore(&host->lock, flags);
 816	remove_wait_queue(&host->wq, &wait);
 817
 818	if (pm)
 819		pm_runtime_get_sync(mmc_dev(host));
 820
 821	return stop;
 822}
 
 823EXPORT_SYMBOL(__mmc_claim_host);
 824
 825/**
 826 *	mmc_release_host - release a host
 827 *	@host: mmc host to release
 828 *
 829 *	Release a MMC host, allowing others to claim the host
 830 *	for their operations.
 831 */
 832void mmc_release_host(struct mmc_host *host)
 833{
 834	unsigned long flags;
 835
 836	WARN_ON(!host->claimed);
 837
 
 
 
 838	spin_lock_irqsave(&host->lock, flags);
 839	if (--host->claim_cnt) {
 840		/* Release for nested claim */
 841		spin_unlock_irqrestore(&host->lock, flags);
 842	} else {
 843		host->claimed = 0;
 844		host->claimer->task = NULL;
 845		host->claimer = NULL;
 846		spin_unlock_irqrestore(&host->lock, flags);
 847		wake_up(&host->wq);
 848		pm_runtime_mark_last_busy(mmc_dev(host));
 849		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 850			pm_runtime_put_sync_suspend(mmc_dev(host));
 851		else
 852			pm_runtime_put_autosuspend(mmc_dev(host));
 853	}
 854}
 855EXPORT_SYMBOL(mmc_release_host);
 856
 857/*
 858 * This is a helper function, which fetches a runtime pm reference for the
 859 * card device and also claims the host.
 860 */
 861void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 862{
 863	pm_runtime_get_sync(&card->dev);
 864	__mmc_claim_host(card->host, ctx, NULL);
 865}
 866EXPORT_SYMBOL(mmc_get_card);
 867
 868/*
 869 * This is a helper function, which releases the host and drops the runtime
 870 * pm reference for the card device.
 871 */
 872void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 873{
 874	struct mmc_host *host = card->host;
 875
 876	WARN_ON(ctx && host->claimer != ctx);
 877
 878	mmc_release_host(host);
 879	pm_runtime_mark_last_busy(&card->dev);
 880	pm_runtime_put_autosuspend(&card->dev);
 881}
 882EXPORT_SYMBOL(mmc_put_card);
 883
 884/*
 885 * Internal function that does the actual ios call to the host driver,
 886 * optionally printing some debug output.
 887 */
 888static inline void mmc_set_ios(struct mmc_host *host)
 889{
 890	struct mmc_ios *ios = &host->ios;
 891
 892	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 893		"width %u timing %u\n",
 894		 mmc_hostname(host), ios->clock, ios->bus_mode,
 895		 ios->power_mode, ios->chip_select, ios->vdd,
 896		 1 << ios->bus_width, ios->timing);
 897
 
 
 898	host->ops->set_ios(host, ios);
 899}
 900
 901/*
 902 * Control chip select pin on a host.
 903 */
 904void mmc_set_chip_select(struct mmc_host *host, int mode)
 905{
 
 906	host->ios.chip_select = mode;
 907	mmc_set_ios(host);
 
 908}
 909
 910/*
 911 * Sets the host clock to the highest possible frequency that
 912 * is below "hz".
 913 */
 914void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 915{
 916	WARN_ON(hz && hz < host->f_min);
 917
 918	if (hz > host->f_max)
 919		hz = host->f_max;
 920
 921	host->ios.clock = hz;
 922	mmc_set_ios(host);
 923}
 924
 925int mmc_execute_tuning(struct mmc_card *card)
 926{
 927	struct mmc_host *host = card->host;
 928	u32 opcode;
 929	int err;
 
 930
 931	if (!host->ops->execute_tuning)
 932		return 0;
 
 
 
 
 
 933
 934	if (host->cqe_on)
 935		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 936
 937	if (mmc_card_mmc(card))
 938		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 939	else
 940		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	err = host->ops->execute_tuning(host, opcode);
 943	if (!err) {
 944		mmc_retune_clear(host);
 945		mmc_retune_enable(host);
 946		return 0;
 947	}
 948
 949	/* Only print error when we don't check for card removal */
 950	if (!host->detect_change) {
 951		pr_err("%s: tuning execution failed: %d\n",
 952			mmc_hostname(host), err);
 953		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 954	}
 
 
 955
 956	return err;
 
 
 957}
 
 958
 959/*
 960 * Change the bus mode (open drain/push-pull) of a host.
 961 */
 962void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 963{
 
 964	host->ios.bus_mode = mode;
 965	mmc_set_ios(host);
 
 966}
 967
 968/*
 969 * Change data bus width of a host.
 970 */
 971void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 972{
 
 973	host->ios.bus_width = width;
 974	mmc_set_ios(host);
 975}
 976
 977/*
 978 * Set initial state after a power cycle or a hw_reset.
 979 */
 980void mmc_set_initial_state(struct mmc_host *host)
 981{
 982	if (host->cqe_on)
 983		host->cqe_ops->cqe_off(host);
 984
 985	mmc_retune_disable(host);
 986
 987	if (mmc_host_is_spi(host))
 988		host->ios.chip_select = MMC_CS_HIGH;
 989	else
 990		host->ios.chip_select = MMC_CS_DONTCARE;
 991	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 992	host->ios.bus_width = MMC_BUS_WIDTH_1;
 993	host->ios.timing = MMC_TIMING_LEGACY;
 994	host->ios.drv_type = 0;
 995	host->ios.enhanced_strobe = false;
 996
 997	/*
 998	 * Make sure we are in non-enhanced strobe mode before we
 999	 * actually enable it in ext_csd.
1000	 */
1001	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002	     host->ops->hs400_enhanced_strobe)
1003		host->ops->hs400_enhanced_strobe(host, &host->ios);
1004
1005	mmc_set_ios(host);
1006
1007	mmc_crypto_set_initial_state(host);
1008}
1009
1010/**
1011 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012 * @vdd:	voltage (mV)
1013 * @low_bits:	prefer low bits in boundary cases
1014 *
1015 * This function returns the OCR bit number according to the provided @vdd
1016 * value. If conversion is not possible a negative errno value returned.
1017 *
1018 * Depending on the @low_bits flag the function prefers low or high OCR bits
1019 * on boundary voltages. For example,
1020 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022 *
1023 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024 */
1025static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026{
1027	const int max_bit = ilog2(MMC_VDD_35_36);
1028	int bit;
1029
1030	if (vdd < 1650 || vdd > 3600)
1031		return -EINVAL;
1032
1033	if (vdd >= 1650 && vdd <= 1950)
1034		return ilog2(MMC_VDD_165_195);
1035
1036	if (low_bits)
1037		vdd -= 1;
1038
1039	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040	bit = (vdd - 2000) / 100 + 8;
1041	if (bit > max_bit)
1042		return max_bit;
1043	return bit;
1044}
1045
1046/**
1047 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048 * @vdd_min:	minimum voltage value (mV)
1049 * @vdd_max:	maximum voltage value (mV)
1050 *
1051 * This function returns the OCR mask bits according to the provided @vdd_min
1052 * and @vdd_max values. If conversion is not possible the function returns 0.
1053 *
1054 * Notes wrt boundary cases:
1055 * This function sets the OCR bits for all boundary voltages, for example
1056 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057 * MMC_VDD_34_35 mask.
1058 */
1059u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060{
1061	u32 mask = 0;
1062
1063	if (vdd_max < vdd_min)
1064		return 0;
1065
1066	/* Prefer high bits for the boundary vdd_max values. */
1067	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068	if (vdd_max < 0)
1069		return 0;
1070
1071	/* Prefer low bits for the boundary vdd_min values. */
1072	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073	if (vdd_min < 0)
1074		return 0;
1075
1076	/* Fill the mask, from max bit to min bit. */
1077	while (vdd_max >= vdd_min)
1078		mask |= 1 << vdd_max--;
1079
1080	return mask;
1081}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083static int mmc_of_get_func_num(struct device_node *node)
 
 
 
 
 
 
 
 
 
 
 
1084{
1085	u32 reg;
1086	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	ret = of_property_read_u32(node, "reg", &reg);
1089	if (ret < 0)
1090		return ret;
1091
1092	return reg;
1093}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096		unsigned func_num)
1097{
1098	struct device_node *node;
 
1099
1100	if (!host->parent || !host->parent->of_node)
1101		return NULL;
1102
1103	for_each_child_of_node(host->parent->of_node, node) {
1104		if (mmc_of_get_func_num(node) == func_num)
1105			return node;
 
 
 
 
 
 
 
 
 
 
 
 
 
1106	}
1107
1108	return NULL;
 
 
 
1109}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
1111/*
1112 * Mask off any voltages we don't support and select
1113 * the lowest voltage
1114 */
1115u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116{
1117	int bit;
1118
1119	/*
1120	 * Sanity check the voltages that the card claims to
1121	 * support.
1122	 */
1123	if (ocr & 0x7F) {
1124		dev_warn(mmc_dev(host),
1125		"card claims to support voltages below defined range\n");
1126		ocr &= ~0x7F;
1127	}
1128
1129	ocr &= host->ocr_avail;
1130	if (!ocr) {
1131		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132		return 0;
1133	}
1134
1135	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136		bit = ffs(ocr) - 1;
1137		ocr &= 3 << bit;
1138		mmc_power_cycle(host, ocr);
1139	} else {
1140		bit = fls(ocr) - 1;
1141		/*
1142		 * The bit variable represents the highest voltage bit set in
1143		 * the OCR register.
1144		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145		 * we must shift the mask '3' with (bit - 1).
1146		 */
1147		ocr &= 3 << (bit - 1);
1148		if (bit != host->ios.vdd)
1149			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150	}
1151
1152	return ocr;
1153}
1154
1155int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156{
1157	int err = 0;
1158	int old_signal_voltage = host->ios.signal_voltage;
1159
1160	host->ios.signal_voltage = signal_voltage;
1161	if (host->ops->start_signal_voltage_switch)
 
1162		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
1163
1164	if (err)
1165		host->ios.signal_voltage = old_signal_voltage;
1166
1167	return err;
1168
1169}
1170
1171void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172{
1173	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180}
1181
1182int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183{
1184	u32 clock;
1185
1186	/*
1187	 * During a signal voltage level switch, the clock must be gated
1188	 * for 5 ms according to the SD spec
1189	 */
1190	clock = host->ios.clock;
1191	host->ios.clock = 0;
1192	mmc_set_ios(host);
1193
1194	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195		return -EAGAIN;
1196
1197	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198	mmc_delay(10);
1199	host->ios.clock = clock;
1200	mmc_set_ios(host);
1201
1202	return 0;
1203}
1204
1205int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206{
1207	struct mmc_command cmd = {};
1208	int err = 0;
1209
1210	/*
1211	 * If we cannot switch voltages, return failure so the caller
1212	 * can continue without UHS mode
1213	 */
1214	if (!host->ops->start_signal_voltage_switch)
1215		return -EPERM;
1216	if (!host->ops->card_busy)
1217		pr_warn("%s: cannot verify signal voltage switch\n",
1218			mmc_hostname(host));
1219
1220	cmd.opcode = SD_SWITCH_VOLTAGE;
1221	cmd.arg = 0;
1222	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223
1224	err = mmc_wait_for_cmd(host, &cmd, 0);
1225	if (err)
1226		goto power_cycle;
1227
1228	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229		return -EIO;
1230
 
1231	/*
1232	 * The card should drive cmd and dat[0:3] low immediately
1233	 * after the response of cmd11, but wait 1 ms to be sure
1234	 */
1235	mmc_delay(1);
1236	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237		err = -EAGAIN;
1238		goto power_cycle;
1239	}
 
 
 
 
 
 
 
1240
1241	if (mmc_host_set_uhs_voltage(host)) {
1242		/*
1243		 * Voltages may not have been switched, but we've already
1244		 * sent CMD11, so a power cycle is required anyway
1245		 */
1246		err = -EAGAIN;
1247		goto power_cycle;
1248	}
1249
 
 
 
 
 
1250	/* Wait for at least 1 ms according to spec */
1251	mmc_delay(1);
1252
1253	/*
1254	 * Failure to switch is indicated by the card holding
1255	 * dat[0:3] low
1256	 */
1257	if (host->ops->card_busy && host->ops->card_busy(host))
1258		err = -EAGAIN;
1259
1260power_cycle:
1261	if (err) {
1262		pr_debug("%s: Signal voltage switch failed, "
1263			"power cycling card\n", mmc_hostname(host));
1264		mmc_power_cycle(host, ocr);
1265	}
1266
 
 
1267	return err;
1268}
1269
1270/*
1271 * Select timing parameters for host.
1272 */
1273void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274{
 
1275	host->ios.timing = timing;
1276	mmc_set_ios(host);
 
1277}
1278
1279/*
1280 * Select appropriate driver type for host.
1281 */
1282void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283{
 
1284	host->ios.drv_type = drv_type;
1285	mmc_set_ios(host);
1286}
1287
1288int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289			      int card_drv_type, int *drv_type)
1290{
1291	struct mmc_host *host = card->host;
1292	int host_drv_type = SD_DRIVER_TYPE_B;
1293
1294	*drv_type = 0;
1295
1296	if (!host->ops->select_drive_strength)
1297		return 0;
1298
1299	/* Use SD definition of driver strength for hosts */
1300	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301		host_drv_type |= SD_DRIVER_TYPE_A;
1302
1303	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304		host_drv_type |= SD_DRIVER_TYPE_C;
1305
1306	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307		host_drv_type |= SD_DRIVER_TYPE_D;
1308
1309	/*
1310	 * The drive strength that the hardware can support
1311	 * depends on the board design.  Pass the appropriate
1312	 * information and let the hardware specific code
1313	 * return what is possible given the options
1314	 */
1315	return host->ops->select_drive_strength(card, max_dtr,
1316						host_drv_type,
1317						card_drv_type,
1318						drv_type);
1319}
1320
1321/*
1322 * Apply power to the MMC stack.  This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise.  Finally,
1325 * enable the bus drivers and clock to the card.
1326 *
1327 * We must _NOT_ enable the clock prior to power stablising.
1328 *
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1331 */
1332void mmc_power_up(struct mmc_host *host, u32 ocr)
1333{
1334	if (host->ios.power_mode == MMC_POWER_ON)
1335		return;
1336
1337	mmc_pwrseq_pre_power_on(host);
1338
1339	host->ios.vdd = fls(ocr) - 1;
 
 
 
 
 
1340	host->ios.power_mode = MMC_POWER_UP;
1341	/* Set initial state and call mmc_set_ios */
1342	mmc_set_initial_state(host);
 
1343
1344	mmc_set_initial_signal_voltage(host);
 
1345
1346	/*
1347	 * This delay should be sufficient to allow the power supply
1348	 * to reach the minimum voltage.
1349	 */
1350	mmc_delay(host->ios.power_delay_ms);
1351
1352	mmc_pwrseq_post_power_on(host);
1353
1354	host->ios.clock = host->f_init;
1355
1356	host->ios.power_mode = MMC_POWER_ON;
1357	mmc_set_ios(host);
1358
1359	/*
1360	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361	 * time required to reach a stable voltage.
1362	 */
1363	mmc_delay(host->ios.power_delay_ms);
 
 
1364}
1365
1366void mmc_power_off(struct mmc_host *host)
1367{
1368	if (host->ios.power_mode == MMC_POWER_OFF)
1369		return;
1370
1371	mmc_pwrseq_power_off(host);
1372
1373	host->ios.clock = 0;
1374	host->ios.vdd = 0;
1375
 
 
 
 
1376	host->ios.power_mode = MMC_POWER_OFF;
1377	/* Set initial state and call mmc_set_ios */
1378	mmc_set_initial_state(host);
 
1379
1380	/*
1381	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382	 * XO-1.5, require a short delay after poweroff before the card
1383	 * can be successfully turned on again.
1384	 */
1385	mmc_delay(1);
 
 
1386}
1387
1388void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1389{
1390	mmc_power_off(host);
1391	/* Wait at least 1 ms according to SD spec */
1392	mmc_delay(1);
1393	mmc_power_up(host, ocr);
1394}
1395
1396/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397 * Assign a mmc bus handler to a host. Only one bus handler may control a
1398 * host at any given time.
1399 */
1400void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401{
 
 
 
 
 
 
 
 
 
 
 
 
1402	host->bus_ops = ops;
 
 
 
 
1403}
1404
1405/*
1406 * Remove the current bus handler from a host.
1407 */
1408void mmc_detach_bus(struct mmc_host *host)
1409{
1410	host->bus_ops = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1411}
1412
1413void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
 
1414{
 
 
 
 
 
 
 
1415	/*
1416	 * Prevent system sleep for 5s to allow user space to consume the
1417	 * corresponding uevent. This is especially useful, when CD irq is used
1418	 * as a system wakeup, but doesn't hurt in other cases.
1419	 */
1420	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421		__pm_wakeup_event(host->ws, 5000);
 
1422
1423	host->detect_change = 1;
1424	mmc_schedule_delayed_work(&host->detect, delay);
1425}
1426
1427/**
1428 *	mmc_detect_change - process change of state on a MMC socket
1429 *	@host: host which changed state.
1430 *	@delay: optional delay to wait before detection (jiffies)
1431 *
1432 *	MMC drivers should call this when they detect a card has been
1433 *	inserted or removed. The MMC layer will confirm that any
1434 *	present card is still functional, and initialize any newly
1435 *	inserted.
1436 */
1437void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438{
1439	_mmc_detect_change(host, delay, true);
1440}
1441EXPORT_SYMBOL(mmc_detect_change);
1442
1443void mmc_init_erase(struct mmc_card *card)
1444{
1445	unsigned int sz;
1446
1447	if (is_power_of_2(card->erase_size))
1448		card->erase_shift = ffs(card->erase_size) - 1;
1449	else
1450		card->erase_shift = 0;
1451
1452	/*
1453	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454	 * card.  That is not desirable because it can take a long time
1455	 * (minutes) potentially delaying more important I/O, and also the
1456	 * timeout calculations become increasingly hugely over-estimated.
1457	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458	 * to that size and alignment.
1459	 *
1460	 * For SD cards that define Allocation Unit size, limit erases to one
1461	 * Allocation Unit at a time.
1462	 * For MMC, have a stab at ai good value and for modern cards it will
1463	 * end up being 4MiB. Note that if the value is too small, it can end
1464	 * up taking longer to erase. Also note, erase_size is already set to
1465	 * High Capacity Erase Size if available when this function is called.
1466	 */
1467	if (mmc_card_sd(card) && card->ssr.au) {
1468		card->pref_erase = card->ssr.au;
1469		card->erase_shift = ffs(card->ssr.au) - 1;
1470	} else if (card->erase_size) {
 
 
1471		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472		if (sz < 128)
1473			card->pref_erase = 512 * 1024 / 512;
1474		else if (sz < 512)
1475			card->pref_erase = 1024 * 1024 / 512;
1476		else if (sz < 1024)
1477			card->pref_erase = 2 * 1024 * 1024 / 512;
1478		else
1479			card->pref_erase = 4 * 1024 * 1024 / 512;
1480		if (card->pref_erase < card->erase_size)
1481			card->pref_erase = card->erase_size;
1482		else {
1483			sz = card->pref_erase % card->erase_size;
1484			if (sz)
1485				card->pref_erase += card->erase_size - sz;
1486		}
1487	} else
1488		card->pref_erase = 0;
1489}
1490
1491static bool is_trim_arg(unsigned int arg)
1492{
1493	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494}
1495
1496static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497				          unsigned int arg, unsigned int qty)
1498{
1499	unsigned int erase_timeout;
1500
1501	if (arg == MMC_DISCARD_ARG ||
1502	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503		erase_timeout = card->ext_csd.trim_timeout;
1504	} else if (card->ext_csd.erase_group_def & 1) {
1505		/* High Capacity Erase Group Size uses HC timeouts */
1506		if (arg == MMC_TRIM_ARG)
1507			erase_timeout = card->ext_csd.trim_timeout;
1508		else
1509			erase_timeout = card->ext_csd.hc_erase_timeout;
1510	} else {
1511		/* CSD Erase Group Size uses write timeout */
1512		unsigned int mult = (10 << card->csd.r2w_factor);
1513		unsigned int timeout_clks = card->csd.taac_clks * mult;
1514		unsigned int timeout_us;
1515
1516		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517		if (card->csd.taac_ns < 1000000)
1518			timeout_us = (card->csd.taac_ns * mult) / 1000;
1519		else
1520			timeout_us = (card->csd.taac_ns / 1000) * mult;
1521
1522		/*
1523		 * ios.clock is only a target.  The real clock rate might be
1524		 * less but not that much less, so fudge it by multiplying by 2.
1525		 */
1526		timeout_clks <<= 1;
1527		timeout_us += (timeout_clks * 1000) /
1528			      (card->host->ios.clock / 1000);
1529
1530		erase_timeout = timeout_us / 1000;
1531
1532		/*
1533		 * Theoretically, the calculation could underflow so round up
1534		 * to 1ms in that case.
1535		 */
1536		if (!erase_timeout)
1537			erase_timeout = 1;
1538	}
1539
1540	/* Multiplier for secure operations */
1541	if (arg & MMC_SECURE_ARGS) {
1542		if (arg == MMC_SECURE_ERASE_ARG)
1543			erase_timeout *= card->ext_csd.sec_erase_mult;
1544		else
1545			erase_timeout *= card->ext_csd.sec_trim_mult;
1546	}
1547
1548	erase_timeout *= qty;
1549
1550	/*
1551	 * Ensure at least a 1 second timeout for SPI as per
1552	 * 'mmc_set_data_timeout()'
1553	 */
1554	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555		erase_timeout = 1000;
1556
1557	return erase_timeout;
1558}
1559
1560static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561					 unsigned int arg,
1562					 unsigned int qty)
1563{
1564	unsigned int erase_timeout;
1565
1566	/* for DISCARD none of the below calculation applies.
1567	 * the busy timeout is 250msec per discard command.
1568	 */
1569	if (arg == SD_DISCARD_ARG)
1570		return SD_DISCARD_TIMEOUT_MS;
1571
1572	if (card->ssr.erase_timeout) {
1573		/* Erase timeout specified in SD Status Register (SSR) */
1574		erase_timeout = card->ssr.erase_timeout * qty +
1575				card->ssr.erase_offset;
1576	} else {
1577		/*
1578		 * Erase timeout not specified in SD Status Register (SSR) so
1579		 * use 250ms per write block.
1580		 */
1581		erase_timeout = 250 * qty;
1582	}
1583
1584	/* Must not be less than 1 second */
1585	if (erase_timeout < 1000)
1586		erase_timeout = 1000;
1587
1588	return erase_timeout;
1589}
1590
1591static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592				      unsigned int arg,
1593				      unsigned int qty)
1594{
1595	if (mmc_card_sd(card))
1596		return mmc_sd_erase_timeout(card, arg, qty);
1597	else
1598		return mmc_mmc_erase_timeout(card, arg, qty);
1599}
1600
1601static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602			unsigned int to, unsigned int arg)
1603{
1604	struct mmc_command cmd = {};
1605	unsigned int qty = 0, busy_timeout = 0;
1606	bool use_r1b_resp;
1607	int err;
1608
1609	mmc_retune_hold(card->host);
1610
1611	/*
1612	 * qty is used to calculate the erase timeout which depends on how many
1613	 * erase groups (or allocation units in SD terminology) are affected.
1614	 * We count erasing part of an erase group as one erase group.
1615	 * For SD, the allocation units are always a power of 2.  For MMC, the
1616	 * erase group size is almost certainly also power of 2, but it does not
1617	 * seem to insist on that in the JEDEC standard, so we fall back to
1618	 * division in that case.  SD may not specify an allocation unit size,
1619	 * in which case the timeout is based on the number of write blocks.
1620	 *
1621	 * Note that the timeout for secure trim 2 will only be correct if the
1622	 * number of erase groups specified is the same as the total of all
1623	 * preceding secure trim 1 commands.  Since the power may have been
1624	 * lost since the secure trim 1 commands occurred, it is generally
1625	 * impossible to calculate the secure trim 2 timeout correctly.
1626	 */
1627	if (card->erase_shift)
1628		qty += ((to >> card->erase_shift) -
1629			(from >> card->erase_shift)) + 1;
1630	else if (mmc_card_sd(card))
1631		qty += to - from + 1;
1632	else
1633		qty += ((to / card->erase_size) -
1634			(from / card->erase_size)) + 1;
1635
1636	if (!mmc_card_blockaddr(card)) {
1637		from <<= 9;
1638		to <<= 9;
1639	}
1640
1641	if (mmc_card_sd(card))
1642		cmd.opcode = SD_ERASE_WR_BLK_START;
1643	else
1644		cmd.opcode = MMC_ERASE_GROUP_START;
1645	cmd.arg = from;
1646	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648	if (err) {
1649		pr_err("mmc_erase: group start error %d, "
1650		       "status %#x\n", err, cmd.resp[0]);
1651		err = -EIO;
1652		goto out;
1653	}
1654
1655	memset(&cmd, 0, sizeof(struct mmc_command));
1656	if (mmc_card_sd(card))
1657		cmd.opcode = SD_ERASE_WR_BLK_END;
1658	else
1659		cmd.opcode = MMC_ERASE_GROUP_END;
1660	cmd.arg = to;
1661	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663	if (err) {
1664		pr_err("mmc_erase: group end error %d, status %#x\n",
1665		       err, cmd.resp[0]);
1666		err = -EIO;
1667		goto out;
1668	}
1669
1670	memset(&cmd, 0, sizeof(struct mmc_command));
1671	cmd.opcode = MMC_ERASE;
1672	cmd.arg = arg;
1673	busy_timeout = mmc_erase_timeout(card, arg, qty);
1674	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675
1676	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677	if (err) {
1678		pr_err("mmc_erase: erase error %d, status %#x\n",
1679		       err, cmd.resp[0]);
1680		err = -EIO;
1681		goto out;
1682	}
1683
1684	if (mmc_host_is_spi(card->host))
1685		goto out;
1686
1687	/*
1688	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689	 * shall be avoided.
1690	 */
1691	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692		goto out;
 
 
 
 
 
 
 
 
1693
1694	/* Let's poll to find out when the erase operation completes. */
1695	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
 
 
 
 
 
 
 
1696
 
 
1697out:
1698	mmc_retune_release(card->host);
1699	return err;
1700}
1701
1702static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703					 unsigned int *from,
1704					 unsigned int *to,
1705					 unsigned int nr)
1706{
1707	unsigned int from_new = *from, nr_new = nr, rem;
1708
1709	/*
1710	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711	 * to align the erase size efficiently.
1712	 */
1713	if (is_power_of_2(card->erase_size)) {
1714		unsigned int temp = from_new;
1715
1716		from_new = round_up(temp, card->erase_size);
1717		rem = from_new - temp;
1718
1719		if (nr_new > rem)
1720			nr_new -= rem;
1721		else
1722			return 0;
1723
1724		nr_new = round_down(nr_new, card->erase_size);
1725	} else {
1726		rem = from_new % card->erase_size;
1727		if (rem) {
1728			rem = card->erase_size - rem;
1729			from_new += rem;
1730			if (nr_new > rem)
1731				nr_new -= rem;
1732			else
1733				return 0;
1734		}
1735
1736		rem = nr_new % card->erase_size;
1737		if (rem)
1738			nr_new -= rem;
1739	}
1740
1741	if (nr_new == 0)
1742		return 0;
1743
1744	*to = from_new + nr_new;
1745	*from = from_new;
1746
1747	return nr_new;
1748}
1749
1750/**
1751 * mmc_erase - erase sectors.
1752 * @card: card to erase
1753 * @from: first sector to erase
1754 * @nr: number of sectors to erase
1755 * @arg: erase command argument
1756 *
1757 * Caller must claim host before calling this function.
1758 */
1759int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760	      unsigned int arg)
1761{
1762	unsigned int rem, to = from + nr;
1763	int err;
1764
1765	if (!(card->csd.cmdclass & CCC_ERASE))
 
1766		return -EOPNOTSUPP;
1767
1768	if (!card->erase_size)
1769		return -EOPNOTSUPP;
1770
1771	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772		return -EOPNOTSUPP;
1773
1774	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776		return -EOPNOTSUPP;
1777
1778	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780		return -EOPNOTSUPP;
1781
1782	if (arg == MMC_SECURE_ERASE_ARG) {
1783		if (from % card->erase_size || nr % card->erase_size)
1784			return -EINVAL;
1785	}
1786
1787	if (arg == MMC_ERASE_ARG)
1788		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	if (nr == 0)
1791		return 0;
1792
 
 
1793	if (to <= from)
1794		return -EINVAL;
1795
1796	/* 'from' and 'to' are inclusive */
1797	to -= 1;
1798
1799	/*
1800	 * Special case where only one erase-group fits in the timeout budget:
1801	 * If the region crosses an erase-group boundary on this particular
1802	 * case, we will be trimming more than one erase-group which, does not
1803	 * fit in the timeout budget of the controller, so we need to split it
1804	 * and call mmc_do_erase() twice if necessary. This special case is
1805	 * identified by the card->eg_boundary flag.
1806	 */
1807	rem = card->erase_size - (from % card->erase_size);
1808	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809		err = mmc_do_erase(card, from, from + rem - 1, arg);
1810		from += rem;
1811		if ((err) || (to <= from))
1812			return err;
1813	}
1814
1815	return mmc_do_erase(card, from, to, arg);
1816}
1817EXPORT_SYMBOL(mmc_erase);
1818
1819int mmc_can_erase(struct mmc_card *card)
1820{
1821	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1822		return 1;
1823	return 0;
1824}
1825EXPORT_SYMBOL(mmc_can_erase);
1826
1827int mmc_can_trim(struct mmc_card *card)
1828{
1829	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831		return 1;
1832	return 0;
1833}
1834EXPORT_SYMBOL(mmc_can_trim);
1835
1836int mmc_can_discard(struct mmc_card *card)
1837{
1838	/*
1839	 * As there's no way to detect the discard support bit at v4.5
1840	 * use the s/w feature support filed.
1841	 */
1842	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843		return 1;
1844	return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_discard);
1847
1848int mmc_can_sanitize(struct mmc_card *card)
1849{
1850	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851		return 0;
1852	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853		return 1;
1854	return 0;
1855}
 
1856
1857int mmc_can_secure_erase_trim(struct mmc_card *card)
1858{
1859	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861		return 1;
1862	return 0;
1863}
1864EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865
1866int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867			    unsigned int nr)
1868{
1869	if (!card->erase_size)
1870		return 0;
1871	if (from % card->erase_size || nr % card->erase_size)
1872		return 0;
1873	return 1;
1874}
1875EXPORT_SYMBOL(mmc_erase_group_aligned);
1876
1877static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878					    unsigned int arg)
1879{
1880	struct mmc_host *host = card->host;
1881	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882	unsigned int last_timeout = 0;
1883	unsigned int max_busy_timeout = host->max_busy_timeout ?
1884			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885
1886	if (card->erase_shift) {
1887		max_qty = UINT_MAX >> card->erase_shift;
1888		min_qty = card->pref_erase >> card->erase_shift;
1889	} else if (mmc_card_sd(card)) {
1890		max_qty = UINT_MAX;
1891		min_qty = card->pref_erase;
1892	} else {
1893		max_qty = UINT_MAX / card->erase_size;
1894		min_qty = card->pref_erase / card->erase_size;
1895	}
1896
1897	/*
1898	 * We should not only use 'host->max_busy_timeout' as the limitation
1899	 * when deciding the max discard sectors. We should set a balance value
1900	 * to improve the erase speed, and it can not get too long timeout at
1901	 * the same time.
1902	 *
1903	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904	 * matter what size of 'host->max_busy_timeout', but if the
1905	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906	 * then we can continue to increase the max discard sectors until we
1907	 * get a balance value. In cases when the 'host->max_busy_timeout'
1908	 * isn't specified, use the default max erase timeout.
1909	 */
1910	do {
1911		y = 0;
1912		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913			timeout = mmc_erase_timeout(card, arg, qty + x);
1914
1915			if (qty + x > min_qty && timeout > max_busy_timeout)
1916				break;
1917
1918			if (timeout < last_timeout)
1919				break;
1920			last_timeout = timeout;
1921			y = x;
1922		}
1923		qty += y;
1924	} while (y);
1925
1926	if (!qty)
1927		return 0;
1928
1929	/*
1930	 * When specifying a sector range to trim, chances are we might cross
1931	 * an erase-group boundary even if the amount of sectors is less than
1932	 * one erase-group.
1933	 * If we can only fit one erase-group in the controller timeout budget,
1934	 * we have to care that erase-group boundaries are not crossed by a
1935	 * single trim operation. We flag that special case with "eg_boundary".
1936	 * In all other cases we can just decrement qty and pretend that we
1937	 * always touch (qty + 1) erase-groups as a simple optimization.
1938	 */
1939	if (qty == 1)
1940		card->eg_boundary = 1;
1941	else
1942		qty--;
1943
1944	/* Convert qty to sectors */
1945	if (card->erase_shift)
1946		max_discard = qty << card->erase_shift;
1947	else if (mmc_card_sd(card))
1948		max_discard = qty + 1;
1949	else
1950		max_discard = qty * card->erase_size;
1951
1952	return max_discard;
1953}
1954
1955unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956{
1957	struct mmc_host *host = card->host;
1958	unsigned int max_discard, max_trim;
1959
 
 
 
1960	/*
1961	 * Without erase_group_def set, MMC erase timeout depends on clock
1962	 * frequence which can change.  In that case, the best choice is
1963	 * just the preferred erase size.
1964	 */
1965	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966		return card->pref_erase;
1967
1968	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969	if (mmc_can_trim(card)) {
1970		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971		if (max_trim < max_discard || max_discard == 0)
1972			max_discard = max_trim;
1973	} else if (max_discard < card->erase_size) {
1974		max_discard = 0;
1975	}
1976	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979	return max_discard;
1980}
1981EXPORT_SYMBOL(mmc_calc_max_discard);
1982
1983bool mmc_card_is_blockaddr(struct mmc_card *card)
1984{
1985	return card ? mmc_card_blockaddr(card) : false;
1986}
1987EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988
1989int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990{
1991	struct mmc_command cmd = {};
1992
1993	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1995		return 0;
1996
1997	cmd.opcode = MMC_SET_BLOCKLEN;
1998	cmd.arg = blocklen;
1999	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000	return mmc_wait_for_cmd(card->host, &cmd, 5);
2001}
2002EXPORT_SYMBOL(mmc_set_blocklen);
2003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004static void mmc_hw_reset_for_init(struct mmc_host *host)
2005{
2006	mmc_pwrseq_reset(host);
2007
2008	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009		return;
2010	host->ops->card_hw_reset(host);
 
 
2011}
2012
2013/**
2014 * mmc_hw_reset - reset the card in hardware
2015 * @card: card to be reset
2016 *
2017 * Hard reset the card. This function is only for upper layers, like the
2018 * block layer or card drivers. You cannot use it in host drivers (struct
2019 * mmc_card might be gone then).
2020 *
2021 * Return: 0 on success, -errno on failure
2022 */
2023int mmc_hw_reset(struct mmc_card *card)
2024{
2025	struct mmc_host *host = card->host;
2026	int ret;
2027
2028	ret = host->bus_ops->hw_reset(host);
2029	if (ret < 0)
2030		pr_warn("%s: tried to HW reset card, got error %d\n",
2031			mmc_hostname(host), ret);
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL(mmc_hw_reset);
2036
2037int mmc_sw_reset(struct mmc_card *card)
2038{
2039	struct mmc_host *host = card->host;
2040	int ret;
 
 
 
 
 
2041
2042	if (!host->bus_ops->sw_reset)
2043		return -EOPNOTSUPP;
2044
2045	ret = host->bus_ops->sw_reset(host);
2046	if (ret)
2047		pr_warn("%s: tried to SW reset card, got error %d\n",
2048			mmc_hostname(host), ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049
2050	return ret;
 
 
2051}
2052EXPORT_SYMBOL(mmc_sw_reset);
2053
2054static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055{
2056	host->f_init = freq;
2057
2058	pr_debug("%s: %s: trying to init card at %u Hz\n",
 
2059		mmc_hostname(host), __func__, host->f_init);
2060
2061	mmc_power_up(host, host->ocr_avail);
2062
2063	/*
2064	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065	 * do a hardware reset if possible.
2066	 */
2067	mmc_hw_reset_for_init(host);
2068
2069	/*
2070	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2071	 * if the card is being re-initialized, just send it.  CMD52
2072	 * should be ignored by SD/eMMC cards.
2073	 * Skip it if we already know that we do not support SDIO commands
2074	 */
2075	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076		sdio_reset(host);
2077
2078	mmc_go_idle(host);
2079
2080	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082			goto out;
2083		if (mmc_card_sd_express(host))
2084			return 0;
2085	}
2086
2087	/* Order's important: probe SDIO, then SD, then MMC */
2088	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089		if (!mmc_attach_sdio(host))
2090			return 0;
2091
2092	if (!(host->caps2 & MMC_CAP2_NO_SD))
2093		if (!mmc_attach_sd(host))
2094			return 0;
2095
2096	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097		if (!mmc_attach_mmc(host))
2098			return 0;
2099
2100out:
2101	mmc_power_off(host);
2102	return -EIO;
2103}
2104
2105int _mmc_detect_card_removed(struct mmc_host *host)
2106{
2107	int ret;
2108
 
 
 
2109	if (!host->card || mmc_card_removed(host->card))
2110		return 1;
2111
2112	ret = host->bus_ops->alive(host);
2113
2114	/*
2115	 * Card detect status and alive check may be out of sync if card is
2116	 * removed slowly, when card detect switch changes while card/slot
2117	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119	 * detect work 200ms later for this case.
2120	 */
2121	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122		mmc_detect_change(host, msecs_to_jiffies(200));
2123		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124	}
2125
2126	if (ret) {
2127		mmc_card_set_removed(host->card);
2128		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2129	}
2130
2131	return ret;
2132}
2133
2134int mmc_detect_card_removed(struct mmc_host *host)
2135{
2136	struct mmc_card *card = host->card;
2137	int ret;
2138
2139	WARN_ON(!host->claimed);
2140
2141	if (!card)
2142		return 1;
2143
2144	if (!mmc_card_is_removable(host))
2145		return 0;
2146
2147	ret = mmc_card_removed(card);
2148	/*
2149	 * The card will be considered unchanged unless we have been asked to
2150	 * detect a change or host requires polling to provide card detection.
2151	 */
2152	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153		return ret;
2154
2155	host->detect_change = 0;
2156	if (!ret) {
2157		ret = _mmc_detect_card_removed(host);
2158		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159			/*
2160			 * Schedule a detect work as soon as possible to let a
2161			 * rescan handle the card removal.
2162			 */
2163			cancel_delayed_work(&host->detect);
2164			_mmc_detect_change(host, 0, false);
2165		}
2166	}
2167
2168	return ret;
2169}
2170EXPORT_SYMBOL(mmc_detect_card_removed);
2171
2172int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173{
2174	unsigned int boot_sectors_num;
2175
2176	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177		return -EOPNOTSUPP;
2178
2179	/* filter out unrelated cards */
2180	if (card->ext_csd.rev < 3 ||
2181	    !mmc_card_mmc(card) ||
2182	    !mmc_card_is_blockaddr(card) ||
2183	     mmc_card_is_removable(card->host))
2184		return -ENOENT;
2185
2186	/*
2187	 * eMMC storage has two special boot partitions in addition to the
2188	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189	 * accesses, this means that the partition table addresses are shifted
2190	 * by the size of boot partitions.  In accordance with the eMMC
2191	 * specification, the boot partition size is calculated as follows:
2192	 *
2193	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2194	 *
2195	 * Calculate number of sectors occupied by the both boot partitions.
2196	 */
2197	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2199
2200	/* Defined by NVIDIA and used by Android devices. */
2201	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202
2203	return 0;
2204}
2205EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206
2207void mmc_rescan(struct work_struct *work)
2208{
2209	struct mmc_host *host =
2210		container_of(work, struct mmc_host, detect.work);
2211	int i;
2212
2213	if (host->rescan_disable)
2214		return;
2215
2216	/* If there is a non-removable card registered, only scan once */
2217	if (!mmc_card_is_removable(host) && host->rescan_entered)
2218		return;
2219	host->rescan_entered = 1;
2220
2221	if (host->trigger_card_event && host->ops->card_event) {
2222		mmc_claim_host(host);
2223		host->ops->card_event(host);
2224		mmc_release_host(host);
2225		host->trigger_card_event = false;
2226	}
2227
2228	/* Verify a registered card to be functional, else remove it. */
2229	if (host->bus_ops)
 
 
 
 
2230		host->bus_ops->detect(host);
2231
2232	host->detect_change = 0;
2233
 
 
 
 
 
 
 
2234	/* if there still is a card present, stop here */
2235	if (host->bus_ops != NULL)
 
2236		goto out;
 
2237
2238	mmc_claim_host(host);
2239	if (mmc_card_is_removable(host) && host->ops->get_cd &&
 
 
 
 
 
2240			host->ops->get_cd(host) == 0) {
 
2241		mmc_power_off(host);
2242		mmc_release_host(host);
2243		goto out;
2244	}
2245
2246	/* If an SD express card is present, then leave it as is. */
2247	if (mmc_card_sd_express(host)) {
2248		mmc_release_host(host);
2249		goto out;
2250	}
2251
2252	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253		unsigned int freq = freqs[i];
2254		if (freq > host->f_max) {
2255			if (i + 1 < ARRAY_SIZE(freqs))
2256				continue;
2257			freq = host->f_max;
2258		}
2259		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260			break;
2261		if (freqs[i] <= host->f_min)
2262			break;
2263	}
2264
2265	/* A non-removable card should have been detected by now. */
2266	if (!mmc_card_is_removable(host) && !host->bus_ops)
2267		pr_info("%s: Failed to initialize a non-removable card",
2268			mmc_hostname(host));
2269
2270	/*
2271	 * Ignore the command timeout errors observed during
2272	 * the card init as those are excepted.
2273	 */
2274	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275	mmc_release_host(host);
2276
2277 out:
2278	if (host->caps & MMC_CAP_NEEDS_POLL)
2279		mmc_schedule_delayed_work(&host->detect, HZ);
2280}
2281
2282void mmc_start_host(struct mmc_host *host)
2283{
2284	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285	host->rescan_disable = 0;
2286
2287	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288		mmc_claim_host(host);
2289		mmc_power_up(host, host->ocr_avail);
2290		mmc_release_host(host);
2291	}
2292
2293	mmc_gpiod_request_cd_irq(host);
2294	_mmc_detect_change(host, 0, false);
2295}
2296
2297void __mmc_stop_host(struct mmc_host *host)
2298{
2299	if (host->slot.cd_irq >= 0) {
2300		mmc_gpio_set_cd_wake(host, false);
 
 
 
 
 
2301		disable_irq(host->slot.cd_irq);
2302	}
2303
2304	host->rescan_disable = 1;
2305	cancel_delayed_work_sync(&host->detect);
2306}
2307
2308void mmc_stop_host(struct mmc_host *host)
2309{
2310	__mmc_stop_host(host);
2311
2312	/* clear pm flags now and let card drivers set them as needed */
2313	host->pm_flags = 0;
2314
2315	if (host->bus_ops) {
 
2316		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317		host->bus_ops->remove(host);
2318		mmc_claim_host(host);
2319		mmc_detach_bus(host);
2320		mmc_power_off(host);
2321		mmc_release_host(host);
 
2322		return;
2323	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2324
2325	mmc_claim_host(host);
2326	mmc_power_off(host);
2327	mmc_release_host(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328}
2329
2330static int __init mmc_init(void)
2331{
2332	int ret;
2333
 
 
 
 
2334	ret = mmc_register_bus();
2335	if (ret)
2336		return ret;
2337
2338	ret = mmc_register_host_class();
2339	if (ret)
2340		goto unregister_bus;
2341
2342	ret = sdio_register_bus();
2343	if (ret)
2344		goto unregister_host_class;
2345
2346	return 0;
2347
2348unregister_host_class:
2349	mmc_unregister_host_class();
2350unregister_bus:
2351	mmc_unregister_bus();
 
 
 
2352	return ret;
2353}
2354
2355static void __exit mmc_exit(void)
2356{
2357	sdio_unregister_bus();
2358	mmc_unregister_host_class();
2359	mmc_unregister_bus();
 
2360}
2361
2362subsys_initcall(mmc_init);
2363module_exit(mmc_exit);
2364
2365MODULE_LICENSE("GPL");