Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1#include <linux/dmaengine.h>
   2#include <linux/dma-mapping.h>
   3#include <linux/platform_device.h>
   4#include <linux/module.h>
   5#include <linux/of.h>
   6#include <linux/slab.h>
   7#include <linux/of_dma.h>
   8#include <linux/of_irq.h>
   9#include <linux/dmapool.h>
  10#include <linux/interrupt.h>
  11#include <linux/of_address.h>
  12#include <linux/pm_runtime.h>
  13#include "dmaengine.h"
  14
  15#define DESC_TYPE	27
  16#define DESC_TYPE_HOST	0x10
  17#define DESC_TYPE_TEARD	0x13
  18
  19#define TD_DESC_IS_RX	(1 << 16)
  20#define TD_DESC_DMA_NUM	10
  21
  22#define DESC_LENGTH_BITS_NUM	21
  23
  24#define DESC_TYPE_USB	(5 << 26)
  25#define DESC_PD_COMPLETE	(1 << 31)
  26
  27/* DMA engine */
  28#define DMA_TDFDQ	4
  29#define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
  30#define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
  31#define RXHPCRA0		4
  32
  33#define GCR_CHAN_ENABLE		(1 << 31)
  34#define GCR_TEARDOWN		(1 << 30)
  35#define GCR_STARV_RETRY		(1 << 24)
  36#define GCR_DESC_TYPE_HOST	(1 << 14)
  37
  38/* DMA scheduler */
  39#define DMA_SCHED_CTRL		0
  40#define DMA_SCHED_CTRL_EN	(1 << 31)
  41#define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
  42
  43#define SCHED_ENTRY0_CHAN(x)	((x) << 0)
  44#define SCHED_ENTRY0_IS_RX	(1 << 7)
  45
  46#define SCHED_ENTRY1_CHAN(x)	((x) << 8)
  47#define SCHED_ENTRY1_IS_RX	(1 << 15)
  48
  49#define SCHED_ENTRY2_CHAN(x)	((x) << 16)
  50#define SCHED_ENTRY2_IS_RX	(1 << 23)
  51
  52#define SCHED_ENTRY3_CHAN(x)	((x) << 24)
  53#define SCHED_ENTRY3_IS_RX	(1 << 31)
  54
  55/* Queue manager */
  56/* 4 KiB of memory for descriptors, 2 for each endpoint */
  57#define ALLOC_DECS_NUM		128
  58#define DESCS_AREAS		1
  59#define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
  60#define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
  61
  62#define QMGR_LRAM0_BASE		0x80
  63#define QMGR_LRAM_SIZE		0x84
  64#define QMGR_LRAM1_BASE		0x88
  65#define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
  66#define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
  67#define QMGR_MEMCTRL_IDX_SH	16
  68#define QMGR_MEMCTRL_DESC_SH	8
  69
  70#define QMGR_NUM_PEND	5
  71#define QMGR_PEND(x)	(0x90 + (x) * 4)
  72
  73#define QMGR_PENDING_SLOT_Q(x)	(x / 32)
  74#define QMGR_PENDING_BIT_Q(x)	(x % 32)
  75
  76#define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
  77#define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
  78#define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
  79#define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
  80
  81/* Glue layer specific */
  82/* USBSS  / USB AM335x */
  83#define USBSS_IRQ_STATUS	0x28
  84#define USBSS_IRQ_ENABLER	0x2c
  85#define USBSS_IRQ_CLEARR	0x30
  86
  87#define USBSS_IRQ_PD_COMP	(1 <<  2)
  88
  89struct cppi41_channel {
  90	struct dma_chan chan;
  91	struct dma_async_tx_descriptor txd;
  92	struct cppi41_dd *cdd;
  93	struct cppi41_desc *desc;
  94	dma_addr_t desc_phys;
  95	void __iomem *gcr_reg;
  96	int is_tx;
  97	u32 residue;
  98
  99	unsigned int q_num;
 100	unsigned int q_comp_num;
 101	unsigned int port_num;
 102
 103	unsigned td_retry;
 104	unsigned td_queued:1;
 105	unsigned td_seen:1;
 106	unsigned td_desc_seen:1;
 107};
 108
 109struct cppi41_desc {
 110	u32 pd0;
 111	u32 pd1;
 112	u32 pd2;
 113	u32 pd3;
 114	u32 pd4;
 115	u32 pd5;
 116	u32 pd6;
 117	u32 pd7;
 118} __aligned(32);
 119
 120struct chan_queues {
 121	u16 submit;
 122	u16 complete;
 123};
 124
 125struct cppi41_dd {
 126	struct dma_device ddev;
 127
 128	void *qmgr_scratch;
 129	dma_addr_t scratch_phys;
 130
 131	struct cppi41_desc *cd;
 132	dma_addr_t descs_phys;
 133	u32 first_td_desc;
 134	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
 135
 136	void __iomem *usbss_mem;
 137	void __iomem *ctrl_mem;
 138	void __iomem *sched_mem;
 139	void __iomem *qmgr_mem;
 140	unsigned int irq;
 141	const struct chan_queues *queues_rx;
 142	const struct chan_queues *queues_tx;
 143	struct chan_queues td_queue;
 144
 145	/* context for suspend/resume */
 146	unsigned int dma_tdfdq;
 147};
 148
 149#define FIST_COMPLETION_QUEUE	93
 150static struct chan_queues usb_queues_tx[] = {
 151	/* USB0 ENDP 1 */
 152	[ 0] = { .submit = 32, .complete =  93},
 153	[ 1] = { .submit = 34, .complete =  94},
 154	[ 2] = { .submit = 36, .complete =  95},
 155	[ 3] = { .submit = 38, .complete =  96},
 156	[ 4] = { .submit = 40, .complete =  97},
 157	[ 5] = { .submit = 42, .complete =  98},
 158	[ 6] = { .submit = 44, .complete =  99},
 159	[ 7] = { .submit = 46, .complete = 100},
 160	[ 8] = { .submit = 48, .complete = 101},
 161	[ 9] = { .submit = 50, .complete = 102},
 162	[10] = { .submit = 52, .complete = 103},
 163	[11] = { .submit = 54, .complete = 104},
 164	[12] = { .submit = 56, .complete = 105},
 165	[13] = { .submit = 58, .complete = 106},
 166	[14] = { .submit = 60, .complete = 107},
 167
 168	/* USB1 ENDP1 */
 169	[15] = { .submit = 62, .complete = 125},
 170	[16] = { .submit = 64, .complete = 126},
 171	[17] = { .submit = 66, .complete = 127},
 172	[18] = { .submit = 68, .complete = 128},
 173	[19] = { .submit = 70, .complete = 129},
 174	[20] = { .submit = 72, .complete = 130},
 175	[21] = { .submit = 74, .complete = 131},
 176	[22] = { .submit = 76, .complete = 132},
 177	[23] = { .submit = 78, .complete = 133},
 178	[24] = { .submit = 80, .complete = 134},
 179	[25] = { .submit = 82, .complete = 135},
 180	[26] = { .submit = 84, .complete = 136},
 181	[27] = { .submit = 86, .complete = 137},
 182	[28] = { .submit = 88, .complete = 138},
 183	[29] = { .submit = 90, .complete = 139},
 184};
 185
 186static const struct chan_queues usb_queues_rx[] = {
 187	/* USB0 ENDP 1 */
 188	[ 0] = { .submit =  1, .complete = 109},
 189	[ 1] = { .submit =  2, .complete = 110},
 190	[ 2] = { .submit =  3, .complete = 111},
 191	[ 3] = { .submit =  4, .complete = 112},
 192	[ 4] = { .submit =  5, .complete = 113},
 193	[ 5] = { .submit =  6, .complete = 114},
 194	[ 6] = { .submit =  7, .complete = 115},
 195	[ 7] = { .submit =  8, .complete = 116},
 196	[ 8] = { .submit =  9, .complete = 117},
 197	[ 9] = { .submit = 10, .complete = 118},
 198	[10] = { .submit = 11, .complete = 119},
 199	[11] = { .submit = 12, .complete = 120},
 200	[12] = { .submit = 13, .complete = 121},
 201	[13] = { .submit = 14, .complete = 122},
 202	[14] = { .submit = 15, .complete = 123},
 203
 204	/* USB1 ENDP 1 */
 205	[15] = { .submit = 16, .complete = 141},
 206	[16] = { .submit = 17, .complete = 142},
 207	[17] = { .submit = 18, .complete = 143},
 208	[18] = { .submit = 19, .complete = 144},
 209	[19] = { .submit = 20, .complete = 145},
 210	[20] = { .submit = 21, .complete = 146},
 211	[21] = { .submit = 22, .complete = 147},
 212	[22] = { .submit = 23, .complete = 148},
 213	[23] = { .submit = 24, .complete = 149},
 214	[24] = { .submit = 25, .complete = 150},
 215	[25] = { .submit = 26, .complete = 151},
 216	[26] = { .submit = 27, .complete = 152},
 217	[27] = { .submit = 28, .complete = 153},
 218	[28] = { .submit = 29, .complete = 154},
 219	[29] = { .submit = 30, .complete = 155},
 220};
 221
 222struct cppi_glue_infos {
 223	irqreturn_t (*isr)(int irq, void *data);
 224	const struct chan_queues *queues_rx;
 225	const struct chan_queues *queues_tx;
 226	struct chan_queues td_queue;
 227};
 228
 229static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
 230{
 231	return container_of(c, struct cppi41_channel, chan);
 232}
 233
 234static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
 235{
 236	struct cppi41_channel *c;
 237	u32 descs_size;
 238	u32 desc_num;
 239
 240	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
 241
 242	if (!((desc >= cdd->descs_phys) &&
 243			(desc < (cdd->descs_phys + descs_size)))) {
 244		return NULL;
 245	}
 246
 247	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
 248	BUG_ON(desc_num >= ALLOC_DECS_NUM);
 249	c = cdd->chan_busy[desc_num];
 250	cdd->chan_busy[desc_num] = NULL;
 251	return c;
 252}
 253
 254static void cppi_writel(u32 val, void *__iomem *mem)
 255{
 256	__raw_writel(val, mem);
 257}
 258
 259static u32 cppi_readl(void *__iomem *mem)
 260{
 261	return __raw_readl(mem);
 262}
 263
 264static u32 pd_trans_len(u32 val)
 265{
 266	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
 267}
 268
 269static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
 270{
 271	u32 desc;
 272
 273	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
 274	desc &= ~0x1f;
 275	return desc;
 276}
 277
 278static irqreturn_t cppi41_irq(int irq, void *data)
 279{
 280	struct cppi41_dd *cdd = data;
 281	struct cppi41_channel *c;
 282	u32 status;
 283	int i;
 284
 285	status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
 286	if (!(status & USBSS_IRQ_PD_COMP))
 287		return IRQ_NONE;
 288	cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
 289
 290	for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
 291			i++) {
 292		u32 val;
 293		u32 q_num;
 294
 295		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
 296		if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
 297			u32 mask;
 298			/* set corresponding bit for completetion Q 93 */
 299			mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
 300			/* not set all bits for queues less than Q 93 */
 301			mask--;
 302			/* now invert and keep only Q 93+ set */
 303			val &= ~mask;
 304		}
 305
 306		if (val)
 307			__iormb();
 308
 309		while (val) {
 310			u32 desc;
 311
 312			q_num = __fls(val);
 313			val &= ~(1 << q_num);
 314			q_num += 32 * i;
 315			desc = cppi41_pop_desc(cdd, q_num);
 316			c = desc_to_chan(cdd, desc);
 317			if (WARN_ON(!c)) {
 318				pr_err("%s() q %d desc %08x\n", __func__,
 319						q_num, desc);
 320				continue;
 321			}
 322			c->residue = pd_trans_len(c->desc->pd6) -
 323				pd_trans_len(c->desc->pd0);
 324
 325			dma_cookie_complete(&c->txd);
 326			c->txd.callback(c->txd.callback_param);
 327		}
 328	}
 329	return IRQ_HANDLED;
 330}
 331
 332static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
 333{
 334	dma_cookie_t cookie;
 335
 336	cookie = dma_cookie_assign(tx);
 337
 338	return cookie;
 339}
 340
 341static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
 342{
 343	struct cppi41_channel *c = to_cpp41_chan(chan);
 344
 345	dma_cookie_init(chan);
 346	dma_async_tx_descriptor_init(&c->txd, chan);
 347	c->txd.tx_submit = cppi41_tx_submit;
 348
 349	if (!c->is_tx)
 350		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
 351
 352	return 0;
 353}
 354
 355static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
 356{
 357}
 358
 359static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
 360	dma_cookie_t cookie, struct dma_tx_state *txstate)
 361{
 362	struct cppi41_channel *c = to_cpp41_chan(chan);
 363	enum dma_status ret;
 364
 365	/* lock */
 366	ret = dma_cookie_status(chan, cookie, txstate);
 367	if (txstate && ret == DMA_COMPLETE)
 368		txstate->residue = c->residue;
 369	/* unlock */
 370
 371	return ret;
 372}
 373
 374static void push_desc_queue(struct cppi41_channel *c)
 375{
 376	struct cppi41_dd *cdd = c->cdd;
 377	u32 desc_num;
 378	u32 desc_phys;
 379	u32 reg;
 380
 381	desc_phys = lower_32_bits(c->desc_phys);
 382	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 383	WARN_ON(cdd->chan_busy[desc_num]);
 384	cdd->chan_busy[desc_num] = c;
 385
 386	reg = (sizeof(struct cppi41_desc) - 24) / 4;
 387	reg |= desc_phys;
 388	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
 389}
 390
 391static void cppi41_dma_issue_pending(struct dma_chan *chan)
 392{
 393	struct cppi41_channel *c = to_cpp41_chan(chan);
 394	u32 reg;
 395
 396	c->residue = 0;
 397
 398	reg = GCR_CHAN_ENABLE;
 399	if (!c->is_tx) {
 400		reg |= GCR_STARV_RETRY;
 401		reg |= GCR_DESC_TYPE_HOST;
 402		reg |= c->q_comp_num;
 403	}
 404
 405	cppi_writel(reg, c->gcr_reg);
 406
 407	/*
 408	 * We don't use writel() but __raw_writel() so we have to make sure
 409	 * that the DMA descriptor in coherent memory made to the main memory
 410	 * before starting the dma engine.
 411	 */
 412	__iowmb();
 413	push_desc_queue(c);
 414}
 415
 416static u32 get_host_pd0(u32 length)
 417{
 418	u32 reg;
 419
 420	reg = DESC_TYPE_HOST << DESC_TYPE;
 421	reg |= length;
 422
 423	return reg;
 424}
 425
 426static u32 get_host_pd1(struct cppi41_channel *c)
 427{
 428	u32 reg;
 429
 430	reg = 0;
 431
 432	return reg;
 433}
 434
 435static u32 get_host_pd2(struct cppi41_channel *c)
 436{
 437	u32 reg;
 438
 439	reg = DESC_TYPE_USB;
 440	reg |= c->q_comp_num;
 441
 442	return reg;
 443}
 444
 445static u32 get_host_pd3(u32 length)
 446{
 447	u32 reg;
 448
 449	/* PD3 = packet size */
 450	reg = length;
 451
 452	return reg;
 453}
 454
 455static u32 get_host_pd6(u32 length)
 456{
 457	u32 reg;
 458
 459	/* PD6 buffer size */
 460	reg = DESC_PD_COMPLETE;
 461	reg |= length;
 462
 463	return reg;
 464}
 465
 466static u32 get_host_pd4_or_7(u32 addr)
 467{
 468	u32 reg;
 469
 470	reg = addr;
 471
 472	return reg;
 473}
 474
 475static u32 get_host_pd5(void)
 476{
 477	u32 reg;
 478
 479	reg = 0;
 480
 481	return reg;
 482}
 483
 484static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
 485	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
 486	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
 487{
 488	struct cppi41_channel *c = to_cpp41_chan(chan);
 489	struct cppi41_desc *d;
 490	struct scatterlist *sg;
 491	unsigned int i;
 492	unsigned int num;
 493
 494	num = 0;
 495	d = c->desc;
 496	for_each_sg(sgl, sg, sg_len, i) {
 497		u32 addr;
 498		u32 len;
 499
 500		/* We need to use more than one desc once musb supports sg */
 501		BUG_ON(num > 0);
 502		addr = lower_32_bits(sg_dma_address(sg));
 503		len = sg_dma_len(sg);
 504
 505		d->pd0 = get_host_pd0(len);
 506		d->pd1 = get_host_pd1(c);
 507		d->pd2 = get_host_pd2(c);
 508		d->pd3 = get_host_pd3(len);
 509		d->pd4 = get_host_pd4_or_7(addr);
 510		d->pd5 = get_host_pd5();
 511		d->pd6 = get_host_pd6(len);
 512		d->pd7 = get_host_pd4_or_7(addr);
 513
 514		d++;
 515	}
 516
 517	return &c->txd;
 518}
 519
 520static int cpp41_cfg_chan(struct cppi41_channel *c,
 521		struct dma_slave_config *cfg)
 522{
 523	return 0;
 524}
 525
 526static void cppi41_compute_td_desc(struct cppi41_desc *d)
 527{
 528	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
 529}
 530
 531static int cppi41_tear_down_chan(struct cppi41_channel *c)
 532{
 533	struct cppi41_dd *cdd = c->cdd;
 534	struct cppi41_desc *td;
 535	u32 reg;
 536	u32 desc_phys;
 537	u32 td_desc_phys;
 538
 539	td = cdd->cd;
 540	td += cdd->first_td_desc;
 541
 542	td_desc_phys = cdd->descs_phys;
 543	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
 544
 545	if (!c->td_queued) {
 546		cppi41_compute_td_desc(td);
 547		__iowmb();
 548
 549		reg = (sizeof(struct cppi41_desc) - 24) / 4;
 550		reg |= td_desc_phys;
 551		cppi_writel(reg, cdd->qmgr_mem +
 552				QMGR_QUEUE_D(cdd->td_queue.submit));
 553
 554		reg = GCR_CHAN_ENABLE;
 555		if (!c->is_tx) {
 556			reg |= GCR_STARV_RETRY;
 557			reg |= GCR_DESC_TYPE_HOST;
 558			reg |= c->q_comp_num;
 559		}
 560		reg |= GCR_TEARDOWN;
 561		cppi_writel(reg, c->gcr_reg);
 562		c->td_queued = 1;
 563		c->td_retry = 100;
 564	}
 565
 566	if (!c->td_seen || !c->td_desc_seen) {
 567
 568		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
 569		if (!desc_phys)
 570			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 571
 572		if (desc_phys == c->desc_phys) {
 573			c->td_desc_seen = 1;
 574
 575		} else if (desc_phys == td_desc_phys) {
 576			u32 pd0;
 577
 578			__iormb();
 579			pd0 = td->pd0;
 580			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
 581			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
 582			WARN_ON((pd0 & 0x1f) != c->port_num);
 583			c->td_seen = 1;
 584		} else if (desc_phys) {
 585			WARN_ON_ONCE(1);
 586		}
 587	}
 588	c->td_retry--;
 589	/*
 590	 * If the TX descriptor / channel is in use, the caller needs to poke
 591	 * his TD bit multiple times. After that he hardware releases the
 592	 * transfer descriptor followed by TD descriptor. Waiting seems not to
 593	 * cause any difference.
 594	 * RX seems to be thrown out right away. However once the TearDown
 595	 * descriptor gets through we are done. If we have seens the transfer
 596	 * descriptor before the TD we fetch it from enqueue, it has to be
 597	 * there waiting for us.
 598	 */
 599	if (!c->td_seen && c->td_retry)
 600		return -EAGAIN;
 601
 602	WARN_ON(!c->td_retry);
 603	if (!c->td_desc_seen) {
 604		desc_phys = cppi41_pop_desc(cdd, c->q_num);
 605		WARN_ON(!desc_phys);
 606	}
 607
 608	c->td_queued = 0;
 609	c->td_seen = 0;
 610	c->td_desc_seen = 0;
 611	cppi_writel(0, c->gcr_reg);
 612	return 0;
 613}
 614
 615static int cppi41_stop_chan(struct dma_chan *chan)
 616{
 617	struct cppi41_channel *c = to_cpp41_chan(chan);
 618	struct cppi41_dd *cdd = c->cdd;
 619	u32 desc_num;
 620	u32 desc_phys;
 621	int ret;
 622
 623	desc_phys = lower_32_bits(c->desc_phys);
 624	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 625	if (!cdd->chan_busy[desc_num])
 626		return 0;
 627
 628	ret = cppi41_tear_down_chan(c);
 629	if (ret)
 630		return ret;
 631
 632	WARN_ON(!cdd->chan_busy[desc_num]);
 633	cdd->chan_busy[desc_num] = NULL;
 634
 635	return 0;
 636}
 637
 638static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 639	unsigned long arg)
 640{
 641	struct cppi41_channel *c = to_cpp41_chan(chan);
 642	int ret;
 643
 644	switch (cmd) {
 645	case DMA_SLAVE_CONFIG:
 646		ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
 647		break;
 648
 649	case DMA_TERMINATE_ALL:
 650		ret = cppi41_stop_chan(chan);
 651		break;
 652
 653	default:
 654		ret = -ENXIO;
 655		break;
 656	}
 657	return ret;
 658}
 659
 660static void cleanup_chans(struct cppi41_dd *cdd)
 661{
 662	while (!list_empty(&cdd->ddev.channels)) {
 663		struct cppi41_channel *cchan;
 664
 665		cchan = list_first_entry(&cdd->ddev.channels,
 666				struct cppi41_channel, chan.device_node);
 667		list_del(&cchan->chan.device_node);
 668		kfree(cchan);
 669	}
 670}
 671
 672static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
 673{
 674	struct cppi41_channel *cchan;
 675	int i;
 676	int ret;
 677	u32 n_chans;
 678
 679	ret = of_property_read_u32(dev->of_node, "#dma-channels",
 680			&n_chans);
 681	if (ret)
 682		return ret;
 683	/*
 684	 * The channels can only be used as TX or as RX. So we add twice
 685	 * that much dma channels because USB can only do RX or TX.
 686	 */
 687	n_chans *= 2;
 688
 689	for (i = 0; i < n_chans; i++) {
 690		cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
 691		if (!cchan)
 692			goto err;
 693
 694		cchan->cdd = cdd;
 695		if (i & 1) {
 696			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
 697			cchan->is_tx = 1;
 698		} else {
 699			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
 700			cchan->is_tx = 0;
 701		}
 702		cchan->port_num = i >> 1;
 703		cchan->desc = &cdd->cd[i];
 704		cchan->desc_phys = cdd->descs_phys;
 705		cchan->desc_phys += i * sizeof(struct cppi41_desc);
 706		cchan->chan.device = &cdd->ddev;
 707		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
 708	}
 709	cdd->first_td_desc = n_chans;
 710
 711	return 0;
 712err:
 713	cleanup_chans(cdd);
 714	return -ENOMEM;
 715}
 716
 717static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
 718{
 719	unsigned int mem_decs;
 720	int i;
 721
 722	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
 723
 724	for (i = 0; i < DESCS_AREAS; i++) {
 725
 726		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
 727		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 728
 729		dma_free_coherent(dev, mem_decs, cdd->cd,
 730				cdd->descs_phys);
 731	}
 732}
 733
 734static void disable_sched(struct cppi41_dd *cdd)
 735{
 736	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 737}
 738
 739static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
 740{
 741	disable_sched(cdd);
 742
 743	purge_descs(dev, cdd);
 744
 745	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 746	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 747	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
 748			cdd->scratch_phys);
 749}
 750
 751static int init_descs(struct device *dev, struct cppi41_dd *cdd)
 752{
 753	unsigned int desc_size;
 754	unsigned int mem_decs;
 755	int i;
 756	u32 reg;
 757	u32 idx;
 758
 759	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
 760			(sizeof(struct cppi41_desc) - 1));
 761	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
 762	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
 763
 764	desc_size = sizeof(struct cppi41_desc);
 765	mem_decs = ALLOC_DECS_NUM * desc_size;
 766
 767	idx = 0;
 768	for (i = 0; i < DESCS_AREAS; i++) {
 769
 770		reg = idx << QMGR_MEMCTRL_IDX_SH;
 771		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
 772		reg |= ilog2(ALLOC_DECS_NUM) - 5;
 773
 774		BUILD_BUG_ON(DESCS_AREAS != 1);
 775		cdd->cd = dma_alloc_coherent(dev, mem_decs,
 776				&cdd->descs_phys, GFP_KERNEL);
 777		if (!cdd->cd)
 778			return -ENOMEM;
 779
 780		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
 781		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 782
 783		idx += ALLOC_DECS_NUM;
 784	}
 785	return 0;
 786}
 787
 788static void init_sched(struct cppi41_dd *cdd)
 789{
 790	unsigned ch;
 791	unsigned word;
 792	u32 reg;
 793
 794	word = 0;
 795	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 796	for (ch = 0; ch < 15 * 2; ch += 2) {
 797
 798		reg = SCHED_ENTRY0_CHAN(ch);
 799		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
 800
 801		reg |= SCHED_ENTRY2_CHAN(ch + 1);
 802		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
 803		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
 804		word++;
 805	}
 806	reg = 15 * 2 * 2 - 1;
 807	reg |= DMA_SCHED_CTRL_EN;
 808	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
 809}
 810
 811static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
 812{
 813	int ret;
 814
 815	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
 816	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
 817			&cdd->scratch_phys, GFP_KERNEL);
 818	if (!cdd->qmgr_scratch)
 819		return -ENOMEM;
 820
 821	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 822	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
 823	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
 824
 825	ret = init_descs(dev, cdd);
 826	if (ret)
 827		goto err_td;
 828
 829	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
 830	init_sched(cdd);
 831	return 0;
 832err_td:
 833	deinit_cppi41(dev, cdd);
 834	return ret;
 835}
 836
 837static struct platform_driver cpp41_dma_driver;
 838/*
 839 * The param format is:
 840 * X Y
 841 * X: Port
 842 * Y: 0 = RX else TX
 843 */
 844#define INFO_PORT	0
 845#define INFO_IS_TX	1
 846
 847static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
 848{
 849	struct cppi41_channel *cchan;
 850	struct cppi41_dd *cdd;
 851	const struct chan_queues *queues;
 852	u32 *num = param;
 853
 854	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
 855		return false;
 856
 857	cchan = to_cpp41_chan(chan);
 858
 859	if (cchan->port_num != num[INFO_PORT])
 860		return false;
 861
 862	if (cchan->is_tx && !num[INFO_IS_TX])
 863		return false;
 864	cdd = cchan->cdd;
 865	if (cchan->is_tx)
 866		queues = cdd->queues_tx;
 867	else
 868		queues = cdd->queues_rx;
 869
 870	BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
 871	if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
 872		return false;
 873
 874	cchan->q_num = queues[cchan->port_num].submit;
 875	cchan->q_comp_num = queues[cchan->port_num].complete;
 876	return true;
 877}
 878
 879static struct of_dma_filter_info cpp41_dma_info = {
 880	.filter_fn = cpp41_dma_filter_fn,
 881};
 882
 883static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
 884		struct of_dma *ofdma)
 885{
 886	int count = dma_spec->args_count;
 887	struct of_dma_filter_info *info = ofdma->of_dma_data;
 888
 889	if (!info || !info->filter_fn)
 890		return NULL;
 891
 892	if (count != 2)
 893		return NULL;
 894
 895	return dma_request_channel(info->dma_cap, info->filter_fn,
 896			&dma_spec->args[0]);
 897}
 898
 899static const struct cppi_glue_infos usb_infos = {
 900	.isr = cppi41_irq,
 901	.queues_rx = usb_queues_rx,
 902	.queues_tx = usb_queues_tx,
 903	.td_queue = { .submit = 31, .complete = 0 },
 904};
 905
 906static const struct of_device_id cppi41_dma_ids[] = {
 907	{ .compatible = "ti,am3359-cppi41", .data = &usb_infos},
 908	{},
 909};
 910MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
 911
 912static const struct cppi_glue_infos *get_glue_info(struct device *dev)
 913{
 914	const struct of_device_id *of_id;
 915
 916	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
 917	if (!of_id)
 918		return NULL;
 919	return of_id->data;
 920}
 921
 922static int cppi41_dma_probe(struct platform_device *pdev)
 923{
 924	struct cppi41_dd *cdd;
 925	struct device *dev = &pdev->dev;
 926	const struct cppi_glue_infos *glue_info;
 927	int irq;
 928	int ret;
 929
 930	glue_info = get_glue_info(dev);
 931	if (!glue_info)
 932		return -EINVAL;
 933
 934	cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
 935	if (!cdd)
 936		return -ENOMEM;
 937
 938	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
 939	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
 940	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
 941	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
 942	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
 943	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
 944	cdd->ddev.device_control = cppi41_dma_control;
 945	cdd->ddev.dev = dev;
 946	INIT_LIST_HEAD(&cdd->ddev.channels);
 947	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
 948
 949	cdd->usbss_mem = of_iomap(dev->of_node, 0);
 950	cdd->ctrl_mem = of_iomap(dev->of_node, 1);
 951	cdd->sched_mem = of_iomap(dev->of_node, 2);
 952	cdd->qmgr_mem = of_iomap(dev->of_node, 3);
 953
 954	if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
 955			!cdd->qmgr_mem) {
 956		ret = -ENXIO;
 957		goto err_remap;
 958	}
 959
 960	pm_runtime_enable(dev);
 961	ret = pm_runtime_get_sync(dev);
 962	if (ret < 0)
 963		goto err_get_sync;
 964
 965	cdd->queues_rx = glue_info->queues_rx;
 966	cdd->queues_tx = glue_info->queues_tx;
 967	cdd->td_queue = glue_info->td_queue;
 968
 969	ret = init_cppi41(dev, cdd);
 970	if (ret)
 971		goto err_init_cppi;
 972
 973	ret = cppi41_add_chans(dev, cdd);
 974	if (ret)
 975		goto err_chans;
 976
 977	irq = irq_of_parse_and_map(dev->of_node, 0);
 978	if (!irq) {
 979		ret = -EINVAL;
 980		goto err_irq;
 981	}
 982
 983	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
 984
 985	ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
 986			dev_name(dev), cdd);
 987	if (ret)
 988		goto err_irq;
 989	cdd->irq = irq;
 990
 991	ret = dma_async_device_register(&cdd->ddev);
 992	if (ret)
 993		goto err_dma_reg;
 994
 995	ret = of_dma_controller_register(dev->of_node,
 996			cppi41_dma_xlate, &cpp41_dma_info);
 997	if (ret)
 998		goto err_of;
 999
1000	platform_set_drvdata(pdev, cdd);
1001	return 0;
1002err_of:
1003	dma_async_device_unregister(&cdd->ddev);
1004err_dma_reg:
1005	free_irq(irq, cdd);
1006err_irq:
1007	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1008	cleanup_chans(cdd);
1009err_chans:
1010	deinit_cppi41(dev, cdd);
1011err_init_cppi:
1012	pm_runtime_put(dev);
1013err_get_sync:
1014	pm_runtime_disable(dev);
1015	iounmap(cdd->usbss_mem);
1016	iounmap(cdd->ctrl_mem);
1017	iounmap(cdd->sched_mem);
1018	iounmap(cdd->qmgr_mem);
1019err_remap:
1020	kfree(cdd);
1021	return ret;
1022}
1023
1024static int cppi41_dma_remove(struct platform_device *pdev)
1025{
1026	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1027
1028	of_dma_controller_free(pdev->dev.of_node);
1029	dma_async_device_unregister(&cdd->ddev);
1030
1031	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1032	free_irq(cdd->irq, cdd);
1033	cleanup_chans(cdd);
1034	deinit_cppi41(&pdev->dev, cdd);
1035	iounmap(cdd->usbss_mem);
1036	iounmap(cdd->ctrl_mem);
1037	iounmap(cdd->sched_mem);
1038	iounmap(cdd->qmgr_mem);
1039	pm_runtime_put(&pdev->dev);
1040	pm_runtime_disable(&pdev->dev);
1041	kfree(cdd);
1042	return 0;
1043}
1044
1045#ifdef CONFIG_PM_SLEEP
1046static int cppi41_suspend(struct device *dev)
1047{
1048	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1049
1050	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1051	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1052	disable_sched(cdd);
1053
1054	return 0;
1055}
1056
1057static int cppi41_resume(struct device *dev)
1058{
1059	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1060	struct cppi41_channel *c;
1061	int i;
1062
1063	for (i = 0; i < DESCS_AREAS; i++)
1064		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1065
1066	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1067		if (!c->is_tx)
1068			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1069
1070	init_sched(cdd);
1071
1072	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1073	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1074	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1075	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1076
1077	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1078
1079	return 0;
1080}
1081#endif
1082
1083static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1084
1085static struct platform_driver cpp41_dma_driver = {
1086	.probe  = cppi41_dma_probe,
1087	.remove = cppi41_dma_remove,
1088	.driver = {
1089		.name = "cppi41-dma-engine",
1090		.owner = THIS_MODULE,
1091		.pm = &cppi41_pm_ops,
1092		.of_match_table = of_match_ptr(cppi41_dma_ids),
1093	},
1094};
1095
1096module_platform_driver(cpp41_dma_driver);
1097MODULE_LICENSE("GPL");
1098MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");