Linux Audio

Check our new training course

Loading...
v3.15
 
 
 
 
 
 
 
 
  1#include <linux/kernel.h>
  2#include <linux/module.h>
  3#include <linux/percpu_ida.h>
  4
  5#include <linux/blk-mq.h>
  6#include "blk.h"
  7#include "blk-mq.h"
  8#include "blk-mq-tag.h"
  9
 10/*
 11 * Per tagged queue (tag address space) map
 12 */
 13struct blk_mq_tags {
 14	unsigned int nr_tags;
 15	unsigned int nr_reserved_tags;
 16	unsigned int nr_batch_move;
 17	unsigned int nr_max_cache;
 18
 19	struct percpu_ida free_tags;
 20	struct percpu_ida reserved_tags;
 21};
 
 
 22
 23void blk_mq_wait_for_tags(struct blk_mq_tags *tags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24{
 25	int tag = blk_mq_get_tag(tags, __GFP_WAIT, false);
 26	blk_mq_put_tag(tags, tag);
 
 27}
 28
 29bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
 
 
 
 
 30{
 31	return !tags ||
 32		percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33}
 34
 35static unsigned int __blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp)
 
 36{
 37	int tag;
 
 
 38
 39	tag = percpu_ida_alloc(&tags->free_tags, (gfp & __GFP_WAIT) ?
 40			       TASK_UNINTERRUPTIBLE : TASK_RUNNING);
 41	if (tag < 0)
 42		return BLK_MQ_TAG_FAIL;
 43	return tag + tags->nr_reserved_tags;
 44}
 45
 46static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_tags *tags,
 47					      gfp_t gfp)
 48{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49	int tag;
 50
 51	if (unlikely(!tags->nr_reserved_tags)) {
 52		WARN_ON_ONCE(1);
 53		return BLK_MQ_TAG_FAIL;
 
 
 
 
 
 
 
 54	}
 55
 56	tag = percpu_ida_alloc(&tags->reserved_tags, (gfp & __GFP_WAIT) ?
 57			       TASK_UNINTERRUPTIBLE : TASK_RUNNING);
 58	if (tag < 0)
 59		return BLK_MQ_TAG_FAIL;
 60	return tag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61}
 62
 63unsigned int blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp, bool reserved)
 
 64{
 65	if (!reserved)
 66		return __blk_mq_get_tag(tags, gfp);
 67
 68	return __blk_mq_get_reserved_tag(tags, gfp);
 
 
 
 
 69}
 70
 71static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
 72{
 73	BUG_ON(tag >= tags->nr_tags);
 
 
 74
 75	percpu_ida_free(&tags->free_tags, tag - tags->nr_reserved_tags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76}
 77
 78static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags,
 79				      unsigned int tag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80{
 81	BUG_ON(tag >= tags->nr_reserved_tags);
 
 
 
 
 
 82
 83	percpu_ida_free(&tags->reserved_tags, tag);
 
 84}
 85
 86void blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
 
 87{
 88	if (tag >= tags->nr_reserved_tags)
 89		__blk_mq_put_tag(tags, tag);
 90	else
 91		__blk_mq_put_reserved_tag(tags, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92}
 93
 94static int __blk_mq_tag_iter(unsigned id, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95{
 96	unsigned long *tag_map = data;
 97	__set_bit(id, tag_map);
 98	return 0;
 
 
 
 
 
 
 
 99}
 
 
 
 
 
100
101void blk_mq_tag_busy_iter(struct blk_mq_tags *tags,
102			  void (*fn)(void *, unsigned long *), void *data)
 
 
 
 
 
 
 
 
 
 
 
103{
104	unsigned long *tag_map;
105	size_t map_size;
106
107	map_size = ALIGN(tags->nr_tags, BITS_PER_LONG) / BITS_PER_LONG;
108	tag_map = kzalloc(map_size * sizeof(unsigned long), GFP_ATOMIC);
109	if (!tag_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110		return;
111
112	percpu_ida_for_each_free(&tags->free_tags, __blk_mq_tag_iter, tag_map);
113	if (tags->nr_reserved_tags)
114		percpu_ida_for_each_free(&tags->reserved_tags, __blk_mq_tag_iter,
115			tag_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117	fn(data, tag_map);
118	kfree(tag_map);
 
 
 
119}
120
121struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
122				     unsigned int reserved_tags, int node)
 
123{
124	unsigned int nr_tags, nr_cache;
125	struct blk_mq_tags *tags;
126	int ret;
127
128	if (total_tags > BLK_MQ_TAG_MAX) {
129		pr_err("blk-mq: tag depth too large\n");
130		return NULL;
131	}
132
133	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
134	if (!tags)
135		return NULL;
136
137	nr_tags = total_tags - reserved_tags;
138	nr_cache = nr_tags / num_possible_cpus();
139
140	if (nr_cache < BLK_MQ_TAG_CACHE_MIN)
141		nr_cache = BLK_MQ_TAG_CACHE_MIN;
142	else if (nr_cache > BLK_MQ_TAG_CACHE_MAX)
143		nr_cache = BLK_MQ_TAG_CACHE_MAX;
144
145	tags->nr_tags = total_tags;
146	tags->nr_reserved_tags = reserved_tags;
147	tags->nr_max_cache = nr_cache;
148	tags->nr_batch_move = max(1u, nr_cache / 2);
149
150	ret = __percpu_ida_init(&tags->free_tags, tags->nr_tags -
151				tags->nr_reserved_tags,
152				tags->nr_max_cache,
153				tags->nr_batch_move);
154	if (ret)
155		goto err_free_tags;
156
157	if (reserved_tags) {
158		/*
159		 * With max_cahe and batch set to 1, the allocator fallbacks to
160		 * no cached. It's fine reserved tags allocation is slow.
161		 */
162		ret = __percpu_ida_init(&tags->reserved_tags, reserved_tags,
163				1, 1);
164		if (ret)
165			goto err_reserved_tags;
166	}
167
168	return tags;
169
170err_reserved_tags:
171	percpu_ida_destroy(&tags->free_tags);
172err_free_tags:
173	kfree(tags);
174	return NULL;
175}
176
177void blk_mq_free_tags(struct blk_mq_tags *tags)
178{
179	percpu_ida_destroy(&tags->free_tags);
180	percpu_ida_destroy(&tags->reserved_tags);
181	kfree(tags);
182}
183
184ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
185{
186	char *orig_page = page;
187	unsigned int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
188
189	if (!tags)
190		return 0;
191
192	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, batch_move=%u,"
193			" max_cache=%u\n", tags->nr_tags, tags->nr_reserved_tags,
194			tags->nr_batch_move, tags->nr_max_cache);
 
 
 
195
196	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n",
197			percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids),
198			percpu_ida_free_tags(&tags->reserved_tags, nr_cpu_ids));
 
 
 
199
200	for_each_possible_cpu(cpu) {
201		page += sprintf(page, "  cpu%02u: nr_free=%u\n", cpu,
202				percpu_ida_free_tags(&tags->free_tags, cpu));
 
 
 
 
 
 
 
 
 
 
203	}
204
205	return page - orig_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
  4 * fairer distribution of tags between multiple submitters when a shared tag map
  5 * is used.
  6 *
  7 * Copyright (C) 2013-2014 Jens Axboe
  8 */
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 
 11
 12#include <linux/delay.h>
 13#include "blk.h"
 14#include "blk-mq.h"
 15#include "blk-mq-sched.h"
 16
 17/*
 18 * Recalculate wakeup batch when tag is shared by hctx.
 19 */
 20static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
 21		unsigned int users)
 22{
 23	if (!users)
 24		return;
 25
 26	sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
 27			users);
 28	sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
 29			users);
 30}
 31
 32/*
 33 * If a previously inactive queue goes active, bump the active user count.
 34 * We need to do this before try to allocate driver tag, then even if fail
 35 * to get tag when first time, the other shared-tag users could reserve
 36 * budget for it.
 37 */
 38void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
 39{
 40	unsigned int users;
 41	struct blk_mq_tags *tags = hctx->tags;
 42
 43	/*
 44	 * calling test_bit() prior to test_and_set_bit() is intentional,
 45	 * it avoids dirtying the cacheline if the queue is already active.
 46	 */
 47	if (blk_mq_is_shared_tags(hctx->flags)) {
 48		struct request_queue *q = hctx->queue;
 49
 50		if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
 51		    test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
 52			return;
 53	} else {
 54		if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
 55		    test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
 56			return;
 57	}
 58
 59	spin_lock_irq(&tags->lock);
 60	users = tags->active_queues + 1;
 61	WRITE_ONCE(tags->active_queues, users);
 62	blk_mq_update_wake_batch(tags, users);
 63	spin_unlock_irq(&tags->lock);
 64}
 65
 66/*
 67 * Wakeup all potentially sleeping on tags
 68 */
 69void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
 70{
 71	sbitmap_queue_wake_all(&tags->bitmap_tags);
 72	if (include_reserve)
 73		sbitmap_queue_wake_all(&tags->breserved_tags);
 74}
 75
 76/*
 77 * If a previously busy queue goes inactive, potential waiters could now
 78 * be allowed to queue. Wake them up and check.
 79 */
 80void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
 81{
 82	struct blk_mq_tags *tags = hctx->tags;
 83	unsigned int users;
 84
 85	if (blk_mq_is_shared_tags(hctx->flags)) {
 86		struct request_queue *q = hctx->queue;
 87
 88		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
 89					&q->queue_flags))
 90			return;
 91	} else {
 92		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
 93			return;
 94	}
 95
 96	spin_lock_irq(&tags->lock);
 97	users = tags->active_queues - 1;
 98	WRITE_ONCE(tags->active_queues, users);
 99	blk_mq_update_wake_batch(tags, users);
100	spin_unlock_irq(&tags->lock);
101
102	blk_mq_tag_wakeup_all(tags, false);
103}
104
105static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
106			    struct sbitmap_queue *bt)
107{
108	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
109			!hctx_may_queue(data->hctx, bt))
110		return BLK_MQ_NO_TAG;
111
112	if (data->shallow_depth)
113		return sbitmap_queue_get_shallow(bt, data->shallow_depth);
114	else
115		return __sbitmap_queue_get(bt);
 
116}
117
118unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
119			      unsigned int *offset)
120{
121	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
122	struct sbitmap_queue *bt = &tags->bitmap_tags;
123	unsigned long ret;
124
125	if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
126	    data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
127		return 0;
128	ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
129	*offset += tags->nr_reserved_tags;
130	return ret;
131}
132
133unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
134{
135	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
136	struct sbitmap_queue *bt;
137	struct sbq_wait_state *ws;
138	DEFINE_SBQ_WAIT(wait);
139	unsigned int tag_offset;
140	int tag;
141
142	if (data->flags & BLK_MQ_REQ_RESERVED) {
143		if (unlikely(!tags->nr_reserved_tags)) {
144			WARN_ON_ONCE(1);
145			return BLK_MQ_NO_TAG;
146		}
147		bt = &tags->breserved_tags;
148		tag_offset = 0;
149	} else {
150		bt = &tags->bitmap_tags;
151		tag_offset = tags->nr_reserved_tags;
152	}
153
154	tag = __blk_mq_get_tag(data, bt);
155	if (tag != BLK_MQ_NO_TAG)
156		goto found_tag;
157
158	if (data->flags & BLK_MQ_REQ_NOWAIT)
159		return BLK_MQ_NO_TAG;
160
161	ws = bt_wait_ptr(bt, data->hctx);
162	do {
163		struct sbitmap_queue *bt_prev;
164
165		/*
166		 * We're out of tags on this hardware queue, kick any
167		 * pending IO submits before going to sleep waiting for
168		 * some to complete.
169		 */
170		blk_mq_run_hw_queue(data->hctx, false);
171
172		/*
173		 * Retry tag allocation after running the hardware queue,
174		 * as running the queue may also have found completions.
175		 */
176		tag = __blk_mq_get_tag(data, bt);
177		if (tag != BLK_MQ_NO_TAG)
178			break;
179
180		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
181
182		tag = __blk_mq_get_tag(data, bt);
183		if (tag != BLK_MQ_NO_TAG)
184			break;
185
186		bt_prev = bt;
187		io_schedule();
188
189		sbitmap_finish_wait(bt, ws, &wait);
190
191		data->ctx = blk_mq_get_ctx(data->q);
192		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
193						data->ctx);
194		tags = blk_mq_tags_from_data(data);
195		if (data->flags & BLK_MQ_REQ_RESERVED)
196			bt = &tags->breserved_tags;
197		else
198			bt = &tags->bitmap_tags;
199
200		/*
201		 * If destination hw queue is changed, fake wake up on
202		 * previous queue for compensating the wake up miss, so
203		 * other allocations on previous queue won't be starved.
204		 */
205		if (bt != bt_prev)
206			sbitmap_queue_wake_up(bt_prev, 1);
207
208		ws = bt_wait_ptr(bt, data->hctx);
209	} while (1);
210
211	sbitmap_finish_wait(bt, ws, &wait);
212
213found_tag:
214	/*
215	 * Give up this allocation if the hctx is inactive.  The caller will
216	 * retry on an active hctx.
217	 */
218	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
219		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
220		return BLK_MQ_NO_TAG;
221	}
222	return tag + tag_offset;
223}
224
225void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
226		    unsigned int tag)
227{
228	if (!blk_mq_tag_is_reserved(tags, tag)) {
229		const int real_tag = tag - tags->nr_reserved_tags;
230
231		BUG_ON(real_tag >= tags->nr_tags);
232		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
233	} else {
234		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
235	}
236}
237
238void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
239{
240	sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
241					tag_array, nr_tags);
242}
243
244struct bt_iter_data {
245	struct blk_mq_hw_ctx *hctx;
246	struct request_queue *q;
247	busy_tag_iter_fn *fn;
248	void *data;
249	bool reserved;
250};
251
252static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
253		unsigned int bitnr)
254{
255	struct request *rq;
256	unsigned long flags;
257
258	spin_lock_irqsave(&tags->lock, flags);
259	rq = tags->rqs[bitnr];
260	if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
261		rq = NULL;
262	spin_unlock_irqrestore(&tags->lock, flags);
263	return rq;
264}
265
266static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
267{
268	struct bt_iter_data *iter_data = data;
269	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
270	struct request_queue *q = iter_data->q;
271	struct blk_mq_tag_set *set = q->tag_set;
272	struct blk_mq_tags *tags;
273	struct request *rq;
274	bool ret = true;
275
276	if (blk_mq_is_shared_tags(set->flags))
277		tags = set->shared_tags;
278	else
279		tags = hctx->tags;
280
281	if (!iter_data->reserved)
282		bitnr += tags->nr_reserved_tags;
283	/*
284	 * We can hit rq == NULL here, because the tagging functions
285	 * test and set the bit before assigning ->rqs[].
286	 */
287	rq = blk_mq_find_and_get_req(tags, bitnr);
288	if (!rq)
289		return true;
290
291	if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
292		ret = iter_data->fn(rq, iter_data->data);
293	blk_mq_put_rq_ref(rq);
294	return ret;
295}
296
297/**
298 * bt_for_each - iterate over the requests associated with a hardware queue
299 * @hctx:	Hardware queue to examine.
300 * @q:		Request queue to examine.
301 * @bt:		sbitmap to examine. This is either the breserved_tags member
302 *		or the bitmap_tags member of struct blk_mq_tags.
303 * @fn:		Pointer to the function that will be called for each request
304 *		associated with @hctx that has been assigned a driver tag.
305 *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
306 *		where rq is a pointer to a request. Return true to continue
307 *		iterating tags, false to stop.
308 * @data:	Will be passed as third argument to @fn.
309 * @reserved:	Indicates whether @bt is the breserved_tags member or the
310 *		bitmap_tags member of struct blk_mq_tags.
311 */
312static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
313			struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
314			void *data, bool reserved)
315{
316	struct bt_iter_data iter_data = {
317		.hctx = hctx,
318		.fn = fn,
319		.data = data,
320		.reserved = reserved,
321		.q = q,
322	};
323
324	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
325}
326
327struct bt_tags_iter_data {
328	struct blk_mq_tags *tags;
329	busy_tag_iter_fn *fn;
330	void *data;
331	unsigned int flags;
332};
333
334#define BT_TAG_ITER_RESERVED		(1 << 0)
335#define BT_TAG_ITER_STARTED		(1 << 1)
336#define BT_TAG_ITER_STATIC_RQS		(1 << 2)
337
338static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
339{
340	struct bt_tags_iter_data *iter_data = data;
341	struct blk_mq_tags *tags = iter_data->tags;
342	struct request *rq;
343	bool ret = true;
344	bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
345
346	if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
347		bitnr += tags->nr_reserved_tags;
348
349	/*
350	 * We can hit rq == NULL here, because the tagging functions
351	 * test and set the bit before assigning ->rqs[].
352	 */
353	if (iter_static_rqs)
354		rq = tags->static_rqs[bitnr];
355	else
356		rq = blk_mq_find_and_get_req(tags, bitnr);
357	if (!rq)
358		return true;
359
360	if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
361	    blk_mq_request_started(rq))
362		ret = iter_data->fn(rq, iter_data->data);
363	if (!iter_static_rqs)
364		blk_mq_put_rq_ref(rq);
365	return ret;
366}
367
368/**
369 * bt_tags_for_each - iterate over the requests in a tag map
370 * @tags:	Tag map to iterate over.
371 * @bt:		sbitmap to examine. This is either the breserved_tags member
372 *		or the bitmap_tags member of struct blk_mq_tags.
373 * @fn:		Pointer to the function that will be called for each started
374 *		request. @fn will be called as follows: @fn(rq, @data,
375 *		@reserved) where rq is a pointer to a request. Return true
376 *		to continue iterating tags, false to stop.
377 * @data:	Will be passed as second argument to @fn.
378 * @flags:	BT_TAG_ITER_*
379 */
380static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
381			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
382{
383	struct bt_tags_iter_data iter_data = {
384		.tags = tags,
385		.fn = fn,
386		.data = data,
387		.flags = flags,
388	};
389
390	if (tags->rqs)
391		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
392}
393
394static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
395		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
396{
397	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
398
399	if (tags->nr_reserved_tags)
400		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
401				 flags | BT_TAG_ITER_RESERVED);
402	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
403}
404
405/**
406 * blk_mq_all_tag_iter - iterate over all requests in a tag map
407 * @tags:	Tag map to iterate over.
408 * @fn:		Pointer to the function that will be called for each
409 *		request. @fn will be called as follows: @fn(rq, @priv,
410 *		reserved) where rq is a pointer to a request. 'reserved'
411 *		indicates whether or not @rq is a reserved request. Return
412 *		true to continue iterating tags, false to stop.
413 * @priv:	Will be passed as second argument to @fn.
414 *
415 * Caller has to pass the tag map from which requests are allocated.
416 */
417void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
418		void *priv)
419{
420	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
421}
422
423/**
424 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
425 * @tagset:	Tag set to iterate over.
426 * @fn:		Pointer to the function that will be called for each started
427 *		request. @fn will be called as follows: @fn(rq, @priv,
428 *		reserved) where rq is a pointer to a request. 'reserved'
429 *		indicates whether or not @rq is a reserved request. Return
430 *		true to continue iterating tags, false to stop.
431 * @priv:	Will be passed as second argument to @fn.
432 *
433 * We grab one request reference before calling @fn and release it after
434 * @fn returns.
435 */
436void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
437		busy_tag_iter_fn *fn, void *priv)
438{
439	unsigned int flags = tagset->flags;
440	int i, nr_tags;
441
442	nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
443
444	for (i = 0; i < nr_tags; i++) {
445		if (tagset->tags && tagset->tags[i])
446			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
447					      BT_TAG_ITER_STARTED);
448	}
449}
450EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
451
452static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
453{
454	unsigned *count = data;
455
456	if (blk_mq_request_completed(rq))
457		(*count)++;
458	return true;
459}
460
461/**
462 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
463 * completions have finished.
464 * @tagset:	Tag set to drain completed request
465 *
466 * Note: This function has to be run after all IO queues are shutdown
467 */
468void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
469{
470	while (true) {
471		unsigned count = 0;
472
473		blk_mq_tagset_busy_iter(tagset,
474				blk_mq_tagset_count_completed_rqs, &count);
475		if (!count)
476			break;
477		msleep(5);
478	}
479}
480EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
481
482/**
483 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
484 * @q:		Request queue to examine.
485 * @fn:		Pointer to the function that will be called for each request
486 *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
487 *		reserved) where rq is a pointer to a request and hctx points
488 *		to the hardware queue associated with the request. 'reserved'
489 *		indicates whether or not @rq is a reserved request.
490 * @priv:	Will be passed as third argument to @fn.
491 *
492 * Note: if @q->tag_set is shared with other request queues then @fn will be
493 * called for all requests on all queues that share that tag set and not only
494 * for requests associated with @q.
495 */
496void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
497		void *priv)
498{
499	/*
500	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
501	 * while the queue is frozen. So we can use q_usage_counter to avoid
502	 * racing with it.
503	 */
504	if (!percpu_ref_tryget(&q->q_usage_counter))
505		return;
506
507	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
508		struct blk_mq_tags *tags = q->tag_set->shared_tags;
509		struct sbitmap_queue *bresv = &tags->breserved_tags;
510		struct sbitmap_queue *btags = &tags->bitmap_tags;
511
512		if (tags->nr_reserved_tags)
513			bt_for_each(NULL, q, bresv, fn, priv, true);
514		bt_for_each(NULL, q, btags, fn, priv, false);
515	} else {
516		struct blk_mq_hw_ctx *hctx;
517		unsigned long i;
518
519		queue_for_each_hw_ctx(q, hctx, i) {
520			struct blk_mq_tags *tags = hctx->tags;
521			struct sbitmap_queue *bresv = &tags->breserved_tags;
522			struct sbitmap_queue *btags = &tags->bitmap_tags;
523
524			/*
525			 * If no software queues are currently mapped to this
526			 * hardware queue, there's nothing to check
527			 */
528			if (!blk_mq_hw_queue_mapped(hctx))
529				continue;
530
531			if (tags->nr_reserved_tags)
532				bt_for_each(hctx, q, bresv, fn, priv, true);
533			bt_for_each(hctx, q, btags, fn, priv, false);
534		}
535	}
536	blk_queue_exit(q);
537}
538
539static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
540		    bool round_robin, int node)
541{
542	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
543				       node);
544}
545
546int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
547			struct sbitmap_queue *breserved_tags,
548			unsigned int queue_depth, unsigned int reserved,
549			int node, int alloc_policy)
550{
551	unsigned int depth = queue_depth - reserved;
552	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
553
554	if (bt_alloc(bitmap_tags, depth, round_robin, node))
555		return -ENOMEM;
556	if (bt_alloc(breserved_tags, reserved, round_robin, node))
557		goto free_bitmap_tags;
558
559	return 0;
560
561free_bitmap_tags:
562	sbitmap_queue_free(bitmap_tags);
563	return -ENOMEM;
564}
565
566struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
567				     unsigned int reserved_tags,
568				     int node, int alloc_policy)
569{
 
570	struct blk_mq_tags *tags;
 
571
572	if (total_tags > BLK_MQ_TAG_MAX) {
573		pr_err("blk-mq: tag depth too large\n");
574		return NULL;
575	}
576
577	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
578	if (!tags)
579		return NULL;
580
 
 
 
 
 
 
 
 
581	tags->nr_tags = total_tags;
582	tags->nr_reserved_tags = reserved_tags;
583	spin_lock_init(&tags->lock);
 
584
585	if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags,
586				total_tags, reserved_tags, node,
587				alloc_policy) < 0) {
588		kfree(tags);
589		return NULL;
 
 
 
 
 
 
 
 
 
 
 
590	}
 
591	return tags;
 
 
 
 
 
 
592}
593
594void blk_mq_free_tags(struct blk_mq_tags *tags)
595{
596	sbitmap_queue_free(&tags->bitmap_tags);
597	sbitmap_queue_free(&tags->breserved_tags);
598	kfree(tags);
599}
600
601int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
602			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
603			    bool can_grow)
604{
605	struct blk_mq_tags *tags = *tagsptr;
606
607	if (tdepth <= tags->nr_reserved_tags)
608		return -EINVAL;
609
610	/*
611	 * If we are allowed to grow beyond the original size, allocate
612	 * a new set of tags before freeing the old one.
613	 */
614	if (tdepth > tags->nr_tags) {
615		struct blk_mq_tag_set *set = hctx->queue->tag_set;
616		struct blk_mq_tags *new;
617
618		if (!can_grow)
619			return -EINVAL;
620
621		/*
622		 * We need some sort of upper limit, set it high enough that
623		 * no valid use cases should require more.
624		 */
625		if (tdepth > MAX_SCHED_RQ)
626			return -EINVAL;
627
628		/*
629		 * Only the sbitmap needs resizing since we allocated the max
630		 * initially.
631		 */
632		if (blk_mq_is_shared_tags(set->flags))
633			return 0;
634
635		new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth);
636		if (!new)
637			return -ENOMEM;
638
639		blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num);
640		*tagsptr = new;
641	} else {
642		/*
643		 * Don't need (or can't) update reserved tags here, they
644		 * remain static and should never need resizing.
645		 */
646		sbitmap_queue_resize(&tags->bitmap_tags,
647				tdepth - tags->nr_reserved_tags);
648	}
649
650	return 0;
651}
652
653void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
654{
655	struct blk_mq_tags *tags = set->shared_tags;
656
657	sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
658}
659
660void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
661{
662	sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
663			     q->nr_requests - q->tag_set->reserved_tags);
664}
665
666/**
667 * blk_mq_unique_tag() - return a tag that is unique queue-wide
668 * @rq: request for which to compute a unique tag
669 *
670 * The tag field in struct request is unique per hardware queue but not over
671 * all hardware queues. Hence this function that returns a tag with the
672 * hardware context index in the upper bits and the per hardware queue tag in
673 * the lower bits.
674 *
675 * Note: When called for a request that is queued on a non-multiqueue request
676 * queue, the hardware context index is set to zero.
677 */
678u32 blk_mq_unique_tag(struct request *rq)
679{
680	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
681		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
682}
683EXPORT_SYMBOL(blk_mq_unique_tag);