Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * ARMv6 Performance counter handling code.
  3 *
  4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  5 *
  6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
  7 * They all share a single reset bit but can be written to zero so we can use
  8 * that for a reset.
  9 *
 10 * The counters can't be individually enabled or disabled so when we remove
 11 * one event and replace it with another we could get spurious counts from the
 12 * wrong event. However, we can take advantage of the fact that the
 13 * performance counters can export events to the event bus, and the event bus
 14 * itself can be monitored. This requires that we *don't* export the events to
 15 * the event bus. The procedure for disabling a configurable counter is:
 16 *	- change the counter to count the ETMEXTOUT[0] signal (0x20). This
 17 *	  effectively stops the counter from counting.
 18 *	- disable the counter's interrupt generation (each counter has it's
 19 *	  own interrupt enable bit).
 20 * Once stopped, the counter value can be written as 0 to reset.
 21 *
 22 * To enable a counter:
 23 *	- enable the counter's interrupt generation.
 24 *	- set the new event type.
 25 *
 26 * Note: the dedicated cycle counter only counts cycles and can't be
 27 * enabled/disabled independently of the others. When we want to disable the
 28 * cycle counter, we have to just disable the interrupt reporting and start
 29 * ignoring that counter. When re-enabling, we have to reset the value and
 30 * enable the interrupt.
 31 */
 32
 33#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
 
 
 
 
 
 
 
 
 34enum armv6_perf_types {
 35	ARMV6_PERFCTR_ICACHE_MISS	    = 0x0,
 36	ARMV6_PERFCTR_IBUF_STALL	    = 0x1,
 37	ARMV6_PERFCTR_DDEP_STALL	    = 0x2,
 38	ARMV6_PERFCTR_ITLB_MISS		    = 0x3,
 39	ARMV6_PERFCTR_DTLB_MISS		    = 0x4,
 40	ARMV6_PERFCTR_BR_EXEC		    = 0x5,
 41	ARMV6_PERFCTR_BR_MISPREDICT	    = 0x6,
 42	ARMV6_PERFCTR_INSTR_EXEC	    = 0x7,
 43	ARMV6_PERFCTR_DCACHE_HIT	    = 0x9,
 44	ARMV6_PERFCTR_DCACHE_ACCESS	    = 0xA,
 45	ARMV6_PERFCTR_DCACHE_MISS	    = 0xB,
 46	ARMV6_PERFCTR_DCACHE_WBACK	    = 0xC,
 47	ARMV6_PERFCTR_SW_PC_CHANGE	    = 0xD,
 48	ARMV6_PERFCTR_MAIN_TLB_MISS	    = 0xF,
 49	ARMV6_PERFCTR_EXPL_D_ACCESS	    = 0x10,
 50	ARMV6_PERFCTR_LSU_FULL_STALL	    = 0x11,
 51	ARMV6_PERFCTR_WBUF_DRAINED	    = 0x12,
 52	ARMV6_PERFCTR_CPU_CYCLES	    = 0xFF,
 53	ARMV6_PERFCTR_NOP		    = 0x20,
 54};
 55
 56enum armv6_counters {
 57	ARMV6_CYCLE_COUNTER = 0,
 58	ARMV6_COUNTER0,
 59	ARMV6_COUNTER1,
 60};
 61
 62/*
 63 * The hardware events that we support. We do support cache operations but
 64 * we have harvard caches and no way to combine instruction and data
 65 * accesses/misses in hardware.
 66 */
 67static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
 
 68	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6_PERFCTR_CPU_CYCLES,
 69	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6_PERFCTR_INSTR_EXEC,
 70	[PERF_COUNT_HW_CACHE_REFERENCES]	= HW_OP_UNSUPPORTED,
 71	[PERF_COUNT_HW_CACHE_MISSES]		= HW_OP_UNSUPPORTED,
 72	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6_PERFCTR_BR_EXEC,
 73	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6_PERFCTR_BR_MISPREDICT,
 74	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
 75	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6_PERFCTR_IBUF_STALL,
 76	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6_PERFCTR_LSU_FULL_STALL,
 77};
 78
 79static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
 80					  [PERF_COUNT_HW_CACHE_OP_MAX]
 81					  [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 82	[C(L1D)] = {
 83		/*
 84		 * The performance counters don't differentiate between read
 85		 * and write accesses/misses so this isn't strictly correct,
 86		 * but it's the best we can do. Writes and reads get
 87		 * combined.
 88		 */
 89		[C(OP_READ)] = {
 90			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 91			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 92		},
 93		[C(OP_WRITE)] = {
 94			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 95			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 96		},
 97		[C(OP_PREFETCH)] = {
 98			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
 99			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
100		},
101	},
102	[C(L1I)] = {
103		[C(OP_READ)] = {
104			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
105			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
106		},
107		[C(OP_WRITE)] = {
108			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
109			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
110		},
111		[C(OP_PREFETCH)] = {
112			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
113			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
114		},
115	},
116	[C(LL)] = {
117		[C(OP_READ)] = {
118			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
119			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
120		},
121		[C(OP_WRITE)] = {
122			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
123			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
124		},
125		[C(OP_PREFETCH)] = {
126			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
127			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
128		},
129	},
130	[C(DTLB)] = {
131		/*
132		 * The ARM performance counters can count micro DTLB misses,
133		 * micro ITLB misses and main TLB misses. There isn't an event
134		 * for TLB misses, so use the micro misses here and if users
135		 * want the main TLB misses they can use a raw counter.
136		 */
137		[C(OP_READ)] = {
138			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
139			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
140		},
141		[C(OP_WRITE)] = {
142			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
143			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
144		},
145		[C(OP_PREFETCH)] = {
146			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
147			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
148		},
149	},
150	[C(ITLB)] = {
151		[C(OP_READ)] = {
152			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
153			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
154		},
155		[C(OP_WRITE)] = {
156			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
157			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
158		},
159		[C(OP_PREFETCH)] = {
160			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
161			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
162		},
163	},
164	[C(BPU)] = {
165		[C(OP_READ)] = {
166			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
167			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
168		},
169		[C(OP_WRITE)] = {
170			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
171			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
172		},
173		[C(OP_PREFETCH)] = {
174			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
175			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
176		},
177	},
178	[C(NODE)] = {
179		[C(OP_READ)] = {
180			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
181			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
182		},
183		[C(OP_WRITE)] = {
184			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
185			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
186		},
187		[C(OP_PREFETCH)] = {
188			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
189			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
190		},
191	},
192};
193
194enum armv6mpcore_perf_types {
195	ARMV6MPCORE_PERFCTR_ICACHE_MISS	    = 0x0,
196	ARMV6MPCORE_PERFCTR_IBUF_STALL	    = 0x1,
197	ARMV6MPCORE_PERFCTR_DDEP_STALL	    = 0x2,
198	ARMV6MPCORE_PERFCTR_ITLB_MISS	    = 0x3,
199	ARMV6MPCORE_PERFCTR_DTLB_MISS	    = 0x4,
200	ARMV6MPCORE_PERFCTR_BR_EXEC	    = 0x5,
201	ARMV6MPCORE_PERFCTR_BR_NOTPREDICT   = 0x6,
202	ARMV6MPCORE_PERFCTR_BR_MISPREDICT   = 0x7,
203	ARMV6MPCORE_PERFCTR_INSTR_EXEC	    = 0x8,
204	ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
205	ARMV6MPCORE_PERFCTR_DCACHE_RDMISS   = 0xB,
206	ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
207	ARMV6MPCORE_PERFCTR_DCACHE_WRMISS   = 0xD,
208	ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
209	ARMV6MPCORE_PERFCTR_SW_PC_CHANGE    = 0xF,
210	ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS   = 0x10,
211	ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
212	ARMV6MPCORE_PERFCTR_LSU_FULL_STALL  = 0x12,
213	ARMV6MPCORE_PERFCTR_WBUF_DRAINED    = 0x13,
214	ARMV6MPCORE_PERFCTR_CPU_CYCLES	    = 0xFF,
215};
216
217/*
218 * The hardware events that we support. We do support cache operations but
219 * we have harvard caches and no way to combine instruction and data
220 * accesses/misses in hardware.
221 */
222static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
223	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6MPCORE_PERFCTR_CPU_CYCLES,
224	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6MPCORE_PERFCTR_INSTR_EXEC,
225	[PERF_COUNT_HW_CACHE_REFERENCES]	= HW_OP_UNSUPPORTED,
226	[PERF_COUNT_HW_CACHE_MISSES]		= HW_OP_UNSUPPORTED,
227	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6MPCORE_PERFCTR_BR_EXEC,
228	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
229	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
230	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6MPCORE_PERFCTR_IBUF_STALL,
231	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
232};
233
234static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
235					[PERF_COUNT_HW_CACHE_OP_MAX]
236					[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
237	[C(L1D)] = {
238		[C(OP_READ)] = {
239			[C(RESULT_ACCESS)]  =
240				ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
241			[C(RESULT_MISS)]    =
242				ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
243		},
244		[C(OP_WRITE)] = {
245			[C(RESULT_ACCESS)]  =
246				ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
247			[C(RESULT_MISS)]    =
248				ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
249		},
250		[C(OP_PREFETCH)] = {
251			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
252			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
253		},
254	},
255	[C(L1I)] = {
256		[C(OP_READ)] = {
257			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
258			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
259		},
260		[C(OP_WRITE)] = {
261			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
262			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
263		},
264		[C(OP_PREFETCH)] = {
265			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
266			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
267		},
268	},
269	[C(LL)] = {
270		[C(OP_READ)] = {
271			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
272			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
273		},
274		[C(OP_WRITE)] = {
275			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
276			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
277		},
278		[C(OP_PREFETCH)] = {
279			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
280			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
281		},
282	},
283	[C(DTLB)] = {
284		/*
285		 * The ARM performance counters can count micro DTLB misses,
286		 * micro ITLB misses and main TLB misses. There isn't an event
287		 * for TLB misses, so use the micro misses here and if users
288		 * want the main TLB misses they can use a raw counter.
289		 */
290		[C(OP_READ)] = {
291			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
292			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
293		},
294		[C(OP_WRITE)] = {
295			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
296			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
297		},
298		[C(OP_PREFETCH)] = {
299			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
300			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
301		},
302	},
303	[C(ITLB)] = {
304		[C(OP_READ)] = {
305			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
306			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
307		},
308		[C(OP_WRITE)] = {
309			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
310			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
311		},
312		[C(OP_PREFETCH)] = {
313			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
314			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
315		},
316	},
317	[C(BPU)] = {
318		[C(OP_READ)] = {
319			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
320			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
321		},
322		[C(OP_WRITE)] = {
323			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
324			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
325		},
326		[C(OP_PREFETCH)] = {
327			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
328			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
329		},
330	},
331	[C(NODE)] = {
332		[C(OP_READ)] = {
333			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
334			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
335		},
336		[C(OP_WRITE)] = {
337			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
338			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
339		},
340		[C(OP_PREFETCH)] = {
341			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
342			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
343		},
344	},
345};
346
347static inline unsigned long
348armv6_pmcr_read(void)
349{
350	u32 val;
351	asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
352	return val;
353}
354
355static inline void
356armv6_pmcr_write(unsigned long val)
357{
358	asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
359}
360
361#define ARMV6_PMCR_ENABLE		(1 << 0)
362#define ARMV6_PMCR_CTR01_RESET		(1 << 1)
363#define ARMV6_PMCR_CCOUNT_RESET		(1 << 2)
364#define ARMV6_PMCR_CCOUNT_DIV		(1 << 3)
365#define ARMV6_PMCR_COUNT0_IEN		(1 << 4)
366#define ARMV6_PMCR_COUNT1_IEN		(1 << 5)
367#define ARMV6_PMCR_CCOUNT_IEN		(1 << 6)
368#define ARMV6_PMCR_COUNT0_OVERFLOW	(1 << 8)
369#define ARMV6_PMCR_COUNT1_OVERFLOW	(1 << 9)
370#define ARMV6_PMCR_CCOUNT_OVERFLOW	(1 << 10)
371#define ARMV6_PMCR_EVT_COUNT0_SHIFT	20
372#define ARMV6_PMCR_EVT_COUNT0_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
373#define ARMV6_PMCR_EVT_COUNT1_SHIFT	12
374#define ARMV6_PMCR_EVT_COUNT1_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
375
376#define ARMV6_PMCR_OVERFLOWED_MASK \
377	(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
378	 ARMV6_PMCR_CCOUNT_OVERFLOW)
379
380static inline int
381armv6_pmcr_has_overflowed(unsigned long pmcr)
382{
383	return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
384}
385
386static inline int
387armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
388				  enum armv6_counters counter)
389{
390	int ret = 0;
391
392	if (ARMV6_CYCLE_COUNTER == counter)
393		ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
394	else if (ARMV6_COUNTER0 == counter)
395		ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
396	else if (ARMV6_COUNTER1 == counter)
397		ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
398	else
399		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
400
401	return ret;
402}
403
404static inline u32 armv6pmu_read_counter(struct perf_event *event)
405{
406	struct hw_perf_event *hwc = &event->hw;
407	int counter = hwc->idx;
408	unsigned long value = 0;
409
410	if (ARMV6_CYCLE_COUNTER == counter)
411		asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
412	else if (ARMV6_COUNTER0 == counter)
413		asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
414	else if (ARMV6_COUNTER1 == counter)
415		asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
416	else
417		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
418
419	return value;
420}
421
422static inline void armv6pmu_write_counter(struct perf_event *event, u32 value)
423{
424	struct hw_perf_event *hwc = &event->hw;
425	int counter = hwc->idx;
426
427	if (ARMV6_CYCLE_COUNTER == counter)
428		asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
429	else if (ARMV6_COUNTER0 == counter)
430		asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
431	else if (ARMV6_COUNTER1 == counter)
432		asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
433	else
434		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
435}
436
437static void armv6pmu_enable_event(struct perf_event *event)
438{
439	unsigned long val, mask, evt, flags;
440	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
441	struct hw_perf_event *hwc = &event->hw;
442	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
443	int idx = hwc->idx;
444
445	if (ARMV6_CYCLE_COUNTER == idx) {
446		mask	= 0;
447		evt	= ARMV6_PMCR_CCOUNT_IEN;
448	} else if (ARMV6_COUNTER0 == idx) {
449		mask	= ARMV6_PMCR_EVT_COUNT0_MASK;
450		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
451			  ARMV6_PMCR_COUNT0_IEN;
452	} else if (ARMV6_COUNTER1 == idx) {
453		mask	= ARMV6_PMCR_EVT_COUNT1_MASK;
454		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
455			  ARMV6_PMCR_COUNT1_IEN;
456	} else {
457		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
458		return;
459	}
460
461	/*
462	 * Mask out the current event and set the counter to count the event
463	 * that we're interested in.
464	 */
465	raw_spin_lock_irqsave(&events->pmu_lock, flags);
466	val = armv6_pmcr_read();
467	val &= ~mask;
468	val |= evt;
469	armv6_pmcr_write(val);
470	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
471}
472
473static irqreturn_t
474armv6pmu_handle_irq(int irq_num,
475		    void *dev)
476{
477	unsigned long pmcr = armv6_pmcr_read();
478	struct perf_sample_data data;
479	struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
480	struct pmu_hw_events *cpuc = cpu_pmu->get_hw_events();
481	struct pt_regs *regs;
482	int idx;
483
484	if (!armv6_pmcr_has_overflowed(pmcr))
485		return IRQ_NONE;
486
487	regs = get_irq_regs();
488
489	/*
490	 * The interrupts are cleared by writing the overflow flags back to
491	 * the control register. All of the other bits don't have any effect
492	 * if they are rewritten, so write the whole value back.
493	 */
494	armv6_pmcr_write(pmcr);
495
496	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
497		struct perf_event *event = cpuc->events[idx];
498		struct hw_perf_event *hwc;
499
500		/* Ignore if we don't have an event. */
501		if (!event)
502			continue;
503
504		/*
505		 * We have a single interrupt for all counters. Check that
506		 * each counter has overflowed before we process it.
507		 */
508		if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
509			continue;
510
511		hwc = &event->hw;
512		armpmu_event_update(event);
513		perf_sample_data_init(&data, 0, hwc->last_period);
514		if (!armpmu_event_set_period(event))
515			continue;
516
517		if (perf_event_overflow(event, &data, regs))
518			cpu_pmu->disable(event);
519	}
520
521	/*
522	 * Handle the pending perf events.
523	 *
524	 * Note: this call *must* be run with interrupts disabled. For
525	 * platforms that can have the PMU interrupts raised as an NMI, this
526	 * will not work.
527	 */
528	irq_work_run();
529
530	return IRQ_HANDLED;
531}
532
533static void armv6pmu_start(struct arm_pmu *cpu_pmu)
534{
535	unsigned long flags, val;
536	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
537
538	raw_spin_lock_irqsave(&events->pmu_lock, flags);
539	val = armv6_pmcr_read();
540	val |= ARMV6_PMCR_ENABLE;
541	armv6_pmcr_write(val);
542	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
543}
544
545static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
546{
547	unsigned long flags, val;
548	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
549
550	raw_spin_lock_irqsave(&events->pmu_lock, flags);
551	val = armv6_pmcr_read();
552	val &= ~ARMV6_PMCR_ENABLE;
553	armv6_pmcr_write(val);
554	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
555}
556
557static int
558armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
559				struct perf_event *event)
560{
561	struct hw_perf_event *hwc = &event->hw;
562	/* Always place a cycle counter into the cycle counter. */
563	if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
564		if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
565			return -EAGAIN;
566
567		return ARMV6_CYCLE_COUNTER;
568	} else {
569		/*
570		 * For anything other than a cycle counter, try and use
571		 * counter0 and counter1.
572		 */
573		if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
574			return ARMV6_COUNTER1;
575
576		if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
577			return ARMV6_COUNTER0;
578
579		/* The counters are all in use. */
580		return -EAGAIN;
581	}
582}
583
 
 
 
 
 
 
584static void armv6pmu_disable_event(struct perf_event *event)
585{
586	unsigned long val, mask, evt, flags;
587	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
588	struct hw_perf_event *hwc = &event->hw;
589	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
590	int idx = hwc->idx;
591
592	if (ARMV6_CYCLE_COUNTER == idx) {
593		mask	= ARMV6_PMCR_CCOUNT_IEN;
594		evt	= 0;
595	} else if (ARMV6_COUNTER0 == idx) {
596		mask	= ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
597		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
598	} else if (ARMV6_COUNTER1 == idx) {
599		mask	= ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
600		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
601	} else {
602		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
603		return;
604	}
605
606	/*
607	 * Mask out the current event and set the counter to count the number
608	 * of ETM bus signal assertion cycles. The external reporting should
609	 * be disabled and so this should never increment.
610	 */
611	raw_spin_lock_irqsave(&events->pmu_lock, flags);
612	val = armv6_pmcr_read();
613	val &= ~mask;
614	val |= evt;
615	armv6_pmcr_write(val);
616	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
617}
618
619static void armv6mpcore_pmu_disable_event(struct perf_event *event)
620{
621	unsigned long val, mask, flags, evt = 0;
622	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
623	struct hw_perf_event *hwc = &event->hw;
624	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
625	int idx = hwc->idx;
626
627	if (ARMV6_CYCLE_COUNTER == idx) {
628		mask	= ARMV6_PMCR_CCOUNT_IEN;
629	} else if (ARMV6_COUNTER0 == idx) {
630		mask	= ARMV6_PMCR_COUNT0_IEN;
631	} else if (ARMV6_COUNTER1 == idx) {
632		mask	= ARMV6_PMCR_COUNT1_IEN;
633	} else {
634		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
635		return;
636	}
637
638	/*
639	 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
640	 * simply disable the interrupt reporting.
641	 */
642	raw_spin_lock_irqsave(&events->pmu_lock, flags);
643	val = armv6_pmcr_read();
644	val &= ~mask;
645	val |= evt;
646	armv6_pmcr_write(val);
647	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
648}
649
650static int armv6_map_event(struct perf_event *event)
651{
652	return armpmu_map_event(event, &armv6_perf_map,
653				&armv6_perf_cache_map, 0xFF);
654}
655
656static int armv6pmu_init(struct arm_pmu *cpu_pmu)
657{
658	cpu_pmu->name		= "v6";
659	cpu_pmu->handle_irq	= armv6pmu_handle_irq;
660	cpu_pmu->enable		= armv6pmu_enable_event;
661	cpu_pmu->disable	= armv6pmu_disable_event;
662	cpu_pmu->read_counter	= armv6pmu_read_counter;
663	cpu_pmu->write_counter	= armv6pmu_write_counter;
664	cpu_pmu->get_event_idx	= armv6pmu_get_event_idx;
 
665	cpu_pmu->start		= armv6pmu_start;
666	cpu_pmu->stop		= armv6pmu_stop;
667	cpu_pmu->map_event	= armv6_map_event;
668	cpu_pmu->num_events	= 3;
669	cpu_pmu->max_period	= (1LLU << 32) - 1;
670
671	return 0;
672}
673
674/*
675 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
676 * that some of the events have different enumerations and that there is no
677 * *hack* to stop the programmable counters. To stop the counters we simply
678 * disable the interrupt reporting and update the event. When unthrottling we
679 * reset the period and enable the interrupt reporting.
680 */
681
682static int armv6mpcore_map_event(struct perf_event *event)
683{
684	return armpmu_map_event(event, &armv6mpcore_perf_map,
685				&armv6mpcore_perf_cache_map, 0xFF);
 
686}
687
688static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
689{
690	cpu_pmu->name		= "v6mpcore";
691	cpu_pmu->handle_irq	= armv6pmu_handle_irq;
692	cpu_pmu->enable		= armv6pmu_enable_event;
693	cpu_pmu->disable	= armv6mpcore_pmu_disable_event;
694	cpu_pmu->read_counter	= armv6pmu_read_counter;
695	cpu_pmu->write_counter	= armv6pmu_write_counter;
696	cpu_pmu->get_event_idx	= armv6pmu_get_event_idx;
697	cpu_pmu->start		= armv6pmu_start;
698	cpu_pmu->stop		= armv6pmu_stop;
699	cpu_pmu->map_event	= armv6mpcore_map_event;
700	cpu_pmu->num_events	= 3;
701	cpu_pmu->max_period	= (1LLU << 32) - 1;
702
703	return 0;
704}
705#else
706static int armv6pmu_init(struct arm_pmu *cpu_pmu)
707{
708	return -ENODEV;
 
 
709}
710
711static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
 
 
 
 
 
 
 
 
 
 
 
 
 
712{
713	return -ENODEV;
 
714}
 
 
 
 
 
 
 
 
 
 
715#endif	/* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * ARMv6 Performance counter handling code.
  4 *
  5 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6 *
  7 * ARMv6 has 2 configurable performance counters and a single cycle counter.
  8 * They all share a single reset bit but can be written to zero so we can use
  9 * that for a reset.
 10 *
 11 * The counters can't be individually enabled or disabled so when we remove
 12 * one event and replace it with another we could get spurious counts from the
 13 * wrong event. However, we can take advantage of the fact that the
 14 * performance counters can export events to the event bus, and the event bus
 15 * itself can be monitored. This requires that we *don't* export the events to
 16 * the event bus. The procedure for disabling a configurable counter is:
 17 *	- change the counter to count the ETMEXTOUT[0] signal (0x20). This
 18 *	  effectively stops the counter from counting.
 19 *	- disable the counter's interrupt generation (each counter has it's
 20 *	  own interrupt enable bit).
 21 * Once stopped, the counter value can be written as 0 to reset.
 22 *
 23 * To enable a counter:
 24 *	- enable the counter's interrupt generation.
 25 *	- set the new event type.
 26 *
 27 * Note: the dedicated cycle counter only counts cycles and can't be
 28 * enabled/disabled independently of the others. When we want to disable the
 29 * cycle counter, we have to just disable the interrupt reporting and start
 30 * ignoring that counter. When re-enabling, we have to reset the value and
 31 * enable the interrupt.
 32 */
 33
 34#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
 35
 36#include <asm/cputype.h>
 37#include <asm/irq_regs.h>
 38
 39#include <linux/of.h>
 40#include <linux/perf/arm_pmu.h>
 41#include <linux/platform_device.h>
 42
 43enum armv6_perf_types {
 44	ARMV6_PERFCTR_ICACHE_MISS	    = 0x0,
 45	ARMV6_PERFCTR_IBUF_STALL	    = 0x1,
 46	ARMV6_PERFCTR_DDEP_STALL	    = 0x2,
 47	ARMV6_PERFCTR_ITLB_MISS		    = 0x3,
 48	ARMV6_PERFCTR_DTLB_MISS		    = 0x4,
 49	ARMV6_PERFCTR_BR_EXEC		    = 0x5,
 50	ARMV6_PERFCTR_BR_MISPREDICT	    = 0x6,
 51	ARMV6_PERFCTR_INSTR_EXEC	    = 0x7,
 52	ARMV6_PERFCTR_DCACHE_HIT	    = 0x9,
 53	ARMV6_PERFCTR_DCACHE_ACCESS	    = 0xA,
 54	ARMV6_PERFCTR_DCACHE_MISS	    = 0xB,
 55	ARMV6_PERFCTR_DCACHE_WBACK	    = 0xC,
 56	ARMV6_PERFCTR_SW_PC_CHANGE	    = 0xD,
 57	ARMV6_PERFCTR_MAIN_TLB_MISS	    = 0xF,
 58	ARMV6_PERFCTR_EXPL_D_ACCESS	    = 0x10,
 59	ARMV6_PERFCTR_LSU_FULL_STALL	    = 0x11,
 60	ARMV6_PERFCTR_WBUF_DRAINED	    = 0x12,
 61	ARMV6_PERFCTR_CPU_CYCLES	    = 0xFF,
 62	ARMV6_PERFCTR_NOP		    = 0x20,
 63};
 64
 65enum armv6_counters {
 66	ARMV6_CYCLE_COUNTER = 0,
 67	ARMV6_COUNTER0,
 68	ARMV6_COUNTER1,
 69};
 70
 71/*
 72 * The hardware events that we support. We do support cache operations but
 73 * we have harvard caches and no way to combine instruction and data
 74 * accesses/misses in hardware.
 75 */
 76static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
 77	PERF_MAP_ALL_UNSUPPORTED,
 78	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6_PERFCTR_CPU_CYCLES,
 79	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6_PERFCTR_INSTR_EXEC,
 
 
 80	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6_PERFCTR_BR_EXEC,
 81	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6_PERFCTR_BR_MISPREDICT,
 
 82	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6_PERFCTR_IBUF_STALL,
 83	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6_PERFCTR_LSU_FULL_STALL,
 84};
 85
 86static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
 87					  [PERF_COUNT_HW_CACHE_OP_MAX]
 88					  [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 89	PERF_CACHE_MAP_ALL_UNSUPPORTED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90
 91	/*
 92	 * The performance counters don't differentiate between read and write
 93	 * accesses/misses so this isn't strictly correct, but it's the best we
 94	 * can do. Writes and reads get combined.
 95	 */
 96	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 97	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 98	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 99	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 
 
 
 
 
 
 
 
 
 
 
 
 
100
101	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
103	/*
104	 * The ARM performance counters can count micro DTLB misses, micro ITLB
105	 * misses and main TLB misses. There isn't an event for TLB misses, so
106	 * use the micro misses here and if users want the main TLB misses they
107	 * can use a raw counter.
108	 */
109	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
110	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
111
112	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
113	[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114};
115
116static inline unsigned long
117armv6_pmcr_read(void)
118{
119	u32 val;
120	asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
121	return val;
122}
123
124static inline void
125armv6_pmcr_write(unsigned long val)
126{
127	asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
128}
129
130#define ARMV6_PMCR_ENABLE		(1 << 0)
131#define ARMV6_PMCR_CTR01_RESET		(1 << 1)
132#define ARMV6_PMCR_CCOUNT_RESET		(1 << 2)
133#define ARMV6_PMCR_CCOUNT_DIV		(1 << 3)
134#define ARMV6_PMCR_COUNT0_IEN		(1 << 4)
135#define ARMV6_PMCR_COUNT1_IEN		(1 << 5)
136#define ARMV6_PMCR_CCOUNT_IEN		(1 << 6)
137#define ARMV6_PMCR_COUNT0_OVERFLOW	(1 << 8)
138#define ARMV6_PMCR_COUNT1_OVERFLOW	(1 << 9)
139#define ARMV6_PMCR_CCOUNT_OVERFLOW	(1 << 10)
140#define ARMV6_PMCR_EVT_COUNT0_SHIFT	20
141#define ARMV6_PMCR_EVT_COUNT0_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
142#define ARMV6_PMCR_EVT_COUNT1_SHIFT	12
143#define ARMV6_PMCR_EVT_COUNT1_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
144
145#define ARMV6_PMCR_OVERFLOWED_MASK \
146	(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
147	 ARMV6_PMCR_CCOUNT_OVERFLOW)
148
149static inline int
150armv6_pmcr_has_overflowed(unsigned long pmcr)
151{
152	return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
153}
154
155static inline int
156armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
157				  enum armv6_counters counter)
158{
159	int ret = 0;
160
161	if (ARMV6_CYCLE_COUNTER == counter)
162		ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
163	else if (ARMV6_COUNTER0 == counter)
164		ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
165	else if (ARMV6_COUNTER1 == counter)
166		ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
167	else
168		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
169
170	return ret;
171}
172
173static inline u64 armv6pmu_read_counter(struct perf_event *event)
174{
175	struct hw_perf_event *hwc = &event->hw;
176	int counter = hwc->idx;
177	unsigned long value = 0;
178
179	if (ARMV6_CYCLE_COUNTER == counter)
180		asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
181	else if (ARMV6_COUNTER0 == counter)
182		asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
183	else if (ARMV6_COUNTER1 == counter)
184		asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
185	else
186		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
187
188	return value;
189}
190
191static inline void armv6pmu_write_counter(struct perf_event *event, u64 value)
192{
193	struct hw_perf_event *hwc = &event->hw;
194	int counter = hwc->idx;
195
196	if (ARMV6_CYCLE_COUNTER == counter)
197		asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
198	else if (ARMV6_COUNTER0 == counter)
199		asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
200	else if (ARMV6_COUNTER1 == counter)
201		asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
202	else
203		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
204}
205
206static void armv6pmu_enable_event(struct perf_event *event)
207{
208	unsigned long val, mask, evt;
 
209	struct hw_perf_event *hwc = &event->hw;
 
210	int idx = hwc->idx;
211
212	if (ARMV6_CYCLE_COUNTER == idx) {
213		mask	= 0;
214		evt	= ARMV6_PMCR_CCOUNT_IEN;
215	} else if (ARMV6_COUNTER0 == idx) {
216		mask	= ARMV6_PMCR_EVT_COUNT0_MASK;
217		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
218			  ARMV6_PMCR_COUNT0_IEN;
219	} else if (ARMV6_COUNTER1 == idx) {
220		mask	= ARMV6_PMCR_EVT_COUNT1_MASK;
221		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
222			  ARMV6_PMCR_COUNT1_IEN;
223	} else {
224		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
225		return;
226	}
227
228	/*
229	 * Mask out the current event and set the counter to count the event
230	 * that we're interested in.
231	 */
 
232	val = armv6_pmcr_read();
233	val &= ~mask;
234	val |= evt;
235	armv6_pmcr_write(val);
 
236}
237
238static irqreturn_t
239armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
 
240{
241	unsigned long pmcr = armv6_pmcr_read();
242	struct perf_sample_data data;
243	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
 
244	struct pt_regs *regs;
245	int idx;
246
247	if (!armv6_pmcr_has_overflowed(pmcr))
248		return IRQ_NONE;
249
250	regs = get_irq_regs();
251
252	/*
253	 * The interrupts are cleared by writing the overflow flags back to
254	 * the control register. All of the other bits don't have any effect
255	 * if they are rewritten, so write the whole value back.
256	 */
257	armv6_pmcr_write(pmcr);
258
259	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
260		struct perf_event *event = cpuc->events[idx];
261		struct hw_perf_event *hwc;
262
263		/* Ignore if we don't have an event. */
264		if (!event)
265			continue;
266
267		/*
268		 * We have a single interrupt for all counters. Check that
269		 * each counter has overflowed before we process it.
270		 */
271		if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
272			continue;
273
274		hwc = &event->hw;
275		armpmu_event_update(event);
276		perf_sample_data_init(&data, 0, hwc->last_period);
277		if (!armpmu_event_set_period(event))
278			continue;
279
280		if (perf_event_overflow(event, &data, regs))
281			cpu_pmu->disable(event);
282	}
283
284	/*
285	 * Handle the pending perf events.
286	 *
287	 * Note: this call *must* be run with interrupts disabled. For
288	 * platforms that can have the PMU interrupts raised as an NMI, this
289	 * will not work.
290	 */
291	irq_work_run();
292
293	return IRQ_HANDLED;
294}
295
296static void armv6pmu_start(struct arm_pmu *cpu_pmu)
297{
298	unsigned long val;
 
299
 
300	val = armv6_pmcr_read();
301	val |= ARMV6_PMCR_ENABLE;
302	armv6_pmcr_write(val);
 
303}
304
305static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
306{
307	unsigned long val;
 
308
 
309	val = armv6_pmcr_read();
310	val &= ~ARMV6_PMCR_ENABLE;
311	armv6_pmcr_write(val);
 
312}
313
314static int
315armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
316				struct perf_event *event)
317{
318	struct hw_perf_event *hwc = &event->hw;
319	/* Always place a cycle counter into the cycle counter. */
320	if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
321		if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
322			return -EAGAIN;
323
324		return ARMV6_CYCLE_COUNTER;
325	} else {
326		/*
327		 * For anything other than a cycle counter, try and use
328		 * counter0 and counter1.
329		 */
330		if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
331			return ARMV6_COUNTER1;
332
333		if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
334			return ARMV6_COUNTER0;
335
336		/* The counters are all in use. */
337		return -EAGAIN;
338	}
339}
340
341static void armv6pmu_clear_event_idx(struct pmu_hw_events *cpuc,
342				     struct perf_event *event)
343{
344	clear_bit(event->hw.idx, cpuc->used_mask);
345}
346
347static void armv6pmu_disable_event(struct perf_event *event)
348{
349	unsigned long val, mask, evt;
 
350	struct hw_perf_event *hwc = &event->hw;
 
351	int idx = hwc->idx;
352
353	if (ARMV6_CYCLE_COUNTER == idx) {
354		mask	= ARMV6_PMCR_CCOUNT_IEN;
355		evt	= 0;
356	} else if (ARMV6_COUNTER0 == idx) {
357		mask	= ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
358		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
359	} else if (ARMV6_COUNTER1 == idx) {
360		mask	= ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
361		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
362	} else {
363		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
364		return;
365	}
366
367	/*
368	 * Mask out the current event and set the counter to count the number
369	 * of ETM bus signal assertion cycles. The external reporting should
370	 * be disabled and so this should never increment.
371	 */
 
372	val = armv6_pmcr_read();
373	val &= ~mask;
374	val |= evt;
375	armv6_pmcr_write(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376}
377
378static int armv6_map_event(struct perf_event *event)
379{
380	return armpmu_map_event(event, &armv6_perf_map,
381				&armv6_perf_cache_map, 0xFF);
382}
383
384static void armv6pmu_init(struct arm_pmu *cpu_pmu)
385{
 
386	cpu_pmu->handle_irq	= armv6pmu_handle_irq;
387	cpu_pmu->enable		= armv6pmu_enable_event;
388	cpu_pmu->disable	= armv6pmu_disable_event;
389	cpu_pmu->read_counter	= armv6pmu_read_counter;
390	cpu_pmu->write_counter	= armv6pmu_write_counter;
391	cpu_pmu->get_event_idx	= armv6pmu_get_event_idx;
392	cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
393	cpu_pmu->start		= armv6pmu_start;
394	cpu_pmu->stop		= armv6pmu_stop;
395	cpu_pmu->map_event	= armv6_map_event;
396	cpu_pmu->num_events	= 3;
 
 
 
397}
398
399static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
 
 
 
 
 
 
 
 
400{
401	armv6pmu_init(cpu_pmu);
402	cpu_pmu->name		= "armv6_1136";
403	return 0;
404}
405
406static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
407{
408	armv6pmu_init(cpu_pmu);
409	cpu_pmu->name		= "armv6_1156";
 
 
 
 
 
 
 
 
 
 
 
410	return 0;
411}
412
413static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
414{
415	armv6pmu_init(cpu_pmu);
416	cpu_pmu->name		= "armv6_1176";
417	return 0;
418}
419
420static const struct of_device_id armv6_pmu_of_device_ids[] = {
421	{.compatible = "arm,arm1176-pmu",	.data = armv6_1176_pmu_init},
422	{.compatible = "arm,arm1136-pmu",	.data = armv6_1136_pmu_init},
423	{ /* sentinel value */ }
424};
425
426static const struct pmu_probe_info armv6_pmu_probe_table[] = {
427	ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
428	ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
429	ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
430	{ /* sentinel value */ }
431};
432
433static int armv6_pmu_device_probe(struct platform_device *pdev)
434{
435	return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
436				    armv6_pmu_probe_table);
437}
438
439static struct platform_driver armv6_pmu_driver = {
440	.driver		= {
441		.name	= "armv6-pmu",
442		.of_match_table = armv6_pmu_of_device_ids,
443	},
444	.probe		= armv6_pmu_device_probe,
445};
446
447builtin_platform_driver(armv6_pmu_driver);
448#endif	/* CONFIG_CPU_V6 || CONFIG_CPU_V6K */