Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * arch/arm/kernel/kprobes.c
  3 *
  4 * Kprobes on ARM
  5 *
  6 * Abhishek Sagar <sagar.abhishek@gmail.com>
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * Nicolas Pitre <nico@marvell.com>
 10 * Copyright (C) 2007 Marvell Ltd.
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 *
 16 * This program is distributed in the hope that it will be useful,
 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 * General Public License for more details.
 20 */
 21
 22#include <linux/kernel.h>
 23#include <linux/kprobes.h>
 24#include <linux/module.h>
 25#include <linux/slab.h>
 26#include <linux/stop_machine.h>
 27#include <linux/stringify.h>
 28#include <asm/traps.h>
 29#include <asm/opcodes.h>
 30#include <asm/cacheflush.h>
 31#include <linux/percpu.h>
 32#include <linux/bug.h>
 33
 34#include "kprobes.h"
 35#include "probes-arm.h"
 36#include "probes-thumb.h"
 37#include "patch.h"
 38
 39#define MIN_STACK_SIZE(addr) 				\
 40	min((unsigned long)MAX_STACK_SIZE,		\
 41	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
 42
 43#define flush_insns(addr, size)				\
 44	flush_icache_range((unsigned long)(addr),	\
 45			   (unsigned long)(addr) +	\
 46			   (size))
 47
 48/* Used as a marker in ARM_pc to note when we're in a jprobe. */
 49#define JPROBE_MAGIC_ADDR		0xffffffff
 50
 51DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 52DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 53
 54
 55int __kprobes arch_prepare_kprobe(struct kprobe *p)
 56{
 57	kprobe_opcode_t insn;
 58	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
 59	unsigned long addr = (unsigned long)p->addr;
 60	bool thumb;
 61	kprobe_decode_insn_t *decode_insn;
 62	const union decode_action *actions;
 63	int is;
 64
 65	if (in_exception_text(addr))
 66		return -EINVAL;
 67
 68#ifdef CONFIG_THUMB2_KERNEL
 69	thumb = true;
 70	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
 71	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
 72	if (is_wide_instruction(insn)) {
 73		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
 74		insn = __opcode_thumb32_compose(insn, inst2);
 75		decode_insn = thumb32_probes_decode_insn;
 76		actions = kprobes_t32_actions;
 77	} else {
 78		decode_insn = thumb16_probes_decode_insn;
 79		actions = kprobes_t16_actions;
 80	}
 81#else /* !CONFIG_THUMB2_KERNEL */
 82	thumb = false;
 83	if (addr & 0x3)
 84		return -EINVAL;
 85	insn = __mem_to_opcode_arm(*p->addr);
 86	decode_insn = arm_probes_decode_insn;
 87	actions = kprobes_arm_actions;
 88#endif
 89
 90	p->opcode = insn;
 91	p->ainsn.insn = tmp_insn;
 92
 93	switch ((*decode_insn)(insn, &p->ainsn, true, actions)) {
 94	case INSN_REJECTED:	/* not supported */
 95		return -EINVAL;
 96
 97	case INSN_GOOD:		/* instruction uses slot */
 98		p->ainsn.insn = get_insn_slot();
 99		if (!p->ainsn.insn)
100			return -ENOMEM;
101		for (is = 0; is < MAX_INSN_SIZE; ++is)
102			p->ainsn.insn[is] = tmp_insn[is];
103		flush_insns(p->ainsn.insn,
104				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
105		p->ainsn.insn_fn = (probes_insn_fn_t *)
106					((uintptr_t)p->ainsn.insn | thumb);
107		break;
108
109	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
110		p->ainsn.insn = NULL;
111		break;
112	}
113
114	return 0;
115}
116
117void __kprobes arch_arm_kprobe(struct kprobe *p)
118{
119	unsigned int brkp;
120	void *addr;
121
122	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
123		/* Remove any Thumb flag */
124		addr = (void *)((uintptr_t)p->addr & ~1);
125
126		if (is_wide_instruction(p->opcode))
127			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
128		else
129			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
130	} else {
131		kprobe_opcode_t insn = p->opcode;
132
133		addr = p->addr;
134		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
135
136		if (insn >= 0xe0000000)
137			brkp |= 0xe0000000;  /* Unconditional instruction */
138		else
139			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
140	}
141
142	patch_text(addr, brkp);
143}
144
145/*
146 * The actual disarming is done here on each CPU and synchronized using
147 * stop_machine. This synchronization is necessary on SMP to avoid removing
148 * a probe between the moment the 'Undefined Instruction' exception is raised
149 * and the moment the exception handler reads the faulting instruction from
150 * memory. It is also needed to atomically set the two half-words of a 32-bit
151 * Thumb breakpoint.
152 */
153int __kprobes __arch_disarm_kprobe(void *p)
154{
155	struct kprobe *kp = p;
156	void *addr = (void *)((uintptr_t)kp->addr & ~1);
157
158	__patch_text(addr, kp->opcode);
159
160	return 0;
161}
162
163void __kprobes arch_disarm_kprobe(struct kprobe *p)
164{
165	stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
166}
167
168void __kprobes arch_remove_kprobe(struct kprobe *p)
169{
170	if (p->ainsn.insn) {
171		free_insn_slot(p->ainsn.insn, 0);
172		p->ainsn.insn = NULL;
173	}
174}
175
176static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
177{
178	kcb->prev_kprobe.kp = kprobe_running();
179	kcb->prev_kprobe.status = kcb->kprobe_status;
180}
181
182static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
183{
184	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
185	kcb->kprobe_status = kcb->prev_kprobe.status;
186}
187
188static void __kprobes set_current_kprobe(struct kprobe *p)
189{
190	__this_cpu_write(current_kprobe, p);
191}
192
193static void __kprobes
194singlestep_skip(struct kprobe *p, struct pt_regs *regs)
195{
196#ifdef CONFIG_THUMB2_KERNEL
197	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
198	if (is_wide_instruction(p->opcode))
199		regs->ARM_pc += 4;
200	else
201		regs->ARM_pc += 2;
202#else
203	regs->ARM_pc += 4;
204#endif
205}
206
207static inline void __kprobes
208singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
209{
210	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
211}
212
213/*
214 * Called with IRQs disabled. IRQs must remain disabled from that point
215 * all the way until processing this kprobe is complete.  The current
216 * kprobes implementation cannot process more than one nested level of
217 * kprobe, and that level is reserved for user kprobe handlers, so we can't
218 * risk encountering a new kprobe in an interrupt handler.
219 */
220void __kprobes kprobe_handler(struct pt_regs *regs)
221{
222	struct kprobe *p, *cur;
223	struct kprobe_ctlblk *kcb;
224
225	kcb = get_kprobe_ctlblk();
226	cur = kprobe_running();
227
228#ifdef CONFIG_THUMB2_KERNEL
229	/*
230	 * First look for a probe which was registered using an address with
231	 * bit 0 set, this is the usual situation for pointers to Thumb code.
232	 * If not found, fallback to looking for one with bit 0 clear.
233	 */
234	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
235	if (!p)
236		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
237
238#else /* ! CONFIG_THUMB2_KERNEL */
239	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
240#endif
241
242	if (p) {
243		if (cur) {
244			/* Kprobe is pending, so we're recursing. */
245			switch (kcb->kprobe_status) {
246			case KPROBE_HIT_ACTIVE:
247			case KPROBE_HIT_SSDONE:
248				/* A pre- or post-handler probe got us here. */
249				kprobes_inc_nmissed_count(p);
250				save_previous_kprobe(kcb);
251				set_current_kprobe(p);
252				kcb->kprobe_status = KPROBE_REENTER;
253				singlestep(p, regs, kcb);
254				restore_previous_kprobe(kcb);
255				break;
256			default:
257				/* impossible cases */
258				BUG();
259			}
260		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
261			/* Probe hit and conditional execution check ok. */
262			set_current_kprobe(p);
263			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
264
265			/*
266			 * If we have no pre-handler or it returned 0, we
267			 * continue with normal processing.  If we have a
268			 * pre-handler and it returned non-zero, it prepped
269			 * for calling the break_handler below on re-entry,
270			 * so get out doing nothing more here.
271			 */
272			if (!p->pre_handler || !p->pre_handler(p, regs)) {
273				kcb->kprobe_status = KPROBE_HIT_SS;
274				singlestep(p, regs, kcb);
275				if (p->post_handler) {
276					kcb->kprobe_status = KPROBE_HIT_SSDONE;
277					p->post_handler(p, regs, 0);
278				}
279				reset_current_kprobe();
280			}
281		} else {
282			/*
283			 * Probe hit but conditional execution check failed,
284			 * so just skip the instruction and continue as if
285			 * nothing had happened.
286			 */
287			singlestep_skip(p, regs);
288		}
289	} else if (cur) {
290		/* We probably hit a jprobe.  Call its break handler. */
291		if (cur->break_handler && cur->break_handler(cur, regs)) {
292			kcb->kprobe_status = KPROBE_HIT_SS;
293			singlestep(cur, regs, kcb);
294			if (cur->post_handler) {
295				kcb->kprobe_status = KPROBE_HIT_SSDONE;
296				cur->post_handler(cur, regs, 0);
297			}
298		}
299		reset_current_kprobe();
300	} else {
301		/*
302		 * The probe was removed and a race is in progress.
303		 * There is nothing we can do about it.  Let's restart
304		 * the instruction.  By the time we can restart, the
305		 * real instruction will be there.
306		 */
307	}
308}
309
310static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
311{
312	unsigned long flags;
313	local_irq_save(flags);
314	kprobe_handler(regs);
315	local_irq_restore(flags);
316	return 0;
317}
318
319int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320{
321	struct kprobe *cur = kprobe_running();
322	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323
324	switch (kcb->kprobe_status) {
325	case KPROBE_HIT_SS:
326	case KPROBE_REENTER:
327		/*
328		 * We are here because the instruction being single
329		 * stepped caused a page fault. We reset the current
330		 * kprobe and the PC to point back to the probe address
331		 * and allow the page fault handler to continue as a
332		 * normal page fault.
333		 */
334		regs->ARM_pc = (long)cur->addr;
335		if (kcb->kprobe_status == KPROBE_REENTER) {
336			restore_previous_kprobe(kcb);
337		} else {
338			reset_current_kprobe();
339		}
340		break;
341
342	case KPROBE_HIT_ACTIVE:
343	case KPROBE_HIT_SSDONE:
344		/*
345		 * We increment the nmissed count for accounting,
346		 * we can also use npre/npostfault count for accounting
347		 * these specific fault cases.
348		 */
349		kprobes_inc_nmissed_count(cur);
350
351		/*
352		 * We come here because instructions in the pre/post
353		 * handler caused the page_fault, this could happen
354		 * if handler tries to access user space by
355		 * copy_from_user(), get_user() etc. Let the
356		 * user-specified handler try to fix it.
357		 */
358		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
359			return 1;
360		break;
361
362	default:
363		break;
364	}
365
366	return 0;
367}
368
369int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
370				       unsigned long val, void *data)
371{
372	/*
373	 * notify_die() is currently never called on ARM,
374	 * so this callback is currently empty.
375	 */
376	return NOTIFY_DONE;
377}
378
379/*
380 * When a retprobed function returns, trampoline_handler() is called,
381 * calling the kretprobe's handler. We construct a struct pt_regs to
382 * give a view of registers r0-r11 to the user return-handler.  This is
383 * not a complete pt_regs structure, but that should be plenty sufficient
384 * for kretprobe handlers which should normally be interested in r0 only
385 * anyway.
386 */
387void __naked __kprobes kretprobe_trampoline(void)
388{
389	__asm__ __volatile__ (
390		"stmdb	sp!, {r0 - r11}		\n\t"
391		"mov	r0, sp			\n\t"
392		"bl	trampoline_handler	\n\t"
393		"mov	lr, r0			\n\t"
394		"ldmia	sp!, {r0 - r11}		\n\t"
395#ifdef CONFIG_THUMB2_KERNEL
396		"bx	lr			\n\t"
397#else
398		"mov	pc, lr			\n\t"
399#endif
400		: : : "memory");
401}
402
403/* Called from kretprobe_trampoline */
404static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
405{
406	struct kretprobe_instance *ri = NULL;
407	struct hlist_head *head, empty_rp;
408	struct hlist_node *tmp;
409	unsigned long flags, orig_ret_address = 0;
410	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
411
412	INIT_HLIST_HEAD(&empty_rp);
413	kretprobe_hash_lock(current, &head, &flags);
414
415	/*
416	 * It is possible to have multiple instances associated with a given
417	 * task either because multiple functions in the call path have
418	 * a return probe installed on them, and/or more than one return
419	 * probe was registered for a target function.
420	 *
421	 * We can handle this because:
422	 *     - instances are always inserted at the head of the list
423	 *     - when multiple return probes are registered for the same
424	 *       function, the first instance's ret_addr will point to the
425	 *       real return address, and all the rest will point to
426	 *       kretprobe_trampoline
427	 */
428	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
429		if (ri->task != current)
430			/* another task is sharing our hash bucket */
431			continue;
432
433		if (ri->rp && ri->rp->handler) {
434			__this_cpu_write(current_kprobe, &ri->rp->kp);
435			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
436			ri->rp->handler(ri, regs);
437			__this_cpu_write(current_kprobe, NULL);
438		}
439
440		orig_ret_address = (unsigned long)ri->ret_addr;
441		recycle_rp_inst(ri, &empty_rp);
442
443		if (orig_ret_address != trampoline_address)
444			/*
445			 * This is the real return address. Any other
446			 * instances associated with this task are for
447			 * other calls deeper on the call stack
448			 */
449			break;
450	}
451
452	kretprobe_assert(ri, orig_ret_address, trampoline_address);
453	kretprobe_hash_unlock(current, &flags);
454
455	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
456		hlist_del(&ri->hlist);
457		kfree(ri);
458	}
459
460	return (void *)orig_ret_address;
461}
462
463void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
464				      struct pt_regs *regs)
465{
466	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
467
468	/* Replace the return addr with trampoline addr. */
469	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
470}
471
472int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
473{
474	struct jprobe *jp = container_of(p, struct jprobe, kp);
475	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476	long sp_addr = regs->ARM_sp;
477	long cpsr;
478
479	kcb->jprobe_saved_regs = *regs;
480	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
481	regs->ARM_pc = (long)jp->entry;
482
483	cpsr = regs->ARM_cpsr | PSR_I_BIT;
484#ifdef CONFIG_THUMB2_KERNEL
485	/* Set correct Thumb state in cpsr */
486	if (regs->ARM_pc & 1)
487		cpsr |= PSR_T_BIT;
488	else
489		cpsr &= ~PSR_T_BIT;
490#endif
491	regs->ARM_cpsr = cpsr;
492
493	preempt_disable();
494	return 1;
495}
496
497void __kprobes jprobe_return(void)
498{
499	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500
501	__asm__ __volatile__ (
502		/*
503		 * Setup an empty pt_regs. Fill SP and PC fields as
504		 * they're needed by longjmp_break_handler.
505		 *
506		 * We allocate some slack between the original SP and start of
507		 * our fabricated regs. To be precise we want to have worst case
508		 * covered which is STMFD with all 16 regs so we allocate 2 *
509		 * sizeof(struct_pt_regs)).
510		 *
511		 * This is to prevent any simulated instruction from writing
512		 * over the regs when they are accessing the stack.
513		 */
514#ifdef CONFIG_THUMB2_KERNEL
515		"sub    r0, %0, %1		\n\t"
516		"mov    sp, r0			\n\t"
517#else
518		"sub    sp, %0, %1		\n\t"
519#endif
520		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
521		"str    %0, [sp, %2]		\n\t"
522		"str    r0, [sp, %3]		\n\t"
523		"mov    r0, sp			\n\t"
524		"bl     kprobe_handler		\n\t"
525
526		/*
527		 * Return to the context saved by setjmp_pre_handler
528		 * and restored by longjmp_break_handler.
529		 */
530#ifdef CONFIG_THUMB2_KERNEL
531		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
532		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
533		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
534		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
535						      /* rfe context */
536		"ldmia	sp, {r0 - r12}		\n\t"
537		"mov	sp, lr			\n\t"
538		"ldr	lr, [sp], #4		\n\t"
539		"rfeia	sp!			\n\t"
540#else
541		"ldr	r0, [sp, %4]		\n\t"
542		"msr	cpsr_cxsf, r0		\n\t"
543		"ldmia	sp, {r0 - pc}		\n\t"
544#endif
545		:
546		: "r" (kcb->jprobe_saved_regs.ARM_sp),
547		  "I" (sizeof(struct pt_regs) * 2),
548		  "J" (offsetof(struct pt_regs, ARM_sp)),
549		  "J" (offsetof(struct pt_regs, ARM_pc)),
550		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
551		  "J" (offsetof(struct pt_regs, ARM_lr))
552		: "memory", "cc");
553}
554
555int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
556{
557	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
558	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
559	long orig_sp = regs->ARM_sp;
560	struct jprobe *jp = container_of(p, struct jprobe, kp);
561
562	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
563		if (orig_sp != stack_addr) {
564			struct pt_regs *saved_regs =
565				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
566			printk("current sp %lx does not match saved sp %lx\n",
567			       orig_sp, stack_addr);
568			printk("Saved registers for jprobe %p\n", jp);
569			show_regs(saved_regs);
570			printk("Current registers\n");
571			show_regs(regs);
572			BUG();
573		}
574		*regs = kcb->jprobe_saved_regs;
575		memcpy((void *)stack_addr, kcb->jprobes_stack,
576		       MIN_STACK_SIZE(stack_addr));
577		preempt_enable_no_resched();
578		return 1;
579	}
580	return 0;
581}
582
583int __kprobes arch_trampoline_kprobe(struct kprobe *p)
584{
585	return 0;
586}
587
588#ifdef CONFIG_THUMB2_KERNEL
589
590static struct undef_hook kprobes_thumb16_break_hook = {
591	.instr_mask	= 0xffff,
592	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
593	.cpsr_mask	= MODE_MASK,
594	.cpsr_val	= SVC_MODE,
595	.fn		= kprobe_trap_handler,
596};
597
598static struct undef_hook kprobes_thumb32_break_hook = {
599	.instr_mask	= 0xffffffff,
600	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
601	.cpsr_mask	= MODE_MASK,
602	.cpsr_val	= SVC_MODE,
603	.fn		= kprobe_trap_handler,
604};
605
606#else  /* !CONFIG_THUMB2_KERNEL */
607
608static struct undef_hook kprobes_arm_break_hook = {
609	.instr_mask	= 0x0fffffff,
610	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
611	.cpsr_mask	= MODE_MASK,
612	.cpsr_val	= SVC_MODE,
613	.fn		= kprobe_trap_handler,
614};
615
616#endif /* !CONFIG_THUMB2_KERNEL */
617
618int __init arch_init_kprobes()
619{
620	arm_probes_decode_init();
621#ifdef CONFIG_THUMB2_KERNEL
622	register_undef_hook(&kprobes_thumb16_break_hook);
623	register_undef_hook(&kprobes_thumb32_break_hook);
624#else
625	register_undef_hook(&kprobes_arm_break_hook);
626#endif
627	return 0;
628}