Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		The Internet Protocol (IP) module.
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Donald Becker, <becker@super.org>
 11 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 12 *		Richard Underwood
 13 *		Stefan Becker, <stefanb@yello.ping.de>
 14 *		Jorge Cwik, <jorge@laser.satlink.net>
 15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 16 *
 17 *
 18 * Fixes:
 19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
 20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
 21 *					(just stops a compiler warning).
 22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
 23 *					are junked rather than corrupting things.
 24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
 25 *					We used to process them non broadcast and
 26 *					boy could that cause havoc.
 27 *		Alan Cox	:	ip_forward sets the free flag on the
 28 *					new frame it queues. Still crap because
 29 *					it copies the frame but at least it
 30 *					doesn't eat memory too.
 31 *		Alan Cox	:	Generic queue code and memory fixes.
 32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
 33 *		Gerhard Koerting:	Forward fragmented frames correctly.
 34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
 35 *		Gerhard Koerting:	IP interface addressing fix.
 36 *		Linus Torvalds	:	More robustness checks
 37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
 38 *		Alan Cox	:	Save IP header pointer for later
 39 *		Alan Cox	:	ip option setting
 40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
 41 *		Alan Cox	:	Fragmentation bogosity removed
 42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
 43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
 44 *		Alan Cox	:	Silly ip bug when an overlength
 45 *					fragment turns up. Now frees the
 46 *					queue.
 47 *		Linus Torvalds/ :	Memory leakage on fragmentation
 48 *		Alan Cox	:	handling.
 49 *		Gerhard Koerting:	Forwarding uses IP priority hints
 50 *		Teemu Rantanen	:	Fragment problems.
 51 *		Alan Cox	:	General cleanup, comments and reformat
 52 *		Alan Cox	:	SNMP statistics
 53 *		Alan Cox	:	BSD address rule semantics. Also see
 54 *					UDP as there is a nasty checksum issue
 55 *					if you do things the wrong way.
 56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
 57 *		Alan Cox	: 	IP options adjust sk->priority.
 58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
 59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
 60 *	Richard Underwood	:	IP multicasting.
 61 *		Alan Cox	:	Cleaned up multicast handlers.
 62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
 63 *		Gunther Mayer	:	Fix the SNMP reporting typo
 64 *		Alan Cox	:	Always in group 224.0.0.1
 65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
 66 *					Masquerading support.
 67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
 68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
 69 *		Alan Cox	:	Use notifiers.
 70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
 71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
 72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
 73 *	Arnt Gulbrandsen	:	ip_build_xmit
 74 *		Alan Cox	:	Per socket routing cache
 75 *		Alan Cox	:	Fixed routing cache, added header cache.
 76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
 77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
 78 *		Alan Cox	:	Incoming IP option handling.
 79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
 80 *		Alan Cox	:	Stopped broadcast source route explosions.
 81 *		Alan Cox	:	Can disable source routing
 82 *		Takeshi Sone    :	Masquerading didn't work.
 83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
 84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
 85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
 86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
 87 *		Alan Cox	:	Fixed SNMP statistics [I think]
 88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
 89 *		Alan Cox	:	Device lock against page fault.
 90 *		Alan Cox	:	IP_HDRINCL facility.
 91 *	Werner Almesberger	:	Zero fragment bug
 92 *		Alan Cox	:	RAW IP frame length bug
 93 *		Alan Cox	:	Outgoing firewall on build_xmit
 94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
 95 *		Alan Cox	:	Multicast routing hooks
 96 *		Jos Vos		:	Do accounting *before* call_in_firewall
 97 *	Willy Konynenberg	:	Transparent proxying support
 98 *
 99 *
100 *
101 * To Fix:
102 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
103 *		and could be made very efficient with the addition of some virtual memory hacks to permit
104 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
105 *		Output fragmentation wants updating along with the buffer management to use a single
106 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
107 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
108 *		fragmentation anyway.
109 *
110 *		This program is free software; you can redistribute it and/or
111 *		modify it under the terms of the GNU General Public License
112 *		as published by the Free Software Foundation; either version
113 *		2 of the License, or (at your option) any later version.
114 */
115
116#define pr_fmt(fmt) "IPv4: " fmt
117
118#include <linux/module.h>
119#include <linux/types.h>
120#include <linux/kernel.h>
121#include <linux/string.h>
122#include <linux/errno.h>
123#include <linux/slab.h>
124
125#include <linux/net.h>
126#include <linux/socket.h>
127#include <linux/sockios.h>
128#include <linux/in.h>
129#include <linux/inet.h>
130#include <linux/inetdevice.h>
131#include <linux/netdevice.h>
132#include <linux/etherdevice.h>
 
133
134#include <net/snmp.h>
135#include <net/ip.h>
136#include <net/protocol.h>
137#include <net/route.h>
138#include <linux/skbuff.h>
139#include <net/sock.h>
140#include <net/arp.h>
141#include <net/icmp.h>
142#include <net/raw.h>
143#include <net/checksum.h>
144#include <net/inet_ecn.h>
145#include <linux/netfilter_ipv4.h>
146#include <net/xfrm.h>
147#include <linux/mroute.h>
148#include <linux/netlink.h>
 
149
150/*
151 *	Process Router Attention IP option (RFC 2113)
152 */
153bool ip_call_ra_chain(struct sk_buff *skb)
154{
155	struct ip_ra_chain *ra;
156	u8 protocol = ip_hdr(skb)->protocol;
157	struct sock *last = NULL;
158	struct net_device *dev = skb->dev;
 
159
160	for (ra = rcu_dereference(ip_ra_chain); ra; ra = rcu_dereference(ra->next)) {
161		struct sock *sk = ra->sk;
162
163		/* If socket is bound to an interface, only report
164		 * the packet if it came  from that interface.
165		 */
166		if (sk && inet_sk(sk)->inet_num == protocol &&
167		    (!sk->sk_bound_dev_if ||
168		     sk->sk_bound_dev_if == dev->ifindex) &&
169		    net_eq(sock_net(sk), dev_net(dev))) {
170			if (ip_is_fragment(ip_hdr(skb))) {
171				if (ip_defrag(skb, IP_DEFRAG_CALL_RA_CHAIN))
172					return true;
173			}
174			if (last) {
175				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
176				if (skb2)
177					raw_rcv(last, skb2);
178			}
179			last = sk;
180		}
181	}
182
183	if (last) {
184		raw_rcv(last, skb);
185		return true;
186	}
187	return false;
188}
189
190static int ip_local_deliver_finish(struct sk_buff *skb)
 
 
191{
192	struct net *net = dev_net(skb->dev);
 
193
194	__skb_pull(skb, skb_network_header_len(skb));
 
195
196	rcu_read_lock();
197	{
198		int protocol = ip_hdr(skb)->protocol;
199		const struct net_protocol *ipprot;
200		int raw;
201
202	resubmit:
203		raw = raw_local_deliver(skb, protocol);
204
205		ipprot = rcu_dereference(inet_protos[protocol]);
206		if (ipprot != NULL) {
207			int ret;
208
209			if (!ipprot->no_policy) {
210				if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
211					kfree_skb(skb);
212					goto out;
213				}
214				nf_reset(skb);
215			}
216			ret = ipprot->handler(skb);
217			if (ret < 0) {
218				protocol = -ret;
219				goto resubmit;
 
 
 
 
 
 
 
 
 
 
 
220			}
221			IP_INC_STATS_BH(net, IPSTATS_MIB_INDELIVERS);
222		} else {
223			if (!raw) {
224				if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
225					IP_INC_STATS_BH(net, IPSTATS_MIB_INUNKNOWNPROTOS);
226					icmp_send(skb, ICMP_DEST_UNREACH,
227						  ICMP_PROT_UNREACH, 0);
228				}
229				kfree_skb(skb);
230			} else {
231				IP_INC_STATS_BH(net, IPSTATS_MIB_INDELIVERS);
232				consume_skb(skb);
233			}
234		}
235	}
236 out:
 
 
 
 
 
 
 
 
237	rcu_read_unlock();
238
239	return 0;
240}
241
242/*
243 * 	Deliver IP Packets to the higher protocol layers.
244 */
245int ip_local_deliver(struct sk_buff *skb)
246{
247	/*
248	 *	Reassemble IP fragments.
249	 */
 
250
251	if (ip_is_fragment(ip_hdr(skb))) {
252		if (ip_defrag(skb, IP_DEFRAG_LOCAL_DELIVER))
253			return 0;
254	}
255
256	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, skb, skb->dev, NULL,
 
257		       ip_local_deliver_finish);
258}
 
259
260static inline bool ip_rcv_options(struct sk_buff *skb)
261{
262	struct ip_options *opt;
263	const struct iphdr *iph;
264	struct net_device *dev = skb->dev;
265
266	/* It looks as overkill, because not all
267	   IP options require packet mangling.
268	   But it is the easiest for now, especially taking
269	   into account that combination of IP options
270	   and running sniffer is extremely rare condition.
271					      --ANK (980813)
272	*/
273	if (skb_cow(skb, skb_headroom(skb))) {
274		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
275		goto drop;
276	}
277
278	iph = ip_hdr(skb);
279	opt = &(IPCB(skb)->opt);
280	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
281
282	if (ip_options_compile(dev_net(dev), opt, skb)) {
283		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
284		goto drop;
285	}
286
287	if (unlikely(opt->srr)) {
288		struct in_device *in_dev = __in_dev_get_rcu(dev);
289
290		if (in_dev) {
291			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
292				if (IN_DEV_LOG_MARTIANS(in_dev))
293					net_info_ratelimited("source route option %pI4 -> %pI4\n",
294							     &iph->saddr,
295							     &iph->daddr);
296				goto drop;
297			}
298		}
299
300		if (ip_options_rcv_srr(skb))
301			goto drop;
302	}
303
304	return false;
305drop:
306	return true;
307}
308
309int sysctl_ip_early_demux __read_mostly = 1;
310EXPORT_SYMBOL(sysctl_ip_early_demux);
 
 
 
 
311
312static int ip_rcv_finish(struct sk_buff *skb)
 
 
 
 
313{
314	const struct iphdr *iph = ip_hdr(skb);
 
315	struct rtable *rt;
316
317	if (sysctl_ip_early_demux && !skb_dst(skb) && skb->sk == NULL) {
318		const struct net_protocol *ipprot;
319		int protocol = iph->protocol;
320
321		ipprot = rcu_dereference(inet_protos[protocol]);
322		if (ipprot && ipprot->early_demux) {
323			ipprot->early_demux(skb);
324			/* must reload iph, skb->head might have changed */
325			iph = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326		}
327	}
328
329	/*
330	 *	Initialise the virtual path cache for the packet. It describes
331	 *	how the packet travels inside Linux networking.
332	 */
333	if (!skb_dst(skb)) {
334		int err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
335					       iph->tos, skb->dev);
336		if (unlikely(err)) {
337			if (err == -EXDEV)
338				NET_INC_STATS_BH(dev_net(skb->dev),
339						 LINUX_MIB_IPRPFILTER);
340			goto drop;
341		}
 
342	}
343
344#ifdef CONFIG_IP_ROUTE_CLASSID
345	if (unlikely(skb_dst(skb)->tclassid)) {
346		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
347		u32 idx = skb_dst(skb)->tclassid;
348		st[idx&0xFF].o_packets++;
349		st[idx&0xFF].o_bytes += skb->len;
350		st[(idx>>16)&0xFF].i_packets++;
351		st[(idx>>16)&0xFF].i_bytes += skb->len;
352	}
353#endif
354
355	if (iph->ihl > 5 && ip_rcv_options(skb))
356		goto drop;
357
358	rt = skb_rtable(skb);
359	if (rt->rt_type == RTN_MULTICAST) {
360		IP_UPD_PO_STATS_BH(dev_net(rt->dst.dev), IPSTATS_MIB_INMCAST,
361				skb->len);
362	} else if (rt->rt_type == RTN_BROADCAST)
363		IP_UPD_PO_STATS_BH(dev_net(rt->dst.dev), IPSTATS_MIB_INBCAST,
364				skb->len);
 
365
366	return dst_input(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
368drop:
369	kfree_skb(skb);
370	return NET_RX_DROP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371}
372
373/*
374 * 	Main IP Receive routine.
375 */
376int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
377{
378	const struct iphdr *iph;
 
379	u32 len;
380
381	/* When the interface is in promisc. mode, drop all the crap
382	 * that it receives, do not try to analyse it.
383	 */
384	if (skb->pkt_type == PACKET_OTHERHOST)
 
 
385		goto drop;
 
386
 
387
388	IP_UPD_PO_STATS_BH(dev_net(dev), IPSTATS_MIB_IN, skb->len);
389
390	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
391		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
392		goto out;
393	}
394
 
395	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
396		goto inhdr_error;
397
398	iph = ip_hdr(skb);
399
400	/*
401	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
402	 *
403	 *	Is the datagram acceptable?
404	 *
405	 *	1.	Length at least the size of an ip header
406	 *	2.	Version of 4
407	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
408	 *	4.	Doesn't have a bogus length
409	 */
410
411	if (iph->ihl < 5 || iph->version != 4)
412		goto inhdr_error;
413
414	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
415	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
416	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
417	IP_ADD_STATS_BH(dev_net(dev),
418			IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
419			max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
420
421	if (!pskb_may_pull(skb, iph->ihl*4))
422		goto inhdr_error;
423
424	iph = ip_hdr(skb);
425
426	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
427		goto csum_error;
428
429	len = ntohs(iph->tot_len);
430	if (skb->len < len) {
431		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
 
432		goto drop;
433	} else if (len < (iph->ihl*4))
434		goto inhdr_error;
435
436	/* Our transport medium may have padded the buffer out. Now we know it
437	 * is IP we can trim to the true length of the frame.
438	 * Note this now means skb->len holds ntohs(iph->tot_len).
439	 */
440	if (pskb_trim_rcsum(skb, len)) {
441		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
442		goto drop;
443	}
444
 
445	skb->transport_header = skb->network_header + iph->ihl*4;
446
447	/* Remove any debris in the socket control block */
448	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 
449
450	/* Must drop socket now because of tproxy. */
451	skb_orphan(skb);
 
452
453	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, dev, NULL,
454		       ip_rcv_finish);
455
456csum_error:
457	IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_CSUMERRORS);
 
458inhdr_error:
459	IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
 
 
460drop:
461	kfree_skb(skb);
462out:
463	return NET_RX_DROP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		The Internet Protocol (IP) module.
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Donald Becker, <becker@super.org>
 12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 13 *		Richard Underwood
 14 *		Stefan Becker, <stefanb@yello.ping.de>
 15 *		Jorge Cwik, <jorge@laser.satlink.net>
 16 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 17 *
 
 18 * Fixes:
 19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
 20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
 21 *					(just stops a compiler warning).
 22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
 23 *					are junked rather than corrupting things.
 24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
 25 *					We used to process them non broadcast and
 26 *					boy could that cause havoc.
 27 *		Alan Cox	:	ip_forward sets the free flag on the
 28 *					new frame it queues. Still crap because
 29 *					it copies the frame but at least it
 30 *					doesn't eat memory too.
 31 *		Alan Cox	:	Generic queue code and memory fixes.
 32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
 33 *		Gerhard Koerting:	Forward fragmented frames correctly.
 34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
 35 *		Gerhard Koerting:	IP interface addressing fix.
 36 *		Linus Torvalds	:	More robustness checks
 37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
 38 *		Alan Cox	:	Save IP header pointer for later
 39 *		Alan Cox	:	ip option setting
 40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
 41 *		Alan Cox	:	Fragmentation bogosity removed
 42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
 43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
 44 *		Alan Cox	:	Silly ip bug when an overlength
 45 *					fragment turns up. Now frees the
 46 *					queue.
 47 *		Linus Torvalds/ :	Memory leakage on fragmentation
 48 *		Alan Cox	:	handling.
 49 *		Gerhard Koerting:	Forwarding uses IP priority hints
 50 *		Teemu Rantanen	:	Fragment problems.
 51 *		Alan Cox	:	General cleanup, comments and reformat
 52 *		Alan Cox	:	SNMP statistics
 53 *		Alan Cox	:	BSD address rule semantics. Also see
 54 *					UDP as there is a nasty checksum issue
 55 *					if you do things the wrong way.
 56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
 57 *		Alan Cox	: 	IP options adjust sk->priority.
 58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
 59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
 60 *	Richard Underwood	:	IP multicasting.
 61 *		Alan Cox	:	Cleaned up multicast handlers.
 62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
 63 *		Gunther Mayer	:	Fix the SNMP reporting typo
 64 *		Alan Cox	:	Always in group 224.0.0.1
 65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
 66 *					Masquerading support.
 67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
 68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
 69 *		Alan Cox	:	Use notifiers.
 70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
 71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
 72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
 73 *	Arnt Gulbrandsen	:	ip_build_xmit
 74 *		Alan Cox	:	Per socket routing cache
 75 *		Alan Cox	:	Fixed routing cache, added header cache.
 76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
 77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
 78 *		Alan Cox	:	Incoming IP option handling.
 79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
 80 *		Alan Cox	:	Stopped broadcast source route explosions.
 81 *		Alan Cox	:	Can disable source routing
 82 *		Takeshi Sone    :	Masquerading didn't work.
 83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
 84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
 85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
 86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
 87 *		Alan Cox	:	Fixed SNMP statistics [I think]
 88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
 89 *		Alan Cox	:	Device lock against page fault.
 90 *		Alan Cox	:	IP_HDRINCL facility.
 91 *	Werner Almesberger	:	Zero fragment bug
 92 *		Alan Cox	:	RAW IP frame length bug
 93 *		Alan Cox	:	Outgoing firewall on build_xmit
 94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
 95 *		Alan Cox	:	Multicast routing hooks
 96 *		Jos Vos		:	Do accounting *before* call_in_firewall
 97 *	Willy Konynenberg	:	Transparent proxying support
 98 *
 
 
 99 * To Fix:
100 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 *		and could be made very efficient with the addition of some virtual memory hacks to permit
102 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 *		Output fragmentation wants updating along with the buffer management to use a single
104 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 *		fragmentation anyway.
 
 
 
 
 
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 *	Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150	struct ip_ra_chain *ra;
151	u8 protocol = ip_hdr(skb)->protocol;
152	struct sock *last = NULL;
153	struct net_device *dev = skb->dev;
154	struct net *net = dev_net(dev);
155
156	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157		struct sock *sk = ra->sk;
158
159		/* If socket is bound to an interface, only report
160		 * the packet if it came  from that interface.
161		 */
162		if (sk && inet_sk(sk)->inet_num == protocol &&
163		    (!sk->sk_bound_dev_if ||
164		     sk->sk_bound_dev_if == dev->ifindex)) {
 
165			if (ip_is_fragment(ip_hdr(skb))) {
166				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167					return true;
168			}
169			if (last) {
170				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171				if (skb2)
172					raw_rcv(last, skb2);
173			}
174			last = sk;
175		}
176	}
177
178	if (last) {
179		raw_rcv(last, skb);
180		return true;
181	}
182	return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189	const struct net_protocol *ipprot;
190	int raw, ret;
191
192resubmit:
193	raw = raw_local_deliver(skb, protocol);
194
195	ipprot = rcu_dereference(inet_protos[protocol]);
196	if (ipprot) {
197		if (!ipprot->no_policy) {
198			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199				kfree_skb_reason(skb,
200						 SKB_DROP_REASON_XFRM_POLICY);
201				return;
 
 
 
 
 
 
 
 
 
 
 
 
202			}
203			nf_reset_ct(skb);
204		}
205		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206				      skb);
207		if (ret < 0) {
208			protocol = -ret;
209			goto resubmit;
210		}
211		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212	} else {
213		if (!raw) {
214			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216				icmp_send(skb, ICMP_DEST_UNREACH,
217					  ICMP_PROT_UNREACH, 0);
218			}
219			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220		} else {
221			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222			consume_skb(skb);
 
 
 
 
 
 
 
 
 
223		}
224	}
225}
226
227static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228{
229	skb_clear_delivery_time(skb);
230	__skb_pull(skb, skb_network_header_len(skb));
231
232	rcu_read_lock();
233	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
234	rcu_read_unlock();
235
236	return 0;
237}
238
239/*
240 * 	Deliver IP Packets to the higher protocol layers.
241 */
242int ip_local_deliver(struct sk_buff *skb)
243{
244	/*
245	 *	Reassemble IP fragments.
246	 */
247	struct net *net = dev_net(skb->dev);
248
249	if (ip_is_fragment(ip_hdr(skb))) {
250		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
251			return 0;
252	}
253
254	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
255		       net, NULL, skb, skb->dev, NULL,
256		       ip_local_deliver_finish);
257}
258EXPORT_SYMBOL(ip_local_deliver);
259
260static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
261{
262	struct ip_options *opt;
263	const struct iphdr *iph;
 
264
265	/* It looks as overkill, because not all
266	   IP options require packet mangling.
267	   But it is the easiest for now, especially taking
268	   into account that combination of IP options
269	   and running sniffer is extremely rare condition.
270					      --ANK (980813)
271	*/
272	if (skb_cow(skb, skb_headroom(skb))) {
273		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
274		goto drop;
275	}
276
277	iph = ip_hdr(skb);
278	opt = &(IPCB(skb)->opt);
279	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
280
281	if (ip_options_compile(dev_net(dev), opt, skb)) {
282		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
283		goto drop;
284	}
285
286	if (unlikely(opt->srr)) {
287		struct in_device *in_dev = __in_dev_get_rcu(dev);
288
289		if (in_dev) {
290			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
291				if (IN_DEV_LOG_MARTIANS(in_dev))
292					net_info_ratelimited("source route option %pI4 -> %pI4\n",
293							     &iph->saddr,
294							     &iph->daddr);
295				goto drop;
296			}
297		}
298
299		if (ip_options_rcv_srr(skb, dev))
300			goto drop;
301	}
302
303	return false;
304drop:
305	return true;
306}
307
308static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
309			    const struct sk_buff *hint)
310{
311	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
312	       ip_hdr(hint)->tos == iph->tos;
313}
314
315int tcp_v4_early_demux(struct sk_buff *skb);
316int udp_v4_early_demux(struct sk_buff *skb);
317static int ip_rcv_finish_core(struct net *net, struct sock *sk,
318			      struct sk_buff *skb, struct net_device *dev,
319			      const struct sk_buff *hint)
320{
321	const struct iphdr *iph = ip_hdr(skb);
322	int err, drop_reason;
323	struct rtable *rt;
324
325	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
326
327	if (ip_can_use_hint(skb, iph, hint)) {
328		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
329					dev, hint);
330		if (unlikely(err))
331			goto drop_error;
332	}
333
334	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
335	    !skb_dst(skb) &&
336	    !skb->sk &&
337	    !ip_is_fragment(iph)) {
338		switch (iph->protocol) {
339		case IPPROTO_TCP:
340			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
341				tcp_v4_early_demux(skb);
342
343				/* must reload iph, skb->head might have changed */
344				iph = ip_hdr(skb);
345			}
346			break;
347		case IPPROTO_UDP:
348			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
349				err = udp_v4_early_demux(skb);
350				if (unlikely(err))
351					goto drop_error;
352
353				/* must reload iph, skb->head might have changed */
354				iph = ip_hdr(skb);
355			}
356			break;
357		}
358	}
359
360	/*
361	 *	Initialise the virtual path cache for the packet. It describes
362	 *	how the packet travels inside Linux networking.
363	 */
364	if (!skb_valid_dst(skb)) {
365		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
366					   iph->tos, dev);
367		if (unlikely(err))
368			goto drop_error;
369	} else {
370		struct in_device *in_dev = __in_dev_get_rcu(dev);
371
372		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
373			IPCB(skb)->flags |= IPSKB_NOPOLICY;
374	}
375
376#ifdef CONFIG_IP_ROUTE_CLASSID
377	if (unlikely(skb_dst(skb)->tclassid)) {
378		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
379		u32 idx = skb_dst(skb)->tclassid;
380		st[idx&0xFF].o_packets++;
381		st[idx&0xFF].o_bytes += skb->len;
382		st[(idx>>16)&0xFF].i_packets++;
383		st[(idx>>16)&0xFF].i_bytes += skb->len;
384	}
385#endif
386
387	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
388		goto drop;
389
390	rt = skb_rtable(skb);
391	if (rt->rt_type == RTN_MULTICAST) {
392		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
393	} else if (rt->rt_type == RTN_BROADCAST) {
394		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
395	} else if (skb->pkt_type == PACKET_BROADCAST ||
396		   skb->pkt_type == PACKET_MULTICAST) {
397		struct in_device *in_dev = __in_dev_get_rcu(dev);
398
399		/* RFC 1122 3.3.6:
400		 *
401		 *   When a host sends a datagram to a link-layer broadcast
402		 *   address, the IP destination address MUST be a legal IP
403		 *   broadcast or IP multicast address.
404		 *
405		 *   A host SHOULD silently discard a datagram that is received
406		 *   via a link-layer broadcast (see Section 2.4) but does not
407		 *   specify an IP multicast or broadcast destination address.
408		 *
409		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
410		 * in a way a form of multicast and the most common use case for
411		 * this is 802.11 protecting against cross-station spoofing (the
412		 * so-called "hole-196" attack) so do it for both.
413		 */
414		if (in_dev &&
415		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
416			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
417			goto drop;
418		}
419	}
420
421	return NET_RX_SUCCESS;
422
423drop:
424	kfree_skb_reason(skb, drop_reason);
425	return NET_RX_DROP;
426
427drop_error:
428	if (err == -EXDEV) {
429		drop_reason = SKB_DROP_REASON_IP_RPFILTER;
430		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
431	}
432	goto drop;
433}
434
435static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
436{
437	struct net_device *dev = skb->dev;
438	int ret;
439
440	/* if ingress device is enslaved to an L3 master device pass the
441	 * skb to its handler for processing
442	 */
443	skb = l3mdev_ip_rcv(skb);
444	if (!skb)
445		return NET_RX_SUCCESS;
446
447	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
448	if (ret != NET_RX_DROP)
449		ret = dst_input(skb);
450	return ret;
451}
452
453/*
454 * 	Main IP Receive routine.
455 */
456static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
457{
458	const struct iphdr *iph;
459	int drop_reason;
460	u32 len;
461
462	/* When the interface is in promisc. mode, drop all the crap
463	 * that it receives, do not try to analyse it.
464	 */
465	if (skb->pkt_type == PACKET_OTHERHOST) {
466		dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
467		drop_reason = SKB_DROP_REASON_OTHERHOST;
468		goto drop;
469	}
470
471	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
472
473	skb = skb_share_check(skb, GFP_ATOMIC);
474	if (!skb) {
475		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
 
476		goto out;
477	}
478
479	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
480	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
481		goto inhdr_error;
482
483	iph = ip_hdr(skb);
484
485	/*
486	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
487	 *
488	 *	Is the datagram acceptable?
489	 *
490	 *	1.	Length at least the size of an ip header
491	 *	2.	Version of 4
492	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
493	 *	4.	Doesn't have a bogus length
494	 */
495
496	if (iph->ihl < 5 || iph->version != 4)
497		goto inhdr_error;
498
499	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
500	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
501	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
502	__IP_ADD_STATS(net,
503		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
504		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
505
506	if (!pskb_may_pull(skb, iph->ihl*4))
507		goto inhdr_error;
508
509	iph = ip_hdr(skb);
510
511	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
512		goto csum_error;
513
514	len = iph_totlen(skb, iph);
515	if (skb->len < len) {
516		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
517		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
518		goto drop;
519	} else if (len < (iph->ihl*4))
520		goto inhdr_error;
521
522	/* Our transport medium may have padded the buffer out. Now we know it
523	 * is IP we can trim to the true length of the frame.
524	 * Note this now means skb->len holds ntohs(iph->tot_len).
525	 */
526	if (pskb_trim_rcsum(skb, len)) {
527		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
528		goto drop;
529	}
530
531	iph = ip_hdr(skb);
532	skb->transport_header = skb->network_header + iph->ihl*4;
533
534	/* Remove any debris in the socket control block */
535	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
536	IPCB(skb)->iif = skb->skb_iif;
537
538	/* Must drop socket now because of tproxy. */
539	if (!skb_sk_is_prefetched(skb))
540		skb_orphan(skb);
541
542	return skb;
 
543
544csum_error:
545	drop_reason = SKB_DROP_REASON_IP_CSUM;
546	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
547inhdr_error:
548	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
549		drop_reason = SKB_DROP_REASON_IP_INHDR;
550	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
551drop:
552	kfree_skb_reason(skb, drop_reason);
553out:
554	return NULL;
555}
556
557/*
558 * IP receive entry point
559 */
560int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
561	   struct net_device *orig_dev)
562{
563	struct net *net = dev_net(dev);
564
565	skb = ip_rcv_core(skb, net);
566	if (skb == NULL)
567		return NET_RX_DROP;
568
569	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
570		       net, NULL, skb, dev, NULL,
571		       ip_rcv_finish);
572}
573
574static void ip_sublist_rcv_finish(struct list_head *head)
575{
576	struct sk_buff *skb, *next;
577
578	list_for_each_entry_safe(skb, next, head, list) {
579		skb_list_del_init(skb);
580		dst_input(skb);
581	}
582}
583
584static struct sk_buff *ip_extract_route_hint(const struct net *net,
585					     struct sk_buff *skb, int rt_type)
586{
587	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
588	    IPCB(skb)->flags & IPSKB_MULTIPATH)
589		return NULL;
590
591	return skb;
592}
593
594static void ip_list_rcv_finish(struct net *net, struct sock *sk,
595			       struct list_head *head)
596{
597	struct sk_buff *skb, *next, *hint = NULL;
598	struct dst_entry *curr_dst = NULL;
599	struct list_head sublist;
600
601	INIT_LIST_HEAD(&sublist);
602	list_for_each_entry_safe(skb, next, head, list) {
603		struct net_device *dev = skb->dev;
604		struct dst_entry *dst;
605
606		skb_list_del_init(skb);
607		/* if ingress device is enslaved to an L3 master device pass the
608		 * skb to its handler for processing
609		 */
610		skb = l3mdev_ip_rcv(skb);
611		if (!skb)
612			continue;
613		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
614			continue;
615
616		dst = skb_dst(skb);
617		if (curr_dst != dst) {
618			hint = ip_extract_route_hint(net, skb,
619					       ((struct rtable *)dst)->rt_type);
620
621			/* dispatch old sublist */
622			if (!list_empty(&sublist))
623				ip_sublist_rcv_finish(&sublist);
624			/* start new sublist */
625			INIT_LIST_HEAD(&sublist);
626			curr_dst = dst;
627		}
628		list_add_tail(&skb->list, &sublist);
629	}
630	/* dispatch final sublist */
631	ip_sublist_rcv_finish(&sublist);
632}
633
634static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
635			   struct net *net)
636{
637	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
638		     head, dev, NULL, ip_rcv_finish);
639	ip_list_rcv_finish(net, NULL, head);
640}
641
642/* Receive a list of IP packets */
643void ip_list_rcv(struct list_head *head, struct packet_type *pt,
644		 struct net_device *orig_dev)
645{
646	struct net_device *curr_dev = NULL;
647	struct net *curr_net = NULL;
648	struct sk_buff *skb, *next;
649	struct list_head sublist;
650
651	INIT_LIST_HEAD(&sublist);
652	list_for_each_entry_safe(skb, next, head, list) {
653		struct net_device *dev = skb->dev;
654		struct net *net = dev_net(dev);
655
656		skb_list_del_init(skb);
657		skb = ip_rcv_core(skb, net);
658		if (skb == NULL)
659			continue;
660
661		if (curr_dev != dev || curr_net != net) {
662			/* dispatch old sublist */
663			if (!list_empty(&sublist))
664				ip_sublist_rcv(&sublist, curr_dev, curr_net);
665			/* start new sublist */
666			INIT_LIST_HEAD(&sublist);
667			curr_dev = dev;
668			curr_net = net;
669		}
670		list_add_tail(&skb->list, &sublist);
671	}
672	/* dispatch final sublist */
673	if (!list_empty(&sublist))
674		ip_sublist_rcv(&sublist, curr_dev, curr_net);
675}