Loading...
Note: File does not exist in v3.15.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/moduleparam.h>
11#include <linux/writeback.h>
12#include <linux/backing-dev.h>
13#include <linux/lzo.h>
14#include <linux/lz4.h>
15#include <linux/zstd.h>
16#include <linux/pagevec.h>
17
18#include "f2fs.h"
19#include "node.h"
20#include "segment.h"
21#include <trace/events/f2fs.h>
22
23static struct kmem_cache *cic_entry_slab;
24static struct kmem_cache *dic_entry_slab;
25
26static void *page_array_alloc(struct inode *inode, int nr)
27{
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35}
36
37static void page_array_free(struct inode *inode, void *pages, int nr)
38{
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49}
50
51struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 bool (*is_level_valid)(int level);
59};
60
61static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62{
63 return index & (cc->cluster_size - 1);
64}
65
66static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67{
68 return index >> cc->log_cluster_size;
69}
70
71static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72{
73 return cc->cluster_idx << cc->log_cluster_size;
74}
75
76bool f2fs_is_compressed_page(struct page *page)
77{
78 if (!PagePrivate(page))
79 return false;
80 if (!page_private(page))
81 return false;
82 if (page_private_nonpointer(page))
83 return false;
84
85 f2fs_bug_on(F2FS_M_SB(page->mapping),
86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 return true;
88}
89
90static void f2fs_set_compressed_page(struct page *page,
91 struct inode *inode, pgoff_t index, void *data)
92{
93 attach_page_private(page, (void *)data);
94
95 /* i_crypto_info and iv index */
96 page->index = index;
97 page->mapping = inode->i_mapping;
98}
99
100static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101{
102 int i;
103
104 for (i = 0; i < len; i++) {
105 if (!cc->rpages[i])
106 continue;
107 if (unlock)
108 unlock_page(cc->rpages[i]);
109 else
110 put_page(cc->rpages[i]);
111 }
112}
113
114static void f2fs_put_rpages(struct compress_ctx *cc)
115{
116 f2fs_drop_rpages(cc, cc->cluster_size, false);
117}
118
119static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120{
121 f2fs_drop_rpages(cc, len, true);
122}
123
124static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 struct writeback_control *wbc, bool redirty, int unlock)
126{
127 unsigned int i;
128
129 for (i = 0; i < cc->cluster_size; i++) {
130 if (!cc->rpages[i])
131 continue;
132 if (redirty)
133 redirty_page_for_writepage(wbc, cc->rpages[i]);
134 f2fs_put_page(cc->rpages[i], unlock);
135 }
136}
137
138struct page *f2fs_compress_control_page(struct page *page)
139{
140 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141}
142
143int f2fs_init_compress_ctx(struct compress_ctx *cc)
144{
145 if (cc->rpages)
146 return 0;
147
148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 return cc->rpages ? 0 : -ENOMEM;
150}
151
152void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153{
154 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 cc->rpages = NULL;
156 cc->nr_rpages = 0;
157 cc->nr_cpages = 0;
158 cc->valid_nr_cpages = 0;
159 if (!reuse)
160 cc->cluster_idx = NULL_CLUSTER;
161}
162
163void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164{
165 unsigned int cluster_ofs;
166
167 if (!f2fs_cluster_can_merge_page(cc, page->index))
168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170 cluster_ofs = offset_in_cluster(cc, page->index);
171 cc->rpages[cluster_ofs] = page;
172 cc->nr_rpages++;
173 cc->cluster_idx = cluster_idx(cc, page->index);
174}
175
176#ifdef CONFIG_F2FS_FS_LZO
177static int lzo_init_compress_ctx(struct compress_ctx *cc)
178{
179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 LZO1X_MEM_COMPRESS, GFP_NOFS);
181 if (!cc->private)
182 return -ENOMEM;
183
184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 return 0;
186}
187
188static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189{
190 kvfree(cc->private);
191 cc->private = NULL;
192}
193
194static int lzo_compress_pages(struct compress_ctx *cc)
195{
196 int ret;
197
198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 &cc->clen, cc->private);
200 if (ret != LZO_E_OK) {
201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203 return -EIO;
204 }
205 return 0;
206}
207
208static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209{
210 int ret;
211
212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 dic->rbuf, &dic->rlen);
214 if (ret != LZO_E_OK) {
215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217 return -EIO;
218 }
219
220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222 "expected:%lu\n", KERN_ERR,
223 F2FS_I_SB(dic->inode)->sb->s_id,
224 dic->rlen,
225 PAGE_SIZE << dic->log_cluster_size);
226 return -EIO;
227 }
228 return 0;
229}
230
231static const struct f2fs_compress_ops f2fs_lzo_ops = {
232 .init_compress_ctx = lzo_init_compress_ctx,
233 .destroy_compress_ctx = lzo_destroy_compress_ctx,
234 .compress_pages = lzo_compress_pages,
235 .decompress_pages = lzo_decompress_pages,
236};
237#endif
238
239#ifdef CONFIG_F2FS_FS_LZ4
240static int lz4_init_compress_ctx(struct compress_ctx *cc)
241{
242 unsigned int size = LZ4_MEM_COMPRESS;
243
244#ifdef CONFIG_F2FS_FS_LZ4HC
245 if (F2FS_I(cc->inode)->i_compress_level)
246 size = LZ4HC_MEM_COMPRESS;
247#endif
248
249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250 if (!cc->private)
251 return -ENOMEM;
252
253 /*
254 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255 * adapt worst compress case, because lz4 compressor can handle
256 * output budget properly.
257 */
258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259 return 0;
260}
261
262static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263{
264 kvfree(cc->private);
265 cc->private = NULL;
266}
267
268static int lz4_compress_pages(struct compress_ctx *cc)
269{
270 int len = -EINVAL;
271 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273 if (!level)
274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 cc->clen, cc->private);
276#ifdef CONFIG_F2FS_FS_LZ4HC
277 else
278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 cc->clen, level, cc->private);
280#endif
281 if (len < 0)
282 return len;
283 if (!len)
284 return -EAGAIN;
285
286 cc->clen = len;
287 return 0;
288}
289
290static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291{
292 int ret;
293
294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295 dic->clen, dic->rlen);
296 if (ret < 0) {
297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299 return -EIO;
300 }
301
302 if (ret != PAGE_SIZE << dic->log_cluster_size) {
303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304 "expected:%lu\n", KERN_ERR,
305 F2FS_I_SB(dic->inode)->sb->s_id, ret,
306 PAGE_SIZE << dic->log_cluster_size);
307 return -EIO;
308 }
309 return 0;
310}
311
312static bool lz4_is_level_valid(int lvl)
313{
314#ifdef CONFIG_F2FS_FS_LZ4HC
315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316#else
317 return lvl == 0;
318#endif
319}
320
321static const struct f2fs_compress_ops f2fs_lz4_ops = {
322 .init_compress_ctx = lz4_init_compress_ctx,
323 .destroy_compress_ctx = lz4_destroy_compress_ctx,
324 .compress_pages = lz4_compress_pages,
325 .decompress_pages = lz4_decompress_pages,
326 .is_level_valid = lz4_is_level_valid,
327};
328#endif
329
330#ifdef CONFIG_F2FS_FS_ZSTD
331static int zstd_init_compress_ctx(struct compress_ctx *cc)
332{
333 zstd_parameters params;
334 zstd_cstream *stream;
335 void *workspace;
336 unsigned int workspace_size;
337 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339 /* Need to remain this for backward compatibility */
340 if (!level)
341 level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343 params = zstd_get_params(level, cc->rlen);
344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
345
346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347 workspace_size, GFP_NOFS);
348 if (!workspace)
349 return -ENOMEM;
350
351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
352 if (!stream) {
353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355 __func__);
356 kvfree(workspace);
357 return -EIO;
358 }
359
360 cc->private = workspace;
361 cc->private2 = stream;
362
363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364 return 0;
365}
366
367static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368{
369 kvfree(cc->private);
370 cc->private = NULL;
371 cc->private2 = NULL;
372}
373
374static int zstd_compress_pages(struct compress_ctx *cc)
375{
376 zstd_cstream *stream = cc->private2;
377 zstd_in_buffer inbuf;
378 zstd_out_buffer outbuf;
379 int src_size = cc->rlen;
380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381 int ret;
382
383 inbuf.pos = 0;
384 inbuf.src = cc->rbuf;
385 inbuf.size = src_size;
386
387 outbuf.pos = 0;
388 outbuf.dst = cc->cbuf->cdata;
389 outbuf.size = dst_size;
390
391 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392 if (zstd_is_error(ret)) {
393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395 __func__, zstd_get_error_code(ret));
396 return -EIO;
397 }
398
399 ret = zstd_end_stream(stream, &outbuf);
400 if (zstd_is_error(ret)) {
401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403 __func__, zstd_get_error_code(ret));
404 return -EIO;
405 }
406
407 /*
408 * there is compressed data remained in intermediate buffer due to
409 * no more space in cbuf.cdata
410 */
411 if (ret)
412 return -EAGAIN;
413
414 cc->clen = outbuf.pos;
415 return 0;
416}
417
418static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419{
420 zstd_dstream *stream;
421 void *workspace;
422 unsigned int workspace_size;
423 unsigned int max_window_size =
424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426 workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429 workspace_size, GFP_NOFS);
430 if (!workspace)
431 return -ENOMEM;
432
433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434 if (!stream) {
435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437 __func__);
438 kvfree(workspace);
439 return -EIO;
440 }
441
442 dic->private = workspace;
443 dic->private2 = stream;
444
445 return 0;
446}
447
448static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449{
450 kvfree(dic->private);
451 dic->private = NULL;
452 dic->private2 = NULL;
453}
454
455static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456{
457 zstd_dstream *stream = dic->private2;
458 zstd_in_buffer inbuf;
459 zstd_out_buffer outbuf;
460 int ret;
461
462 inbuf.pos = 0;
463 inbuf.src = dic->cbuf->cdata;
464 inbuf.size = dic->clen;
465
466 outbuf.pos = 0;
467 outbuf.dst = dic->rbuf;
468 outbuf.size = dic->rlen;
469
470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471 if (zstd_is_error(ret)) {
472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474 __func__, zstd_get_error_code(ret));
475 return -EIO;
476 }
477
478 if (dic->rlen != outbuf.pos) {
479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480 "expected:%lu\n", KERN_ERR,
481 F2FS_I_SB(dic->inode)->sb->s_id,
482 __func__, dic->rlen,
483 PAGE_SIZE << dic->log_cluster_size);
484 return -EIO;
485 }
486
487 return 0;
488}
489
490static bool zstd_is_level_valid(int lvl)
491{
492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493}
494
495static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 .init_compress_ctx = zstd_init_compress_ctx,
497 .destroy_compress_ctx = zstd_destroy_compress_ctx,
498 .compress_pages = zstd_compress_pages,
499 .init_decompress_ctx = zstd_init_decompress_ctx,
500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501 .decompress_pages = zstd_decompress_pages,
502 .is_level_valid = zstd_is_level_valid,
503};
504#endif
505
506#ifdef CONFIG_F2FS_FS_LZO
507#ifdef CONFIG_F2FS_FS_LZORLE
508static int lzorle_compress_pages(struct compress_ctx *cc)
509{
510 int ret;
511
512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 &cc->clen, cc->private);
514 if (ret != LZO_E_OK) {
515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 return -EIO;
518 }
519 return 0;
520}
521
522static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 .init_compress_ctx = lzo_init_compress_ctx,
524 .destroy_compress_ctx = lzo_destroy_compress_ctx,
525 .compress_pages = lzorle_compress_pages,
526 .decompress_pages = lzo_decompress_pages,
527};
528#endif
529#endif
530
531static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532#ifdef CONFIG_F2FS_FS_LZO
533 &f2fs_lzo_ops,
534#else
535 NULL,
536#endif
537#ifdef CONFIG_F2FS_FS_LZ4
538 &f2fs_lz4_ops,
539#else
540 NULL,
541#endif
542#ifdef CONFIG_F2FS_FS_ZSTD
543 &f2fs_zstd_ops,
544#else
545 NULL,
546#endif
547#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 &f2fs_lzorle_ops,
549#else
550 NULL,
551#endif
552};
553
554bool f2fs_is_compress_backend_ready(struct inode *inode)
555{
556 if (!f2fs_compressed_file(inode))
557 return true;
558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559}
560
561bool f2fs_is_compress_level_valid(int alg, int lvl)
562{
563 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565 if (cops->is_level_valid)
566 return cops->is_level_valid(lvl);
567
568 return lvl == 0;
569}
570
571static mempool_t *compress_page_pool;
572static int num_compress_pages = 512;
573module_param(num_compress_pages, uint, 0444);
574MODULE_PARM_DESC(num_compress_pages,
575 "Number of intermediate compress pages to preallocate");
576
577int __init f2fs_init_compress_mempool(void)
578{
579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580 return compress_page_pool ? 0 : -ENOMEM;
581}
582
583void f2fs_destroy_compress_mempool(void)
584{
585 mempool_destroy(compress_page_pool);
586}
587
588static struct page *f2fs_compress_alloc_page(void)
589{
590 struct page *page;
591
592 page = mempool_alloc(compress_page_pool, GFP_NOFS);
593 lock_page(page);
594
595 return page;
596}
597
598static void f2fs_compress_free_page(struct page *page)
599{
600 if (!page)
601 return;
602 detach_page_private(page);
603 page->mapping = NULL;
604 unlock_page(page);
605 mempool_free(page, compress_page_pool);
606}
607
608#define MAX_VMAP_RETRIES 3
609
610static void *f2fs_vmap(struct page **pages, unsigned int count)
611{
612 int i;
613 void *buf = NULL;
614
615 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616 buf = vm_map_ram(pages, count, -1);
617 if (buf)
618 break;
619 vm_unmap_aliases();
620 }
621 return buf;
622}
623
624static int f2fs_compress_pages(struct compress_ctx *cc)
625{
626 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627 const struct f2fs_compress_ops *cops =
628 f2fs_cops[fi->i_compress_algorithm];
629 unsigned int max_len, new_nr_cpages;
630 u32 chksum = 0;
631 int i, ret;
632
633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634 cc->cluster_size, fi->i_compress_algorithm);
635
636 if (cops->init_compress_ctx) {
637 ret = cops->init_compress_ctx(cc);
638 if (ret)
639 goto out;
640 }
641
642 max_len = COMPRESS_HEADER_SIZE + cc->clen;
643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644 cc->valid_nr_cpages = cc->nr_cpages;
645
646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647 if (!cc->cpages) {
648 ret = -ENOMEM;
649 goto destroy_compress_ctx;
650 }
651
652 for (i = 0; i < cc->nr_cpages; i++)
653 cc->cpages[i] = f2fs_compress_alloc_page();
654
655 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656 if (!cc->rbuf) {
657 ret = -ENOMEM;
658 goto out_free_cpages;
659 }
660
661 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662 if (!cc->cbuf) {
663 ret = -ENOMEM;
664 goto out_vunmap_rbuf;
665 }
666
667 ret = cops->compress_pages(cc);
668 if (ret)
669 goto out_vunmap_cbuf;
670
671 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672
673 if (cc->clen > max_len) {
674 ret = -EAGAIN;
675 goto out_vunmap_cbuf;
676 }
677
678 cc->cbuf->clen = cpu_to_le32(cc->clen);
679
680 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682 cc->cbuf->cdata, cc->clen);
683 cc->cbuf->chksum = cpu_to_le32(chksum);
684
685 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686 cc->cbuf->reserved[i] = cpu_to_le32(0);
687
688 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689
690 /* zero out any unused part of the last page */
691 memset(&cc->cbuf->cdata[cc->clen], 0,
692 (new_nr_cpages * PAGE_SIZE) -
693 (cc->clen + COMPRESS_HEADER_SIZE));
694
695 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696 vm_unmap_ram(cc->rbuf, cc->cluster_size);
697
698 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699 f2fs_compress_free_page(cc->cpages[i]);
700 cc->cpages[i] = NULL;
701 }
702
703 if (cops->destroy_compress_ctx)
704 cops->destroy_compress_ctx(cc);
705
706 cc->valid_nr_cpages = new_nr_cpages;
707
708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 cc->clen, ret);
710 return 0;
711
712out_vunmap_cbuf:
713 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714out_vunmap_rbuf:
715 vm_unmap_ram(cc->rbuf, cc->cluster_size);
716out_free_cpages:
717 for (i = 0; i < cc->nr_cpages; i++) {
718 if (cc->cpages[i])
719 f2fs_compress_free_page(cc->cpages[i]);
720 }
721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 cc->cpages = NULL;
723destroy_compress_ctx:
724 if (cops->destroy_compress_ctx)
725 cops->destroy_compress_ctx(cc);
726out:
727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 cc->clen, ret);
729 return ret;
730}
731
732static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733 bool pre_alloc);
734static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735 bool bypass_destroy_callback, bool pre_alloc);
736
737void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738{
739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741 const struct f2fs_compress_ops *cops =
742 f2fs_cops[fi->i_compress_algorithm];
743 bool bypass_callback = false;
744 int ret;
745
746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747 dic->cluster_size, fi->i_compress_algorithm);
748
749 if (dic->failed) {
750 ret = -EIO;
751 goto out_end_io;
752 }
753
754 ret = f2fs_prepare_decomp_mem(dic, false);
755 if (ret) {
756 bypass_callback = true;
757 goto out_release;
758 }
759
760 dic->clen = le32_to_cpu(dic->cbuf->clen);
761 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764 ret = -EFSCORRUPTED;
765
766 /* Avoid f2fs_commit_super in irq context */
767 if (!in_task)
768 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769 else
770 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771 goto out_release;
772 }
773
774 ret = cops->decompress_pages(dic);
775
776 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777 u32 provided = le32_to_cpu(dic->cbuf->chksum);
778 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780 if (provided != calculated) {
781 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783 printk_ratelimited(
784 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786 provided, calculated);
787 }
788 set_sbi_flag(sbi, SBI_NEED_FSCK);
789 }
790 }
791
792out_release:
793 f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795out_end_io:
796 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797 dic->clen, ret);
798 f2fs_decompress_end_io(dic, ret, in_task);
799}
800
801/*
802 * This is called when a page of a compressed cluster has been read from disk
803 * (or failed to be read from disk). It checks whether this page was the last
804 * page being waited on in the cluster, and if so, it decompresses the cluster
805 * (or in the case of a failure, cleans up without actually decompressing).
806 */
807void f2fs_end_read_compressed_page(struct page *page, bool failed,
808 block_t blkaddr, bool in_task)
809{
810 struct decompress_io_ctx *dic =
811 (struct decompress_io_ctx *)page_private(page);
812 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814 dec_page_count(sbi, F2FS_RD_DATA);
815
816 if (failed)
817 WRITE_ONCE(dic->failed, true);
818 else if (blkaddr && in_task)
819 f2fs_cache_compressed_page(sbi, page,
820 dic->inode->i_ino, blkaddr);
821
822 if (atomic_dec_and_test(&dic->remaining_pages))
823 f2fs_decompress_cluster(dic, in_task);
824}
825
826static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827{
828 if (cc->cluster_idx == NULL_CLUSTER)
829 return true;
830 return cc->cluster_idx == cluster_idx(cc, index);
831}
832
833bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834{
835 return cc->nr_rpages == 0;
836}
837
838static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839{
840 return cc->cluster_size == cc->nr_rpages;
841}
842
843bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844{
845 if (f2fs_cluster_is_empty(cc))
846 return true;
847 return is_page_in_cluster(cc, index);
848}
849
850bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851 int index, int nr_pages, bool uptodate)
852{
853 unsigned long pgidx = pages[index]->index;
854 int i = uptodate ? 0 : 1;
855
856 /*
857 * when uptodate set to true, try to check all pages in cluster is
858 * uptodate or not.
859 */
860 if (uptodate && (pgidx % cc->cluster_size))
861 return false;
862
863 if (nr_pages - index < cc->cluster_size)
864 return false;
865
866 for (; i < cc->cluster_size; i++) {
867 if (pages[index + i]->index != pgidx + i)
868 return false;
869 if (uptodate && !PageUptodate(pages[index + i]))
870 return false;
871 }
872
873 return true;
874}
875
876static bool cluster_has_invalid_data(struct compress_ctx *cc)
877{
878 loff_t i_size = i_size_read(cc->inode);
879 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880 int i;
881
882 for (i = 0; i < cc->cluster_size; i++) {
883 struct page *page = cc->rpages[i];
884
885 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887 /* beyond EOF */
888 if (page->index >= nr_pages)
889 return true;
890 }
891 return false;
892}
893
894bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895{
896#ifdef CONFIG_F2FS_CHECK_FS
897 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
898 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
899 int cluster_end = 0;
900 unsigned int count;
901 int i;
902 char *reason = "";
903
904 if (dn->data_blkaddr != COMPRESS_ADDR)
905 return false;
906
907 /* [..., COMPR_ADDR, ...] */
908 if (dn->ofs_in_node % cluster_size) {
909 reason = "[*|C|*|*]";
910 goto out;
911 }
912
913 for (i = 1, count = 1; i < cluster_size; i++, count++) {
914 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
915 dn->ofs_in_node + i);
916
917 /* [COMPR_ADDR, ..., COMPR_ADDR] */
918 if (blkaddr == COMPRESS_ADDR) {
919 reason = "[C|*|C|*]";
920 goto out;
921 }
922 if (!__is_valid_data_blkaddr(blkaddr)) {
923 if (!cluster_end)
924 cluster_end = i;
925 continue;
926 }
927 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
928 if (cluster_end) {
929 reason = "[C|N|N|V]";
930 goto out;
931 }
932 }
933
934 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
935 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
936
937 return false;
938out:
939 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
940 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
941 set_sbi_flag(sbi, SBI_NEED_FSCK);
942 return true;
943#else
944 return false;
945#endif
946}
947
948static int __f2fs_get_cluster_blocks(struct inode *inode,
949 struct dnode_of_data *dn)
950{
951 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
952 int count, i;
953
954 for (i = 1, count = 1; i < cluster_size; i++) {
955 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
956 dn->ofs_in_node + i);
957
958 if (__is_valid_data_blkaddr(blkaddr))
959 count++;
960 }
961
962 return count;
963}
964
965static int __f2fs_cluster_blocks(struct inode *inode,
966 unsigned int cluster_idx, bool compr_blks)
967{
968 struct dnode_of_data dn;
969 unsigned int start_idx = cluster_idx <<
970 F2FS_I(inode)->i_log_cluster_size;
971 int ret;
972
973 set_new_dnode(&dn, inode, NULL, NULL, 0);
974 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
975 if (ret) {
976 if (ret == -ENOENT)
977 ret = 0;
978 goto fail;
979 }
980
981 if (f2fs_sanity_check_cluster(&dn)) {
982 ret = -EFSCORRUPTED;
983 goto fail;
984 }
985
986 if (dn.data_blkaddr == COMPRESS_ADDR) {
987 if (compr_blks)
988 ret = __f2fs_get_cluster_blocks(inode, &dn);
989 else
990 ret = 1;
991 }
992fail:
993 f2fs_put_dnode(&dn);
994 return ret;
995}
996
997/* return # of compressed blocks in compressed cluster */
998static int f2fs_compressed_blocks(struct compress_ctx *cc)
999{
1000 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1001}
1002
1003/* return whether cluster is compressed one or not */
1004int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1005{
1006 return __f2fs_cluster_blocks(inode,
1007 index >> F2FS_I(inode)->i_log_cluster_size,
1008 false);
1009}
1010
1011static bool cluster_may_compress(struct compress_ctx *cc)
1012{
1013 if (!f2fs_need_compress_data(cc->inode))
1014 return false;
1015 if (f2fs_is_atomic_file(cc->inode))
1016 return false;
1017 if (!f2fs_cluster_is_full(cc))
1018 return false;
1019 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1020 return false;
1021 return !cluster_has_invalid_data(cc);
1022}
1023
1024static void set_cluster_writeback(struct compress_ctx *cc)
1025{
1026 int i;
1027
1028 for (i = 0; i < cc->cluster_size; i++) {
1029 if (cc->rpages[i])
1030 set_page_writeback(cc->rpages[i]);
1031 }
1032}
1033
1034static void set_cluster_dirty(struct compress_ctx *cc)
1035{
1036 int i;
1037
1038 for (i = 0; i < cc->cluster_size; i++)
1039 if (cc->rpages[i]) {
1040 set_page_dirty(cc->rpages[i]);
1041 set_page_private_gcing(cc->rpages[i]);
1042 }
1043}
1044
1045static int prepare_compress_overwrite(struct compress_ctx *cc,
1046 struct page **pagep, pgoff_t index, void **fsdata)
1047{
1048 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049 struct address_space *mapping = cc->inode->i_mapping;
1050 struct page *page;
1051 sector_t last_block_in_bio;
1052 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053 pgoff_t start_idx = start_idx_of_cluster(cc);
1054 int i, ret;
1055
1056retry:
1057 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058 if (ret <= 0)
1059 return ret;
1060
1061 ret = f2fs_init_compress_ctx(cc);
1062 if (ret)
1063 return ret;
1064
1065 /* keep page reference to avoid page reclaim */
1066 for (i = 0; i < cc->cluster_size; i++) {
1067 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068 fgp_flag, GFP_NOFS);
1069 if (!page) {
1070 ret = -ENOMEM;
1071 goto unlock_pages;
1072 }
1073
1074 if (PageUptodate(page))
1075 f2fs_put_page(page, 1);
1076 else
1077 f2fs_compress_ctx_add_page(cc, page);
1078 }
1079
1080 if (!f2fs_cluster_is_empty(cc)) {
1081 struct bio *bio = NULL;
1082
1083 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084 &last_block_in_bio, false, true);
1085 f2fs_put_rpages(cc);
1086 f2fs_destroy_compress_ctx(cc, true);
1087 if (ret)
1088 goto out;
1089 if (bio)
1090 f2fs_submit_read_bio(sbi, bio, DATA);
1091
1092 ret = f2fs_init_compress_ctx(cc);
1093 if (ret)
1094 goto out;
1095 }
1096
1097 for (i = 0; i < cc->cluster_size; i++) {
1098 f2fs_bug_on(sbi, cc->rpages[i]);
1099
1100 page = find_lock_page(mapping, start_idx + i);
1101 if (!page) {
1102 /* page can be truncated */
1103 goto release_and_retry;
1104 }
1105
1106 f2fs_wait_on_page_writeback(page, DATA, true, true);
1107 f2fs_compress_ctx_add_page(cc, page);
1108
1109 if (!PageUptodate(page)) {
1110release_and_retry:
1111 f2fs_put_rpages(cc);
1112 f2fs_unlock_rpages(cc, i + 1);
1113 f2fs_destroy_compress_ctx(cc, true);
1114 goto retry;
1115 }
1116 }
1117
1118 if (likely(!ret)) {
1119 *fsdata = cc->rpages;
1120 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1121 return cc->cluster_size;
1122 }
1123
1124unlock_pages:
1125 f2fs_put_rpages(cc);
1126 f2fs_unlock_rpages(cc, i);
1127 f2fs_destroy_compress_ctx(cc, true);
1128out:
1129 return ret;
1130}
1131
1132int f2fs_prepare_compress_overwrite(struct inode *inode,
1133 struct page **pagep, pgoff_t index, void **fsdata)
1134{
1135 struct compress_ctx cc = {
1136 .inode = inode,
1137 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138 .cluster_size = F2FS_I(inode)->i_cluster_size,
1139 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140 .rpages = NULL,
1141 .nr_rpages = 0,
1142 };
1143
1144 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145}
1146
1147bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148 pgoff_t index, unsigned copied)
1149
1150{
1151 struct compress_ctx cc = {
1152 .inode = inode,
1153 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154 .cluster_size = F2FS_I(inode)->i_cluster_size,
1155 .rpages = fsdata,
1156 };
1157 bool first_index = (index == cc.rpages[0]->index);
1158
1159 if (copied)
1160 set_cluster_dirty(&cc);
1161
1162 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163 f2fs_destroy_compress_ctx(&cc, false);
1164
1165 return first_index;
1166}
1167
1168int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169{
1170 void *fsdata = NULL;
1171 struct page *pagep;
1172 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174 log_cluster_size;
1175 int err;
1176
1177 err = f2fs_is_compressed_cluster(inode, start_idx);
1178 if (err < 0)
1179 return err;
1180
1181 /* truncate normal cluster */
1182 if (!err)
1183 return f2fs_do_truncate_blocks(inode, from, lock);
1184
1185 /* truncate compressed cluster */
1186 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187 start_idx, &fsdata);
1188
1189 /* should not be a normal cluster */
1190 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191
1192 if (err <= 0)
1193 return err;
1194
1195 if (err > 0) {
1196 struct page **rpages = fsdata;
1197 int cluster_size = F2FS_I(inode)->i_cluster_size;
1198 int i;
1199
1200 for (i = cluster_size - 1; i >= 0; i--) {
1201 loff_t start = rpages[i]->index << PAGE_SHIFT;
1202
1203 if (from <= start) {
1204 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205 } else {
1206 zero_user_segment(rpages[i], from - start,
1207 PAGE_SIZE);
1208 break;
1209 }
1210 }
1211
1212 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213 }
1214 return 0;
1215}
1216
1217static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218 int *submitted,
1219 struct writeback_control *wbc,
1220 enum iostat_type io_type)
1221{
1222 struct inode *inode = cc->inode;
1223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 struct f2fs_inode_info *fi = F2FS_I(inode);
1225 struct f2fs_io_info fio = {
1226 .sbi = sbi,
1227 .ino = cc->inode->i_ino,
1228 .type = DATA,
1229 .op = REQ_OP_WRITE,
1230 .op_flags = wbc_to_write_flags(wbc),
1231 .old_blkaddr = NEW_ADDR,
1232 .page = NULL,
1233 .encrypted_page = NULL,
1234 .compressed_page = NULL,
1235 .submitted = 0,
1236 .io_type = io_type,
1237 .io_wbc = wbc,
1238 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1239 1 : 0,
1240 };
1241 struct dnode_of_data dn;
1242 struct node_info ni;
1243 struct compress_io_ctx *cic;
1244 pgoff_t start_idx = start_idx_of_cluster(cc);
1245 unsigned int last_index = cc->cluster_size - 1;
1246 loff_t psize;
1247 int i, err;
1248 bool quota_inode = IS_NOQUOTA(inode);
1249
1250 /* we should bypass data pages to proceed the kworker jobs */
1251 if (unlikely(f2fs_cp_error(sbi))) {
1252 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1253 goto out_free;
1254 }
1255
1256 if (quota_inode) {
1257 /*
1258 * We need to wait for node_write to avoid block allocation during
1259 * checkpoint. This can only happen to quota writes which can cause
1260 * the below discard race condition.
1261 */
1262 f2fs_down_read(&sbi->node_write);
1263 } else if (!f2fs_trylock_op(sbi)) {
1264 goto out_free;
1265 }
1266
1267 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1268
1269 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1270 if (err)
1271 goto out_unlock_op;
1272
1273 for (i = 0; i < cc->cluster_size; i++) {
1274 if (data_blkaddr(dn.inode, dn.node_page,
1275 dn.ofs_in_node + i) == NULL_ADDR)
1276 goto out_put_dnode;
1277 }
1278
1279 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1280
1281 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1282 if (err)
1283 goto out_put_dnode;
1284
1285 fio.version = ni.version;
1286
1287 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1288 if (!cic)
1289 goto out_put_dnode;
1290
1291 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1292 cic->inode = inode;
1293 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1294 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1295 if (!cic->rpages)
1296 goto out_put_cic;
1297
1298 cic->nr_rpages = cc->cluster_size;
1299
1300 for (i = 0; i < cc->valid_nr_cpages; i++) {
1301 f2fs_set_compressed_page(cc->cpages[i], inode,
1302 cc->rpages[i + 1]->index, cic);
1303 fio.compressed_page = cc->cpages[i];
1304
1305 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1306 dn.ofs_in_node + i + 1);
1307
1308 /* wait for GCed page writeback via META_MAPPING */
1309 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1310
1311 if (fio.encrypted) {
1312 fio.page = cc->rpages[i + 1];
1313 err = f2fs_encrypt_one_page(&fio);
1314 if (err)
1315 goto out_destroy_crypt;
1316 cc->cpages[i] = fio.encrypted_page;
1317 }
1318 }
1319
1320 set_cluster_writeback(cc);
1321
1322 for (i = 0; i < cc->cluster_size; i++)
1323 cic->rpages[i] = cc->rpages[i];
1324
1325 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1326 block_t blkaddr;
1327
1328 blkaddr = f2fs_data_blkaddr(&dn);
1329 fio.page = cc->rpages[i];
1330 fio.old_blkaddr = blkaddr;
1331
1332 /* cluster header */
1333 if (i == 0) {
1334 if (blkaddr == COMPRESS_ADDR)
1335 fio.compr_blocks++;
1336 if (__is_valid_data_blkaddr(blkaddr))
1337 f2fs_invalidate_blocks(sbi, blkaddr);
1338 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1339 goto unlock_continue;
1340 }
1341
1342 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1343 fio.compr_blocks++;
1344
1345 if (i > cc->valid_nr_cpages) {
1346 if (__is_valid_data_blkaddr(blkaddr)) {
1347 f2fs_invalidate_blocks(sbi, blkaddr);
1348 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1349 }
1350 goto unlock_continue;
1351 }
1352
1353 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1354
1355 if (fio.encrypted)
1356 fio.encrypted_page = cc->cpages[i - 1];
1357 else
1358 fio.compressed_page = cc->cpages[i - 1];
1359
1360 cc->cpages[i - 1] = NULL;
1361 f2fs_outplace_write_data(&dn, &fio);
1362 (*submitted)++;
1363unlock_continue:
1364 inode_dec_dirty_pages(cc->inode);
1365 unlock_page(fio.page);
1366 }
1367
1368 if (fio.compr_blocks)
1369 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1370 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1371 add_compr_block_stat(inode, cc->valid_nr_cpages);
1372
1373 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1374
1375 f2fs_put_dnode(&dn);
1376 if (quota_inode)
1377 f2fs_up_read(&sbi->node_write);
1378 else
1379 f2fs_unlock_op(sbi);
1380
1381 spin_lock(&fi->i_size_lock);
1382 if (fi->last_disk_size < psize)
1383 fi->last_disk_size = psize;
1384 spin_unlock(&fi->i_size_lock);
1385
1386 f2fs_put_rpages(cc);
1387 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388 cc->cpages = NULL;
1389 f2fs_destroy_compress_ctx(cc, false);
1390 return 0;
1391
1392out_destroy_crypt:
1393 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394
1395 for (--i; i >= 0; i--)
1396 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1397out_put_cic:
1398 kmem_cache_free(cic_entry_slab, cic);
1399out_put_dnode:
1400 f2fs_put_dnode(&dn);
1401out_unlock_op:
1402 if (quota_inode)
1403 f2fs_up_read(&sbi->node_write);
1404 else
1405 f2fs_unlock_op(sbi);
1406out_free:
1407 for (i = 0; i < cc->valid_nr_cpages; i++) {
1408 f2fs_compress_free_page(cc->cpages[i]);
1409 cc->cpages[i] = NULL;
1410 }
1411 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1412 cc->cpages = NULL;
1413 return -EAGAIN;
1414}
1415
1416void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1417{
1418 struct f2fs_sb_info *sbi = bio->bi_private;
1419 struct compress_io_ctx *cic =
1420 (struct compress_io_ctx *)page_private(page);
1421 int i;
1422
1423 if (unlikely(bio->bi_status))
1424 mapping_set_error(cic->inode->i_mapping, -EIO);
1425
1426 f2fs_compress_free_page(page);
1427
1428 dec_page_count(sbi, F2FS_WB_DATA);
1429
1430 if (atomic_dec_return(&cic->pending_pages))
1431 return;
1432
1433 for (i = 0; i < cic->nr_rpages; i++) {
1434 WARN_ON(!cic->rpages[i]);
1435 clear_page_private_gcing(cic->rpages[i]);
1436 end_page_writeback(cic->rpages[i]);
1437 }
1438
1439 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1440 kmem_cache_free(cic_entry_slab, cic);
1441}
1442
1443static int f2fs_write_raw_pages(struct compress_ctx *cc,
1444 int *submitted,
1445 struct writeback_control *wbc,
1446 enum iostat_type io_type)
1447{
1448 struct address_space *mapping = cc->inode->i_mapping;
1449 int _submitted, compr_blocks, ret, i;
1450
1451 compr_blocks = f2fs_compressed_blocks(cc);
1452
1453 for (i = 0; i < cc->cluster_size; i++) {
1454 if (!cc->rpages[i])
1455 continue;
1456
1457 redirty_page_for_writepage(wbc, cc->rpages[i]);
1458 unlock_page(cc->rpages[i]);
1459 }
1460
1461 if (compr_blocks < 0)
1462 return compr_blocks;
1463
1464 for (i = 0; i < cc->cluster_size; i++) {
1465 if (!cc->rpages[i])
1466 continue;
1467retry_write:
1468 lock_page(cc->rpages[i]);
1469
1470 if (cc->rpages[i]->mapping != mapping) {
1471continue_unlock:
1472 unlock_page(cc->rpages[i]);
1473 continue;
1474 }
1475
1476 if (!PageDirty(cc->rpages[i]))
1477 goto continue_unlock;
1478
1479 if (PageWriteback(cc->rpages[i])) {
1480 if (wbc->sync_mode == WB_SYNC_NONE)
1481 goto continue_unlock;
1482 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1483 }
1484
1485 if (!clear_page_dirty_for_io(cc->rpages[i]))
1486 goto continue_unlock;
1487
1488 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1489 NULL, NULL, wbc, io_type,
1490 compr_blocks, false);
1491 if (ret) {
1492 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1493 unlock_page(cc->rpages[i]);
1494 ret = 0;
1495 } else if (ret == -EAGAIN) {
1496 /*
1497 * for quota file, just redirty left pages to
1498 * avoid deadlock caused by cluster update race
1499 * from foreground operation.
1500 */
1501 if (IS_NOQUOTA(cc->inode))
1502 return 0;
1503 ret = 0;
1504 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1505 goto retry_write;
1506 }
1507 return ret;
1508 }
1509
1510 *submitted += _submitted;
1511 }
1512
1513 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1514
1515 return 0;
1516}
1517
1518int f2fs_write_multi_pages(struct compress_ctx *cc,
1519 int *submitted,
1520 struct writeback_control *wbc,
1521 enum iostat_type io_type)
1522{
1523 int err;
1524
1525 *submitted = 0;
1526 if (cluster_may_compress(cc)) {
1527 err = f2fs_compress_pages(cc);
1528 if (err == -EAGAIN) {
1529 add_compr_block_stat(cc->inode, cc->cluster_size);
1530 goto write;
1531 } else if (err) {
1532 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1533 goto destroy_out;
1534 }
1535
1536 err = f2fs_write_compressed_pages(cc, submitted,
1537 wbc, io_type);
1538 if (!err)
1539 return 0;
1540 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1541 }
1542write:
1543 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1544
1545 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1546 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1547destroy_out:
1548 f2fs_destroy_compress_ctx(cc, false);
1549 return err;
1550}
1551
1552static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1553 bool pre_alloc)
1554{
1555 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1556}
1557
1558static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1559 bool pre_alloc)
1560{
1561 const struct f2fs_compress_ops *cops =
1562 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1563 int i;
1564
1565 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1566 return 0;
1567
1568 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1569 if (!dic->tpages)
1570 return -ENOMEM;
1571
1572 for (i = 0; i < dic->cluster_size; i++) {
1573 if (dic->rpages[i]) {
1574 dic->tpages[i] = dic->rpages[i];
1575 continue;
1576 }
1577
1578 dic->tpages[i] = f2fs_compress_alloc_page();
1579 }
1580
1581 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1582 if (!dic->rbuf)
1583 return -ENOMEM;
1584
1585 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1586 if (!dic->cbuf)
1587 return -ENOMEM;
1588
1589 if (cops->init_decompress_ctx)
1590 return cops->init_decompress_ctx(dic);
1591
1592 return 0;
1593}
1594
1595static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1596 bool bypass_destroy_callback, bool pre_alloc)
1597{
1598 const struct f2fs_compress_ops *cops =
1599 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1600
1601 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1602 return;
1603
1604 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1605 cops->destroy_decompress_ctx(dic);
1606
1607 if (dic->cbuf)
1608 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1609
1610 if (dic->rbuf)
1611 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1612}
1613
1614static void f2fs_free_dic(struct decompress_io_ctx *dic,
1615 bool bypass_destroy_callback);
1616
1617struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1618{
1619 struct decompress_io_ctx *dic;
1620 pgoff_t start_idx = start_idx_of_cluster(cc);
1621 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1622 int i, ret;
1623
1624 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1625 if (!dic)
1626 return ERR_PTR(-ENOMEM);
1627
1628 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1629 if (!dic->rpages) {
1630 kmem_cache_free(dic_entry_slab, dic);
1631 return ERR_PTR(-ENOMEM);
1632 }
1633
1634 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1635 dic->inode = cc->inode;
1636 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1637 dic->cluster_idx = cc->cluster_idx;
1638 dic->cluster_size = cc->cluster_size;
1639 dic->log_cluster_size = cc->log_cluster_size;
1640 dic->nr_cpages = cc->nr_cpages;
1641 refcount_set(&dic->refcnt, 1);
1642 dic->failed = false;
1643 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1644
1645 for (i = 0; i < dic->cluster_size; i++)
1646 dic->rpages[i] = cc->rpages[i];
1647 dic->nr_rpages = cc->cluster_size;
1648
1649 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1650 if (!dic->cpages) {
1651 ret = -ENOMEM;
1652 goto out_free;
1653 }
1654
1655 for (i = 0; i < dic->nr_cpages; i++) {
1656 struct page *page;
1657
1658 page = f2fs_compress_alloc_page();
1659 f2fs_set_compressed_page(page, cc->inode,
1660 start_idx + i + 1, dic);
1661 dic->cpages[i] = page;
1662 }
1663
1664 ret = f2fs_prepare_decomp_mem(dic, true);
1665 if (ret)
1666 goto out_free;
1667
1668 return dic;
1669
1670out_free:
1671 f2fs_free_dic(dic, true);
1672 return ERR_PTR(ret);
1673}
1674
1675static void f2fs_free_dic(struct decompress_io_ctx *dic,
1676 bool bypass_destroy_callback)
1677{
1678 int i;
1679
1680 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1681
1682 if (dic->tpages) {
1683 for (i = 0; i < dic->cluster_size; i++) {
1684 if (dic->rpages[i])
1685 continue;
1686 if (!dic->tpages[i])
1687 continue;
1688 f2fs_compress_free_page(dic->tpages[i]);
1689 }
1690 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1691 }
1692
1693 if (dic->cpages) {
1694 for (i = 0; i < dic->nr_cpages; i++) {
1695 if (!dic->cpages[i])
1696 continue;
1697 f2fs_compress_free_page(dic->cpages[i]);
1698 }
1699 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1700 }
1701
1702 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1703 kmem_cache_free(dic_entry_slab, dic);
1704}
1705
1706static void f2fs_late_free_dic(struct work_struct *work)
1707{
1708 struct decompress_io_ctx *dic =
1709 container_of(work, struct decompress_io_ctx, free_work);
1710
1711 f2fs_free_dic(dic, false);
1712}
1713
1714static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1715{
1716 if (refcount_dec_and_test(&dic->refcnt)) {
1717 if (in_task) {
1718 f2fs_free_dic(dic, false);
1719 } else {
1720 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1721 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1722 &dic->free_work);
1723 }
1724 }
1725}
1726
1727static void f2fs_verify_cluster(struct work_struct *work)
1728{
1729 struct decompress_io_ctx *dic =
1730 container_of(work, struct decompress_io_ctx, verity_work);
1731 int i;
1732
1733 /* Verify, update, and unlock the decompressed pages. */
1734 for (i = 0; i < dic->cluster_size; i++) {
1735 struct page *rpage = dic->rpages[i];
1736
1737 if (!rpage)
1738 continue;
1739
1740 if (fsverity_verify_page(rpage))
1741 SetPageUptodate(rpage);
1742 else
1743 ClearPageUptodate(rpage);
1744 unlock_page(rpage);
1745 }
1746
1747 f2fs_put_dic(dic, true);
1748}
1749
1750/*
1751 * This is called when a compressed cluster has been decompressed
1752 * (or failed to be read and/or decompressed).
1753 */
1754void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1755 bool in_task)
1756{
1757 int i;
1758
1759 if (!failed && dic->need_verity) {
1760 /*
1761 * Note that to avoid deadlocks, the verity work can't be done
1762 * on the decompression workqueue. This is because verifying
1763 * the data pages can involve reading metadata pages from the
1764 * file, and these metadata pages may be compressed.
1765 */
1766 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1767 fsverity_enqueue_verify_work(&dic->verity_work);
1768 return;
1769 }
1770
1771 /* Update and unlock the cluster's pagecache pages. */
1772 for (i = 0; i < dic->cluster_size; i++) {
1773 struct page *rpage = dic->rpages[i];
1774
1775 if (!rpage)
1776 continue;
1777
1778 if (failed)
1779 ClearPageUptodate(rpage);
1780 else
1781 SetPageUptodate(rpage);
1782 unlock_page(rpage);
1783 }
1784
1785 /*
1786 * Release the reference to the decompress_io_ctx that was being held
1787 * for I/O completion.
1788 */
1789 f2fs_put_dic(dic, in_task);
1790}
1791
1792/*
1793 * Put a reference to a compressed page's decompress_io_ctx.
1794 *
1795 * This is called when the page is no longer needed and can be freed.
1796 */
1797void f2fs_put_page_dic(struct page *page, bool in_task)
1798{
1799 struct decompress_io_ctx *dic =
1800 (struct decompress_io_ctx *)page_private(page);
1801
1802 f2fs_put_dic(dic, in_task);
1803}
1804
1805/*
1806 * check whether cluster blocks are contiguous, and add extent cache entry
1807 * only if cluster blocks are logically and physically contiguous.
1808 */
1809unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1810{
1811 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1812 int i = compressed ? 1 : 0;
1813 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1814 dn->ofs_in_node + i);
1815
1816 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1817 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1818 dn->ofs_in_node + i);
1819
1820 if (!__is_valid_data_blkaddr(blkaddr))
1821 break;
1822 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1823 return 0;
1824 }
1825
1826 return compressed ? i - 1 : i;
1827}
1828
1829const struct address_space_operations f2fs_compress_aops = {
1830 .release_folio = f2fs_release_folio,
1831 .invalidate_folio = f2fs_invalidate_folio,
1832 .migrate_folio = filemap_migrate_folio,
1833};
1834
1835struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1836{
1837 return sbi->compress_inode->i_mapping;
1838}
1839
1840void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1841{
1842 if (!sbi->compress_inode)
1843 return;
1844 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1845}
1846
1847void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1848 nid_t ino, block_t blkaddr)
1849{
1850 struct page *cpage;
1851 int ret;
1852
1853 if (!test_opt(sbi, COMPRESS_CACHE))
1854 return;
1855
1856 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1857 return;
1858
1859 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1860 return;
1861
1862 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1863 if (cpage) {
1864 f2fs_put_page(cpage, 0);
1865 return;
1866 }
1867
1868 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1869 if (!cpage)
1870 return;
1871
1872 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1873 blkaddr, GFP_NOFS);
1874 if (ret) {
1875 f2fs_put_page(cpage, 0);
1876 return;
1877 }
1878
1879 set_page_private_data(cpage, ino);
1880
1881 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1882 goto out;
1883
1884 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1885 SetPageUptodate(cpage);
1886out:
1887 f2fs_put_page(cpage, 1);
1888}
1889
1890bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1891 block_t blkaddr)
1892{
1893 struct page *cpage;
1894 bool hitted = false;
1895
1896 if (!test_opt(sbi, COMPRESS_CACHE))
1897 return false;
1898
1899 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1900 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1901 if (cpage) {
1902 if (PageUptodate(cpage)) {
1903 atomic_inc(&sbi->compress_page_hit);
1904 memcpy(page_address(page),
1905 page_address(cpage), PAGE_SIZE);
1906 hitted = true;
1907 }
1908 f2fs_put_page(cpage, 1);
1909 }
1910
1911 return hitted;
1912}
1913
1914void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1915{
1916 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1917 struct folio_batch fbatch;
1918 pgoff_t index = 0;
1919 pgoff_t end = MAX_BLKADDR(sbi);
1920
1921 if (!mapping->nrpages)
1922 return;
1923
1924 folio_batch_init(&fbatch);
1925
1926 do {
1927 unsigned int nr, i;
1928
1929 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1930 if (!nr)
1931 break;
1932
1933 for (i = 0; i < nr; i++) {
1934 struct folio *folio = fbatch.folios[i];
1935
1936 folio_lock(folio);
1937 if (folio->mapping != mapping) {
1938 folio_unlock(folio);
1939 continue;
1940 }
1941
1942 if (ino != get_page_private_data(&folio->page)) {
1943 folio_unlock(folio);
1944 continue;
1945 }
1946
1947 generic_error_remove_folio(mapping, folio);
1948 folio_unlock(folio);
1949 }
1950 folio_batch_release(&fbatch);
1951 cond_resched();
1952 } while (index < end);
1953}
1954
1955int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1956{
1957 struct inode *inode;
1958
1959 if (!test_opt(sbi, COMPRESS_CACHE))
1960 return 0;
1961
1962 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1963 if (IS_ERR(inode))
1964 return PTR_ERR(inode);
1965 sbi->compress_inode = inode;
1966
1967 sbi->compress_percent = COMPRESS_PERCENT;
1968 sbi->compress_watermark = COMPRESS_WATERMARK;
1969
1970 atomic_set(&sbi->compress_page_hit, 0);
1971
1972 return 0;
1973}
1974
1975void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1976{
1977 if (!sbi->compress_inode)
1978 return;
1979 iput(sbi->compress_inode);
1980 sbi->compress_inode = NULL;
1981}
1982
1983int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1984{
1985 dev_t dev = sbi->sb->s_bdev->bd_dev;
1986 char slab_name[35];
1987
1988 if (!f2fs_sb_has_compression(sbi))
1989 return 0;
1990
1991 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1992
1993 sbi->page_array_slab_size = sizeof(struct page *) <<
1994 F2FS_OPTION(sbi).compress_log_size;
1995
1996 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1997 sbi->page_array_slab_size);
1998 return sbi->page_array_slab ? 0 : -ENOMEM;
1999}
2000
2001void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2002{
2003 kmem_cache_destroy(sbi->page_array_slab);
2004}
2005
2006int __init f2fs_init_compress_cache(void)
2007{
2008 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2009 sizeof(struct compress_io_ctx));
2010 if (!cic_entry_slab)
2011 return -ENOMEM;
2012 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2013 sizeof(struct decompress_io_ctx));
2014 if (!dic_entry_slab)
2015 goto free_cic;
2016 return 0;
2017free_cic:
2018 kmem_cache_destroy(cic_entry_slab);
2019 return -ENOMEM;
2020}
2021
2022void f2fs_destroy_compress_cache(void)
2023{
2024 kmem_cache_destroy(dic_entry_slab);
2025 kmem_cache_destroy(cic_entry_slab);
2026}