Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include "util/symbol.h"
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
35#include "util/event.h"
36#include "util/session.h"
37#include "util/svghelper.h"
38#include "util/tool.h"
39#include "util/data.h"
40
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
44struct per_pid;
45struct power_event;
46struct wake_event;
47
48struct timechart {
49 struct perf_tool tool;
50 struct per_pid *all_data;
51 struct power_event *power_events;
52 struct wake_event *wake_events;
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace,
62 topology;
63};
64
65struct per_pidcomm;
66struct cpu_sample;
67
68/*
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
76 */
77
78struct per_pid {
79 struct per_pid *next;
80
81 int pid;
82 int ppid;
83
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
88
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
91};
92
93
94struct per_pidcomm {
95 struct per_pidcomm *next;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100
101 int Y;
102 int display;
103
104 long state;
105 u64 state_since;
106
107 char *comm;
108
109 struct cpu_sample *samples;
110};
111
112struct sample_wrapper {
113 struct sample_wrapper *next;
114
115 u64 timestamp;
116 unsigned char data[0];
117};
118
119#define TYPE_NONE 0
120#define TYPE_RUNNING 1
121#define TYPE_WAITING 2
122#define TYPE_BLOCKED 3
123
124struct cpu_sample {
125 struct cpu_sample *next;
126
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
131 const char *backtrace;
132};
133
134#define CSTATE 1
135#define PSTATE 2
136
137struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
144};
145
146struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
151 const char *backtrace;
152};
153
154struct process_filter {
155 char *name;
156 int pid;
157 struct process_filter *next;
158};
159
160static struct process_filter *process_filter;
161
162
163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
164{
165 struct per_pid *cursor = tchart->all_data;
166
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
171 }
172 cursor = zalloc(sizeof(*cursor));
173 assert(cursor != NULL);
174 cursor->pid = pid;
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(tchart, pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = zalloc(sizeof(*c));
199 assert(c != NULL);
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
207{
208 struct per_pid *p, *pp;
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
213 pid_set_comm(tchart, pid, pp->current->comm);
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
223{
224 struct per_pid *p;
225 p = find_create_pid(tchart, pid);
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
231static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(tchart, pid);
240 c = p->current;
241 if (!c) {
242 c = zalloc(sizeof(*c));
243 assert(c != NULL);
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
249 sample = zalloc(sizeof(*sample));
250 assert(sample != NULL);
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 sample->backtrace = backtrace;
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
277static int process_comm_event(struct perf_tool *tool,
278 union perf_event *event,
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
281{
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool,
288 union perf_event *event,
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
291{
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
295}
296
297static int process_exit_event(struct perf_tool *tool,
298 union perf_event *event,
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
301{
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
304 return 0;
305}
306
307#ifdef SUPPORT_OLD_POWER_EVENTS
308static int use_old_power_events;
309#endif
310
311static void c_state_start(int cpu, u64 timestamp, int state)
312{
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
315}
316
317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
318{
319 struct power_event *pwr = zalloc(sizeof(*pwr));
320
321 if (!pwr)
322 return;
323
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
329 pwr->next = tchart->power_events;
330
331 tchart->power_events = pwr;
332}
333
334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
335{
336 struct power_event *pwr;
337
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
340
341 pwr = zalloc(sizeof(*pwr));
342 if (!pwr)
343 return;
344
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
350 pwr->next = tchart->power_events;
351
352 if (!pwr->start_time)
353 pwr->start_time = tchart->first_time;
354
355 tchart->power_events = pwr;
356
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
359
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
362
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
365
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
368}
369
370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
372{
373 struct per_pid *p;
374 struct wake_event *we = zalloc(sizeof(*we));
375
376 if (!we)
377 return;
378
379 we->time = timestamp;
380 we->waker = waker;
381 we->backtrace = backtrace;
382
383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
384 we->waker = -1;
385
386 we->wakee = wakee;
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
389 p = find_create_pid(tchart, we->wakee);
390
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
394 }
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
397 p->current->state_since, timestamp, NULL);
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
400 }
401}
402
403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
406{
407 struct per_pid *p = NULL, *prev_p;
408
409 prev_p = find_create_pid(tchart, prev_pid);
410
411 p = find_create_pid(tchart, next_pid);
412
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
415 prev_p->current->state_since, timestamp,
416 backtrace);
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
420 p->current->state_since, timestamp,
421 backtrace);
422
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
425 }
426
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
430 if (prev_state & 2)
431 prev_p->current->state = TYPE_BLOCKED;
432 if (prev_state == 0)
433 prev_p->current->state = TYPE_WAITING;
434 }
435}
436
437static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
440{
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
449
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
453 }
454
455 if (!chain)
456 goto exit;
457
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
462 }
463
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
466
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
471
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
486
487 /*
488 * It seems the callchain is corrupted.
489 * Discard all.
490 */
491 zfree(&p);
492 goto exit;
493 }
494 continue;
495 }
496
497 tal.filtered = 0;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
500
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
506 }
507
508exit:
509 fclose(f);
510
511 return p;
512}
513
514typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
516 struct perf_sample *sample,
517 const char *backtrace);
518
519static int process_sample_event(struct perf_tool *tool,
520 union perf_event *event,
521 struct perf_sample *sample,
522 struct perf_evsel *evsel,
523 struct machine *machine)
524{
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
526
527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
532 }
533
534 if (evsel->handler != NULL) {
535 tracepoint_handler f = evsel->handler;
536 return f(tchart, evsel, sample,
537 cat_backtrace(event, sample, machine));
538 }
539
540 return 0;
541}
542
543static int
544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545 struct perf_evsel *evsel,
546 struct perf_sample *sample,
547 const char *backtrace __maybe_unused)
548{
549 u32 state = perf_evsel__intval(evsel, sample, "state");
550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
551
552 if (state == (u32)PWR_EVENT_EXIT)
553 c_state_end(tchart, cpu_id, sample->time);
554 else
555 c_state_start(cpu_id, sample->time, state);
556 return 0;
557}
558
559static int
560process_sample_cpu_frequency(struct timechart *tchart,
561 struct perf_evsel *evsel,
562 struct perf_sample *sample,
563 const char *backtrace __maybe_unused)
564{
565 u32 state = perf_evsel__intval(evsel, sample, "state");
566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
567
568 p_state_change(tchart, cpu_id, sample->time, state);
569 return 0;
570}
571
572static int
573process_sample_sched_wakeup(struct timechart *tchart,
574 struct perf_evsel *evsel,
575 struct perf_sample *sample,
576 const char *backtrace)
577{
578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579 int waker = perf_evsel__intval(evsel, sample, "common_pid");
580 int wakee = perf_evsel__intval(evsel, sample, "pid");
581
582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
583 return 0;
584}
585
586static int
587process_sample_sched_switch(struct timechart *tchart,
588 struct perf_evsel *evsel,
589 struct perf_sample *sample,
590 const char *backtrace)
591{
592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
595
596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597 prev_state, backtrace);
598 return 0;
599}
600
601#ifdef SUPPORT_OLD_POWER_EVENTS
602static int
603process_sample_power_start(struct timechart *tchart __maybe_unused,
604 struct perf_evsel *evsel,
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
607{
608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609 u64 value = perf_evsel__intval(evsel, sample, "value");
610
611 c_state_start(cpu_id, sample->time, value);
612 return 0;
613}
614
615static int
616process_sample_power_end(struct timechart *tchart,
617 struct perf_evsel *evsel __maybe_unused,
618 struct perf_sample *sample,
619 const char *backtrace __maybe_unused)
620{
621 c_state_end(tchart, sample->cpu, sample->time);
622 return 0;
623}
624
625static int
626process_sample_power_frequency(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace __maybe_unused)
630{
631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632 u64 value = perf_evsel__intval(evsel, sample, "value");
633
634 p_state_change(tchart, cpu_id, sample->time, value);
635 return 0;
636}
637#endif /* SUPPORT_OLD_POWER_EVENTS */
638
639/*
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
642 */
643static void end_sample_processing(struct timechart *tchart)
644{
645 u64 cpu;
646 struct power_event *pwr;
647
648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
649 /* C state */
650#if 0
651 pwr = zalloc(sizeof(*pwr));
652 if (!pwr)
653 return;
654
655 pwr->state = cpus_cstate_state[cpu];
656 pwr->start_time = cpus_cstate_start_times[cpu];
657 pwr->end_time = tchart->last_time;
658 pwr->cpu = cpu;
659 pwr->type = CSTATE;
660 pwr->next = tchart->power_events;
661
662 tchart->power_events = pwr;
663#endif
664 /* P state */
665
666 pwr = zalloc(sizeof(*pwr));
667 if (!pwr)
668 return;
669
670 pwr->state = cpus_pstate_state[cpu];
671 pwr->start_time = cpus_pstate_start_times[cpu];
672 pwr->end_time = tchart->last_time;
673 pwr->cpu = cpu;
674 pwr->type = PSTATE;
675 pwr->next = tchart->power_events;
676
677 if (!pwr->start_time)
678 pwr->start_time = tchart->first_time;
679 if (!pwr->state)
680 pwr->state = tchart->min_freq;
681 tchart->power_events = pwr;
682 }
683}
684
685/*
686 * Sort the pid datastructure
687 */
688static void sort_pids(struct timechart *tchart)
689{
690 struct per_pid *new_list, *p, *cursor, *prev;
691 /* sort by ppid first, then by pid, lowest to highest */
692
693 new_list = NULL;
694
695 while (tchart->all_data) {
696 p = tchart->all_data;
697 tchart->all_data = p->next;
698 p->next = NULL;
699
700 if (new_list == NULL) {
701 new_list = p;
702 p->next = NULL;
703 continue;
704 }
705 prev = NULL;
706 cursor = new_list;
707 while (cursor) {
708 if (cursor->ppid > p->ppid ||
709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710 /* must insert before */
711 if (prev) {
712 p->next = prev->next;
713 prev->next = p;
714 cursor = NULL;
715 continue;
716 } else {
717 p->next = new_list;
718 new_list = p;
719 cursor = NULL;
720 continue;
721 }
722 }
723
724 prev = cursor;
725 cursor = cursor->next;
726 if (!cursor)
727 prev->next = p;
728 }
729 }
730 tchart->all_data = new_list;
731}
732
733
734static void draw_c_p_states(struct timechart *tchart)
735{
736 struct power_event *pwr;
737 pwr = tchart->power_events;
738
739 /*
740 * two pass drawing so that the P state bars are on top of the C state blocks
741 */
742 while (pwr) {
743 if (pwr->type == CSTATE)
744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745 pwr = pwr->next;
746 }
747
748 pwr = tchart->power_events;
749 while (pwr) {
750 if (pwr->type == PSTATE) {
751 if (!pwr->state)
752 pwr->state = tchart->min_freq;
753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
754 }
755 pwr = pwr->next;
756 }
757}
758
759static void draw_wakeups(struct timechart *tchart)
760{
761 struct wake_event *we;
762 struct per_pid *p;
763 struct per_pidcomm *c;
764
765 we = tchart->wake_events;
766 while (we) {
767 int from = 0, to = 0;
768 char *task_from = NULL, *task_to = NULL;
769
770 /* locate the column of the waker and wakee */
771 p = tchart->all_data;
772 while (p) {
773 if (p->pid == we->waker || p->pid == we->wakee) {
774 c = p->all;
775 while (c) {
776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
777 if (p->pid == we->waker && !from) {
778 from = c->Y;
779 task_from = strdup(c->comm);
780 }
781 if (p->pid == we->wakee && !to) {
782 to = c->Y;
783 task_to = strdup(c->comm);
784 }
785 }
786 c = c->next;
787 }
788 c = p->all;
789 while (c) {
790 if (p->pid == we->waker && !from) {
791 from = c->Y;
792 task_from = strdup(c->comm);
793 }
794 if (p->pid == we->wakee && !to) {
795 to = c->Y;
796 task_to = strdup(c->comm);
797 }
798 c = c->next;
799 }
800 }
801 p = p->next;
802 }
803
804 if (!task_from) {
805 task_from = malloc(40);
806 sprintf(task_from, "[%i]", we->waker);
807 }
808 if (!task_to) {
809 task_to = malloc(40);
810 sprintf(task_to, "[%i]", we->wakee);
811 }
812
813 if (we->waker == -1)
814 svg_interrupt(we->time, to, we->backtrace);
815 else if (from && to && abs(from - to) == 1)
816 svg_wakeline(we->time, from, to, we->backtrace);
817 else
818 svg_partial_wakeline(we->time, from, task_from, to,
819 task_to, we->backtrace);
820 we = we->next;
821
822 free(task_from);
823 free(task_to);
824 }
825}
826
827static void draw_cpu_usage(struct timechart *tchart)
828{
829 struct per_pid *p;
830 struct per_pidcomm *c;
831 struct cpu_sample *sample;
832 p = tchart->all_data;
833 while (p) {
834 c = p->all;
835 while (c) {
836 sample = c->samples;
837 while (sample) {
838 if (sample->type == TYPE_RUNNING) {
839 svg_process(sample->cpu,
840 sample->start_time,
841 sample->end_time,
842 p->pid,
843 c->comm,
844 sample->backtrace);
845 }
846
847 sample = sample->next;
848 }
849 c = c->next;
850 }
851 p = p->next;
852 }
853}
854
855static void draw_process_bars(struct timechart *tchart)
856{
857 struct per_pid *p;
858 struct per_pidcomm *c;
859 struct cpu_sample *sample;
860 int Y = 0;
861
862 Y = 2 * tchart->numcpus + 2;
863
864 p = tchart->all_data;
865 while (p) {
866 c = p->all;
867 while (c) {
868 if (!c->display) {
869 c->Y = 0;
870 c = c->next;
871 continue;
872 }
873
874 svg_box(Y, c->start_time, c->end_time, "process");
875 sample = c->samples;
876 while (sample) {
877 if (sample->type == TYPE_RUNNING)
878 svg_running(Y, sample->cpu,
879 sample->start_time,
880 sample->end_time,
881 sample->backtrace);
882 if (sample->type == TYPE_BLOCKED)
883 svg_blocked(Y, sample->cpu,
884 sample->start_time,
885 sample->end_time,
886 sample->backtrace);
887 if (sample->type == TYPE_WAITING)
888 svg_waiting(Y, sample->cpu,
889 sample->start_time,
890 sample->end_time,
891 sample->backtrace);
892 sample = sample->next;
893 }
894
895 if (c->comm) {
896 char comm[256];
897 if (c->total_time > 5000000000) /* 5 seconds */
898 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
899 else
900 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
901
902 svg_text(Y, c->start_time, comm);
903 }
904 c->Y = Y;
905 Y++;
906 c = c->next;
907 }
908 p = p->next;
909 }
910}
911
912static void add_process_filter(const char *string)
913{
914 int pid = strtoull(string, NULL, 10);
915 struct process_filter *filt = malloc(sizeof(*filt));
916
917 if (!filt)
918 return;
919
920 filt->name = strdup(string);
921 filt->pid = pid;
922 filt->next = process_filter;
923
924 process_filter = filt;
925}
926
927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
928{
929 struct process_filter *filt;
930 if (!process_filter)
931 return 1;
932
933 filt = process_filter;
934 while (filt) {
935 if (filt->pid && p->pid == filt->pid)
936 return 1;
937 if (strcmp(filt->name, c->comm) == 0)
938 return 1;
939 filt = filt->next;
940 }
941 return 0;
942}
943
944static int determine_display_tasks_filtered(struct timechart *tchart)
945{
946 struct per_pid *p;
947 struct per_pidcomm *c;
948 int count = 0;
949
950 p = tchart->all_data;
951 while (p) {
952 p->display = 0;
953 if (p->start_time == 1)
954 p->start_time = tchart->first_time;
955
956 /* no exit marker, task kept running to the end */
957 if (p->end_time == 0)
958 p->end_time = tchart->last_time;
959
960 c = p->all;
961
962 while (c) {
963 c->display = 0;
964
965 if (c->start_time == 1)
966 c->start_time = tchart->first_time;
967
968 if (passes_filter(p, c)) {
969 c->display = 1;
970 p->display = 1;
971 count++;
972 }
973
974 if (c->end_time == 0)
975 c->end_time = tchart->last_time;
976
977 c = c->next;
978 }
979 p = p->next;
980 }
981 return count;
982}
983
984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
985{
986 struct per_pid *p;
987 struct per_pidcomm *c;
988 int count = 0;
989
990 if (process_filter)
991 return determine_display_tasks_filtered(tchart);
992
993 p = tchart->all_data;
994 while (p) {
995 p->display = 0;
996 if (p->start_time == 1)
997 p->start_time = tchart->first_time;
998
999 /* no exit marker, task kept running to the end */
1000 if (p->end_time == 0)
1001 p->end_time = tchart->last_time;
1002 if (p->total_time >= threshold)
1003 p->display = 1;
1004
1005 c = p->all;
1006
1007 while (c) {
1008 c->display = 0;
1009
1010 if (c->start_time == 1)
1011 c->start_time = tchart->first_time;
1012
1013 if (c->total_time >= threshold) {
1014 c->display = 1;
1015 count++;
1016 }
1017
1018 if (c->end_time == 0)
1019 c->end_time = tchart->last_time;
1020
1021 c = c->next;
1022 }
1023 p = p->next;
1024 }
1025 return count;
1026}
1027
1028
1029
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034 u64 i;
1035 int count;
1036 int thresh = TIME_THRESH;
1037
1038 if (tchart->power_only)
1039 tchart->proc_num = 0;
1040
1041 /* We'd like to show at least proc_num tasks;
1042 * be less picky if we have fewer */
1043 do {
1044 count = determine_display_tasks(tchart, thresh);
1045 thresh /= 10;
1046 } while (!process_filter && thresh && count < tchart->proc_num);
1047
1048 if (!tchart->proc_num)
1049 count = 0;
1050
1051 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1052
1053 svg_time_grid();
1054 svg_legenda();
1055
1056 for (i = 0; i < tchart->numcpus; i++)
1057 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059 draw_cpu_usage(tchart);
1060 if (tchart->proc_num)
1061 draw_process_bars(tchart);
1062 if (!tchart->tasks_only)
1063 draw_c_p_states(tchart);
1064 if (tchart->proc_num)
1065 draw_wakeups(tchart);
1066
1067 svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071 struct perf_header *ph,
1072 int feat,
1073 int fd __maybe_unused,
1074 void *data)
1075{
1076 struct timechart *tchart = data;
1077
1078 switch (feat) {
1079 case HEADER_NRCPUS:
1080 tchart->numcpus = ph->env.nr_cpus_avail;
1081 break;
1082
1083 case HEADER_CPU_TOPOLOGY:
1084 if (!tchart->topology)
1085 break;
1086
1087 if (svg_build_topology_map(ph->env.sibling_cores,
1088 ph->env.nr_sibling_cores,
1089 ph->env.sibling_threads,
1090 ph->env.nr_sibling_threads))
1091 fprintf(stderr, "problem building topology\n");
1092 break;
1093
1094 default:
1095 break;
1096 }
1097
1098 return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103 const struct perf_evsel_str_handler power_tracepoints[] = {
1104 { "power:cpu_idle", process_sample_cpu_idle },
1105 { "power:cpu_frequency", process_sample_cpu_frequency },
1106 { "sched:sched_wakeup", process_sample_sched_wakeup },
1107 { "sched:sched_switch", process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109 { "power:power_start", process_sample_power_start },
1110 { "power:power_end", process_sample_power_end },
1111 { "power:power_frequency", process_sample_power_frequency },
1112#endif
1113 };
1114 struct perf_data_file file = {
1115 .path = input_name,
1116 .mode = PERF_DATA_MODE_READ,
1117 };
1118
1119 struct perf_session *session = perf_session__new(&file, false,
1120 &tchart->tool);
1121 int ret = -EINVAL;
1122
1123 if (session == NULL)
1124 return -ENOMEM;
1125
1126 (void)perf_header__process_sections(&session->header,
1127 perf_data_file__fd(session->file),
1128 tchart,
1129 process_header);
1130
1131 if (!perf_session__has_traces(session, "timechart record"))
1132 goto out_delete;
1133
1134 if (perf_session__set_tracepoints_handlers(session,
1135 power_tracepoints)) {
1136 pr_err("Initializing session tracepoint handlers failed\n");
1137 goto out_delete;
1138 }
1139
1140 ret = perf_session__process_events(session, &tchart->tool);
1141 if (ret)
1142 goto out_delete;
1143
1144 end_sample_processing(tchart);
1145
1146 sort_pids(tchart);
1147
1148 write_svg_file(tchart, output_name);
1149
1150 pr_info("Written %2.1f seconds of trace to %s.\n",
1151 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153 perf_session__delete(session);
1154 return ret;
1155}
1156
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159 unsigned int rec_argc, i, j;
1160 const char **rec_argv;
1161 const char **p;
1162 unsigned int record_elems;
1163
1164 const char * const common_args[] = {
1165 "record", "-a", "-R", "-c", "1",
1166 };
1167 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169 const char * const backtrace_args[] = {
1170 "-g",
1171 };
1172 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174 const char * const power_args[] = {
1175 "-e", "power:cpu_frequency",
1176 "-e", "power:cpu_idle",
1177 };
1178 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180 const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182 "-e", "power:power_start",
1183 "-e", "power:power_end",
1184 "-e", "power:power_frequency",
1185#endif
1186 };
1187 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189 const char * const tasks_args[] = {
1190 "-e", "sched:sched_wakeup",
1191 "-e", "sched:sched_switch",
1192 };
1193 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196 if (!is_valid_tracepoint("power:cpu_idle") &&
1197 is_valid_tracepoint("power:power_start")) {
1198 use_old_power_events = 1;
1199 power_args_nr = 0;
1200 } else {
1201 old_power_args_nr = 0;
1202 }
1203#endif
1204
1205 if (tchart->power_only)
1206 tasks_args_nr = 0;
1207
1208 if (tchart->tasks_only) {
1209 power_args_nr = 0;
1210 old_power_args_nr = 0;
1211 }
1212
1213 if (!tchart->with_backtrace)
1214 backtrace_args_no = 0;
1215
1216 record_elems = common_args_nr + tasks_args_nr +
1217 power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219 rec_argc = record_elems + argc;
1220 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222 if (rec_argv == NULL)
1223 return -ENOMEM;
1224
1225 p = rec_argv;
1226 for (i = 0; i < common_args_nr; i++)
1227 *p++ = strdup(common_args[i]);
1228
1229 for (i = 0; i < backtrace_args_no; i++)
1230 *p++ = strdup(backtrace_args[i]);
1231
1232 for (i = 0; i < tasks_args_nr; i++)
1233 *p++ = strdup(tasks_args[i]);
1234
1235 for (i = 0; i < power_args_nr; i++)
1236 *p++ = strdup(power_args[i]);
1237
1238 for (i = 0; i < old_power_args_nr; i++)
1239 *p++ = strdup(old_power_args[i]);
1240
1241 for (j = 0; j < (unsigned int)argc; j++)
1242 *p++ = argv[j];
1243
1244 return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249 int __maybe_unused unset)
1250{
1251 if (arg)
1252 add_process_filter(arg);
1253 return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258 int __maybe_unused unset)
1259{
1260 unsigned long duration = strtoul(arg, NULL, 0);
1261
1262 if (svg_highlight || svg_highlight_name)
1263 return -1;
1264
1265 if (duration)
1266 svg_highlight = duration;
1267 else
1268 svg_highlight_name = strdup(arg);
1269
1270 return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274 const char *prefix __maybe_unused)
1275{
1276 struct timechart tchart = {
1277 .tool = {
1278 .comm = process_comm_event,
1279 .fork = process_fork_event,
1280 .exit = process_exit_event,
1281 .sample = process_sample_event,
1282 .ordered_samples = true,
1283 },
1284 .proc_num = 15,
1285 };
1286 const char *output_name = "output.svg";
1287 const struct option timechart_options[] = {
1288 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292 "highlight tasks. Pass duration in ns or process name.",
1293 parse_highlight),
1294 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296 "output processes data only"),
1297 OPT_CALLBACK('p', "process", NULL, "process",
1298 "process selector. Pass a pid or process name.",
1299 parse_process),
1300 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301 "Look for files with symbols relative to this directory"),
1302 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303 "min. number of tasks to print"),
1304 OPT_BOOLEAN('t', "topology", &tchart.topology,
1305 "sort CPUs according to topology"),
1306 OPT_END()
1307 };
1308 const char * const timechart_usage[] = {
1309 "perf timechart [<options>] {record}",
1310 NULL
1311 };
1312
1313 const struct option record_options[] = {
1314 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316 "output processes data only"),
1317 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318 OPT_END()
1319 };
1320 const char * const record_usage[] = {
1321 "perf timechart record [<options>]",
1322 NULL
1323 };
1324 argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325 PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327 if (tchart.power_only && tchart.tasks_only) {
1328 pr_err("-P and -T options cannot be used at the same time.\n");
1329 return -1;
1330 }
1331
1332 symbol__init();
1333
1334 if (argc && !strncmp(argv[0], "rec", 3)) {
1335 argc = parse_options(argc, argv, record_options, record_usage,
1336 PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338 if (tchart.power_only && tchart.tasks_only) {
1339 pr_err("-P and -T options cannot be used at the same time.\n");
1340 return -1;
1341 }
1342
1343 return timechart__record(&tchart, argc, argv);
1344 } else if (argc)
1345 usage_with_options(timechart_usage, timechart_options);
1346
1347 setup_pager();
1348
1349 return __cmd_timechart(&tchart, output_name);
1350}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11#include <errno.h>
12#include <inttypes.h>
13
14#include "builtin.h"
15#include "util/color.h"
16#include <linux/list.h>
17#include "util/evlist.h" // for struct evsel_str_handler
18#include "util/evsel.h"
19#include <linux/kernel.h>
20#include <linux/rbtree.h>
21#include <linux/time64.h>
22#include <linux/zalloc.h>
23#include "util/symbol.h"
24#include "util/thread.h"
25#include "util/callchain.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include <subcmd/pager.h>
30#include <subcmd/parse-options.h>
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36#include "util/data.h"
37#include "util/debug.h"
38#include "util/string2.h"
39#include "util/tracepoint.h"
40#include <linux/err.h>
41#include <traceevent/event-parse.h>
42
43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44FILE *open_memstream(char **ptr, size_t *sizeloc);
45#endif
46
47#define SUPPORT_OLD_POWER_EVENTS 1
48#define PWR_EVENT_EXIT -1
49
50struct per_pid;
51struct power_event;
52struct wake_event;
53
54struct timechart {
55 struct perf_tool tool;
56 struct per_pid *all_data;
57 struct power_event *power_events;
58 struct wake_event *wake_events;
59 int proc_num;
60 unsigned int numcpus;
61 u64 min_freq, /* Lowest CPU frequency seen */
62 max_freq, /* Highest CPU frequency seen */
63 turbo_frequency,
64 first_time, last_time;
65 bool power_only,
66 tasks_only,
67 with_backtrace,
68 topology;
69 bool force;
70 /* IO related settings */
71 bool io_only,
72 skip_eagain;
73 u64 io_events;
74 u64 min_time,
75 merge_dist;
76};
77
78struct per_pidcomm;
79struct cpu_sample;
80struct io_sample;
81
82/*
83 * Datastructure layout:
84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
85 * Each "pid" entry, has a list of "comm"s.
86 * this is because we want to track different programs different, while
87 * exec will reuse the original pid (by design).
88 * Each comm has a list of samples that will be used to draw
89 * final graph.
90 */
91
92struct per_pid {
93 struct per_pid *next;
94
95 int pid;
96 int ppid;
97
98 u64 start_time;
99 u64 end_time;
100 u64 total_time;
101 u64 total_bytes;
102 int display;
103
104 struct per_pidcomm *all;
105 struct per_pidcomm *current;
106};
107
108
109struct per_pidcomm {
110 struct per_pidcomm *next;
111
112 u64 start_time;
113 u64 end_time;
114 u64 total_time;
115 u64 max_bytes;
116 u64 total_bytes;
117
118 int Y;
119 int display;
120
121 long state;
122 u64 state_since;
123
124 char *comm;
125
126 struct cpu_sample *samples;
127 struct io_sample *io_samples;
128};
129
130struct sample_wrapper {
131 struct sample_wrapper *next;
132
133 u64 timestamp;
134 unsigned char data[];
135};
136
137#define TYPE_NONE 0
138#define TYPE_RUNNING 1
139#define TYPE_WAITING 2
140#define TYPE_BLOCKED 3
141
142struct cpu_sample {
143 struct cpu_sample *next;
144
145 u64 start_time;
146 u64 end_time;
147 int type;
148 int cpu;
149 const char *backtrace;
150};
151
152enum {
153 IOTYPE_READ,
154 IOTYPE_WRITE,
155 IOTYPE_SYNC,
156 IOTYPE_TX,
157 IOTYPE_RX,
158 IOTYPE_POLL,
159};
160
161struct io_sample {
162 struct io_sample *next;
163
164 u64 start_time;
165 u64 end_time;
166 u64 bytes;
167 int type;
168 int fd;
169 int err;
170 int merges;
171};
172
173#define CSTATE 1
174#define PSTATE 2
175
176struct power_event {
177 struct power_event *next;
178 int type;
179 int state;
180 u64 start_time;
181 u64 end_time;
182 int cpu;
183};
184
185struct wake_event {
186 struct wake_event *next;
187 int waker;
188 int wakee;
189 u64 time;
190 const char *backtrace;
191};
192
193struct process_filter {
194 char *name;
195 int pid;
196 struct process_filter *next;
197};
198
199static struct process_filter *process_filter;
200
201
202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
203{
204 struct per_pid *cursor = tchart->all_data;
205
206 while (cursor) {
207 if (cursor->pid == pid)
208 return cursor;
209 cursor = cursor->next;
210 }
211 cursor = zalloc(sizeof(*cursor));
212 assert(cursor != NULL);
213 cursor->pid = pid;
214 cursor->next = tchart->all_data;
215 tchart->all_data = cursor;
216 return cursor;
217}
218
219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
220{
221 struct per_pidcomm *c;
222
223 c = zalloc(sizeof(*c));
224 if (!c)
225 return NULL;
226 p->current = c;
227 c->next = p->all;
228 p->all = c;
229 return c;
230}
231
232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
233{
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 p = find_create_pid(tchart, pid);
237 c = p->all;
238 while (c) {
239 if (c->comm && strcmp(c->comm, comm) == 0) {
240 p->current = c;
241 return;
242 }
243 if (!c->comm) {
244 c->comm = strdup(comm);
245 p->current = c;
246 return;
247 }
248 c = c->next;
249 }
250 c = create_pidcomm(p);
251 assert(c != NULL);
252 c->comm = strdup(comm);
253}
254
255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
256{
257 struct per_pid *p, *pp;
258 p = find_create_pid(tchart, pid);
259 pp = find_create_pid(tchart, ppid);
260 p->ppid = ppid;
261 if (pp->current && pp->current->comm && !p->current)
262 pid_set_comm(tchart, pid, pp->current->comm);
263
264 p->start_time = timestamp;
265 if (p->current && !p->current->start_time) {
266 p->current->start_time = timestamp;
267 p->current->state_since = timestamp;
268 }
269}
270
271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
272{
273 struct per_pid *p;
274 p = find_create_pid(tchart, pid);
275 p->end_time = timestamp;
276 if (p->current)
277 p->current->end_time = timestamp;
278}
279
280static void pid_put_sample(struct timechart *tchart, int pid, int type,
281 unsigned int cpu, u64 start, u64 end,
282 const char *backtrace)
283{
284 struct per_pid *p;
285 struct per_pidcomm *c;
286 struct cpu_sample *sample;
287
288 p = find_create_pid(tchart, pid);
289 c = p->current;
290 if (!c) {
291 c = create_pidcomm(p);
292 assert(c != NULL);
293 }
294
295 sample = zalloc(sizeof(*sample));
296 assert(sample != NULL);
297 sample->start_time = start;
298 sample->end_time = end;
299 sample->type = type;
300 sample->next = c->samples;
301 sample->cpu = cpu;
302 sample->backtrace = backtrace;
303 c->samples = sample;
304
305 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306 c->total_time += (end-start);
307 p->total_time += (end-start);
308 }
309
310 if (c->start_time == 0 || c->start_time > start)
311 c->start_time = start;
312 if (p->start_time == 0 || p->start_time > start)
313 p->start_time = start;
314}
315
316#define MAX_CPUS 4096
317
318static u64 cpus_cstate_start_times[MAX_CPUS];
319static int cpus_cstate_state[MAX_CPUS];
320static u64 cpus_pstate_start_times[MAX_CPUS];
321static u64 cpus_pstate_state[MAX_CPUS];
322
323static int process_comm_event(struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
327{
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
330 return 0;
331}
332
333static int process_fork_event(struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
337{
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
340 return 0;
341}
342
343static int process_exit_event(struct perf_tool *tool,
344 union perf_event *event,
345 struct perf_sample *sample __maybe_unused,
346 struct machine *machine __maybe_unused)
347{
348 struct timechart *tchart = container_of(tool, struct timechart, tool);
349 pid_exit(tchart, event->fork.pid, event->fork.time);
350 return 0;
351}
352
353#ifdef SUPPORT_OLD_POWER_EVENTS
354static int use_old_power_events;
355#endif
356
357static void c_state_start(int cpu, u64 timestamp, int state)
358{
359 cpus_cstate_start_times[cpu] = timestamp;
360 cpus_cstate_state[cpu] = state;
361}
362
363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
364{
365 struct power_event *pwr = zalloc(sizeof(*pwr));
366
367 if (!pwr)
368 return;
369
370 pwr->state = cpus_cstate_state[cpu];
371 pwr->start_time = cpus_cstate_start_times[cpu];
372 pwr->end_time = timestamp;
373 pwr->cpu = cpu;
374 pwr->type = CSTATE;
375 pwr->next = tchart->power_events;
376
377 tchart->power_events = pwr;
378}
379
380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
381 u64 timestamp)
382{
383 struct power_event *pwr = zalloc(sizeof(*pwr));
384
385 if (!pwr)
386 return NULL;
387
388 pwr->state = cpus_pstate_state[cpu];
389 pwr->start_time = cpus_pstate_start_times[cpu];
390 pwr->end_time = timestamp;
391 pwr->cpu = cpu;
392 pwr->type = PSTATE;
393 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
396
397 tchart->power_events = pwr;
398 return pwr;
399}
400
401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
402{
403 struct power_event *pwr;
404
405 if (new_freq > 8000000) /* detect invalid data */
406 return;
407
408 pwr = p_state_end(tchart, cpu, timestamp);
409 if (!pwr)
410 return;
411
412 cpus_pstate_state[cpu] = new_freq;
413 cpus_pstate_start_times[cpu] = timestamp;
414
415 if ((u64)new_freq > tchart->max_freq)
416 tchart->max_freq = new_freq;
417
418 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419 tchart->min_freq = new_freq;
420
421 if (new_freq == tchart->max_freq - 1000)
422 tchart->turbo_frequency = tchart->max_freq;
423}
424
425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426 int waker, int wakee, u8 flags, const char *backtrace)
427{
428 struct per_pid *p;
429 struct wake_event *we = zalloc(sizeof(*we));
430
431 if (!we)
432 return;
433
434 we->time = timestamp;
435 we->waker = waker;
436 we->backtrace = backtrace;
437
438 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
439 we->waker = -1;
440
441 we->wakee = wakee;
442 we->next = tchart->wake_events;
443 tchart->wake_events = we;
444 p = find_create_pid(tchart, we->wakee);
445
446 if (p && p->current && p->current->state == TYPE_NONE) {
447 p->current->state_since = timestamp;
448 p->current->state = TYPE_WAITING;
449 }
450 if (p && p->current && p->current->state == TYPE_BLOCKED) {
451 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452 p->current->state_since, timestamp, NULL);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456}
457
458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459 int prev_pid, int next_pid, u64 prev_state,
460 const char *backtrace)
461{
462 struct per_pid *p = NULL, *prev_p;
463
464 prev_p = find_create_pid(tchart, prev_pid);
465
466 p = find_create_pid(tchart, next_pid);
467
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470 prev_p->current->state_since, timestamp,
471 backtrace);
472 if (p && p->current) {
473 if (p->current->state != TYPE_NONE)
474 pid_put_sample(tchart, next_pid, p->current->state, cpu,
475 p->current->state_since, timestamp,
476 backtrace);
477
478 p->current->state_since = timestamp;
479 p->current->state = TYPE_RUNNING;
480 }
481
482 if (prev_p->current) {
483 prev_p->current->state = TYPE_NONE;
484 prev_p->current->state_since = timestamp;
485 if (prev_state & 2)
486 prev_p->current->state = TYPE_BLOCKED;
487 if (prev_state == 0)
488 prev_p->current->state = TYPE_WAITING;
489 }
490}
491
492static const char *cat_backtrace(union perf_event *event,
493 struct perf_sample *sample,
494 struct machine *machine)
495{
496 struct addr_location al;
497 unsigned int i;
498 char *p = NULL;
499 size_t p_len;
500 u8 cpumode = PERF_RECORD_MISC_USER;
501 struct addr_location tal;
502 struct ip_callchain *chain = sample->callchain;
503 FILE *f = open_memstream(&p, &p_len);
504
505 if (!f) {
506 perror("open_memstream error");
507 return NULL;
508 }
509
510 if (!chain)
511 goto exit;
512
513 if (machine__resolve(machine, &al, sample) < 0) {
514 fprintf(stderr, "problem processing %d event, skipping it.\n",
515 event->header.type);
516 goto exit;
517 }
518
519 for (i = 0; i < chain->nr; i++) {
520 u64 ip;
521
522 if (callchain_param.order == ORDER_CALLEE)
523 ip = chain->ips[i];
524 else
525 ip = chain->ips[chain->nr - i - 1];
526
527 if (ip >= PERF_CONTEXT_MAX) {
528 switch (ip) {
529 case PERF_CONTEXT_HV:
530 cpumode = PERF_RECORD_MISC_HYPERVISOR;
531 break;
532 case PERF_CONTEXT_KERNEL:
533 cpumode = PERF_RECORD_MISC_KERNEL;
534 break;
535 case PERF_CONTEXT_USER:
536 cpumode = PERF_RECORD_MISC_USER;
537 break;
538 default:
539 pr_debug("invalid callchain context: "
540 "%"PRId64"\n", (s64) ip);
541
542 /*
543 * It seems the callchain is corrupted.
544 * Discard all.
545 */
546 zfree(&p);
547 goto exit_put;
548 }
549 continue;
550 }
551
552 tal.filtered = 0;
553 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
554 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
555 else
556 fprintf(f, "..... %016" PRIx64 "\n", ip);
557 }
558exit_put:
559 addr_location__put(&al);
560exit:
561 fclose(f);
562
563 return p;
564}
565
566typedef int (*tracepoint_handler)(struct timechart *tchart,
567 struct evsel *evsel,
568 struct perf_sample *sample,
569 const char *backtrace);
570
571static int process_sample_event(struct perf_tool *tool,
572 union perf_event *event,
573 struct perf_sample *sample,
574 struct evsel *evsel,
575 struct machine *machine)
576{
577 struct timechart *tchart = container_of(tool, struct timechart, tool);
578
579 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
580 if (!tchart->first_time || tchart->first_time > sample->time)
581 tchart->first_time = sample->time;
582 if (tchart->last_time < sample->time)
583 tchart->last_time = sample->time;
584 }
585
586 if (evsel->handler != NULL) {
587 tracepoint_handler f = evsel->handler;
588 return f(tchart, evsel, sample,
589 cat_backtrace(event, sample, machine));
590 }
591
592 return 0;
593}
594
595static int
596process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
597 struct evsel *evsel,
598 struct perf_sample *sample,
599 const char *backtrace __maybe_unused)
600{
601 u32 state = evsel__intval(evsel, sample, "state");
602 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
603
604 if (state == (u32)PWR_EVENT_EXIT)
605 c_state_end(tchart, cpu_id, sample->time);
606 else
607 c_state_start(cpu_id, sample->time, state);
608 return 0;
609}
610
611static int
612process_sample_cpu_frequency(struct timechart *tchart,
613 struct evsel *evsel,
614 struct perf_sample *sample,
615 const char *backtrace __maybe_unused)
616{
617 u32 state = evsel__intval(evsel, sample, "state");
618 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
619
620 p_state_change(tchart, cpu_id, sample->time, state);
621 return 0;
622}
623
624static int
625process_sample_sched_wakeup(struct timechart *tchart,
626 struct evsel *evsel,
627 struct perf_sample *sample,
628 const char *backtrace)
629{
630 u8 flags = evsel__intval(evsel, sample, "common_flags");
631 int waker = evsel__intval(evsel, sample, "common_pid");
632 int wakee = evsel__intval(evsel, sample, "pid");
633
634 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
635 return 0;
636}
637
638static int
639process_sample_sched_switch(struct timechart *tchart,
640 struct evsel *evsel,
641 struct perf_sample *sample,
642 const char *backtrace)
643{
644 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
645 int next_pid = evsel__intval(evsel, sample, "next_pid");
646 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
647
648 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
649 prev_state, backtrace);
650 return 0;
651}
652
653#ifdef SUPPORT_OLD_POWER_EVENTS
654static int
655process_sample_power_start(struct timechart *tchart __maybe_unused,
656 struct evsel *evsel,
657 struct perf_sample *sample,
658 const char *backtrace __maybe_unused)
659{
660 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
661 u64 value = evsel__intval(evsel, sample, "value");
662
663 c_state_start(cpu_id, sample->time, value);
664 return 0;
665}
666
667static int
668process_sample_power_end(struct timechart *tchart,
669 struct evsel *evsel __maybe_unused,
670 struct perf_sample *sample,
671 const char *backtrace __maybe_unused)
672{
673 c_state_end(tchart, sample->cpu, sample->time);
674 return 0;
675}
676
677static int
678process_sample_power_frequency(struct timechart *tchart,
679 struct evsel *evsel,
680 struct perf_sample *sample,
681 const char *backtrace __maybe_unused)
682{
683 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
684 u64 value = evsel__intval(evsel, sample, "value");
685
686 p_state_change(tchart, cpu_id, sample->time, value);
687 return 0;
688}
689#endif /* SUPPORT_OLD_POWER_EVENTS */
690
691/*
692 * After the last sample we need to wrap up the current C/P state
693 * and close out each CPU for these.
694 */
695static void end_sample_processing(struct timechart *tchart)
696{
697 u64 cpu;
698 struct power_event *pwr;
699
700 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
701 /* C state */
702#if 0
703 pwr = zalloc(sizeof(*pwr));
704 if (!pwr)
705 return;
706
707 pwr->state = cpus_cstate_state[cpu];
708 pwr->start_time = cpus_cstate_start_times[cpu];
709 pwr->end_time = tchart->last_time;
710 pwr->cpu = cpu;
711 pwr->type = CSTATE;
712 pwr->next = tchart->power_events;
713
714 tchart->power_events = pwr;
715#endif
716 /* P state */
717
718 pwr = p_state_end(tchart, cpu, tchart->last_time);
719 if (!pwr)
720 return;
721
722 if (!pwr->state)
723 pwr->state = tchart->min_freq;
724 }
725}
726
727static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
728 u64 start, int fd)
729{
730 struct per_pid *p = find_create_pid(tchart, pid);
731 struct per_pidcomm *c = p->current;
732 struct io_sample *sample;
733 struct io_sample *prev;
734
735 if (!c) {
736 c = create_pidcomm(p);
737 if (!c)
738 return -ENOMEM;
739 }
740
741 prev = c->io_samples;
742
743 if (prev && prev->start_time && !prev->end_time) {
744 pr_warning("Skip invalid start event: "
745 "previous event already started!\n");
746
747 /* remove previous event that has been started,
748 * we are not sure we will ever get an end for it */
749 c->io_samples = prev->next;
750 free(prev);
751 return 0;
752 }
753
754 sample = zalloc(sizeof(*sample));
755 if (!sample)
756 return -ENOMEM;
757 sample->start_time = start;
758 sample->type = type;
759 sample->fd = fd;
760 sample->next = c->io_samples;
761 c->io_samples = sample;
762
763 if (c->start_time == 0 || c->start_time > start)
764 c->start_time = start;
765
766 return 0;
767}
768
769static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
770 u64 end, long ret)
771{
772 struct per_pid *p = find_create_pid(tchart, pid);
773 struct per_pidcomm *c = p->current;
774 struct io_sample *sample, *prev;
775
776 if (!c) {
777 pr_warning("Invalid pidcomm!\n");
778 return -1;
779 }
780
781 sample = c->io_samples;
782
783 if (!sample) /* skip partially captured events */
784 return 0;
785
786 if (sample->end_time) {
787 pr_warning("Skip invalid end event: "
788 "previous event already ended!\n");
789 return 0;
790 }
791
792 if (sample->type != type) {
793 pr_warning("Skip invalid end event: invalid event type!\n");
794 return 0;
795 }
796
797 sample->end_time = end;
798 prev = sample->next;
799
800 /* we want to be able to see small and fast transfers, so make them
801 * at least min_time long, but don't overlap them */
802 if (sample->end_time - sample->start_time < tchart->min_time)
803 sample->end_time = sample->start_time + tchart->min_time;
804 if (prev && sample->start_time < prev->end_time) {
805 if (prev->err) /* try to make errors more visible */
806 sample->start_time = prev->end_time;
807 else
808 prev->end_time = sample->start_time;
809 }
810
811 if (ret < 0) {
812 sample->err = ret;
813 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814 type == IOTYPE_TX || type == IOTYPE_RX) {
815
816 if ((u64)ret > c->max_bytes)
817 c->max_bytes = ret;
818
819 c->total_bytes += ret;
820 p->total_bytes += ret;
821 sample->bytes = ret;
822 }
823
824 /* merge two requests to make svg smaller and render-friendly */
825 if (prev &&
826 prev->type == sample->type &&
827 prev->err == sample->err &&
828 prev->fd == sample->fd &&
829 prev->end_time + tchart->merge_dist >= sample->start_time) {
830
831 sample->bytes += prev->bytes;
832 sample->merges += prev->merges + 1;
833
834 sample->start_time = prev->start_time;
835 sample->next = prev->next;
836 free(prev);
837
838 if (!sample->err && sample->bytes > c->max_bytes)
839 c->max_bytes = sample->bytes;
840 }
841
842 tchart->io_events++;
843
844 return 0;
845}
846
847static int
848process_enter_read(struct timechart *tchart,
849 struct evsel *evsel,
850 struct perf_sample *sample)
851{
852 long fd = evsel__intval(evsel, sample, "fd");
853 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
854 sample->time, fd);
855}
856
857static int
858process_exit_read(struct timechart *tchart,
859 struct evsel *evsel,
860 struct perf_sample *sample)
861{
862 long ret = evsel__intval(evsel, sample, "ret");
863 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
864 sample->time, ret);
865}
866
867static int
868process_enter_write(struct timechart *tchart,
869 struct evsel *evsel,
870 struct perf_sample *sample)
871{
872 long fd = evsel__intval(evsel, sample, "fd");
873 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
874 sample->time, fd);
875}
876
877static int
878process_exit_write(struct timechart *tchart,
879 struct evsel *evsel,
880 struct perf_sample *sample)
881{
882 long ret = evsel__intval(evsel, sample, "ret");
883 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
884 sample->time, ret);
885}
886
887static int
888process_enter_sync(struct timechart *tchart,
889 struct evsel *evsel,
890 struct perf_sample *sample)
891{
892 long fd = evsel__intval(evsel, sample, "fd");
893 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
894 sample->time, fd);
895}
896
897static int
898process_exit_sync(struct timechart *tchart,
899 struct evsel *evsel,
900 struct perf_sample *sample)
901{
902 long ret = evsel__intval(evsel, sample, "ret");
903 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
904 sample->time, ret);
905}
906
907static int
908process_enter_tx(struct timechart *tchart,
909 struct evsel *evsel,
910 struct perf_sample *sample)
911{
912 long fd = evsel__intval(evsel, sample, "fd");
913 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
914 sample->time, fd);
915}
916
917static int
918process_exit_tx(struct timechart *tchart,
919 struct evsel *evsel,
920 struct perf_sample *sample)
921{
922 long ret = evsel__intval(evsel, sample, "ret");
923 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
924 sample->time, ret);
925}
926
927static int
928process_enter_rx(struct timechart *tchart,
929 struct evsel *evsel,
930 struct perf_sample *sample)
931{
932 long fd = evsel__intval(evsel, sample, "fd");
933 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
934 sample->time, fd);
935}
936
937static int
938process_exit_rx(struct timechart *tchart,
939 struct evsel *evsel,
940 struct perf_sample *sample)
941{
942 long ret = evsel__intval(evsel, sample, "ret");
943 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
944 sample->time, ret);
945}
946
947static int
948process_enter_poll(struct timechart *tchart,
949 struct evsel *evsel,
950 struct perf_sample *sample)
951{
952 long fd = evsel__intval(evsel, sample, "fd");
953 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
954 sample->time, fd);
955}
956
957static int
958process_exit_poll(struct timechart *tchart,
959 struct evsel *evsel,
960 struct perf_sample *sample)
961{
962 long ret = evsel__intval(evsel, sample, "ret");
963 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
964 sample->time, ret);
965}
966
967/*
968 * Sort the pid datastructure
969 */
970static void sort_pids(struct timechart *tchart)
971{
972 struct per_pid *new_list, *p, *cursor, *prev;
973 /* sort by ppid first, then by pid, lowest to highest */
974
975 new_list = NULL;
976
977 while (tchart->all_data) {
978 p = tchart->all_data;
979 tchart->all_data = p->next;
980 p->next = NULL;
981
982 if (new_list == NULL) {
983 new_list = p;
984 p->next = NULL;
985 continue;
986 }
987 prev = NULL;
988 cursor = new_list;
989 while (cursor) {
990 if (cursor->ppid > p->ppid ||
991 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992 /* must insert before */
993 if (prev) {
994 p->next = prev->next;
995 prev->next = p;
996 cursor = NULL;
997 continue;
998 } else {
999 p->next = new_list;
1000 new_list = p;
1001 cursor = NULL;
1002 continue;
1003 }
1004 }
1005
1006 prev = cursor;
1007 cursor = cursor->next;
1008 if (!cursor)
1009 prev->next = p;
1010 }
1011 }
1012 tchart->all_data = new_list;
1013}
1014
1015
1016static void draw_c_p_states(struct timechart *tchart)
1017{
1018 struct power_event *pwr;
1019 pwr = tchart->power_events;
1020
1021 /*
1022 * two pass drawing so that the P state bars are on top of the C state blocks
1023 */
1024 while (pwr) {
1025 if (pwr->type == CSTATE)
1026 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027 pwr = pwr->next;
1028 }
1029
1030 pwr = tchart->power_events;
1031 while (pwr) {
1032 if (pwr->type == PSTATE) {
1033 if (!pwr->state)
1034 pwr->state = tchart->min_freq;
1035 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036 }
1037 pwr = pwr->next;
1038 }
1039}
1040
1041static void draw_wakeups(struct timechart *tchart)
1042{
1043 struct wake_event *we;
1044 struct per_pid *p;
1045 struct per_pidcomm *c;
1046
1047 we = tchart->wake_events;
1048 while (we) {
1049 int from = 0, to = 0;
1050 char *task_from = NULL, *task_to = NULL;
1051
1052 /* locate the column of the waker and wakee */
1053 p = tchart->all_data;
1054 while (p) {
1055 if (p->pid == we->waker || p->pid == we->wakee) {
1056 c = p->all;
1057 while (c) {
1058 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059 if (p->pid == we->waker && !from) {
1060 from = c->Y;
1061 task_from = strdup(c->comm);
1062 }
1063 if (p->pid == we->wakee && !to) {
1064 to = c->Y;
1065 task_to = strdup(c->comm);
1066 }
1067 }
1068 c = c->next;
1069 }
1070 c = p->all;
1071 while (c) {
1072 if (p->pid == we->waker && !from) {
1073 from = c->Y;
1074 task_from = strdup(c->comm);
1075 }
1076 if (p->pid == we->wakee && !to) {
1077 to = c->Y;
1078 task_to = strdup(c->comm);
1079 }
1080 c = c->next;
1081 }
1082 }
1083 p = p->next;
1084 }
1085
1086 if (!task_from) {
1087 task_from = malloc(40);
1088 sprintf(task_from, "[%i]", we->waker);
1089 }
1090 if (!task_to) {
1091 task_to = malloc(40);
1092 sprintf(task_to, "[%i]", we->wakee);
1093 }
1094
1095 if (we->waker == -1)
1096 svg_interrupt(we->time, to, we->backtrace);
1097 else if (from && to && abs(from - to) == 1)
1098 svg_wakeline(we->time, from, to, we->backtrace);
1099 else
1100 svg_partial_wakeline(we->time, from, task_from, to,
1101 task_to, we->backtrace);
1102 we = we->next;
1103
1104 free(task_from);
1105 free(task_to);
1106 }
1107}
1108
1109static void draw_cpu_usage(struct timechart *tchart)
1110{
1111 struct per_pid *p;
1112 struct per_pidcomm *c;
1113 struct cpu_sample *sample;
1114 p = tchart->all_data;
1115 while (p) {
1116 c = p->all;
1117 while (c) {
1118 sample = c->samples;
1119 while (sample) {
1120 if (sample->type == TYPE_RUNNING) {
1121 svg_process(sample->cpu,
1122 sample->start_time,
1123 sample->end_time,
1124 p->pid,
1125 c->comm,
1126 sample->backtrace);
1127 }
1128
1129 sample = sample->next;
1130 }
1131 c = c->next;
1132 }
1133 p = p->next;
1134 }
1135}
1136
1137static void draw_io_bars(struct timechart *tchart)
1138{
1139 const char *suf;
1140 double bytes;
1141 char comm[256];
1142 struct per_pid *p;
1143 struct per_pidcomm *c;
1144 struct io_sample *sample;
1145 int Y = 1;
1146
1147 p = tchart->all_data;
1148 while (p) {
1149 c = p->all;
1150 while (c) {
1151 if (!c->display) {
1152 c->Y = 0;
1153 c = c->next;
1154 continue;
1155 }
1156
1157 svg_box(Y, c->start_time, c->end_time, "process3");
1158 sample = c->io_samples;
1159 for (sample = c->io_samples; sample; sample = sample->next) {
1160 double h = (double)sample->bytes / c->max_bytes;
1161
1162 if (tchart->skip_eagain &&
1163 sample->err == -EAGAIN)
1164 continue;
1165
1166 if (sample->err)
1167 h = 1;
1168
1169 if (sample->type == IOTYPE_SYNC)
1170 svg_fbox(Y,
1171 sample->start_time,
1172 sample->end_time,
1173 1,
1174 sample->err ? "error" : "sync",
1175 sample->fd,
1176 sample->err,
1177 sample->merges);
1178 else if (sample->type == IOTYPE_POLL)
1179 svg_fbox(Y,
1180 sample->start_time,
1181 sample->end_time,
1182 1,
1183 sample->err ? "error" : "poll",
1184 sample->fd,
1185 sample->err,
1186 sample->merges);
1187 else if (sample->type == IOTYPE_READ)
1188 svg_ubox(Y,
1189 sample->start_time,
1190 sample->end_time,
1191 h,
1192 sample->err ? "error" : "disk",
1193 sample->fd,
1194 sample->err,
1195 sample->merges);
1196 else if (sample->type == IOTYPE_WRITE)
1197 svg_lbox(Y,
1198 sample->start_time,
1199 sample->end_time,
1200 h,
1201 sample->err ? "error" : "disk",
1202 sample->fd,
1203 sample->err,
1204 sample->merges);
1205 else if (sample->type == IOTYPE_RX)
1206 svg_ubox(Y,
1207 sample->start_time,
1208 sample->end_time,
1209 h,
1210 sample->err ? "error" : "net",
1211 sample->fd,
1212 sample->err,
1213 sample->merges);
1214 else if (sample->type == IOTYPE_TX)
1215 svg_lbox(Y,
1216 sample->start_time,
1217 sample->end_time,
1218 h,
1219 sample->err ? "error" : "net",
1220 sample->fd,
1221 sample->err,
1222 sample->merges);
1223 }
1224
1225 suf = "";
1226 bytes = c->total_bytes;
1227 if (bytes > 1024) {
1228 bytes = bytes / 1024;
1229 suf = "K";
1230 }
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "M";
1234 }
1235 if (bytes > 1024) {
1236 bytes = bytes / 1024;
1237 suf = "G";
1238 }
1239
1240
1241 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242 svg_text(Y, c->start_time, comm);
1243
1244 c->Y = Y;
1245 Y++;
1246 c = c->next;
1247 }
1248 p = p->next;
1249 }
1250}
1251
1252static void draw_process_bars(struct timechart *tchart)
1253{
1254 struct per_pid *p;
1255 struct per_pidcomm *c;
1256 struct cpu_sample *sample;
1257 int Y = 0;
1258
1259 Y = 2 * tchart->numcpus + 2;
1260
1261 p = tchart->all_data;
1262 while (p) {
1263 c = p->all;
1264 while (c) {
1265 if (!c->display) {
1266 c->Y = 0;
1267 c = c->next;
1268 continue;
1269 }
1270
1271 svg_box(Y, c->start_time, c->end_time, "process");
1272 sample = c->samples;
1273 while (sample) {
1274 if (sample->type == TYPE_RUNNING)
1275 svg_running(Y, sample->cpu,
1276 sample->start_time,
1277 sample->end_time,
1278 sample->backtrace);
1279 if (sample->type == TYPE_BLOCKED)
1280 svg_blocked(Y, sample->cpu,
1281 sample->start_time,
1282 sample->end_time,
1283 sample->backtrace);
1284 if (sample->type == TYPE_WAITING)
1285 svg_waiting(Y, sample->cpu,
1286 sample->start_time,
1287 sample->end_time,
1288 sample->backtrace);
1289 sample = sample->next;
1290 }
1291
1292 if (c->comm) {
1293 char comm[256];
1294 if (c->total_time > 5000000000) /* 5 seconds */
1295 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296 else
1297 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299 svg_text(Y, c->start_time, comm);
1300 }
1301 c->Y = Y;
1302 Y++;
1303 c = c->next;
1304 }
1305 p = p->next;
1306 }
1307}
1308
1309static void add_process_filter(const char *string)
1310{
1311 int pid = strtoull(string, NULL, 10);
1312 struct process_filter *filt = malloc(sizeof(*filt));
1313
1314 if (!filt)
1315 return;
1316
1317 filt->name = strdup(string);
1318 filt->pid = pid;
1319 filt->next = process_filter;
1320
1321 process_filter = filt;
1322}
1323
1324static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325{
1326 struct process_filter *filt;
1327 if (!process_filter)
1328 return 1;
1329
1330 filt = process_filter;
1331 while (filt) {
1332 if (filt->pid && p->pid == filt->pid)
1333 return 1;
1334 if (strcmp(filt->name, c->comm) == 0)
1335 return 1;
1336 filt = filt->next;
1337 }
1338 return 0;
1339}
1340
1341static int determine_display_tasks_filtered(struct timechart *tchart)
1342{
1343 struct per_pid *p;
1344 struct per_pidcomm *c;
1345 int count = 0;
1346
1347 p = tchart->all_data;
1348 while (p) {
1349 p->display = 0;
1350 if (p->start_time == 1)
1351 p->start_time = tchart->first_time;
1352
1353 /* no exit marker, task kept running to the end */
1354 if (p->end_time == 0)
1355 p->end_time = tchart->last_time;
1356
1357 c = p->all;
1358
1359 while (c) {
1360 c->display = 0;
1361
1362 if (c->start_time == 1)
1363 c->start_time = tchart->first_time;
1364
1365 if (passes_filter(p, c)) {
1366 c->display = 1;
1367 p->display = 1;
1368 count++;
1369 }
1370
1371 if (c->end_time == 0)
1372 c->end_time = tchart->last_time;
1373
1374 c = c->next;
1375 }
1376 p = p->next;
1377 }
1378 return count;
1379}
1380
1381static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382{
1383 struct per_pid *p;
1384 struct per_pidcomm *c;
1385 int count = 0;
1386
1387 p = tchart->all_data;
1388 while (p) {
1389 p->display = 0;
1390 if (p->start_time == 1)
1391 p->start_time = tchart->first_time;
1392
1393 /* no exit marker, task kept running to the end */
1394 if (p->end_time == 0)
1395 p->end_time = tchart->last_time;
1396 if (p->total_time >= threshold)
1397 p->display = 1;
1398
1399 c = p->all;
1400
1401 while (c) {
1402 c->display = 0;
1403
1404 if (c->start_time == 1)
1405 c->start_time = tchart->first_time;
1406
1407 if (c->total_time >= threshold) {
1408 c->display = 1;
1409 count++;
1410 }
1411
1412 if (c->end_time == 0)
1413 c->end_time = tchart->last_time;
1414
1415 c = c->next;
1416 }
1417 p = p->next;
1418 }
1419 return count;
1420}
1421
1422static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423{
1424 struct per_pid *p;
1425 struct per_pidcomm *c;
1426 int count = 0;
1427
1428 p = timechart->all_data;
1429 while (p) {
1430 /* no exit marker, task kept running to the end */
1431 if (p->end_time == 0)
1432 p->end_time = timechart->last_time;
1433
1434 c = p->all;
1435
1436 while (c) {
1437 c->display = 0;
1438
1439 if (c->total_bytes >= threshold) {
1440 c->display = 1;
1441 count++;
1442 }
1443
1444 if (c->end_time == 0)
1445 c->end_time = timechart->last_time;
1446
1447 c = c->next;
1448 }
1449 p = p->next;
1450 }
1451 return count;
1452}
1453
1454#define BYTES_THRESH (1 * 1024 * 1024)
1455#define TIME_THRESH 10000000
1456
1457static void write_svg_file(struct timechart *tchart, const char *filename)
1458{
1459 u64 i;
1460 int count;
1461 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463 if (tchart->power_only)
1464 tchart->proc_num = 0;
1465
1466 /* We'd like to show at least proc_num tasks;
1467 * be less picky if we have fewer */
1468 do {
1469 if (process_filter)
1470 count = determine_display_tasks_filtered(tchart);
1471 else if (tchart->io_events)
1472 count = determine_display_io_tasks(tchart, thresh);
1473 else
1474 count = determine_display_tasks(tchart, thresh);
1475 thresh /= 10;
1476 } while (!process_filter && thresh && count < tchart->proc_num);
1477
1478 if (!tchart->proc_num)
1479 count = 0;
1480
1481 if (tchart->io_events) {
1482 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484 svg_time_grid(0.5);
1485 svg_io_legenda();
1486
1487 draw_io_bars(tchart);
1488 } else {
1489 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491 svg_time_grid(0);
1492
1493 svg_legenda();
1494
1495 for (i = 0; i < tchart->numcpus; i++)
1496 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498 draw_cpu_usage(tchart);
1499 if (tchart->proc_num)
1500 draw_process_bars(tchart);
1501 if (!tchart->tasks_only)
1502 draw_c_p_states(tchart);
1503 if (tchart->proc_num)
1504 draw_wakeups(tchart);
1505 }
1506
1507 svg_close();
1508}
1509
1510static int process_header(struct perf_file_section *section __maybe_unused,
1511 struct perf_header *ph,
1512 int feat,
1513 int fd __maybe_unused,
1514 void *data)
1515{
1516 struct timechart *tchart = data;
1517
1518 switch (feat) {
1519 case HEADER_NRCPUS:
1520 tchart->numcpus = ph->env.nr_cpus_avail;
1521 break;
1522
1523 case HEADER_CPU_TOPOLOGY:
1524 if (!tchart->topology)
1525 break;
1526
1527 if (svg_build_topology_map(&ph->env))
1528 fprintf(stderr, "problem building topology\n");
1529 break;
1530
1531 default:
1532 break;
1533 }
1534
1535 return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540 const struct evsel_str_handler power_tracepoints[] = {
1541 { "power:cpu_idle", process_sample_cpu_idle },
1542 { "power:cpu_frequency", process_sample_cpu_frequency },
1543 { "sched:sched_wakeup", process_sample_sched_wakeup },
1544 { "sched:sched_switch", process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546 { "power:power_start", process_sample_power_start },
1547 { "power:power_end", process_sample_power_end },
1548 { "power:power_frequency", process_sample_power_frequency },
1549#endif
1550
1551 { "syscalls:sys_enter_read", process_enter_read },
1552 { "syscalls:sys_enter_pread64", process_enter_read },
1553 { "syscalls:sys_enter_readv", process_enter_read },
1554 { "syscalls:sys_enter_preadv", process_enter_read },
1555 { "syscalls:sys_enter_write", process_enter_write },
1556 { "syscalls:sys_enter_pwrite64", process_enter_write },
1557 { "syscalls:sys_enter_writev", process_enter_write },
1558 { "syscalls:sys_enter_pwritev", process_enter_write },
1559 { "syscalls:sys_enter_sync", process_enter_sync },
1560 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561 { "syscalls:sys_enter_fsync", process_enter_sync },
1562 { "syscalls:sys_enter_msync", process_enter_sync },
1563 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1564 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1565 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1566 { "syscalls:sys_enter_sendto", process_enter_tx },
1567 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1568 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1569 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1570 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1571 { "syscalls:sys_enter_poll", process_enter_poll },
1572 { "syscalls:sys_enter_ppoll", process_enter_poll },
1573 { "syscalls:sys_enter_pselect6", process_enter_poll },
1574 { "syscalls:sys_enter_select", process_enter_poll },
1575
1576 { "syscalls:sys_exit_read", process_exit_read },
1577 { "syscalls:sys_exit_pread64", process_exit_read },
1578 { "syscalls:sys_exit_readv", process_exit_read },
1579 { "syscalls:sys_exit_preadv", process_exit_read },
1580 { "syscalls:sys_exit_write", process_exit_write },
1581 { "syscalls:sys_exit_pwrite64", process_exit_write },
1582 { "syscalls:sys_exit_writev", process_exit_write },
1583 { "syscalls:sys_exit_pwritev", process_exit_write },
1584 { "syscalls:sys_exit_sync", process_exit_sync },
1585 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1586 { "syscalls:sys_exit_fsync", process_exit_sync },
1587 { "syscalls:sys_exit_msync", process_exit_sync },
1588 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1589 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1590 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1591 { "syscalls:sys_exit_sendto", process_exit_tx },
1592 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1593 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1594 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1595 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1596 { "syscalls:sys_exit_poll", process_exit_poll },
1597 { "syscalls:sys_exit_ppoll", process_exit_poll },
1598 { "syscalls:sys_exit_pselect6", process_exit_poll },
1599 { "syscalls:sys_exit_select", process_exit_poll },
1600 };
1601 struct perf_data data = {
1602 .path = input_name,
1603 .mode = PERF_DATA_MODE_READ,
1604 .force = tchart->force,
1605 };
1606
1607 struct perf_session *session = perf_session__new(&data, &tchart->tool);
1608 int ret = -EINVAL;
1609
1610 if (IS_ERR(session))
1611 return PTR_ERR(session);
1612
1613 symbol__init(&session->header.env);
1614
1615 (void)perf_header__process_sections(&session->header,
1616 perf_data__fd(session->data),
1617 tchart,
1618 process_header);
1619
1620 if (!perf_session__has_traces(session, "timechart record"))
1621 goto out_delete;
1622
1623 if (perf_session__set_tracepoints_handlers(session,
1624 power_tracepoints)) {
1625 pr_err("Initializing session tracepoint handlers failed\n");
1626 goto out_delete;
1627 }
1628
1629 ret = perf_session__process_events(session);
1630 if (ret)
1631 goto out_delete;
1632
1633 end_sample_processing(tchart);
1634
1635 sort_pids(tchart);
1636
1637 write_svg_file(tchart, output_name);
1638
1639 pr_info("Written %2.1f seconds of trace to %s.\n",
1640 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1641out_delete:
1642 perf_session__delete(session);
1643 return ret;
1644}
1645
1646static int timechart__io_record(int argc, const char **argv)
1647{
1648 unsigned int rec_argc, i;
1649 const char **rec_argv;
1650 const char **p;
1651 char *filter = NULL;
1652
1653 const char * const common_args[] = {
1654 "record", "-a", "-R", "-c", "1",
1655 };
1656 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658 const char * const disk_events[] = {
1659 "syscalls:sys_enter_read",
1660 "syscalls:sys_enter_pread64",
1661 "syscalls:sys_enter_readv",
1662 "syscalls:sys_enter_preadv",
1663 "syscalls:sys_enter_write",
1664 "syscalls:sys_enter_pwrite64",
1665 "syscalls:sys_enter_writev",
1666 "syscalls:sys_enter_pwritev",
1667 "syscalls:sys_enter_sync",
1668 "syscalls:sys_enter_sync_file_range",
1669 "syscalls:sys_enter_fsync",
1670 "syscalls:sys_enter_msync",
1671
1672 "syscalls:sys_exit_read",
1673 "syscalls:sys_exit_pread64",
1674 "syscalls:sys_exit_readv",
1675 "syscalls:sys_exit_preadv",
1676 "syscalls:sys_exit_write",
1677 "syscalls:sys_exit_pwrite64",
1678 "syscalls:sys_exit_writev",
1679 "syscalls:sys_exit_pwritev",
1680 "syscalls:sys_exit_sync",
1681 "syscalls:sys_exit_sync_file_range",
1682 "syscalls:sys_exit_fsync",
1683 "syscalls:sys_exit_msync",
1684 };
1685 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687 const char * const net_events[] = {
1688 "syscalls:sys_enter_recvfrom",
1689 "syscalls:sys_enter_recvmmsg",
1690 "syscalls:sys_enter_recvmsg",
1691 "syscalls:sys_enter_sendto",
1692 "syscalls:sys_enter_sendmsg",
1693 "syscalls:sys_enter_sendmmsg",
1694
1695 "syscalls:sys_exit_recvfrom",
1696 "syscalls:sys_exit_recvmmsg",
1697 "syscalls:sys_exit_recvmsg",
1698 "syscalls:sys_exit_sendto",
1699 "syscalls:sys_exit_sendmsg",
1700 "syscalls:sys_exit_sendmmsg",
1701 };
1702 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704 const char * const poll_events[] = {
1705 "syscalls:sys_enter_epoll_pwait",
1706 "syscalls:sys_enter_epoll_wait",
1707 "syscalls:sys_enter_poll",
1708 "syscalls:sys_enter_ppoll",
1709 "syscalls:sys_enter_pselect6",
1710 "syscalls:sys_enter_select",
1711
1712 "syscalls:sys_exit_epoll_pwait",
1713 "syscalls:sys_exit_epoll_wait",
1714 "syscalls:sys_exit_poll",
1715 "syscalls:sys_exit_ppoll",
1716 "syscalls:sys_exit_pselect6",
1717 "syscalls:sys_exit_select",
1718 };
1719 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721 rec_argc = common_args_nr +
1722 disk_events_nr * 4 +
1723 net_events_nr * 4 +
1724 poll_events_nr * 4 +
1725 argc;
1726 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728 if (rec_argv == NULL)
1729 return -ENOMEM;
1730
1731 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1732 free(rec_argv);
1733 return -ENOMEM;
1734 }
1735
1736 p = rec_argv;
1737 for (i = 0; i < common_args_nr; i++)
1738 *p++ = strdup(common_args[i]);
1739
1740 for (i = 0; i < disk_events_nr; i++) {
1741 if (!is_valid_tracepoint(disk_events[i])) {
1742 rec_argc -= 4;
1743 continue;
1744 }
1745
1746 *p++ = "-e";
1747 *p++ = strdup(disk_events[i]);
1748 *p++ = "--filter";
1749 *p++ = filter;
1750 }
1751 for (i = 0; i < net_events_nr; i++) {
1752 if (!is_valid_tracepoint(net_events[i])) {
1753 rec_argc -= 4;
1754 continue;
1755 }
1756
1757 *p++ = "-e";
1758 *p++ = strdup(net_events[i]);
1759 *p++ = "--filter";
1760 *p++ = filter;
1761 }
1762 for (i = 0; i < poll_events_nr; i++) {
1763 if (!is_valid_tracepoint(poll_events[i])) {
1764 rec_argc -= 4;
1765 continue;
1766 }
1767
1768 *p++ = "-e";
1769 *p++ = strdup(poll_events[i]);
1770 *p++ = "--filter";
1771 *p++ = filter;
1772 }
1773
1774 for (i = 0; i < (unsigned int)argc; i++)
1775 *p++ = argv[i];
1776
1777 return cmd_record(rec_argc, rec_argv);
1778}
1779
1780
1781static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1782{
1783 unsigned int rec_argc, i, j;
1784 const char **rec_argv;
1785 const char **p;
1786 unsigned int record_elems;
1787
1788 const char * const common_args[] = {
1789 "record", "-a", "-R", "-c", "1",
1790 };
1791 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1792
1793 const char * const backtrace_args[] = {
1794 "-g",
1795 };
1796 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1797
1798 const char * const power_args[] = {
1799 "-e", "power:cpu_frequency",
1800 "-e", "power:cpu_idle",
1801 };
1802 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1803
1804 const char * const old_power_args[] = {
1805#ifdef SUPPORT_OLD_POWER_EVENTS
1806 "-e", "power:power_start",
1807 "-e", "power:power_end",
1808 "-e", "power:power_frequency",
1809#endif
1810 };
1811 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1812
1813 const char * const tasks_args[] = {
1814 "-e", "sched:sched_wakeup",
1815 "-e", "sched:sched_switch",
1816 };
1817 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1818
1819#ifdef SUPPORT_OLD_POWER_EVENTS
1820 if (!is_valid_tracepoint("power:cpu_idle") &&
1821 is_valid_tracepoint("power:power_start")) {
1822 use_old_power_events = 1;
1823 power_args_nr = 0;
1824 } else {
1825 old_power_args_nr = 0;
1826 }
1827#endif
1828
1829 if (tchart->power_only)
1830 tasks_args_nr = 0;
1831
1832 if (tchart->tasks_only) {
1833 power_args_nr = 0;
1834 old_power_args_nr = 0;
1835 }
1836
1837 if (!tchart->with_backtrace)
1838 backtrace_args_no = 0;
1839
1840 record_elems = common_args_nr + tasks_args_nr +
1841 power_args_nr + old_power_args_nr + backtrace_args_no;
1842
1843 rec_argc = record_elems + argc;
1844 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1845
1846 if (rec_argv == NULL)
1847 return -ENOMEM;
1848
1849 p = rec_argv;
1850 for (i = 0; i < common_args_nr; i++)
1851 *p++ = strdup(common_args[i]);
1852
1853 for (i = 0; i < backtrace_args_no; i++)
1854 *p++ = strdup(backtrace_args[i]);
1855
1856 for (i = 0; i < tasks_args_nr; i++)
1857 *p++ = strdup(tasks_args[i]);
1858
1859 for (i = 0; i < power_args_nr; i++)
1860 *p++ = strdup(power_args[i]);
1861
1862 for (i = 0; i < old_power_args_nr; i++)
1863 *p++ = strdup(old_power_args[i]);
1864
1865 for (j = 0; j < (unsigned int)argc; j++)
1866 *p++ = argv[j];
1867
1868 return cmd_record(rec_argc, rec_argv);
1869}
1870
1871static int
1872parse_process(const struct option *opt __maybe_unused, const char *arg,
1873 int __maybe_unused unset)
1874{
1875 if (arg)
1876 add_process_filter(arg);
1877 return 0;
1878}
1879
1880static int
1881parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1882 int __maybe_unused unset)
1883{
1884 unsigned long duration = strtoul(arg, NULL, 0);
1885
1886 if (svg_highlight || svg_highlight_name)
1887 return -1;
1888
1889 if (duration)
1890 svg_highlight = duration;
1891 else
1892 svg_highlight_name = strdup(arg);
1893
1894 return 0;
1895}
1896
1897static int
1898parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1899{
1900 char unit = 'n';
1901 u64 *value = opt->value;
1902
1903 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1904 switch (unit) {
1905 case 'm':
1906 *value *= NSEC_PER_MSEC;
1907 break;
1908 case 'u':
1909 *value *= NSEC_PER_USEC;
1910 break;
1911 case 'n':
1912 break;
1913 default:
1914 return -1;
1915 }
1916 }
1917
1918 return 0;
1919}
1920
1921int cmd_timechart(int argc, const char **argv)
1922{
1923 struct timechart tchart = {
1924 .tool = {
1925 .comm = process_comm_event,
1926 .fork = process_fork_event,
1927 .exit = process_exit_event,
1928 .sample = process_sample_event,
1929 .ordered_events = true,
1930 },
1931 .proc_num = 15,
1932 .min_time = NSEC_PER_MSEC,
1933 .merge_dist = 1000,
1934 };
1935 const char *output_name = "output.svg";
1936 const struct option timechart_common_options[] = {
1937 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1938 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1939 OPT_END()
1940 };
1941 const struct option timechart_options[] = {
1942 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1943 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1944 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1945 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1946 "highlight tasks. Pass duration in ns or process name.",
1947 parse_highlight),
1948 OPT_CALLBACK('p', "process", NULL, "process",
1949 "process selector. Pass a pid or process name.",
1950 parse_process),
1951 OPT_CALLBACK(0, "symfs", NULL, "directory",
1952 "Look for files with symbols relative to this directory",
1953 symbol__config_symfs),
1954 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1955 "min. number of tasks to print"),
1956 OPT_BOOLEAN('t', "topology", &tchart.topology,
1957 "sort CPUs according to topology"),
1958 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1959 "skip EAGAIN errors"),
1960 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1961 "all IO faster than min-time will visually appear longer",
1962 parse_time),
1963 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1964 "merge events that are merge-dist us apart",
1965 parse_time),
1966 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1967 OPT_PARENT(timechart_common_options),
1968 };
1969 const char * const timechart_subcommands[] = { "record", NULL };
1970 const char *timechart_usage[] = {
1971 "perf timechart [<options>] {record}",
1972 NULL
1973 };
1974 const struct option timechart_record_options[] = {
1975 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976 "record only IO data"),
1977 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978 OPT_PARENT(timechart_common_options),
1979 };
1980 const char * const timechart_record_usage[] = {
1981 "perf timechart record [<options>]",
1982 NULL
1983 };
1984 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987 if (tchart.power_only && tchart.tasks_only) {
1988 pr_err("-P and -T options cannot be used at the same time.\n");
1989 return -1;
1990 }
1991
1992 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1993 argc = parse_options(argc, argv, timechart_record_options,
1994 timechart_record_usage,
1995 PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997 if (tchart.power_only && tchart.tasks_only) {
1998 pr_err("-P and -T options cannot be used at the same time.\n");
1999 return -1;
2000 }
2001
2002 if (tchart.io_only)
2003 return timechart__io_record(argc, argv);
2004 else
2005 return timechart__record(&tchart, argc, argv);
2006 } else if (argc)
2007 usage_with_options(timechart_usage, timechart_options);
2008
2009 setup_pager();
2010
2011 return __cmd_timechart(&tchart, output_name);
2012}