Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
 
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
 
  26#include <linux/rbtree.h>
 
 
  27#include "util/symbol.h"
 
  28#include "util/callchain.h"
  29#include "util/strlist.h"
  30
  31#include "perf.h"
  32#include "util/header.h"
  33#include "util/parse-options.h"
 
  34#include "util/parse-events.h"
  35#include "util/event.h"
  36#include "util/session.h"
  37#include "util/svghelper.h"
  38#include "util/tool.h"
  39#include "util/data.h"
 
 
 
 
 
 
 
 
 
  40
  41#define SUPPORT_OLD_POWER_EVENTS 1
  42#define PWR_EVENT_EXIT -1
  43
  44struct per_pid;
  45struct power_event;
  46struct wake_event;
  47
  48struct timechart {
  49	struct perf_tool	tool;
  50	struct per_pid		*all_data;
  51	struct power_event	*power_events;
  52	struct wake_event	*wake_events;
  53	int			proc_num;
  54	unsigned int		numcpus;
  55	u64			min_freq,	/* Lowest CPU frequency seen */
  56				max_freq,	/* Highest CPU frequency seen */
  57				turbo_frequency,
  58				first_time, last_time;
  59	bool			power_only,
  60				tasks_only,
  61				with_backtrace,
  62				topology;
 
 
 
 
 
 
 
  63};
  64
  65struct per_pidcomm;
  66struct cpu_sample;
 
  67
  68/*
  69 * Datastructure layout:
  70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  71 * Each "pid" entry, has a list of "comm"s.
  72 *	this is because we want to track different programs different, while
  73 *	exec will reuse the original pid (by design).
  74 * Each comm has a list of samples that will be used to draw
  75 * final graph.
  76 */
  77
  78struct per_pid {
  79	struct per_pid *next;
  80
  81	int		pid;
  82	int		ppid;
  83
  84	u64		start_time;
  85	u64		end_time;
  86	u64		total_time;
 
  87	int		display;
  88
  89	struct per_pidcomm *all;
  90	struct per_pidcomm *current;
  91};
  92
  93
  94struct per_pidcomm {
  95	struct per_pidcomm *next;
  96
  97	u64		start_time;
  98	u64		end_time;
  99	u64		total_time;
 
 
 100
 101	int		Y;
 102	int		display;
 103
 104	long		state;
 105	u64		state_since;
 106
 107	char		*comm;
 108
 109	struct cpu_sample *samples;
 
 110};
 111
 112struct sample_wrapper {
 113	struct sample_wrapper *next;
 114
 115	u64		timestamp;
 116	unsigned char	data[0];
 117};
 118
 119#define TYPE_NONE	0
 120#define TYPE_RUNNING	1
 121#define TYPE_WAITING	2
 122#define TYPE_BLOCKED	3
 123
 124struct cpu_sample {
 125	struct cpu_sample *next;
 126
 127	u64 start_time;
 128	u64 end_time;
 129	int type;
 130	int cpu;
 131	const char *backtrace;
 132};
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134#define CSTATE 1
 135#define PSTATE 2
 136
 137struct power_event {
 138	struct power_event *next;
 139	int type;
 140	int state;
 141	u64 start_time;
 142	u64 end_time;
 143	int cpu;
 144};
 145
 146struct wake_event {
 147	struct wake_event *next;
 148	int waker;
 149	int wakee;
 150	u64 time;
 151	const char *backtrace;
 152};
 153
 154struct process_filter {
 155	char			*name;
 156	int			pid;
 157	struct process_filter	*next;
 158};
 159
 160static struct process_filter *process_filter;
 161
 162
 163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 164{
 165	struct per_pid *cursor = tchart->all_data;
 166
 167	while (cursor) {
 168		if (cursor->pid == pid)
 169			return cursor;
 170		cursor = cursor->next;
 171	}
 172	cursor = zalloc(sizeof(*cursor));
 173	assert(cursor != NULL);
 174	cursor->pid = pid;
 175	cursor->next = tchart->all_data;
 176	tchart->all_data = cursor;
 177	return cursor;
 178}
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(tchart, pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = zalloc(sizeof(*c));
 199	assert(c != NULL);
 200	c->comm = strdup(comm);
 201	p->current = c;
 202	c->next = p->all;
 203	p->all = c;
 204}
 205
 206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 207{
 208	struct per_pid *p, *pp;
 209	p = find_create_pid(tchart, pid);
 210	pp = find_create_pid(tchart, ppid);
 211	p->ppid = ppid;
 212	if (pp->current && pp->current->comm && !p->current)
 213		pid_set_comm(tchart, pid, pp->current->comm);
 214
 215	p->start_time = timestamp;
 216	if (p->current) {
 217		p->current->start_time = timestamp;
 218		p->current->state_since = timestamp;
 219	}
 220}
 221
 222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 223{
 224	struct per_pid *p;
 225	p = find_create_pid(tchart, pid);
 226	p->end_time = timestamp;
 227	if (p->current)
 228		p->current->end_time = timestamp;
 229}
 230
 231static void pid_put_sample(struct timechart *tchart, int pid, int type,
 232			   unsigned int cpu, u64 start, u64 end,
 233			   const char *backtrace)
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(tchart, pid);
 240	c = p->current;
 241	if (!c) {
 242		c = zalloc(sizeof(*c));
 243		assert(c != NULL);
 244		p->current = c;
 245		c->next = p->all;
 246		p->all = c;
 247	}
 248
 249	sample = zalloc(sizeof(*sample));
 250	assert(sample != NULL);
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 256	sample->backtrace = backtrace;
 257	c->samples = sample;
 258
 259	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 260		c->total_time += (end-start);
 261		p->total_time += (end-start);
 262	}
 263
 264	if (c->start_time == 0 || c->start_time > start)
 265		c->start_time = start;
 266	if (p->start_time == 0 || p->start_time > start)
 267		p->start_time = start;
 268}
 269
 270#define MAX_CPUS 4096
 271
 272static u64 cpus_cstate_start_times[MAX_CPUS];
 273static int cpus_cstate_state[MAX_CPUS];
 274static u64 cpus_pstate_start_times[MAX_CPUS];
 275static u64 cpus_pstate_state[MAX_CPUS];
 276
 277static int process_comm_event(struct perf_tool *tool,
 278			      union perf_event *event,
 279			      struct perf_sample *sample __maybe_unused,
 280			      struct machine *machine __maybe_unused)
 281{
 282	struct timechart *tchart = container_of(tool, struct timechart, tool);
 283	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __maybe_unused,
 290			      struct machine *machine __maybe_unused)
 291{
 292	struct timechart *tchart = container_of(tool, struct timechart, tool);
 293	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 294	return 0;
 295}
 296
 297static int process_exit_event(struct perf_tool *tool,
 298			      union perf_event *event,
 299			      struct perf_sample *sample __maybe_unused,
 300			      struct machine *machine __maybe_unused)
 301{
 302	struct timechart *tchart = container_of(tool, struct timechart, tool);
 303	pid_exit(tchart, event->fork.pid, event->fork.time);
 304	return 0;
 305}
 306
 307#ifdef SUPPORT_OLD_POWER_EVENTS
 308static int use_old_power_events;
 309#endif
 310
 311static void c_state_start(int cpu, u64 timestamp, int state)
 312{
 313	cpus_cstate_start_times[cpu] = timestamp;
 314	cpus_cstate_state[cpu] = state;
 315}
 316
 317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 318{
 319	struct power_event *pwr = zalloc(sizeof(*pwr));
 320
 321	if (!pwr)
 322		return;
 323
 324	pwr->state = cpus_cstate_state[cpu];
 325	pwr->start_time = cpus_cstate_start_times[cpu];
 326	pwr->end_time = timestamp;
 327	pwr->cpu = cpu;
 328	pwr->type = CSTATE;
 329	pwr->next = tchart->power_events;
 330
 331	tchart->power_events = pwr;
 332}
 333
 334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 
 335{
 336	struct power_event *pwr;
 337
 338	if (new_freq > 8000000) /* detect invalid data */
 339		return;
 340
 341	pwr = zalloc(sizeof(*pwr));
 342	if (!pwr)
 343		return;
 344
 345	pwr->state = cpus_pstate_state[cpu];
 346	pwr->start_time = cpus_pstate_start_times[cpu];
 347	pwr->end_time = timestamp;
 348	pwr->cpu = cpu;
 349	pwr->type = PSTATE;
 350	pwr->next = tchart->power_events;
 351
 352	if (!pwr->start_time)
 353		pwr->start_time = tchart->first_time;
 354
 355	tchart->power_events = pwr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357	cpus_pstate_state[cpu] = new_freq;
 358	cpus_pstate_start_times[cpu] = timestamp;
 359
 360	if ((u64)new_freq > tchart->max_freq)
 361		tchart->max_freq = new_freq;
 362
 363	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 364		tchart->min_freq = new_freq;
 365
 366	if (new_freq == tchart->max_freq - 1000)
 367		tchart->turbo_frequency = tchart->max_freq;
 368}
 369
 370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 371			 int waker, int wakee, u8 flags, const char *backtrace)
 372{
 373	struct per_pid *p;
 374	struct wake_event *we = zalloc(sizeof(*we));
 375
 376	if (!we)
 377		return;
 378
 379	we->time = timestamp;
 380	we->waker = waker;
 381	we->backtrace = backtrace;
 382
 383	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 384		we->waker = -1;
 385
 386	we->wakee = wakee;
 387	we->next = tchart->wake_events;
 388	tchart->wake_events = we;
 389	p = find_create_pid(tchart, we->wakee);
 390
 391	if (p && p->current && p->current->state == TYPE_NONE) {
 392		p->current->state_since = timestamp;
 393		p->current->state = TYPE_WAITING;
 394	}
 395	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 396		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 397			       p->current->state_since, timestamp, NULL);
 398		p->current->state_since = timestamp;
 399		p->current->state = TYPE_WAITING;
 400	}
 401}
 402
 403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 404			 int prev_pid, int next_pid, u64 prev_state,
 405			 const char *backtrace)
 406{
 407	struct per_pid *p = NULL, *prev_p;
 408
 409	prev_p = find_create_pid(tchart, prev_pid);
 410
 411	p = find_create_pid(tchart, next_pid);
 412
 413	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 414		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 415			       prev_p->current->state_since, timestamp,
 416			       backtrace);
 417	if (p && p->current) {
 418		if (p->current->state != TYPE_NONE)
 419			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 420				       p->current->state_since, timestamp,
 421				       backtrace);
 422
 423		p->current->state_since = timestamp;
 424		p->current->state = TYPE_RUNNING;
 425	}
 426
 427	if (prev_p->current) {
 428		prev_p->current->state = TYPE_NONE;
 429		prev_p->current->state_since = timestamp;
 430		if (prev_state & 2)
 431			prev_p->current->state = TYPE_BLOCKED;
 432		if (prev_state == 0)
 433			prev_p->current->state = TYPE_WAITING;
 434	}
 435}
 436
 437static const char *cat_backtrace(union perf_event *event,
 438				 struct perf_sample *sample,
 439				 struct machine *machine)
 440{
 441	struct addr_location al;
 442	unsigned int i;
 443	char *p = NULL;
 444	size_t p_len;
 445	u8 cpumode = PERF_RECORD_MISC_USER;
 446	struct addr_location tal;
 447	struct ip_callchain *chain = sample->callchain;
 448	FILE *f = open_memstream(&p, &p_len);
 449
 450	if (!f) {
 451		perror("open_memstream error");
 452		return NULL;
 453	}
 454
 455	if (!chain)
 456		goto exit;
 457
 458	if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
 459		fprintf(stderr, "problem processing %d event, skipping it.\n",
 460			event->header.type);
 461		goto exit;
 462	}
 463
 464	for (i = 0; i < chain->nr; i++) {
 465		u64 ip;
 466
 467		if (callchain_param.order == ORDER_CALLEE)
 468			ip = chain->ips[i];
 469		else
 470			ip = chain->ips[chain->nr - i - 1];
 471
 472		if (ip >= PERF_CONTEXT_MAX) {
 473			switch (ip) {
 474			case PERF_CONTEXT_HV:
 475				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 476				break;
 477			case PERF_CONTEXT_KERNEL:
 478				cpumode = PERF_RECORD_MISC_KERNEL;
 479				break;
 480			case PERF_CONTEXT_USER:
 481				cpumode = PERF_RECORD_MISC_USER;
 482				break;
 483			default:
 484				pr_debug("invalid callchain context: "
 485					 "%"PRId64"\n", (s64) ip);
 486
 487				/*
 488				 * It seems the callchain is corrupted.
 489				 * Discard all.
 490				 */
 491				zfree(&p);
 492				goto exit;
 493			}
 494			continue;
 495		}
 496
 497		tal.filtered = 0;
 498		thread__find_addr_location(al.thread, machine, cpumode,
 499					   MAP__FUNCTION, ip, &tal);
 500
 501		if (tal.sym)
 502			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 503				tal.sym->name);
 504		else
 505			fprintf(f, "..... %016" PRIx64 "\n", ip);
 506	}
 507
 
 508exit:
 509	fclose(f);
 510
 511	return p;
 512}
 513
 514typedef int (*tracepoint_handler)(struct timechart *tchart,
 515				  struct perf_evsel *evsel,
 516				  struct perf_sample *sample,
 517				  const char *backtrace);
 518
 519static int process_sample_event(struct perf_tool *tool,
 520				union perf_event *event,
 521				struct perf_sample *sample,
 522				struct perf_evsel *evsel,
 523				struct machine *machine)
 524{
 525	struct timechart *tchart = container_of(tool, struct timechart, tool);
 526
 527	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 528		if (!tchart->first_time || tchart->first_time > sample->time)
 529			tchart->first_time = sample->time;
 530		if (tchart->last_time < sample->time)
 531			tchart->last_time = sample->time;
 532	}
 533
 534	if (evsel->handler != NULL) {
 535		tracepoint_handler f = evsel->handler;
 536		return f(tchart, evsel, sample,
 537			 cat_backtrace(event, sample, machine));
 538	}
 539
 540	return 0;
 541}
 542
 543static int
 544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 545			struct perf_evsel *evsel,
 546			struct perf_sample *sample,
 547			const char *backtrace __maybe_unused)
 548{
 549	u32 state = perf_evsel__intval(evsel, sample, "state");
 550	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 551
 552	if (state == (u32)PWR_EVENT_EXIT)
 553		c_state_end(tchart, cpu_id, sample->time);
 554	else
 555		c_state_start(cpu_id, sample->time, state);
 556	return 0;
 557}
 558
 559static int
 560process_sample_cpu_frequency(struct timechart *tchart,
 561			     struct perf_evsel *evsel,
 562			     struct perf_sample *sample,
 563			     const char *backtrace __maybe_unused)
 564{
 565	u32 state = perf_evsel__intval(evsel, sample, "state");
 566	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 567
 568	p_state_change(tchart, cpu_id, sample->time, state);
 569	return 0;
 570}
 571
 572static int
 573process_sample_sched_wakeup(struct timechart *tchart,
 574			    struct perf_evsel *evsel,
 575			    struct perf_sample *sample,
 576			    const char *backtrace)
 577{
 578	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 579	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 580	int wakee = perf_evsel__intval(evsel, sample, "pid");
 581
 582	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 583	return 0;
 584}
 585
 586static int
 587process_sample_sched_switch(struct timechart *tchart,
 588			    struct perf_evsel *evsel,
 589			    struct perf_sample *sample,
 590			    const char *backtrace)
 591{
 592	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 593	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 594	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 595
 596	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 597		     prev_state, backtrace);
 598	return 0;
 599}
 600
 601#ifdef SUPPORT_OLD_POWER_EVENTS
 602static int
 603process_sample_power_start(struct timechart *tchart __maybe_unused,
 604			   struct perf_evsel *evsel,
 605			   struct perf_sample *sample,
 606			   const char *backtrace __maybe_unused)
 607{
 608	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 609	u64 value = perf_evsel__intval(evsel, sample, "value");
 610
 611	c_state_start(cpu_id, sample->time, value);
 612	return 0;
 613}
 614
 615static int
 616process_sample_power_end(struct timechart *tchart,
 617			 struct perf_evsel *evsel __maybe_unused,
 618			 struct perf_sample *sample,
 619			 const char *backtrace __maybe_unused)
 620{
 621	c_state_end(tchart, sample->cpu, sample->time);
 622	return 0;
 623}
 624
 625static int
 626process_sample_power_frequency(struct timechart *tchart,
 627			       struct perf_evsel *evsel,
 628			       struct perf_sample *sample,
 629			       const char *backtrace __maybe_unused)
 630{
 631	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 632	u64 value = perf_evsel__intval(evsel, sample, "value");
 633
 634	p_state_change(tchart, cpu_id, sample->time, value);
 635	return 0;
 636}
 637#endif /* SUPPORT_OLD_POWER_EVENTS */
 638
 639/*
 640 * After the last sample we need to wrap up the current C/P state
 641 * and close out each CPU for these.
 642 */
 643static void end_sample_processing(struct timechart *tchart)
 644{
 645	u64 cpu;
 646	struct power_event *pwr;
 647
 648	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 649		/* C state */
 650#if 0
 651		pwr = zalloc(sizeof(*pwr));
 652		if (!pwr)
 653			return;
 654
 655		pwr->state = cpus_cstate_state[cpu];
 656		pwr->start_time = cpus_cstate_start_times[cpu];
 657		pwr->end_time = tchart->last_time;
 658		pwr->cpu = cpu;
 659		pwr->type = CSTATE;
 660		pwr->next = tchart->power_events;
 661
 662		tchart->power_events = pwr;
 663#endif
 664		/* P state */
 665
 666		pwr = zalloc(sizeof(*pwr));
 667		if (!pwr)
 668			return;
 669
 670		pwr->state = cpus_pstate_state[cpu];
 671		pwr->start_time = cpus_pstate_start_times[cpu];
 672		pwr->end_time = tchart->last_time;
 673		pwr->cpu = cpu;
 674		pwr->type = PSTATE;
 675		pwr->next = tchart->power_events;
 676
 677		if (!pwr->start_time)
 678			pwr->start_time = tchart->first_time;
 679		if (!pwr->state)
 680			pwr->state = tchart->min_freq;
 681		tchart->power_events = pwr;
 682	}
 683}
 684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685/*
 686 * Sort the pid datastructure
 687 */
 688static void sort_pids(struct timechart *tchart)
 689{
 690	struct per_pid *new_list, *p, *cursor, *prev;
 691	/* sort by ppid first, then by pid, lowest to highest */
 692
 693	new_list = NULL;
 694
 695	while (tchart->all_data) {
 696		p = tchart->all_data;
 697		tchart->all_data = p->next;
 698		p->next = NULL;
 699
 700		if (new_list == NULL) {
 701			new_list = p;
 702			p->next = NULL;
 703			continue;
 704		}
 705		prev = NULL;
 706		cursor = new_list;
 707		while (cursor) {
 708			if (cursor->ppid > p->ppid ||
 709				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 710				/* must insert before */
 711				if (prev) {
 712					p->next = prev->next;
 713					prev->next = p;
 714					cursor = NULL;
 715					continue;
 716				} else {
 717					p->next = new_list;
 718					new_list = p;
 719					cursor = NULL;
 720					continue;
 721				}
 722			}
 723
 724			prev = cursor;
 725			cursor = cursor->next;
 726			if (!cursor)
 727				prev->next = p;
 728		}
 729	}
 730	tchart->all_data = new_list;
 731}
 732
 733
 734static void draw_c_p_states(struct timechart *tchart)
 735{
 736	struct power_event *pwr;
 737	pwr = tchart->power_events;
 738
 739	/*
 740	 * two pass drawing so that the P state bars are on top of the C state blocks
 741	 */
 742	while (pwr) {
 743		if (pwr->type == CSTATE)
 744			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 745		pwr = pwr->next;
 746	}
 747
 748	pwr = tchart->power_events;
 749	while (pwr) {
 750		if (pwr->type == PSTATE) {
 751			if (!pwr->state)
 752				pwr->state = tchart->min_freq;
 753			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 754		}
 755		pwr = pwr->next;
 756	}
 757}
 758
 759static void draw_wakeups(struct timechart *tchart)
 760{
 761	struct wake_event *we;
 762	struct per_pid *p;
 763	struct per_pidcomm *c;
 764
 765	we = tchart->wake_events;
 766	while (we) {
 767		int from = 0, to = 0;
 768		char *task_from = NULL, *task_to = NULL;
 769
 770		/* locate the column of the waker and wakee */
 771		p = tchart->all_data;
 772		while (p) {
 773			if (p->pid == we->waker || p->pid == we->wakee) {
 774				c = p->all;
 775				while (c) {
 776					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 777						if (p->pid == we->waker && !from) {
 778							from = c->Y;
 779							task_from = strdup(c->comm);
 780						}
 781						if (p->pid == we->wakee && !to) {
 782							to = c->Y;
 783							task_to = strdup(c->comm);
 784						}
 785					}
 786					c = c->next;
 787				}
 788				c = p->all;
 789				while (c) {
 790					if (p->pid == we->waker && !from) {
 791						from = c->Y;
 792						task_from = strdup(c->comm);
 793					}
 794					if (p->pid == we->wakee && !to) {
 795						to = c->Y;
 796						task_to = strdup(c->comm);
 797					}
 798					c = c->next;
 799				}
 800			}
 801			p = p->next;
 802		}
 803
 804		if (!task_from) {
 805			task_from = malloc(40);
 806			sprintf(task_from, "[%i]", we->waker);
 807		}
 808		if (!task_to) {
 809			task_to = malloc(40);
 810			sprintf(task_to, "[%i]", we->wakee);
 811		}
 812
 813		if (we->waker == -1)
 814			svg_interrupt(we->time, to, we->backtrace);
 815		else if (from && to && abs(from - to) == 1)
 816			svg_wakeline(we->time, from, to, we->backtrace);
 817		else
 818			svg_partial_wakeline(we->time, from, task_from, to,
 819					     task_to, we->backtrace);
 820		we = we->next;
 821
 822		free(task_from);
 823		free(task_to);
 824	}
 825}
 826
 827static void draw_cpu_usage(struct timechart *tchart)
 828{
 829	struct per_pid *p;
 830	struct per_pidcomm *c;
 831	struct cpu_sample *sample;
 832	p = tchart->all_data;
 833	while (p) {
 834		c = p->all;
 835		while (c) {
 836			sample = c->samples;
 837			while (sample) {
 838				if (sample->type == TYPE_RUNNING) {
 839					svg_process(sample->cpu,
 840						    sample->start_time,
 841						    sample->end_time,
 842						    p->pid,
 843						    c->comm,
 844						    sample->backtrace);
 845				}
 846
 847				sample = sample->next;
 848			}
 849			c = c->next;
 850		}
 851		p = p->next;
 852	}
 853}
 854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855static void draw_process_bars(struct timechart *tchart)
 856{
 857	struct per_pid *p;
 858	struct per_pidcomm *c;
 859	struct cpu_sample *sample;
 860	int Y = 0;
 861
 862	Y = 2 * tchart->numcpus + 2;
 863
 864	p = tchart->all_data;
 865	while (p) {
 866		c = p->all;
 867		while (c) {
 868			if (!c->display) {
 869				c->Y = 0;
 870				c = c->next;
 871				continue;
 872			}
 873
 874			svg_box(Y, c->start_time, c->end_time, "process");
 875			sample = c->samples;
 876			while (sample) {
 877				if (sample->type == TYPE_RUNNING)
 878					svg_running(Y, sample->cpu,
 879						    sample->start_time,
 880						    sample->end_time,
 881						    sample->backtrace);
 882				if (sample->type == TYPE_BLOCKED)
 883					svg_blocked(Y, sample->cpu,
 884						    sample->start_time,
 885						    sample->end_time,
 886						    sample->backtrace);
 887				if (sample->type == TYPE_WAITING)
 888					svg_waiting(Y, sample->cpu,
 889						    sample->start_time,
 890						    sample->end_time,
 891						    sample->backtrace);
 892				sample = sample->next;
 893			}
 894
 895			if (c->comm) {
 896				char comm[256];
 897				if (c->total_time > 5000000000) /* 5 seconds */
 898					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 899				else
 900					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 901
 902				svg_text(Y, c->start_time, comm);
 903			}
 904			c->Y = Y;
 905			Y++;
 906			c = c->next;
 907		}
 908		p = p->next;
 909	}
 910}
 911
 912static void add_process_filter(const char *string)
 913{
 914	int pid = strtoull(string, NULL, 10);
 915	struct process_filter *filt = malloc(sizeof(*filt));
 916
 917	if (!filt)
 918		return;
 919
 920	filt->name = strdup(string);
 921	filt->pid  = pid;
 922	filt->next = process_filter;
 923
 924	process_filter = filt;
 925}
 926
 927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 928{
 929	struct process_filter *filt;
 930	if (!process_filter)
 931		return 1;
 932
 933	filt = process_filter;
 934	while (filt) {
 935		if (filt->pid && p->pid == filt->pid)
 936			return 1;
 937		if (strcmp(filt->name, c->comm) == 0)
 938			return 1;
 939		filt = filt->next;
 940	}
 941	return 0;
 942}
 943
 944static int determine_display_tasks_filtered(struct timechart *tchart)
 945{
 946	struct per_pid *p;
 947	struct per_pidcomm *c;
 948	int count = 0;
 949
 950	p = tchart->all_data;
 951	while (p) {
 952		p->display = 0;
 953		if (p->start_time == 1)
 954			p->start_time = tchart->first_time;
 955
 956		/* no exit marker, task kept running to the end */
 957		if (p->end_time == 0)
 958			p->end_time = tchart->last_time;
 959
 960		c = p->all;
 961
 962		while (c) {
 963			c->display = 0;
 964
 965			if (c->start_time == 1)
 966				c->start_time = tchart->first_time;
 967
 968			if (passes_filter(p, c)) {
 969				c->display = 1;
 970				p->display = 1;
 971				count++;
 972			}
 973
 974			if (c->end_time == 0)
 975				c->end_time = tchart->last_time;
 976
 977			c = c->next;
 978		}
 979		p = p->next;
 980	}
 981	return count;
 982}
 983
 984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
 985{
 986	struct per_pid *p;
 987	struct per_pidcomm *c;
 988	int count = 0;
 989
 990	if (process_filter)
 991		return determine_display_tasks_filtered(tchart);
 992
 993	p = tchart->all_data;
 994	while (p) {
 995		p->display = 0;
 996		if (p->start_time == 1)
 997			p->start_time = tchart->first_time;
 998
 999		/* no exit marker, task kept running to the end */
1000		if (p->end_time == 0)
1001			p->end_time = tchart->last_time;
1002		if (p->total_time >= threshold)
1003			p->display = 1;
1004
1005		c = p->all;
1006
1007		while (c) {
1008			c->display = 0;
1009
1010			if (c->start_time == 1)
1011				c->start_time = tchart->first_time;
1012
1013			if (c->total_time >= threshold) {
1014				c->display = 1;
1015				count++;
1016			}
1017
1018			if (c->end_time == 0)
1019				c->end_time = tchart->last_time;
1020
1021			c = c->next;
1022		}
1023		p = p->next;
1024	}
1025	return count;
1026}
1027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
 
 
1029
 
 
 
 
 
 
 
 
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034	u64 i;
1035	int count;
1036	int thresh = TIME_THRESH;
1037
1038	if (tchart->power_only)
1039		tchart->proc_num = 0;
1040
1041	/* We'd like to show at least proc_num tasks;
1042	 * be less picky if we have fewer */
1043	do {
1044		count = determine_display_tasks(tchart, thresh);
 
 
 
 
 
1045		thresh /= 10;
1046	} while (!process_filter && thresh && count < tchart->proc_num);
1047
1048	if (!tchart->proc_num)
1049		count = 0;
1050
1051	open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
 
 
 
 
1052
1053	svg_time_grid();
1054	svg_legenda();
 
 
 
1055
1056	for (i = 0; i < tchart->numcpus; i++)
1057		svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059	draw_cpu_usage(tchart);
1060	if (tchart->proc_num)
1061		draw_process_bars(tchart);
1062	if (!tchart->tasks_only)
1063		draw_c_p_states(tchart);
1064	if (tchart->proc_num)
1065		draw_wakeups(tchart);
 
 
 
 
1066
1067	svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071			  struct perf_header *ph,
1072			  int feat,
1073			  int fd __maybe_unused,
1074			  void *data)
1075{
1076	struct timechart *tchart = data;
1077
1078	switch (feat) {
1079	case HEADER_NRCPUS:
1080		tchart->numcpus = ph->env.nr_cpus_avail;
1081		break;
1082
1083	case HEADER_CPU_TOPOLOGY:
1084		if (!tchart->topology)
1085			break;
1086
1087		if (svg_build_topology_map(ph->env.sibling_cores,
1088					   ph->env.nr_sibling_cores,
1089					   ph->env.sibling_threads,
1090					   ph->env.nr_sibling_threads))
1091			fprintf(stderr, "problem building topology\n");
1092		break;
1093
1094	default:
1095		break;
1096	}
1097
1098	return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103	const struct perf_evsel_str_handler power_tracepoints[] = {
1104		{ "power:cpu_idle",		process_sample_cpu_idle },
1105		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1106		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1107		{ "sched:sched_switch",		process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109		{ "power:power_start",		process_sample_power_start },
1110		{ "power:power_end",		process_sample_power_end },
1111		{ "power:power_frequency",	process_sample_power_frequency },
1112#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113	};
1114	struct perf_data_file file = {
1115		.path = input_name,
1116		.mode = PERF_DATA_MODE_READ,
 
1117	};
1118
1119	struct perf_session *session = perf_session__new(&file, false,
1120							 &tchart->tool);
1121	int ret = -EINVAL;
1122
1123	if (session == NULL)
1124		return -ENOMEM;
 
 
1125
1126	(void)perf_header__process_sections(&session->header,
1127					    perf_data_file__fd(session->file),
1128					    tchart,
1129					    process_header);
1130
1131	if (!perf_session__has_traces(session, "timechart record"))
1132		goto out_delete;
1133
1134	if (perf_session__set_tracepoints_handlers(session,
1135						   power_tracepoints)) {
1136		pr_err("Initializing session tracepoint handlers failed\n");
1137		goto out_delete;
1138	}
1139
1140	ret = perf_session__process_events(session, &tchart->tool);
1141	if (ret)
1142		goto out_delete;
1143
1144	end_sample_processing(tchart);
1145
1146	sort_pids(tchart);
1147
1148	write_svg_file(tchart, output_name);
1149
1150	pr_info("Written %2.1f seconds of trace to %s.\n",
1151		(tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153	perf_session__delete(session);
1154	return ret;
1155}
1156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159	unsigned int rec_argc, i, j;
1160	const char **rec_argv;
1161	const char **p;
1162	unsigned int record_elems;
1163
1164	const char * const common_args[] = {
1165		"record", "-a", "-R", "-c", "1",
1166	};
1167	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169	const char * const backtrace_args[] = {
1170		"-g",
1171	};
1172	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174	const char * const power_args[] = {
1175		"-e", "power:cpu_frequency",
1176		"-e", "power:cpu_idle",
1177	};
1178	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180	const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182		"-e", "power:power_start",
1183		"-e", "power:power_end",
1184		"-e", "power:power_frequency",
1185#endif
1186	};
1187	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189	const char * const tasks_args[] = {
1190		"-e", "sched:sched_wakeup",
1191		"-e", "sched:sched_switch",
1192	};
1193	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196	if (!is_valid_tracepoint("power:cpu_idle") &&
1197	    is_valid_tracepoint("power:power_start")) {
1198		use_old_power_events = 1;
1199		power_args_nr = 0;
1200	} else {
1201		old_power_args_nr = 0;
1202	}
1203#endif
1204
1205	if (tchart->power_only)
1206		tasks_args_nr = 0;
1207
1208	if (tchart->tasks_only) {
1209		power_args_nr = 0;
1210		old_power_args_nr = 0;
1211	}
1212
1213	if (!tchart->with_backtrace)
1214		backtrace_args_no = 0;
1215
1216	record_elems = common_args_nr + tasks_args_nr +
1217		power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219	rec_argc = record_elems + argc;
1220	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222	if (rec_argv == NULL)
1223		return -ENOMEM;
1224
1225	p = rec_argv;
1226	for (i = 0; i < common_args_nr; i++)
1227		*p++ = strdup(common_args[i]);
1228
1229	for (i = 0; i < backtrace_args_no; i++)
1230		*p++ = strdup(backtrace_args[i]);
1231
1232	for (i = 0; i < tasks_args_nr; i++)
1233		*p++ = strdup(tasks_args[i]);
1234
1235	for (i = 0; i < power_args_nr; i++)
1236		*p++ = strdup(power_args[i]);
1237
1238	for (i = 0; i < old_power_args_nr; i++)
1239		*p++ = strdup(old_power_args[i]);
1240
1241	for (j = 0; j < (unsigned int)argc; j++)
1242		*p++ = argv[j];
1243
1244	return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249	      int __maybe_unused unset)
1250{
1251	if (arg)
1252		add_process_filter(arg);
1253	return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258		int __maybe_unused unset)
1259{
1260	unsigned long duration = strtoul(arg, NULL, 0);
1261
1262	if (svg_highlight || svg_highlight_name)
1263		return -1;
1264
1265	if (duration)
1266		svg_highlight = duration;
1267	else
1268		svg_highlight_name = strdup(arg);
1269
1270	return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274		  const char *prefix __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275{
1276	struct timechart tchart = {
1277		.tool = {
1278			.comm		 = process_comm_event,
1279			.fork		 = process_fork_event,
1280			.exit		 = process_exit_event,
1281			.sample		 = process_sample_event,
1282			.ordered_samples = true,
1283		},
1284		.proc_num = 15,
 
 
1285	};
1286	const char *output_name = "output.svg";
 
 
 
 
 
1287	const struct option timechart_options[] = {
1288	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292		      "highlight tasks. Pass duration in ns or process name.",
1293		       parse_highlight),
1294	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296		    "output processes data only"),
1297	OPT_CALLBACK('p', "process", NULL, "process",
1298		      "process selector. Pass a pid or process name.",
1299		       parse_process),
1300	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301		    "Look for files with symbols relative to this directory"),
 
1302	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303		    "min. number of tasks to print"),
1304	OPT_BOOLEAN('t', "topology", &tchart.topology,
1305		    "sort CPUs according to topology"),
1306	OPT_END()
 
 
 
 
 
 
 
 
 
1307	};
1308	const char * const timechart_usage[] = {
 
1309		"perf timechart [<options>] {record}",
1310		NULL
1311	};
1312
1313	const struct option record_options[] = {
1314	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316		    "output processes data only"),
1317	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318	OPT_END()
1319	};
1320	const char * const record_usage[] = {
1321		"perf timechart record [<options>]",
1322		NULL
1323	};
1324	argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325			PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327	if (tchart.power_only && tchart.tasks_only) {
1328		pr_err("-P and -T options cannot be used at the same time.\n");
1329		return -1;
1330	}
1331
1332	symbol__init();
1333
1334	if (argc && !strncmp(argv[0], "rec", 3)) {
1335		argc = parse_options(argc, argv, record_options, record_usage,
1336				     PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338		if (tchart.power_only && tchart.tasks_only) {
1339			pr_err("-P and -T options cannot be used at the same time.\n");
1340			return -1;
1341		}
1342
1343		return timechart__record(&tchart, argc, argv);
 
 
 
1344	} else if (argc)
1345		usage_with_options(timechart_usage, timechart_options);
1346
1347	setup_pager();
1348
1349	return __cmd_timechart(&tchart, output_name);
1350}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
 
 
 
 
 
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
 
 
 
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
 
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
 
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include <subcmd/pager.h>
  30#include <subcmd/parse-options.h>
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36#include "util/data.h"
  37#include "util/debug.h"
  38#include "util/string2.h"
  39#include "util/tracepoint.h"
  40#include <linux/err.h>
  41#include <traceevent/event-parse.h>
  42
  43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  44FILE *open_memstream(char **ptr, size_t *sizeloc);
  45#endif
  46
  47#define SUPPORT_OLD_POWER_EVENTS 1
  48#define PWR_EVENT_EXIT -1
  49
  50struct per_pid;
  51struct power_event;
  52struct wake_event;
  53
  54struct timechart {
  55	struct perf_tool	tool;
  56	struct per_pid		*all_data;
  57	struct power_event	*power_events;
  58	struct wake_event	*wake_events;
  59	int			proc_num;
  60	unsigned int		numcpus;
  61	u64			min_freq,	/* Lowest CPU frequency seen */
  62				max_freq,	/* Highest CPU frequency seen */
  63				turbo_frequency,
  64				first_time, last_time;
  65	bool			power_only,
  66				tasks_only,
  67				with_backtrace,
  68				topology;
  69	bool			force;
  70	/* IO related settings */
  71	bool			io_only,
  72				skip_eagain;
  73	u64			io_events;
  74	u64			min_time,
  75				merge_dist;
  76};
  77
  78struct per_pidcomm;
  79struct cpu_sample;
  80struct io_sample;
  81
  82/*
  83 * Datastructure layout:
  84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  85 * Each "pid" entry, has a list of "comm"s.
  86 *	this is because we want to track different programs different, while
  87 *	exec will reuse the original pid (by design).
  88 * Each comm has a list of samples that will be used to draw
  89 * final graph.
  90 */
  91
  92struct per_pid {
  93	struct per_pid *next;
  94
  95	int		pid;
  96	int		ppid;
  97
  98	u64		start_time;
  99	u64		end_time;
 100	u64		total_time;
 101	u64		total_bytes;
 102	int		display;
 103
 104	struct per_pidcomm *all;
 105	struct per_pidcomm *current;
 106};
 107
 108
 109struct per_pidcomm {
 110	struct per_pidcomm *next;
 111
 112	u64		start_time;
 113	u64		end_time;
 114	u64		total_time;
 115	u64		max_bytes;
 116	u64		total_bytes;
 117
 118	int		Y;
 119	int		display;
 120
 121	long		state;
 122	u64		state_since;
 123
 124	char		*comm;
 125
 126	struct cpu_sample *samples;
 127	struct io_sample  *io_samples;
 128};
 129
 130struct sample_wrapper {
 131	struct sample_wrapper *next;
 132
 133	u64		timestamp;
 134	unsigned char	data[];
 135};
 136
 137#define TYPE_NONE	0
 138#define TYPE_RUNNING	1
 139#define TYPE_WAITING	2
 140#define TYPE_BLOCKED	3
 141
 142struct cpu_sample {
 143	struct cpu_sample *next;
 144
 145	u64 start_time;
 146	u64 end_time;
 147	int type;
 148	int cpu;
 149	const char *backtrace;
 150};
 151
 152enum {
 153	IOTYPE_READ,
 154	IOTYPE_WRITE,
 155	IOTYPE_SYNC,
 156	IOTYPE_TX,
 157	IOTYPE_RX,
 158	IOTYPE_POLL,
 159};
 160
 161struct io_sample {
 162	struct io_sample *next;
 163
 164	u64 start_time;
 165	u64 end_time;
 166	u64 bytes;
 167	int type;
 168	int fd;
 169	int err;
 170	int merges;
 171};
 172
 173#define CSTATE 1
 174#define PSTATE 2
 175
 176struct power_event {
 177	struct power_event *next;
 178	int type;
 179	int state;
 180	u64 start_time;
 181	u64 end_time;
 182	int cpu;
 183};
 184
 185struct wake_event {
 186	struct wake_event *next;
 187	int waker;
 188	int wakee;
 189	u64 time;
 190	const char *backtrace;
 191};
 192
 193struct process_filter {
 194	char			*name;
 195	int			pid;
 196	struct process_filter	*next;
 197};
 198
 199static struct process_filter *process_filter;
 200
 201
 202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 203{
 204	struct per_pid *cursor = tchart->all_data;
 205
 206	while (cursor) {
 207		if (cursor->pid == pid)
 208			return cursor;
 209		cursor = cursor->next;
 210	}
 211	cursor = zalloc(sizeof(*cursor));
 212	assert(cursor != NULL);
 213	cursor->pid = pid;
 214	cursor->next = tchart->all_data;
 215	tchart->all_data = cursor;
 216	return cursor;
 217}
 218
 219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
 220{
 221	struct per_pidcomm *c;
 222
 223	c = zalloc(sizeof(*c));
 224	if (!c)
 225		return NULL;
 226	p->current = c;
 227	c->next = p->all;
 228	p->all = c;
 229	return c;
 230}
 231
 232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 233{
 234	struct per_pid *p;
 235	struct per_pidcomm *c;
 236	p = find_create_pid(tchart, pid);
 237	c = p->all;
 238	while (c) {
 239		if (c->comm && strcmp(c->comm, comm) == 0) {
 240			p->current = c;
 241			return;
 242		}
 243		if (!c->comm) {
 244			c->comm = strdup(comm);
 245			p->current = c;
 246			return;
 247		}
 248		c = c->next;
 249	}
 250	c = create_pidcomm(p);
 251	assert(c != NULL);
 252	c->comm = strdup(comm);
 
 
 
 253}
 254
 255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 256{
 257	struct per_pid *p, *pp;
 258	p = find_create_pid(tchart, pid);
 259	pp = find_create_pid(tchart, ppid);
 260	p->ppid = ppid;
 261	if (pp->current && pp->current->comm && !p->current)
 262		pid_set_comm(tchart, pid, pp->current->comm);
 263
 264	p->start_time = timestamp;
 265	if (p->current && !p->current->start_time) {
 266		p->current->start_time = timestamp;
 267		p->current->state_since = timestamp;
 268	}
 269}
 270
 271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 272{
 273	struct per_pid *p;
 274	p = find_create_pid(tchart, pid);
 275	p->end_time = timestamp;
 276	if (p->current)
 277		p->current->end_time = timestamp;
 278}
 279
 280static void pid_put_sample(struct timechart *tchart, int pid, int type,
 281			   unsigned int cpu, u64 start, u64 end,
 282			   const char *backtrace)
 283{
 284	struct per_pid *p;
 285	struct per_pidcomm *c;
 286	struct cpu_sample *sample;
 287
 288	p = find_create_pid(tchart, pid);
 289	c = p->current;
 290	if (!c) {
 291		c = create_pidcomm(p);
 292		assert(c != NULL);
 
 
 
 293	}
 294
 295	sample = zalloc(sizeof(*sample));
 296	assert(sample != NULL);
 297	sample->start_time = start;
 298	sample->end_time = end;
 299	sample->type = type;
 300	sample->next = c->samples;
 301	sample->cpu = cpu;
 302	sample->backtrace = backtrace;
 303	c->samples = sample;
 304
 305	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 306		c->total_time += (end-start);
 307		p->total_time += (end-start);
 308	}
 309
 310	if (c->start_time == 0 || c->start_time > start)
 311		c->start_time = start;
 312	if (p->start_time == 0 || p->start_time > start)
 313		p->start_time = start;
 314}
 315
 316#define MAX_CPUS 4096
 317
 318static u64 cpus_cstate_start_times[MAX_CPUS];
 319static int cpus_cstate_state[MAX_CPUS];
 320static u64 cpus_pstate_start_times[MAX_CPUS];
 321static u64 cpus_pstate_state[MAX_CPUS];
 322
 323static int process_comm_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 330	return 0;
 331}
 332
 333static int process_fork_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 340	return 0;
 341}
 342
 343static int process_exit_event(struct perf_tool *tool,
 344			      union perf_event *event,
 345			      struct perf_sample *sample __maybe_unused,
 346			      struct machine *machine __maybe_unused)
 347{
 348	struct timechart *tchart = container_of(tool, struct timechart, tool);
 349	pid_exit(tchart, event->fork.pid, event->fork.time);
 350	return 0;
 351}
 352
 353#ifdef SUPPORT_OLD_POWER_EVENTS
 354static int use_old_power_events;
 355#endif
 356
 357static void c_state_start(int cpu, u64 timestamp, int state)
 358{
 359	cpus_cstate_start_times[cpu] = timestamp;
 360	cpus_cstate_state[cpu] = state;
 361}
 362
 363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 364{
 365	struct power_event *pwr = zalloc(sizeof(*pwr));
 366
 367	if (!pwr)
 368		return;
 369
 370	pwr->state = cpus_cstate_state[cpu];
 371	pwr->start_time = cpus_cstate_start_times[cpu];
 372	pwr->end_time = timestamp;
 373	pwr->cpu = cpu;
 374	pwr->type = CSTATE;
 375	pwr->next = tchart->power_events;
 376
 377	tchart->power_events = pwr;
 378}
 379
 380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
 381					u64 timestamp)
 382{
 383	struct power_event *pwr = zalloc(sizeof(*pwr));
 
 
 
 384
 
 385	if (!pwr)
 386		return NULL;
 387
 388	pwr->state = cpus_pstate_state[cpu];
 389	pwr->start_time = cpus_pstate_start_times[cpu];
 390	pwr->end_time = timestamp;
 391	pwr->cpu = cpu;
 392	pwr->type = PSTATE;
 393	pwr->next = tchart->power_events;
 
 394	if (!pwr->start_time)
 395		pwr->start_time = tchart->first_time;
 396
 397	tchart->power_events = pwr;
 398	return pwr;
 399}
 400
 401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 402{
 403	struct power_event *pwr;
 404
 405	if (new_freq > 8000000) /* detect invalid data */
 406		return;
 407
 408	pwr = p_state_end(tchart, cpu, timestamp);
 409	if (!pwr)
 410		return;
 411
 412	cpus_pstate_state[cpu] = new_freq;
 413	cpus_pstate_start_times[cpu] = timestamp;
 414
 415	if ((u64)new_freq > tchart->max_freq)
 416		tchart->max_freq = new_freq;
 417
 418	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 419		tchart->min_freq = new_freq;
 420
 421	if (new_freq == tchart->max_freq - 1000)
 422		tchart->turbo_frequency = tchart->max_freq;
 423}
 424
 425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 426			 int waker, int wakee, u8 flags, const char *backtrace)
 427{
 428	struct per_pid *p;
 429	struct wake_event *we = zalloc(sizeof(*we));
 430
 431	if (!we)
 432		return;
 433
 434	we->time = timestamp;
 435	we->waker = waker;
 436	we->backtrace = backtrace;
 437
 438	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 439		we->waker = -1;
 440
 441	we->wakee = wakee;
 442	we->next = tchart->wake_events;
 443	tchart->wake_events = we;
 444	p = find_create_pid(tchart, we->wakee);
 445
 446	if (p && p->current && p->current->state == TYPE_NONE) {
 447		p->current->state_since = timestamp;
 448		p->current->state = TYPE_WAITING;
 449	}
 450	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 451		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 452			       p->current->state_since, timestamp, NULL);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 459			 int prev_pid, int next_pid, u64 prev_state,
 460			 const char *backtrace)
 461{
 462	struct per_pid *p = NULL, *prev_p;
 463
 464	prev_p = find_create_pid(tchart, prev_pid);
 465
 466	p = find_create_pid(tchart, next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 470			       prev_p->current->state_since, timestamp,
 471			       backtrace);
 472	if (p && p->current) {
 473		if (p->current->state != TYPE_NONE)
 474			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 475				       p->current->state_since, timestamp,
 476				       backtrace);
 477
 478		p->current->state_since = timestamp;
 479		p->current->state = TYPE_RUNNING;
 480	}
 481
 482	if (prev_p->current) {
 483		prev_p->current->state = TYPE_NONE;
 484		prev_p->current->state_since = timestamp;
 485		if (prev_state & 2)
 486			prev_p->current->state = TYPE_BLOCKED;
 487		if (prev_state == 0)
 488			prev_p->current->state = TYPE_WAITING;
 489	}
 490}
 491
 492static const char *cat_backtrace(union perf_event *event,
 493				 struct perf_sample *sample,
 494				 struct machine *machine)
 495{
 496	struct addr_location al;
 497	unsigned int i;
 498	char *p = NULL;
 499	size_t p_len;
 500	u8 cpumode = PERF_RECORD_MISC_USER;
 501	struct addr_location tal;
 502	struct ip_callchain *chain = sample->callchain;
 503	FILE *f = open_memstream(&p, &p_len);
 504
 505	if (!f) {
 506		perror("open_memstream error");
 507		return NULL;
 508	}
 509
 510	if (!chain)
 511		goto exit;
 512
 513	if (machine__resolve(machine, &al, sample) < 0) {
 514		fprintf(stderr, "problem processing %d event, skipping it.\n",
 515			event->header.type);
 516		goto exit;
 517	}
 518
 519	for (i = 0; i < chain->nr; i++) {
 520		u64 ip;
 521
 522		if (callchain_param.order == ORDER_CALLEE)
 523			ip = chain->ips[i];
 524		else
 525			ip = chain->ips[chain->nr - i - 1];
 526
 527		if (ip >= PERF_CONTEXT_MAX) {
 528			switch (ip) {
 529			case PERF_CONTEXT_HV:
 530				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 531				break;
 532			case PERF_CONTEXT_KERNEL:
 533				cpumode = PERF_RECORD_MISC_KERNEL;
 534				break;
 535			case PERF_CONTEXT_USER:
 536				cpumode = PERF_RECORD_MISC_USER;
 537				break;
 538			default:
 539				pr_debug("invalid callchain context: "
 540					 "%"PRId64"\n", (s64) ip);
 541
 542				/*
 543				 * It seems the callchain is corrupted.
 544				 * Discard all.
 545				 */
 546				zfree(&p);
 547				goto exit_put;
 548			}
 549			continue;
 550		}
 551
 552		tal.filtered = 0;
 553		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 554			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 
 
 
 
 555		else
 556			fprintf(f, "..... %016" PRIx64 "\n", ip);
 557	}
 558exit_put:
 559	addr_location__put(&al);
 560exit:
 561	fclose(f);
 562
 563	return p;
 564}
 565
 566typedef int (*tracepoint_handler)(struct timechart *tchart,
 567				  struct evsel *evsel,
 568				  struct perf_sample *sample,
 569				  const char *backtrace);
 570
 571static int process_sample_event(struct perf_tool *tool,
 572				union perf_event *event,
 573				struct perf_sample *sample,
 574				struct evsel *evsel,
 575				struct machine *machine)
 576{
 577	struct timechart *tchart = container_of(tool, struct timechart, tool);
 578
 579	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 580		if (!tchart->first_time || tchart->first_time > sample->time)
 581			tchart->first_time = sample->time;
 582		if (tchart->last_time < sample->time)
 583			tchart->last_time = sample->time;
 584	}
 585
 586	if (evsel->handler != NULL) {
 587		tracepoint_handler f = evsel->handler;
 588		return f(tchart, evsel, sample,
 589			 cat_backtrace(event, sample, machine));
 590	}
 591
 592	return 0;
 593}
 594
 595static int
 596process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 597			struct evsel *evsel,
 598			struct perf_sample *sample,
 599			const char *backtrace __maybe_unused)
 600{
 601	u32 state  = evsel__intval(evsel, sample, "state");
 602	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 603
 604	if (state == (u32)PWR_EVENT_EXIT)
 605		c_state_end(tchart, cpu_id, sample->time);
 606	else
 607		c_state_start(cpu_id, sample->time, state);
 608	return 0;
 609}
 610
 611static int
 612process_sample_cpu_frequency(struct timechart *tchart,
 613			     struct evsel *evsel,
 614			     struct perf_sample *sample,
 615			     const char *backtrace __maybe_unused)
 616{
 617	u32 state  = evsel__intval(evsel, sample, "state");
 618	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 619
 620	p_state_change(tchart, cpu_id, sample->time, state);
 621	return 0;
 622}
 623
 624static int
 625process_sample_sched_wakeup(struct timechart *tchart,
 626			    struct evsel *evsel,
 627			    struct perf_sample *sample,
 628			    const char *backtrace)
 629{
 630	u8 flags  = evsel__intval(evsel, sample, "common_flags");
 631	int waker = evsel__intval(evsel, sample, "common_pid");
 632	int wakee = evsel__intval(evsel, sample, "pid");
 633
 634	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 635	return 0;
 636}
 637
 638static int
 639process_sample_sched_switch(struct timechart *tchart,
 640			    struct evsel *evsel,
 641			    struct perf_sample *sample,
 642			    const char *backtrace)
 643{
 644	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 645	int next_pid   = evsel__intval(evsel, sample, "next_pid");
 646	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 647
 648	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 649		     prev_state, backtrace);
 650	return 0;
 651}
 652
 653#ifdef SUPPORT_OLD_POWER_EVENTS
 654static int
 655process_sample_power_start(struct timechart *tchart __maybe_unused,
 656			   struct evsel *evsel,
 657			   struct perf_sample *sample,
 658			   const char *backtrace __maybe_unused)
 659{
 660	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 661	u64 value  = evsel__intval(evsel, sample, "value");
 662
 663	c_state_start(cpu_id, sample->time, value);
 664	return 0;
 665}
 666
 667static int
 668process_sample_power_end(struct timechart *tchart,
 669			 struct evsel *evsel __maybe_unused,
 670			 struct perf_sample *sample,
 671			 const char *backtrace __maybe_unused)
 672{
 673	c_state_end(tchart, sample->cpu, sample->time);
 674	return 0;
 675}
 676
 677static int
 678process_sample_power_frequency(struct timechart *tchart,
 679			       struct evsel *evsel,
 680			       struct perf_sample *sample,
 681			       const char *backtrace __maybe_unused)
 682{
 683	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 684	u64 value  = evsel__intval(evsel, sample, "value");
 685
 686	p_state_change(tchart, cpu_id, sample->time, value);
 687	return 0;
 688}
 689#endif /* SUPPORT_OLD_POWER_EVENTS */
 690
 691/*
 692 * After the last sample we need to wrap up the current C/P state
 693 * and close out each CPU for these.
 694 */
 695static void end_sample_processing(struct timechart *tchart)
 696{
 697	u64 cpu;
 698	struct power_event *pwr;
 699
 700	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 701		/* C state */
 702#if 0
 703		pwr = zalloc(sizeof(*pwr));
 704		if (!pwr)
 705			return;
 706
 707		pwr->state = cpus_cstate_state[cpu];
 708		pwr->start_time = cpus_cstate_start_times[cpu];
 709		pwr->end_time = tchart->last_time;
 710		pwr->cpu = cpu;
 711		pwr->type = CSTATE;
 712		pwr->next = tchart->power_events;
 713
 714		tchart->power_events = pwr;
 715#endif
 716		/* P state */
 717
 718		pwr = p_state_end(tchart, cpu, tchart->last_time);
 719		if (!pwr)
 720			return;
 721
 
 
 
 
 
 
 
 
 
 722		if (!pwr->state)
 723			pwr->state = tchart->min_freq;
 
 724	}
 725}
 726
 727static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 728			       u64 start, int fd)
 729{
 730	struct per_pid *p = find_create_pid(tchart, pid);
 731	struct per_pidcomm *c = p->current;
 732	struct io_sample *sample;
 733	struct io_sample *prev;
 734
 735	if (!c) {
 736		c = create_pidcomm(p);
 737		if (!c)
 738			return -ENOMEM;
 739	}
 740
 741	prev = c->io_samples;
 742
 743	if (prev && prev->start_time && !prev->end_time) {
 744		pr_warning("Skip invalid start event: "
 745			   "previous event already started!\n");
 746
 747		/* remove previous event that has been started,
 748		 * we are not sure we will ever get an end for it */
 749		c->io_samples = prev->next;
 750		free(prev);
 751		return 0;
 752	}
 753
 754	sample = zalloc(sizeof(*sample));
 755	if (!sample)
 756		return -ENOMEM;
 757	sample->start_time = start;
 758	sample->type = type;
 759	sample->fd = fd;
 760	sample->next = c->io_samples;
 761	c->io_samples = sample;
 762
 763	if (c->start_time == 0 || c->start_time > start)
 764		c->start_time = start;
 765
 766	return 0;
 767}
 768
 769static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 770			     u64 end, long ret)
 771{
 772	struct per_pid *p = find_create_pid(tchart, pid);
 773	struct per_pidcomm *c = p->current;
 774	struct io_sample *sample, *prev;
 775
 776	if (!c) {
 777		pr_warning("Invalid pidcomm!\n");
 778		return -1;
 779	}
 780
 781	sample = c->io_samples;
 782
 783	if (!sample) /* skip partially captured events */
 784		return 0;
 785
 786	if (sample->end_time) {
 787		pr_warning("Skip invalid end event: "
 788			   "previous event already ended!\n");
 789		return 0;
 790	}
 791
 792	if (sample->type != type) {
 793		pr_warning("Skip invalid end event: invalid event type!\n");
 794		return 0;
 795	}
 796
 797	sample->end_time = end;
 798	prev = sample->next;
 799
 800	/* we want to be able to see small and fast transfers, so make them
 801	 * at least min_time long, but don't overlap them */
 802	if (sample->end_time - sample->start_time < tchart->min_time)
 803		sample->end_time = sample->start_time + tchart->min_time;
 804	if (prev && sample->start_time < prev->end_time) {
 805		if (prev->err) /* try to make errors more visible */
 806			sample->start_time = prev->end_time;
 807		else
 808			prev->end_time = sample->start_time;
 809	}
 810
 811	if (ret < 0) {
 812		sample->err = ret;
 813	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 814		   type == IOTYPE_TX || type == IOTYPE_RX) {
 815
 816		if ((u64)ret > c->max_bytes)
 817			c->max_bytes = ret;
 818
 819		c->total_bytes += ret;
 820		p->total_bytes += ret;
 821		sample->bytes = ret;
 822	}
 823
 824	/* merge two requests to make svg smaller and render-friendly */
 825	if (prev &&
 826	    prev->type == sample->type &&
 827	    prev->err == sample->err &&
 828	    prev->fd == sample->fd &&
 829	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 830
 831		sample->bytes += prev->bytes;
 832		sample->merges += prev->merges + 1;
 833
 834		sample->start_time = prev->start_time;
 835		sample->next = prev->next;
 836		free(prev);
 837
 838		if (!sample->err && sample->bytes > c->max_bytes)
 839			c->max_bytes = sample->bytes;
 840	}
 841
 842	tchart->io_events++;
 843
 844	return 0;
 845}
 846
 847static int
 848process_enter_read(struct timechart *tchart,
 849		   struct evsel *evsel,
 850		   struct perf_sample *sample)
 851{
 852	long fd = evsel__intval(evsel, sample, "fd");
 853	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 854				   sample->time, fd);
 855}
 856
 857static int
 858process_exit_read(struct timechart *tchart,
 859		  struct evsel *evsel,
 860		  struct perf_sample *sample)
 861{
 862	long ret = evsel__intval(evsel, sample, "ret");
 863	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 864				 sample->time, ret);
 865}
 866
 867static int
 868process_enter_write(struct timechart *tchart,
 869		    struct evsel *evsel,
 870		    struct perf_sample *sample)
 871{
 872	long fd = evsel__intval(evsel, sample, "fd");
 873	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 874				   sample->time, fd);
 875}
 876
 877static int
 878process_exit_write(struct timechart *tchart,
 879		   struct evsel *evsel,
 880		   struct perf_sample *sample)
 881{
 882	long ret = evsel__intval(evsel, sample, "ret");
 883	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 884				 sample->time, ret);
 885}
 886
 887static int
 888process_enter_sync(struct timechart *tchart,
 889		   struct evsel *evsel,
 890		   struct perf_sample *sample)
 891{
 892	long fd = evsel__intval(evsel, sample, "fd");
 893	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 894				   sample->time, fd);
 895}
 896
 897static int
 898process_exit_sync(struct timechart *tchart,
 899		  struct evsel *evsel,
 900		  struct perf_sample *sample)
 901{
 902	long ret = evsel__intval(evsel, sample, "ret");
 903	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 904				 sample->time, ret);
 905}
 906
 907static int
 908process_enter_tx(struct timechart *tchart,
 909		 struct evsel *evsel,
 910		 struct perf_sample *sample)
 911{
 912	long fd = evsel__intval(evsel, sample, "fd");
 913	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 914				   sample->time, fd);
 915}
 916
 917static int
 918process_exit_tx(struct timechart *tchart,
 919		struct evsel *evsel,
 920		struct perf_sample *sample)
 921{
 922	long ret = evsel__intval(evsel, sample, "ret");
 923	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 924				 sample->time, ret);
 925}
 926
 927static int
 928process_enter_rx(struct timechart *tchart,
 929		 struct evsel *evsel,
 930		 struct perf_sample *sample)
 931{
 932	long fd = evsel__intval(evsel, sample, "fd");
 933	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 934				   sample->time, fd);
 935}
 936
 937static int
 938process_exit_rx(struct timechart *tchart,
 939		struct evsel *evsel,
 940		struct perf_sample *sample)
 941{
 942	long ret = evsel__intval(evsel, sample, "ret");
 943	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 944				 sample->time, ret);
 945}
 946
 947static int
 948process_enter_poll(struct timechart *tchart,
 949		   struct evsel *evsel,
 950		   struct perf_sample *sample)
 951{
 952	long fd = evsel__intval(evsel, sample, "fd");
 953	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 954				   sample->time, fd);
 955}
 956
 957static int
 958process_exit_poll(struct timechart *tchart,
 959		  struct evsel *evsel,
 960		  struct perf_sample *sample)
 961{
 962	long ret = evsel__intval(evsel, sample, "ret");
 963	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 964				 sample->time, ret);
 965}
 966
 967/*
 968 * Sort the pid datastructure
 969 */
 970static void sort_pids(struct timechart *tchart)
 971{
 972	struct per_pid *new_list, *p, *cursor, *prev;
 973	/* sort by ppid first, then by pid, lowest to highest */
 974
 975	new_list = NULL;
 976
 977	while (tchart->all_data) {
 978		p = tchart->all_data;
 979		tchart->all_data = p->next;
 980		p->next = NULL;
 981
 982		if (new_list == NULL) {
 983			new_list = p;
 984			p->next = NULL;
 985			continue;
 986		}
 987		prev = NULL;
 988		cursor = new_list;
 989		while (cursor) {
 990			if (cursor->ppid > p->ppid ||
 991				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 992				/* must insert before */
 993				if (prev) {
 994					p->next = prev->next;
 995					prev->next = p;
 996					cursor = NULL;
 997					continue;
 998				} else {
 999					p->next = new_list;
1000					new_list = p;
1001					cursor = NULL;
1002					continue;
1003				}
1004			}
1005
1006			prev = cursor;
1007			cursor = cursor->next;
1008			if (!cursor)
1009				prev->next = p;
1010		}
1011	}
1012	tchart->all_data = new_list;
1013}
1014
1015
1016static void draw_c_p_states(struct timechart *tchart)
1017{
1018	struct power_event *pwr;
1019	pwr = tchart->power_events;
1020
1021	/*
1022	 * two pass drawing so that the P state bars are on top of the C state blocks
1023	 */
1024	while (pwr) {
1025		if (pwr->type == CSTATE)
1026			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027		pwr = pwr->next;
1028	}
1029
1030	pwr = tchart->power_events;
1031	while (pwr) {
1032		if (pwr->type == PSTATE) {
1033			if (!pwr->state)
1034				pwr->state = tchart->min_freq;
1035			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036		}
1037		pwr = pwr->next;
1038	}
1039}
1040
1041static void draw_wakeups(struct timechart *tchart)
1042{
1043	struct wake_event *we;
1044	struct per_pid *p;
1045	struct per_pidcomm *c;
1046
1047	we = tchart->wake_events;
1048	while (we) {
1049		int from = 0, to = 0;
1050		char *task_from = NULL, *task_to = NULL;
1051
1052		/* locate the column of the waker and wakee */
1053		p = tchart->all_data;
1054		while (p) {
1055			if (p->pid == we->waker || p->pid == we->wakee) {
1056				c = p->all;
1057				while (c) {
1058					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059						if (p->pid == we->waker && !from) {
1060							from = c->Y;
1061							task_from = strdup(c->comm);
1062						}
1063						if (p->pid == we->wakee && !to) {
1064							to = c->Y;
1065							task_to = strdup(c->comm);
1066						}
1067					}
1068					c = c->next;
1069				}
1070				c = p->all;
1071				while (c) {
1072					if (p->pid == we->waker && !from) {
1073						from = c->Y;
1074						task_from = strdup(c->comm);
1075					}
1076					if (p->pid == we->wakee && !to) {
1077						to = c->Y;
1078						task_to = strdup(c->comm);
1079					}
1080					c = c->next;
1081				}
1082			}
1083			p = p->next;
1084		}
1085
1086		if (!task_from) {
1087			task_from = malloc(40);
1088			sprintf(task_from, "[%i]", we->waker);
1089		}
1090		if (!task_to) {
1091			task_to = malloc(40);
1092			sprintf(task_to, "[%i]", we->wakee);
1093		}
1094
1095		if (we->waker == -1)
1096			svg_interrupt(we->time, to, we->backtrace);
1097		else if (from && to && abs(from - to) == 1)
1098			svg_wakeline(we->time, from, to, we->backtrace);
1099		else
1100			svg_partial_wakeline(we->time, from, task_from, to,
1101					     task_to, we->backtrace);
1102		we = we->next;
1103
1104		free(task_from);
1105		free(task_to);
1106	}
1107}
1108
1109static void draw_cpu_usage(struct timechart *tchart)
1110{
1111	struct per_pid *p;
1112	struct per_pidcomm *c;
1113	struct cpu_sample *sample;
1114	p = tchart->all_data;
1115	while (p) {
1116		c = p->all;
1117		while (c) {
1118			sample = c->samples;
1119			while (sample) {
1120				if (sample->type == TYPE_RUNNING) {
1121					svg_process(sample->cpu,
1122						    sample->start_time,
1123						    sample->end_time,
1124						    p->pid,
1125						    c->comm,
1126						    sample->backtrace);
1127				}
1128
1129				sample = sample->next;
1130			}
1131			c = c->next;
1132		}
1133		p = p->next;
1134	}
1135}
1136
1137static void draw_io_bars(struct timechart *tchart)
1138{
1139	const char *suf;
1140	double bytes;
1141	char comm[256];
1142	struct per_pid *p;
1143	struct per_pidcomm *c;
1144	struct io_sample *sample;
1145	int Y = 1;
1146
1147	p = tchart->all_data;
1148	while (p) {
1149		c = p->all;
1150		while (c) {
1151			if (!c->display) {
1152				c->Y = 0;
1153				c = c->next;
1154				continue;
1155			}
1156
1157			svg_box(Y, c->start_time, c->end_time, "process3");
1158			sample = c->io_samples;
1159			for (sample = c->io_samples; sample; sample = sample->next) {
1160				double h = (double)sample->bytes / c->max_bytes;
1161
1162				if (tchart->skip_eagain &&
1163				    sample->err == -EAGAIN)
1164					continue;
1165
1166				if (sample->err)
1167					h = 1;
1168
1169				if (sample->type == IOTYPE_SYNC)
1170					svg_fbox(Y,
1171						sample->start_time,
1172						sample->end_time,
1173						1,
1174						sample->err ? "error" : "sync",
1175						sample->fd,
1176						sample->err,
1177						sample->merges);
1178				else if (sample->type == IOTYPE_POLL)
1179					svg_fbox(Y,
1180						sample->start_time,
1181						sample->end_time,
1182						1,
1183						sample->err ? "error" : "poll",
1184						sample->fd,
1185						sample->err,
1186						sample->merges);
1187				else if (sample->type == IOTYPE_READ)
1188					svg_ubox(Y,
1189						sample->start_time,
1190						sample->end_time,
1191						h,
1192						sample->err ? "error" : "disk",
1193						sample->fd,
1194						sample->err,
1195						sample->merges);
1196				else if (sample->type == IOTYPE_WRITE)
1197					svg_lbox(Y,
1198						sample->start_time,
1199						sample->end_time,
1200						h,
1201						sample->err ? "error" : "disk",
1202						sample->fd,
1203						sample->err,
1204						sample->merges);
1205				else if (sample->type == IOTYPE_RX)
1206					svg_ubox(Y,
1207						sample->start_time,
1208						sample->end_time,
1209						h,
1210						sample->err ? "error" : "net",
1211						sample->fd,
1212						sample->err,
1213						sample->merges);
1214				else if (sample->type == IOTYPE_TX)
1215					svg_lbox(Y,
1216						sample->start_time,
1217						sample->end_time,
1218						h,
1219						sample->err ? "error" : "net",
1220						sample->fd,
1221						sample->err,
1222						sample->merges);
1223			}
1224
1225			suf = "";
1226			bytes = c->total_bytes;
1227			if (bytes > 1024) {
1228				bytes = bytes / 1024;
1229				suf = "K";
1230			}
1231			if (bytes > 1024) {
1232				bytes = bytes / 1024;
1233				suf = "M";
1234			}
1235			if (bytes > 1024) {
1236				bytes = bytes / 1024;
1237				suf = "G";
1238			}
1239
1240
1241			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242			svg_text(Y, c->start_time, comm);
1243
1244			c->Y = Y;
1245			Y++;
1246			c = c->next;
1247		}
1248		p = p->next;
1249	}
1250}
1251
1252static void draw_process_bars(struct timechart *tchart)
1253{
1254	struct per_pid *p;
1255	struct per_pidcomm *c;
1256	struct cpu_sample *sample;
1257	int Y = 0;
1258
1259	Y = 2 * tchart->numcpus + 2;
1260
1261	p = tchart->all_data;
1262	while (p) {
1263		c = p->all;
1264		while (c) {
1265			if (!c->display) {
1266				c->Y = 0;
1267				c = c->next;
1268				continue;
1269			}
1270
1271			svg_box(Y, c->start_time, c->end_time, "process");
1272			sample = c->samples;
1273			while (sample) {
1274				if (sample->type == TYPE_RUNNING)
1275					svg_running(Y, sample->cpu,
1276						    sample->start_time,
1277						    sample->end_time,
1278						    sample->backtrace);
1279				if (sample->type == TYPE_BLOCKED)
1280					svg_blocked(Y, sample->cpu,
1281						    sample->start_time,
1282						    sample->end_time,
1283						    sample->backtrace);
1284				if (sample->type == TYPE_WAITING)
1285					svg_waiting(Y, sample->cpu,
1286						    sample->start_time,
1287						    sample->end_time,
1288						    sample->backtrace);
1289				sample = sample->next;
1290			}
1291
1292			if (c->comm) {
1293				char comm[256];
1294				if (c->total_time > 5000000000) /* 5 seconds */
1295					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296				else
1297					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299				svg_text(Y, c->start_time, comm);
1300			}
1301			c->Y = Y;
1302			Y++;
1303			c = c->next;
1304		}
1305		p = p->next;
1306	}
1307}
1308
1309static void add_process_filter(const char *string)
1310{
1311	int pid = strtoull(string, NULL, 10);
1312	struct process_filter *filt = malloc(sizeof(*filt));
1313
1314	if (!filt)
1315		return;
1316
1317	filt->name = strdup(string);
1318	filt->pid  = pid;
1319	filt->next = process_filter;
1320
1321	process_filter = filt;
1322}
1323
1324static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325{
1326	struct process_filter *filt;
1327	if (!process_filter)
1328		return 1;
1329
1330	filt = process_filter;
1331	while (filt) {
1332		if (filt->pid && p->pid == filt->pid)
1333			return 1;
1334		if (strcmp(filt->name, c->comm) == 0)
1335			return 1;
1336		filt = filt->next;
1337	}
1338	return 0;
1339}
1340
1341static int determine_display_tasks_filtered(struct timechart *tchart)
1342{
1343	struct per_pid *p;
1344	struct per_pidcomm *c;
1345	int count = 0;
1346
1347	p = tchart->all_data;
1348	while (p) {
1349		p->display = 0;
1350		if (p->start_time == 1)
1351			p->start_time = tchart->first_time;
1352
1353		/* no exit marker, task kept running to the end */
1354		if (p->end_time == 0)
1355			p->end_time = tchart->last_time;
1356
1357		c = p->all;
1358
1359		while (c) {
1360			c->display = 0;
1361
1362			if (c->start_time == 1)
1363				c->start_time = tchart->first_time;
1364
1365			if (passes_filter(p, c)) {
1366				c->display = 1;
1367				p->display = 1;
1368				count++;
1369			}
1370
1371			if (c->end_time == 0)
1372				c->end_time = tchart->last_time;
1373
1374			c = c->next;
1375		}
1376		p = p->next;
1377	}
1378	return count;
1379}
1380
1381static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382{
1383	struct per_pid *p;
1384	struct per_pidcomm *c;
1385	int count = 0;
1386
 
 
 
1387	p = tchart->all_data;
1388	while (p) {
1389		p->display = 0;
1390		if (p->start_time == 1)
1391			p->start_time = tchart->first_time;
1392
1393		/* no exit marker, task kept running to the end */
1394		if (p->end_time == 0)
1395			p->end_time = tchart->last_time;
1396		if (p->total_time >= threshold)
1397			p->display = 1;
1398
1399		c = p->all;
1400
1401		while (c) {
1402			c->display = 0;
1403
1404			if (c->start_time == 1)
1405				c->start_time = tchart->first_time;
1406
1407			if (c->total_time >= threshold) {
1408				c->display = 1;
1409				count++;
1410			}
1411
1412			if (c->end_time == 0)
1413				c->end_time = tchart->last_time;
1414
1415			c = c->next;
1416		}
1417		p = p->next;
1418	}
1419	return count;
1420}
1421
1422static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423{
1424	struct per_pid *p;
1425	struct per_pidcomm *c;
1426	int count = 0;
1427
1428	p = timechart->all_data;
1429	while (p) {
1430		/* no exit marker, task kept running to the end */
1431		if (p->end_time == 0)
1432			p->end_time = timechart->last_time;
1433
1434		c = p->all;
1435
1436		while (c) {
1437			c->display = 0;
1438
1439			if (c->total_bytes >= threshold) {
1440				c->display = 1;
1441				count++;
1442			}
1443
1444			if (c->end_time == 0)
1445				c->end_time = timechart->last_time;
1446
1447			c = c->next;
1448		}
1449		p = p->next;
1450	}
1451	return count;
1452}
1453
1454#define BYTES_THRESH (1 * 1024 * 1024)
1455#define TIME_THRESH 10000000
1456
1457static void write_svg_file(struct timechart *tchart, const char *filename)
1458{
1459	u64 i;
1460	int count;
1461	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463	if (tchart->power_only)
1464		tchart->proc_num = 0;
1465
1466	/* We'd like to show at least proc_num tasks;
1467	 * be less picky if we have fewer */
1468	do {
1469		if (process_filter)
1470			count = determine_display_tasks_filtered(tchart);
1471		else if (tchart->io_events)
1472			count = determine_display_io_tasks(tchart, thresh);
1473		else
1474			count = determine_display_tasks(tchart, thresh);
1475		thresh /= 10;
1476	} while (!process_filter && thresh && count < tchart->proc_num);
1477
1478	if (!tchart->proc_num)
1479		count = 0;
1480
1481	if (tchart->io_events) {
1482		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484		svg_time_grid(0.5);
1485		svg_io_legenda();
1486
1487		draw_io_bars(tchart);
1488	} else {
1489		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491		svg_time_grid(0);
1492
1493		svg_legenda();
 
1494
1495		for (i = 0; i < tchart->numcpus; i++)
1496			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498		draw_cpu_usage(tchart);
1499		if (tchart->proc_num)
1500			draw_process_bars(tchart);
1501		if (!tchart->tasks_only)
1502			draw_c_p_states(tchart);
1503		if (tchart->proc_num)
1504			draw_wakeups(tchart);
1505	}
1506
1507	svg_close();
1508}
1509
1510static int process_header(struct perf_file_section *section __maybe_unused,
1511			  struct perf_header *ph,
1512			  int feat,
1513			  int fd __maybe_unused,
1514			  void *data)
1515{
1516	struct timechart *tchart = data;
1517
1518	switch (feat) {
1519	case HEADER_NRCPUS:
1520		tchart->numcpus = ph->env.nr_cpus_avail;
1521		break;
1522
1523	case HEADER_CPU_TOPOLOGY:
1524		if (!tchart->topology)
1525			break;
1526
1527		if (svg_build_topology_map(&ph->env))
 
 
 
1528			fprintf(stderr, "problem building topology\n");
1529		break;
1530
1531	default:
1532		break;
1533	}
1534
1535	return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540	const struct evsel_str_handler power_tracepoints[] = {
1541		{ "power:cpu_idle",		process_sample_cpu_idle },
1542		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1543		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1544		{ "sched:sched_switch",		process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546		{ "power:power_start",		process_sample_power_start },
1547		{ "power:power_end",		process_sample_power_end },
1548		{ "power:power_frequency",	process_sample_power_frequency },
1549#endif
1550
1551		{ "syscalls:sys_enter_read",		process_enter_read },
1552		{ "syscalls:sys_enter_pread64",		process_enter_read },
1553		{ "syscalls:sys_enter_readv",		process_enter_read },
1554		{ "syscalls:sys_enter_preadv",		process_enter_read },
1555		{ "syscalls:sys_enter_write",		process_enter_write },
1556		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1557		{ "syscalls:sys_enter_writev",		process_enter_write },
1558		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1559		{ "syscalls:sys_enter_sync",		process_enter_sync },
1560		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1561		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1562		{ "syscalls:sys_enter_msync",		process_enter_sync },
1563		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1564		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1565		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1566		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1567		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1568		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1569		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1570		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1571		{ "syscalls:sys_enter_poll",		process_enter_poll },
1572		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1573		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1574		{ "syscalls:sys_enter_select",		process_enter_poll },
1575
1576		{ "syscalls:sys_exit_read",		process_exit_read },
1577		{ "syscalls:sys_exit_pread64",		process_exit_read },
1578		{ "syscalls:sys_exit_readv",		process_exit_read },
1579		{ "syscalls:sys_exit_preadv",		process_exit_read },
1580		{ "syscalls:sys_exit_write",		process_exit_write },
1581		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1582		{ "syscalls:sys_exit_writev",		process_exit_write },
1583		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1584		{ "syscalls:sys_exit_sync",		process_exit_sync },
1585		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1586		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1587		{ "syscalls:sys_exit_msync",		process_exit_sync },
1588		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1589		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1590		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1591		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1592		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1593		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1594		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1595		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1596		{ "syscalls:sys_exit_poll",		process_exit_poll },
1597		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1598		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1599		{ "syscalls:sys_exit_select",		process_exit_poll },
1600	};
1601	struct perf_data data = {
1602		.path  = input_name,
1603		.mode  = PERF_DATA_MODE_READ,
1604		.force = tchart->force,
1605	};
1606
1607	struct perf_session *session = perf_session__new(&data, &tchart->tool);
 
1608	int ret = -EINVAL;
1609
1610	if (IS_ERR(session))
1611		return PTR_ERR(session);
1612
1613	symbol__init(&session->header.env);
1614
1615	(void)perf_header__process_sections(&session->header,
1616					    perf_data__fd(session->data),
1617					    tchart,
1618					    process_header);
1619
1620	if (!perf_session__has_traces(session, "timechart record"))
1621		goto out_delete;
1622
1623	if (perf_session__set_tracepoints_handlers(session,
1624						   power_tracepoints)) {
1625		pr_err("Initializing session tracepoint handlers failed\n");
1626		goto out_delete;
1627	}
1628
1629	ret = perf_session__process_events(session);
1630	if (ret)
1631		goto out_delete;
1632
1633	end_sample_processing(tchart);
1634
1635	sort_pids(tchart);
1636
1637	write_svg_file(tchart, output_name);
1638
1639	pr_info("Written %2.1f seconds of trace to %s.\n",
1640		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1641out_delete:
1642	perf_session__delete(session);
1643	return ret;
1644}
1645
1646static int timechart__io_record(int argc, const char **argv)
1647{
1648	unsigned int rec_argc, i;
1649	const char **rec_argv;
1650	const char **p;
1651	char *filter = NULL;
1652
1653	const char * const common_args[] = {
1654		"record", "-a", "-R", "-c", "1",
1655	};
1656	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658	const char * const disk_events[] = {
1659		"syscalls:sys_enter_read",
1660		"syscalls:sys_enter_pread64",
1661		"syscalls:sys_enter_readv",
1662		"syscalls:sys_enter_preadv",
1663		"syscalls:sys_enter_write",
1664		"syscalls:sys_enter_pwrite64",
1665		"syscalls:sys_enter_writev",
1666		"syscalls:sys_enter_pwritev",
1667		"syscalls:sys_enter_sync",
1668		"syscalls:sys_enter_sync_file_range",
1669		"syscalls:sys_enter_fsync",
1670		"syscalls:sys_enter_msync",
1671
1672		"syscalls:sys_exit_read",
1673		"syscalls:sys_exit_pread64",
1674		"syscalls:sys_exit_readv",
1675		"syscalls:sys_exit_preadv",
1676		"syscalls:sys_exit_write",
1677		"syscalls:sys_exit_pwrite64",
1678		"syscalls:sys_exit_writev",
1679		"syscalls:sys_exit_pwritev",
1680		"syscalls:sys_exit_sync",
1681		"syscalls:sys_exit_sync_file_range",
1682		"syscalls:sys_exit_fsync",
1683		"syscalls:sys_exit_msync",
1684	};
1685	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687	const char * const net_events[] = {
1688		"syscalls:sys_enter_recvfrom",
1689		"syscalls:sys_enter_recvmmsg",
1690		"syscalls:sys_enter_recvmsg",
1691		"syscalls:sys_enter_sendto",
1692		"syscalls:sys_enter_sendmsg",
1693		"syscalls:sys_enter_sendmmsg",
1694
1695		"syscalls:sys_exit_recvfrom",
1696		"syscalls:sys_exit_recvmmsg",
1697		"syscalls:sys_exit_recvmsg",
1698		"syscalls:sys_exit_sendto",
1699		"syscalls:sys_exit_sendmsg",
1700		"syscalls:sys_exit_sendmmsg",
1701	};
1702	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704	const char * const poll_events[] = {
1705		"syscalls:sys_enter_epoll_pwait",
1706		"syscalls:sys_enter_epoll_wait",
1707		"syscalls:sys_enter_poll",
1708		"syscalls:sys_enter_ppoll",
1709		"syscalls:sys_enter_pselect6",
1710		"syscalls:sys_enter_select",
1711
1712		"syscalls:sys_exit_epoll_pwait",
1713		"syscalls:sys_exit_epoll_wait",
1714		"syscalls:sys_exit_poll",
1715		"syscalls:sys_exit_ppoll",
1716		"syscalls:sys_exit_pselect6",
1717		"syscalls:sys_exit_select",
1718	};
1719	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721	rec_argc = common_args_nr +
1722		disk_events_nr * 4 +
1723		net_events_nr * 4 +
1724		poll_events_nr * 4 +
1725		argc;
1726	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728	if (rec_argv == NULL)
1729		return -ENOMEM;
1730
1731	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1732		free(rec_argv);
1733		return -ENOMEM;
1734	}
1735
1736	p = rec_argv;
1737	for (i = 0; i < common_args_nr; i++)
1738		*p++ = strdup(common_args[i]);
1739
1740	for (i = 0; i < disk_events_nr; i++) {
1741		if (!is_valid_tracepoint(disk_events[i])) {
1742			rec_argc -= 4;
1743			continue;
1744		}
1745
1746		*p++ = "-e";
1747		*p++ = strdup(disk_events[i]);
1748		*p++ = "--filter";
1749		*p++ = filter;
1750	}
1751	for (i = 0; i < net_events_nr; i++) {
1752		if (!is_valid_tracepoint(net_events[i])) {
1753			rec_argc -= 4;
1754			continue;
1755		}
1756
1757		*p++ = "-e";
1758		*p++ = strdup(net_events[i]);
1759		*p++ = "--filter";
1760		*p++ = filter;
1761	}
1762	for (i = 0; i < poll_events_nr; i++) {
1763		if (!is_valid_tracepoint(poll_events[i])) {
1764			rec_argc -= 4;
1765			continue;
1766		}
1767
1768		*p++ = "-e";
1769		*p++ = strdup(poll_events[i]);
1770		*p++ = "--filter";
1771		*p++ = filter;
1772	}
1773
1774	for (i = 0; i < (unsigned int)argc; i++)
1775		*p++ = argv[i];
1776
1777	return cmd_record(rec_argc, rec_argv);
1778}
1779
1780
1781static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1782{
1783	unsigned int rec_argc, i, j;
1784	const char **rec_argv;
1785	const char **p;
1786	unsigned int record_elems;
1787
1788	const char * const common_args[] = {
1789		"record", "-a", "-R", "-c", "1",
1790	};
1791	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1792
1793	const char * const backtrace_args[] = {
1794		"-g",
1795	};
1796	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1797
1798	const char * const power_args[] = {
1799		"-e", "power:cpu_frequency",
1800		"-e", "power:cpu_idle",
1801	};
1802	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1803
1804	const char * const old_power_args[] = {
1805#ifdef SUPPORT_OLD_POWER_EVENTS
1806		"-e", "power:power_start",
1807		"-e", "power:power_end",
1808		"-e", "power:power_frequency",
1809#endif
1810	};
1811	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1812
1813	const char * const tasks_args[] = {
1814		"-e", "sched:sched_wakeup",
1815		"-e", "sched:sched_switch",
1816	};
1817	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1818
1819#ifdef SUPPORT_OLD_POWER_EVENTS
1820	if (!is_valid_tracepoint("power:cpu_idle") &&
1821	    is_valid_tracepoint("power:power_start")) {
1822		use_old_power_events = 1;
1823		power_args_nr = 0;
1824	} else {
1825		old_power_args_nr = 0;
1826	}
1827#endif
1828
1829	if (tchart->power_only)
1830		tasks_args_nr = 0;
1831
1832	if (tchart->tasks_only) {
1833		power_args_nr = 0;
1834		old_power_args_nr = 0;
1835	}
1836
1837	if (!tchart->with_backtrace)
1838		backtrace_args_no = 0;
1839
1840	record_elems = common_args_nr + tasks_args_nr +
1841		power_args_nr + old_power_args_nr + backtrace_args_no;
1842
1843	rec_argc = record_elems + argc;
1844	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1845
1846	if (rec_argv == NULL)
1847		return -ENOMEM;
1848
1849	p = rec_argv;
1850	for (i = 0; i < common_args_nr; i++)
1851		*p++ = strdup(common_args[i]);
1852
1853	for (i = 0; i < backtrace_args_no; i++)
1854		*p++ = strdup(backtrace_args[i]);
1855
1856	for (i = 0; i < tasks_args_nr; i++)
1857		*p++ = strdup(tasks_args[i]);
1858
1859	for (i = 0; i < power_args_nr; i++)
1860		*p++ = strdup(power_args[i]);
1861
1862	for (i = 0; i < old_power_args_nr; i++)
1863		*p++ = strdup(old_power_args[i]);
1864
1865	for (j = 0; j < (unsigned int)argc; j++)
1866		*p++ = argv[j];
1867
1868	return cmd_record(rec_argc, rec_argv);
1869}
1870
1871static int
1872parse_process(const struct option *opt __maybe_unused, const char *arg,
1873	      int __maybe_unused unset)
1874{
1875	if (arg)
1876		add_process_filter(arg);
1877	return 0;
1878}
1879
1880static int
1881parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1882		int __maybe_unused unset)
1883{
1884	unsigned long duration = strtoul(arg, NULL, 0);
1885
1886	if (svg_highlight || svg_highlight_name)
1887		return -1;
1888
1889	if (duration)
1890		svg_highlight = duration;
1891	else
1892		svg_highlight_name = strdup(arg);
1893
1894	return 0;
1895}
1896
1897static int
1898parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1899{
1900	char unit = 'n';
1901	u64 *value = opt->value;
1902
1903	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1904		switch (unit) {
1905		case 'm':
1906			*value *= NSEC_PER_MSEC;
1907			break;
1908		case 'u':
1909			*value *= NSEC_PER_USEC;
1910			break;
1911		case 'n':
1912			break;
1913		default:
1914			return -1;
1915		}
1916	}
1917
1918	return 0;
1919}
1920
1921int cmd_timechart(int argc, const char **argv)
1922{
1923	struct timechart tchart = {
1924		.tool = {
1925			.comm		 = process_comm_event,
1926			.fork		 = process_fork_event,
1927			.exit		 = process_exit_event,
1928			.sample		 = process_sample_event,
1929			.ordered_events	 = true,
1930		},
1931		.proc_num = 15,
1932		.min_time = NSEC_PER_MSEC,
1933		.merge_dist = 1000,
1934	};
1935	const char *output_name = "output.svg";
1936	const struct option timechart_common_options[] = {
1937	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1938	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1939	OPT_END()
1940	};
1941	const struct option timechart_options[] = {
1942	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1943	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1944	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1945	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1946		      "highlight tasks. Pass duration in ns or process name.",
1947		       parse_highlight),
 
 
 
1948	OPT_CALLBACK('p', "process", NULL, "process",
1949		      "process selector. Pass a pid or process name.",
1950		       parse_process),
1951	OPT_CALLBACK(0, "symfs", NULL, "directory",
1952		     "Look for files with symbols relative to this directory",
1953		     symbol__config_symfs),
1954	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1955		    "min. number of tasks to print"),
1956	OPT_BOOLEAN('t', "topology", &tchart.topology,
1957		    "sort CPUs according to topology"),
1958	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1959		    "skip EAGAIN errors"),
1960	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1961		     "all IO faster than min-time will visually appear longer",
1962		     parse_time),
1963	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1964		     "merge events that are merge-dist us apart",
1965		     parse_time),
1966	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1967	OPT_PARENT(timechart_common_options),
1968	};
1969	const char * const timechart_subcommands[] = { "record", NULL };
1970	const char *timechart_usage[] = {
1971		"perf timechart [<options>] {record}",
1972		NULL
1973	};
1974	const struct option timechart_record_options[] = {
1975	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976		    "record only IO data"),
 
 
1977	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978	OPT_PARENT(timechart_common_options),
1979	};
1980	const char * const timechart_record_usage[] = {
1981		"perf timechart record [<options>]",
1982		NULL
1983	};
1984	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987	if (tchart.power_only && tchart.tasks_only) {
1988		pr_err("-P and -T options cannot be used at the same time.\n");
1989		return -1;
1990	}
1991
1992	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1993		argc = parse_options(argc, argv, timechart_record_options,
1994				     timechart_record_usage,
 
1995				     PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997		if (tchart.power_only && tchart.tasks_only) {
1998			pr_err("-P and -T options cannot be used at the same time.\n");
1999			return -1;
2000		}
2001
2002		if (tchart.io_only)
2003			return timechart__io_record(argc, argv);
2004		else
2005			return timechart__record(&tchart, argc, argv);
2006	} else if (argc)
2007		usage_with_options(timechart_usage, timechart_options);
2008
2009	setup_pager();
2010
2011	return __cmd_timechart(&tchart, output_name);
2012}