Loading...
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <linux/types.h>
56#include <linux/kernel.h>
57#include <linux/wait.h>
58#include <linux/time.h>
59#include <linux/ip.h>
60#include <linux/capability.h>
61#include <linux/fcntl.h>
62#include <linux/poll.h>
63#include <linux/init.h>
64#include <linux/crypto.h>
65#include <linux/slab.h>
66#include <linux/file.h>
67#include <linux/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74
75#include <linux/socket.h> /* for sa_family_t */
76#include <linux/export.h>
77#include <net/sock.h>
78#include <net/sctp/sctp.h>
79#include <net/sctp/sm.h>
80
81/* Forward declarations for internal helper functions. */
82static int sctp_writeable(struct sock *sk);
83static void sctp_wfree(struct sk_buff *skb);
84static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 size_t msg_len);
86static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
87static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88static int sctp_wait_for_accept(struct sock *sk, long timeo);
89static void sctp_wait_for_close(struct sock *sk, long timeo);
90static void sctp_destruct_sock(struct sock *sk);
91static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 union sctp_addr *addr, int len);
93static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf(struct sctp_association *asoc,
98 struct sctp_chunk *chunk);
99static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100static int sctp_autobind(struct sock *sk);
101static void sctp_sock_migrate(struct sock *, struct sock *,
102 struct sctp_association *, sctp_socket_type_t);
103
104extern struct kmem_cache *sctp_bucket_cachep;
105extern long sysctl_sctp_mem[3];
106extern int sysctl_sctp_rmem[3];
107extern int sysctl_sctp_wmem[3];
108
109static int sctp_memory_pressure;
110static atomic_long_t sctp_memory_allocated;
111struct percpu_counter sctp_sockets_allocated;
112
113static void sctp_enter_memory_pressure(struct sock *sk)
114{
115 sctp_memory_pressure = 1;
116}
117
118
119/* Get the sndbuf space available at the time on the association. */
120static inline int sctp_wspace(struct sctp_association *asoc)
121{
122 int amt;
123
124 if (asoc->ep->sndbuf_policy)
125 amt = asoc->sndbuf_used;
126 else
127 amt = sk_wmem_alloc_get(asoc->base.sk);
128
129 if (amt >= asoc->base.sk->sk_sndbuf) {
130 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 amt = 0;
132 else {
133 amt = sk_stream_wspace(asoc->base.sk);
134 if (amt < 0)
135 amt = 0;
136 }
137 } else {
138 amt = asoc->base.sk->sk_sndbuf - amt;
139 }
140 return amt;
141}
142
143/* Increment the used sndbuf space count of the corresponding association by
144 * the size of the outgoing data chunk.
145 * Also, set the skb destructor for sndbuf accounting later.
146 *
147 * Since it is always 1-1 between chunk and skb, and also a new skb is always
148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149 * destructor in the data chunk skb for the purpose of the sndbuf space
150 * tracking.
151 */
152static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153{
154 struct sctp_association *asoc = chunk->asoc;
155 struct sock *sk = asoc->base.sk;
156
157 /* The sndbuf space is tracked per association. */
158 sctp_association_hold(asoc);
159
160 skb_set_owner_w(chunk->skb, sk);
161
162 chunk->skb->destructor = sctp_wfree;
163 /* Save the chunk pointer in skb for sctp_wfree to use later. */
164 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165
166 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 sizeof(struct sk_buff) +
168 sizeof(struct sctp_chunk);
169
170 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 sk->sk_wmem_queued += chunk->skb->truesize;
172 sk_mem_charge(sk, chunk->skb->truesize);
173}
174
175/* Verify that this is a valid address. */
176static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 int len)
178{
179 struct sctp_af *af;
180
181 /* Verify basic sockaddr. */
182 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 if (!af)
184 return -EINVAL;
185
186 /* Is this a valid SCTP address? */
187 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 return -EINVAL;
189
190 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 return -EINVAL;
192
193 return 0;
194}
195
196/* Look up the association by its id. If this is not a UDP-style
197 * socket, the ID field is always ignored.
198 */
199struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200{
201 struct sctp_association *asoc = NULL;
202
203 /* If this is not a UDP-style socket, assoc id should be ignored. */
204 if (!sctp_style(sk, UDP)) {
205 /* Return NULL if the socket state is not ESTABLISHED. It
206 * could be a TCP-style listening socket or a socket which
207 * hasn't yet called connect() to establish an association.
208 */
209 if (!sctp_sstate(sk, ESTABLISHED))
210 return NULL;
211
212 /* Get the first and the only association from the list. */
213 if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 struct sctp_association, asocs);
216 return asoc;
217 }
218
219 /* Otherwise this is a UDP-style socket. */
220 if (!id || (id == (sctp_assoc_t)-1))
221 return NULL;
222
223 spin_lock_bh(&sctp_assocs_id_lock);
224 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 spin_unlock_bh(&sctp_assocs_id_lock);
226
227 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 return NULL;
229
230 return asoc;
231}
232
233/* Look up the transport from an address and an assoc id. If both address and
234 * id are specified, the associations matching the address and the id should be
235 * the same.
236 */
237static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 struct sockaddr_storage *addr,
239 sctp_assoc_t id)
240{
241 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 struct sctp_transport *transport;
243 union sctp_addr *laddr = (union sctp_addr *)addr;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260}
261
262/* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273{
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291}
292
293static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295/* Verify this is a valid sockaddr. */
296static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298{
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323}
324
325/* Bind a local address either to an endpoint or to an association. */
326static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327{
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < PROT_SOCK &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394
395 /* Copy back into socket for getsockname() use. */
396 if (!ret) {
397 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 af->to_sk_saddr(addr, sk);
399 }
400
401 return ret;
402}
403
404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405 *
406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407 * at any one time. If a sender, after sending an ASCONF chunk, decides
408 * it needs to transfer another ASCONF Chunk, it MUST wait until the
409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410 * subsequent ASCONF. Note this restriction binds each side, so at any
411 * time two ASCONF may be in-transit on any given association (one sent
412 * from each endpoint).
413 */
414static int sctp_send_asconf(struct sctp_association *asoc,
415 struct sctp_chunk *chunk)
416{
417 struct net *net = sock_net(asoc->base.sk);
418 int retval = 0;
419
420 /* If there is an outstanding ASCONF chunk, queue it for later
421 * transmission.
422 */
423 if (asoc->addip_last_asconf) {
424 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 goto out;
426 }
427
428 /* Hold the chunk until an ASCONF_ACK is received. */
429 sctp_chunk_hold(chunk);
430 retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 if (retval)
432 sctp_chunk_free(chunk);
433 else
434 asoc->addip_last_asconf = chunk;
435
436out:
437 return retval;
438}
439
440/* Add a list of addresses as bind addresses to local endpoint or
441 * association.
442 *
443 * Basically run through each address specified in the addrs/addrcnt
444 * array/length pair, determine if it is IPv6 or IPv4 and call
445 * sctp_do_bind() on it.
446 *
447 * If any of them fails, then the operation will be reversed and the
448 * ones that were added will be removed.
449 *
450 * Only sctp_setsockopt_bindx() is supposed to call this function.
451 */
452static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453{
454 int cnt;
455 int retval = 0;
456 void *addr_buf;
457 struct sockaddr *sa_addr;
458 struct sctp_af *af;
459
460 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 addrs, addrcnt);
462
463 addr_buf = addrs;
464 for (cnt = 0; cnt < addrcnt; cnt++) {
465 /* The list may contain either IPv4 or IPv6 address;
466 * determine the address length for walking thru the list.
467 */
468 sa_addr = addr_buf;
469 af = sctp_get_af_specific(sa_addr->sa_family);
470 if (!af) {
471 retval = -EINVAL;
472 goto err_bindx_add;
473 }
474
475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 af->sockaddr_len);
477
478 addr_buf += af->sockaddr_len;
479
480err_bindx_add:
481 if (retval < 0) {
482 /* Failed. Cleanup the ones that have been added */
483 if (cnt > 0)
484 sctp_bindx_rem(sk, addrs, cnt);
485 return retval;
486 }
487 }
488
489 return retval;
490}
491
492/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493 * associations that are part of the endpoint indicating that a list of local
494 * addresses are added to the endpoint.
495 *
496 * If any of the addresses is already in the bind address list of the
497 * association, we do not send the chunk for that association. But it will not
498 * affect other associations.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
502static int sctp_send_asconf_add_ip(struct sock *sk,
503 struct sockaddr *addrs,
504 int addrcnt)
505{
506 struct net *net = sock_net(sk);
507 struct sctp_sock *sp;
508 struct sctp_endpoint *ep;
509 struct sctp_association *asoc;
510 struct sctp_bind_addr *bp;
511 struct sctp_chunk *chunk;
512 struct sctp_sockaddr_entry *laddr;
513 union sctp_addr *addr;
514 union sctp_addr saveaddr;
515 void *addr_buf;
516 struct sctp_af *af;
517 struct list_head *p;
518 int i;
519 int retval = 0;
520
521 if (!net->sctp.addip_enable)
522 return retval;
523
524 sp = sctp_sk(sk);
525 ep = sp->ep;
526
527 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 __func__, sk, addrs, addrcnt);
529
530 list_for_each_entry(asoc, &ep->asocs, asocs) {
531 if (!asoc->peer.asconf_capable)
532 continue;
533
534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 continue;
536
537 if (!sctp_state(asoc, ESTABLISHED))
538 continue;
539
540 /* Check if any address in the packed array of addresses is
541 * in the bind address list of the association. If so,
542 * do not send the asconf chunk to its peer, but continue with
543 * other associations.
544 */
545 addr_buf = addrs;
546 for (i = 0; i < addrcnt; i++) {
547 addr = addr_buf;
548 af = sctp_get_af_specific(addr->v4.sin_family);
549 if (!af) {
550 retval = -EINVAL;
551 goto out;
552 }
553
554 if (sctp_assoc_lookup_laddr(asoc, addr))
555 break;
556
557 addr_buf += af->sockaddr_len;
558 }
559 if (i < addrcnt)
560 continue;
561
562 /* Use the first valid address in bind addr list of
563 * association as Address Parameter of ASCONF CHUNK.
564 */
565 bp = &asoc->base.bind_addr;
566 p = bp->address_list.next;
567 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 addrcnt, SCTP_PARAM_ADD_IP);
570 if (!chunk) {
571 retval = -ENOMEM;
572 goto out;
573 }
574
575 /* Add the new addresses to the bind address list with
576 * use_as_src set to 0.
577 */
578 addr_buf = addrs;
579 for (i = 0; i < addrcnt; i++) {
580 addr = addr_buf;
581 af = sctp_get_af_specific(addr->v4.sin_family);
582 memcpy(&saveaddr, addr, af->sockaddr_len);
583 retval = sctp_add_bind_addr(bp, &saveaddr,
584 SCTP_ADDR_NEW, GFP_ATOMIC);
585 addr_buf += af->sockaddr_len;
586 }
587 if (asoc->src_out_of_asoc_ok) {
588 struct sctp_transport *trans;
589
590 list_for_each_entry(trans,
591 &asoc->peer.transport_addr_list, transports) {
592 /* Clear the source and route cache */
593 dst_release(trans->dst);
594 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 2*asoc->pathmtu, 4380));
596 trans->ssthresh = asoc->peer.i.a_rwnd;
597 trans->rto = asoc->rto_initial;
598 sctp_max_rto(asoc, trans);
599 trans->rtt = trans->srtt = trans->rttvar = 0;
600 sctp_transport_route(trans, NULL,
601 sctp_sk(asoc->base.sk));
602 }
603 }
604 retval = sctp_send_asconf(asoc, chunk);
605 }
606
607out:
608 return retval;
609}
610
611/* Remove a list of addresses from bind addresses list. Do not remove the
612 * last address.
613 *
614 * Basically run through each address specified in the addrs/addrcnt
615 * array/length pair, determine if it is IPv6 or IPv4 and call
616 * sctp_del_bind() on it.
617 *
618 * If any of them fails, then the operation will be reversed and the
619 * ones that were removed will be added back.
620 *
621 * At least one address has to be left; if only one address is
622 * available, the operation will return -EBUSY.
623 *
624 * Only sctp_setsockopt_bindx() is supposed to call this function.
625 */
626static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627{
628 struct sctp_sock *sp = sctp_sk(sk);
629 struct sctp_endpoint *ep = sp->ep;
630 int cnt;
631 struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 int retval = 0;
633 void *addr_buf;
634 union sctp_addr *sa_addr;
635 struct sctp_af *af;
636
637 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 __func__, sk, addrs, addrcnt);
639
640 addr_buf = addrs;
641 for (cnt = 0; cnt < addrcnt; cnt++) {
642 /* If the bind address list is empty or if there is only one
643 * bind address, there is nothing more to be removed (we need
644 * at least one address here).
645 */
646 if (list_empty(&bp->address_list) ||
647 (sctp_list_single_entry(&bp->address_list))) {
648 retval = -EBUSY;
649 goto err_bindx_rem;
650 }
651
652 sa_addr = addr_buf;
653 af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 if (!af) {
655 retval = -EINVAL;
656 goto err_bindx_rem;
657 }
658
659 if (!af->addr_valid(sa_addr, sp, NULL)) {
660 retval = -EADDRNOTAVAIL;
661 goto err_bindx_rem;
662 }
663
664 if (sa_addr->v4.sin_port &&
665 sa_addr->v4.sin_port != htons(bp->port)) {
666 retval = -EINVAL;
667 goto err_bindx_rem;
668 }
669
670 if (!sa_addr->v4.sin_port)
671 sa_addr->v4.sin_port = htons(bp->port);
672
673 /* FIXME - There is probably a need to check if sk->sk_saddr and
674 * sk->sk_rcv_addr are currently set to one of the addresses to
675 * be removed. This is something which needs to be looked into
676 * when we are fixing the outstanding issues with multi-homing
677 * socket routing and failover schemes. Refer to comments in
678 * sctp_do_bind(). -daisy
679 */
680 retval = sctp_del_bind_addr(bp, sa_addr);
681
682 addr_buf += af->sockaddr_len;
683err_bindx_rem:
684 if (retval < 0) {
685 /* Failed. Add the ones that has been removed back */
686 if (cnt > 0)
687 sctp_bindx_add(sk, addrs, cnt);
688 return retval;
689 }
690 }
691
692 return retval;
693}
694
695/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696 * the associations that are part of the endpoint indicating that a list of
697 * local addresses are removed from the endpoint.
698 *
699 * If any of the addresses is already in the bind address list of the
700 * association, we do not send the chunk for that association. But it will not
701 * affect other associations.
702 *
703 * Only sctp_setsockopt_bindx() is supposed to call this function.
704 */
705static int sctp_send_asconf_del_ip(struct sock *sk,
706 struct sockaddr *addrs,
707 int addrcnt)
708{
709 struct net *net = sock_net(sk);
710 struct sctp_sock *sp;
711 struct sctp_endpoint *ep;
712 struct sctp_association *asoc;
713 struct sctp_transport *transport;
714 struct sctp_bind_addr *bp;
715 struct sctp_chunk *chunk;
716 union sctp_addr *laddr;
717 void *addr_buf;
718 struct sctp_af *af;
719 struct sctp_sockaddr_entry *saddr;
720 int i;
721 int retval = 0;
722 int stored = 0;
723
724 chunk = NULL;
725 if (!net->sctp.addip_enable)
726 return retval;
727
728 sp = sctp_sk(sk);
729 ep = sp->ep;
730
731 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 __func__, sk, addrs, addrcnt);
733
734 list_for_each_entry(asoc, &ep->asocs, asocs) {
735
736 if (!asoc->peer.asconf_capable)
737 continue;
738
739 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 continue;
741
742 if (!sctp_state(asoc, ESTABLISHED))
743 continue;
744
745 /* Check if any address in the packed array of addresses is
746 * not present in the bind address list of the association.
747 * If so, do not send the asconf chunk to its peer, but
748 * continue with other associations.
749 */
750 addr_buf = addrs;
751 for (i = 0; i < addrcnt; i++) {
752 laddr = addr_buf;
753 af = sctp_get_af_specific(laddr->v4.sin_family);
754 if (!af) {
755 retval = -EINVAL;
756 goto out;
757 }
758
759 if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 break;
761
762 addr_buf += af->sockaddr_len;
763 }
764 if (i < addrcnt)
765 continue;
766
767 /* Find one address in the association's bind address list
768 * that is not in the packed array of addresses. This is to
769 * make sure that we do not delete all the addresses in the
770 * association.
771 */
772 bp = &asoc->base.bind_addr;
773 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 addrcnt, sp);
775 if ((laddr == NULL) && (addrcnt == 1)) {
776 if (asoc->asconf_addr_del_pending)
777 continue;
778 asoc->asconf_addr_del_pending =
779 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 if (asoc->asconf_addr_del_pending == NULL) {
781 retval = -ENOMEM;
782 goto out;
783 }
784 asoc->asconf_addr_del_pending->sa.sa_family =
785 addrs->sa_family;
786 asoc->asconf_addr_del_pending->v4.sin_port =
787 htons(bp->port);
788 if (addrs->sa_family == AF_INET) {
789 struct sockaddr_in *sin;
790
791 sin = (struct sockaddr_in *)addrs;
792 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 } else if (addrs->sa_family == AF_INET6) {
794 struct sockaddr_in6 *sin6;
795
796 sin6 = (struct sockaddr_in6 *)addrs;
797 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 }
799
800 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 asoc->asconf_addr_del_pending);
803
804 asoc->src_out_of_asoc_ok = 1;
805 stored = 1;
806 goto skip_mkasconf;
807 }
808
809 if (laddr == NULL)
810 return -EINVAL;
811
812 /* We do not need RCU protection throughout this loop
813 * because this is done under a socket lock from the
814 * setsockopt call.
815 */
816 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 SCTP_PARAM_DEL_IP);
818 if (!chunk) {
819 retval = -ENOMEM;
820 goto out;
821 }
822
823skip_mkasconf:
824 /* Reset use_as_src flag for the addresses in the bind address
825 * list that are to be deleted.
826 */
827 addr_buf = addrs;
828 for (i = 0; i < addrcnt; i++) {
829 laddr = addr_buf;
830 af = sctp_get_af_specific(laddr->v4.sin_family);
831 list_for_each_entry(saddr, &bp->address_list, list) {
832 if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 saddr->state = SCTP_ADDR_DEL;
834 }
835 addr_buf += af->sockaddr_len;
836 }
837
838 /* Update the route and saddr entries for all the transports
839 * as some of the addresses in the bind address list are
840 * about to be deleted and cannot be used as source addresses.
841 */
842 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 transports) {
844 dst_release(transport->dst);
845 sctp_transport_route(transport, NULL,
846 sctp_sk(asoc->base.sk));
847 }
848
849 if (stored)
850 /* We don't need to transmit ASCONF */
851 continue;
852 retval = sctp_send_asconf(asoc, chunk);
853 }
854out:
855 return retval;
856}
857
858/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
859int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860{
861 struct sock *sk = sctp_opt2sk(sp);
862 union sctp_addr *addr;
863 struct sctp_af *af;
864
865 /* It is safe to write port space in caller. */
866 addr = &addrw->a;
867 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 af = sctp_get_af_specific(addr->sa.sa_family);
869 if (!af)
870 return -EINVAL;
871 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 return -EINVAL;
873
874 if (addrw->state == SCTP_ADDR_NEW)
875 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 else
877 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878}
879
880/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881 *
882 * API 8.1
883 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884 * int flags);
885 *
886 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888 * or IPv6 addresses.
889 *
890 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891 * Section 3.1.2 for this usage.
892 *
893 * addrs is a pointer to an array of one or more socket addresses. Each
894 * address is contained in its appropriate structure (i.e. struct
895 * sockaddr_in or struct sockaddr_in6) the family of the address type
896 * must be used to distinguish the address length (note that this
897 * representation is termed a "packed array" of addresses). The caller
898 * specifies the number of addresses in the array with addrcnt.
899 *
900 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901 * -1, and sets errno to the appropriate error code.
902 *
903 * For SCTP, the port given in each socket address must be the same, or
904 * sctp_bindx() will fail, setting errno to EINVAL.
905 *
906 * The flags parameter is formed from the bitwise OR of zero or more of
907 * the following currently defined flags:
908 *
909 * SCTP_BINDX_ADD_ADDR
910 *
911 * SCTP_BINDX_REM_ADDR
912 *
913 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915 * addresses from the association. The two flags are mutually exclusive;
916 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917 * not remove all addresses from an association; sctp_bindx() will
918 * reject such an attempt with EINVAL.
919 *
920 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921 * additional addresses with an endpoint after calling bind(). Or use
922 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923 * socket is associated with so that no new association accepted will be
924 * associated with those addresses. If the endpoint supports dynamic
925 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926 * endpoint to send the appropriate message to the peer to change the
927 * peers address lists.
928 *
929 * Adding and removing addresses from a connected association is
930 * optional functionality. Implementations that do not support this
931 * functionality should return EOPNOTSUPP.
932 *
933 * Basically do nothing but copying the addresses from user to kernel
934 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936 * from userspace.
937 *
938 * We don't use copy_from_user() for optimization: we first do the
939 * sanity checks (buffer size -fast- and access check-healthy
940 * pointer); if all of those succeed, then we can alloc the memory
941 * (expensive operation) needed to copy the data to kernel. Then we do
942 * the copying without checking the user space area
943 * (__copy_from_user()).
944 *
945 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946 * it.
947 *
948 * sk The sk of the socket
949 * addrs The pointer to the addresses in user land
950 * addrssize Size of the addrs buffer
951 * op Operation to perform (add or remove, see the flags of
952 * sctp_bindx)
953 *
954 * Returns 0 if ok, <0 errno code on error.
955 */
956static int sctp_setsockopt_bindx(struct sock *sk,
957 struct sockaddr __user *addrs,
958 int addrs_size, int op)
959{
960 struct sockaddr *kaddrs;
961 int err;
962 int addrcnt = 0;
963 int walk_size = 0;
964 struct sockaddr *sa_addr;
965 void *addr_buf;
966 struct sctp_af *af;
967
968 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
969 __func__, sk, addrs, addrs_size, op);
970
971 if (unlikely(addrs_size <= 0))
972 return -EINVAL;
973
974 /* Check the user passed a healthy pointer. */
975 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 return -EFAULT;
977
978 /* Alloc space for the address array in kernel memory. */
979 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 if (unlikely(!kaddrs))
981 return -ENOMEM;
982
983 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 kfree(kaddrs);
985 return -EFAULT;
986 }
987
988 /* Walk through the addrs buffer and count the number of addresses. */
989 addr_buf = kaddrs;
990 while (walk_size < addrs_size) {
991 if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 kfree(kaddrs);
993 return -EINVAL;
994 }
995
996 sa_addr = addr_buf;
997 af = sctp_get_af_specific(sa_addr->sa_family);
998
999 /* If the address family is not supported or if this address
1000 * causes the address buffer to overflow return EINVAL.
1001 */
1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 kfree(kaddrs);
1004 return -EINVAL;
1005 }
1006 addrcnt++;
1007 addr_buf += af->sockaddr_len;
1008 walk_size += af->sockaddr_len;
1009 }
1010
1011 /* Do the work. */
1012 switch (op) {
1013 case SCTP_BINDX_ADD_ADDR:
1014 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 if (err)
1016 goto out;
1017 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 break;
1019
1020 case SCTP_BINDX_REM_ADDR:
1021 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 if (err)
1023 goto out;
1024 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 break;
1026
1027 default:
1028 err = -EINVAL;
1029 break;
1030 }
1031
1032out:
1033 kfree(kaddrs);
1034
1035 return err;
1036}
1037
1038/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039 *
1040 * Common routine for handling connect() and sctp_connectx().
1041 * Connect will come in with just a single address.
1042 */
1043static int __sctp_connect(struct sock *sk,
1044 struct sockaddr *kaddrs,
1045 int addrs_size,
1046 sctp_assoc_t *assoc_id)
1047{
1048 struct net *net = sock_net(sk);
1049 struct sctp_sock *sp;
1050 struct sctp_endpoint *ep;
1051 struct sctp_association *asoc = NULL;
1052 struct sctp_association *asoc2;
1053 struct sctp_transport *transport;
1054 union sctp_addr to;
1055 struct sctp_af *af;
1056 sctp_scope_t scope;
1057 long timeo;
1058 int err = 0;
1059 int addrcnt = 0;
1060 int walk_size = 0;
1061 union sctp_addr *sa_addr = NULL;
1062 void *addr_buf;
1063 unsigned short port;
1064 unsigned int f_flags = 0;
1065
1066 sp = sctp_sk(sk);
1067 ep = sp->ep;
1068
1069 /* connect() cannot be done on a socket that is already in ESTABLISHED
1070 * state - UDP-style peeled off socket or a TCP-style socket that
1071 * is already connected.
1072 * It cannot be done even on a TCP-style listening socket.
1073 */
1074 if (sctp_sstate(sk, ESTABLISHED) ||
1075 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 err = -EISCONN;
1077 goto out_free;
1078 }
1079
1080 /* Walk through the addrs buffer and count the number of addresses. */
1081 addr_buf = kaddrs;
1082 while (walk_size < addrs_size) {
1083 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084 err = -EINVAL;
1085 goto out_free;
1086 }
1087
1088 sa_addr = addr_buf;
1089 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090
1091 /* If the address family is not supported or if this address
1092 * causes the address buffer to overflow return EINVAL.
1093 */
1094 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095 err = -EINVAL;
1096 goto out_free;
1097 }
1098
1099 port = ntohs(sa_addr->v4.sin_port);
1100
1101 /* Save current address so we can work with it */
1102 memcpy(&to, sa_addr, af->sockaddr_len);
1103
1104 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105 if (err)
1106 goto out_free;
1107
1108 /* Make sure the destination port is correctly set
1109 * in all addresses.
1110 */
1111 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112 err = -EINVAL;
1113 goto out_free;
1114 }
1115
1116 /* Check if there already is a matching association on the
1117 * endpoint (other than the one created here).
1118 */
1119 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120 if (asoc2 && asoc2 != asoc) {
1121 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122 err = -EISCONN;
1123 else
1124 err = -EALREADY;
1125 goto out_free;
1126 }
1127
1128 /* If we could not find a matching association on the endpoint,
1129 * make sure that there is no peeled-off association matching
1130 * the peer address even on another socket.
1131 */
1132 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133 err = -EADDRNOTAVAIL;
1134 goto out_free;
1135 }
1136
1137 if (!asoc) {
1138 /* If a bind() or sctp_bindx() is not called prior to
1139 * an sctp_connectx() call, the system picks an
1140 * ephemeral port and will choose an address set
1141 * equivalent to binding with a wildcard address.
1142 */
1143 if (!ep->base.bind_addr.port) {
1144 if (sctp_autobind(sk)) {
1145 err = -EAGAIN;
1146 goto out_free;
1147 }
1148 } else {
1149 /*
1150 * If an unprivileged user inherits a 1-many
1151 * style socket with open associations on a
1152 * privileged port, it MAY be permitted to
1153 * accept new associations, but it SHOULD NOT
1154 * be permitted to open new associations.
1155 */
1156 if (ep->base.bind_addr.port < PROT_SOCK &&
1157 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158 err = -EACCES;
1159 goto out_free;
1160 }
1161 }
1162
1163 scope = sctp_scope(&to);
1164 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165 if (!asoc) {
1166 err = -ENOMEM;
1167 goto out_free;
1168 }
1169
1170 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171 GFP_KERNEL);
1172 if (err < 0) {
1173 goto out_free;
1174 }
1175
1176 }
1177
1178 /* Prime the peer's transport structures. */
1179 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180 SCTP_UNKNOWN);
1181 if (!transport) {
1182 err = -ENOMEM;
1183 goto out_free;
1184 }
1185
1186 addrcnt++;
1187 addr_buf += af->sockaddr_len;
1188 walk_size += af->sockaddr_len;
1189 }
1190
1191 /* In case the user of sctp_connectx() wants an association
1192 * id back, assign one now.
1193 */
1194 if (assoc_id) {
1195 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196 if (err < 0)
1197 goto out_free;
1198 }
1199
1200 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201 if (err < 0) {
1202 goto out_free;
1203 }
1204
1205 /* Initialize sk's dport and daddr for getpeername() */
1206 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208 af->to_sk_daddr(sa_addr, sk);
1209 sk->sk_err = 0;
1210
1211 /* in-kernel sockets don't generally have a file allocated to them
1212 * if all they do is call sock_create_kern().
1213 */
1214 if (sk->sk_socket->file)
1215 f_flags = sk->sk_socket->file->f_flags;
1216
1217 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218
1219 err = sctp_wait_for_connect(asoc, &timeo);
1220 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221 *assoc_id = asoc->assoc_id;
1222
1223 /* Don't free association on exit. */
1224 asoc = NULL;
1225
1226out_free:
1227 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228 __func__, asoc, kaddrs, err);
1229
1230 if (asoc) {
1231 /* sctp_primitive_ASSOCIATE may have added this association
1232 * To the hash table, try to unhash it, just in case, its a noop
1233 * if it wasn't hashed so we're safe
1234 */
1235 sctp_unhash_established(asoc);
1236 sctp_association_free(asoc);
1237 }
1238 return err;
1239}
1240
1241/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242 *
1243 * API 8.9
1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245 * sctp_assoc_t *asoc);
1246 *
1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249 * or IPv6 addresses.
1250 *
1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252 * Section 3.1.2 for this usage.
1253 *
1254 * addrs is a pointer to an array of one or more socket addresses. Each
1255 * address is contained in its appropriate structure (i.e. struct
1256 * sockaddr_in or struct sockaddr_in6) the family of the address type
1257 * must be used to distengish the address length (note that this
1258 * representation is termed a "packed array" of addresses). The caller
1259 * specifies the number of addresses in the array with addrcnt.
1260 *
1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262 * the association id of the new association. On failure, sctp_connectx()
1263 * returns -1, and sets errno to the appropriate error code. The assoc_id
1264 * is not touched by the kernel.
1265 *
1266 * For SCTP, the port given in each socket address must be the same, or
1267 * sctp_connectx() will fail, setting errno to EINVAL.
1268 *
1269 * An application can use sctp_connectx to initiate an association with
1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1271 * allows a caller to specify multiple addresses at which a peer can be
1272 * reached. The way the SCTP stack uses the list of addresses to set up
1273 * the association is implementation dependent. This function only
1274 * specifies that the stack will try to make use of all the addresses in
1275 * the list when needed.
1276 *
1277 * Note that the list of addresses passed in is only used for setting up
1278 * the association. It does not necessarily equal the set of addresses
1279 * the peer uses for the resulting association. If the caller wants to
1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281 * retrieve them after the association has been set up.
1282 *
1283 * Basically do nothing but copying the addresses from user to kernel
1284 * land and invoking either sctp_connectx(). This is used for tunneling
1285 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286 *
1287 * We don't use copy_from_user() for optimization: we first do the
1288 * sanity checks (buffer size -fast- and access check-healthy
1289 * pointer); if all of those succeed, then we can alloc the memory
1290 * (expensive operation) needed to copy the data to kernel. Then we do
1291 * the copying without checking the user space area
1292 * (__copy_from_user()).
1293 *
1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295 * it.
1296 *
1297 * sk The sk of the socket
1298 * addrs The pointer to the addresses in user land
1299 * addrssize Size of the addrs buffer
1300 *
1301 * Returns >=0 if ok, <0 errno code on error.
1302 */
1303static int __sctp_setsockopt_connectx(struct sock *sk,
1304 struct sockaddr __user *addrs,
1305 int addrs_size,
1306 sctp_assoc_t *assoc_id)
1307{
1308 int err = 0;
1309 struct sockaddr *kaddrs;
1310
1311 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 __func__, sk, addrs, addrs_size);
1313
1314 if (unlikely(addrs_size <= 0))
1315 return -EINVAL;
1316
1317 /* Check the user passed a healthy pointer. */
1318 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319 return -EFAULT;
1320
1321 /* Alloc space for the address array in kernel memory. */
1322 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323 if (unlikely(!kaddrs))
1324 return -ENOMEM;
1325
1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 err = -EFAULT;
1328 } else {
1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 }
1331
1332 kfree(kaddrs);
1333
1334 return err;
1335}
1336
1337/*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr __user *addrs,
1343 int addrs_size)
1344{
1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346}
1347
1348/*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr __user *addrs,
1356 int addrs_size)
1357{
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367}
1368
1369/*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377#ifdef CONFIG_COMPAT
1378struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382};
1383#endif
1384
1385static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388{
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 int err = 0;
1392
1393#ifdef CONFIG_COMPAT
1394 if (is_compat_task()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406#endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 param.addrs, param.addr_num,
1416 &assoc_id);
1417 if (err == 0 || err == -EINPROGRESS) {
1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 return -EFAULT;
1420 if (put_user(sizeof(assoc_id), optlen))
1421 return -EFAULT;
1422 }
1423
1424 return err;
1425}
1426
1427/* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 * ret = close(int sd);
1435 *
1436 * sd - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 * int close(int sd);
1453 *
1454 * sd - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive. The linger option structure is:
1463 *
1464 * struct linger {
1465 * int l_onoff; // option on/off
1466 * int l_linger; // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1. If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive. If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error. If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms. If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477static void sctp_close(struct sock *sk, long timeout)
1478{
1479 struct net *net = sock_net(sk);
1480 struct sctp_endpoint *ep;
1481 struct sctp_association *asoc;
1482 struct list_head *pos, *temp;
1483 unsigned int data_was_unread;
1484
1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487 lock_sock(sk);
1488 sk->sk_shutdown = SHUTDOWN_MASK;
1489 sk->sk_state = SCTP_SS_CLOSING;
1490
1491 ep = sctp_sk(sk)->ep;
1492
1493 /* Clean up any skbs sitting on the receive queue. */
1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497 /* Walk all associations on an endpoint. */
1498 list_for_each_safe(pos, temp, &ep->asocs) {
1499 asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501 if (sctp_style(sk, TCP)) {
1502 /* A closed association can still be in the list if
1503 * it belongs to a TCP-style listening socket that is
1504 * not yet accepted. If so, free it. If not, send an
1505 * ABORT or SHUTDOWN based on the linger options.
1506 */
1507 if (sctp_state(asoc, CLOSED)) {
1508 sctp_unhash_established(asoc);
1509 sctp_association_free(asoc);
1510 continue;
1511 }
1512 }
1513
1514 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1515 !skb_queue_empty(&asoc->ulpq.reasm) ||
1516 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1517 struct sctp_chunk *chunk;
1518
1519 chunk = sctp_make_abort_user(asoc, NULL, 0);
1520 if (chunk)
1521 sctp_primitive_ABORT(net, asoc, chunk);
1522 } else
1523 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1524 }
1525
1526 /* On a TCP-style socket, block for at most linger_time if set. */
1527 if (sctp_style(sk, TCP) && timeout)
1528 sctp_wait_for_close(sk, timeout);
1529
1530 /* This will run the backlog queue. */
1531 release_sock(sk);
1532
1533 /* Supposedly, no process has access to the socket, but
1534 * the net layers still may.
1535 */
1536 local_bh_disable();
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 local_bh_enable();
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551}
1552
1553/* Handle EPIPE error. */
1554static int sctp_error(struct sock *sk, int flags, int err)
1555{
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561}
1562
1563/* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1589 struct msghdr *msg, size_t msg_len)
1590{
1591 struct net *net = sock_net(sk);
1592 struct sctp_sock *sp;
1593 struct sctp_endpoint *ep;
1594 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1595 struct sctp_transport *transport, *chunk_tp;
1596 struct sctp_chunk *chunk;
1597 union sctp_addr to;
1598 struct sockaddr *msg_name = NULL;
1599 struct sctp_sndrcvinfo default_sinfo;
1600 struct sctp_sndrcvinfo *sinfo;
1601 struct sctp_initmsg *sinit;
1602 sctp_assoc_t associd = 0;
1603 sctp_cmsgs_t cmsgs = { NULL };
1604 int err;
1605 sctp_scope_t scope;
1606 long timeo;
1607 __u16 sinfo_flags = 0;
1608 struct sctp_datamsg *datamsg;
1609 int msg_flags = msg->msg_flags;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinfo = cmsgs.info;
1651 sinit = cmsgs.init;
1652
1653 /* Did the user specify SNDRCVINFO? */
1654 if (sinfo) {
1655 sinfo_flags = sinfo->sinfo_flags;
1656 associd = sinfo->sinfo_assoc_id;
1657 }
1658
1659 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1660 msg_len, sinfo_flags);
1661
1662 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1663 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1664 err = -EINVAL;
1665 goto out_nounlock;
1666 }
1667
1668 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1669 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1670 * If SCTP_ABORT is set, the message length could be non zero with
1671 * the msg_iov set to the user abort reason.
1672 */
1673 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1674 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_ADDR_OVER is set, there must be an address
1680 * specified in msg_name.
1681 */
1682 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1683 err = -EINVAL;
1684 goto out_nounlock;
1685 }
1686
1687 transport = NULL;
1688
1689 pr_debug("%s: about to look up association\n", __func__);
1690
1691 lock_sock(sk);
1692
1693 /* If a msg_name has been specified, assume this is to be used. */
1694 if (msg_name) {
1695 /* Look for a matching association on the endpoint. */
1696 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1697 if (!asoc) {
1698 /* If we could not find a matching association on the
1699 * endpoint, make sure that it is not a TCP-style
1700 * socket that already has an association or there is
1701 * no peeled-off association on another socket.
1702 */
1703 if ((sctp_style(sk, TCP) &&
1704 sctp_sstate(sk, ESTABLISHED)) ||
1705 sctp_endpoint_is_peeled_off(ep, &to)) {
1706 err = -EADDRNOTAVAIL;
1707 goto out_unlock;
1708 }
1709 }
1710 } else {
1711 asoc = sctp_id2assoc(sk, associd);
1712 if (!asoc) {
1713 err = -EPIPE;
1714 goto out_unlock;
1715 }
1716 }
1717
1718 if (asoc) {
1719 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1720
1721 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1722 * socket that has an association in CLOSED state. This can
1723 * happen when an accepted socket has an association that is
1724 * already CLOSED.
1725 */
1726 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1727 err = -EPIPE;
1728 goto out_unlock;
1729 }
1730
1731 if (sinfo_flags & SCTP_EOF) {
1732 pr_debug("%s: shutting down association:%p\n",
1733 __func__, asoc);
1734
1735 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1736 err = 0;
1737 goto out_unlock;
1738 }
1739 if (sinfo_flags & SCTP_ABORT) {
1740
1741 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1742 if (!chunk) {
1743 err = -ENOMEM;
1744 goto out_unlock;
1745 }
1746
1747 pr_debug("%s: aborting association:%p\n",
1748 __func__, asoc);
1749
1750 sctp_primitive_ABORT(net, asoc, chunk);
1751 err = 0;
1752 goto out_unlock;
1753 }
1754 }
1755
1756 /* Do we need to create the association? */
1757 if (!asoc) {
1758 pr_debug("%s: there is no association yet\n", __func__);
1759
1760 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1761 err = -EINVAL;
1762 goto out_unlock;
1763 }
1764
1765 /* Check for invalid stream against the stream counts,
1766 * either the default or the user specified stream counts.
1767 */
1768 if (sinfo) {
1769 if (!sinit || !sinit->sinit_num_ostreams) {
1770 /* Check against the defaults. */
1771 if (sinfo->sinfo_stream >=
1772 sp->initmsg.sinit_num_ostreams) {
1773 err = -EINVAL;
1774 goto out_unlock;
1775 }
1776 } else {
1777 /* Check against the requested. */
1778 if (sinfo->sinfo_stream >=
1779 sinit->sinit_num_ostreams) {
1780 err = -EINVAL;
1781 goto out_unlock;
1782 }
1783 }
1784 }
1785
1786 /*
1787 * API 3.1.2 bind() - UDP Style Syntax
1788 * If a bind() or sctp_bindx() is not called prior to a
1789 * sendmsg() call that initiates a new association, the
1790 * system picks an ephemeral port and will choose an address
1791 * set equivalent to binding with a wildcard address.
1792 */
1793 if (!ep->base.bind_addr.port) {
1794 if (sctp_autobind(sk)) {
1795 err = -EAGAIN;
1796 goto out_unlock;
1797 }
1798 } else {
1799 /*
1800 * If an unprivileged user inherits a one-to-many
1801 * style socket with open associations on a privileged
1802 * port, it MAY be permitted to accept new associations,
1803 * but it SHOULD NOT be permitted to open new
1804 * associations.
1805 */
1806 if (ep->base.bind_addr.port < PROT_SOCK &&
1807 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1808 err = -EACCES;
1809 goto out_unlock;
1810 }
1811 }
1812
1813 scope = sctp_scope(&to);
1814 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1815 if (!new_asoc) {
1816 err = -ENOMEM;
1817 goto out_unlock;
1818 }
1819 asoc = new_asoc;
1820 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1821 if (err < 0) {
1822 err = -ENOMEM;
1823 goto out_free;
1824 }
1825
1826 /* If the SCTP_INIT ancillary data is specified, set all
1827 * the association init values accordingly.
1828 */
1829 if (sinit) {
1830 if (sinit->sinit_num_ostreams) {
1831 asoc->c.sinit_num_ostreams =
1832 sinit->sinit_num_ostreams;
1833 }
1834 if (sinit->sinit_max_instreams) {
1835 asoc->c.sinit_max_instreams =
1836 sinit->sinit_max_instreams;
1837 }
1838 if (sinit->sinit_max_attempts) {
1839 asoc->max_init_attempts
1840 = sinit->sinit_max_attempts;
1841 }
1842 if (sinit->sinit_max_init_timeo) {
1843 asoc->max_init_timeo =
1844 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1845 }
1846 }
1847
1848 /* Prime the peer's transport structures. */
1849 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1850 if (!transport) {
1851 err = -ENOMEM;
1852 goto out_free;
1853 }
1854 }
1855
1856 /* ASSERT: we have a valid association at this point. */
1857 pr_debug("%s: we have a valid association\n", __func__);
1858
1859 if (!sinfo) {
1860 /* If the user didn't specify SNDRCVINFO, make up one with
1861 * some defaults.
1862 */
1863 memset(&default_sinfo, 0, sizeof(default_sinfo));
1864 default_sinfo.sinfo_stream = asoc->default_stream;
1865 default_sinfo.sinfo_flags = asoc->default_flags;
1866 default_sinfo.sinfo_ppid = asoc->default_ppid;
1867 default_sinfo.sinfo_context = asoc->default_context;
1868 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1869 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1870 sinfo = &default_sinfo;
1871 }
1872
1873 /* API 7.1.7, the sndbuf size per association bounds the
1874 * maximum size of data that can be sent in a single send call.
1875 */
1876 if (msg_len > sk->sk_sndbuf) {
1877 err = -EMSGSIZE;
1878 goto out_free;
1879 }
1880
1881 if (asoc->pmtu_pending)
1882 sctp_assoc_pending_pmtu(sk, asoc);
1883
1884 /* If fragmentation is disabled and the message length exceeds the
1885 * association fragmentation point, return EMSGSIZE. The I-D
1886 * does not specify what this error is, but this looks like
1887 * a great fit.
1888 */
1889 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1890 err = -EMSGSIZE;
1891 goto out_free;
1892 }
1893
1894 /* Check for invalid stream. */
1895 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1896 err = -EINVAL;
1897 goto out_free;
1898 }
1899
1900 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1901 if (!sctp_wspace(asoc)) {
1902 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1903 if (err)
1904 goto out_free;
1905 }
1906
1907 /* If an address is passed with the sendto/sendmsg call, it is used
1908 * to override the primary destination address in the TCP model, or
1909 * when SCTP_ADDR_OVER flag is set in the UDP model.
1910 */
1911 if ((sctp_style(sk, TCP) && msg_name) ||
1912 (sinfo_flags & SCTP_ADDR_OVER)) {
1913 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1914 if (!chunk_tp) {
1915 err = -EINVAL;
1916 goto out_free;
1917 }
1918 } else
1919 chunk_tp = NULL;
1920
1921 /* Auto-connect, if we aren't connected already. */
1922 if (sctp_state(asoc, CLOSED)) {
1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 if (err < 0)
1925 goto out_free;
1926
1927 pr_debug("%s: we associated primitively\n", __func__);
1928 }
1929
1930 /* Break the message into multiple chunks of maximum size. */
1931 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1932 if (IS_ERR(datamsg)) {
1933 err = PTR_ERR(datamsg);
1934 goto out_free;
1935 }
1936
1937 /* Now send the (possibly) fragmented message. */
1938 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1939 sctp_chunk_hold(chunk);
1940
1941 /* Do accounting for the write space. */
1942 sctp_set_owner_w(chunk);
1943
1944 chunk->transport = chunk_tp;
1945 }
1946
1947 /* Send it to the lower layers. Note: all chunks
1948 * must either fail or succeed. The lower layer
1949 * works that way today. Keep it that way or this
1950 * breaks.
1951 */
1952 err = sctp_primitive_SEND(net, asoc, datamsg);
1953 /* Did the lower layer accept the chunk? */
1954 if (err) {
1955 sctp_datamsg_free(datamsg);
1956 goto out_free;
1957 }
1958
1959 pr_debug("%s: we sent primitively\n", __func__);
1960
1961 sctp_datamsg_put(datamsg);
1962 err = msg_len;
1963
1964 /* If we are already past ASSOCIATE, the lower
1965 * layers are responsible for association cleanup.
1966 */
1967 goto out_unlock;
1968
1969out_free:
1970 if (new_asoc) {
1971 sctp_unhash_established(asoc);
1972 sctp_association_free(asoc);
1973 }
1974out_unlock:
1975 release_sock(sk);
1976
1977out_nounlock:
1978 return sctp_error(sk, msg_flags, err);
1979
1980#if 0
1981do_sock_err:
1982 if (msg_len)
1983 err = msg_len;
1984 else
1985 err = sock_error(sk);
1986 goto out;
1987
1988do_interrupted:
1989 if (msg_len)
1990 err = msg_len;
1991 goto out;
1992#endif /* 0 */
1993}
1994
1995/* This is an extended version of skb_pull() that removes the data from the
1996 * start of a skb even when data is spread across the list of skb's in the
1997 * frag_list. len specifies the total amount of data that needs to be removed.
1998 * when 'len' bytes could be removed from the skb, it returns 0.
1999 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2000 * could not be removed.
2001 */
2002static int sctp_skb_pull(struct sk_buff *skb, int len)
2003{
2004 struct sk_buff *list;
2005 int skb_len = skb_headlen(skb);
2006 int rlen;
2007
2008 if (len <= skb_len) {
2009 __skb_pull(skb, len);
2010 return 0;
2011 }
2012 len -= skb_len;
2013 __skb_pull(skb, skb_len);
2014
2015 skb_walk_frags(skb, list) {
2016 rlen = sctp_skb_pull(list, len);
2017 skb->len -= (len-rlen);
2018 skb->data_len -= (len-rlen);
2019
2020 if (!rlen)
2021 return 0;
2022
2023 len = rlen;
2024 }
2025
2026 return len;
2027}
2028
2029/* API 3.1.3 recvmsg() - UDP Style Syntax
2030 *
2031 * ssize_t recvmsg(int socket, struct msghdr *message,
2032 * int flags);
2033 *
2034 * socket - the socket descriptor of the endpoint.
2035 * message - pointer to the msghdr structure which contains a single
2036 * user message and possibly some ancillary data.
2037 *
2038 * See Section 5 for complete description of the data
2039 * structures.
2040 *
2041 * flags - flags sent or received with the user message, see Section
2042 * 5 for complete description of the flags.
2043 */
2044static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2045
2046static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2047 struct msghdr *msg, size_t len, int noblock,
2048 int flags, int *addr_len)
2049{
2050 struct sctp_ulpevent *event = NULL;
2051 struct sctp_sock *sp = sctp_sk(sk);
2052 struct sk_buff *skb;
2053 int copied;
2054 int err = 0;
2055 int skb_len;
2056
2057 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2058 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2059 addr_len);
2060
2061 lock_sock(sk);
2062
2063 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2064 err = -ENOTCONN;
2065 goto out;
2066 }
2067
2068 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2069 if (!skb)
2070 goto out;
2071
2072 /* Get the total length of the skb including any skb's in the
2073 * frag_list.
2074 */
2075 skb_len = skb->len;
2076
2077 copied = skb_len;
2078 if (copied > len)
2079 copied = len;
2080
2081 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2082
2083 event = sctp_skb2event(skb);
2084
2085 if (err)
2086 goto out_free;
2087
2088 sock_recv_ts_and_drops(msg, sk, skb);
2089 if (sctp_ulpevent_is_notification(event)) {
2090 msg->msg_flags |= MSG_NOTIFICATION;
2091 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2092 } else {
2093 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2094 }
2095
2096 /* Check if we allow SCTP_SNDRCVINFO. */
2097 if (sp->subscribe.sctp_data_io_event)
2098 sctp_ulpevent_read_sndrcvinfo(event, msg);
2099#if 0
2100 /* FIXME: we should be calling IP/IPv6 layers. */
2101 if (sk->sk_protinfo.af_inet.cmsg_flags)
2102 ip_cmsg_recv(msg, skb);
2103#endif
2104
2105 err = copied;
2106
2107 /* If skb's length exceeds the user's buffer, update the skb and
2108 * push it back to the receive_queue so that the next call to
2109 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2110 */
2111 if (skb_len > copied) {
2112 msg->msg_flags &= ~MSG_EOR;
2113 if (flags & MSG_PEEK)
2114 goto out_free;
2115 sctp_skb_pull(skb, copied);
2116 skb_queue_head(&sk->sk_receive_queue, skb);
2117
2118 /* When only partial message is copied to the user, increase
2119 * rwnd by that amount. If all the data in the skb is read,
2120 * rwnd is updated when the event is freed.
2121 */
2122 if (!sctp_ulpevent_is_notification(event))
2123 sctp_assoc_rwnd_increase(event->asoc, copied);
2124 goto out;
2125 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2126 (event->msg_flags & MSG_EOR))
2127 msg->msg_flags |= MSG_EOR;
2128 else
2129 msg->msg_flags &= ~MSG_EOR;
2130
2131out_free:
2132 if (flags & MSG_PEEK) {
2133 /* Release the skb reference acquired after peeking the skb in
2134 * sctp_skb_recv_datagram().
2135 */
2136 kfree_skb(skb);
2137 } else {
2138 /* Free the event which includes releasing the reference to
2139 * the owner of the skb, freeing the skb and updating the
2140 * rwnd.
2141 */
2142 sctp_ulpevent_free(event);
2143 }
2144out:
2145 release_sock(sk);
2146 return err;
2147}
2148
2149/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2150 *
2151 * This option is a on/off flag. If enabled no SCTP message
2152 * fragmentation will be performed. Instead if a message being sent
2153 * exceeds the current PMTU size, the message will NOT be sent and
2154 * instead a error will be indicated to the user.
2155 */
2156static int sctp_setsockopt_disable_fragments(struct sock *sk,
2157 char __user *optval,
2158 unsigned int optlen)
2159{
2160 int val;
2161
2162 if (optlen < sizeof(int))
2163 return -EINVAL;
2164
2165 if (get_user(val, (int __user *)optval))
2166 return -EFAULT;
2167
2168 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2169
2170 return 0;
2171}
2172
2173static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2174 unsigned int optlen)
2175{
2176 struct sctp_association *asoc;
2177 struct sctp_ulpevent *event;
2178
2179 if (optlen > sizeof(struct sctp_event_subscribe))
2180 return -EINVAL;
2181 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2182 return -EFAULT;
2183
2184 /*
2185 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2186 * if there is no data to be sent or retransmit, the stack will
2187 * immediately send up this notification.
2188 */
2189 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2190 &sctp_sk(sk)->subscribe)) {
2191 asoc = sctp_id2assoc(sk, 0);
2192
2193 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2194 event = sctp_ulpevent_make_sender_dry_event(asoc,
2195 GFP_ATOMIC);
2196 if (!event)
2197 return -ENOMEM;
2198
2199 sctp_ulpq_tail_event(&asoc->ulpq, event);
2200 }
2201 }
2202
2203 return 0;
2204}
2205
2206/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2207 *
2208 * This socket option is applicable to the UDP-style socket only. When
2209 * set it will cause associations that are idle for more than the
2210 * specified number of seconds to automatically close. An association
2211 * being idle is defined an association that has NOT sent or received
2212 * user data. The special value of '0' indicates that no automatic
2213 * close of any associations should be performed. The option expects an
2214 * integer defining the number of seconds of idle time before an
2215 * association is closed.
2216 */
2217static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2218 unsigned int optlen)
2219{
2220 struct sctp_sock *sp = sctp_sk(sk);
2221 struct net *net = sock_net(sk);
2222
2223 /* Applicable to UDP-style socket only */
2224 if (sctp_style(sk, TCP))
2225 return -EOPNOTSUPP;
2226 if (optlen != sizeof(int))
2227 return -EINVAL;
2228 if (copy_from_user(&sp->autoclose, optval, optlen))
2229 return -EFAULT;
2230
2231 if (sp->autoclose > net->sctp.max_autoclose)
2232 sp->autoclose = net->sctp.max_autoclose;
2233
2234 return 0;
2235}
2236
2237/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2238 *
2239 * Applications can enable or disable heartbeats for any peer address of
2240 * an association, modify an address's heartbeat interval, force a
2241 * heartbeat to be sent immediately, and adjust the address's maximum
2242 * number of retransmissions sent before an address is considered
2243 * unreachable. The following structure is used to access and modify an
2244 * address's parameters:
2245 *
2246 * struct sctp_paddrparams {
2247 * sctp_assoc_t spp_assoc_id;
2248 * struct sockaddr_storage spp_address;
2249 * uint32_t spp_hbinterval;
2250 * uint16_t spp_pathmaxrxt;
2251 * uint32_t spp_pathmtu;
2252 * uint32_t spp_sackdelay;
2253 * uint32_t spp_flags;
2254 * };
2255 *
2256 * spp_assoc_id - (one-to-many style socket) This is filled in the
2257 * application, and identifies the association for
2258 * this query.
2259 * spp_address - This specifies which address is of interest.
2260 * spp_hbinterval - This contains the value of the heartbeat interval,
2261 * in milliseconds. If a value of zero
2262 * is present in this field then no changes are to
2263 * be made to this parameter.
2264 * spp_pathmaxrxt - This contains the maximum number of
2265 * retransmissions before this address shall be
2266 * considered unreachable. If a value of zero
2267 * is present in this field then no changes are to
2268 * be made to this parameter.
2269 * spp_pathmtu - When Path MTU discovery is disabled the value
2270 * specified here will be the "fixed" path mtu.
2271 * Note that if the spp_address field is empty
2272 * then all associations on this address will
2273 * have this fixed path mtu set upon them.
2274 *
2275 * spp_sackdelay - When delayed sack is enabled, this value specifies
2276 * the number of milliseconds that sacks will be delayed
2277 * for. This value will apply to all addresses of an
2278 * association if the spp_address field is empty. Note
2279 * also, that if delayed sack is enabled and this
2280 * value is set to 0, no change is made to the last
2281 * recorded delayed sack timer value.
2282 *
2283 * spp_flags - These flags are used to control various features
2284 * on an association. The flag field may contain
2285 * zero or more of the following options.
2286 *
2287 * SPP_HB_ENABLE - Enable heartbeats on the
2288 * specified address. Note that if the address
2289 * field is empty all addresses for the association
2290 * have heartbeats enabled upon them.
2291 *
2292 * SPP_HB_DISABLE - Disable heartbeats on the
2293 * speicifed address. Note that if the address
2294 * field is empty all addresses for the association
2295 * will have their heartbeats disabled. Note also
2296 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2297 * mutually exclusive, only one of these two should
2298 * be specified. Enabling both fields will have
2299 * undetermined results.
2300 *
2301 * SPP_HB_DEMAND - Request a user initiated heartbeat
2302 * to be made immediately.
2303 *
2304 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2305 * heartbeat delayis to be set to the value of 0
2306 * milliseconds.
2307 *
2308 * SPP_PMTUD_ENABLE - This field will enable PMTU
2309 * discovery upon the specified address. Note that
2310 * if the address feild is empty then all addresses
2311 * on the association are effected.
2312 *
2313 * SPP_PMTUD_DISABLE - This field will disable PMTU
2314 * discovery upon the specified address. Note that
2315 * if the address feild is empty then all addresses
2316 * on the association are effected. Not also that
2317 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2318 * exclusive. Enabling both will have undetermined
2319 * results.
2320 *
2321 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2322 * on delayed sack. The time specified in spp_sackdelay
2323 * is used to specify the sack delay for this address. Note
2324 * that if spp_address is empty then all addresses will
2325 * enable delayed sack and take on the sack delay
2326 * value specified in spp_sackdelay.
2327 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2328 * off delayed sack. If the spp_address field is blank then
2329 * delayed sack is disabled for the entire association. Note
2330 * also that this field is mutually exclusive to
2331 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2332 * results.
2333 */
2334static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2335 struct sctp_transport *trans,
2336 struct sctp_association *asoc,
2337 struct sctp_sock *sp,
2338 int hb_change,
2339 int pmtud_change,
2340 int sackdelay_change)
2341{
2342 int error;
2343
2344 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2345 struct net *net = sock_net(trans->asoc->base.sk);
2346
2347 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2348 if (error)
2349 return error;
2350 }
2351
2352 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2353 * this field is ignored. Note also that a value of zero indicates
2354 * the current setting should be left unchanged.
2355 */
2356 if (params->spp_flags & SPP_HB_ENABLE) {
2357
2358 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2359 * set. This lets us use 0 value when this flag
2360 * is set.
2361 */
2362 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2363 params->spp_hbinterval = 0;
2364
2365 if (params->spp_hbinterval ||
2366 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2367 if (trans) {
2368 trans->hbinterval =
2369 msecs_to_jiffies(params->spp_hbinterval);
2370 } else if (asoc) {
2371 asoc->hbinterval =
2372 msecs_to_jiffies(params->spp_hbinterval);
2373 } else {
2374 sp->hbinterval = params->spp_hbinterval;
2375 }
2376 }
2377 }
2378
2379 if (hb_change) {
2380 if (trans) {
2381 trans->param_flags =
2382 (trans->param_flags & ~SPP_HB) | hb_change;
2383 } else if (asoc) {
2384 asoc->param_flags =
2385 (asoc->param_flags & ~SPP_HB) | hb_change;
2386 } else {
2387 sp->param_flags =
2388 (sp->param_flags & ~SPP_HB) | hb_change;
2389 }
2390 }
2391
2392 /* When Path MTU discovery is disabled the value specified here will
2393 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2394 * include the flag SPP_PMTUD_DISABLE for this field to have any
2395 * effect).
2396 */
2397 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2398 if (trans) {
2399 trans->pathmtu = params->spp_pathmtu;
2400 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2401 } else if (asoc) {
2402 asoc->pathmtu = params->spp_pathmtu;
2403 sctp_frag_point(asoc, params->spp_pathmtu);
2404 } else {
2405 sp->pathmtu = params->spp_pathmtu;
2406 }
2407 }
2408
2409 if (pmtud_change) {
2410 if (trans) {
2411 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2412 (params->spp_flags & SPP_PMTUD_ENABLE);
2413 trans->param_flags =
2414 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2415 if (update) {
2416 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2417 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2418 }
2419 } else if (asoc) {
2420 asoc->param_flags =
2421 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2422 } else {
2423 sp->param_flags =
2424 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2425 }
2426 }
2427
2428 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2429 * value of this field is ignored. Note also that a value of zero
2430 * indicates the current setting should be left unchanged.
2431 */
2432 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2433 if (trans) {
2434 trans->sackdelay =
2435 msecs_to_jiffies(params->spp_sackdelay);
2436 } else if (asoc) {
2437 asoc->sackdelay =
2438 msecs_to_jiffies(params->spp_sackdelay);
2439 } else {
2440 sp->sackdelay = params->spp_sackdelay;
2441 }
2442 }
2443
2444 if (sackdelay_change) {
2445 if (trans) {
2446 trans->param_flags =
2447 (trans->param_flags & ~SPP_SACKDELAY) |
2448 sackdelay_change;
2449 } else if (asoc) {
2450 asoc->param_flags =
2451 (asoc->param_flags & ~SPP_SACKDELAY) |
2452 sackdelay_change;
2453 } else {
2454 sp->param_flags =
2455 (sp->param_flags & ~SPP_SACKDELAY) |
2456 sackdelay_change;
2457 }
2458 }
2459
2460 /* Note that a value of zero indicates the current setting should be
2461 left unchanged.
2462 */
2463 if (params->spp_pathmaxrxt) {
2464 if (trans) {
2465 trans->pathmaxrxt = params->spp_pathmaxrxt;
2466 } else if (asoc) {
2467 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2468 } else {
2469 sp->pathmaxrxt = params->spp_pathmaxrxt;
2470 }
2471 }
2472
2473 return 0;
2474}
2475
2476static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2477 char __user *optval,
2478 unsigned int optlen)
2479{
2480 struct sctp_paddrparams params;
2481 struct sctp_transport *trans = NULL;
2482 struct sctp_association *asoc = NULL;
2483 struct sctp_sock *sp = sctp_sk(sk);
2484 int error;
2485 int hb_change, pmtud_change, sackdelay_change;
2486
2487 if (optlen != sizeof(struct sctp_paddrparams))
2488 return -EINVAL;
2489
2490 if (copy_from_user(¶ms, optval, optlen))
2491 return -EFAULT;
2492
2493 /* Validate flags and value parameters. */
2494 hb_change = params.spp_flags & SPP_HB;
2495 pmtud_change = params.spp_flags & SPP_PMTUD;
2496 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2497
2498 if (hb_change == SPP_HB ||
2499 pmtud_change == SPP_PMTUD ||
2500 sackdelay_change == SPP_SACKDELAY ||
2501 params.spp_sackdelay > 500 ||
2502 (params.spp_pathmtu &&
2503 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2504 return -EINVAL;
2505
2506 /* If an address other than INADDR_ANY is specified, and
2507 * no transport is found, then the request is invalid.
2508 */
2509 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2510 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2511 params.spp_assoc_id);
2512 if (!trans)
2513 return -EINVAL;
2514 }
2515
2516 /* Get association, if assoc_id != 0 and the socket is a one
2517 * to many style socket, and an association was not found, then
2518 * the id was invalid.
2519 */
2520 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2521 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2522 return -EINVAL;
2523
2524 /* Heartbeat demand can only be sent on a transport or
2525 * association, but not a socket.
2526 */
2527 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2528 return -EINVAL;
2529
2530 /* Process parameters. */
2531 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2532 hb_change, pmtud_change,
2533 sackdelay_change);
2534
2535 if (error)
2536 return error;
2537
2538 /* If changes are for association, also apply parameters to each
2539 * transport.
2540 */
2541 if (!trans && asoc) {
2542 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2543 transports) {
2544 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2545 hb_change, pmtud_change,
2546 sackdelay_change);
2547 }
2548 }
2549
2550 return 0;
2551}
2552
2553static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2554{
2555 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2556}
2557
2558static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2559{
2560 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2561}
2562
2563/*
2564 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2565 *
2566 * This option will effect the way delayed acks are performed. This
2567 * option allows you to get or set the delayed ack time, in
2568 * milliseconds. It also allows changing the delayed ack frequency.
2569 * Changing the frequency to 1 disables the delayed sack algorithm. If
2570 * the assoc_id is 0, then this sets or gets the endpoints default
2571 * values. If the assoc_id field is non-zero, then the set or get
2572 * effects the specified association for the one to many model (the
2573 * assoc_id field is ignored by the one to one model). Note that if
2574 * sack_delay or sack_freq are 0 when setting this option, then the
2575 * current values will remain unchanged.
2576 *
2577 * struct sctp_sack_info {
2578 * sctp_assoc_t sack_assoc_id;
2579 * uint32_t sack_delay;
2580 * uint32_t sack_freq;
2581 * };
2582 *
2583 * sack_assoc_id - This parameter, indicates which association the user
2584 * is performing an action upon. Note that if this field's value is
2585 * zero then the endpoints default value is changed (effecting future
2586 * associations only).
2587 *
2588 * sack_delay - This parameter contains the number of milliseconds that
2589 * the user is requesting the delayed ACK timer be set to. Note that
2590 * this value is defined in the standard to be between 200 and 500
2591 * milliseconds.
2592 *
2593 * sack_freq - This parameter contains the number of packets that must
2594 * be received before a sack is sent without waiting for the delay
2595 * timer to expire. The default value for this is 2, setting this
2596 * value to 1 will disable the delayed sack algorithm.
2597 */
2598
2599static int sctp_setsockopt_delayed_ack(struct sock *sk,
2600 char __user *optval, unsigned int optlen)
2601{
2602 struct sctp_sack_info params;
2603 struct sctp_transport *trans = NULL;
2604 struct sctp_association *asoc = NULL;
2605 struct sctp_sock *sp = sctp_sk(sk);
2606
2607 if (optlen == sizeof(struct sctp_sack_info)) {
2608 if (copy_from_user(¶ms, optval, optlen))
2609 return -EFAULT;
2610
2611 if (params.sack_delay == 0 && params.sack_freq == 0)
2612 return 0;
2613 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2614 pr_warn_ratelimited(DEPRECATED
2615 "%s (pid %d) "
2616 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2617 "Use struct sctp_sack_info instead\n",
2618 current->comm, task_pid_nr(current));
2619 if (copy_from_user(¶ms, optval, optlen))
2620 return -EFAULT;
2621
2622 if (params.sack_delay == 0)
2623 params.sack_freq = 1;
2624 else
2625 params.sack_freq = 0;
2626 } else
2627 return -EINVAL;
2628
2629 /* Validate value parameter. */
2630 if (params.sack_delay > 500)
2631 return -EINVAL;
2632
2633 /* Get association, if sack_assoc_id != 0 and the socket is a one
2634 * to many style socket, and an association was not found, then
2635 * the id was invalid.
2636 */
2637 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2638 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2639 return -EINVAL;
2640
2641 if (params.sack_delay) {
2642 if (asoc) {
2643 asoc->sackdelay =
2644 msecs_to_jiffies(params.sack_delay);
2645 asoc->param_flags =
2646 sctp_spp_sackdelay_enable(asoc->param_flags);
2647 } else {
2648 sp->sackdelay = params.sack_delay;
2649 sp->param_flags =
2650 sctp_spp_sackdelay_enable(sp->param_flags);
2651 }
2652 }
2653
2654 if (params.sack_freq == 1) {
2655 if (asoc) {
2656 asoc->param_flags =
2657 sctp_spp_sackdelay_disable(asoc->param_flags);
2658 } else {
2659 sp->param_flags =
2660 sctp_spp_sackdelay_disable(sp->param_flags);
2661 }
2662 } else if (params.sack_freq > 1) {
2663 if (asoc) {
2664 asoc->sackfreq = params.sack_freq;
2665 asoc->param_flags =
2666 sctp_spp_sackdelay_enable(asoc->param_flags);
2667 } else {
2668 sp->sackfreq = params.sack_freq;
2669 sp->param_flags =
2670 sctp_spp_sackdelay_enable(sp->param_flags);
2671 }
2672 }
2673
2674 /* If change is for association, also apply to each transport. */
2675 if (asoc) {
2676 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2677 transports) {
2678 if (params.sack_delay) {
2679 trans->sackdelay =
2680 msecs_to_jiffies(params.sack_delay);
2681 trans->param_flags =
2682 sctp_spp_sackdelay_enable(trans->param_flags);
2683 }
2684 if (params.sack_freq == 1) {
2685 trans->param_flags =
2686 sctp_spp_sackdelay_disable(trans->param_flags);
2687 } else if (params.sack_freq > 1) {
2688 trans->sackfreq = params.sack_freq;
2689 trans->param_flags =
2690 sctp_spp_sackdelay_enable(trans->param_flags);
2691 }
2692 }
2693 }
2694
2695 return 0;
2696}
2697
2698/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2699 *
2700 * Applications can specify protocol parameters for the default association
2701 * initialization. The option name argument to setsockopt() and getsockopt()
2702 * is SCTP_INITMSG.
2703 *
2704 * Setting initialization parameters is effective only on an unconnected
2705 * socket (for UDP-style sockets only future associations are effected
2706 * by the change). With TCP-style sockets, this option is inherited by
2707 * sockets derived from a listener socket.
2708 */
2709static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2710{
2711 struct sctp_initmsg sinit;
2712 struct sctp_sock *sp = sctp_sk(sk);
2713
2714 if (optlen != sizeof(struct sctp_initmsg))
2715 return -EINVAL;
2716 if (copy_from_user(&sinit, optval, optlen))
2717 return -EFAULT;
2718
2719 if (sinit.sinit_num_ostreams)
2720 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2721 if (sinit.sinit_max_instreams)
2722 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2723 if (sinit.sinit_max_attempts)
2724 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2725 if (sinit.sinit_max_init_timeo)
2726 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2727
2728 return 0;
2729}
2730
2731/*
2732 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2733 *
2734 * Applications that wish to use the sendto() system call may wish to
2735 * specify a default set of parameters that would normally be supplied
2736 * through the inclusion of ancillary data. This socket option allows
2737 * such an application to set the default sctp_sndrcvinfo structure.
2738 * The application that wishes to use this socket option simply passes
2739 * in to this call the sctp_sndrcvinfo structure defined in Section
2740 * 5.2.2) The input parameters accepted by this call include
2741 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2742 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2743 * to this call if the caller is using the UDP model.
2744 */
2745static int sctp_setsockopt_default_send_param(struct sock *sk,
2746 char __user *optval,
2747 unsigned int optlen)
2748{
2749 struct sctp_sndrcvinfo info;
2750 struct sctp_association *asoc;
2751 struct sctp_sock *sp = sctp_sk(sk);
2752
2753 if (optlen != sizeof(struct sctp_sndrcvinfo))
2754 return -EINVAL;
2755 if (copy_from_user(&info, optval, optlen))
2756 return -EFAULT;
2757
2758 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2759 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2760 return -EINVAL;
2761
2762 if (asoc) {
2763 asoc->default_stream = info.sinfo_stream;
2764 asoc->default_flags = info.sinfo_flags;
2765 asoc->default_ppid = info.sinfo_ppid;
2766 asoc->default_context = info.sinfo_context;
2767 asoc->default_timetolive = info.sinfo_timetolive;
2768 } else {
2769 sp->default_stream = info.sinfo_stream;
2770 sp->default_flags = info.sinfo_flags;
2771 sp->default_ppid = info.sinfo_ppid;
2772 sp->default_context = info.sinfo_context;
2773 sp->default_timetolive = info.sinfo_timetolive;
2774 }
2775
2776 return 0;
2777}
2778
2779/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2780 *
2781 * Requests that the local SCTP stack use the enclosed peer address as
2782 * the association primary. The enclosed address must be one of the
2783 * association peer's addresses.
2784 */
2785static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2786 unsigned int optlen)
2787{
2788 struct sctp_prim prim;
2789 struct sctp_transport *trans;
2790
2791 if (optlen != sizeof(struct sctp_prim))
2792 return -EINVAL;
2793
2794 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2795 return -EFAULT;
2796
2797 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2798 if (!trans)
2799 return -EINVAL;
2800
2801 sctp_assoc_set_primary(trans->asoc, trans);
2802
2803 return 0;
2804}
2805
2806/*
2807 * 7.1.5 SCTP_NODELAY
2808 *
2809 * Turn on/off any Nagle-like algorithm. This means that packets are
2810 * generally sent as soon as possible and no unnecessary delays are
2811 * introduced, at the cost of more packets in the network. Expects an
2812 * integer boolean flag.
2813 */
2814static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2815 unsigned int optlen)
2816{
2817 int val;
2818
2819 if (optlen < sizeof(int))
2820 return -EINVAL;
2821 if (get_user(val, (int __user *)optval))
2822 return -EFAULT;
2823
2824 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2825 return 0;
2826}
2827
2828/*
2829 *
2830 * 7.1.1 SCTP_RTOINFO
2831 *
2832 * The protocol parameters used to initialize and bound retransmission
2833 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2834 * and modify these parameters.
2835 * All parameters are time values, in milliseconds. A value of 0, when
2836 * modifying the parameters, indicates that the current value should not
2837 * be changed.
2838 *
2839 */
2840static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2841{
2842 struct sctp_rtoinfo rtoinfo;
2843 struct sctp_association *asoc;
2844 unsigned long rto_min, rto_max;
2845 struct sctp_sock *sp = sctp_sk(sk);
2846
2847 if (optlen != sizeof (struct sctp_rtoinfo))
2848 return -EINVAL;
2849
2850 if (copy_from_user(&rtoinfo, optval, optlen))
2851 return -EFAULT;
2852
2853 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2854
2855 /* Set the values to the specific association */
2856 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2857 return -EINVAL;
2858
2859 rto_max = rtoinfo.srto_max;
2860 rto_min = rtoinfo.srto_min;
2861
2862 if (rto_max)
2863 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2864 else
2865 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2866
2867 if (rto_min)
2868 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2869 else
2870 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2871
2872 if (rto_min > rto_max)
2873 return -EINVAL;
2874
2875 if (asoc) {
2876 if (rtoinfo.srto_initial != 0)
2877 asoc->rto_initial =
2878 msecs_to_jiffies(rtoinfo.srto_initial);
2879 asoc->rto_max = rto_max;
2880 asoc->rto_min = rto_min;
2881 } else {
2882 /* If there is no association or the association-id = 0
2883 * set the values to the endpoint.
2884 */
2885 if (rtoinfo.srto_initial != 0)
2886 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2887 sp->rtoinfo.srto_max = rto_max;
2888 sp->rtoinfo.srto_min = rto_min;
2889 }
2890
2891 return 0;
2892}
2893
2894/*
2895 *
2896 * 7.1.2 SCTP_ASSOCINFO
2897 *
2898 * This option is used to tune the maximum retransmission attempts
2899 * of the association.
2900 * Returns an error if the new association retransmission value is
2901 * greater than the sum of the retransmission value of the peer.
2902 * See [SCTP] for more information.
2903 *
2904 */
2905static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2906{
2907
2908 struct sctp_assocparams assocparams;
2909 struct sctp_association *asoc;
2910
2911 if (optlen != sizeof(struct sctp_assocparams))
2912 return -EINVAL;
2913 if (copy_from_user(&assocparams, optval, optlen))
2914 return -EFAULT;
2915
2916 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2917
2918 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2919 return -EINVAL;
2920
2921 /* Set the values to the specific association */
2922 if (asoc) {
2923 if (assocparams.sasoc_asocmaxrxt != 0) {
2924 __u32 path_sum = 0;
2925 int paths = 0;
2926 struct sctp_transport *peer_addr;
2927
2928 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2929 transports) {
2930 path_sum += peer_addr->pathmaxrxt;
2931 paths++;
2932 }
2933
2934 /* Only validate asocmaxrxt if we have more than
2935 * one path/transport. We do this because path
2936 * retransmissions are only counted when we have more
2937 * then one path.
2938 */
2939 if (paths > 1 &&
2940 assocparams.sasoc_asocmaxrxt > path_sum)
2941 return -EINVAL;
2942
2943 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2944 }
2945
2946 if (assocparams.sasoc_cookie_life != 0)
2947 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2948 } else {
2949 /* Set the values to the endpoint */
2950 struct sctp_sock *sp = sctp_sk(sk);
2951
2952 if (assocparams.sasoc_asocmaxrxt != 0)
2953 sp->assocparams.sasoc_asocmaxrxt =
2954 assocparams.sasoc_asocmaxrxt;
2955 if (assocparams.sasoc_cookie_life != 0)
2956 sp->assocparams.sasoc_cookie_life =
2957 assocparams.sasoc_cookie_life;
2958 }
2959 return 0;
2960}
2961
2962/*
2963 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2964 *
2965 * This socket option is a boolean flag which turns on or off mapped V4
2966 * addresses. If this option is turned on and the socket is type
2967 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2968 * If this option is turned off, then no mapping will be done of V4
2969 * addresses and a user will receive both PF_INET6 and PF_INET type
2970 * addresses on the socket.
2971 */
2972static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2973{
2974 int val;
2975 struct sctp_sock *sp = sctp_sk(sk);
2976
2977 if (optlen < sizeof(int))
2978 return -EINVAL;
2979 if (get_user(val, (int __user *)optval))
2980 return -EFAULT;
2981 if (val)
2982 sp->v4mapped = 1;
2983 else
2984 sp->v4mapped = 0;
2985
2986 return 0;
2987}
2988
2989/*
2990 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2991 * This option will get or set the maximum size to put in any outgoing
2992 * SCTP DATA chunk. If a message is larger than this size it will be
2993 * fragmented by SCTP into the specified size. Note that the underlying
2994 * SCTP implementation may fragment into smaller sized chunks when the
2995 * PMTU of the underlying association is smaller than the value set by
2996 * the user. The default value for this option is '0' which indicates
2997 * the user is NOT limiting fragmentation and only the PMTU will effect
2998 * SCTP's choice of DATA chunk size. Note also that values set larger
2999 * than the maximum size of an IP datagram will effectively let SCTP
3000 * control fragmentation (i.e. the same as setting this option to 0).
3001 *
3002 * The following structure is used to access and modify this parameter:
3003 *
3004 * struct sctp_assoc_value {
3005 * sctp_assoc_t assoc_id;
3006 * uint32_t assoc_value;
3007 * };
3008 *
3009 * assoc_id: This parameter is ignored for one-to-one style sockets.
3010 * For one-to-many style sockets this parameter indicates which
3011 * association the user is performing an action upon. Note that if
3012 * this field's value is zero then the endpoints default value is
3013 * changed (effecting future associations only).
3014 * assoc_value: This parameter specifies the maximum size in bytes.
3015 */
3016static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3017{
3018 struct sctp_assoc_value params;
3019 struct sctp_association *asoc;
3020 struct sctp_sock *sp = sctp_sk(sk);
3021 int val;
3022
3023 if (optlen == sizeof(int)) {
3024 pr_warn_ratelimited(DEPRECATED
3025 "%s (pid %d) "
3026 "Use of int in maxseg socket option.\n"
3027 "Use struct sctp_assoc_value instead\n",
3028 current->comm, task_pid_nr(current));
3029 if (copy_from_user(&val, optval, optlen))
3030 return -EFAULT;
3031 params.assoc_id = 0;
3032 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3033 if (copy_from_user(¶ms, optval, optlen))
3034 return -EFAULT;
3035 val = params.assoc_value;
3036 } else
3037 return -EINVAL;
3038
3039 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3040 return -EINVAL;
3041
3042 asoc = sctp_id2assoc(sk, params.assoc_id);
3043 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3044 return -EINVAL;
3045
3046 if (asoc) {
3047 if (val == 0) {
3048 val = asoc->pathmtu;
3049 val -= sp->pf->af->net_header_len;
3050 val -= sizeof(struct sctphdr) +
3051 sizeof(struct sctp_data_chunk);
3052 }
3053 asoc->user_frag = val;
3054 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3055 } else {
3056 sp->user_frag = val;
3057 }
3058
3059 return 0;
3060}
3061
3062
3063/*
3064 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3065 *
3066 * Requests that the peer mark the enclosed address as the association
3067 * primary. The enclosed address must be one of the association's
3068 * locally bound addresses. The following structure is used to make a
3069 * set primary request:
3070 */
3071static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3072 unsigned int optlen)
3073{
3074 struct net *net = sock_net(sk);
3075 struct sctp_sock *sp;
3076 struct sctp_association *asoc = NULL;
3077 struct sctp_setpeerprim prim;
3078 struct sctp_chunk *chunk;
3079 struct sctp_af *af;
3080 int err;
3081
3082 sp = sctp_sk(sk);
3083
3084 if (!net->sctp.addip_enable)
3085 return -EPERM;
3086
3087 if (optlen != sizeof(struct sctp_setpeerprim))
3088 return -EINVAL;
3089
3090 if (copy_from_user(&prim, optval, optlen))
3091 return -EFAULT;
3092
3093 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3094 if (!asoc)
3095 return -EINVAL;
3096
3097 if (!asoc->peer.asconf_capable)
3098 return -EPERM;
3099
3100 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3101 return -EPERM;
3102
3103 if (!sctp_state(asoc, ESTABLISHED))
3104 return -ENOTCONN;
3105
3106 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3107 if (!af)
3108 return -EINVAL;
3109
3110 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3111 return -EADDRNOTAVAIL;
3112
3113 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3114 return -EADDRNOTAVAIL;
3115
3116 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3117 chunk = sctp_make_asconf_set_prim(asoc,
3118 (union sctp_addr *)&prim.sspp_addr);
3119 if (!chunk)
3120 return -ENOMEM;
3121
3122 err = sctp_send_asconf(asoc, chunk);
3123
3124 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3125
3126 return err;
3127}
3128
3129static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3130 unsigned int optlen)
3131{
3132 struct sctp_setadaptation adaptation;
3133
3134 if (optlen != sizeof(struct sctp_setadaptation))
3135 return -EINVAL;
3136 if (copy_from_user(&adaptation, optval, optlen))
3137 return -EFAULT;
3138
3139 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3140
3141 return 0;
3142}
3143
3144/*
3145 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3146 *
3147 * The context field in the sctp_sndrcvinfo structure is normally only
3148 * used when a failed message is retrieved holding the value that was
3149 * sent down on the actual send call. This option allows the setting of
3150 * a default context on an association basis that will be received on
3151 * reading messages from the peer. This is especially helpful in the
3152 * one-2-many model for an application to keep some reference to an
3153 * internal state machine that is processing messages on the
3154 * association. Note that the setting of this value only effects
3155 * received messages from the peer and does not effect the value that is
3156 * saved with outbound messages.
3157 */
3158static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3159 unsigned int optlen)
3160{
3161 struct sctp_assoc_value params;
3162 struct sctp_sock *sp;
3163 struct sctp_association *asoc;
3164
3165 if (optlen != sizeof(struct sctp_assoc_value))
3166 return -EINVAL;
3167 if (copy_from_user(¶ms, optval, optlen))
3168 return -EFAULT;
3169
3170 sp = sctp_sk(sk);
3171
3172 if (params.assoc_id != 0) {
3173 asoc = sctp_id2assoc(sk, params.assoc_id);
3174 if (!asoc)
3175 return -EINVAL;
3176 asoc->default_rcv_context = params.assoc_value;
3177 } else {
3178 sp->default_rcv_context = params.assoc_value;
3179 }
3180
3181 return 0;
3182}
3183
3184/*
3185 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3186 *
3187 * This options will at a minimum specify if the implementation is doing
3188 * fragmented interleave. Fragmented interleave, for a one to many
3189 * socket, is when subsequent calls to receive a message may return
3190 * parts of messages from different associations. Some implementations
3191 * may allow you to turn this value on or off. If so, when turned off,
3192 * no fragment interleave will occur (which will cause a head of line
3193 * blocking amongst multiple associations sharing the same one to many
3194 * socket). When this option is turned on, then each receive call may
3195 * come from a different association (thus the user must receive data
3196 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3197 * association each receive belongs to.
3198 *
3199 * This option takes a boolean value. A non-zero value indicates that
3200 * fragmented interleave is on. A value of zero indicates that
3201 * fragmented interleave is off.
3202 *
3203 * Note that it is important that an implementation that allows this
3204 * option to be turned on, have it off by default. Otherwise an unaware
3205 * application using the one to many model may become confused and act
3206 * incorrectly.
3207 */
3208static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3209 char __user *optval,
3210 unsigned int optlen)
3211{
3212 int val;
3213
3214 if (optlen != sizeof(int))
3215 return -EINVAL;
3216 if (get_user(val, (int __user *)optval))
3217 return -EFAULT;
3218
3219 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3220
3221 return 0;
3222}
3223
3224/*
3225 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3226 * (SCTP_PARTIAL_DELIVERY_POINT)
3227 *
3228 * This option will set or get the SCTP partial delivery point. This
3229 * point is the size of a message where the partial delivery API will be
3230 * invoked to help free up rwnd space for the peer. Setting this to a
3231 * lower value will cause partial deliveries to happen more often. The
3232 * calls argument is an integer that sets or gets the partial delivery
3233 * point. Note also that the call will fail if the user attempts to set
3234 * this value larger than the socket receive buffer size.
3235 *
3236 * Note that any single message having a length smaller than or equal to
3237 * the SCTP partial delivery point will be delivered in one single read
3238 * call as long as the user provided buffer is large enough to hold the
3239 * message.
3240 */
3241static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3242 char __user *optval,
3243 unsigned int optlen)
3244{
3245 u32 val;
3246
3247 if (optlen != sizeof(u32))
3248 return -EINVAL;
3249 if (get_user(val, (int __user *)optval))
3250 return -EFAULT;
3251
3252 /* Note: We double the receive buffer from what the user sets
3253 * it to be, also initial rwnd is based on rcvbuf/2.
3254 */
3255 if (val > (sk->sk_rcvbuf >> 1))
3256 return -EINVAL;
3257
3258 sctp_sk(sk)->pd_point = val;
3259
3260 return 0; /* is this the right error code? */
3261}
3262
3263/*
3264 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3265 *
3266 * This option will allow a user to change the maximum burst of packets
3267 * that can be emitted by this association. Note that the default value
3268 * is 4, and some implementations may restrict this setting so that it
3269 * can only be lowered.
3270 *
3271 * NOTE: This text doesn't seem right. Do this on a socket basis with
3272 * future associations inheriting the socket value.
3273 */
3274static int sctp_setsockopt_maxburst(struct sock *sk,
3275 char __user *optval,
3276 unsigned int optlen)
3277{
3278 struct sctp_assoc_value params;
3279 struct sctp_sock *sp;
3280 struct sctp_association *asoc;
3281 int val;
3282 int assoc_id = 0;
3283
3284 if (optlen == sizeof(int)) {
3285 pr_warn_ratelimited(DEPRECATED
3286 "%s (pid %d) "
3287 "Use of int in max_burst socket option deprecated.\n"
3288 "Use struct sctp_assoc_value instead\n",
3289 current->comm, task_pid_nr(current));
3290 if (copy_from_user(&val, optval, optlen))
3291 return -EFAULT;
3292 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3293 if (copy_from_user(¶ms, optval, optlen))
3294 return -EFAULT;
3295 val = params.assoc_value;
3296 assoc_id = params.assoc_id;
3297 } else
3298 return -EINVAL;
3299
3300 sp = sctp_sk(sk);
3301
3302 if (assoc_id != 0) {
3303 asoc = sctp_id2assoc(sk, assoc_id);
3304 if (!asoc)
3305 return -EINVAL;
3306 asoc->max_burst = val;
3307 } else
3308 sp->max_burst = val;
3309
3310 return 0;
3311}
3312
3313/*
3314 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3315 *
3316 * This set option adds a chunk type that the user is requesting to be
3317 * received only in an authenticated way. Changes to the list of chunks
3318 * will only effect future associations on the socket.
3319 */
3320static int sctp_setsockopt_auth_chunk(struct sock *sk,
3321 char __user *optval,
3322 unsigned int optlen)
3323{
3324 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3325 struct sctp_authchunk val;
3326
3327 if (!ep->auth_enable)
3328 return -EACCES;
3329
3330 if (optlen != sizeof(struct sctp_authchunk))
3331 return -EINVAL;
3332 if (copy_from_user(&val, optval, optlen))
3333 return -EFAULT;
3334
3335 switch (val.sauth_chunk) {
3336 case SCTP_CID_INIT:
3337 case SCTP_CID_INIT_ACK:
3338 case SCTP_CID_SHUTDOWN_COMPLETE:
3339 case SCTP_CID_AUTH:
3340 return -EINVAL;
3341 }
3342
3343 /* add this chunk id to the endpoint */
3344 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3345}
3346
3347/*
3348 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3349 *
3350 * This option gets or sets the list of HMAC algorithms that the local
3351 * endpoint requires the peer to use.
3352 */
3353static int sctp_setsockopt_hmac_ident(struct sock *sk,
3354 char __user *optval,
3355 unsigned int optlen)
3356{
3357 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3358 struct sctp_hmacalgo *hmacs;
3359 u32 idents;
3360 int err;
3361
3362 if (!ep->auth_enable)
3363 return -EACCES;
3364
3365 if (optlen < sizeof(struct sctp_hmacalgo))
3366 return -EINVAL;
3367
3368 hmacs = memdup_user(optval, optlen);
3369 if (IS_ERR(hmacs))
3370 return PTR_ERR(hmacs);
3371
3372 idents = hmacs->shmac_num_idents;
3373 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3374 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3375 err = -EINVAL;
3376 goto out;
3377 }
3378
3379 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3380out:
3381 kfree(hmacs);
3382 return err;
3383}
3384
3385/*
3386 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3387 *
3388 * This option will set a shared secret key which is used to build an
3389 * association shared key.
3390 */
3391static int sctp_setsockopt_auth_key(struct sock *sk,
3392 char __user *optval,
3393 unsigned int optlen)
3394{
3395 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3396 struct sctp_authkey *authkey;
3397 struct sctp_association *asoc;
3398 int ret;
3399
3400 if (!ep->auth_enable)
3401 return -EACCES;
3402
3403 if (optlen <= sizeof(struct sctp_authkey))
3404 return -EINVAL;
3405
3406 authkey = memdup_user(optval, optlen);
3407 if (IS_ERR(authkey))
3408 return PTR_ERR(authkey);
3409
3410 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3411 ret = -EINVAL;
3412 goto out;
3413 }
3414
3415 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3416 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3417 ret = -EINVAL;
3418 goto out;
3419 }
3420
3421 ret = sctp_auth_set_key(ep, asoc, authkey);
3422out:
3423 kzfree(authkey);
3424 return ret;
3425}
3426
3427/*
3428 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3429 *
3430 * This option will get or set the active shared key to be used to build
3431 * the association shared key.
3432 */
3433static int sctp_setsockopt_active_key(struct sock *sk,
3434 char __user *optval,
3435 unsigned int optlen)
3436{
3437 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3438 struct sctp_authkeyid val;
3439 struct sctp_association *asoc;
3440
3441 if (!ep->auth_enable)
3442 return -EACCES;
3443
3444 if (optlen != sizeof(struct sctp_authkeyid))
3445 return -EINVAL;
3446 if (copy_from_user(&val, optval, optlen))
3447 return -EFAULT;
3448
3449 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3450 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3451 return -EINVAL;
3452
3453 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3454}
3455
3456/*
3457 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3458 *
3459 * This set option will delete a shared secret key from use.
3460 */
3461static int sctp_setsockopt_del_key(struct sock *sk,
3462 char __user *optval,
3463 unsigned int optlen)
3464{
3465 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466 struct sctp_authkeyid val;
3467 struct sctp_association *asoc;
3468
3469 if (!ep->auth_enable)
3470 return -EACCES;
3471
3472 if (optlen != sizeof(struct sctp_authkeyid))
3473 return -EINVAL;
3474 if (copy_from_user(&val, optval, optlen))
3475 return -EFAULT;
3476
3477 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3478 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3479 return -EINVAL;
3480
3481 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3482
3483}
3484
3485/*
3486 * 8.1.23 SCTP_AUTO_ASCONF
3487 *
3488 * This option will enable or disable the use of the automatic generation of
3489 * ASCONF chunks to add and delete addresses to an existing association. Note
3490 * that this option has two caveats namely: a) it only affects sockets that
3491 * are bound to all addresses available to the SCTP stack, and b) the system
3492 * administrator may have an overriding control that turns the ASCONF feature
3493 * off no matter what setting the socket option may have.
3494 * This option expects an integer boolean flag, where a non-zero value turns on
3495 * the option, and a zero value turns off the option.
3496 * Note. In this implementation, socket operation overrides default parameter
3497 * being set by sysctl as well as FreeBSD implementation
3498 */
3499static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3500 unsigned int optlen)
3501{
3502 int val;
3503 struct sctp_sock *sp = sctp_sk(sk);
3504
3505 if (optlen < sizeof(int))
3506 return -EINVAL;
3507 if (get_user(val, (int __user *)optval))
3508 return -EFAULT;
3509 if (!sctp_is_ep_boundall(sk) && val)
3510 return -EINVAL;
3511 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3512 return 0;
3513
3514 if (val == 0 && sp->do_auto_asconf) {
3515 list_del(&sp->auto_asconf_list);
3516 sp->do_auto_asconf = 0;
3517 } else if (val && !sp->do_auto_asconf) {
3518 list_add_tail(&sp->auto_asconf_list,
3519 &sock_net(sk)->sctp.auto_asconf_splist);
3520 sp->do_auto_asconf = 1;
3521 }
3522 return 0;
3523}
3524
3525
3526/*
3527 * SCTP_PEER_ADDR_THLDS
3528 *
3529 * This option allows us to alter the partially failed threshold for one or all
3530 * transports in an association. See Section 6.1 of:
3531 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3532 */
3533static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3534 char __user *optval,
3535 unsigned int optlen)
3536{
3537 struct sctp_paddrthlds val;
3538 struct sctp_transport *trans;
3539 struct sctp_association *asoc;
3540
3541 if (optlen < sizeof(struct sctp_paddrthlds))
3542 return -EINVAL;
3543 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3544 sizeof(struct sctp_paddrthlds)))
3545 return -EFAULT;
3546
3547
3548 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3549 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3550 if (!asoc)
3551 return -ENOENT;
3552 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3553 transports) {
3554 if (val.spt_pathmaxrxt)
3555 trans->pathmaxrxt = val.spt_pathmaxrxt;
3556 trans->pf_retrans = val.spt_pathpfthld;
3557 }
3558
3559 if (val.spt_pathmaxrxt)
3560 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3561 asoc->pf_retrans = val.spt_pathpfthld;
3562 } else {
3563 trans = sctp_addr_id2transport(sk, &val.spt_address,
3564 val.spt_assoc_id);
3565 if (!trans)
3566 return -ENOENT;
3567
3568 if (val.spt_pathmaxrxt)
3569 trans->pathmaxrxt = val.spt_pathmaxrxt;
3570 trans->pf_retrans = val.spt_pathpfthld;
3571 }
3572
3573 return 0;
3574}
3575
3576/* API 6.2 setsockopt(), getsockopt()
3577 *
3578 * Applications use setsockopt() and getsockopt() to set or retrieve
3579 * socket options. Socket options are used to change the default
3580 * behavior of sockets calls. They are described in Section 7.
3581 *
3582 * The syntax is:
3583 *
3584 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3585 * int __user *optlen);
3586 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3587 * int optlen);
3588 *
3589 * sd - the socket descript.
3590 * level - set to IPPROTO_SCTP for all SCTP options.
3591 * optname - the option name.
3592 * optval - the buffer to store the value of the option.
3593 * optlen - the size of the buffer.
3594 */
3595static int sctp_setsockopt(struct sock *sk, int level, int optname,
3596 char __user *optval, unsigned int optlen)
3597{
3598 int retval = 0;
3599
3600 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3601
3602 /* I can hardly begin to describe how wrong this is. This is
3603 * so broken as to be worse than useless. The API draft
3604 * REALLY is NOT helpful here... I am not convinced that the
3605 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3606 * are at all well-founded.
3607 */
3608 if (level != SOL_SCTP) {
3609 struct sctp_af *af = sctp_sk(sk)->pf->af;
3610 retval = af->setsockopt(sk, level, optname, optval, optlen);
3611 goto out_nounlock;
3612 }
3613
3614 lock_sock(sk);
3615
3616 switch (optname) {
3617 case SCTP_SOCKOPT_BINDX_ADD:
3618 /* 'optlen' is the size of the addresses buffer. */
3619 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3620 optlen, SCTP_BINDX_ADD_ADDR);
3621 break;
3622
3623 case SCTP_SOCKOPT_BINDX_REM:
3624 /* 'optlen' is the size of the addresses buffer. */
3625 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3626 optlen, SCTP_BINDX_REM_ADDR);
3627 break;
3628
3629 case SCTP_SOCKOPT_CONNECTX_OLD:
3630 /* 'optlen' is the size of the addresses buffer. */
3631 retval = sctp_setsockopt_connectx_old(sk,
3632 (struct sockaddr __user *)optval,
3633 optlen);
3634 break;
3635
3636 case SCTP_SOCKOPT_CONNECTX:
3637 /* 'optlen' is the size of the addresses buffer. */
3638 retval = sctp_setsockopt_connectx(sk,
3639 (struct sockaddr __user *)optval,
3640 optlen);
3641 break;
3642
3643 case SCTP_DISABLE_FRAGMENTS:
3644 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3645 break;
3646
3647 case SCTP_EVENTS:
3648 retval = sctp_setsockopt_events(sk, optval, optlen);
3649 break;
3650
3651 case SCTP_AUTOCLOSE:
3652 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3653 break;
3654
3655 case SCTP_PEER_ADDR_PARAMS:
3656 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3657 break;
3658
3659 case SCTP_DELAYED_SACK:
3660 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3661 break;
3662 case SCTP_PARTIAL_DELIVERY_POINT:
3663 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3664 break;
3665
3666 case SCTP_INITMSG:
3667 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3668 break;
3669 case SCTP_DEFAULT_SEND_PARAM:
3670 retval = sctp_setsockopt_default_send_param(sk, optval,
3671 optlen);
3672 break;
3673 case SCTP_PRIMARY_ADDR:
3674 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3675 break;
3676 case SCTP_SET_PEER_PRIMARY_ADDR:
3677 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3678 break;
3679 case SCTP_NODELAY:
3680 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3681 break;
3682 case SCTP_RTOINFO:
3683 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3684 break;
3685 case SCTP_ASSOCINFO:
3686 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3687 break;
3688 case SCTP_I_WANT_MAPPED_V4_ADDR:
3689 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3690 break;
3691 case SCTP_MAXSEG:
3692 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3693 break;
3694 case SCTP_ADAPTATION_LAYER:
3695 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3696 break;
3697 case SCTP_CONTEXT:
3698 retval = sctp_setsockopt_context(sk, optval, optlen);
3699 break;
3700 case SCTP_FRAGMENT_INTERLEAVE:
3701 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3702 break;
3703 case SCTP_MAX_BURST:
3704 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3705 break;
3706 case SCTP_AUTH_CHUNK:
3707 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3708 break;
3709 case SCTP_HMAC_IDENT:
3710 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3711 break;
3712 case SCTP_AUTH_KEY:
3713 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3714 break;
3715 case SCTP_AUTH_ACTIVE_KEY:
3716 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3717 break;
3718 case SCTP_AUTH_DELETE_KEY:
3719 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3720 break;
3721 case SCTP_AUTO_ASCONF:
3722 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3723 break;
3724 case SCTP_PEER_ADDR_THLDS:
3725 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3726 break;
3727 default:
3728 retval = -ENOPROTOOPT;
3729 break;
3730 }
3731
3732 release_sock(sk);
3733
3734out_nounlock:
3735 return retval;
3736}
3737
3738/* API 3.1.6 connect() - UDP Style Syntax
3739 *
3740 * An application may use the connect() call in the UDP model to initiate an
3741 * association without sending data.
3742 *
3743 * The syntax is:
3744 *
3745 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3746 *
3747 * sd: the socket descriptor to have a new association added to.
3748 *
3749 * nam: the address structure (either struct sockaddr_in or struct
3750 * sockaddr_in6 defined in RFC2553 [7]).
3751 *
3752 * len: the size of the address.
3753 */
3754static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3755 int addr_len)
3756{
3757 int err = 0;
3758 struct sctp_af *af;
3759
3760 lock_sock(sk);
3761
3762 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3763 addr, addr_len);
3764
3765 /* Validate addr_len before calling common connect/connectx routine. */
3766 af = sctp_get_af_specific(addr->sa_family);
3767 if (!af || addr_len < af->sockaddr_len) {
3768 err = -EINVAL;
3769 } else {
3770 /* Pass correct addr len to common routine (so it knows there
3771 * is only one address being passed.
3772 */
3773 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3774 }
3775
3776 release_sock(sk);
3777 return err;
3778}
3779
3780/* FIXME: Write comments. */
3781static int sctp_disconnect(struct sock *sk, int flags)
3782{
3783 return -EOPNOTSUPP; /* STUB */
3784}
3785
3786/* 4.1.4 accept() - TCP Style Syntax
3787 *
3788 * Applications use accept() call to remove an established SCTP
3789 * association from the accept queue of the endpoint. A new socket
3790 * descriptor will be returned from accept() to represent the newly
3791 * formed association.
3792 */
3793static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3794{
3795 struct sctp_sock *sp;
3796 struct sctp_endpoint *ep;
3797 struct sock *newsk = NULL;
3798 struct sctp_association *asoc;
3799 long timeo;
3800 int error = 0;
3801
3802 lock_sock(sk);
3803
3804 sp = sctp_sk(sk);
3805 ep = sp->ep;
3806
3807 if (!sctp_style(sk, TCP)) {
3808 error = -EOPNOTSUPP;
3809 goto out;
3810 }
3811
3812 if (!sctp_sstate(sk, LISTENING)) {
3813 error = -EINVAL;
3814 goto out;
3815 }
3816
3817 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3818
3819 error = sctp_wait_for_accept(sk, timeo);
3820 if (error)
3821 goto out;
3822
3823 /* We treat the list of associations on the endpoint as the accept
3824 * queue and pick the first association on the list.
3825 */
3826 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3827
3828 newsk = sp->pf->create_accept_sk(sk, asoc);
3829 if (!newsk) {
3830 error = -ENOMEM;
3831 goto out;
3832 }
3833
3834 /* Populate the fields of the newsk from the oldsk and migrate the
3835 * asoc to the newsk.
3836 */
3837 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3838
3839out:
3840 release_sock(sk);
3841 *err = error;
3842 return newsk;
3843}
3844
3845/* The SCTP ioctl handler. */
3846static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3847{
3848 int rc = -ENOTCONN;
3849
3850 lock_sock(sk);
3851
3852 /*
3853 * SEQPACKET-style sockets in LISTENING state are valid, for
3854 * SCTP, so only discard TCP-style sockets in LISTENING state.
3855 */
3856 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3857 goto out;
3858
3859 switch (cmd) {
3860 case SIOCINQ: {
3861 struct sk_buff *skb;
3862 unsigned int amount = 0;
3863
3864 skb = skb_peek(&sk->sk_receive_queue);
3865 if (skb != NULL) {
3866 /*
3867 * We will only return the amount of this packet since
3868 * that is all that will be read.
3869 */
3870 amount = skb->len;
3871 }
3872 rc = put_user(amount, (int __user *)arg);
3873 break;
3874 }
3875 default:
3876 rc = -ENOIOCTLCMD;
3877 break;
3878 }
3879out:
3880 release_sock(sk);
3881 return rc;
3882}
3883
3884/* This is the function which gets called during socket creation to
3885 * initialized the SCTP-specific portion of the sock.
3886 * The sock structure should already be zero-filled memory.
3887 */
3888static int sctp_init_sock(struct sock *sk)
3889{
3890 struct net *net = sock_net(sk);
3891 struct sctp_sock *sp;
3892
3893 pr_debug("%s: sk:%p\n", __func__, sk);
3894
3895 sp = sctp_sk(sk);
3896
3897 /* Initialize the SCTP per socket area. */
3898 switch (sk->sk_type) {
3899 case SOCK_SEQPACKET:
3900 sp->type = SCTP_SOCKET_UDP;
3901 break;
3902 case SOCK_STREAM:
3903 sp->type = SCTP_SOCKET_TCP;
3904 break;
3905 default:
3906 return -ESOCKTNOSUPPORT;
3907 }
3908
3909 /* Initialize default send parameters. These parameters can be
3910 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3911 */
3912 sp->default_stream = 0;
3913 sp->default_ppid = 0;
3914 sp->default_flags = 0;
3915 sp->default_context = 0;
3916 sp->default_timetolive = 0;
3917
3918 sp->default_rcv_context = 0;
3919 sp->max_burst = net->sctp.max_burst;
3920
3921 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3922
3923 /* Initialize default setup parameters. These parameters
3924 * can be modified with the SCTP_INITMSG socket option or
3925 * overridden by the SCTP_INIT CMSG.
3926 */
3927 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3928 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3929 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
3930 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3931
3932 /* Initialize default RTO related parameters. These parameters can
3933 * be modified for with the SCTP_RTOINFO socket option.
3934 */
3935 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3936 sp->rtoinfo.srto_max = net->sctp.rto_max;
3937 sp->rtoinfo.srto_min = net->sctp.rto_min;
3938
3939 /* Initialize default association related parameters. These parameters
3940 * can be modified with the SCTP_ASSOCINFO socket option.
3941 */
3942 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3943 sp->assocparams.sasoc_number_peer_destinations = 0;
3944 sp->assocparams.sasoc_peer_rwnd = 0;
3945 sp->assocparams.sasoc_local_rwnd = 0;
3946 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3947
3948 /* Initialize default event subscriptions. By default, all the
3949 * options are off.
3950 */
3951 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3952
3953 /* Default Peer Address Parameters. These defaults can
3954 * be modified via SCTP_PEER_ADDR_PARAMS
3955 */
3956 sp->hbinterval = net->sctp.hb_interval;
3957 sp->pathmaxrxt = net->sctp.max_retrans_path;
3958 sp->pathmtu = 0; /* allow default discovery */
3959 sp->sackdelay = net->sctp.sack_timeout;
3960 sp->sackfreq = 2;
3961 sp->param_flags = SPP_HB_ENABLE |
3962 SPP_PMTUD_ENABLE |
3963 SPP_SACKDELAY_ENABLE;
3964
3965 /* If enabled no SCTP message fragmentation will be performed.
3966 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3967 */
3968 sp->disable_fragments = 0;
3969
3970 /* Enable Nagle algorithm by default. */
3971 sp->nodelay = 0;
3972
3973 /* Enable by default. */
3974 sp->v4mapped = 1;
3975
3976 /* Auto-close idle associations after the configured
3977 * number of seconds. A value of 0 disables this
3978 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3979 * for UDP-style sockets only.
3980 */
3981 sp->autoclose = 0;
3982
3983 /* User specified fragmentation limit. */
3984 sp->user_frag = 0;
3985
3986 sp->adaptation_ind = 0;
3987
3988 sp->pf = sctp_get_pf_specific(sk->sk_family);
3989
3990 /* Control variables for partial data delivery. */
3991 atomic_set(&sp->pd_mode, 0);
3992 skb_queue_head_init(&sp->pd_lobby);
3993 sp->frag_interleave = 0;
3994
3995 /* Create a per socket endpoint structure. Even if we
3996 * change the data structure relationships, this may still
3997 * be useful for storing pre-connect address information.
3998 */
3999 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4000 if (!sp->ep)
4001 return -ENOMEM;
4002
4003 sp->hmac = NULL;
4004
4005 sk->sk_destruct = sctp_destruct_sock;
4006
4007 SCTP_DBG_OBJCNT_INC(sock);
4008
4009 local_bh_disable();
4010 percpu_counter_inc(&sctp_sockets_allocated);
4011 sock_prot_inuse_add(net, sk->sk_prot, 1);
4012 if (net->sctp.default_auto_asconf) {
4013 list_add_tail(&sp->auto_asconf_list,
4014 &net->sctp.auto_asconf_splist);
4015 sp->do_auto_asconf = 1;
4016 } else
4017 sp->do_auto_asconf = 0;
4018 local_bh_enable();
4019
4020 return 0;
4021}
4022
4023/* Cleanup any SCTP per socket resources. */
4024static void sctp_destroy_sock(struct sock *sk)
4025{
4026 struct sctp_sock *sp;
4027
4028 pr_debug("%s: sk:%p\n", __func__, sk);
4029
4030 /* Release our hold on the endpoint. */
4031 sp = sctp_sk(sk);
4032 /* This could happen during socket init, thus we bail out
4033 * early, since the rest of the below is not setup either.
4034 */
4035 if (sp->ep == NULL)
4036 return;
4037
4038 if (sp->do_auto_asconf) {
4039 sp->do_auto_asconf = 0;
4040 list_del(&sp->auto_asconf_list);
4041 }
4042 sctp_endpoint_free(sp->ep);
4043 local_bh_disable();
4044 percpu_counter_dec(&sctp_sockets_allocated);
4045 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4046 local_bh_enable();
4047}
4048
4049/* Triggered when there are no references on the socket anymore */
4050static void sctp_destruct_sock(struct sock *sk)
4051{
4052 struct sctp_sock *sp = sctp_sk(sk);
4053
4054 /* Free up the HMAC transform. */
4055 crypto_free_hash(sp->hmac);
4056
4057 inet_sock_destruct(sk);
4058}
4059
4060/* API 4.1.7 shutdown() - TCP Style Syntax
4061 * int shutdown(int socket, int how);
4062 *
4063 * sd - the socket descriptor of the association to be closed.
4064 * how - Specifies the type of shutdown. The values are
4065 * as follows:
4066 * SHUT_RD
4067 * Disables further receive operations. No SCTP
4068 * protocol action is taken.
4069 * SHUT_WR
4070 * Disables further send operations, and initiates
4071 * the SCTP shutdown sequence.
4072 * SHUT_RDWR
4073 * Disables further send and receive operations
4074 * and initiates the SCTP shutdown sequence.
4075 */
4076static void sctp_shutdown(struct sock *sk, int how)
4077{
4078 struct net *net = sock_net(sk);
4079 struct sctp_endpoint *ep;
4080 struct sctp_association *asoc;
4081
4082 if (!sctp_style(sk, TCP))
4083 return;
4084
4085 if (how & SEND_SHUTDOWN) {
4086 ep = sctp_sk(sk)->ep;
4087 if (!list_empty(&ep->asocs)) {
4088 asoc = list_entry(ep->asocs.next,
4089 struct sctp_association, asocs);
4090 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4091 }
4092 }
4093}
4094
4095/* 7.2.1 Association Status (SCTP_STATUS)
4096
4097 * Applications can retrieve current status information about an
4098 * association, including association state, peer receiver window size,
4099 * number of unacked data chunks, and number of data chunks pending
4100 * receipt. This information is read-only.
4101 */
4102static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4103 char __user *optval,
4104 int __user *optlen)
4105{
4106 struct sctp_status status;
4107 struct sctp_association *asoc = NULL;
4108 struct sctp_transport *transport;
4109 sctp_assoc_t associd;
4110 int retval = 0;
4111
4112 if (len < sizeof(status)) {
4113 retval = -EINVAL;
4114 goto out;
4115 }
4116
4117 len = sizeof(status);
4118 if (copy_from_user(&status, optval, len)) {
4119 retval = -EFAULT;
4120 goto out;
4121 }
4122
4123 associd = status.sstat_assoc_id;
4124 asoc = sctp_id2assoc(sk, associd);
4125 if (!asoc) {
4126 retval = -EINVAL;
4127 goto out;
4128 }
4129
4130 transport = asoc->peer.primary_path;
4131
4132 status.sstat_assoc_id = sctp_assoc2id(asoc);
4133 status.sstat_state = asoc->state;
4134 status.sstat_rwnd = asoc->peer.rwnd;
4135 status.sstat_unackdata = asoc->unack_data;
4136
4137 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4138 status.sstat_instrms = asoc->c.sinit_max_instreams;
4139 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4140 status.sstat_fragmentation_point = asoc->frag_point;
4141 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4142 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4143 transport->af_specific->sockaddr_len);
4144 /* Map ipv4 address into v4-mapped-on-v6 address. */
4145 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4146 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4147 status.sstat_primary.spinfo_state = transport->state;
4148 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4149 status.sstat_primary.spinfo_srtt = transport->srtt;
4150 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4151 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4152
4153 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4154 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4155
4156 if (put_user(len, optlen)) {
4157 retval = -EFAULT;
4158 goto out;
4159 }
4160
4161 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4162 __func__, len, status.sstat_state, status.sstat_rwnd,
4163 status.sstat_assoc_id);
4164
4165 if (copy_to_user(optval, &status, len)) {
4166 retval = -EFAULT;
4167 goto out;
4168 }
4169
4170out:
4171 return retval;
4172}
4173
4174
4175/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4176 *
4177 * Applications can retrieve information about a specific peer address
4178 * of an association, including its reachability state, congestion
4179 * window, and retransmission timer values. This information is
4180 * read-only.
4181 */
4182static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4183 char __user *optval,
4184 int __user *optlen)
4185{
4186 struct sctp_paddrinfo pinfo;
4187 struct sctp_transport *transport;
4188 int retval = 0;
4189
4190 if (len < sizeof(pinfo)) {
4191 retval = -EINVAL;
4192 goto out;
4193 }
4194
4195 len = sizeof(pinfo);
4196 if (copy_from_user(&pinfo, optval, len)) {
4197 retval = -EFAULT;
4198 goto out;
4199 }
4200
4201 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4202 pinfo.spinfo_assoc_id);
4203 if (!transport)
4204 return -EINVAL;
4205
4206 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4207 pinfo.spinfo_state = transport->state;
4208 pinfo.spinfo_cwnd = transport->cwnd;
4209 pinfo.spinfo_srtt = transport->srtt;
4210 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4211 pinfo.spinfo_mtu = transport->pathmtu;
4212
4213 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4214 pinfo.spinfo_state = SCTP_ACTIVE;
4215
4216 if (put_user(len, optlen)) {
4217 retval = -EFAULT;
4218 goto out;
4219 }
4220
4221 if (copy_to_user(optval, &pinfo, len)) {
4222 retval = -EFAULT;
4223 goto out;
4224 }
4225
4226out:
4227 return retval;
4228}
4229
4230/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4231 *
4232 * This option is a on/off flag. If enabled no SCTP message
4233 * fragmentation will be performed. Instead if a message being sent
4234 * exceeds the current PMTU size, the message will NOT be sent and
4235 * instead a error will be indicated to the user.
4236 */
4237static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4238 char __user *optval, int __user *optlen)
4239{
4240 int val;
4241
4242 if (len < sizeof(int))
4243 return -EINVAL;
4244
4245 len = sizeof(int);
4246 val = (sctp_sk(sk)->disable_fragments == 1);
4247 if (put_user(len, optlen))
4248 return -EFAULT;
4249 if (copy_to_user(optval, &val, len))
4250 return -EFAULT;
4251 return 0;
4252}
4253
4254/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4255 *
4256 * This socket option is used to specify various notifications and
4257 * ancillary data the user wishes to receive.
4258 */
4259static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4260 int __user *optlen)
4261{
4262 if (len <= 0)
4263 return -EINVAL;
4264 if (len > sizeof(struct sctp_event_subscribe))
4265 len = sizeof(struct sctp_event_subscribe);
4266 if (put_user(len, optlen))
4267 return -EFAULT;
4268 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4269 return -EFAULT;
4270 return 0;
4271}
4272
4273/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4274 *
4275 * This socket option is applicable to the UDP-style socket only. When
4276 * set it will cause associations that are idle for more than the
4277 * specified number of seconds to automatically close. An association
4278 * being idle is defined an association that has NOT sent or received
4279 * user data. The special value of '0' indicates that no automatic
4280 * close of any associations should be performed. The option expects an
4281 * integer defining the number of seconds of idle time before an
4282 * association is closed.
4283 */
4284static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4285{
4286 /* Applicable to UDP-style socket only */
4287 if (sctp_style(sk, TCP))
4288 return -EOPNOTSUPP;
4289 if (len < sizeof(int))
4290 return -EINVAL;
4291 len = sizeof(int);
4292 if (put_user(len, optlen))
4293 return -EFAULT;
4294 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4295 return -EFAULT;
4296 return 0;
4297}
4298
4299/* Helper routine to branch off an association to a new socket. */
4300int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4301{
4302 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4303 struct socket *sock;
4304 struct sctp_af *af;
4305 int err = 0;
4306
4307 if (!asoc)
4308 return -EINVAL;
4309
4310 /* An association cannot be branched off from an already peeled-off
4311 * socket, nor is this supported for tcp style sockets.
4312 */
4313 if (!sctp_style(sk, UDP))
4314 return -EINVAL;
4315
4316 /* Create a new socket. */
4317 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4318 if (err < 0)
4319 return err;
4320
4321 sctp_copy_sock(sock->sk, sk, asoc);
4322
4323 /* Make peeled-off sockets more like 1-1 accepted sockets.
4324 * Set the daddr and initialize id to something more random
4325 */
4326 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4327 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4328
4329 /* Populate the fields of the newsk from the oldsk and migrate the
4330 * asoc to the newsk.
4331 */
4332 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4333
4334 *sockp = sock;
4335
4336 return err;
4337}
4338EXPORT_SYMBOL(sctp_do_peeloff);
4339
4340static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4341{
4342 sctp_peeloff_arg_t peeloff;
4343 struct socket *newsock;
4344 struct file *newfile;
4345 int retval = 0;
4346
4347 if (len < sizeof(sctp_peeloff_arg_t))
4348 return -EINVAL;
4349 len = sizeof(sctp_peeloff_arg_t);
4350 if (copy_from_user(&peeloff, optval, len))
4351 return -EFAULT;
4352
4353 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4354 if (retval < 0)
4355 goto out;
4356
4357 /* Map the socket to an unused fd that can be returned to the user. */
4358 retval = get_unused_fd_flags(0);
4359 if (retval < 0) {
4360 sock_release(newsock);
4361 goto out;
4362 }
4363
4364 newfile = sock_alloc_file(newsock, 0, NULL);
4365 if (unlikely(IS_ERR(newfile))) {
4366 put_unused_fd(retval);
4367 sock_release(newsock);
4368 return PTR_ERR(newfile);
4369 }
4370
4371 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4372 retval);
4373
4374 /* Return the fd mapped to the new socket. */
4375 if (put_user(len, optlen)) {
4376 fput(newfile);
4377 put_unused_fd(retval);
4378 return -EFAULT;
4379 }
4380 peeloff.sd = retval;
4381 if (copy_to_user(optval, &peeloff, len)) {
4382 fput(newfile);
4383 put_unused_fd(retval);
4384 return -EFAULT;
4385 }
4386 fd_install(retval, newfile);
4387out:
4388 return retval;
4389}
4390
4391/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4392 *
4393 * Applications can enable or disable heartbeats for any peer address of
4394 * an association, modify an address's heartbeat interval, force a
4395 * heartbeat to be sent immediately, and adjust the address's maximum
4396 * number of retransmissions sent before an address is considered
4397 * unreachable. The following structure is used to access and modify an
4398 * address's parameters:
4399 *
4400 * struct sctp_paddrparams {
4401 * sctp_assoc_t spp_assoc_id;
4402 * struct sockaddr_storage spp_address;
4403 * uint32_t spp_hbinterval;
4404 * uint16_t spp_pathmaxrxt;
4405 * uint32_t spp_pathmtu;
4406 * uint32_t spp_sackdelay;
4407 * uint32_t spp_flags;
4408 * };
4409 *
4410 * spp_assoc_id - (one-to-many style socket) This is filled in the
4411 * application, and identifies the association for
4412 * this query.
4413 * spp_address - This specifies which address is of interest.
4414 * spp_hbinterval - This contains the value of the heartbeat interval,
4415 * in milliseconds. If a value of zero
4416 * is present in this field then no changes are to
4417 * be made to this parameter.
4418 * spp_pathmaxrxt - This contains the maximum number of
4419 * retransmissions before this address shall be
4420 * considered unreachable. If a value of zero
4421 * is present in this field then no changes are to
4422 * be made to this parameter.
4423 * spp_pathmtu - When Path MTU discovery is disabled the value
4424 * specified here will be the "fixed" path mtu.
4425 * Note that if the spp_address field is empty
4426 * then all associations on this address will
4427 * have this fixed path mtu set upon them.
4428 *
4429 * spp_sackdelay - When delayed sack is enabled, this value specifies
4430 * the number of milliseconds that sacks will be delayed
4431 * for. This value will apply to all addresses of an
4432 * association if the spp_address field is empty. Note
4433 * also, that if delayed sack is enabled and this
4434 * value is set to 0, no change is made to the last
4435 * recorded delayed sack timer value.
4436 *
4437 * spp_flags - These flags are used to control various features
4438 * on an association. The flag field may contain
4439 * zero or more of the following options.
4440 *
4441 * SPP_HB_ENABLE - Enable heartbeats on the
4442 * specified address. Note that if the address
4443 * field is empty all addresses for the association
4444 * have heartbeats enabled upon them.
4445 *
4446 * SPP_HB_DISABLE - Disable heartbeats on the
4447 * speicifed address. Note that if the address
4448 * field is empty all addresses for the association
4449 * will have their heartbeats disabled. Note also
4450 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4451 * mutually exclusive, only one of these two should
4452 * be specified. Enabling both fields will have
4453 * undetermined results.
4454 *
4455 * SPP_HB_DEMAND - Request a user initiated heartbeat
4456 * to be made immediately.
4457 *
4458 * SPP_PMTUD_ENABLE - This field will enable PMTU
4459 * discovery upon the specified address. Note that
4460 * if the address feild is empty then all addresses
4461 * on the association are effected.
4462 *
4463 * SPP_PMTUD_DISABLE - This field will disable PMTU
4464 * discovery upon the specified address. Note that
4465 * if the address feild is empty then all addresses
4466 * on the association are effected. Not also that
4467 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4468 * exclusive. Enabling both will have undetermined
4469 * results.
4470 *
4471 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4472 * on delayed sack. The time specified in spp_sackdelay
4473 * is used to specify the sack delay for this address. Note
4474 * that if spp_address is empty then all addresses will
4475 * enable delayed sack and take on the sack delay
4476 * value specified in spp_sackdelay.
4477 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4478 * off delayed sack. If the spp_address field is blank then
4479 * delayed sack is disabled for the entire association. Note
4480 * also that this field is mutually exclusive to
4481 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4482 * results.
4483 */
4484static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4485 char __user *optval, int __user *optlen)
4486{
4487 struct sctp_paddrparams params;
4488 struct sctp_transport *trans = NULL;
4489 struct sctp_association *asoc = NULL;
4490 struct sctp_sock *sp = sctp_sk(sk);
4491
4492 if (len < sizeof(struct sctp_paddrparams))
4493 return -EINVAL;
4494 len = sizeof(struct sctp_paddrparams);
4495 if (copy_from_user(¶ms, optval, len))
4496 return -EFAULT;
4497
4498 /* If an address other than INADDR_ANY is specified, and
4499 * no transport is found, then the request is invalid.
4500 */
4501 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4502 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4503 params.spp_assoc_id);
4504 if (!trans) {
4505 pr_debug("%s: failed no transport\n", __func__);
4506 return -EINVAL;
4507 }
4508 }
4509
4510 /* Get association, if assoc_id != 0 and the socket is a one
4511 * to many style socket, and an association was not found, then
4512 * the id was invalid.
4513 */
4514 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4515 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4516 pr_debug("%s: failed no association\n", __func__);
4517 return -EINVAL;
4518 }
4519
4520 if (trans) {
4521 /* Fetch transport values. */
4522 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4523 params.spp_pathmtu = trans->pathmtu;
4524 params.spp_pathmaxrxt = trans->pathmaxrxt;
4525 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4526
4527 /*draft-11 doesn't say what to return in spp_flags*/
4528 params.spp_flags = trans->param_flags;
4529 } else if (asoc) {
4530 /* Fetch association values. */
4531 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4532 params.spp_pathmtu = asoc->pathmtu;
4533 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4534 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4535
4536 /*draft-11 doesn't say what to return in spp_flags*/
4537 params.spp_flags = asoc->param_flags;
4538 } else {
4539 /* Fetch socket values. */
4540 params.spp_hbinterval = sp->hbinterval;
4541 params.spp_pathmtu = sp->pathmtu;
4542 params.spp_sackdelay = sp->sackdelay;
4543 params.spp_pathmaxrxt = sp->pathmaxrxt;
4544
4545 /*draft-11 doesn't say what to return in spp_flags*/
4546 params.spp_flags = sp->param_flags;
4547 }
4548
4549 if (copy_to_user(optval, ¶ms, len))
4550 return -EFAULT;
4551
4552 if (put_user(len, optlen))
4553 return -EFAULT;
4554
4555 return 0;
4556}
4557
4558/*
4559 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4560 *
4561 * This option will effect the way delayed acks are performed. This
4562 * option allows you to get or set the delayed ack time, in
4563 * milliseconds. It also allows changing the delayed ack frequency.
4564 * Changing the frequency to 1 disables the delayed sack algorithm. If
4565 * the assoc_id is 0, then this sets or gets the endpoints default
4566 * values. If the assoc_id field is non-zero, then the set or get
4567 * effects the specified association for the one to many model (the
4568 * assoc_id field is ignored by the one to one model). Note that if
4569 * sack_delay or sack_freq are 0 when setting this option, then the
4570 * current values will remain unchanged.
4571 *
4572 * struct sctp_sack_info {
4573 * sctp_assoc_t sack_assoc_id;
4574 * uint32_t sack_delay;
4575 * uint32_t sack_freq;
4576 * };
4577 *
4578 * sack_assoc_id - This parameter, indicates which association the user
4579 * is performing an action upon. Note that if this field's value is
4580 * zero then the endpoints default value is changed (effecting future
4581 * associations only).
4582 *
4583 * sack_delay - This parameter contains the number of milliseconds that
4584 * the user is requesting the delayed ACK timer be set to. Note that
4585 * this value is defined in the standard to be between 200 and 500
4586 * milliseconds.
4587 *
4588 * sack_freq - This parameter contains the number of packets that must
4589 * be received before a sack is sent without waiting for the delay
4590 * timer to expire. The default value for this is 2, setting this
4591 * value to 1 will disable the delayed sack algorithm.
4592 */
4593static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4594 char __user *optval,
4595 int __user *optlen)
4596{
4597 struct sctp_sack_info params;
4598 struct sctp_association *asoc = NULL;
4599 struct sctp_sock *sp = sctp_sk(sk);
4600
4601 if (len >= sizeof(struct sctp_sack_info)) {
4602 len = sizeof(struct sctp_sack_info);
4603
4604 if (copy_from_user(¶ms, optval, len))
4605 return -EFAULT;
4606 } else if (len == sizeof(struct sctp_assoc_value)) {
4607 pr_warn_ratelimited(DEPRECATED
4608 "%s (pid %d) "
4609 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4610 "Use struct sctp_sack_info instead\n",
4611 current->comm, task_pid_nr(current));
4612 if (copy_from_user(¶ms, optval, len))
4613 return -EFAULT;
4614 } else
4615 return -EINVAL;
4616
4617 /* Get association, if sack_assoc_id != 0 and the socket is a one
4618 * to many style socket, and an association was not found, then
4619 * the id was invalid.
4620 */
4621 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4622 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4623 return -EINVAL;
4624
4625 if (asoc) {
4626 /* Fetch association values. */
4627 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4628 params.sack_delay = jiffies_to_msecs(
4629 asoc->sackdelay);
4630 params.sack_freq = asoc->sackfreq;
4631
4632 } else {
4633 params.sack_delay = 0;
4634 params.sack_freq = 1;
4635 }
4636 } else {
4637 /* Fetch socket values. */
4638 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4639 params.sack_delay = sp->sackdelay;
4640 params.sack_freq = sp->sackfreq;
4641 } else {
4642 params.sack_delay = 0;
4643 params.sack_freq = 1;
4644 }
4645 }
4646
4647 if (copy_to_user(optval, ¶ms, len))
4648 return -EFAULT;
4649
4650 if (put_user(len, optlen))
4651 return -EFAULT;
4652
4653 return 0;
4654}
4655
4656/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4657 *
4658 * Applications can specify protocol parameters for the default association
4659 * initialization. The option name argument to setsockopt() and getsockopt()
4660 * is SCTP_INITMSG.
4661 *
4662 * Setting initialization parameters is effective only on an unconnected
4663 * socket (for UDP-style sockets only future associations are effected
4664 * by the change). With TCP-style sockets, this option is inherited by
4665 * sockets derived from a listener socket.
4666 */
4667static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4668{
4669 if (len < sizeof(struct sctp_initmsg))
4670 return -EINVAL;
4671 len = sizeof(struct sctp_initmsg);
4672 if (put_user(len, optlen))
4673 return -EFAULT;
4674 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4675 return -EFAULT;
4676 return 0;
4677}
4678
4679
4680static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4681 char __user *optval, int __user *optlen)
4682{
4683 struct sctp_association *asoc;
4684 int cnt = 0;
4685 struct sctp_getaddrs getaddrs;
4686 struct sctp_transport *from;
4687 void __user *to;
4688 union sctp_addr temp;
4689 struct sctp_sock *sp = sctp_sk(sk);
4690 int addrlen;
4691 size_t space_left;
4692 int bytes_copied;
4693
4694 if (len < sizeof(struct sctp_getaddrs))
4695 return -EINVAL;
4696
4697 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4698 return -EFAULT;
4699
4700 /* For UDP-style sockets, id specifies the association to query. */
4701 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4702 if (!asoc)
4703 return -EINVAL;
4704
4705 to = optval + offsetof(struct sctp_getaddrs, addrs);
4706 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4707
4708 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4709 transports) {
4710 memcpy(&temp, &from->ipaddr, sizeof(temp));
4711 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4712 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713 if (space_left < addrlen)
4714 return -ENOMEM;
4715 if (copy_to_user(to, &temp, addrlen))
4716 return -EFAULT;
4717 to += addrlen;
4718 cnt++;
4719 space_left -= addrlen;
4720 }
4721
4722 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4723 return -EFAULT;
4724 bytes_copied = ((char __user *)to) - optval;
4725 if (put_user(bytes_copied, optlen))
4726 return -EFAULT;
4727
4728 return 0;
4729}
4730
4731static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4732 size_t space_left, int *bytes_copied)
4733{
4734 struct sctp_sockaddr_entry *addr;
4735 union sctp_addr temp;
4736 int cnt = 0;
4737 int addrlen;
4738 struct net *net = sock_net(sk);
4739
4740 rcu_read_lock();
4741 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4742 if (!addr->valid)
4743 continue;
4744
4745 if ((PF_INET == sk->sk_family) &&
4746 (AF_INET6 == addr->a.sa.sa_family))
4747 continue;
4748 if ((PF_INET6 == sk->sk_family) &&
4749 inet_v6_ipv6only(sk) &&
4750 (AF_INET == addr->a.sa.sa_family))
4751 continue;
4752 memcpy(&temp, &addr->a, sizeof(temp));
4753 if (!temp.v4.sin_port)
4754 temp.v4.sin_port = htons(port);
4755
4756 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4757 &temp);
4758 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4759 if (space_left < addrlen) {
4760 cnt = -ENOMEM;
4761 break;
4762 }
4763 memcpy(to, &temp, addrlen);
4764
4765 to += addrlen;
4766 cnt++;
4767 space_left -= addrlen;
4768 *bytes_copied += addrlen;
4769 }
4770 rcu_read_unlock();
4771
4772 return cnt;
4773}
4774
4775
4776static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4777 char __user *optval, int __user *optlen)
4778{
4779 struct sctp_bind_addr *bp;
4780 struct sctp_association *asoc;
4781 int cnt = 0;
4782 struct sctp_getaddrs getaddrs;
4783 struct sctp_sockaddr_entry *addr;
4784 void __user *to;
4785 union sctp_addr temp;
4786 struct sctp_sock *sp = sctp_sk(sk);
4787 int addrlen;
4788 int err = 0;
4789 size_t space_left;
4790 int bytes_copied = 0;
4791 void *addrs;
4792 void *buf;
4793
4794 if (len < sizeof(struct sctp_getaddrs))
4795 return -EINVAL;
4796
4797 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4798 return -EFAULT;
4799
4800 /*
4801 * For UDP-style sockets, id specifies the association to query.
4802 * If the id field is set to the value '0' then the locally bound
4803 * addresses are returned without regard to any particular
4804 * association.
4805 */
4806 if (0 == getaddrs.assoc_id) {
4807 bp = &sctp_sk(sk)->ep->base.bind_addr;
4808 } else {
4809 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4810 if (!asoc)
4811 return -EINVAL;
4812 bp = &asoc->base.bind_addr;
4813 }
4814
4815 to = optval + offsetof(struct sctp_getaddrs, addrs);
4816 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4817
4818 addrs = kmalloc(space_left, GFP_KERNEL);
4819 if (!addrs)
4820 return -ENOMEM;
4821
4822 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4823 * addresses from the global local address list.
4824 */
4825 if (sctp_list_single_entry(&bp->address_list)) {
4826 addr = list_entry(bp->address_list.next,
4827 struct sctp_sockaddr_entry, list);
4828 if (sctp_is_any(sk, &addr->a)) {
4829 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4830 space_left, &bytes_copied);
4831 if (cnt < 0) {
4832 err = cnt;
4833 goto out;
4834 }
4835 goto copy_getaddrs;
4836 }
4837 }
4838
4839 buf = addrs;
4840 /* Protection on the bound address list is not needed since
4841 * in the socket option context we hold a socket lock and
4842 * thus the bound address list can't change.
4843 */
4844 list_for_each_entry(addr, &bp->address_list, list) {
4845 memcpy(&temp, &addr->a, sizeof(temp));
4846 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4847 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4848 if (space_left < addrlen) {
4849 err = -ENOMEM; /*fixme: right error?*/
4850 goto out;
4851 }
4852 memcpy(buf, &temp, addrlen);
4853 buf += addrlen;
4854 bytes_copied += addrlen;
4855 cnt++;
4856 space_left -= addrlen;
4857 }
4858
4859copy_getaddrs:
4860 if (copy_to_user(to, addrs, bytes_copied)) {
4861 err = -EFAULT;
4862 goto out;
4863 }
4864 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4865 err = -EFAULT;
4866 goto out;
4867 }
4868 if (put_user(bytes_copied, optlen))
4869 err = -EFAULT;
4870out:
4871 kfree(addrs);
4872 return err;
4873}
4874
4875/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4876 *
4877 * Requests that the local SCTP stack use the enclosed peer address as
4878 * the association primary. The enclosed address must be one of the
4879 * association peer's addresses.
4880 */
4881static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4882 char __user *optval, int __user *optlen)
4883{
4884 struct sctp_prim prim;
4885 struct sctp_association *asoc;
4886 struct sctp_sock *sp = sctp_sk(sk);
4887
4888 if (len < sizeof(struct sctp_prim))
4889 return -EINVAL;
4890
4891 len = sizeof(struct sctp_prim);
4892
4893 if (copy_from_user(&prim, optval, len))
4894 return -EFAULT;
4895
4896 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4897 if (!asoc)
4898 return -EINVAL;
4899
4900 if (!asoc->peer.primary_path)
4901 return -ENOTCONN;
4902
4903 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4904 asoc->peer.primary_path->af_specific->sockaddr_len);
4905
4906 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4907 (union sctp_addr *)&prim.ssp_addr);
4908
4909 if (put_user(len, optlen))
4910 return -EFAULT;
4911 if (copy_to_user(optval, &prim, len))
4912 return -EFAULT;
4913
4914 return 0;
4915}
4916
4917/*
4918 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4919 *
4920 * Requests that the local endpoint set the specified Adaptation Layer
4921 * Indication parameter for all future INIT and INIT-ACK exchanges.
4922 */
4923static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4924 char __user *optval, int __user *optlen)
4925{
4926 struct sctp_setadaptation adaptation;
4927
4928 if (len < sizeof(struct sctp_setadaptation))
4929 return -EINVAL;
4930
4931 len = sizeof(struct sctp_setadaptation);
4932
4933 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4934
4935 if (put_user(len, optlen))
4936 return -EFAULT;
4937 if (copy_to_user(optval, &adaptation, len))
4938 return -EFAULT;
4939
4940 return 0;
4941}
4942
4943/*
4944 *
4945 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4946 *
4947 * Applications that wish to use the sendto() system call may wish to
4948 * specify a default set of parameters that would normally be supplied
4949 * through the inclusion of ancillary data. This socket option allows
4950 * such an application to set the default sctp_sndrcvinfo structure.
4951
4952
4953 * The application that wishes to use this socket option simply passes
4954 * in to this call the sctp_sndrcvinfo structure defined in Section
4955 * 5.2.2) The input parameters accepted by this call include
4956 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4957 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4958 * to this call if the caller is using the UDP model.
4959 *
4960 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4961 */
4962static int sctp_getsockopt_default_send_param(struct sock *sk,
4963 int len, char __user *optval,
4964 int __user *optlen)
4965{
4966 struct sctp_sndrcvinfo info;
4967 struct sctp_association *asoc;
4968 struct sctp_sock *sp = sctp_sk(sk);
4969
4970 if (len < sizeof(struct sctp_sndrcvinfo))
4971 return -EINVAL;
4972
4973 len = sizeof(struct sctp_sndrcvinfo);
4974
4975 if (copy_from_user(&info, optval, len))
4976 return -EFAULT;
4977
4978 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4979 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4980 return -EINVAL;
4981
4982 if (asoc) {
4983 info.sinfo_stream = asoc->default_stream;
4984 info.sinfo_flags = asoc->default_flags;
4985 info.sinfo_ppid = asoc->default_ppid;
4986 info.sinfo_context = asoc->default_context;
4987 info.sinfo_timetolive = asoc->default_timetolive;
4988 } else {
4989 info.sinfo_stream = sp->default_stream;
4990 info.sinfo_flags = sp->default_flags;
4991 info.sinfo_ppid = sp->default_ppid;
4992 info.sinfo_context = sp->default_context;
4993 info.sinfo_timetolive = sp->default_timetolive;
4994 }
4995
4996 if (put_user(len, optlen))
4997 return -EFAULT;
4998 if (copy_to_user(optval, &info, len))
4999 return -EFAULT;
5000
5001 return 0;
5002}
5003
5004/*
5005 *
5006 * 7.1.5 SCTP_NODELAY
5007 *
5008 * Turn on/off any Nagle-like algorithm. This means that packets are
5009 * generally sent as soon as possible and no unnecessary delays are
5010 * introduced, at the cost of more packets in the network. Expects an
5011 * integer boolean flag.
5012 */
5013
5014static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5015 char __user *optval, int __user *optlen)
5016{
5017 int val;
5018
5019 if (len < sizeof(int))
5020 return -EINVAL;
5021
5022 len = sizeof(int);
5023 val = (sctp_sk(sk)->nodelay == 1);
5024 if (put_user(len, optlen))
5025 return -EFAULT;
5026 if (copy_to_user(optval, &val, len))
5027 return -EFAULT;
5028 return 0;
5029}
5030
5031/*
5032 *
5033 * 7.1.1 SCTP_RTOINFO
5034 *
5035 * The protocol parameters used to initialize and bound retransmission
5036 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5037 * and modify these parameters.
5038 * All parameters are time values, in milliseconds. A value of 0, when
5039 * modifying the parameters, indicates that the current value should not
5040 * be changed.
5041 *
5042 */
5043static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5044 char __user *optval,
5045 int __user *optlen) {
5046 struct sctp_rtoinfo rtoinfo;
5047 struct sctp_association *asoc;
5048
5049 if (len < sizeof (struct sctp_rtoinfo))
5050 return -EINVAL;
5051
5052 len = sizeof(struct sctp_rtoinfo);
5053
5054 if (copy_from_user(&rtoinfo, optval, len))
5055 return -EFAULT;
5056
5057 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5058
5059 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5060 return -EINVAL;
5061
5062 /* Values corresponding to the specific association. */
5063 if (asoc) {
5064 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5065 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5066 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5067 } else {
5068 /* Values corresponding to the endpoint. */
5069 struct sctp_sock *sp = sctp_sk(sk);
5070
5071 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5072 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5073 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5074 }
5075
5076 if (put_user(len, optlen))
5077 return -EFAULT;
5078
5079 if (copy_to_user(optval, &rtoinfo, len))
5080 return -EFAULT;
5081
5082 return 0;
5083}
5084
5085/*
5086 *
5087 * 7.1.2 SCTP_ASSOCINFO
5088 *
5089 * This option is used to tune the maximum retransmission attempts
5090 * of the association.
5091 * Returns an error if the new association retransmission value is
5092 * greater than the sum of the retransmission value of the peer.
5093 * See [SCTP] for more information.
5094 *
5095 */
5096static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5097 char __user *optval,
5098 int __user *optlen)
5099{
5100
5101 struct sctp_assocparams assocparams;
5102 struct sctp_association *asoc;
5103 struct list_head *pos;
5104 int cnt = 0;
5105
5106 if (len < sizeof (struct sctp_assocparams))
5107 return -EINVAL;
5108
5109 len = sizeof(struct sctp_assocparams);
5110
5111 if (copy_from_user(&assocparams, optval, len))
5112 return -EFAULT;
5113
5114 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5115
5116 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5117 return -EINVAL;
5118
5119 /* Values correspoinding to the specific association */
5120 if (asoc) {
5121 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5122 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5123 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5124 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5125
5126 list_for_each(pos, &asoc->peer.transport_addr_list) {
5127 cnt++;
5128 }
5129
5130 assocparams.sasoc_number_peer_destinations = cnt;
5131 } else {
5132 /* Values corresponding to the endpoint */
5133 struct sctp_sock *sp = sctp_sk(sk);
5134
5135 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5136 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5137 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5138 assocparams.sasoc_cookie_life =
5139 sp->assocparams.sasoc_cookie_life;
5140 assocparams.sasoc_number_peer_destinations =
5141 sp->assocparams.
5142 sasoc_number_peer_destinations;
5143 }
5144
5145 if (put_user(len, optlen))
5146 return -EFAULT;
5147
5148 if (copy_to_user(optval, &assocparams, len))
5149 return -EFAULT;
5150
5151 return 0;
5152}
5153
5154/*
5155 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5156 *
5157 * This socket option is a boolean flag which turns on or off mapped V4
5158 * addresses. If this option is turned on and the socket is type
5159 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5160 * If this option is turned off, then no mapping will be done of V4
5161 * addresses and a user will receive both PF_INET6 and PF_INET type
5162 * addresses on the socket.
5163 */
5164static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5165 char __user *optval, int __user *optlen)
5166{
5167 int val;
5168 struct sctp_sock *sp = sctp_sk(sk);
5169
5170 if (len < sizeof(int))
5171 return -EINVAL;
5172
5173 len = sizeof(int);
5174 val = sp->v4mapped;
5175 if (put_user(len, optlen))
5176 return -EFAULT;
5177 if (copy_to_user(optval, &val, len))
5178 return -EFAULT;
5179
5180 return 0;
5181}
5182
5183/*
5184 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5185 * (chapter and verse is quoted at sctp_setsockopt_context())
5186 */
5187static int sctp_getsockopt_context(struct sock *sk, int len,
5188 char __user *optval, int __user *optlen)
5189{
5190 struct sctp_assoc_value params;
5191 struct sctp_sock *sp;
5192 struct sctp_association *asoc;
5193
5194 if (len < sizeof(struct sctp_assoc_value))
5195 return -EINVAL;
5196
5197 len = sizeof(struct sctp_assoc_value);
5198
5199 if (copy_from_user(¶ms, optval, len))
5200 return -EFAULT;
5201
5202 sp = sctp_sk(sk);
5203
5204 if (params.assoc_id != 0) {
5205 asoc = sctp_id2assoc(sk, params.assoc_id);
5206 if (!asoc)
5207 return -EINVAL;
5208 params.assoc_value = asoc->default_rcv_context;
5209 } else {
5210 params.assoc_value = sp->default_rcv_context;
5211 }
5212
5213 if (put_user(len, optlen))
5214 return -EFAULT;
5215 if (copy_to_user(optval, ¶ms, len))
5216 return -EFAULT;
5217
5218 return 0;
5219}
5220
5221/*
5222 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5223 * This option will get or set the maximum size to put in any outgoing
5224 * SCTP DATA chunk. If a message is larger than this size it will be
5225 * fragmented by SCTP into the specified size. Note that the underlying
5226 * SCTP implementation may fragment into smaller sized chunks when the
5227 * PMTU of the underlying association is smaller than the value set by
5228 * the user. The default value for this option is '0' which indicates
5229 * the user is NOT limiting fragmentation and only the PMTU will effect
5230 * SCTP's choice of DATA chunk size. Note also that values set larger
5231 * than the maximum size of an IP datagram will effectively let SCTP
5232 * control fragmentation (i.e. the same as setting this option to 0).
5233 *
5234 * The following structure is used to access and modify this parameter:
5235 *
5236 * struct sctp_assoc_value {
5237 * sctp_assoc_t assoc_id;
5238 * uint32_t assoc_value;
5239 * };
5240 *
5241 * assoc_id: This parameter is ignored for one-to-one style sockets.
5242 * For one-to-many style sockets this parameter indicates which
5243 * association the user is performing an action upon. Note that if
5244 * this field's value is zero then the endpoints default value is
5245 * changed (effecting future associations only).
5246 * assoc_value: This parameter specifies the maximum size in bytes.
5247 */
5248static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5249 char __user *optval, int __user *optlen)
5250{
5251 struct sctp_assoc_value params;
5252 struct sctp_association *asoc;
5253
5254 if (len == sizeof(int)) {
5255 pr_warn_ratelimited(DEPRECATED
5256 "%s (pid %d) "
5257 "Use of int in maxseg socket option.\n"
5258 "Use struct sctp_assoc_value instead\n",
5259 current->comm, task_pid_nr(current));
5260 params.assoc_id = 0;
5261 } else if (len >= sizeof(struct sctp_assoc_value)) {
5262 len = sizeof(struct sctp_assoc_value);
5263 if (copy_from_user(¶ms, optval, sizeof(params)))
5264 return -EFAULT;
5265 } else
5266 return -EINVAL;
5267
5268 asoc = sctp_id2assoc(sk, params.assoc_id);
5269 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5270 return -EINVAL;
5271
5272 if (asoc)
5273 params.assoc_value = asoc->frag_point;
5274 else
5275 params.assoc_value = sctp_sk(sk)->user_frag;
5276
5277 if (put_user(len, optlen))
5278 return -EFAULT;
5279 if (len == sizeof(int)) {
5280 if (copy_to_user(optval, ¶ms.assoc_value, len))
5281 return -EFAULT;
5282 } else {
5283 if (copy_to_user(optval, ¶ms, len))
5284 return -EFAULT;
5285 }
5286
5287 return 0;
5288}
5289
5290/*
5291 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5292 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5293 */
5294static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5295 char __user *optval, int __user *optlen)
5296{
5297 int val;
5298
5299 if (len < sizeof(int))
5300 return -EINVAL;
5301
5302 len = sizeof(int);
5303
5304 val = sctp_sk(sk)->frag_interleave;
5305 if (put_user(len, optlen))
5306 return -EFAULT;
5307 if (copy_to_user(optval, &val, len))
5308 return -EFAULT;
5309
5310 return 0;
5311}
5312
5313/*
5314 * 7.1.25. Set or Get the sctp partial delivery point
5315 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5316 */
5317static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5318 char __user *optval,
5319 int __user *optlen)
5320{
5321 u32 val;
5322
5323 if (len < sizeof(u32))
5324 return -EINVAL;
5325
5326 len = sizeof(u32);
5327
5328 val = sctp_sk(sk)->pd_point;
5329 if (put_user(len, optlen))
5330 return -EFAULT;
5331 if (copy_to_user(optval, &val, len))
5332 return -EFAULT;
5333
5334 return 0;
5335}
5336
5337/*
5338 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5339 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5340 */
5341static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5342 char __user *optval,
5343 int __user *optlen)
5344{
5345 struct sctp_assoc_value params;
5346 struct sctp_sock *sp;
5347 struct sctp_association *asoc;
5348
5349 if (len == sizeof(int)) {
5350 pr_warn_ratelimited(DEPRECATED
5351 "%s (pid %d) "
5352 "Use of int in max_burst socket option.\n"
5353 "Use struct sctp_assoc_value instead\n",
5354 current->comm, task_pid_nr(current));
5355 params.assoc_id = 0;
5356 } else if (len >= sizeof(struct sctp_assoc_value)) {
5357 len = sizeof(struct sctp_assoc_value);
5358 if (copy_from_user(¶ms, optval, len))
5359 return -EFAULT;
5360 } else
5361 return -EINVAL;
5362
5363 sp = sctp_sk(sk);
5364
5365 if (params.assoc_id != 0) {
5366 asoc = sctp_id2assoc(sk, params.assoc_id);
5367 if (!asoc)
5368 return -EINVAL;
5369 params.assoc_value = asoc->max_burst;
5370 } else
5371 params.assoc_value = sp->max_burst;
5372
5373 if (len == sizeof(int)) {
5374 if (copy_to_user(optval, ¶ms.assoc_value, len))
5375 return -EFAULT;
5376 } else {
5377 if (copy_to_user(optval, ¶ms, len))
5378 return -EFAULT;
5379 }
5380
5381 return 0;
5382
5383}
5384
5385static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5386 char __user *optval, int __user *optlen)
5387{
5388 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5389 struct sctp_hmacalgo __user *p = (void __user *)optval;
5390 struct sctp_hmac_algo_param *hmacs;
5391 __u16 data_len = 0;
5392 u32 num_idents;
5393
5394 if (!ep->auth_enable)
5395 return -EACCES;
5396
5397 hmacs = ep->auth_hmacs_list;
5398 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5399
5400 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5401 return -EINVAL;
5402
5403 len = sizeof(struct sctp_hmacalgo) + data_len;
5404 num_idents = data_len / sizeof(u16);
5405
5406 if (put_user(len, optlen))
5407 return -EFAULT;
5408 if (put_user(num_idents, &p->shmac_num_idents))
5409 return -EFAULT;
5410 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5411 return -EFAULT;
5412 return 0;
5413}
5414
5415static int sctp_getsockopt_active_key(struct sock *sk, int len,
5416 char __user *optval, int __user *optlen)
5417{
5418 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5419 struct sctp_authkeyid val;
5420 struct sctp_association *asoc;
5421
5422 if (!ep->auth_enable)
5423 return -EACCES;
5424
5425 if (len < sizeof(struct sctp_authkeyid))
5426 return -EINVAL;
5427 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5428 return -EFAULT;
5429
5430 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5431 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5432 return -EINVAL;
5433
5434 if (asoc)
5435 val.scact_keynumber = asoc->active_key_id;
5436 else
5437 val.scact_keynumber = ep->active_key_id;
5438
5439 len = sizeof(struct sctp_authkeyid);
5440 if (put_user(len, optlen))
5441 return -EFAULT;
5442 if (copy_to_user(optval, &val, len))
5443 return -EFAULT;
5444
5445 return 0;
5446}
5447
5448static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5449 char __user *optval, int __user *optlen)
5450{
5451 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5452 struct sctp_authchunks __user *p = (void __user *)optval;
5453 struct sctp_authchunks val;
5454 struct sctp_association *asoc;
5455 struct sctp_chunks_param *ch;
5456 u32 num_chunks = 0;
5457 char __user *to;
5458
5459 if (!ep->auth_enable)
5460 return -EACCES;
5461
5462 if (len < sizeof(struct sctp_authchunks))
5463 return -EINVAL;
5464
5465 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5466 return -EFAULT;
5467
5468 to = p->gauth_chunks;
5469 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5470 if (!asoc)
5471 return -EINVAL;
5472
5473 ch = asoc->peer.peer_chunks;
5474 if (!ch)
5475 goto num;
5476
5477 /* See if the user provided enough room for all the data */
5478 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5479 if (len < num_chunks)
5480 return -EINVAL;
5481
5482 if (copy_to_user(to, ch->chunks, num_chunks))
5483 return -EFAULT;
5484num:
5485 len = sizeof(struct sctp_authchunks) + num_chunks;
5486 if (put_user(len, optlen))
5487 return -EFAULT;
5488 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5489 return -EFAULT;
5490 return 0;
5491}
5492
5493static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5494 char __user *optval, int __user *optlen)
5495{
5496 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5497 struct sctp_authchunks __user *p = (void __user *)optval;
5498 struct sctp_authchunks val;
5499 struct sctp_association *asoc;
5500 struct sctp_chunks_param *ch;
5501 u32 num_chunks = 0;
5502 char __user *to;
5503
5504 if (!ep->auth_enable)
5505 return -EACCES;
5506
5507 if (len < sizeof(struct sctp_authchunks))
5508 return -EINVAL;
5509
5510 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5511 return -EFAULT;
5512
5513 to = p->gauth_chunks;
5514 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5515 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5516 return -EINVAL;
5517
5518 if (asoc)
5519 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5520 else
5521 ch = ep->auth_chunk_list;
5522
5523 if (!ch)
5524 goto num;
5525
5526 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5527 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5528 return -EINVAL;
5529
5530 if (copy_to_user(to, ch->chunks, num_chunks))
5531 return -EFAULT;
5532num:
5533 len = sizeof(struct sctp_authchunks) + num_chunks;
5534 if (put_user(len, optlen))
5535 return -EFAULT;
5536 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5537 return -EFAULT;
5538
5539 return 0;
5540}
5541
5542/*
5543 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5544 * This option gets the current number of associations that are attached
5545 * to a one-to-many style socket. The option value is an uint32_t.
5546 */
5547static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5548 char __user *optval, int __user *optlen)
5549{
5550 struct sctp_sock *sp = sctp_sk(sk);
5551 struct sctp_association *asoc;
5552 u32 val = 0;
5553
5554 if (sctp_style(sk, TCP))
5555 return -EOPNOTSUPP;
5556
5557 if (len < sizeof(u32))
5558 return -EINVAL;
5559
5560 len = sizeof(u32);
5561
5562 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5563 val++;
5564 }
5565
5566 if (put_user(len, optlen))
5567 return -EFAULT;
5568 if (copy_to_user(optval, &val, len))
5569 return -EFAULT;
5570
5571 return 0;
5572}
5573
5574/*
5575 * 8.1.23 SCTP_AUTO_ASCONF
5576 * See the corresponding setsockopt entry as description
5577 */
5578static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5579 char __user *optval, int __user *optlen)
5580{
5581 int val = 0;
5582
5583 if (len < sizeof(int))
5584 return -EINVAL;
5585
5586 len = sizeof(int);
5587 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5588 val = 1;
5589 if (put_user(len, optlen))
5590 return -EFAULT;
5591 if (copy_to_user(optval, &val, len))
5592 return -EFAULT;
5593 return 0;
5594}
5595
5596/*
5597 * 8.2.6. Get the Current Identifiers of Associations
5598 * (SCTP_GET_ASSOC_ID_LIST)
5599 *
5600 * This option gets the current list of SCTP association identifiers of
5601 * the SCTP associations handled by a one-to-many style socket.
5602 */
5603static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5604 char __user *optval, int __user *optlen)
5605{
5606 struct sctp_sock *sp = sctp_sk(sk);
5607 struct sctp_association *asoc;
5608 struct sctp_assoc_ids *ids;
5609 u32 num = 0;
5610
5611 if (sctp_style(sk, TCP))
5612 return -EOPNOTSUPP;
5613
5614 if (len < sizeof(struct sctp_assoc_ids))
5615 return -EINVAL;
5616
5617 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5618 num++;
5619 }
5620
5621 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5622 return -EINVAL;
5623
5624 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5625
5626 ids = kmalloc(len, GFP_KERNEL);
5627 if (unlikely(!ids))
5628 return -ENOMEM;
5629
5630 ids->gaids_number_of_ids = num;
5631 num = 0;
5632 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5633 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5634 }
5635
5636 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5637 kfree(ids);
5638 return -EFAULT;
5639 }
5640
5641 kfree(ids);
5642 return 0;
5643}
5644
5645/*
5646 * SCTP_PEER_ADDR_THLDS
5647 *
5648 * This option allows us to fetch the partially failed threshold for one or all
5649 * transports in an association. See Section 6.1 of:
5650 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5651 */
5652static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5653 char __user *optval,
5654 int len,
5655 int __user *optlen)
5656{
5657 struct sctp_paddrthlds val;
5658 struct sctp_transport *trans;
5659 struct sctp_association *asoc;
5660
5661 if (len < sizeof(struct sctp_paddrthlds))
5662 return -EINVAL;
5663 len = sizeof(struct sctp_paddrthlds);
5664 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5665 return -EFAULT;
5666
5667 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5668 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5669 if (!asoc)
5670 return -ENOENT;
5671
5672 val.spt_pathpfthld = asoc->pf_retrans;
5673 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5674 } else {
5675 trans = sctp_addr_id2transport(sk, &val.spt_address,
5676 val.spt_assoc_id);
5677 if (!trans)
5678 return -ENOENT;
5679
5680 val.spt_pathmaxrxt = trans->pathmaxrxt;
5681 val.spt_pathpfthld = trans->pf_retrans;
5682 }
5683
5684 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5685 return -EFAULT;
5686
5687 return 0;
5688}
5689
5690/*
5691 * SCTP_GET_ASSOC_STATS
5692 *
5693 * This option retrieves local per endpoint statistics. It is modeled
5694 * after OpenSolaris' implementation
5695 */
5696static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5697 char __user *optval,
5698 int __user *optlen)
5699{
5700 struct sctp_assoc_stats sas;
5701 struct sctp_association *asoc = NULL;
5702
5703 /* User must provide at least the assoc id */
5704 if (len < sizeof(sctp_assoc_t))
5705 return -EINVAL;
5706
5707 /* Allow the struct to grow and fill in as much as possible */
5708 len = min_t(size_t, len, sizeof(sas));
5709
5710 if (copy_from_user(&sas, optval, len))
5711 return -EFAULT;
5712
5713 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5714 if (!asoc)
5715 return -EINVAL;
5716
5717 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5718 sas.sas_gapcnt = asoc->stats.gapcnt;
5719 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5720 sas.sas_osacks = asoc->stats.osacks;
5721 sas.sas_isacks = asoc->stats.isacks;
5722 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5723 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5724 sas.sas_oodchunks = asoc->stats.oodchunks;
5725 sas.sas_iodchunks = asoc->stats.iodchunks;
5726 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5727 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5728 sas.sas_idupchunks = asoc->stats.idupchunks;
5729 sas.sas_opackets = asoc->stats.opackets;
5730 sas.sas_ipackets = asoc->stats.ipackets;
5731
5732 /* New high max rto observed, will return 0 if not a single
5733 * RTO update took place. obs_rto_ipaddr will be bogus
5734 * in such a case
5735 */
5736 sas.sas_maxrto = asoc->stats.max_obs_rto;
5737 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5738 sizeof(struct sockaddr_storage));
5739
5740 /* Mark beginning of a new observation period */
5741 asoc->stats.max_obs_rto = asoc->rto_min;
5742
5743 if (put_user(len, optlen))
5744 return -EFAULT;
5745
5746 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5747
5748 if (copy_to_user(optval, &sas, len))
5749 return -EFAULT;
5750
5751 return 0;
5752}
5753
5754static int sctp_getsockopt(struct sock *sk, int level, int optname,
5755 char __user *optval, int __user *optlen)
5756{
5757 int retval = 0;
5758 int len;
5759
5760 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5761
5762 /* I can hardly begin to describe how wrong this is. This is
5763 * so broken as to be worse than useless. The API draft
5764 * REALLY is NOT helpful here... I am not convinced that the
5765 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5766 * are at all well-founded.
5767 */
5768 if (level != SOL_SCTP) {
5769 struct sctp_af *af = sctp_sk(sk)->pf->af;
5770
5771 retval = af->getsockopt(sk, level, optname, optval, optlen);
5772 return retval;
5773 }
5774
5775 if (get_user(len, optlen))
5776 return -EFAULT;
5777
5778 lock_sock(sk);
5779
5780 switch (optname) {
5781 case SCTP_STATUS:
5782 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5783 break;
5784 case SCTP_DISABLE_FRAGMENTS:
5785 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5786 optlen);
5787 break;
5788 case SCTP_EVENTS:
5789 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5790 break;
5791 case SCTP_AUTOCLOSE:
5792 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5793 break;
5794 case SCTP_SOCKOPT_PEELOFF:
5795 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5796 break;
5797 case SCTP_PEER_ADDR_PARAMS:
5798 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5799 optlen);
5800 break;
5801 case SCTP_DELAYED_SACK:
5802 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5803 optlen);
5804 break;
5805 case SCTP_INITMSG:
5806 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5807 break;
5808 case SCTP_GET_PEER_ADDRS:
5809 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5810 optlen);
5811 break;
5812 case SCTP_GET_LOCAL_ADDRS:
5813 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5814 optlen);
5815 break;
5816 case SCTP_SOCKOPT_CONNECTX3:
5817 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5818 break;
5819 case SCTP_DEFAULT_SEND_PARAM:
5820 retval = sctp_getsockopt_default_send_param(sk, len,
5821 optval, optlen);
5822 break;
5823 case SCTP_PRIMARY_ADDR:
5824 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5825 break;
5826 case SCTP_NODELAY:
5827 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5828 break;
5829 case SCTP_RTOINFO:
5830 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5831 break;
5832 case SCTP_ASSOCINFO:
5833 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5834 break;
5835 case SCTP_I_WANT_MAPPED_V4_ADDR:
5836 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5837 break;
5838 case SCTP_MAXSEG:
5839 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5840 break;
5841 case SCTP_GET_PEER_ADDR_INFO:
5842 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5843 optlen);
5844 break;
5845 case SCTP_ADAPTATION_LAYER:
5846 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5847 optlen);
5848 break;
5849 case SCTP_CONTEXT:
5850 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5851 break;
5852 case SCTP_FRAGMENT_INTERLEAVE:
5853 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5854 optlen);
5855 break;
5856 case SCTP_PARTIAL_DELIVERY_POINT:
5857 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5858 optlen);
5859 break;
5860 case SCTP_MAX_BURST:
5861 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5862 break;
5863 case SCTP_AUTH_KEY:
5864 case SCTP_AUTH_CHUNK:
5865 case SCTP_AUTH_DELETE_KEY:
5866 retval = -EOPNOTSUPP;
5867 break;
5868 case SCTP_HMAC_IDENT:
5869 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5870 break;
5871 case SCTP_AUTH_ACTIVE_KEY:
5872 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5873 break;
5874 case SCTP_PEER_AUTH_CHUNKS:
5875 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5876 optlen);
5877 break;
5878 case SCTP_LOCAL_AUTH_CHUNKS:
5879 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5880 optlen);
5881 break;
5882 case SCTP_GET_ASSOC_NUMBER:
5883 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5884 break;
5885 case SCTP_GET_ASSOC_ID_LIST:
5886 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5887 break;
5888 case SCTP_AUTO_ASCONF:
5889 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5890 break;
5891 case SCTP_PEER_ADDR_THLDS:
5892 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5893 break;
5894 case SCTP_GET_ASSOC_STATS:
5895 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5896 break;
5897 default:
5898 retval = -ENOPROTOOPT;
5899 break;
5900 }
5901
5902 release_sock(sk);
5903 return retval;
5904}
5905
5906static void sctp_hash(struct sock *sk)
5907{
5908 /* STUB */
5909}
5910
5911static void sctp_unhash(struct sock *sk)
5912{
5913 /* STUB */
5914}
5915
5916/* Check if port is acceptable. Possibly find first available port.
5917 *
5918 * The port hash table (contained in the 'global' SCTP protocol storage
5919 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5920 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5921 * list (the list number is the port number hashed out, so as you
5922 * would expect from a hash function, all the ports in a given list have
5923 * such a number that hashes out to the same list number; you were
5924 * expecting that, right?); so each list has a set of ports, with a
5925 * link to the socket (struct sock) that uses it, the port number and
5926 * a fastreuse flag (FIXME: NPI ipg).
5927 */
5928static struct sctp_bind_bucket *sctp_bucket_create(
5929 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5930
5931static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5932{
5933 struct sctp_bind_hashbucket *head; /* hash list */
5934 struct sctp_bind_bucket *pp;
5935 unsigned short snum;
5936 int ret;
5937
5938 snum = ntohs(addr->v4.sin_port);
5939
5940 pr_debug("%s: begins, snum:%d\n", __func__, snum);
5941
5942 local_bh_disable();
5943
5944 if (snum == 0) {
5945 /* Search for an available port. */
5946 int low, high, remaining, index;
5947 unsigned int rover;
5948
5949 inet_get_local_port_range(sock_net(sk), &low, &high);
5950 remaining = (high - low) + 1;
5951 rover = prandom_u32() % remaining + low;
5952
5953 do {
5954 rover++;
5955 if ((rover < low) || (rover > high))
5956 rover = low;
5957 if (inet_is_reserved_local_port(rover))
5958 continue;
5959 index = sctp_phashfn(sock_net(sk), rover);
5960 head = &sctp_port_hashtable[index];
5961 spin_lock(&head->lock);
5962 sctp_for_each_hentry(pp, &head->chain)
5963 if ((pp->port == rover) &&
5964 net_eq(sock_net(sk), pp->net))
5965 goto next;
5966 break;
5967 next:
5968 spin_unlock(&head->lock);
5969 } while (--remaining > 0);
5970
5971 /* Exhausted local port range during search? */
5972 ret = 1;
5973 if (remaining <= 0)
5974 goto fail;
5975
5976 /* OK, here is the one we will use. HEAD (the port
5977 * hash table list entry) is non-NULL and we hold it's
5978 * mutex.
5979 */
5980 snum = rover;
5981 } else {
5982 /* We are given an specific port number; we verify
5983 * that it is not being used. If it is used, we will
5984 * exahust the search in the hash list corresponding
5985 * to the port number (snum) - we detect that with the
5986 * port iterator, pp being NULL.
5987 */
5988 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5989 spin_lock(&head->lock);
5990 sctp_for_each_hentry(pp, &head->chain) {
5991 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5992 goto pp_found;
5993 }
5994 }
5995 pp = NULL;
5996 goto pp_not_found;
5997pp_found:
5998 if (!hlist_empty(&pp->owner)) {
5999 /* We had a port hash table hit - there is an
6000 * available port (pp != NULL) and it is being
6001 * used by other socket (pp->owner not empty); that other
6002 * socket is going to be sk2.
6003 */
6004 int reuse = sk->sk_reuse;
6005 struct sock *sk2;
6006
6007 pr_debug("%s: found a possible match\n", __func__);
6008
6009 if (pp->fastreuse && sk->sk_reuse &&
6010 sk->sk_state != SCTP_SS_LISTENING)
6011 goto success;
6012
6013 /* Run through the list of sockets bound to the port
6014 * (pp->port) [via the pointers bind_next and
6015 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6016 * we get the endpoint they describe and run through
6017 * the endpoint's list of IP (v4 or v6) addresses,
6018 * comparing each of the addresses with the address of
6019 * the socket sk. If we find a match, then that means
6020 * that this port/socket (sk) combination are already
6021 * in an endpoint.
6022 */
6023 sk_for_each_bound(sk2, &pp->owner) {
6024 struct sctp_endpoint *ep2;
6025 ep2 = sctp_sk(sk2)->ep;
6026
6027 if (sk == sk2 ||
6028 (reuse && sk2->sk_reuse &&
6029 sk2->sk_state != SCTP_SS_LISTENING))
6030 continue;
6031
6032 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6033 sctp_sk(sk2), sctp_sk(sk))) {
6034 ret = (long)sk2;
6035 goto fail_unlock;
6036 }
6037 }
6038
6039 pr_debug("%s: found a match\n", __func__);
6040 }
6041pp_not_found:
6042 /* If there was a hash table miss, create a new port. */
6043 ret = 1;
6044 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6045 goto fail_unlock;
6046
6047 /* In either case (hit or miss), make sure fastreuse is 1 only
6048 * if sk->sk_reuse is too (that is, if the caller requested
6049 * SO_REUSEADDR on this socket -sk-).
6050 */
6051 if (hlist_empty(&pp->owner)) {
6052 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6053 pp->fastreuse = 1;
6054 else
6055 pp->fastreuse = 0;
6056 } else if (pp->fastreuse &&
6057 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6058 pp->fastreuse = 0;
6059
6060 /* We are set, so fill up all the data in the hash table
6061 * entry, tie the socket list information with the rest of the
6062 * sockets FIXME: Blurry, NPI (ipg).
6063 */
6064success:
6065 if (!sctp_sk(sk)->bind_hash) {
6066 inet_sk(sk)->inet_num = snum;
6067 sk_add_bind_node(sk, &pp->owner);
6068 sctp_sk(sk)->bind_hash = pp;
6069 }
6070 ret = 0;
6071
6072fail_unlock:
6073 spin_unlock(&head->lock);
6074
6075fail:
6076 local_bh_enable();
6077 return ret;
6078}
6079
6080/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6081 * port is requested.
6082 */
6083static int sctp_get_port(struct sock *sk, unsigned short snum)
6084{
6085 union sctp_addr addr;
6086 struct sctp_af *af = sctp_sk(sk)->pf->af;
6087
6088 /* Set up a dummy address struct from the sk. */
6089 af->from_sk(&addr, sk);
6090 addr.v4.sin_port = htons(snum);
6091
6092 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6093 return !!sctp_get_port_local(sk, &addr);
6094}
6095
6096/*
6097 * Move a socket to LISTENING state.
6098 */
6099static int sctp_listen_start(struct sock *sk, int backlog)
6100{
6101 struct sctp_sock *sp = sctp_sk(sk);
6102 struct sctp_endpoint *ep = sp->ep;
6103 struct crypto_hash *tfm = NULL;
6104 char alg[32];
6105
6106 /* Allocate HMAC for generating cookie. */
6107 if (!sp->hmac && sp->sctp_hmac_alg) {
6108 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6109 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6110 if (IS_ERR(tfm)) {
6111 net_info_ratelimited("failed to load transform for %s: %ld\n",
6112 sp->sctp_hmac_alg, PTR_ERR(tfm));
6113 return -ENOSYS;
6114 }
6115 sctp_sk(sk)->hmac = tfm;
6116 }
6117
6118 /*
6119 * If a bind() or sctp_bindx() is not called prior to a listen()
6120 * call that allows new associations to be accepted, the system
6121 * picks an ephemeral port and will choose an address set equivalent
6122 * to binding with a wildcard address.
6123 *
6124 * This is not currently spelled out in the SCTP sockets
6125 * extensions draft, but follows the practice as seen in TCP
6126 * sockets.
6127 *
6128 */
6129 sk->sk_state = SCTP_SS_LISTENING;
6130 if (!ep->base.bind_addr.port) {
6131 if (sctp_autobind(sk))
6132 return -EAGAIN;
6133 } else {
6134 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6135 sk->sk_state = SCTP_SS_CLOSED;
6136 return -EADDRINUSE;
6137 }
6138 }
6139
6140 sk->sk_max_ack_backlog = backlog;
6141 sctp_hash_endpoint(ep);
6142 return 0;
6143}
6144
6145/*
6146 * 4.1.3 / 5.1.3 listen()
6147 *
6148 * By default, new associations are not accepted for UDP style sockets.
6149 * An application uses listen() to mark a socket as being able to
6150 * accept new associations.
6151 *
6152 * On TCP style sockets, applications use listen() to ready the SCTP
6153 * endpoint for accepting inbound associations.
6154 *
6155 * On both types of endpoints a backlog of '0' disables listening.
6156 *
6157 * Move a socket to LISTENING state.
6158 */
6159int sctp_inet_listen(struct socket *sock, int backlog)
6160{
6161 struct sock *sk = sock->sk;
6162 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6163 int err = -EINVAL;
6164
6165 if (unlikely(backlog < 0))
6166 return err;
6167
6168 lock_sock(sk);
6169
6170 /* Peeled-off sockets are not allowed to listen(). */
6171 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6172 goto out;
6173
6174 if (sock->state != SS_UNCONNECTED)
6175 goto out;
6176
6177 /* If backlog is zero, disable listening. */
6178 if (!backlog) {
6179 if (sctp_sstate(sk, CLOSED))
6180 goto out;
6181
6182 err = 0;
6183 sctp_unhash_endpoint(ep);
6184 sk->sk_state = SCTP_SS_CLOSED;
6185 if (sk->sk_reuse)
6186 sctp_sk(sk)->bind_hash->fastreuse = 1;
6187 goto out;
6188 }
6189
6190 /* If we are already listening, just update the backlog */
6191 if (sctp_sstate(sk, LISTENING))
6192 sk->sk_max_ack_backlog = backlog;
6193 else {
6194 err = sctp_listen_start(sk, backlog);
6195 if (err)
6196 goto out;
6197 }
6198
6199 err = 0;
6200out:
6201 release_sock(sk);
6202 return err;
6203}
6204
6205/*
6206 * This function is done by modeling the current datagram_poll() and the
6207 * tcp_poll(). Note that, based on these implementations, we don't
6208 * lock the socket in this function, even though it seems that,
6209 * ideally, locking or some other mechanisms can be used to ensure
6210 * the integrity of the counters (sndbuf and wmem_alloc) used
6211 * in this place. We assume that we don't need locks either until proven
6212 * otherwise.
6213 *
6214 * Another thing to note is that we include the Async I/O support
6215 * here, again, by modeling the current TCP/UDP code. We don't have
6216 * a good way to test with it yet.
6217 */
6218unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6219{
6220 struct sock *sk = sock->sk;
6221 struct sctp_sock *sp = sctp_sk(sk);
6222 unsigned int mask;
6223
6224 poll_wait(file, sk_sleep(sk), wait);
6225
6226 /* A TCP-style listening socket becomes readable when the accept queue
6227 * is not empty.
6228 */
6229 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6230 return (!list_empty(&sp->ep->asocs)) ?
6231 (POLLIN | POLLRDNORM) : 0;
6232
6233 mask = 0;
6234
6235 /* Is there any exceptional events? */
6236 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6237 mask |= POLLERR |
6238 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6239 if (sk->sk_shutdown & RCV_SHUTDOWN)
6240 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6241 if (sk->sk_shutdown == SHUTDOWN_MASK)
6242 mask |= POLLHUP;
6243
6244 /* Is it readable? Reconsider this code with TCP-style support. */
6245 if (!skb_queue_empty(&sk->sk_receive_queue))
6246 mask |= POLLIN | POLLRDNORM;
6247
6248 /* The association is either gone or not ready. */
6249 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6250 return mask;
6251
6252 /* Is it writable? */
6253 if (sctp_writeable(sk)) {
6254 mask |= POLLOUT | POLLWRNORM;
6255 } else {
6256 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6257 /*
6258 * Since the socket is not locked, the buffer
6259 * might be made available after the writeable check and
6260 * before the bit is set. This could cause a lost I/O
6261 * signal. tcp_poll() has a race breaker for this race
6262 * condition. Based on their implementation, we put
6263 * in the following code to cover it as well.
6264 */
6265 if (sctp_writeable(sk))
6266 mask |= POLLOUT | POLLWRNORM;
6267 }
6268 return mask;
6269}
6270
6271/********************************************************************
6272 * 2nd Level Abstractions
6273 ********************************************************************/
6274
6275static struct sctp_bind_bucket *sctp_bucket_create(
6276 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6277{
6278 struct sctp_bind_bucket *pp;
6279
6280 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6281 if (pp) {
6282 SCTP_DBG_OBJCNT_INC(bind_bucket);
6283 pp->port = snum;
6284 pp->fastreuse = 0;
6285 INIT_HLIST_HEAD(&pp->owner);
6286 pp->net = net;
6287 hlist_add_head(&pp->node, &head->chain);
6288 }
6289 return pp;
6290}
6291
6292/* Caller must hold hashbucket lock for this tb with local BH disabled */
6293static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6294{
6295 if (pp && hlist_empty(&pp->owner)) {
6296 __hlist_del(&pp->node);
6297 kmem_cache_free(sctp_bucket_cachep, pp);
6298 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6299 }
6300}
6301
6302/* Release this socket's reference to a local port. */
6303static inline void __sctp_put_port(struct sock *sk)
6304{
6305 struct sctp_bind_hashbucket *head =
6306 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6307 inet_sk(sk)->inet_num)];
6308 struct sctp_bind_bucket *pp;
6309
6310 spin_lock(&head->lock);
6311 pp = sctp_sk(sk)->bind_hash;
6312 __sk_del_bind_node(sk);
6313 sctp_sk(sk)->bind_hash = NULL;
6314 inet_sk(sk)->inet_num = 0;
6315 sctp_bucket_destroy(pp);
6316 spin_unlock(&head->lock);
6317}
6318
6319void sctp_put_port(struct sock *sk)
6320{
6321 local_bh_disable();
6322 __sctp_put_port(sk);
6323 local_bh_enable();
6324}
6325
6326/*
6327 * The system picks an ephemeral port and choose an address set equivalent
6328 * to binding with a wildcard address.
6329 * One of those addresses will be the primary address for the association.
6330 * This automatically enables the multihoming capability of SCTP.
6331 */
6332static int sctp_autobind(struct sock *sk)
6333{
6334 union sctp_addr autoaddr;
6335 struct sctp_af *af;
6336 __be16 port;
6337
6338 /* Initialize a local sockaddr structure to INADDR_ANY. */
6339 af = sctp_sk(sk)->pf->af;
6340
6341 port = htons(inet_sk(sk)->inet_num);
6342 af->inaddr_any(&autoaddr, port);
6343
6344 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6345}
6346
6347/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6348 *
6349 * From RFC 2292
6350 * 4.2 The cmsghdr Structure *
6351 *
6352 * When ancillary data is sent or received, any number of ancillary data
6353 * objects can be specified by the msg_control and msg_controllen members of
6354 * the msghdr structure, because each object is preceded by
6355 * a cmsghdr structure defining the object's length (the cmsg_len member).
6356 * Historically Berkeley-derived implementations have passed only one object
6357 * at a time, but this API allows multiple objects to be
6358 * passed in a single call to sendmsg() or recvmsg(). The following example
6359 * shows two ancillary data objects in a control buffer.
6360 *
6361 * |<--------------------------- msg_controllen -------------------------->|
6362 * | |
6363 *
6364 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6365 *
6366 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6367 * | | |
6368 *
6369 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6370 *
6371 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6372 * | | | | |
6373 *
6374 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6375 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6376 *
6377 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6378 *
6379 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6380 * ^
6381 * |
6382 *
6383 * msg_control
6384 * points here
6385 */
6386static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6387{
6388 struct cmsghdr *cmsg;
6389 struct msghdr *my_msg = (struct msghdr *)msg;
6390
6391 for (cmsg = CMSG_FIRSTHDR(msg);
6392 cmsg != NULL;
6393 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6394 if (!CMSG_OK(my_msg, cmsg))
6395 return -EINVAL;
6396
6397 /* Should we parse this header or ignore? */
6398 if (cmsg->cmsg_level != IPPROTO_SCTP)
6399 continue;
6400
6401 /* Strictly check lengths following example in SCM code. */
6402 switch (cmsg->cmsg_type) {
6403 case SCTP_INIT:
6404 /* SCTP Socket API Extension
6405 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6406 *
6407 * This cmsghdr structure provides information for
6408 * initializing new SCTP associations with sendmsg().
6409 * The SCTP_INITMSG socket option uses this same data
6410 * structure. This structure is not used for
6411 * recvmsg().
6412 *
6413 * cmsg_level cmsg_type cmsg_data[]
6414 * ------------ ------------ ----------------------
6415 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6416 */
6417 if (cmsg->cmsg_len !=
6418 CMSG_LEN(sizeof(struct sctp_initmsg)))
6419 return -EINVAL;
6420 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6421 break;
6422
6423 case SCTP_SNDRCV:
6424 /* SCTP Socket API Extension
6425 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6426 *
6427 * This cmsghdr structure specifies SCTP options for
6428 * sendmsg() and describes SCTP header information
6429 * about a received message through recvmsg().
6430 *
6431 * cmsg_level cmsg_type cmsg_data[]
6432 * ------------ ------------ ----------------------
6433 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6434 */
6435 if (cmsg->cmsg_len !=
6436 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6437 return -EINVAL;
6438
6439 cmsgs->info =
6440 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6441
6442 /* Minimally, validate the sinfo_flags. */
6443 if (cmsgs->info->sinfo_flags &
6444 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6445 SCTP_ABORT | SCTP_EOF))
6446 return -EINVAL;
6447 break;
6448
6449 default:
6450 return -EINVAL;
6451 }
6452 }
6453 return 0;
6454}
6455
6456/*
6457 * Wait for a packet..
6458 * Note: This function is the same function as in core/datagram.c
6459 * with a few modifications to make lksctp work.
6460 */
6461static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6462{
6463 int error;
6464 DEFINE_WAIT(wait);
6465
6466 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6467
6468 /* Socket errors? */
6469 error = sock_error(sk);
6470 if (error)
6471 goto out;
6472
6473 if (!skb_queue_empty(&sk->sk_receive_queue))
6474 goto ready;
6475
6476 /* Socket shut down? */
6477 if (sk->sk_shutdown & RCV_SHUTDOWN)
6478 goto out;
6479
6480 /* Sequenced packets can come disconnected. If so we report the
6481 * problem.
6482 */
6483 error = -ENOTCONN;
6484
6485 /* Is there a good reason to think that we may receive some data? */
6486 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6487 goto out;
6488
6489 /* Handle signals. */
6490 if (signal_pending(current))
6491 goto interrupted;
6492
6493 /* Let another process have a go. Since we are going to sleep
6494 * anyway. Note: This may cause odd behaviors if the message
6495 * does not fit in the user's buffer, but this seems to be the
6496 * only way to honor MSG_DONTWAIT realistically.
6497 */
6498 release_sock(sk);
6499 *timeo_p = schedule_timeout(*timeo_p);
6500 lock_sock(sk);
6501
6502ready:
6503 finish_wait(sk_sleep(sk), &wait);
6504 return 0;
6505
6506interrupted:
6507 error = sock_intr_errno(*timeo_p);
6508
6509out:
6510 finish_wait(sk_sleep(sk), &wait);
6511 *err = error;
6512 return error;
6513}
6514
6515/* Receive a datagram.
6516 * Note: This is pretty much the same routine as in core/datagram.c
6517 * with a few changes to make lksctp work.
6518 */
6519static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6520 int noblock, int *err)
6521{
6522 int error;
6523 struct sk_buff *skb;
6524 long timeo;
6525
6526 timeo = sock_rcvtimeo(sk, noblock);
6527
6528 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6529 MAX_SCHEDULE_TIMEOUT);
6530
6531 do {
6532 /* Again only user level code calls this function,
6533 * so nothing interrupt level
6534 * will suddenly eat the receive_queue.
6535 *
6536 * Look at current nfs client by the way...
6537 * However, this function was correct in any case. 8)
6538 */
6539 if (flags & MSG_PEEK) {
6540 spin_lock_bh(&sk->sk_receive_queue.lock);
6541 skb = skb_peek(&sk->sk_receive_queue);
6542 if (skb)
6543 atomic_inc(&skb->users);
6544 spin_unlock_bh(&sk->sk_receive_queue.lock);
6545 } else {
6546 skb = skb_dequeue(&sk->sk_receive_queue);
6547 }
6548
6549 if (skb)
6550 return skb;
6551
6552 /* Caller is allowed not to check sk->sk_err before calling. */
6553 error = sock_error(sk);
6554 if (error)
6555 goto no_packet;
6556
6557 if (sk->sk_shutdown & RCV_SHUTDOWN)
6558 break;
6559
6560 /* User doesn't want to wait. */
6561 error = -EAGAIN;
6562 if (!timeo)
6563 goto no_packet;
6564 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6565
6566 return NULL;
6567
6568no_packet:
6569 *err = error;
6570 return NULL;
6571}
6572
6573/* If sndbuf has changed, wake up per association sndbuf waiters. */
6574static void __sctp_write_space(struct sctp_association *asoc)
6575{
6576 struct sock *sk = asoc->base.sk;
6577 struct socket *sock = sk->sk_socket;
6578
6579 if ((sctp_wspace(asoc) > 0) && sock) {
6580 if (waitqueue_active(&asoc->wait))
6581 wake_up_interruptible(&asoc->wait);
6582
6583 if (sctp_writeable(sk)) {
6584 wait_queue_head_t *wq = sk_sleep(sk);
6585
6586 if (wq && waitqueue_active(wq))
6587 wake_up_interruptible(wq);
6588
6589 /* Note that we try to include the Async I/O support
6590 * here by modeling from the current TCP/UDP code.
6591 * We have not tested with it yet.
6592 */
6593 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6594 sock_wake_async(sock,
6595 SOCK_WAKE_SPACE, POLL_OUT);
6596 }
6597 }
6598}
6599
6600static void sctp_wake_up_waiters(struct sock *sk,
6601 struct sctp_association *asoc)
6602{
6603 struct sctp_association *tmp = asoc;
6604
6605 /* We do accounting for the sndbuf space per association,
6606 * so we only need to wake our own association.
6607 */
6608 if (asoc->ep->sndbuf_policy)
6609 return __sctp_write_space(asoc);
6610
6611 /* If association goes down and is just flushing its
6612 * outq, then just normally notify others.
6613 */
6614 if (asoc->base.dead)
6615 return sctp_write_space(sk);
6616
6617 /* Accounting for the sndbuf space is per socket, so we
6618 * need to wake up others, try to be fair and in case of
6619 * other associations, let them have a go first instead
6620 * of just doing a sctp_write_space() call.
6621 *
6622 * Note that we reach sctp_wake_up_waiters() only when
6623 * associations free up queued chunks, thus we are under
6624 * lock and the list of associations on a socket is
6625 * guaranteed not to change.
6626 */
6627 for (tmp = list_next_entry(tmp, asocs); 1;
6628 tmp = list_next_entry(tmp, asocs)) {
6629 /* Manually skip the head element. */
6630 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6631 continue;
6632 /* Wake up association. */
6633 __sctp_write_space(tmp);
6634 /* We've reached the end. */
6635 if (tmp == asoc)
6636 break;
6637 }
6638}
6639
6640/* Do accounting for the sndbuf space.
6641 * Decrement the used sndbuf space of the corresponding association by the
6642 * data size which was just transmitted(freed).
6643 */
6644static void sctp_wfree(struct sk_buff *skb)
6645{
6646 struct sctp_association *asoc;
6647 struct sctp_chunk *chunk;
6648 struct sock *sk;
6649
6650 /* Get the saved chunk pointer. */
6651 chunk = *((struct sctp_chunk **)(skb->cb));
6652 asoc = chunk->asoc;
6653 sk = asoc->base.sk;
6654 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6655 sizeof(struct sk_buff) +
6656 sizeof(struct sctp_chunk);
6657
6658 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6659
6660 /*
6661 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6662 */
6663 sk->sk_wmem_queued -= skb->truesize;
6664 sk_mem_uncharge(sk, skb->truesize);
6665
6666 sock_wfree(skb);
6667 sctp_wake_up_waiters(sk, asoc);
6668
6669 sctp_association_put(asoc);
6670}
6671
6672/* Do accounting for the receive space on the socket.
6673 * Accounting for the association is done in ulpevent.c
6674 * We set this as a destructor for the cloned data skbs so that
6675 * accounting is done at the correct time.
6676 */
6677void sctp_sock_rfree(struct sk_buff *skb)
6678{
6679 struct sock *sk = skb->sk;
6680 struct sctp_ulpevent *event = sctp_skb2event(skb);
6681
6682 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6683
6684 /*
6685 * Mimic the behavior of sock_rfree
6686 */
6687 sk_mem_uncharge(sk, event->rmem_len);
6688}
6689
6690
6691/* Helper function to wait for space in the sndbuf. */
6692static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6693 size_t msg_len)
6694{
6695 struct sock *sk = asoc->base.sk;
6696 int err = 0;
6697 long current_timeo = *timeo_p;
6698 DEFINE_WAIT(wait);
6699
6700 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6701 *timeo_p, msg_len);
6702
6703 /* Increment the association's refcnt. */
6704 sctp_association_hold(asoc);
6705
6706 /* Wait on the association specific sndbuf space. */
6707 for (;;) {
6708 prepare_to_wait_exclusive(&asoc->wait, &wait,
6709 TASK_INTERRUPTIBLE);
6710 if (!*timeo_p)
6711 goto do_nonblock;
6712 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6713 asoc->base.dead)
6714 goto do_error;
6715 if (signal_pending(current))
6716 goto do_interrupted;
6717 if (msg_len <= sctp_wspace(asoc))
6718 break;
6719
6720 /* Let another process have a go. Since we are going
6721 * to sleep anyway.
6722 */
6723 release_sock(sk);
6724 current_timeo = schedule_timeout(current_timeo);
6725 BUG_ON(sk != asoc->base.sk);
6726 lock_sock(sk);
6727
6728 *timeo_p = current_timeo;
6729 }
6730
6731out:
6732 finish_wait(&asoc->wait, &wait);
6733
6734 /* Release the association's refcnt. */
6735 sctp_association_put(asoc);
6736
6737 return err;
6738
6739do_error:
6740 err = -EPIPE;
6741 goto out;
6742
6743do_interrupted:
6744 err = sock_intr_errno(*timeo_p);
6745 goto out;
6746
6747do_nonblock:
6748 err = -EAGAIN;
6749 goto out;
6750}
6751
6752void sctp_data_ready(struct sock *sk)
6753{
6754 struct socket_wq *wq;
6755
6756 rcu_read_lock();
6757 wq = rcu_dereference(sk->sk_wq);
6758 if (wq_has_sleeper(wq))
6759 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6760 POLLRDNORM | POLLRDBAND);
6761 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6762 rcu_read_unlock();
6763}
6764
6765/* If socket sndbuf has changed, wake up all per association waiters. */
6766void sctp_write_space(struct sock *sk)
6767{
6768 struct sctp_association *asoc;
6769
6770 /* Wake up the tasks in each wait queue. */
6771 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6772 __sctp_write_space(asoc);
6773 }
6774}
6775
6776/* Is there any sndbuf space available on the socket?
6777 *
6778 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6779 * associations on the same socket. For a UDP-style socket with
6780 * multiple associations, it is possible for it to be "unwriteable"
6781 * prematurely. I assume that this is acceptable because
6782 * a premature "unwriteable" is better than an accidental "writeable" which
6783 * would cause an unwanted block under certain circumstances. For the 1-1
6784 * UDP-style sockets or TCP-style sockets, this code should work.
6785 * - Daisy
6786 */
6787static int sctp_writeable(struct sock *sk)
6788{
6789 int amt = 0;
6790
6791 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6792 if (amt < 0)
6793 amt = 0;
6794 return amt;
6795}
6796
6797/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6798 * returns immediately with EINPROGRESS.
6799 */
6800static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6801{
6802 struct sock *sk = asoc->base.sk;
6803 int err = 0;
6804 long current_timeo = *timeo_p;
6805 DEFINE_WAIT(wait);
6806
6807 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6808
6809 /* Increment the association's refcnt. */
6810 sctp_association_hold(asoc);
6811
6812 for (;;) {
6813 prepare_to_wait_exclusive(&asoc->wait, &wait,
6814 TASK_INTERRUPTIBLE);
6815 if (!*timeo_p)
6816 goto do_nonblock;
6817 if (sk->sk_shutdown & RCV_SHUTDOWN)
6818 break;
6819 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6820 asoc->base.dead)
6821 goto do_error;
6822 if (signal_pending(current))
6823 goto do_interrupted;
6824
6825 if (sctp_state(asoc, ESTABLISHED))
6826 break;
6827
6828 /* Let another process have a go. Since we are going
6829 * to sleep anyway.
6830 */
6831 release_sock(sk);
6832 current_timeo = schedule_timeout(current_timeo);
6833 lock_sock(sk);
6834
6835 *timeo_p = current_timeo;
6836 }
6837
6838out:
6839 finish_wait(&asoc->wait, &wait);
6840
6841 /* Release the association's refcnt. */
6842 sctp_association_put(asoc);
6843
6844 return err;
6845
6846do_error:
6847 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6848 err = -ETIMEDOUT;
6849 else
6850 err = -ECONNREFUSED;
6851 goto out;
6852
6853do_interrupted:
6854 err = sock_intr_errno(*timeo_p);
6855 goto out;
6856
6857do_nonblock:
6858 err = -EINPROGRESS;
6859 goto out;
6860}
6861
6862static int sctp_wait_for_accept(struct sock *sk, long timeo)
6863{
6864 struct sctp_endpoint *ep;
6865 int err = 0;
6866 DEFINE_WAIT(wait);
6867
6868 ep = sctp_sk(sk)->ep;
6869
6870
6871 for (;;) {
6872 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6873 TASK_INTERRUPTIBLE);
6874
6875 if (list_empty(&ep->asocs)) {
6876 release_sock(sk);
6877 timeo = schedule_timeout(timeo);
6878 lock_sock(sk);
6879 }
6880
6881 err = -EINVAL;
6882 if (!sctp_sstate(sk, LISTENING))
6883 break;
6884
6885 err = 0;
6886 if (!list_empty(&ep->asocs))
6887 break;
6888
6889 err = sock_intr_errno(timeo);
6890 if (signal_pending(current))
6891 break;
6892
6893 err = -EAGAIN;
6894 if (!timeo)
6895 break;
6896 }
6897
6898 finish_wait(sk_sleep(sk), &wait);
6899
6900 return err;
6901}
6902
6903static void sctp_wait_for_close(struct sock *sk, long timeout)
6904{
6905 DEFINE_WAIT(wait);
6906
6907 do {
6908 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6909 if (list_empty(&sctp_sk(sk)->ep->asocs))
6910 break;
6911 release_sock(sk);
6912 timeout = schedule_timeout(timeout);
6913 lock_sock(sk);
6914 } while (!signal_pending(current) && timeout);
6915
6916 finish_wait(sk_sleep(sk), &wait);
6917}
6918
6919static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6920{
6921 struct sk_buff *frag;
6922
6923 if (!skb->data_len)
6924 goto done;
6925
6926 /* Don't forget the fragments. */
6927 skb_walk_frags(skb, frag)
6928 sctp_skb_set_owner_r_frag(frag, sk);
6929
6930done:
6931 sctp_skb_set_owner_r(skb, sk);
6932}
6933
6934void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6935 struct sctp_association *asoc)
6936{
6937 struct inet_sock *inet = inet_sk(sk);
6938 struct inet_sock *newinet;
6939
6940 newsk->sk_type = sk->sk_type;
6941 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6942 newsk->sk_flags = sk->sk_flags;
6943 newsk->sk_no_check = sk->sk_no_check;
6944 newsk->sk_reuse = sk->sk_reuse;
6945
6946 newsk->sk_shutdown = sk->sk_shutdown;
6947 newsk->sk_destruct = sctp_destruct_sock;
6948 newsk->sk_family = sk->sk_family;
6949 newsk->sk_protocol = IPPROTO_SCTP;
6950 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6951 newsk->sk_sndbuf = sk->sk_sndbuf;
6952 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6953 newsk->sk_lingertime = sk->sk_lingertime;
6954 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6955 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6956
6957 newinet = inet_sk(newsk);
6958
6959 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6960 * getsockname() and getpeername()
6961 */
6962 newinet->inet_sport = inet->inet_sport;
6963 newinet->inet_saddr = inet->inet_saddr;
6964 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6965 newinet->inet_dport = htons(asoc->peer.port);
6966 newinet->pmtudisc = inet->pmtudisc;
6967 newinet->inet_id = asoc->next_tsn ^ jiffies;
6968
6969 newinet->uc_ttl = inet->uc_ttl;
6970 newinet->mc_loop = 1;
6971 newinet->mc_ttl = 1;
6972 newinet->mc_index = 0;
6973 newinet->mc_list = NULL;
6974}
6975
6976/* Populate the fields of the newsk from the oldsk and migrate the assoc
6977 * and its messages to the newsk.
6978 */
6979static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6980 struct sctp_association *assoc,
6981 sctp_socket_type_t type)
6982{
6983 struct sctp_sock *oldsp = sctp_sk(oldsk);
6984 struct sctp_sock *newsp = sctp_sk(newsk);
6985 struct sctp_bind_bucket *pp; /* hash list port iterator */
6986 struct sctp_endpoint *newep = newsp->ep;
6987 struct sk_buff *skb, *tmp;
6988 struct sctp_ulpevent *event;
6989 struct sctp_bind_hashbucket *head;
6990 struct list_head tmplist;
6991
6992 /* Migrate socket buffer sizes and all the socket level options to the
6993 * new socket.
6994 */
6995 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6996 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6997 /* Brute force copy old sctp opt. */
6998 if (oldsp->do_auto_asconf) {
6999 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7000 inet_sk_copy_descendant(newsk, oldsk);
7001 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7002 } else
7003 inet_sk_copy_descendant(newsk, oldsk);
7004
7005 /* Restore the ep value that was overwritten with the above structure
7006 * copy.
7007 */
7008 newsp->ep = newep;
7009 newsp->hmac = NULL;
7010
7011 /* Hook this new socket in to the bind_hash list. */
7012 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7013 inet_sk(oldsk)->inet_num)];
7014 local_bh_disable();
7015 spin_lock(&head->lock);
7016 pp = sctp_sk(oldsk)->bind_hash;
7017 sk_add_bind_node(newsk, &pp->owner);
7018 sctp_sk(newsk)->bind_hash = pp;
7019 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7020 spin_unlock(&head->lock);
7021 local_bh_enable();
7022
7023 /* Copy the bind_addr list from the original endpoint to the new
7024 * endpoint so that we can handle restarts properly
7025 */
7026 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7027 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7028
7029 /* Move any messages in the old socket's receive queue that are for the
7030 * peeled off association to the new socket's receive queue.
7031 */
7032 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7033 event = sctp_skb2event(skb);
7034 if (event->asoc == assoc) {
7035 __skb_unlink(skb, &oldsk->sk_receive_queue);
7036 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7037 sctp_skb_set_owner_r_frag(skb, newsk);
7038 }
7039 }
7040
7041 /* Clean up any messages pending delivery due to partial
7042 * delivery. Three cases:
7043 * 1) No partial deliver; no work.
7044 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7045 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7046 */
7047 skb_queue_head_init(&newsp->pd_lobby);
7048 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7049
7050 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7051 struct sk_buff_head *queue;
7052
7053 /* Decide which queue to move pd_lobby skbs to. */
7054 if (assoc->ulpq.pd_mode) {
7055 queue = &newsp->pd_lobby;
7056 } else
7057 queue = &newsk->sk_receive_queue;
7058
7059 /* Walk through the pd_lobby, looking for skbs that
7060 * need moved to the new socket.
7061 */
7062 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7063 event = sctp_skb2event(skb);
7064 if (event->asoc == assoc) {
7065 __skb_unlink(skb, &oldsp->pd_lobby);
7066 __skb_queue_tail(queue, skb);
7067 sctp_skb_set_owner_r_frag(skb, newsk);
7068 }
7069 }
7070
7071 /* Clear up any skbs waiting for the partial
7072 * delivery to finish.
7073 */
7074 if (assoc->ulpq.pd_mode)
7075 sctp_clear_pd(oldsk, NULL);
7076
7077 }
7078
7079 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7080 sctp_skb_set_owner_r_frag(skb, newsk);
7081
7082 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7083 sctp_skb_set_owner_r_frag(skb, newsk);
7084
7085 /* Set the type of socket to indicate that it is peeled off from the
7086 * original UDP-style socket or created with the accept() call on a
7087 * TCP-style socket..
7088 */
7089 newsp->type = type;
7090
7091 /* Mark the new socket "in-use" by the user so that any packets
7092 * that may arrive on the association after we've moved it are
7093 * queued to the backlog. This prevents a potential race between
7094 * backlog processing on the old socket and new-packet processing
7095 * on the new socket.
7096 *
7097 * The caller has just allocated newsk so we can guarantee that other
7098 * paths won't try to lock it and then oldsk.
7099 */
7100 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7101 sctp_assoc_migrate(assoc, newsk);
7102
7103 /* If the association on the newsk is already closed before accept()
7104 * is called, set RCV_SHUTDOWN flag.
7105 */
7106 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7107 newsk->sk_shutdown |= RCV_SHUTDOWN;
7108
7109 newsk->sk_state = SCTP_SS_ESTABLISHED;
7110 release_sock(newsk);
7111}
7112
7113
7114/* This proto struct describes the ULP interface for SCTP. */
7115struct proto sctp_prot = {
7116 .name = "SCTP",
7117 .owner = THIS_MODULE,
7118 .close = sctp_close,
7119 .connect = sctp_connect,
7120 .disconnect = sctp_disconnect,
7121 .accept = sctp_accept,
7122 .ioctl = sctp_ioctl,
7123 .init = sctp_init_sock,
7124 .destroy = sctp_destroy_sock,
7125 .shutdown = sctp_shutdown,
7126 .setsockopt = sctp_setsockopt,
7127 .getsockopt = sctp_getsockopt,
7128 .sendmsg = sctp_sendmsg,
7129 .recvmsg = sctp_recvmsg,
7130 .bind = sctp_bind,
7131 .backlog_rcv = sctp_backlog_rcv,
7132 .hash = sctp_hash,
7133 .unhash = sctp_unhash,
7134 .get_port = sctp_get_port,
7135 .obj_size = sizeof(struct sctp_sock),
7136 .sysctl_mem = sysctl_sctp_mem,
7137 .sysctl_rmem = sysctl_sctp_rmem,
7138 .sysctl_wmem = sysctl_sctp_wmem,
7139 .memory_pressure = &sctp_memory_pressure,
7140 .enter_memory_pressure = sctp_enter_memory_pressure,
7141 .memory_allocated = &sctp_memory_allocated,
7142 .sockets_allocated = &sctp_sockets_allocated,
7143};
7144
7145#if IS_ENABLED(CONFIG_IPV6)
7146
7147struct proto sctpv6_prot = {
7148 .name = "SCTPv6",
7149 .owner = THIS_MODULE,
7150 .close = sctp_close,
7151 .connect = sctp_connect,
7152 .disconnect = sctp_disconnect,
7153 .accept = sctp_accept,
7154 .ioctl = sctp_ioctl,
7155 .init = sctp_init_sock,
7156 .destroy = sctp_destroy_sock,
7157 .shutdown = sctp_shutdown,
7158 .setsockopt = sctp_setsockopt,
7159 .getsockopt = sctp_getsockopt,
7160 .sendmsg = sctp_sendmsg,
7161 .recvmsg = sctp_recvmsg,
7162 .bind = sctp_bind,
7163 .backlog_rcv = sctp_backlog_rcv,
7164 .hash = sctp_hash,
7165 .unhash = sctp_unhash,
7166 .get_port = sctp_get_port,
7167 .obj_size = sizeof(struct sctp6_sock),
7168 .sysctl_mem = sysctl_sctp_mem,
7169 .sysctl_rmem = sysctl_sctp_rmem,
7170 .sysctl_wmem = sysctl_sctp_wmem,
7171 .memory_pressure = &sctp_memory_pressure,
7172 .enter_memory_pressure = sctp_enter_memory_pressure,
7173 .memory_allocated = &sctp_memory_allocated,
7174 .sockets_allocated = &sctp_sockets_allocated,
7175};
7176#endif /* IS_ENABLED(CONFIG_IPV6) */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62
63#include <linux/socket.h> /* for sa_family_t */
64#include <linux/export.h>
65#include <net/sock.h>
66#include <net/sctp/sctp.h>
67#include <net/sctp/sm.h>
68#include <net/sctp/stream_sched.h>
69
70/* Forward declarations for internal helper functions. */
71static bool sctp_writeable(struct sock *sk);
72static void sctp_wfree(struct sk_buff *skb);
73static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77static int sctp_wait_for_accept(struct sock *sk, long timeo);
78static void sctp_wait_for_close(struct sock *sk, long timeo);
79static void sctp_destruct_sock(struct sock *sk);
80static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89static int sctp_autobind(struct sock *sk);
90static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94static unsigned long sctp_memory_pressure;
95static atomic_long_t sctp_memory_allocated;
96static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
97struct percpu_counter sctp_sockets_allocated;
98
99static void sctp_enter_memory_pressure(struct sock *sk)
100{
101 sctp_memory_pressure = 1;
102}
103
104
105/* Get the sndbuf space available at the time on the association. */
106static inline int sctp_wspace(struct sctp_association *asoc)
107{
108 struct sock *sk = asoc->base.sk;
109
110 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
111 : sk_stream_wspace(sk);
112}
113
114/* Increment the used sndbuf space count of the corresponding association by
115 * the size of the outgoing data chunk.
116 * Also, set the skb destructor for sndbuf accounting later.
117 *
118 * Since it is always 1-1 between chunk and skb, and also a new skb is always
119 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
120 * destructor in the data chunk skb for the purpose of the sndbuf space
121 * tracking.
122 */
123static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
124{
125 struct sctp_association *asoc = chunk->asoc;
126 struct sock *sk = asoc->base.sk;
127
128 /* The sndbuf space is tracked per association. */
129 sctp_association_hold(asoc);
130
131 if (chunk->shkey)
132 sctp_auth_shkey_hold(chunk->shkey);
133
134 skb_set_owner_w(chunk->skb, sk);
135
136 chunk->skb->destructor = sctp_wfree;
137 /* Save the chunk pointer in skb for sctp_wfree to use later. */
138 skb_shinfo(chunk->skb)->destructor_arg = chunk;
139
140 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
141 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
143 sk_mem_charge(sk, chunk->skb->truesize);
144}
145
146static void sctp_clear_owner_w(struct sctp_chunk *chunk)
147{
148 skb_orphan(chunk->skb);
149}
150
151#define traverse_and_process() \
152do { \
153 msg = chunk->msg; \
154 if (msg == prev_msg) \
155 continue; \
156 list_for_each_entry(c, &msg->chunks, frag_list) { \
157 if ((clear && asoc->base.sk == c->skb->sk) || \
158 (!clear && asoc->base.sk != c->skb->sk)) \
159 cb(c); \
160 } \
161 prev_msg = msg; \
162} while (0)
163
164static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
165 bool clear,
166 void (*cb)(struct sctp_chunk *))
167
168{
169 struct sctp_datamsg *msg, *prev_msg = NULL;
170 struct sctp_outq *q = &asoc->outqueue;
171 struct sctp_chunk *chunk, *c;
172 struct sctp_transport *t;
173
174 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
175 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
176 traverse_and_process();
177
178 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
179 traverse_and_process();
180
181 list_for_each_entry(chunk, &q->sacked, transmitted_list)
182 traverse_and_process();
183
184 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
185 traverse_and_process();
186
187 list_for_each_entry(chunk, &q->out_chunk_list, list)
188 traverse_and_process();
189}
190
191static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
192 void (*cb)(struct sk_buff *, struct sock *))
193
194{
195 struct sk_buff *skb, *tmp;
196
197 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
198 cb(skb, sk);
199
200 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
201 cb(skb, sk);
202
203 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
204 cb(skb, sk);
205}
206
207/* Verify that this is a valid address. */
208static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
209 int len)
210{
211 struct sctp_af *af;
212
213 /* Verify basic sockaddr. */
214 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
215 if (!af)
216 return -EINVAL;
217
218 /* Is this a valid SCTP address? */
219 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
220 return -EINVAL;
221
222 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
223 return -EINVAL;
224
225 return 0;
226}
227
228/* Look up the association by its id. If this is not a UDP-style
229 * socket, the ID field is always ignored.
230 */
231struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
232{
233 struct sctp_association *asoc = NULL;
234
235 /* If this is not a UDP-style socket, assoc id should be ignored. */
236 if (!sctp_style(sk, UDP)) {
237 /* Return NULL if the socket state is not ESTABLISHED. It
238 * could be a TCP-style listening socket or a socket which
239 * hasn't yet called connect() to establish an association.
240 */
241 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
242 return NULL;
243
244 /* Get the first and the only association from the list. */
245 if (!list_empty(&sctp_sk(sk)->ep->asocs))
246 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
247 struct sctp_association, asocs);
248 return asoc;
249 }
250
251 /* Otherwise this is a UDP-style socket. */
252 if (id <= SCTP_ALL_ASSOC)
253 return NULL;
254
255 spin_lock_bh(&sctp_assocs_id_lock);
256 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
257 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
258 asoc = NULL;
259 spin_unlock_bh(&sctp_assocs_id_lock);
260
261 return asoc;
262}
263
264/* Look up the transport from an address and an assoc id. If both address and
265 * id are specified, the associations matching the address and the id should be
266 * the same.
267 */
268static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
269 struct sockaddr_storage *addr,
270 sctp_assoc_t id)
271{
272 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
273 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
274 union sctp_addr *laddr = (union sctp_addr *)addr;
275 struct sctp_transport *transport;
276
277 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
278 return NULL;
279
280 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
281 laddr,
282 &transport);
283
284 if (!addr_asoc)
285 return NULL;
286
287 id_asoc = sctp_id2assoc(sk, id);
288 if (id_asoc && (id_asoc != addr_asoc))
289 return NULL;
290
291 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
292 (union sctp_addr *)addr);
293
294 return transport;
295}
296
297/* API 3.1.2 bind() - UDP Style Syntax
298 * The syntax of bind() is,
299 *
300 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
301 *
302 * sd - the socket descriptor returned by socket().
303 * addr - the address structure (struct sockaddr_in or struct
304 * sockaddr_in6 [RFC 2553]),
305 * addr_len - the size of the address structure.
306 */
307static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
308{
309 int retval = 0;
310
311 lock_sock(sk);
312
313 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
314 addr, addr_len);
315
316 /* Disallow binding twice. */
317 if (!sctp_sk(sk)->ep->base.bind_addr.port)
318 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
319 addr_len);
320 else
321 retval = -EINVAL;
322
323 release_sock(sk);
324
325 return retval;
326}
327
328static int sctp_get_port_local(struct sock *, union sctp_addr *);
329
330/* Verify this is a valid sockaddr. */
331static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
332 union sctp_addr *addr, int len)
333{
334 struct sctp_af *af;
335
336 /* Check minimum size. */
337 if (len < sizeof (struct sockaddr))
338 return NULL;
339
340 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
341 return NULL;
342
343 if (addr->sa.sa_family == AF_INET6) {
344 if (len < SIN6_LEN_RFC2133)
345 return NULL;
346 /* V4 mapped address are really of AF_INET family */
347 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
348 !opt->pf->af_supported(AF_INET, opt))
349 return NULL;
350 }
351
352 /* If we get this far, af is valid. */
353 af = sctp_get_af_specific(addr->sa.sa_family);
354
355 if (len < af->sockaddr_len)
356 return NULL;
357
358 return af;
359}
360
361static void sctp_auto_asconf_init(struct sctp_sock *sp)
362{
363 struct net *net = sock_net(&sp->inet.sk);
364
365 if (net->sctp.default_auto_asconf) {
366 spin_lock(&net->sctp.addr_wq_lock);
367 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
368 spin_unlock(&net->sctp.addr_wq_lock);
369 sp->do_auto_asconf = 1;
370 }
371}
372
373/* Bind a local address either to an endpoint or to an association. */
374static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
375{
376 struct net *net = sock_net(sk);
377 struct sctp_sock *sp = sctp_sk(sk);
378 struct sctp_endpoint *ep = sp->ep;
379 struct sctp_bind_addr *bp = &ep->base.bind_addr;
380 struct sctp_af *af;
381 unsigned short snum;
382 int ret = 0;
383
384 /* Common sockaddr verification. */
385 af = sctp_sockaddr_af(sp, addr, len);
386 if (!af) {
387 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
388 __func__, sk, addr, len);
389 return -EINVAL;
390 }
391
392 snum = ntohs(addr->v4.sin_port);
393
394 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
395 __func__, sk, &addr->sa, bp->port, snum, len);
396
397 /* PF specific bind() address verification. */
398 if (!sp->pf->bind_verify(sp, addr))
399 return -EADDRNOTAVAIL;
400
401 /* We must either be unbound, or bind to the same port.
402 * It's OK to allow 0 ports if we are already bound.
403 * We'll just inhert an already bound port in this case
404 */
405 if (bp->port) {
406 if (!snum)
407 snum = bp->port;
408 else if (snum != bp->port) {
409 pr_debug("%s: new port %d doesn't match existing port "
410 "%d\n", __func__, snum, bp->port);
411 return -EINVAL;
412 }
413 }
414
415 if (snum && inet_port_requires_bind_service(net, snum) &&
416 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
417 return -EACCES;
418
419 /* See if the address matches any of the addresses we may have
420 * already bound before checking against other endpoints.
421 */
422 if (sctp_bind_addr_match(bp, addr, sp))
423 return -EINVAL;
424
425 /* Make sure we are allowed to bind here.
426 * The function sctp_get_port_local() does duplicate address
427 * detection.
428 */
429 addr->v4.sin_port = htons(snum);
430 if (sctp_get_port_local(sk, addr))
431 return -EADDRINUSE;
432
433 /* Refresh ephemeral port. */
434 if (!bp->port) {
435 bp->port = inet_sk(sk)->inet_num;
436 sctp_auto_asconf_init(sp);
437 }
438
439 /* Add the address to the bind address list.
440 * Use GFP_ATOMIC since BHs will be disabled.
441 */
442 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
443 SCTP_ADDR_SRC, GFP_ATOMIC);
444
445 if (ret) {
446 sctp_put_port(sk);
447 return ret;
448 }
449 /* Copy back into socket for getsockname() use. */
450 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
451 sp->pf->to_sk_saddr(addr, sk);
452
453 return ret;
454}
455
456 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
457 *
458 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
459 * at any one time. If a sender, after sending an ASCONF chunk, decides
460 * it needs to transfer another ASCONF Chunk, it MUST wait until the
461 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
462 * subsequent ASCONF. Note this restriction binds each side, so at any
463 * time two ASCONF may be in-transit on any given association (one sent
464 * from each endpoint).
465 */
466static int sctp_send_asconf(struct sctp_association *asoc,
467 struct sctp_chunk *chunk)
468{
469 int retval = 0;
470
471 /* If there is an outstanding ASCONF chunk, queue it for later
472 * transmission.
473 */
474 if (asoc->addip_last_asconf) {
475 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
476 goto out;
477 }
478
479 /* Hold the chunk until an ASCONF_ACK is received. */
480 sctp_chunk_hold(chunk);
481 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
482 if (retval)
483 sctp_chunk_free(chunk);
484 else
485 asoc->addip_last_asconf = chunk;
486
487out:
488 return retval;
489}
490
491/* Add a list of addresses as bind addresses to local endpoint or
492 * association.
493 *
494 * Basically run through each address specified in the addrs/addrcnt
495 * array/length pair, determine if it is IPv6 or IPv4 and call
496 * sctp_do_bind() on it.
497 *
498 * If any of them fails, then the operation will be reversed and the
499 * ones that were added will be removed.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
504{
505 int cnt;
506 int retval = 0;
507 void *addr_buf;
508 struct sockaddr *sa_addr;
509 struct sctp_af *af;
510
511 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
512 addrs, addrcnt);
513
514 addr_buf = addrs;
515 for (cnt = 0; cnt < addrcnt; cnt++) {
516 /* The list may contain either IPv4 or IPv6 address;
517 * determine the address length for walking thru the list.
518 */
519 sa_addr = addr_buf;
520 af = sctp_get_af_specific(sa_addr->sa_family);
521 if (!af) {
522 retval = -EINVAL;
523 goto err_bindx_add;
524 }
525
526 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
527 af->sockaddr_len);
528
529 addr_buf += af->sockaddr_len;
530
531err_bindx_add:
532 if (retval < 0) {
533 /* Failed. Cleanup the ones that have been added */
534 if (cnt > 0)
535 sctp_bindx_rem(sk, addrs, cnt);
536 return retval;
537 }
538 }
539
540 return retval;
541}
542
543/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
544 * associations that are part of the endpoint indicating that a list of local
545 * addresses are added to the endpoint.
546 *
547 * If any of the addresses is already in the bind address list of the
548 * association, we do not send the chunk for that association. But it will not
549 * affect other associations.
550 *
551 * Only sctp_setsockopt_bindx() is supposed to call this function.
552 */
553static int sctp_send_asconf_add_ip(struct sock *sk,
554 struct sockaddr *addrs,
555 int addrcnt)
556{
557 struct sctp_sock *sp;
558 struct sctp_endpoint *ep;
559 struct sctp_association *asoc;
560 struct sctp_bind_addr *bp;
561 struct sctp_chunk *chunk;
562 struct sctp_sockaddr_entry *laddr;
563 union sctp_addr *addr;
564 union sctp_addr saveaddr;
565 void *addr_buf;
566 struct sctp_af *af;
567 struct list_head *p;
568 int i;
569 int retval = 0;
570
571 sp = sctp_sk(sk);
572 ep = sp->ep;
573
574 if (!ep->asconf_enable)
575 return retval;
576
577 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
578 __func__, sk, addrs, addrcnt);
579
580 list_for_each_entry(asoc, &ep->asocs, asocs) {
581 if (!asoc->peer.asconf_capable)
582 continue;
583
584 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
585 continue;
586
587 if (!sctp_state(asoc, ESTABLISHED))
588 continue;
589
590 /* Check if any address in the packed array of addresses is
591 * in the bind address list of the association. If so,
592 * do not send the asconf chunk to its peer, but continue with
593 * other associations.
594 */
595 addr_buf = addrs;
596 for (i = 0; i < addrcnt; i++) {
597 addr = addr_buf;
598 af = sctp_get_af_specific(addr->v4.sin_family);
599 if (!af) {
600 retval = -EINVAL;
601 goto out;
602 }
603
604 if (sctp_assoc_lookup_laddr(asoc, addr))
605 break;
606
607 addr_buf += af->sockaddr_len;
608 }
609 if (i < addrcnt)
610 continue;
611
612 /* Use the first valid address in bind addr list of
613 * association as Address Parameter of ASCONF CHUNK.
614 */
615 bp = &asoc->base.bind_addr;
616 p = bp->address_list.next;
617 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
618 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
619 addrcnt, SCTP_PARAM_ADD_IP);
620 if (!chunk) {
621 retval = -ENOMEM;
622 goto out;
623 }
624
625 /* Add the new addresses to the bind address list with
626 * use_as_src set to 0.
627 */
628 addr_buf = addrs;
629 for (i = 0; i < addrcnt; i++) {
630 addr = addr_buf;
631 af = sctp_get_af_specific(addr->v4.sin_family);
632 memcpy(&saveaddr, addr, af->sockaddr_len);
633 retval = sctp_add_bind_addr(bp, &saveaddr,
634 sizeof(saveaddr),
635 SCTP_ADDR_NEW, GFP_ATOMIC);
636 addr_buf += af->sockaddr_len;
637 }
638 if (asoc->src_out_of_asoc_ok) {
639 struct sctp_transport *trans;
640
641 list_for_each_entry(trans,
642 &asoc->peer.transport_addr_list, transports) {
643 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
644 2*asoc->pathmtu, 4380));
645 trans->ssthresh = asoc->peer.i.a_rwnd;
646 trans->rto = asoc->rto_initial;
647 sctp_max_rto(asoc, trans);
648 trans->rtt = trans->srtt = trans->rttvar = 0;
649 /* Clear the source and route cache */
650 sctp_transport_route(trans, NULL,
651 sctp_sk(asoc->base.sk));
652 }
653 }
654 retval = sctp_send_asconf(asoc, chunk);
655 }
656
657out:
658 return retval;
659}
660
661/* Remove a list of addresses from bind addresses list. Do not remove the
662 * last address.
663 *
664 * Basically run through each address specified in the addrs/addrcnt
665 * array/length pair, determine if it is IPv6 or IPv4 and call
666 * sctp_del_bind() on it.
667 *
668 * If any of them fails, then the operation will be reversed and the
669 * ones that were removed will be added back.
670 *
671 * At least one address has to be left; if only one address is
672 * available, the operation will return -EBUSY.
673 *
674 * Only sctp_setsockopt_bindx() is supposed to call this function.
675 */
676static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
677{
678 struct sctp_sock *sp = sctp_sk(sk);
679 struct sctp_endpoint *ep = sp->ep;
680 int cnt;
681 struct sctp_bind_addr *bp = &ep->base.bind_addr;
682 int retval = 0;
683 void *addr_buf;
684 union sctp_addr *sa_addr;
685 struct sctp_af *af;
686
687 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
688 __func__, sk, addrs, addrcnt);
689
690 addr_buf = addrs;
691 for (cnt = 0; cnt < addrcnt; cnt++) {
692 /* If the bind address list is empty or if there is only one
693 * bind address, there is nothing more to be removed (we need
694 * at least one address here).
695 */
696 if (list_empty(&bp->address_list) ||
697 (sctp_list_single_entry(&bp->address_list))) {
698 retval = -EBUSY;
699 goto err_bindx_rem;
700 }
701
702 sa_addr = addr_buf;
703 af = sctp_get_af_specific(sa_addr->sa.sa_family);
704 if (!af) {
705 retval = -EINVAL;
706 goto err_bindx_rem;
707 }
708
709 if (!af->addr_valid(sa_addr, sp, NULL)) {
710 retval = -EADDRNOTAVAIL;
711 goto err_bindx_rem;
712 }
713
714 if (sa_addr->v4.sin_port &&
715 sa_addr->v4.sin_port != htons(bp->port)) {
716 retval = -EINVAL;
717 goto err_bindx_rem;
718 }
719
720 if (!sa_addr->v4.sin_port)
721 sa_addr->v4.sin_port = htons(bp->port);
722
723 /* FIXME - There is probably a need to check if sk->sk_saddr and
724 * sk->sk_rcv_addr are currently set to one of the addresses to
725 * be removed. This is something which needs to be looked into
726 * when we are fixing the outstanding issues with multi-homing
727 * socket routing and failover schemes. Refer to comments in
728 * sctp_do_bind(). -daisy
729 */
730 retval = sctp_del_bind_addr(bp, sa_addr);
731
732 addr_buf += af->sockaddr_len;
733err_bindx_rem:
734 if (retval < 0) {
735 /* Failed. Add the ones that has been removed back */
736 if (cnt > 0)
737 sctp_bindx_add(sk, addrs, cnt);
738 return retval;
739 }
740 }
741
742 return retval;
743}
744
745/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
746 * the associations that are part of the endpoint indicating that a list of
747 * local addresses are removed from the endpoint.
748 *
749 * If any of the addresses is already in the bind address list of the
750 * association, we do not send the chunk for that association. But it will not
751 * affect other associations.
752 *
753 * Only sctp_setsockopt_bindx() is supposed to call this function.
754 */
755static int sctp_send_asconf_del_ip(struct sock *sk,
756 struct sockaddr *addrs,
757 int addrcnt)
758{
759 struct sctp_sock *sp;
760 struct sctp_endpoint *ep;
761 struct sctp_association *asoc;
762 struct sctp_transport *transport;
763 struct sctp_bind_addr *bp;
764 struct sctp_chunk *chunk;
765 union sctp_addr *laddr;
766 void *addr_buf;
767 struct sctp_af *af;
768 struct sctp_sockaddr_entry *saddr;
769 int i;
770 int retval = 0;
771 int stored = 0;
772
773 chunk = NULL;
774 sp = sctp_sk(sk);
775 ep = sp->ep;
776
777 if (!ep->asconf_enable)
778 return retval;
779
780 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
781 __func__, sk, addrs, addrcnt);
782
783 list_for_each_entry(asoc, &ep->asocs, asocs) {
784
785 if (!asoc->peer.asconf_capable)
786 continue;
787
788 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
789 continue;
790
791 if (!sctp_state(asoc, ESTABLISHED))
792 continue;
793
794 /* Check if any address in the packed array of addresses is
795 * not present in the bind address list of the association.
796 * If so, do not send the asconf chunk to its peer, but
797 * continue with other associations.
798 */
799 addr_buf = addrs;
800 for (i = 0; i < addrcnt; i++) {
801 laddr = addr_buf;
802 af = sctp_get_af_specific(laddr->v4.sin_family);
803 if (!af) {
804 retval = -EINVAL;
805 goto out;
806 }
807
808 if (!sctp_assoc_lookup_laddr(asoc, laddr))
809 break;
810
811 addr_buf += af->sockaddr_len;
812 }
813 if (i < addrcnt)
814 continue;
815
816 /* Find one address in the association's bind address list
817 * that is not in the packed array of addresses. This is to
818 * make sure that we do not delete all the addresses in the
819 * association.
820 */
821 bp = &asoc->base.bind_addr;
822 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
823 addrcnt, sp);
824 if ((laddr == NULL) && (addrcnt == 1)) {
825 if (asoc->asconf_addr_del_pending)
826 continue;
827 asoc->asconf_addr_del_pending =
828 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
829 if (asoc->asconf_addr_del_pending == NULL) {
830 retval = -ENOMEM;
831 goto out;
832 }
833 asoc->asconf_addr_del_pending->sa.sa_family =
834 addrs->sa_family;
835 asoc->asconf_addr_del_pending->v4.sin_port =
836 htons(bp->port);
837 if (addrs->sa_family == AF_INET) {
838 struct sockaddr_in *sin;
839
840 sin = (struct sockaddr_in *)addrs;
841 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
842 } else if (addrs->sa_family == AF_INET6) {
843 struct sockaddr_in6 *sin6;
844
845 sin6 = (struct sockaddr_in6 *)addrs;
846 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
847 }
848
849 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
850 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
851 asoc->asconf_addr_del_pending);
852
853 asoc->src_out_of_asoc_ok = 1;
854 stored = 1;
855 goto skip_mkasconf;
856 }
857
858 if (laddr == NULL)
859 return -EINVAL;
860
861 /* We do not need RCU protection throughout this loop
862 * because this is done under a socket lock from the
863 * setsockopt call.
864 */
865 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
866 SCTP_PARAM_DEL_IP);
867 if (!chunk) {
868 retval = -ENOMEM;
869 goto out;
870 }
871
872skip_mkasconf:
873 /* Reset use_as_src flag for the addresses in the bind address
874 * list that are to be deleted.
875 */
876 addr_buf = addrs;
877 for (i = 0; i < addrcnt; i++) {
878 laddr = addr_buf;
879 af = sctp_get_af_specific(laddr->v4.sin_family);
880 list_for_each_entry(saddr, &bp->address_list, list) {
881 if (sctp_cmp_addr_exact(&saddr->a, laddr))
882 saddr->state = SCTP_ADDR_DEL;
883 }
884 addr_buf += af->sockaddr_len;
885 }
886
887 /* Update the route and saddr entries for all the transports
888 * as some of the addresses in the bind address list are
889 * about to be deleted and cannot be used as source addresses.
890 */
891 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
892 transports) {
893 sctp_transport_route(transport, NULL,
894 sctp_sk(asoc->base.sk));
895 }
896
897 if (stored)
898 /* We don't need to transmit ASCONF */
899 continue;
900 retval = sctp_send_asconf(asoc, chunk);
901 }
902out:
903 return retval;
904}
905
906/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
907int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
908{
909 struct sock *sk = sctp_opt2sk(sp);
910 union sctp_addr *addr;
911 struct sctp_af *af;
912
913 /* It is safe to write port space in caller. */
914 addr = &addrw->a;
915 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
916 af = sctp_get_af_specific(addr->sa.sa_family);
917 if (!af)
918 return -EINVAL;
919 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
920 return -EINVAL;
921
922 if (addrw->state == SCTP_ADDR_NEW)
923 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
924 else
925 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
926}
927
928/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
929 *
930 * API 8.1
931 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
932 * int flags);
933 *
934 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
935 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
936 * or IPv6 addresses.
937 *
938 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
939 * Section 3.1.2 for this usage.
940 *
941 * addrs is a pointer to an array of one or more socket addresses. Each
942 * address is contained in its appropriate structure (i.e. struct
943 * sockaddr_in or struct sockaddr_in6) the family of the address type
944 * must be used to distinguish the address length (note that this
945 * representation is termed a "packed array" of addresses). The caller
946 * specifies the number of addresses in the array with addrcnt.
947 *
948 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
949 * -1, and sets errno to the appropriate error code.
950 *
951 * For SCTP, the port given in each socket address must be the same, or
952 * sctp_bindx() will fail, setting errno to EINVAL.
953 *
954 * The flags parameter is formed from the bitwise OR of zero or more of
955 * the following currently defined flags:
956 *
957 * SCTP_BINDX_ADD_ADDR
958 *
959 * SCTP_BINDX_REM_ADDR
960 *
961 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
962 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
963 * addresses from the association. The two flags are mutually exclusive;
964 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
965 * not remove all addresses from an association; sctp_bindx() will
966 * reject such an attempt with EINVAL.
967 *
968 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
969 * additional addresses with an endpoint after calling bind(). Or use
970 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
971 * socket is associated with so that no new association accepted will be
972 * associated with those addresses. If the endpoint supports dynamic
973 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
974 * endpoint to send the appropriate message to the peer to change the
975 * peers address lists.
976 *
977 * Adding and removing addresses from a connected association is
978 * optional functionality. Implementations that do not support this
979 * functionality should return EOPNOTSUPP.
980 *
981 * Basically do nothing but copying the addresses from user to kernel
982 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
983 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
984 * from userspace.
985 *
986 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
987 * it.
988 *
989 * sk The sk of the socket
990 * addrs The pointer to the addresses
991 * addrssize Size of the addrs buffer
992 * op Operation to perform (add or remove, see the flags of
993 * sctp_bindx)
994 *
995 * Returns 0 if ok, <0 errno code on error.
996 */
997static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
998 int addrs_size, int op)
999{
1000 int err;
1001 int addrcnt = 0;
1002 int walk_size = 0;
1003 struct sockaddr *sa_addr;
1004 void *addr_buf = addrs;
1005 struct sctp_af *af;
1006
1007 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1008 __func__, sk, addr_buf, addrs_size, op);
1009
1010 if (unlikely(addrs_size <= 0))
1011 return -EINVAL;
1012
1013 /* Walk through the addrs buffer and count the number of addresses. */
1014 while (walk_size < addrs_size) {
1015 if (walk_size + sizeof(sa_family_t) > addrs_size)
1016 return -EINVAL;
1017
1018 sa_addr = addr_buf;
1019 af = sctp_get_af_specific(sa_addr->sa_family);
1020
1021 /* If the address family is not supported or if this address
1022 * causes the address buffer to overflow return EINVAL.
1023 */
1024 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1025 return -EINVAL;
1026 addrcnt++;
1027 addr_buf += af->sockaddr_len;
1028 walk_size += af->sockaddr_len;
1029 }
1030
1031 /* Do the work. */
1032 switch (op) {
1033 case SCTP_BINDX_ADD_ADDR:
1034 /* Allow security module to validate bindx addresses. */
1035 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1036 addrs, addrs_size);
1037 if (err)
1038 return err;
1039 err = sctp_bindx_add(sk, addrs, addrcnt);
1040 if (err)
1041 return err;
1042 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1043 case SCTP_BINDX_REM_ADDR:
1044 err = sctp_bindx_rem(sk, addrs, addrcnt);
1045 if (err)
1046 return err;
1047 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1048
1049 default:
1050 return -EINVAL;
1051 }
1052}
1053
1054static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1055 int addrlen)
1056{
1057 int err;
1058
1059 lock_sock(sk);
1060 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1061 release_sock(sk);
1062 return err;
1063}
1064
1065static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1066 const union sctp_addr *daddr,
1067 const struct sctp_initmsg *init,
1068 struct sctp_transport **tp)
1069{
1070 struct sctp_association *asoc;
1071 struct sock *sk = ep->base.sk;
1072 struct net *net = sock_net(sk);
1073 enum sctp_scope scope;
1074 int err;
1075
1076 if (sctp_endpoint_is_peeled_off(ep, daddr))
1077 return -EADDRNOTAVAIL;
1078
1079 if (!ep->base.bind_addr.port) {
1080 if (sctp_autobind(sk))
1081 return -EAGAIN;
1082 } else {
1083 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1084 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1085 return -EACCES;
1086 }
1087
1088 scope = sctp_scope(daddr);
1089 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1090 if (!asoc)
1091 return -ENOMEM;
1092
1093 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1094 if (err < 0)
1095 goto free;
1096
1097 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1098 if (!*tp) {
1099 err = -ENOMEM;
1100 goto free;
1101 }
1102
1103 if (!init)
1104 return 0;
1105
1106 if (init->sinit_num_ostreams) {
1107 __u16 outcnt = init->sinit_num_ostreams;
1108
1109 asoc->c.sinit_num_ostreams = outcnt;
1110 /* outcnt has been changed, need to re-init stream */
1111 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1112 if (err)
1113 goto free;
1114 }
1115
1116 if (init->sinit_max_instreams)
1117 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1118
1119 if (init->sinit_max_attempts)
1120 asoc->max_init_attempts = init->sinit_max_attempts;
1121
1122 if (init->sinit_max_init_timeo)
1123 asoc->max_init_timeo =
1124 msecs_to_jiffies(init->sinit_max_init_timeo);
1125
1126 return 0;
1127free:
1128 sctp_association_free(asoc);
1129 return err;
1130}
1131
1132static int sctp_connect_add_peer(struct sctp_association *asoc,
1133 union sctp_addr *daddr, int addr_len)
1134{
1135 struct sctp_endpoint *ep = asoc->ep;
1136 struct sctp_association *old;
1137 struct sctp_transport *t;
1138 int err;
1139
1140 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1141 if (err)
1142 return err;
1143
1144 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1145 if (old && old != asoc)
1146 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1147 : -EALREADY;
1148
1149 if (sctp_endpoint_is_peeled_off(ep, daddr))
1150 return -EADDRNOTAVAIL;
1151
1152 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1153 if (!t)
1154 return -ENOMEM;
1155
1156 return 0;
1157}
1158
1159/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1160 *
1161 * Common routine for handling connect() and sctp_connectx().
1162 * Connect will come in with just a single address.
1163 */
1164static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1165 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1166{
1167 struct sctp_sock *sp = sctp_sk(sk);
1168 struct sctp_endpoint *ep = sp->ep;
1169 struct sctp_transport *transport;
1170 struct sctp_association *asoc;
1171 void *addr_buf = kaddrs;
1172 union sctp_addr *daddr;
1173 struct sctp_af *af;
1174 int walk_size, err;
1175 long timeo;
1176
1177 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1178 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1179 return -EISCONN;
1180
1181 daddr = addr_buf;
1182 af = sctp_get_af_specific(daddr->sa.sa_family);
1183 if (!af || af->sockaddr_len > addrs_size)
1184 return -EINVAL;
1185
1186 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1187 if (err)
1188 return err;
1189
1190 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1191 if (asoc)
1192 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1193 : -EALREADY;
1194
1195 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1196 if (err)
1197 return err;
1198 asoc = transport->asoc;
1199
1200 addr_buf += af->sockaddr_len;
1201 walk_size = af->sockaddr_len;
1202 while (walk_size < addrs_size) {
1203 err = -EINVAL;
1204 if (walk_size + sizeof(sa_family_t) > addrs_size)
1205 goto out_free;
1206
1207 daddr = addr_buf;
1208 af = sctp_get_af_specific(daddr->sa.sa_family);
1209 if (!af || af->sockaddr_len + walk_size > addrs_size)
1210 goto out_free;
1211
1212 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1213 goto out_free;
1214
1215 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1216 if (err)
1217 goto out_free;
1218
1219 addr_buf += af->sockaddr_len;
1220 walk_size += af->sockaddr_len;
1221 }
1222
1223 /* In case the user of sctp_connectx() wants an association
1224 * id back, assign one now.
1225 */
1226 if (assoc_id) {
1227 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1228 if (err < 0)
1229 goto out_free;
1230 }
1231
1232 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1233 if (err < 0)
1234 goto out_free;
1235
1236 /* Initialize sk's dport and daddr for getpeername() */
1237 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1238 sp->pf->to_sk_daddr(daddr, sk);
1239 sk->sk_err = 0;
1240
1241 if (assoc_id)
1242 *assoc_id = asoc->assoc_id;
1243
1244 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1245 return sctp_wait_for_connect(asoc, &timeo);
1246
1247out_free:
1248 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1249 __func__, asoc, kaddrs, err);
1250 sctp_association_free(asoc);
1251 return err;
1252}
1253
1254/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1255 *
1256 * API 8.9
1257 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1258 * sctp_assoc_t *asoc);
1259 *
1260 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1261 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1262 * or IPv6 addresses.
1263 *
1264 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1265 * Section 3.1.2 for this usage.
1266 *
1267 * addrs is a pointer to an array of one or more socket addresses. Each
1268 * address is contained in its appropriate structure (i.e. struct
1269 * sockaddr_in or struct sockaddr_in6) the family of the address type
1270 * must be used to distengish the address length (note that this
1271 * representation is termed a "packed array" of addresses). The caller
1272 * specifies the number of addresses in the array with addrcnt.
1273 *
1274 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1275 * the association id of the new association. On failure, sctp_connectx()
1276 * returns -1, and sets errno to the appropriate error code. The assoc_id
1277 * is not touched by the kernel.
1278 *
1279 * For SCTP, the port given in each socket address must be the same, or
1280 * sctp_connectx() will fail, setting errno to EINVAL.
1281 *
1282 * An application can use sctp_connectx to initiate an association with
1283 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1284 * allows a caller to specify multiple addresses at which a peer can be
1285 * reached. The way the SCTP stack uses the list of addresses to set up
1286 * the association is implementation dependent. This function only
1287 * specifies that the stack will try to make use of all the addresses in
1288 * the list when needed.
1289 *
1290 * Note that the list of addresses passed in is only used for setting up
1291 * the association. It does not necessarily equal the set of addresses
1292 * the peer uses for the resulting association. If the caller wants to
1293 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1294 * retrieve them after the association has been set up.
1295 *
1296 * Basically do nothing but copying the addresses from user to kernel
1297 * land and invoking either sctp_connectx(). This is used for tunneling
1298 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1299 *
1300 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1301 * it.
1302 *
1303 * sk The sk of the socket
1304 * addrs The pointer to the addresses
1305 * addrssize Size of the addrs buffer
1306 *
1307 * Returns >=0 if ok, <0 errno code on error.
1308 */
1309static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1310 int addrs_size, sctp_assoc_t *assoc_id)
1311{
1312 int err = 0, flags = 0;
1313
1314 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1315 __func__, sk, kaddrs, addrs_size);
1316
1317 /* make sure the 1st addr's sa_family is accessible later */
1318 if (unlikely(addrs_size < sizeof(sa_family_t)))
1319 return -EINVAL;
1320
1321 /* Allow security module to validate connectx addresses. */
1322 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1323 (struct sockaddr *)kaddrs,
1324 addrs_size);
1325 if (err)
1326 return err;
1327
1328 /* in-kernel sockets don't generally have a file allocated to them
1329 * if all they do is call sock_create_kern().
1330 */
1331 if (sk->sk_socket->file)
1332 flags = sk->sk_socket->file->f_flags;
1333
1334 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1335}
1336
1337/*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr *kaddrs,
1343 int addrs_size)
1344{
1345 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1346}
1347
1348/*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr *kaddrs,
1356 int addrs_size)
1357{
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367}
1368
1369/*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377#ifdef CONFIG_COMPAT
1378struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382};
1383#endif
1384
1385static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388{
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 struct sockaddr *kaddrs;
1392 int err = 0;
1393
1394#ifdef CONFIG_COMPAT
1395 if (in_compat_syscall()) {
1396 struct compat_sctp_getaddrs_old param32;
1397
1398 if (len < sizeof(param32))
1399 return -EINVAL;
1400 if (copy_from_user(¶m32, optval, sizeof(param32)))
1401 return -EFAULT;
1402
1403 param.assoc_id = param32.assoc_id;
1404 param.addr_num = param32.addr_num;
1405 param.addrs = compat_ptr(param32.addrs);
1406 } else
1407#endif
1408 {
1409 if (len < sizeof(param))
1410 return -EINVAL;
1411 if (copy_from_user(¶m, optval, sizeof(param)))
1412 return -EFAULT;
1413 }
1414
1415 kaddrs = memdup_user(param.addrs, param.addr_num);
1416 if (IS_ERR(kaddrs))
1417 return PTR_ERR(kaddrs);
1418
1419 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1420 kfree(kaddrs);
1421 if (err == 0 || err == -EINPROGRESS) {
1422 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1423 return -EFAULT;
1424 if (put_user(sizeof(assoc_id), optlen))
1425 return -EFAULT;
1426 }
1427
1428 return err;
1429}
1430
1431/* API 3.1.4 close() - UDP Style Syntax
1432 * Applications use close() to perform graceful shutdown (as described in
1433 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1434 * by a UDP-style socket.
1435 *
1436 * The syntax is
1437 *
1438 * ret = close(int sd);
1439 *
1440 * sd - the socket descriptor of the associations to be closed.
1441 *
1442 * To gracefully shutdown a specific association represented by the
1443 * UDP-style socket, an application should use the sendmsg() call,
1444 * passing no user data, but including the appropriate flag in the
1445 * ancillary data (see Section xxxx).
1446 *
1447 * If sd in the close() call is a branched-off socket representing only
1448 * one association, the shutdown is performed on that association only.
1449 *
1450 * 4.1.6 close() - TCP Style Syntax
1451 *
1452 * Applications use close() to gracefully close down an association.
1453 *
1454 * The syntax is:
1455 *
1456 * int close(int sd);
1457 *
1458 * sd - the socket descriptor of the association to be closed.
1459 *
1460 * After an application calls close() on a socket descriptor, no further
1461 * socket operations will succeed on that descriptor.
1462 *
1463 * API 7.1.4 SO_LINGER
1464 *
1465 * An application using the TCP-style socket can use this option to
1466 * perform the SCTP ABORT primitive. The linger option structure is:
1467 *
1468 * struct linger {
1469 * int l_onoff; // option on/off
1470 * int l_linger; // linger time
1471 * };
1472 *
1473 * To enable the option, set l_onoff to 1. If the l_linger value is set
1474 * to 0, calling close() is the same as the ABORT primitive. If the
1475 * value is set to a negative value, the setsockopt() call will return
1476 * an error. If the value is set to a positive value linger_time, the
1477 * close() can be blocked for at most linger_time ms. If the graceful
1478 * shutdown phase does not finish during this period, close() will
1479 * return but the graceful shutdown phase continues in the system.
1480 */
1481static void sctp_close(struct sock *sk, long timeout)
1482{
1483 struct net *net = sock_net(sk);
1484 struct sctp_endpoint *ep;
1485 struct sctp_association *asoc;
1486 struct list_head *pos, *temp;
1487 unsigned int data_was_unread;
1488
1489 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1490
1491 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1492 sk->sk_shutdown = SHUTDOWN_MASK;
1493 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1494
1495 ep = sctp_sk(sk)->ep;
1496
1497 /* Clean up any skbs sitting on the receive queue. */
1498 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1499 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1500
1501 /* Walk all associations on an endpoint. */
1502 list_for_each_safe(pos, temp, &ep->asocs) {
1503 asoc = list_entry(pos, struct sctp_association, asocs);
1504
1505 if (sctp_style(sk, TCP)) {
1506 /* A closed association can still be in the list if
1507 * it belongs to a TCP-style listening socket that is
1508 * not yet accepted. If so, free it. If not, send an
1509 * ABORT or SHUTDOWN based on the linger options.
1510 */
1511 if (sctp_state(asoc, CLOSED)) {
1512 sctp_association_free(asoc);
1513 continue;
1514 }
1515 }
1516
1517 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm) ||
1519 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1520 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1521 struct sctp_chunk *chunk;
1522
1523 chunk = sctp_make_abort_user(asoc, NULL, 0);
1524 sctp_primitive_ABORT(net, asoc, chunk);
1525 } else
1526 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1527 }
1528
1529 /* On a TCP-style socket, block for at most linger_time if set. */
1530 if (sctp_style(sk, TCP) && timeout)
1531 sctp_wait_for_close(sk, timeout);
1532
1533 /* This will run the backlog queue. */
1534 release_sock(sk);
1535
1536 /* Supposedly, no process has access to the socket, but
1537 * the net layers still may.
1538 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1539 * held and that should be grabbed before socket lock.
1540 */
1541 spin_lock_bh(&net->sctp.addr_wq_lock);
1542 bh_lock_sock_nested(sk);
1543
1544 /* Hold the sock, since sk_common_release() will put sock_put()
1545 * and we have just a little more cleanup.
1546 */
1547 sock_hold(sk);
1548 sk_common_release(sk);
1549
1550 bh_unlock_sock(sk);
1551 spin_unlock_bh(&net->sctp.addr_wq_lock);
1552
1553 sock_put(sk);
1554
1555 SCTP_DBG_OBJCNT_DEC(sock);
1556}
1557
1558/* Handle EPIPE error. */
1559static int sctp_error(struct sock *sk, int flags, int err)
1560{
1561 if (err == -EPIPE)
1562 err = sock_error(sk) ? : -EPIPE;
1563 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1564 send_sig(SIGPIPE, current, 0);
1565 return err;
1566}
1567
1568/* API 3.1.3 sendmsg() - UDP Style Syntax
1569 *
1570 * An application uses sendmsg() and recvmsg() calls to transmit data to
1571 * and receive data from its peer.
1572 *
1573 * ssize_t sendmsg(int socket, const struct msghdr *message,
1574 * int flags);
1575 *
1576 * socket - the socket descriptor of the endpoint.
1577 * message - pointer to the msghdr structure which contains a single
1578 * user message and possibly some ancillary data.
1579 *
1580 * See Section 5 for complete description of the data
1581 * structures.
1582 *
1583 * flags - flags sent or received with the user message, see Section
1584 * 5 for complete description of the flags.
1585 *
1586 * Note: This function could use a rewrite especially when explicit
1587 * connect support comes in.
1588 */
1589/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1590
1591static int sctp_msghdr_parse(const struct msghdr *msg,
1592 struct sctp_cmsgs *cmsgs);
1593
1594static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1595 struct sctp_sndrcvinfo *srinfo,
1596 const struct msghdr *msg, size_t msg_len)
1597{
1598 __u16 sflags;
1599 int err;
1600
1601 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1602 return -EPIPE;
1603
1604 if (msg_len > sk->sk_sndbuf)
1605 return -EMSGSIZE;
1606
1607 memset(cmsgs, 0, sizeof(*cmsgs));
1608 err = sctp_msghdr_parse(msg, cmsgs);
1609 if (err) {
1610 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1611 return err;
1612 }
1613
1614 memset(srinfo, 0, sizeof(*srinfo));
1615 if (cmsgs->srinfo) {
1616 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1617 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1618 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1619 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1620 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1621 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1622 }
1623
1624 if (cmsgs->sinfo) {
1625 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1626 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1627 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1628 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1629 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1630 }
1631
1632 if (cmsgs->prinfo) {
1633 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1634 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1635 cmsgs->prinfo->pr_policy);
1636 }
1637
1638 sflags = srinfo->sinfo_flags;
1639 if (!sflags && msg_len)
1640 return 0;
1641
1642 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1643 return -EINVAL;
1644
1645 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1646 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1647 return -EINVAL;
1648
1649 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1650 return -EINVAL;
1651
1652 return 0;
1653}
1654
1655static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1656 struct sctp_cmsgs *cmsgs,
1657 union sctp_addr *daddr,
1658 struct sctp_transport **tp)
1659{
1660 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1661 struct sctp_association *asoc;
1662 struct cmsghdr *cmsg;
1663 __be32 flowinfo = 0;
1664 struct sctp_af *af;
1665 int err;
1666
1667 *tp = NULL;
1668
1669 if (sflags & (SCTP_EOF | SCTP_ABORT))
1670 return -EINVAL;
1671
1672 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1673 sctp_sstate(sk, CLOSING)))
1674 return -EADDRNOTAVAIL;
1675
1676 /* Label connection socket for first association 1-to-many
1677 * style for client sequence socket()->sendmsg(). This
1678 * needs to be done before sctp_assoc_add_peer() as that will
1679 * set up the initial packet that needs to account for any
1680 * security ip options (CIPSO/CALIPSO) added to the packet.
1681 */
1682 af = sctp_get_af_specific(daddr->sa.sa_family);
1683 if (!af)
1684 return -EINVAL;
1685 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1686 (struct sockaddr *)daddr,
1687 af->sockaddr_len);
1688 if (err < 0)
1689 return err;
1690
1691 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1692 if (err)
1693 return err;
1694 asoc = (*tp)->asoc;
1695
1696 if (!cmsgs->addrs_msg)
1697 return 0;
1698
1699 if (daddr->sa.sa_family == AF_INET6)
1700 flowinfo = daddr->v6.sin6_flowinfo;
1701
1702 /* sendv addr list parse */
1703 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1704 union sctp_addr _daddr;
1705 int dlen;
1706
1707 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1708 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1709 cmsg->cmsg_type != SCTP_DSTADDRV6))
1710 continue;
1711
1712 daddr = &_daddr;
1713 memset(daddr, 0, sizeof(*daddr));
1714 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1715 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1716 if (dlen < sizeof(struct in_addr)) {
1717 err = -EINVAL;
1718 goto free;
1719 }
1720
1721 dlen = sizeof(struct in_addr);
1722 daddr->v4.sin_family = AF_INET;
1723 daddr->v4.sin_port = htons(asoc->peer.port);
1724 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1725 } else {
1726 if (dlen < sizeof(struct in6_addr)) {
1727 err = -EINVAL;
1728 goto free;
1729 }
1730
1731 dlen = sizeof(struct in6_addr);
1732 daddr->v6.sin6_flowinfo = flowinfo;
1733 daddr->v6.sin6_family = AF_INET6;
1734 daddr->v6.sin6_port = htons(asoc->peer.port);
1735 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1736 }
1737
1738 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1739 if (err)
1740 goto free;
1741 }
1742
1743 return 0;
1744
1745free:
1746 sctp_association_free(asoc);
1747 return err;
1748}
1749
1750static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1751 __u16 sflags, struct msghdr *msg,
1752 size_t msg_len)
1753{
1754 struct sock *sk = asoc->base.sk;
1755 struct net *net = sock_net(sk);
1756
1757 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1758 return -EPIPE;
1759
1760 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1761 !sctp_state(asoc, ESTABLISHED))
1762 return 0;
1763
1764 if (sflags & SCTP_EOF) {
1765 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1766 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1767
1768 return 0;
1769 }
1770
1771 if (sflags & SCTP_ABORT) {
1772 struct sctp_chunk *chunk;
1773
1774 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1775 if (!chunk)
1776 return -ENOMEM;
1777
1778 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1779 sctp_primitive_ABORT(net, asoc, chunk);
1780 iov_iter_revert(&msg->msg_iter, msg_len);
1781
1782 return 0;
1783 }
1784
1785 return 1;
1786}
1787
1788static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1789 struct msghdr *msg, size_t msg_len,
1790 struct sctp_transport *transport,
1791 struct sctp_sndrcvinfo *sinfo)
1792{
1793 struct sock *sk = asoc->base.sk;
1794 struct sctp_sock *sp = sctp_sk(sk);
1795 struct net *net = sock_net(sk);
1796 struct sctp_datamsg *datamsg;
1797 bool wait_connect = false;
1798 struct sctp_chunk *chunk;
1799 long timeo;
1800 int err;
1801
1802 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1803 err = -EINVAL;
1804 goto err;
1805 }
1806
1807 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1808 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1809 if (err)
1810 goto err;
1811 }
1812
1813 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1814 err = -EMSGSIZE;
1815 goto err;
1816 }
1817
1818 if (asoc->pmtu_pending) {
1819 if (sp->param_flags & SPP_PMTUD_ENABLE)
1820 sctp_assoc_sync_pmtu(asoc);
1821 asoc->pmtu_pending = 0;
1822 }
1823
1824 if (sctp_wspace(asoc) < (int)msg_len)
1825 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1826
1827 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1828 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1829 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1830 if (err)
1831 goto err;
1832 }
1833
1834 if (sctp_state(asoc, CLOSED)) {
1835 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1836 if (err)
1837 goto err;
1838
1839 if (asoc->ep->intl_enable) {
1840 timeo = sock_sndtimeo(sk, 0);
1841 err = sctp_wait_for_connect(asoc, &timeo);
1842 if (err) {
1843 err = -ESRCH;
1844 goto err;
1845 }
1846 } else {
1847 wait_connect = true;
1848 }
1849
1850 pr_debug("%s: we associated primitively\n", __func__);
1851 }
1852
1853 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1854 if (IS_ERR(datamsg)) {
1855 err = PTR_ERR(datamsg);
1856 goto err;
1857 }
1858
1859 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1860
1861 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1862 sctp_chunk_hold(chunk);
1863 sctp_set_owner_w(chunk);
1864 chunk->transport = transport;
1865 }
1866
1867 err = sctp_primitive_SEND(net, asoc, datamsg);
1868 if (err) {
1869 sctp_datamsg_free(datamsg);
1870 goto err;
1871 }
1872
1873 pr_debug("%s: we sent primitively\n", __func__);
1874
1875 sctp_datamsg_put(datamsg);
1876
1877 if (unlikely(wait_connect)) {
1878 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1879 sctp_wait_for_connect(asoc, &timeo);
1880 }
1881
1882 err = msg_len;
1883
1884err:
1885 return err;
1886}
1887
1888static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1889 const struct msghdr *msg,
1890 struct sctp_cmsgs *cmsgs)
1891{
1892 union sctp_addr *daddr = NULL;
1893 int err;
1894
1895 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1896 int len = msg->msg_namelen;
1897
1898 if (len > sizeof(*daddr))
1899 len = sizeof(*daddr);
1900
1901 daddr = (union sctp_addr *)msg->msg_name;
1902
1903 err = sctp_verify_addr(sk, daddr, len);
1904 if (err)
1905 return ERR_PTR(err);
1906 }
1907
1908 return daddr;
1909}
1910
1911static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1912 struct sctp_sndrcvinfo *sinfo,
1913 struct sctp_cmsgs *cmsgs)
1914{
1915 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1916 sinfo->sinfo_stream = asoc->default_stream;
1917 sinfo->sinfo_ppid = asoc->default_ppid;
1918 sinfo->sinfo_context = asoc->default_context;
1919 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1920
1921 if (!cmsgs->prinfo)
1922 sinfo->sinfo_flags = asoc->default_flags;
1923 }
1924
1925 if (!cmsgs->srinfo && !cmsgs->prinfo)
1926 sinfo->sinfo_timetolive = asoc->default_timetolive;
1927
1928 if (cmsgs->authinfo) {
1929 /* Reuse sinfo_tsn to indicate that authinfo was set and
1930 * sinfo_ssn to save the keyid on tx path.
1931 */
1932 sinfo->sinfo_tsn = 1;
1933 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1934 }
1935}
1936
1937static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1938{
1939 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1940 struct sctp_transport *transport = NULL;
1941 struct sctp_sndrcvinfo _sinfo, *sinfo;
1942 struct sctp_association *asoc, *tmp;
1943 struct sctp_cmsgs cmsgs;
1944 union sctp_addr *daddr;
1945 bool new = false;
1946 __u16 sflags;
1947 int err;
1948
1949 /* Parse and get snd_info */
1950 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1951 if (err)
1952 goto out;
1953
1954 sinfo = &_sinfo;
1955 sflags = sinfo->sinfo_flags;
1956
1957 /* Get daddr from msg */
1958 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1959 if (IS_ERR(daddr)) {
1960 err = PTR_ERR(daddr);
1961 goto out;
1962 }
1963
1964 lock_sock(sk);
1965
1966 /* SCTP_SENDALL process */
1967 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1968 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1969 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1970 msg_len);
1971 if (err == 0)
1972 continue;
1973 if (err < 0)
1974 goto out_unlock;
1975
1976 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1977
1978 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1979 NULL, sinfo);
1980 if (err < 0)
1981 goto out_unlock;
1982
1983 iov_iter_revert(&msg->msg_iter, err);
1984 }
1985
1986 goto out_unlock;
1987 }
1988
1989 /* Get and check or create asoc */
1990 if (daddr) {
1991 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1992 if (asoc) {
1993 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1994 msg_len);
1995 if (err <= 0)
1996 goto out_unlock;
1997 } else {
1998 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1999 &transport);
2000 if (err)
2001 goto out_unlock;
2002
2003 asoc = transport->asoc;
2004 new = true;
2005 }
2006
2007 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2008 transport = NULL;
2009 } else {
2010 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2011 if (!asoc) {
2012 err = -EPIPE;
2013 goto out_unlock;
2014 }
2015
2016 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2017 if (err <= 0)
2018 goto out_unlock;
2019 }
2020
2021 /* Update snd_info with the asoc */
2022 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2023
2024 /* Send msg to the asoc */
2025 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2026 if (err < 0 && err != -ESRCH && new)
2027 sctp_association_free(asoc);
2028
2029out_unlock:
2030 release_sock(sk);
2031out:
2032 return sctp_error(sk, msg->msg_flags, err);
2033}
2034
2035/* This is an extended version of skb_pull() that removes the data from the
2036 * start of a skb even when data is spread across the list of skb's in the
2037 * frag_list. len specifies the total amount of data that needs to be removed.
2038 * when 'len' bytes could be removed from the skb, it returns 0.
2039 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2040 * could not be removed.
2041 */
2042static int sctp_skb_pull(struct sk_buff *skb, int len)
2043{
2044 struct sk_buff *list;
2045 int skb_len = skb_headlen(skb);
2046 int rlen;
2047
2048 if (len <= skb_len) {
2049 __skb_pull(skb, len);
2050 return 0;
2051 }
2052 len -= skb_len;
2053 __skb_pull(skb, skb_len);
2054
2055 skb_walk_frags(skb, list) {
2056 rlen = sctp_skb_pull(list, len);
2057 skb->len -= (len-rlen);
2058 skb->data_len -= (len-rlen);
2059
2060 if (!rlen)
2061 return 0;
2062
2063 len = rlen;
2064 }
2065
2066 return len;
2067}
2068
2069/* API 3.1.3 recvmsg() - UDP Style Syntax
2070 *
2071 * ssize_t recvmsg(int socket, struct msghdr *message,
2072 * int flags);
2073 *
2074 * socket - the socket descriptor of the endpoint.
2075 * message - pointer to the msghdr structure which contains a single
2076 * user message and possibly some ancillary data.
2077 *
2078 * See Section 5 for complete description of the data
2079 * structures.
2080 *
2081 * flags - flags sent or received with the user message, see Section
2082 * 5 for complete description of the flags.
2083 */
2084static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2085 int flags, int *addr_len)
2086{
2087 struct sctp_ulpevent *event = NULL;
2088 struct sctp_sock *sp = sctp_sk(sk);
2089 struct sk_buff *skb, *head_skb;
2090 int copied;
2091 int err = 0;
2092 int skb_len;
2093
2094 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2095 __func__, sk, msg, len, flags, addr_len);
2096
2097 lock_sock(sk);
2098
2099 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2100 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2101 err = -ENOTCONN;
2102 goto out;
2103 }
2104
2105 skb = sctp_skb_recv_datagram(sk, flags, &err);
2106 if (!skb)
2107 goto out;
2108
2109 /* Get the total length of the skb including any skb's in the
2110 * frag_list.
2111 */
2112 skb_len = skb->len;
2113
2114 copied = skb_len;
2115 if (copied > len)
2116 copied = len;
2117
2118 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2119
2120 event = sctp_skb2event(skb);
2121
2122 if (err)
2123 goto out_free;
2124
2125 if (event->chunk && event->chunk->head_skb)
2126 head_skb = event->chunk->head_skb;
2127 else
2128 head_skb = skb;
2129 sock_recv_cmsgs(msg, sk, head_skb);
2130 if (sctp_ulpevent_is_notification(event)) {
2131 msg->msg_flags |= MSG_NOTIFICATION;
2132 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2133 } else {
2134 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2135 }
2136
2137 /* Check if we allow SCTP_NXTINFO. */
2138 if (sp->recvnxtinfo)
2139 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2140 /* Check if we allow SCTP_RCVINFO. */
2141 if (sp->recvrcvinfo)
2142 sctp_ulpevent_read_rcvinfo(event, msg);
2143 /* Check if we allow SCTP_SNDRCVINFO. */
2144 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2145 sctp_ulpevent_read_sndrcvinfo(event, msg);
2146
2147 err = copied;
2148
2149 /* If skb's length exceeds the user's buffer, update the skb and
2150 * push it back to the receive_queue so that the next call to
2151 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2152 */
2153 if (skb_len > copied) {
2154 msg->msg_flags &= ~MSG_EOR;
2155 if (flags & MSG_PEEK)
2156 goto out_free;
2157 sctp_skb_pull(skb, copied);
2158 skb_queue_head(&sk->sk_receive_queue, skb);
2159
2160 /* When only partial message is copied to the user, increase
2161 * rwnd by that amount. If all the data in the skb is read,
2162 * rwnd is updated when the event is freed.
2163 */
2164 if (!sctp_ulpevent_is_notification(event))
2165 sctp_assoc_rwnd_increase(event->asoc, copied);
2166 goto out;
2167 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2168 (event->msg_flags & MSG_EOR))
2169 msg->msg_flags |= MSG_EOR;
2170 else
2171 msg->msg_flags &= ~MSG_EOR;
2172
2173out_free:
2174 if (flags & MSG_PEEK) {
2175 /* Release the skb reference acquired after peeking the skb in
2176 * sctp_skb_recv_datagram().
2177 */
2178 kfree_skb(skb);
2179 } else {
2180 /* Free the event which includes releasing the reference to
2181 * the owner of the skb, freeing the skb and updating the
2182 * rwnd.
2183 */
2184 sctp_ulpevent_free(event);
2185 }
2186out:
2187 release_sock(sk);
2188 return err;
2189}
2190
2191/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2192 *
2193 * This option is a on/off flag. If enabled no SCTP message
2194 * fragmentation will be performed. Instead if a message being sent
2195 * exceeds the current PMTU size, the message will NOT be sent and
2196 * instead a error will be indicated to the user.
2197 */
2198static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2199 unsigned int optlen)
2200{
2201 if (optlen < sizeof(int))
2202 return -EINVAL;
2203 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2204 return 0;
2205}
2206
2207static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2208 unsigned int optlen)
2209{
2210 struct sctp_sock *sp = sctp_sk(sk);
2211 struct sctp_association *asoc;
2212 int i;
2213
2214 if (optlen > sizeof(struct sctp_event_subscribe))
2215 return -EINVAL;
2216
2217 for (i = 0; i < optlen; i++)
2218 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2219 sn_type[i]);
2220
2221 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2222 asoc->subscribe = sctp_sk(sk)->subscribe;
2223
2224 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2225 * if there is no data to be sent or retransmit, the stack will
2226 * immediately send up this notification.
2227 */
2228 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2229 struct sctp_ulpevent *event;
2230
2231 asoc = sctp_id2assoc(sk, 0);
2232 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2233 event = sctp_ulpevent_make_sender_dry_event(asoc,
2234 GFP_USER | __GFP_NOWARN);
2235 if (!event)
2236 return -ENOMEM;
2237
2238 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2239 }
2240 }
2241
2242 return 0;
2243}
2244
2245/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2246 *
2247 * This socket option is applicable to the UDP-style socket only. When
2248 * set it will cause associations that are idle for more than the
2249 * specified number of seconds to automatically close. An association
2250 * being idle is defined an association that has NOT sent or received
2251 * user data. The special value of '0' indicates that no automatic
2252 * close of any associations should be performed. The option expects an
2253 * integer defining the number of seconds of idle time before an
2254 * association is closed.
2255 */
2256static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2257 unsigned int optlen)
2258{
2259 struct sctp_sock *sp = sctp_sk(sk);
2260 struct net *net = sock_net(sk);
2261
2262 /* Applicable to UDP-style socket only */
2263 if (sctp_style(sk, TCP))
2264 return -EOPNOTSUPP;
2265 if (optlen != sizeof(int))
2266 return -EINVAL;
2267
2268 sp->autoclose = *optval;
2269 if (sp->autoclose > net->sctp.max_autoclose)
2270 sp->autoclose = net->sctp.max_autoclose;
2271
2272 return 0;
2273}
2274
2275/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2276 *
2277 * Applications can enable or disable heartbeats for any peer address of
2278 * an association, modify an address's heartbeat interval, force a
2279 * heartbeat to be sent immediately, and adjust the address's maximum
2280 * number of retransmissions sent before an address is considered
2281 * unreachable. The following structure is used to access and modify an
2282 * address's parameters:
2283 *
2284 * struct sctp_paddrparams {
2285 * sctp_assoc_t spp_assoc_id;
2286 * struct sockaddr_storage spp_address;
2287 * uint32_t spp_hbinterval;
2288 * uint16_t spp_pathmaxrxt;
2289 * uint32_t spp_pathmtu;
2290 * uint32_t spp_sackdelay;
2291 * uint32_t spp_flags;
2292 * uint32_t spp_ipv6_flowlabel;
2293 * uint8_t spp_dscp;
2294 * };
2295 *
2296 * spp_assoc_id - (one-to-many style socket) This is filled in the
2297 * application, and identifies the association for
2298 * this query.
2299 * spp_address - This specifies which address is of interest.
2300 * spp_hbinterval - This contains the value of the heartbeat interval,
2301 * in milliseconds. If a value of zero
2302 * is present in this field then no changes are to
2303 * be made to this parameter.
2304 * spp_pathmaxrxt - This contains the maximum number of
2305 * retransmissions before this address shall be
2306 * considered unreachable. If a value of zero
2307 * is present in this field then no changes are to
2308 * be made to this parameter.
2309 * spp_pathmtu - When Path MTU discovery is disabled the value
2310 * specified here will be the "fixed" path mtu.
2311 * Note that if the spp_address field is empty
2312 * then all associations on this address will
2313 * have this fixed path mtu set upon them.
2314 *
2315 * spp_sackdelay - When delayed sack is enabled, this value specifies
2316 * the number of milliseconds that sacks will be delayed
2317 * for. This value will apply to all addresses of an
2318 * association if the spp_address field is empty. Note
2319 * also, that if delayed sack is enabled and this
2320 * value is set to 0, no change is made to the last
2321 * recorded delayed sack timer value.
2322 *
2323 * spp_flags - These flags are used to control various features
2324 * on an association. The flag field may contain
2325 * zero or more of the following options.
2326 *
2327 * SPP_HB_ENABLE - Enable heartbeats on the
2328 * specified address. Note that if the address
2329 * field is empty all addresses for the association
2330 * have heartbeats enabled upon them.
2331 *
2332 * SPP_HB_DISABLE - Disable heartbeats on the
2333 * speicifed address. Note that if the address
2334 * field is empty all addresses for the association
2335 * will have their heartbeats disabled. Note also
2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2337 * mutually exclusive, only one of these two should
2338 * be specified. Enabling both fields will have
2339 * undetermined results.
2340 *
2341 * SPP_HB_DEMAND - Request a user initiated heartbeat
2342 * to be made immediately.
2343 *
2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2345 * heartbeat delayis to be set to the value of 0
2346 * milliseconds.
2347 *
2348 * SPP_PMTUD_ENABLE - This field will enable PMTU
2349 * discovery upon the specified address. Note that
2350 * if the address feild is empty then all addresses
2351 * on the association are effected.
2352 *
2353 * SPP_PMTUD_DISABLE - This field will disable PMTU
2354 * discovery upon the specified address. Note that
2355 * if the address feild is empty then all addresses
2356 * on the association are effected. Not also that
2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2358 * exclusive. Enabling both will have undetermined
2359 * results.
2360 *
2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2362 * on delayed sack. The time specified in spp_sackdelay
2363 * is used to specify the sack delay for this address. Note
2364 * that if spp_address is empty then all addresses will
2365 * enable delayed sack and take on the sack delay
2366 * value specified in spp_sackdelay.
2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2368 * off delayed sack. If the spp_address field is blank then
2369 * delayed sack is disabled for the entire association. Note
2370 * also that this field is mutually exclusive to
2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2372 * results.
2373 *
2374 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2375 * setting of the IPV6 flow label value. The value is
2376 * contained in the spp_ipv6_flowlabel field.
2377 * Upon retrieval, this flag will be set to indicate that
2378 * the spp_ipv6_flowlabel field has a valid value returned.
2379 * If a specific destination address is set (in the
2380 * spp_address field), then the value returned is that of
2381 * the address. If just an association is specified (and
2382 * no address), then the association's default flow label
2383 * is returned. If neither an association nor a destination
2384 * is specified, then the socket's default flow label is
2385 * returned. For non-IPv6 sockets, this flag will be left
2386 * cleared.
2387 *
2388 * SPP_DSCP: Setting this flag enables the setting of the
2389 * Differentiated Services Code Point (DSCP) value
2390 * associated with either the association or a specific
2391 * address. The value is obtained in the spp_dscp field.
2392 * Upon retrieval, this flag will be set to indicate that
2393 * the spp_dscp field has a valid value returned. If a
2394 * specific destination address is set when called (in the
2395 * spp_address field), then that specific destination
2396 * address's DSCP value is returned. If just an association
2397 * is specified, then the association's default DSCP is
2398 * returned. If neither an association nor a destination is
2399 * specified, then the socket's default DSCP is returned.
2400 *
2401 * spp_ipv6_flowlabel
2402 * - This field is used in conjunction with the
2403 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2404 * The 20 least significant bits are used for the flow
2405 * label. This setting has precedence over any IPv6-layer
2406 * setting.
2407 *
2408 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2409 * and contains the DSCP. The 6 most significant bits are
2410 * used for the DSCP. This setting has precedence over any
2411 * IPv4- or IPv6- layer setting.
2412 */
2413static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2414 struct sctp_transport *trans,
2415 struct sctp_association *asoc,
2416 struct sctp_sock *sp,
2417 int hb_change,
2418 int pmtud_change,
2419 int sackdelay_change)
2420{
2421 int error;
2422
2423 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2424 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2425 trans->asoc, trans);
2426 if (error)
2427 return error;
2428 }
2429
2430 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2431 * this field is ignored. Note also that a value of zero indicates
2432 * the current setting should be left unchanged.
2433 */
2434 if (params->spp_flags & SPP_HB_ENABLE) {
2435
2436 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2437 * set. This lets us use 0 value when this flag
2438 * is set.
2439 */
2440 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2441 params->spp_hbinterval = 0;
2442
2443 if (params->spp_hbinterval ||
2444 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2445 if (trans) {
2446 trans->hbinterval =
2447 msecs_to_jiffies(params->spp_hbinterval);
2448 } else if (asoc) {
2449 asoc->hbinterval =
2450 msecs_to_jiffies(params->spp_hbinterval);
2451 } else {
2452 sp->hbinterval = params->spp_hbinterval;
2453 }
2454 }
2455 }
2456
2457 if (hb_change) {
2458 if (trans) {
2459 trans->param_flags =
2460 (trans->param_flags & ~SPP_HB) | hb_change;
2461 } else if (asoc) {
2462 asoc->param_flags =
2463 (asoc->param_flags & ~SPP_HB) | hb_change;
2464 } else {
2465 sp->param_flags =
2466 (sp->param_flags & ~SPP_HB) | hb_change;
2467 }
2468 }
2469
2470 /* When Path MTU discovery is disabled the value specified here will
2471 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2472 * include the flag SPP_PMTUD_DISABLE for this field to have any
2473 * effect).
2474 */
2475 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2476 if (trans) {
2477 trans->pathmtu = params->spp_pathmtu;
2478 sctp_assoc_sync_pmtu(asoc);
2479 } else if (asoc) {
2480 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2481 } else {
2482 sp->pathmtu = params->spp_pathmtu;
2483 }
2484 }
2485
2486 if (pmtud_change) {
2487 if (trans) {
2488 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2489 (params->spp_flags & SPP_PMTUD_ENABLE);
2490 trans->param_flags =
2491 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2492 if (update) {
2493 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2494 sctp_assoc_sync_pmtu(asoc);
2495 }
2496 sctp_transport_pl_reset(trans);
2497 } else if (asoc) {
2498 asoc->param_flags =
2499 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2500 } else {
2501 sp->param_flags =
2502 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2503 }
2504 }
2505
2506 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2507 * value of this field is ignored. Note also that a value of zero
2508 * indicates the current setting should be left unchanged.
2509 */
2510 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2511 if (trans) {
2512 trans->sackdelay =
2513 msecs_to_jiffies(params->spp_sackdelay);
2514 } else if (asoc) {
2515 asoc->sackdelay =
2516 msecs_to_jiffies(params->spp_sackdelay);
2517 } else {
2518 sp->sackdelay = params->spp_sackdelay;
2519 }
2520 }
2521
2522 if (sackdelay_change) {
2523 if (trans) {
2524 trans->param_flags =
2525 (trans->param_flags & ~SPP_SACKDELAY) |
2526 sackdelay_change;
2527 } else if (asoc) {
2528 asoc->param_flags =
2529 (asoc->param_flags & ~SPP_SACKDELAY) |
2530 sackdelay_change;
2531 } else {
2532 sp->param_flags =
2533 (sp->param_flags & ~SPP_SACKDELAY) |
2534 sackdelay_change;
2535 }
2536 }
2537
2538 /* Note that a value of zero indicates the current setting should be
2539 left unchanged.
2540 */
2541 if (params->spp_pathmaxrxt) {
2542 if (trans) {
2543 trans->pathmaxrxt = params->spp_pathmaxrxt;
2544 } else if (asoc) {
2545 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2546 } else {
2547 sp->pathmaxrxt = params->spp_pathmaxrxt;
2548 }
2549 }
2550
2551 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2552 if (trans) {
2553 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2554 trans->flowlabel = params->spp_ipv6_flowlabel &
2555 SCTP_FLOWLABEL_VAL_MASK;
2556 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2557 }
2558 } else if (asoc) {
2559 struct sctp_transport *t;
2560
2561 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2562 transports) {
2563 if (t->ipaddr.sa.sa_family != AF_INET6)
2564 continue;
2565 t->flowlabel = params->spp_ipv6_flowlabel &
2566 SCTP_FLOWLABEL_VAL_MASK;
2567 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2568 }
2569 asoc->flowlabel = params->spp_ipv6_flowlabel &
2570 SCTP_FLOWLABEL_VAL_MASK;
2571 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2572 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2573 sp->flowlabel = params->spp_ipv6_flowlabel &
2574 SCTP_FLOWLABEL_VAL_MASK;
2575 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2576 }
2577 }
2578
2579 if (params->spp_flags & SPP_DSCP) {
2580 if (trans) {
2581 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2582 trans->dscp |= SCTP_DSCP_SET_MASK;
2583 } else if (asoc) {
2584 struct sctp_transport *t;
2585
2586 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2587 transports) {
2588 t->dscp = params->spp_dscp &
2589 SCTP_DSCP_VAL_MASK;
2590 t->dscp |= SCTP_DSCP_SET_MASK;
2591 }
2592 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2593 asoc->dscp |= SCTP_DSCP_SET_MASK;
2594 } else {
2595 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 sp->dscp |= SCTP_DSCP_SET_MASK;
2597 }
2598 }
2599
2600 return 0;
2601}
2602
2603static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2604 struct sctp_paddrparams *params,
2605 unsigned int optlen)
2606{
2607 struct sctp_transport *trans = NULL;
2608 struct sctp_association *asoc = NULL;
2609 struct sctp_sock *sp = sctp_sk(sk);
2610 int error;
2611 int hb_change, pmtud_change, sackdelay_change;
2612
2613 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2614 spp_ipv6_flowlabel), 4)) {
2615 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2616 return -EINVAL;
2617 } else if (optlen != sizeof(*params)) {
2618 return -EINVAL;
2619 }
2620
2621 /* Validate flags and value parameters. */
2622 hb_change = params->spp_flags & SPP_HB;
2623 pmtud_change = params->spp_flags & SPP_PMTUD;
2624 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2625
2626 if (hb_change == SPP_HB ||
2627 pmtud_change == SPP_PMTUD ||
2628 sackdelay_change == SPP_SACKDELAY ||
2629 params->spp_sackdelay > 500 ||
2630 (params->spp_pathmtu &&
2631 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2632 return -EINVAL;
2633
2634 /* If an address other than INADDR_ANY is specified, and
2635 * no transport is found, then the request is invalid.
2636 */
2637 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2638 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2639 params->spp_assoc_id);
2640 if (!trans)
2641 return -EINVAL;
2642 }
2643
2644 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2645 * socket is a one to many style socket, and an association
2646 * was not found, then the id was invalid.
2647 */
2648 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2649 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2650 sctp_style(sk, UDP))
2651 return -EINVAL;
2652
2653 /* Heartbeat demand can only be sent on a transport or
2654 * association, but not a socket.
2655 */
2656 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2657 return -EINVAL;
2658
2659 /* Process parameters. */
2660 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2661 hb_change, pmtud_change,
2662 sackdelay_change);
2663
2664 if (error)
2665 return error;
2666
2667 /* If changes are for association, also apply parameters to each
2668 * transport.
2669 */
2670 if (!trans && asoc) {
2671 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2672 transports) {
2673 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2674 hb_change, pmtud_change,
2675 sackdelay_change);
2676 }
2677 }
2678
2679 return 0;
2680}
2681
2682static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2683{
2684 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2685}
2686
2687static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2688{
2689 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2690}
2691
2692static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2693 struct sctp_association *asoc)
2694{
2695 struct sctp_transport *trans;
2696
2697 if (params->sack_delay) {
2698 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2699 asoc->param_flags =
2700 sctp_spp_sackdelay_enable(asoc->param_flags);
2701 }
2702 if (params->sack_freq == 1) {
2703 asoc->param_flags =
2704 sctp_spp_sackdelay_disable(asoc->param_flags);
2705 } else if (params->sack_freq > 1) {
2706 asoc->sackfreq = params->sack_freq;
2707 asoc->param_flags =
2708 sctp_spp_sackdelay_enable(asoc->param_flags);
2709 }
2710
2711 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2712 transports) {
2713 if (params->sack_delay) {
2714 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2715 trans->param_flags =
2716 sctp_spp_sackdelay_enable(trans->param_flags);
2717 }
2718 if (params->sack_freq == 1) {
2719 trans->param_flags =
2720 sctp_spp_sackdelay_disable(trans->param_flags);
2721 } else if (params->sack_freq > 1) {
2722 trans->sackfreq = params->sack_freq;
2723 trans->param_flags =
2724 sctp_spp_sackdelay_enable(trans->param_flags);
2725 }
2726 }
2727}
2728
2729/*
2730 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2731 *
2732 * This option will effect the way delayed acks are performed. This
2733 * option allows you to get or set the delayed ack time, in
2734 * milliseconds. It also allows changing the delayed ack frequency.
2735 * Changing the frequency to 1 disables the delayed sack algorithm. If
2736 * the assoc_id is 0, then this sets or gets the endpoints default
2737 * values. If the assoc_id field is non-zero, then the set or get
2738 * effects the specified association for the one to many model (the
2739 * assoc_id field is ignored by the one to one model). Note that if
2740 * sack_delay or sack_freq are 0 when setting this option, then the
2741 * current values will remain unchanged.
2742 *
2743 * struct sctp_sack_info {
2744 * sctp_assoc_t sack_assoc_id;
2745 * uint32_t sack_delay;
2746 * uint32_t sack_freq;
2747 * };
2748 *
2749 * sack_assoc_id - This parameter, indicates which association the user
2750 * is performing an action upon. Note that if this field's value is
2751 * zero then the endpoints default value is changed (effecting future
2752 * associations only).
2753 *
2754 * sack_delay - This parameter contains the number of milliseconds that
2755 * the user is requesting the delayed ACK timer be set to. Note that
2756 * this value is defined in the standard to be between 200 and 500
2757 * milliseconds.
2758 *
2759 * sack_freq - This parameter contains the number of packets that must
2760 * be received before a sack is sent without waiting for the delay
2761 * timer to expire. The default value for this is 2, setting this
2762 * value to 1 will disable the delayed sack algorithm.
2763 */
2764static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2765 struct sctp_sack_info *params)
2766{
2767 struct sctp_sock *sp = sctp_sk(sk);
2768 struct sctp_association *asoc;
2769
2770 /* Validate value parameter. */
2771 if (params->sack_delay > 500)
2772 return -EINVAL;
2773
2774 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2775 * socket is a one to many style socket, and an association
2776 * was not found, then the id was invalid.
2777 */
2778 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2779 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2780 sctp_style(sk, UDP))
2781 return -EINVAL;
2782
2783 if (asoc) {
2784 sctp_apply_asoc_delayed_ack(params, asoc);
2785
2786 return 0;
2787 }
2788
2789 if (sctp_style(sk, TCP))
2790 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2791
2792 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2793 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2794 if (params->sack_delay) {
2795 sp->sackdelay = params->sack_delay;
2796 sp->param_flags =
2797 sctp_spp_sackdelay_enable(sp->param_flags);
2798 }
2799 if (params->sack_freq == 1) {
2800 sp->param_flags =
2801 sctp_spp_sackdelay_disable(sp->param_flags);
2802 } else if (params->sack_freq > 1) {
2803 sp->sackfreq = params->sack_freq;
2804 sp->param_flags =
2805 sctp_spp_sackdelay_enable(sp->param_flags);
2806 }
2807 }
2808
2809 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2810 params->sack_assoc_id == SCTP_ALL_ASSOC)
2811 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2812 sctp_apply_asoc_delayed_ack(params, asoc);
2813
2814 return 0;
2815}
2816
2817static int sctp_setsockopt_delayed_ack(struct sock *sk,
2818 struct sctp_sack_info *params,
2819 unsigned int optlen)
2820{
2821 if (optlen == sizeof(struct sctp_assoc_value)) {
2822 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2823 struct sctp_sack_info p;
2824
2825 pr_warn_ratelimited(DEPRECATED
2826 "%s (pid %d) "
2827 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2828 "Use struct sctp_sack_info instead\n",
2829 current->comm, task_pid_nr(current));
2830
2831 p.sack_assoc_id = v->assoc_id;
2832 p.sack_delay = v->assoc_value;
2833 p.sack_freq = v->assoc_value ? 0 : 1;
2834 return __sctp_setsockopt_delayed_ack(sk, &p);
2835 }
2836
2837 if (optlen != sizeof(struct sctp_sack_info))
2838 return -EINVAL;
2839 if (params->sack_delay == 0 && params->sack_freq == 0)
2840 return 0;
2841 return __sctp_setsockopt_delayed_ack(sk, params);
2842}
2843
2844/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2845 *
2846 * Applications can specify protocol parameters for the default association
2847 * initialization. The option name argument to setsockopt() and getsockopt()
2848 * is SCTP_INITMSG.
2849 *
2850 * Setting initialization parameters is effective only on an unconnected
2851 * socket (for UDP-style sockets only future associations are effected
2852 * by the change). With TCP-style sockets, this option is inherited by
2853 * sockets derived from a listener socket.
2854 */
2855static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2856 unsigned int optlen)
2857{
2858 struct sctp_sock *sp = sctp_sk(sk);
2859
2860 if (optlen != sizeof(struct sctp_initmsg))
2861 return -EINVAL;
2862
2863 if (sinit->sinit_num_ostreams)
2864 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2865 if (sinit->sinit_max_instreams)
2866 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2867 if (sinit->sinit_max_attempts)
2868 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2869 if (sinit->sinit_max_init_timeo)
2870 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2871
2872 return 0;
2873}
2874
2875/*
2876 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2877 *
2878 * Applications that wish to use the sendto() system call may wish to
2879 * specify a default set of parameters that would normally be supplied
2880 * through the inclusion of ancillary data. This socket option allows
2881 * such an application to set the default sctp_sndrcvinfo structure.
2882 * The application that wishes to use this socket option simply passes
2883 * in to this call the sctp_sndrcvinfo structure defined in Section
2884 * 5.2.2) The input parameters accepted by this call include
2885 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2886 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2887 * to this call if the caller is using the UDP model.
2888 */
2889static int sctp_setsockopt_default_send_param(struct sock *sk,
2890 struct sctp_sndrcvinfo *info,
2891 unsigned int optlen)
2892{
2893 struct sctp_sock *sp = sctp_sk(sk);
2894 struct sctp_association *asoc;
2895
2896 if (optlen != sizeof(*info))
2897 return -EINVAL;
2898 if (info->sinfo_flags &
2899 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2900 SCTP_ABORT | SCTP_EOF))
2901 return -EINVAL;
2902
2903 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2904 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2905 sctp_style(sk, UDP))
2906 return -EINVAL;
2907
2908 if (asoc) {
2909 asoc->default_stream = info->sinfo_stream;
2910 asoc->default_flags = info->sinfo_flags;
2911 asoc->default_ppid = info->sinfo_ppid;
2912 asoc->default_context = info->sinfo_context;
2913 asoc->default_timetolive = info->sinfo_timetolive;
2914
2915 return 0;
2916 }
2917
2918 if (sctp_style(sk, TCP))
2919 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2920
2921 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2922 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2923 sp->default_stream = info->sinfo_stream;
2924 sp->default_flags = info->sinfo_flags;
2925 sp->default_ppid = info->sinfo_ppid;
2926 sp->default_context = info->sinfo_context;
2927 sp->default_timetolive = info->sinfo_timetolive;
2928 }
2929
2930 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2931 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2932 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2933 asoc->default_stream = info->sinfo_stream;
2934 asoc->default_flags = info->sinfo_flags;
2935 asoc->default_ppid = info->sinfo_ppid;
2936 asoc->default_context = info->sinfo_context;
2937 asoc->default_timetolive = info->sinfo_timetolive;
2938 }
2939 }
2940
2941 return 0;
2942}
2943
2944/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2945 * (SCTP_DEFAULT_SNDINFO)
2946 */
2947static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2948 struct sctp_sndinfo *info,
2949 unsigned int optlen)
2950{
2951 struct sctp_sock *sp = sctp_sk(sk);
2952 struct sctp_association *asoc;
2953
2954 if (optlen != sizeof(*info))
2955 return -EINVAL;
2956 if (info->snd_flags &
2957 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2958 SCTP_ABORT | SCTP_EOF))
2959 return -EINVAL;
2960
2961 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2962 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2963 sctp_style(sk, UDP))
2964 return -EINVAL;
2965
2966 if (asoc) {
2967 asoc->default_stream = info->snd_sid;
2968 asoc->default_flags = info->snd_flags;
2969 asoc->default_ppid = info->snd_ppid;
2970 asoc->default_context = info->snd_context;
2971
2972 return 0;
2973 }
2974
2975 if (sctp_style(sk, TCP))
2976 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2977
2978 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2979 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2980 sp->default_stream = info->snd_sid;
2981 sp->default_flags = info->snd_flags;
2982 sp->default_ppid = info->snd_ppid;
2983 sp->default_context = info->snd_context;
2984 }
2985
2986 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2987 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2988 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2989 asoc->default_stream = info->snd_sid;
2990 asoc->default_flags = info->snd_flags;
2991 asoc->default_ppid = info->snd_ppid;
2992 asoc->default_context = info->snd_context;
2993 }
2994 }
2995
2996 return 0;
2997}
2998
2999/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3000 *
3001 * Requests that the local SCTP stack use the enclosed peer address as
3002 * the association primary. The enclosed address must be one of the
3003 * association peer's addresses.
3004 */
3005static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3006 unsigned int optlen)
3007{
3008 struct sctp_transport *trans;
3009 struct sctp_af *af;
3010 int err;
3011
3012 if (optlen != sizeof(struct sctp_prim))
3013 return -EINVAL;
3014
3015 /* Allow security module to validate address but need address len. */
3016 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3017 if (!af)
3018 return -EINVAL;
3019
3020 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3021 (struct sockaddr *)&prim->ssp_addr,
3022 af->sockaddr_len);
3023 if (err)
3024 return err;
3025
3026 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3027 if (!trans)
3028 return -EINVAL;
3029
3030 sctp_assoc_set_primary(trans->asoc, trans);
3031
3032 return 0;
3033}
3034
3035/*
3036 * 7.1.5 SCTP_NODELAY
3037 *
3038 * Turn on/off any Nagle-like algorithm. This means that packets are
3039 * generally sent as soon as possible and no unnecessary delays are
3040 * introduced, at the cost of more packets in the network. Expects an
3041 * integer boolean flag.
3042 */
3043static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3044 unsigned int optlen)
3045{
3046 if (optlen < sizeof(int))
3047 return -EINVAL;
3048 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3049 return 0;
3050}
3051
3052/*
3053 *
3054 * 7.1.1 SCTP_RTOINFO
3055 *
3056 * The protocol parameters used to initialize and bound retransmission
3057 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3058 * and modify these parameters.
3059 * All parameters are time values, in milliseconds. A value of 0, when
3060 * modifying the parameters, indicates that the current value should not
3061 * be changed.
3062 *
3063 */
3064static int sctp_setsockopt_rtoinfo(struct sock *sk,
3065 struct sctp_rtoinfo *rtoinfo,
3066 unsigned int optlen)
3067{
3068 struct sctp_association *asoc;
3069 unsigned long rto_min, rto_max;
3070 struct sctp_sock *sp = sctp_sk(sk);
3071
3072 if (optlen != sizeof (struct sctp_rtoinfo))
3073 return -EINVAL;
3074
3075 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3076
3077 /* Set the values to the specific association */
3078 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3079 sctp_style(sk, UDP))
3080 return -EINVAL;
3081
3082 rto_max = rtoinfo->srto_max;
3083 rto_min = rtoinfo->srto_min;
3084
3085 if (rto_max)
3086 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3087 else
3088 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3089
3090 if (rto_min)
3091 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3092 else
3093 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3094
3095 if (rto_min > rto_max)
3096 return -EINVAL;
3097
3098 if (asoc) {
3099 if (rtoinfo->srto_initial != 0)
3100 asoc->rto_initial =
3101 msecs_to_jiffies(rtoinfo->srto_initial);
3102 asoc->rto_max = rto_max;
3103 asoc->rto_min = rto_min;
3104 } else {
3105 /* If there is no association or the association-id = 0
3106 * set the values to the endpoint.
3107 */
3108 if (rtoinfo->srto_initial != 0)
3109 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3110 sp->rtoinfo.srto_max = rto_max;
3111 sp->rtoinfo.srto_min = rto_min;
3112 }
3113
3114 return 0;
3115}
3116
3117/*
3118 *
3119 * 7.1.2 SCTP_ASSOCINFO
3120 *
3121 * This option is used to tune the maximum retransmission attempts
3122 * of the association.
3123 * Returns an error if the new association retransmission value is
3124 * greater than the sum of the retransmission value of the peer.
3125 * See [SCTP] for more information.
3126 *
3127 */
3128static int sctp_setsockopt_associnfo(struct sock *sk,
3129 struct sctp_assocparams *assocparams,
3130 unsigned int optlen)
3131{
3132
3133 struct sctp_association *asoc;
3134
3135 if (optlen != sizeof(struct sctp_assocparams))
3136 return -EINVAL;
3137
3138 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3139
3140 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3141 sctp_style(sk, UDP))
3142 return -EINVAL;
3143
3144 /* Set the values to the specific association */
3145 if (asoc) {
3146 if (assocparams->sasoc_asocmaxrxt != 0) {
3147 __u32 path_sum = 0;
3148 int paths = 0;
3149 struct sctp_transport *peer_addr;
3150
3151 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3152 transports) {
3153 path_sum += peer_addr->pathmaxrxt;
3154 paths++;
3155 }
3156
3157 /* Only validate asocmaxrxt if we have more than
3158 * one path/transport. We do this because path
3159 * retransmissions are only counted when we have more
3160 * then one path.
3161 */
3162 if (paths > 1 &&
3163 assocparams->sasoc_asocmaxrxt > path_sum)
3164 return -EINVAL;
3165
3166 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3167 }
3168
3169 if (assocparams->sasoc_cookie_life != 0)
3170 asoc->cookie_life =
3171 ms_to_ktime(assocparams->sasoc_cookie_life);
3172 } else {
3173 /* Set the values to the endpoint */
3174 struct sctp_sock *sp = sctp_sk(sk);
3175
3176 if (assocparams->sasoc_asocmaxrxt != 0)
3177 sp->assocparams.sasoc_asocmaxrxt =
3178 assocparams->sasoc_asocmaxrxt;
3179 if (assocparams->sasoc_cookie_life != 0)
3180 sp->assocparams.sasoc_cookie_life =
3181 assocparams->sasoc_cookie_life;
3182 }
3183 return 0;
3184}
3185
3186/*
3187 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3188 *
3189 * This socket option is a boolean flag which turns on or off mapped V4
3190 * addresses. If this option is turned on and the socket is type
3191 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3192 * If this option is turned off, then no mapping will be done of V4
3193 * addresses and a user will receive both PF_INET6 and PF_INET type
3194 * addresses on the socket.
3195 */
3196static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3197 unsigned int optlen)
3198{
3199 struct sctp_sock *sp = sctp_sk(sk);
3200
3201 if (optlen < sizeof(int))
3202 return -EINVAL;
3203 if (*val)
3204 sp->v4mapped = 1;
3205 else
3206 sp->v4mapped = 0;
3207
3208 return 0;
3209}
3210
3211/*
3212 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3213 * This option will get or set the maximum size to put in any outgoing
3214 * SCTP DATA chunk. If a message is larger than this size it will be
3215 * fragmented by SCTP into the specified size. Note that the underlying
3216 * SCTP implementation may fragment into smaller sized chunks when the
3217 * PMTU of the underlying association is smaller than the value set by
3218 * the user. The default value for this option is '0' which indicates
3219 * the user is NOT limiting fragmentation and only the PMTU will effect
3220 * SCTP's choice of DATA chunk size. Note also that values set larger
3221 * than the maximum size of an IP datagram will effectively let SCTP
3222 * control fragmentation (i.e. the same as setting this option to 0).
3223 *
3224 * The following structure is used to access and modify this parameter:
3225 *
3226 * struct sctp_assoc_value {
3227 * sctp_assoc_t assoc_id;
3228 * uint32_t assoc_value;
3229 * };
3230 *
3231 * assoc_id: This parameter is ignored for one-to-one style sockets.
3232 * For one-to-many style sockets this parameter indicates which
3233 * association the user is performing an action upon. Note that if
3234 * this field's value is zero then the endpoints default value is
3235 * changed (effecting future associations only).
3236 * assoc_value: This parameter specifies the maximum size in bytes.
3237 */
3238static int sctp_setsockopt_maxseg(struct sock *sk,
3239 struct sctp_assoc_value *params,
3240 unsigned int optlen)
3241{
3242 struct sctp_sock *sp = sctp_sk(sk);
3243 struct sctp_association *asoc;
3244 sctp_assoc_t assoc_id;
3245 int val;
3246
3247 if (optlen == sizeof(int)) {
3248 pr_warn_ratelimited(DEPRECATED
3249 "%s (pid %d) "
3250 "Use of int in maxseg socket option.\n"
3251 "Use struct sctp_assoc_value instead\n",
3252 current->comm, task_pid_nr(current));
3253 assoc_id = SCTP_FUTURE_ASSOC;
3254 val = *(int *)params;
3255 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3256 assoc_id = params->assoc_id;
3257 val = params->assoc_value;
3258 } else {
3259 return -EINVAL;
3260 }
3261
3262 asoc = sctp_id2assoc(sk, assoc_id);
3263 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3264 sctp_style(sk, UDP))
3265 return -EINVAL;
3266
3267 if (val) {
3268 int min_len, max_len;
3269 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3270 sizeof(struct sctp_data_chunk);
3271
3272 min_len = sctp_min_frag_point(sp, datasize);
3273 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3274
3275 if (val < min_len || val > max_len)
3276 return -EINVAL;
3277 }
3278
3279 if (asoc) {
3280 asoc->user_frag = val;
3281 sctp_assoc_update_frag_point(asoc);
3282 } else {
3283 sp->user_frag = val;
3284 }
3285
3286 return 0;
3287}
3288
3289
3290/*
3291 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3292 *
3293 * Requests that the peer mark the enclosed address as the association
3294 * primary. The enclosed address must be one of the association's
3295 * locally bound addresses. The following structure is used to make a
3296 * set primary request:
3297 */
3298static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3299 struct sctp_setpeerprim *prim,
3300 unsigned int optlen)
3301{
3302 struct sctp_sock *sp;
3303 struct sctp_association *asoc = NULL;
3304 struct sctp_chunk *chunk;
3305 struct sctp_af *af;
3306 int err;
3307
3308 sp = sctp_sk(sk);
3309
3310 if (!sp->ep->asconf_enable)
3311 return -EPERM;
3312
3313 if (optlen != sizeof(struct sctp_setpeerprim))
3314 return -EINVAL;
3315
3316 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3317 if (!asoc)
3318 return -EINVAL;
3319
3320 if (!asoc->peer.asconf_capable)
3321 return -EPERM;
3322
3323 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3324 return -EPERM;
3325
3326 if (!sctp_state(asoc, ESTABLISHED))
3327 return -ENOTCONN;
3328
3329 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3330 if (!af)
3331 return -EINVAL;
3332
3333 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3334 return -EADDRNOTAVAIL;
3335
3336 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3337 return -EADDRNOTAVAIL;
3338
3339 /* Allow security module to validate address. */
3340 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3341 (struct sockaddr *)&prim->sspp_addr,
3342 af->sockaddr_len);
3343 if (err)
3344 return err;
3345
3346 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3347 chunk = sctp_make_asconf_set_prim(asoc,
3348 (union sctp_addr *)&prim->sspp_addr);
3349 if (!chunk)
3350 return -ENOMEM;
3351
3352 err = sctp_send_asconf(asoc, chunk);
3353
3354 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3355
3356 return err;
3357}
3358
3359static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3360 struct sctp_setadaptation *adapt,
3361 unsigned int optlen)
3362{
3363 if (optlen != sizeof(struct sctp_setadaptation))
3364 return -EINVAL;
3365
3366 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3367
3368 return 0;
3369}
3370
3371/*
3372 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3373 *
3374 * The context field in the sctp_sndrcvinfo structure is normally only
3375 * used when a failed message is retrieved holding the value that was
3376 * sent down on the actual send call. This option allows the setting of
3377 * a default context on an association basis that will be received on
3378 * reading messages from the peer. This is especially helpful in the
3379 * one-2-many model for an application to keep some reference to an
3380 * internal state machine that is processing messages on the
3381 * association. Note that the setting of this value only effects
3382 * received messages from the peer and does not effect the value that is
3383 * saved with outbound messages.
3384 */
3385static int sctp_setsockopt_context(struct sock *sk,
3386 struct sctp_assoc_value *params,
3387 unsigned int optlen)
3388{
3389 struct sctp_sock *sp = sctp_sk(sk);
3390 struct sctp_association *asoc;
3391
3392 if (optlen != sizeof(struct sctp_assoc_value))
3393 return -EINVAL;
3394
3395 asoc = sctp_id2assoc(sk, params->assoc_id);
3396 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3397 sctp_style(sk, UDP))
3398 return -EINVAL;
3399
3400 if (asoc) {
3401 asoc->default_rcv_context = params->assoc_value;
3402
3403 return 0;
3404 }
3405
3406 if (sctp_style(sk, TCP))
3407 params->assoc_id = SCTP_FUTURE_ASSOC;
3408
3409 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3410 params->assoc_id == SCTP_ALL_ASSOC)
3411 sp->default_rcv_context = params->assoc_value;
3412
3413 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3414 params->assoc_id == SCTP_ALL_ASSOC)
3415 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3416 asoc->default_rcv_context = params->assoc_value;
3417
3418 return 0;
3419}
3420
3421/*
3422 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3423 *
3424 * This options will at a minimum specify if the implementation is doing
3425 * fragmented interleave. Fragmented interleave, for a one to many
3426 * socket, is when subsequent calls to receive a message may return
3427 * parts of messages from different associations. Some implementations
3428 * may allow you to turn this value on or off. If so, when turned off,
3429 * no fragment interleave will occur (which will cause a head of line
3430 * blocking amongst multiple associations sharing the same one to many
3431 * socket). When this option is turned on, then each receive call may
3432 * come from a different association (thus the user must receive data
3433 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3434 * association each receive belongs to.
3435 *
3436 * This option takes a boolean value. A non-zero value indicates that
3437 * fragmented interleave is on. A value of zero indicates that
3438 * fragmented interleave is off.
3439 *
3440 * Note that it is important that an implementation that allows this
3441 * option to be turned on, have it off by default. Otherwise an unaware
3442 * application using the one to many model may become confused and act
3443 * incorrectly.
3444 */
3445static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3446 unsigned int optlen)
3447{
3448 if (optlen != sizeof(int))
3449 return -EINVAL;
3450
3451 sctp_sk(sk)->frag_interleave = !!*val;
3452
3453 if (!sctp_sk(sk)->frag_interleave)
3454 sctp_sk(sk)->ep->intl_enable = 0;
3455
3456 return 0;
3457}
3458
3459/*
3460 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3461 * (SCTP_PARTIAL_DELIVERY_POINT)
3462 *
3463 * This option will set or get the SCTP partial delivery point. This
3464 * point is the size of a message where the partial delivery API will be
3465 * invoked to help free up rwnd space for the peer. Setting this to a
3466 * lower value will cause partial deliveries to happen more often. The
3467 * calls argument is an integer that sets or gets the partial delivery
3468 * point. Note also that the call will fail if the user attempts to set
3469 * this value larger than the socket receive buffer size.
3470 *
3471 * Note that any single message having a length smaller than or equal to
3472 * the SCTP partial delivery point will be delivered in one single read
3473 * call as long as the user provided buffer is large enough to hold the
3474 * message.
3475 */
3476static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3477 unsigned int optlen)
3478{
3479 if (optlen != sizeof(u32))
3480 return -EINVAL;
3481
3482 /* Note: We double the receive buffer from what the user sets
3483 * it to be, also initial rwnd is based on rcvbuf/2.
3484 */
3485 if (*val > (sk->sk_rcvbuf >> 1))
3486 return -EINVAL;
3487
3488 sctp_sk(sk)->pd_point = *val;
3489
3490 return 0; /* is this the right error code? */
3491}
3492
3493/*
3494 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3495 *
3496 * This option will allow a user to change the maximum burst of packets
3497 * that can be emitted by this association. Note that the default value
3498 * is 4, and some implementations may restrict this setting so that it
3499 * can only be lowered.
3500 *
3501 * NOTE: This text doesn't seem right. Do this on a socket basis with
3502 * future associations inheriting the socket value.
3503 */
3504static int sctp_setsockopt_maxburst(struct sock *sk,
3505 struct sctp_assoc_value *params,
3506 unsigned int optlen)
3507{
3508 struct sctp_sock *sp = sctp_sk(sk);
3509 struct sctp_association *asoc;
3510 sctp_assoc_t assoc_id;
3511 u32 assoc_value;
3512
3513 if (optlen == sizeof(int)) {
3514 pr_warn_ratelimited(DEPRECATED
3515 "%s (pid %d) "
3516 "Use of int in max_burst socket option deprecated.\n"
3517 "Use struct sctp_assoc_value instead\n",
3518 current->comm, task_pid_nr(current));
3519 assoc_id = SCTP_FUTURE_ASSOC;
3520 assoc_value = *((int *)params);
3521 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3522 assoc_id = params->assoc_id;
3523 assoc_value = params->assoc_value;
3524 } else
3525 return -EINVAL;
3526
3527 asoc = sctp_id2assoc(sk, assoc_id);
3528 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3529 return -EINVAL;
3530
3531 if (asoc) {
3532 asoc->max_burst = assoc_value;
3533
3534 return 0;
3535 }
3536
3537 if (sctp_style(sk, TCP))
3538 assoc_id = SCTP_FUTURE_ASSOC;
3539
3540 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3541 sp->max_burst = assoc_value;
3542
3543 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3544 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3545 asoc->max_burst = assoc_value;
3546
3547 return 0;
3548}
3549
3550/*
3551 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3552 *
3553 * This set option adds a chunk type that the user is requesting to be
3554 * received only in an authenticated way. Changes to the list of chunks
3555 * will only effect future associations on the socket.
3556 */
3557static int sctp_setsockopt_auth_chunk(struct sock *sk,
3558 struct sctp_authchunk *val,
3559 unsigned int optlen)
3560{
3561 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3562
3563 if (!ep->auth_enable)
3564 return -EACCES;
3565
3566 if (optlen != sizeof(struct sctp_authchunk))
3567 return -EINVAL;
3568
3569 switch (val->sauth_chunk) {
3570 case SCTP_CID_INIT:
3571 case SCTP_CID_INIT_ACK:
3572 case SCTP_CID_SHUTDOWN_COMPLETE:
3573 case SCTP_CID_AUTH:
3574 return -EINVAL;
3575 }
3576
3577 /* add this chunk id to the endpoint */
3578 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3579}
3580
3581/*
3582 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3583 *
3584 * This option gets or sets the list of HMAC algorithms that the local
3585 * endpoint requires the peer to use.
3586 */
3587static int sctp_setsockopt_hmac_ident(struct sock *sk,
3588 struct sctp_hmacalgo *hmacs,
3589 unsigned int optlen)
3590{
3591 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3592 u32 idents;
3593
3594 if (!ep->auth_enable)
3595 return -EACCES;
3596
3597 if (optlen < sizeof(struct sctp_hmacalgo))
3598 return -EINVAL;
3599 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3600 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3601
3602 idents = hmacs->shmac_num_idents;
3603 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3604 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3605 return -EINVAL;
3606
3607 return sctp_auth_ep_set_hmacs(ep, hmacs);
3608}
3609
3610/*
3611 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3612 *
3613 * This option will set a shared secret key which is used to build an
3614 * association shared key.
3615 */
3616static int sctp_setsockopt_auth_key(struct sock *sk,
3617 struct sctp_authkey *authkey,
3618 unsigned int optlen)
3619{
3620 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3621 struct sctp_association *asoc;
3622 int ret = -EINVAL;
3623
3624 if (optlen <= sizeof(struct sctp_authkey))
3625 return -EINVAL;
3626 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3627 * this.
3628 */
3629 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3630
3631 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3632 goto out;
3633
3634 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3635 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3636 sctp_style(sk, UDP))
3637 goto out;
3638
3639 if (asoc) {
3640 ret = sctp_auth_set_key(ep, asoc, authkey);
3641 goto out;
3642 }
3643
3644 if (sctp_style(sk, TCP))
3645 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3646
3647 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3648 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3649 ret = sctp_auth_set_key(ep, asoc, authkey);
3650 if (ret)
3651 goto out;
3652 }
3653
3654 ret = 0;
3655
3656 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3657 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3658 list_for_each_entry(asoc, &ep->asocs, asocs) {
3659 int res = sctp_auth_set_key(ep, asoc, authkey);
3660
3661 if (res && !ret)
3662 ret = res;
3663 }
3664 }
3665
3666out:
3667 memzero_explicit(authkey, optlen);
3668 return ret;
3669}
3670
3671/*
3672 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3673 *
3674 * This option will get or set the active shared key to be used to build
3675 * the association shared key.
3676 */
3677static int sctp_setsockopt_active_key(struct sock *sk,
3678 struct sctp_authkeyid *val,
3679 unsigned int optlen)
3680{
3681 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3682 struct sctp_association *asoc;
3683 int ret = 0;
3684
3685 if (optlen != sizeof(struct sctp_authkeyid))
3686 return -EINVAL;
3687
3688 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3689 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3690 sctp_style(sk, UDP))
3691 return -EINVAL;
3692
3693 if (asoc)
3694 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3695
3696 if (sctp_style(sk, TCP))
3697 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3698
3699 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3700 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3701 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3702 if (ret)
3703 return ret;
3704 }
3705
3706 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3707 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3708 list_for_each_entry(asoc, &ep->asocs, asocs) {
3709 int res = sctp_auth_set_active_key(ep, asoc,
3710 val->scact_keynumber);
3711
3712 if (res && !ret)
3713 ret = res;
3714 }
3715 }
3716
3717 return ret;
3718}
3719
3720/*
3721 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3722 *
3723 * This set option will delete a shared secret key from use.
3724 */
3725static int sctp_setsockopt_del_key(struct sock *sk,
3726 struct sctp_authkeyid *val,
3727 unsigned int optlen)
3728{
3729 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3730 struct sctp_association *asoc;
3731 int ret = 0;
3732
3733 if (optlen != sizeof(struct sctp_authkeyid))
3734 return -EINVAL;
3735
3736 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3737 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3738 sctp_style(sk, UDP))
3739 return -EINVAL;
3740
3741 if (asoc)
3742 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3743
3744 if (sctp_style(sk, TCP))
3745 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3746
3747 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3748 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3749 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3750 if (ret)
3751 return ret;
3752 }
3753
3754 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3755 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3756 list_for_each_entry(asoc, &ep->asocs, asocs) {
3757 int res = sctp_auth_del_key_id(ep, asoc,
3758 val->scact_keynumber);
3759
3760 if (res && !ret)
3761 ret = res;
3762 }
3763 }
3764
3765 return ret;
3766}
3767
3768/*
3769 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3770 *
3771 * This set option will deactivate a shared secret key.
3772 */
3773static int sctp_setsockopt_deactivate_key(struct sock *sk,
3774 struct sctp_authkeyid *val,
3775 unsigned int optlen)
3776{
3777 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3778 struct sctp_association *asoc;
3779 int ret = 0;
3780
3781 if (optlen != sizeof(struct sctp_authkeyid))
3782 return -EINVAL;
3783
3784 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3785 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3786 sctp_style(sk, UDP))
3787 return -EINVAL;
3788
3789 if (asoc)
3790 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3791
3792 if (sctp_style(sk, TCP))
3793 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3794
3795 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3796 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3797 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3798 if (ret)
3799 return ret;
3800 }
3801
3802 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3803 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3804 list_for_each_entry(asoc, &ep->asocs, asocs) {
3805 int res = sctp_auth_deact_key_id(ep, asoc,
3806 val->scact_keynumber);
3807
3808 if (res && !ret)
3809 ret = res;
3810 }
3811 }
3812
3813 return ret;
3814}
3815
3816/*
3817 * 8.1.23 SCTP_AUTO_ASCONF
3818 *
3819 * This option will enable or disable the use of the automatic generation of
3820 * ASCONF chunks to add and delete addresses to an existing association. Note
3821 * that this option has two caveats namely: a) it only affects sockets that
3822 * are bound to all addresses available to the SCTP stack, and b) the system
3823 * administrator may have an overriding control that turns the ASCONF feature
3824 * off no matter what setting the socket option may have.
3825 * This option expects an integer boolean flag, where a non-zero value turns on
3826 * the option, and a zero value turns off the option.
3827 * Note. In this implementation, socket operation overrides default parameter
3828 * being set by sysctl as well as FreeBSD implementation
3829 */
3830static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3831 unsigned int optlen)
3832{
3833 struct sctp_sock *sp = sctp_sk(sk);
3834
3835 if (optlen < sizeof(int))
3836 return -EINVAL;
3837 if (!sctp_is_ep_boundall(sk) && *val)
3838 return -EINVAL;
3839 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3840 return 0;
3841
3842 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3843 if (*val == 0 && sp->do_auto_asconf) {
3844 list_del(&sp->auto_asconf_list);
3845 sp->do_auto_asconf = 0;
3846 } else if (*val && !sp->do_auto_asconf) {
3847 list_add_tail(&sp->auto_asconf_list,
3848 &sock_net(sk)->sctp.auto_asconf_splist);
3849 sp->do_auto_asconf = 1;
3850 }
3851 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3852 return 0;
3853}
3854
3855/*
3856 * SCTP_PEER_ADDR_THLDS
3857 *
3858 * This option allows us to alter the partially failed threshold for one or all
3859 * transports in an association. See Section 6.1 of:
3860 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3861 */
3862static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3863 struct sctp_paddrthlds_v2 *val,
3864 unsigned int optlen, bool v2)
3865{
3866 struct sctp_transport *trans;
3867 struct sctp_association *asoc;
3868 int len;
3869
3870 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3871 if (optlen < len)
3872 return -EINVAL;
3873
3874 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3875 return -EINVAL;
3876
3877 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3878 trans = sctp_addr_id2transport(sk, &val->spt_address,
3879 val->spt_assoc_id);
3880 if (!trans)
3881 return -ENOENT;
3882
3883 if (val->spt_pathmaxrxt)
3884 trans->pathmaxrxt = val->spt_pathmaxrxt;
3885 if (v2)
3886 trans->ps_retrans = val->spt_pathcpthld;
3887 trans->pf_retrans = val->spt_pathpfthld;
3888
3889 return 0;
3890 }
3891
3892 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3893 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3894 sctp_style(sk, UDP))
3895 return -EINVAL;
3896
3897 if (asoc) {
3898 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3899 transports) {
3900 if (val->spt_pathmaxrxt)
3901 trans->pathmaxrxt = val->spt_pathmaxrxt;
3902 if (v2)
3903 trans->ps_retrans = val->spt_pathcpthld;
3904 trans->pf_retrans = val->spt_pathpfthld;
3905 }
3906
3907 if (val->spt_pathmaxrxt)
3908 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3909 if (v2)
3910 asoc->ps_retrans = val->spt_pathcpthld;
3911 asoc->pf_retrans = val->spt_pathpfthld;
3912 } else {
3913 struct sctp_sock *sp = sctp_sk(sk);
3914
3915 if (val->spt_pathmaxrxt)
3916 sp->pathmaxrxt = val->spt_pathmaxrxt;
3917 if (v2)
3918 sp->ps_retrans = val->spt_pathcpthld;
3919 sp->pf_retrans = val->spt_pathpfthld;
3920 }
3921
3922 return 0;
3923}
3924
3925static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3926 unsigned int optlen)
3927{
3928 if (optlen < sizeof(int))
3929 return -EINVAL;
3930
3931 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3932
3933 return 0;
3934}
3935
3936static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3937 unsigned int optlen)
3938{
3939 if (optlen < sizeof(int))
3940 return -EINVAL;
3941
3942 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3943
3944 return 0;
3945}
3946
3947static int sctp_setsockopt_pr_supported(struct sock *sk,
3948 struct sctp_assoc_value *params,
3949 unsigned int optlen)
3950{
3951 struct sctp_association *asoc;
3952
3953 if (optlen != sizeof(*params))
3954 return -EINVAL;
3955
3956 asoc = sctp_id2assoc(sk, params->assoc_id);
3957 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3958 sctp_style(sk, UDP))
3959 return -EINVAL;
3960
3961 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3962
3963 return 0;
3964}
3965
3966static int sctp_setsockopt_default_prinfo(struct sock *sk,
3967 struct sctp_default_prinfo *info,
3968 unsigned int optlen)
3969{
3970 struct sctp_sock *sp = sctp_sk(sk);
3971 struct sctp_association *asoc;
3972 int retval = -EINVAL;
3973
3974 if (optlen != sizeof(*info))
3975 goto out;
3976
3977 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3978 goto out;
3979
3980 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3981 info->pr_value = 0;
3982
3983 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3984 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3985 sctp_style(sk, UDP))
3986 goto out;
3987
3988 retval = 0;
3989
3990 if (asoc) {
3991 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3992 asoc->default_timetolive = info->pr_value;
3993 goto out;
3994 }
3995
3996 if (sctp_style(sk, TCP))
3997 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3998
3999 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4000 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4001 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4002 sp->default_timetolive = info->pr_value;
4003 }
4004
4005 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4006 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4007 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4008 SCTP_PR_SET_POLICY(asoc->default_flags,
4009 info->pr_policy);
4010 asoc->default_timetolive = info->pr_value;
4011 }
4012 }
4013
4014out:
4015 return retval;
4016}
4017
4018static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4019 struct sctp_assoc_value *params,
4020 unsigned int optlen)
4021{
4022 struct sctp_association *asoc;
4023 int retval = -EINVAL;
4024
4025 if (optlen != sizeof(*params))
4026 goto out;
4027
4028 asoc = sctp_id2assoc(sk, params->assoc_id);
4029 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4030 sctp_style(sk, UDP))
4031 goto out;
4032
4033 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4034
4035 retval = 0;
4036
4037out:
4038 return retval;
4039}
4040
4041static int sctp_setsockopt_enable_strreset(struct sock *sk,
4042 struct sctp_assoc_value *params,
4043 unsigned int optlen)
4044{
4045 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4046 struct sctp_association *asoc;
4047 int retval = -EINVAL;
4048
4049 if (optlen != sizeof(*params))
4050 goto out;
4051
4052 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4053 goto out;
4054
4055 asoc = sctp_id2assoc(sk, params->assoc_id);
4056 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4057 sctp_style(sk, UDP))
4058 goto out;
4059
4060 retval = 0;
4061
4062 if (asoc) {
4063 asoc->strreset_enable = params->assoc_value;
4064 goto out;
4065 }
4066
4067 if (sctp_style(sk, TCP))
4068 params->assoc_id = SCTP_FUTURE_ASSOC;
4069
4070 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4071 params->assoc_id == SCTP_ALL_ASSOC)
4072 ep->strreset_enable = params->assoc_value;
4073
4074 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4075 params->assoc_id == SCTP_ALL_ASSOC)
4076 list_for_each_entry(asoc, &ep->asocs, asocs)
4077 asoc->strreset_enable = params->assoc_value;
4078
4079out:
4080 return retval;
4081}
4082
4083static int sctp_setsockopt_reset_streams(struct sock *sk,
4084 struct sctp_reset_streams *params,
4085 unsigned int optlen)
4086{
4087 struct sctp_association *asoc;
4088
4089 if (optlen < sizeof(*params))
4090 return -EINVAL;
4091 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4092 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4093 sizeof(__u16) * sizeof(*params));
4094
4095 if (params->srs_number_streams * sizeof(__u16) >
4096 optlen - sizeof(*params))
4097 return -EINVAL;
4098
4099 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4100 if (!asoc)
4101 return -EINVAL;
4102
4103 return sctp_send_reset_streams(asoc, params);
4104}
4105
4106static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4107 unsigned int optlen)
4108{
4109 struct sctp_association *asoc;
4110
4111 if (optlen != sizeof(*associd))
4112 return -EINVAL;
4113
4114 asoc = sctp_id2assoc(sk, *associd);
4115 if (!asoc)
4116 return -EINVAL;
4117
4118 return sctp_send_reset_assoc(asoc);
4119}
4120
4121static int sctp_setsockopt_add_streams(struct sock *sk,
4122 struct sctp_add_streams *params,
4123 unsigned int optlen)
4124{
4125 struct sctp_association *asoc;
4126
4127 if (optlen != sizeof(*params))
4128 return -EINVAL;
4129
4130 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4131 if (!asoc)
4132 return -EINVAL;
4133
4134 return sctp_send_add_streams(asoc, params);
4135}
4136
4137static int sctp_setsockopt_scheduler(struct sock *sk,
4138 struct sctp_assoc_value *params,
4139 unsigned int optlen)
4140{
4141 struct sctp_sock *sp = sctp_sk(sk);
4142 struct sctp_association *asoc;
4143 int retval = 0;
4144
4145 if (optlen < sizeof(*params))
4146 return -EINVAL;
4147
4148 if (params->assoc_value > SCTP_SS_MAX)
4149 return -EINVAL;
4150
4151 asoc = sctp_id2assoc(sk, params->assoc_id);
4152 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4153 sctp_style(sk, UDP))
4154 return -EINVAL;
4155
4156 if (asoc)
4157 return sctp_sched_set_sched(asoc, params->assoc_value);
4158
4159 if (sctp_style(sk, TCP))
4160 params->assoc_id = SCTP_FUTURE_ASSOC;
4161
4162 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4163 params->assoc_id == SCTP_ALL_ASSOC)
4164 sp->default_ss = params->assoc_value;
4165
4166 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4167 params->assoc_id == SCTP_ALL_ASSOC) {
4168 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4169 int ret = sctp_sched_set_sched(asoc,
4170 params->assoc_value);
4171
4172 if (ret && !retval)
4173 retval = ret;
4174 }
4175 }
4176
4177 return retval;
4178}
4179
4180static int sctp_setsockopt_scheduler_value(struct sock *sk,
4181 struct sctp_stream_value *params,
4182 unsigned int optlen)
4183{
4184 struct sctp_association *asoc;
4185 int retval = -EINVAL;
4186
4187 if (optlen < sizeof(*params))
4188 goto out;
4189
4190 asoc = sctp_id2assoc(sk, params->assoc_id);
4191 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4192 sctp_style(sk, UDP))
4193 goto out;
4194
4195 if (asoc) {
4196 retval = sctp_sched_set_value(asoc, params->stream_id,
4197 params->stream_value, GFP_KERNEL);
4198 goto out;
4199 }
4200
4201 retval = 0;
4202
4203 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4204 int ret = sctp_sched_set_value(asoc, params->stream_id,
4205 params->stream_value,
4206 GFP_KERNEL);
4207 if (ret && !retval) /* try to return the 1st error. */
4208 retval = ret;
4209 }
4210
4211out:
4212 return retval;
4213}
4214
4215static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4216 struct sctp_assoc_value *p,
4217 unsigned int optlen)
4218{
4219 struct sctp_sock *sp = sctp_sk(sk);
4220 struct sctp_association *asoc;
4221
4222 if (optlen < sizeof(*p))
4223 return -EINVAL;
4224
4225 asoc = sctp_id2assoc(sk, p->assoc_id);
4226 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4227 return -EINVAL;
4228
4229 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4230 return -EPERM;
4231 }
4232
4233 sp->ep->intl_enable = !!p->assoc_value;
4234 return 0;
4235}
4236
4237static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4238 unsigned int optlen)
4239{
4240 if (!sctp_style(sk, TCP))
4241 return -EOPNOTSUPP;
4242
4243 if (sctp_sk(sk)->ep->base.bind_addr.port)
4244 return -EFAULT;
4245
4246 if (optlen < sizeof(int))
4247 return -EINVAL;
4248
4249 sctp_sk(sk)->reuse = !!*val;
4250
4251 return 0;
4252}
4253
4254static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4255 struct sctp_association *asoc)
4256{
4257 struct sctp_ulpevent *event;
4258
4259 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4260
4261 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4262 if (sctp_outq_is_empty(&asoc->outqueue)) {
4263 event = sctp_ulpevent_make_sender_dry_event(asoc,
4264 GFP_USER | __GFP_NOWARN);
4265 if (!event)
4266 return -ENOMEM;
4267
4268 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4269 }
4270 }
4271
4272 return 0;
4273}
4274
4275static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4276 unsigned int optlen)
4277{
4278 struct sctp_sock *sp = sctp_sk(sk);
4279 struct sctp_association *asoc;
4280 int retval = 0;
4281
4282 if (optlen < sizeof(*param))
4283 return -EINVAL;
4284
4285 if (param->se_type < SCTP_SN_TYPE_BASE ||
4286 param->se_type > SCTP_SN_TYPE_MAX)
4287 return -EINVAL;
4288
4289 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4290 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4291 sctp_style(sk, UDP))
4292 return -EINVAL;
4293
4294 if (asoc)
4295 return sctp_assoc_ulpevent_type_set(param, asoc);
4296
4297 if (sctp_style(sk, TCP))
4298 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4299
4300 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4301 param->se_assoc_id == SCTP_ALL_ASSOC)
4302 sctp_ulpevent_type_set(&sp->subscribe,
4303 param->se_type, param->se_on);
4304
4305 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4306 param->se_assoc_id == SCTP_ALL_ASSOC) {
4307 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4308 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4309
4310 if (ret && !retval)
4311 retval = ret;
4312 }
4313 }
4314
4315 return retval;
4316}
4317
4318static int sctp_setsockopt_asconf_supported(struct sock *sk,
4319 struct sctp_assoc_value *params,
4320 unsigned int optlen)
4321{
4322 struct sctp_association *asoc;
4323 struct sctp_endpoint *ep;
4324 int retval = -EINVAL;
4325
4326 if (optlen != sizeof(*params))
4327 goto out;
4328
4329 asoc = sctp_id2assoc(sk, params->assoc_id);
4330 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4331 sctp_style(sk, UDP))
4332 goto out;
4333
4334 ep = sctp_sk(sk)->ep;
4335 ep->asconf_enable = !!params->assoc_value;
4336
4337 if (ep->asconf_enable && ep->auth_enable) {
4338 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4339 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4340 }
4341
4342 retval = 0;
4343
4344out:
4345 return retval;
4346}
4347
4348static int sctp_setsockopt_auth_supported(struct sock *sk,
4349 struct sctp_assoc_value *params,
4350 unsigned int optlen)
4351{
4352 struct sctp_association *asoc;
4353 struct sctp_endpoint *ep;
4354 int retval = -EINVAL;
4355
4356 if (optlen != sizeof(*params))
4357 goto out;
4358
4359 asoc = sctp_id2assoc(sk, params->assoc_id);
4360 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4361 sctp_style(sk, UDP))
4362 goto out;
4363
4364 ep = sctp_sk(sk)->ep;
4365 if (params->assoc_value) {
4366 retval = sctp_auth_init(ep, GFP_KERNEL);
4367 if (retval)
4368 goto out;
4369 if (ep->asconf_enable) {
4370 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4371 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4372 }
4373 }
4374
4375 ep->auth_enable = !!params->assoc_value;
4376 retval = 0;
4377
4378out:
4379 return retval;
4380}
4381
4382static int sctp_setsockopt_ecn_supported(struct sock *sk,
4383 struct sctp_assoc_value *params,
4384 unsigned int optlen)
4385{
4386 struct sctp_association *asoc;
4387 int retval = -EINVAL;
4388
4389 if (optlen != sizeof(*params))
4390 goto out;
4391
4392 asoc = sctp_id2assoc(sk, params->assoc_id);
4393 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4394 sctp_style(sk, UDP))
4395 goto out;
4396
4397 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4398 retval = 0;
4399
4400out:
4401 return retval;
4402}
4403
4404static int sctp_setsockopt_pf_expose(struct sock *sk,
4405 struct sctp_assoc_value *params,
4406 unsigned int optlen)
4407{
4408 struct sctp_association *asoc;
4409 int retval = -EINVAL;
4410
4411 if (optlen != sizeof(*params))
4412 goto out;
4413
4414 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4415 goto out;
4416
4417 asoc = sctp_id2assoc(sk, params->assoc_id);
4418 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4419 sctp_style(sk, UDP))
4420 goto out;
4421
4422 if (asoc)
4423 asoc->pf_expose = params->assoc_value;
4424 else
4425 sctp_sk(sk)->pf_expose = params->assoc_value;
4426 retval = 0;
4427
4428out:
4429 return retval;
4430}
4431
4432static int sctp_setsockopt_encap_port(struct sock *sk,
4433 struct sctp_udpencaps *encap,
4434 unsigned int optlen)
4435{
4436 struct sctp_association *asoc;
4437 struct sctp_transport *t;
4438 __be16 encap_port;
4439
4440 if (optlen != sizeof(*encap))
4441 return -EINVAL;
4442
4443 /* If an address other than INADDR_ANY is specified, and
4444 * no transport is found, then the request is invalid.
4445 */
4446 encap_port = (__force __be16)encap->sue_port;
4447 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4448 t = sctp_addr_id2transport(sk, &encap->sue_address,
4449 encap->sue_assoc_id);
4450 if (!t)
4451 return -EINVAL;
4452
4453 t->encap_port = encap_port;
4454 return 0;
4455 }
4456
4457 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4458 * socket is a one to many style socket, and an association
4459 * was not found, then the id was invalid.
4460 */
4461 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4462 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4463 sctp_style(sk, UDP))
4464 return -EINVAL;
4465
4466 /* If changes are for association, also apply encap_port to
4467 * each transport.
4468 */
4469 if (asoc) {
4470 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4471 transports)
4472 t->encap_port = encap_port;
4473
4474 asoc->encap_port = encap_port;
4475 return 0;
4476 }
4477
4478 sctp_sk(sk)->encap_port = encap_port;
4479 return 0;
4480}
4481
4482static int sctp_setsockopt_probe_interval(struct sock *sk,
4483 struct sctp_probeinterval *params,
4484 unsigned int optlen)
4485{
4486 struct sctp_association *asoc;
4487 struct sctp_transport *t;
4488 __u32 probe_interval;
4489
4490 if (optlen != sizeof(*params))
4491 return -EINVAL;
4492
4493 probe_interval = params->spi_interval;
4494 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4495 return -EINVAL;
4496
4497 /* If an address other than INADDR_ANY is specified, and
4498 * no transport is found, then the request is invalid.
4499 */
4500 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4501 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4502 params->spi_assoc_id);
4503 if (!t)
4504 return -EINVAL;
4505
4506 t->probe_interval = msecs_to_jiffies(probe_interval);
4507 sctp_transport_pl_reset(t);
4508 return 0;
4509 }
4510
4511 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4512 * socket is a one to many style socket, and an association
4513 * was not found, then the id was invalid.
4514 */
4515 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4516 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4517 sctp_style(sk, UDP))
4518 return -EINVAL;
4519
4520 /* If changes are for association, also apply probe_interval to
4521 * each transport.
4522 */
4523 if (asoc) {
4524 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4525 t->probe_interval = msecs_to_jiffies(probe_interval);
4526 sctp_transport_pl_reset(t);
4527 }
4528
4529 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4530 return 0;
4531 }
4532
4533 sctp_sk(sk)->probe_interval = probe_interval;
4534 return 0;
4535}
4536
4537/* API 6.2 setsockopt(), getsockopt()
4538 *
4539 * Applications use setsockopt() and getsockopt() to set or retrieve
4540 * socket options. Socket options are used to change the default
4541 * behavior of sockets calls. They are described in Section 7.
4542 *
4543 * The syntax is:
4544 *
4545 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4546 * int __user *optlen);
4547 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4548 * int optlen);
4549 *
4550 * sd - the socket descript.
4551 * level - set to IPPROTO_SCTP for all SCTP options.
4552 * optname - the option name.
4553 * optval - the buffer to store the value of the option.
4554 * optlen - the size of the buffer.
4555 */
4556static int sctp_setsockopt(struct sock *sk, int level, int optname,
4557 sockptr_t optval, unsigned int optlen)
4558{
4559 void *kopt = NULL;
4560 int retval = 0;
4561
4562 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4563
4564 /* I can hardly begin to describe how wrong this is. This is
4565 * so broken as to be worse than useless. The API draft
4566 * REALLY is NOT helpful here... I am not convinced that the
4567 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4568 * are at all well-founded.
4569 */
4570 if (level != SOL_SCTP) {
4571 struct sctp_af *af = sctp_sk(sk)->pf->af;
4572
4573 return af->setsockopt(sk, level, optname, optval, optlen);
4574 }
4575
4576 if (optlen > 0) {
4577 /* Trim it to the biggest size sctp sockopt may need if necessary */
4578 optlen = min_t(unsigned int, optlen,
4579 PAGE_ALIGN(USHRT_MAX +
4580 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4581 kopt = memdup_sockptr(optval, optlen);
4582 if (IS_ERR(kopt))
4583 return PTR_ERR(kopt);
4584 }
4585
4586 lock_sock(sk);
4587
4588 switch (optname) {
4589 case SCTP_SOCKOPT_BINDX_ADD:
4590 /* 'optlen' is the size of the addresses buffer. */
4591 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4592 SCTP_BINDX_ADD_ADDR);
4593 break;
4594
4595 case SCTP_SOCKOPT_BINDX_REM:
4596 /* 'optlen' is the size of the addresses buffer. */
4597 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4598 SCTP_BINDX_REM_ADDR);
4599 break;
4600
4601 case SCTP_SOCKOPT_CONNECTX_OLD:
4602 /* 'optlen' is the size of the addresses buffer. */
4603 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4604 break;
4605
4606 case SCTP_SOCKOPT_CONNECTX:
4607 /* 'optlen' is the size of the addresses buffer. */
4608 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4609 break;
4610
4611 case SCTP_DISABLE_FRAGMENTS:
4612 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4613 break;
4614
4615 case SCTP_EVENTS:
4616 retval = sctp_setsockopt_events(sk, kopt, optlen);
4617 break;
4618
4619 case SCTP_AUTOCLOSE:
4620 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4621 break;
4622
4623 case SCTP_PEER_ADDR_PARAMS:
4624 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4625 break;
4626
4627 case SCTP_DELAYED_SACK:
4628 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4629 break;
4630 case SCTP_PARTIAL_DELIVERY_POINT:
4631 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4632 break;
4633
4634 case SCTP_INITMSG:
4635 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4636 break;
4637 case SCTP_DEFAULT_SEND_PARAM:
4638 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4639 break;
4640 case SCTP_DEFAULT_SNDINFO:
4641 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4642 break;
4643 case SCTP_PRIMARY_ADDR:
4644 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4645 break;
4646 case SCTP_SET_PEER_PRIMARY_ADDR:
4647 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4648 break;
4649 case SCTP_NODELAY:
4650 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4651 break;
4652 case SCTP_RTOINFO:
4653 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4654 break;
4655 case SCTP_ASSOCINFO:
4656 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4657 break;
4658 case SCTP_I_WANT_MAPPED_V4_ADDR:
4659 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4660 break;
4661 case SCTP_MAXSEG:
4662 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4663 break;
4664 case SCTP_ADAPTATION_LAYER:
4665 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4666 break;
4667 case SCTP_CONTEXT:
4668 retval = sctp_setsockopt_context(sk, kopt, optlen);
4669 break;
4670 case SCTP_FRAGMENT_INTERLEAVE:
4671 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4672 break;
4673 case SCTP_MAX_BURST:
4674 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4675 break;
4676 case SCTP_AUTH_CHUNK:
4677 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4678 break;
4679 case SCTP_HMAC_IDENT:
4680 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4681 break;
4682 case SCTP_AUTH_KEY:
4683 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4684 break;
4685 case SCTP_AUTH_ACTIVE_KEY:
4686 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4687 break;
4688 case SCTP_AUTH_DELETE_KEY:
4689 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4690 break;
4691 case SCTP_AUTH_DEACTIVATE_KEY:
4692 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4693 break;
4694 case SCTP_AUTO_ASCONF:
4695 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4696 break;
4697 case SCTP_PEER_ADDR_THLDS:
4698 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4699 false);
4700 break;
4701 case SCTP_PEER_ADDR_THLDS_V2:
4702 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4703 true);
4704 break;
4705 case SCTP_RECVRCVINFO:
4706 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4707 break;
4708 case SCTP_RECVNXTINFO:
4709 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4710 break;
4711 case SCTP_PR_SUPPORTED:
4712 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4713 break;
4714 case SCTP_DEFAULT_PRINFO:
4715 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4716 break;
4717 case SCTP_RECONFIG_SUPPORTED:
4718 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4719 break;
4720 case SCTP_ENABLE_STREAM_RESET:
4721 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4722 break;
4723 case SCTP_RESET_STREAMS:
4724 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4725 break;
4726 case SCTP_RESET_ASSOC:
4727 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4728 break;
4729 case SCTP_ADD_STREAMS:
4730 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4731 break;
4732 case SCTP_STREAM_SCHEDULER:
4733 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4734 break;
4735 case SCTP_STREAM_SCHEDULER_VALUE:
4736 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4737 break;
4738 case SCTP_INTERLEAVING_SUPPORTED:
4739 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4740 optlen);
4741 break;
4742 case SCTP_REUSE_PORT:
4743 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4744 break;
4745 case SCTP_EVENT:
4746 retval = sctp_setsockopt_event(sk, kopt, optlen);
4747 break;
4748 case SCTP_ASCONF_SUPPORTED:
4749 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4750 break;
4751 case SCTP_AUTH_SUPPORTED:
4752 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4753 break;
4754 case SCTP_ECN_SUPPORTED:
4755 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4756 break;
4757 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4758 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4759 break;
4760 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4761 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4762 break;
4763 case SCTP_PLPMTUD_PROBE_INTERVAL:
4764 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4765 break;
4766 default:
4767 retval = -ENOPROTOOPT;
4768 break;
4769 }
4770
4771 release_sock(sk);
4772 kfree(kopt);
4773 return retval;
4774}
4775
4776/* API 3.1.6 connect() - UDP Style Syntax
4777 *
4778 * An application may use the connect() call in the UDP model to initiate an
4779 * association without sending data.
4780 *
4781 * The syntax is:
4782 *
4783 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4784 *
4785 * sd: the socket descriptor to have a new association added to.
4786 *
4787 * nam: the address structure (either struct sockaddr_in or struct
4788 * sockaddr_in6 defined in RFC2553 [7]).
4789 *
4790 * len: the size of the address.
4791 */
4792static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4793 int addr_len, int flags)
4794{
4795 struct sctp_af *af;
4796 int err = -EINVAL;
4797
4798 lock_sock(sk);
4799 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4800 addr, addr_len);
4801
4802 /* Validate addr_len before calling common connect/connectx routine. */
4803 af = sctp_get_af_specific(addr->sa_family);
4804 if (af && addr_len >= af->sockaddr_len)
4805 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4806
4807 release_sock(sk);
4808 return err;
4809}
4810
4811int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4812 int addr_len, int flags)
4813{
4814 if (addr_len < sizeof(uaddr->sa_family))
4815 return -EINVAL;
4816
4817 if (uaddr->sa_family == AF_UNSPEC)
4818 return -EOPNOTSUPP;
4819
4820 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4821}
4822
4823/* FIXME: Write comments. */
4824static int sctp_disconnect(struct sock *sk, int flags)
4825{
4826 return -EOPNOTSUPP; /* STUB */
4827}
4828
4829/* 4.1.4 accept() - TCP Style Syntax
4830 *
4831 * Applications use accept() call to remove an established SCTP
4832 * association from the accept queue of the endpoint. A new socket
4833 * descriptor will be returned from accept() to represent the newly
4834 * formed association.
4835 */
4836static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4837{
4838 struct sctp_sock *sp;
4839 struct sctp_endpoint *ep;
4840 struct sock *newsk = NULL;
4841 struct sctp_association *asoc;
4842 long timeo;
4843 int error = 0;
4844
4845 lock_sock(sk);
4846
4847 sp = sctp_sk(sk);
4848 ep = sp->ep;
4849
4850 if (!sctp_style(sk, TCP)) {
4851 error = -EOPNOTSUPP;
4852 goto out;
4853 }
4854
4855 if (!sctp_sstate(sk, LISTENING)) {
4856 error = -EINVAL;
4857 goto out;
4858 }
4859
4860 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4861
4862 error = sctp_wait_for_accept(sk, timeo);
4863 if (error)
4864 goto out;
4865
4866 /* We treat the list of associations on the endpoint as the accept
4867 * queue and pick the first association on the list.
4868 */
4869 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4870
4871 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4872 if (!newsk) {
4873 error = -ENOMEM;
4874 goto out;
4875 }
4876
4877 /* Populate the fields of the newsk from the oldsk and migrate the
4878 * asoc to the newsk.
4879 */
4880 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4881 if (error) {
4882 sk_common_release(newsk);
4883 newsk = NULL;
4884 }
4885
4886out:
4887 release_sock(sk);
4888 *err = error;
4889 return newsk;
4890}
4891
4892/* The SCTP ioctl handler. */
4893static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4894{
4895 int rc = -ENOTCONN;
4896
4897 lock_sock(sk);
4898
4899 /*
4900 * SEQPACKET-style sockets in LISTENING state are valid, for
4901 * SCTP, so only discard TCP-style sockets in LISTENING state.
4902 */
4903 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4904 goto out;
4905
4906 switch (cmd) {
4907 case SIOCINQ: {
4908 struct sk_buff *skb;
4909 unsigned int amount = 0;
4910
4911 skb = skb_peek(&sk->sk_receive_queue);
4912 if (skb != NULL) {
4913 /*
4914 * We will only return the amount of this packet since
4915 * that is all that will be read.
4916 */
4917 amount = skb->len;
4918 }
4919 rc = put_user(amount, (int __user *)arg);
4920 break;
4921 }
4922 default:
4923 rc = -ENOIOCTLCMD;
4924 break;
4925 }
4926out:
4927 release_sock(sk);
4928 return rc;
4929}
4930
4931/* This is the function which gets called during socket creation to
4932 * initialized the SCTP-specific portion of the sock.
4933 * The sock structure should already be zero-filled memory.
4934 */
4935static int sctp_init_sock(struct sock *sk)
4936{
4937 struct net *net = sock_net(sk);
4938 struct sctp_sock *sp;
4939
4940 pr_debug("%s: sk:%p\n", __func__, sk);
4941
4942 sp = sctp_sk(sk);
4943
4944 /* Initialize the SCTP per socket area. */
4945 switch (sk->sk_type) {
4946 case SOCK_SEQPACKET:
4947 sp->type = SCTP_SOCKET_UDP;
4948 break;
4949 case SOCK_STREAM:
4950 sp->type = SCTP_SOCKET_TCP;
4951 break;
4952 default:
4953 return -ESOCKTNOSUPPORT;
4954 }
4955
4956 sk->sk_gso_type = SKB_GSO_SCTP;
4957
4958 /* Initialize default send parameters. These parameters can be
4959 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4960 */
4961 sp->default_stream = 0;
4962 sp->default_ppid = 0;
4963 sp->default_flags = 0;
4964 sp->default_context = 0;
4965 sp->default_timetolive = 0;
4966
4967 sp->default_rcv_context = 0;
4968 sp->max_burst = net->sctp.max_burst;
4969
4970 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4971
4972 /* Initialize default setup parameters. These parameters
4973 * can be modified with the SCTP_INITMSG socket option or
4974 * overridden by the SCTP_INIT CMSG.
4975 */
4976 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4977 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4978 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4979 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4980
4981 /* Initialize default RTO related parameters. These parameters can
4982 * be modified for with the SCTP_RTOINFO socket option.
4983 */
4984 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4985 sp->rtoinfo.srto_max = net->sctp.rto_max;
4986 sp->rtoinfo.srto_min = net->sctp.rto_min;
4987
4988 /* Initialize default association related parameters. These parameters
4989 * can be modified with the SCTP_ASSOCINFO socket option.
4990 */
4991 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4992 sp->assocparams.sasoc_number_peer_destinations = 0;
4993 sp->assocparams.sasoc_peer_rwnd = 0;
4994 sp->assocparams.sasoc_local_rwnd = 0;
4995 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4996
4997 /* Initialize default event subscriptions. By default, all the
4998 * options are off.
4999 */
5000 sp->subscribe = 0;
5001
5002 /* Default Peer Address Parameters. These defaults can
5003 * be modified via SCTP_PEER_ADDR_PARAMS
5004 */
5005 sp->hbinterval = net->sctp.hb_interval;
5006 sp->udp_port = htons(net->sctp.udp_port);
5007 sp->encap_port = htons(net->sctp.encap_port);
5008 sp->pathmaxrxt = net->sctp.max_retrans_path;
5009 sp->pf_retrans = net->sctp.pf_retrans;
5010 sp->ps_retrans = net->sctp.ps_retrans;
5011 sp->pf_expose = net->sctp.pf_expose;
5012 sp->pathmtu = 0; /* allow default discovery */
5013 sp->sackdelay = net->sctp.sack_timeout;
5014 sp->sackfreq = 2;
5015 sp->param_flags = SPP_HB_ENABLE |
5016 SPP_PMTUD_ENABLE |
5017 SPP_SACKDELAY_ENABLE;
5018 sp->default_ss = SCTP_SS_DEFAULT;
5019
5020 /* If enabled no SCTP message fragmentation will be performed.
5021 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5022 */
5023 sp->disable_fragments = 0;
5024
5025 /* Enable Nagle algorithm by default. */
5026 sp->nodelay = 0;
5027
5028 sp->recvrcvinfo = 0;
5029 sp->recvnxtinfo = 0;
5030
5031 /* Enable by default. */
5032 sp->v4mapped = 1;
5033
5034 /* Auto-close idle associations after the configured
5035 * number of seconds. A value of 0 disables this
5036 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5037 * for UDP-style sockets only.
5038 */
5039 sp->autoclose = 0;
5040
5041 /* User specified fragmentation limit. */
5042 sp->user_frag = 0;
5043
5044 sp->adaptation_ind = 0;
5045
5046 sp->pf = sctp_get_pf_specific(sk->sk_family);
5047
5048 /* Control variables for partial data delivery. */
5049 atomic_set(&sp->pd_mode, 0);
5050 skb_queue_head_init(&sp->pd_lobby);
5051 sp->frag_interleave = 0;
5052 sp->probe_interval = net->sctp.probe_interval;
5053
5054 /* Create a per socket endpoint structure. Even if we
5055 * change the data structure relationships, this may still
5056 * be useful for storing pre-connect address information.
5057 */
5058 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5059 if (!sp->ep)
5060 return -ENOMEM;
5061
5062 sp->hmac = NULL;
5063
5064 sk->sk_destruct = sctp_destruct_sock;
5065
5066 SCTP_DBG_OBJCNT_INC(sock);
5067
5068 sk_sockets_allocated_inc(sk);
5069 sock_prot_inuse_add(net, sk->sk_prot, 1);
5070
5071 return 0;
5072}
5073
5074/* Cleanup any SCTP per socket resources. Must be called with
5075 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5076 */
5077static void sctp_destroy_sock(struct sock *sk)
5078{
5079 struct sctp_sock *sp;
5080
5081 pr_debug("%s: sk:%p\n", __func__, sk);
5082
5083 /* Release our hold on the endpoint. */
5084 sp = sctp_sk(sk);
5085 /* This could happen during socket init, thus we bail out
5086 * early, since the rest of the below is not setup either.
5087 */
5088 if (sp->ep == NULL)
5089 return;
5090
5091 if (sp->do_auto_asconf) {
5092 sp->do_auto_asconf = 0;
5093 list_del(&sp->auto_asconf_list);
5094 }
5095 sctp_endpoint_free(sp->ep);
5096 sk_sockets_allocated_dec(sk);
5097 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5098}
5099
5100/* Triggered when there are no references on the socket anymore */
5101static void sctp_destruct_common(struct sock *sk)
5102{
5103 struct sctp_sock *sp = sctp_sk(sk);
5104
5105 /* Free up the HMAC transform. */
5106 crypto_free_shash(sp->hmac);
5107}
5108
5109static void sctp_destruct_sock(struct sock *sk)
5110{
5111 sctp_destruct_common(sk);
5112 inet_sock_destruct(sk);
5113}
5114
5115/* API 4.1.7 shutdown() - TCP Style Syntax
5116 * int shutdown(int socket, int how);
5117 *
5118 * sd - the socket descriptor of the association to be closed.
5119 * how - Specifies the type of shutdown. The values are
5120 * as follows:
5121 * SHUT_RD
5122 * Disables further receive operations. No SCTP
5123 * protocol action is taken.
5124 * SHUT_WR
5125 * Disables further send operations, and initiates
5126 * the SCTP shutdown sequence.
5127 * SHUT_RDWR
5128 * Disables further send and receive operations
5129 * and initiates the SCTP shutdown sequence.
5130 */
5131static void sctp_shutdown(struct sock *sk, int how)
5132{
5133 struct net *net = sock_net(sk);
5134 struct sctp_endpoint *ep;
5135
5136 if (!sctp_style(sk, TCP))
5137 return;
5138
5139 ep = sctp_sk(sk)->ep;
5140 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5141 struct sctp_association *asoc;
5142
5143 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5144 asoc = list_entry(ep->asocs.next,
5145 struct sctp_association, asocs);
5146 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5147 }
5148}
5149
5150int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5151 struct sctp_info *info)
5152{
5153 struct sctp_transport *prim;
5154 struct list_head *pos;
5155 int mask;
5156
5157 memset(info, 0, sizeof(*info));
5158 if (!asoc) {
5159 struct sctp_sock *sp = sctp_sk(sk);
5160
5161 info->sctpi_s_autoclose = sp->autoclose;
5162 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5163 info->sctpi_s_pd_point = sp->pd_point;
5164 info->sctpi_s_nodelay = sp->nodelay;
5165 info->sctpi_s_disable_fragments = sp->disable_fragments;
5166 info->sctpi_s_v4mapped = sp->v4mapped;
5167 info->sctpi_s_frag_interleave = sp->frag_interleave;
5168 info->sctpi_s_type = sp->type;
5169
5170 return 0;
5171 }
5172
5173 info->sctpi_tag = asoc->c.my_vtag;
5174 info->sctpi_state = asoc->state;
5175 info->sctpi_rwnd = asoc->a_rwnd;
5176 info->sctpi_unackdata = asoc->unack_data;
5177 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5178 info->sctpi_instrms = asoc->stream.incnt;
5179 info->sctpi_outstrms = asoc->stream.outcnt;
5180 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5181 info->sctpi_inqueue++;
5182 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5183 info->sctpi_outqueue++;
5184 info->sctpi_overall_error = asoc->overall_error_count;
5185 info->sctpi_max_burst = asoc->max_burst;
5186 info->sctpi_maxseg = asoc->frag_point;
5187 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5188 info->sctpi_peer_tag = asoc->c.peer_vtag;
5189
5190 mask = asoc->peer.ecn_capable << 1;
5191 mask = (mask | asoc->peer.ipv4_address) << 1;
5192 mask = (mask | asoc->peer.ipv6_address) << 1;
5193 mask = (mask | asoc->peer.hostname_address) << 1;
5194 mask = (mask | asoc->peer.asconf_capable) << 1;
5195 mask = (mask | asoc->peer.prsctp_capable) << 1;
5196 mask = (mask | asoc->peer.auth_capable);
5197 info->sctpi_peer_capable = mask;
5198 mask = asoc->peer.sack_needed << 1;
5199 mask = (mask | asoc->peer.sack_generation) << 1;
5200 mask = (mask | asoc->peer.zero_window_announced);
5201 info->sctpi_peer_sack = mask;
5202
5203 info->sctpi_isacks = asoc->stats.isacks;
5204 info->sctpi_osacks = asoc->stats.osacks;
5205 info->sctpi_opackets = asoc->stats.opackets;
5206 info->sctpi_ipackets = asoc->stats.ipackets;
5207 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5208 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5209 info->sctpi_idupchunks = asoc->stats.idupchunks;
5210 info->sctpi_gapcnt = asoc->stats.gapcnt;
5211 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5212 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5213 info->sctpi_oodchunks = asoc->stats.oodchunks;
5214 info->sctpi_iodchunks = asoc->stats.iodchunks;
5215 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5216 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5217
5218 prim = asoc->peer.primary_path;
5219 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5220 info->sctpi_p_state = prim->state;
5221 info->sctpi_p_cwnd = prim->cwnd;
5222 info->sctpi_p_srtt = prim->srtt;
5223 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5224 info->sctpi_p_hbinterval = prim->hbinterval;
5225 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5226 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5227 info->sctpi_p_ssthresh = prim->ssthresh;
5228 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5229 info->sctpi_p_flight_size = prim->flight_size;
5230 info->sctpi_p_error = prim->error_count;
5231
5232 return 0;
5233}
5234EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5235
5236/* use callback to avoid exporting the core structure */
5237void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5238{
5239 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5240
5241 rhashtable_walk_start(iter);
5242}
5243
5244void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5245{
5246 rhashtable_walk_stop(iter);
5247 rhashtable_walk_exit(iter);
5248}
5249
5250struct sctp_transport *sctp_transport_get_next(struct net *net,
5251 struct rhashtable_iter *iter)
5252{
5253 struct sctp_transport *t;
5254
5255 t = rhashtable_walk_next(iter);
5256 for (; t; t = rhashtable_walk_next(iter)) {
5257 if (IS_ERR(t)) {
5258 if (PTR_ERR(t) == -EAGAIN)
5259 continue;
5260 break;
5261 }
5262
5263 if (!sctp_transport_hold(t))
5264 continue;
5265
5266 if (net_eq(t->asoc->base.net, net) &&
5267 t->asoc->peer.primary_path == t)
5268 break;
5269
5270 sctp_transport_put(t);
5271 }
5272
5273 return t;
5274}
5275
5276struct sctp_transport *sctp_transport_get_idx(struct net *net,
5277 struct rhashtable_iter *iter,
5278 int pos)
5279{
5280 struct sctp_transport *t;
5281
5282 if (!pos)
5283 return SEQ_START_TOKEN;
5284
5285 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5286 if (!--pos)
5287 break;
5288 sctp_transport_put(t);
5289 }
5290
5291 return t;
5292}
5293
5294int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5295 void *p) {
5296 int err = 0;
5297 int hash = 0;
5298 struct sctp_endpoint *ep;
5299 struct sctp_hashbucket *head;
5300
5301 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5302 hash++, head++) {
5303 read_lock_bh(&head->lock);
5304 sctp_for_each_hentry(ep, &head->chain) {
5305 err = cb(ep, p);
5306 if (err)
5307 break;
5308 }
5309 read_unlock_bh(&head->lock);
5310 }
5311
5312 return err;
5313}
5314EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5315
5316int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5317 const union sctp_addr *laddr,
5318 const union sctp_addr *paddr, void *p, int dif)
5319{
5320 struct sctp_transport *transport;
5321 struct sctp_endpoint *ep;
5322 int err = -ENOENT;
5323
5324 rcu_read_lock();
5325 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif);
5326 if (!transport) {
5327 rcu_read_unlock();
5328 return err;
5329 }
5330 ep = transport->asoc->ep;
5331 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5332 sctp_transport_put(transport);
5333 rcu_read_unlock();
5334 return err;
5335 }
5336 rcu_read_unlock();
5337
5338 err = cb(ep, transport, p);
5339 sctp_endpoint_put(ep);
5340 sctp_transport_put(transport);
5341 return err;
5342}
5343EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5344
5345int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5346 struct net *net, int *pos, void *p)
5347{
5348 struct rhashtable_iter hti;
5349 struct sctp_transport *tsp;
5350 struct sctp_endpoint *ep;
5351 int ret;
5352
5353again:
5354 ret = 0;
5355 sctp_transport_walk_start(&hti);
5356
5357 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5358 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5359 ep = tsp->asoc->ep;
5360 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5361 ret = cb(ep, tsp, p);
5362 if (ret)
5363 break;
5364 sctp_endpoint_put(ep);
5365 }
5366 (*pos)++;
5367 sctp_transport_put(tsp);
5368 }
5369 sctp_transport_walk_stop(&hti);
5370
5371 if (ret) {
5372 if (cb_done && !cb_done(ep, tsp, p)) {
5373 (*pos)++;
5374 sctp_endpoint_put(ep);
5375 sctp_transport_put(tsp);
5376 goto again;
5377 }
5378 sctp_endpoint_put(ep);
5379 sctp_transport_put(tsp);
5380 }
5381
5382 return ret;
5383}
5384EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5385
5386/* 7.2.1 Association Status (SCTP_STATUS)
5387
5388 * Applications can retrieve current status information about an
5389 * association, including association state, peer receiver window size,
5390 * number of unacked data chunks, and number of data chunks pending
5391 * receipt. This information is read-only.
5392 */
5393static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5394 char __user *optval,
5395 int __user *optlen)
5396{
5397 struct sctp_status status;
5398 struct sctp_association *asoc = NULL;
5399 struct sctp_transport *transport;
5400 sctp_assoc_t associd;
5401 int retval = 0;
5402
5403 if (len < sizeof(status)) {
5404 retval = -EINVAL;
5405 goto out;
5406 }
5407
5408 len = sizeof(status);
5409 if (copy_from_user(&status, optval, len)) {
5410 retval = -EFAULT;
5411 goto out;
5412 }
5413
5414 associd = status.sstat_assoc_id;
5415 asoc = sctp_id2assoc(sk, associd);
5416 if (!asoc) {
5417 retval = -EINVAL;
5418 goto out;
5419 }
5420
5421 transport = asoc->peer.primary_path;
5422
5423 status.sstat_assoc_id = sctp_assoc2id(asoc);
5424 status.sstat_state = sctp_assoc_to_state(asoc);
5425 status.sstat_rwnd = asoc->peer.rwnd;
5426 status.sstat_unackdata = asoc->unack_data;
5427
5428 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5429 status.sstat_instrms = asoc->stream.incnt;
5430 status.sstat_outstrms = asoc->stream.outcnt;
5431 status.sstat_fragmentation_point = asoc->frag_point;
5432 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5433 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5434 transport->af_specific->sockaddr_len);
5435 /* Map ipv4 address into v4-mapped-on-v6 address. */
5436 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5437 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5438 status.sstat_primary.spinfo_state = transport->state;
5439 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5440 status.sstat_primary.spinfo_srtt = transport->srtt;
5441 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5442 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5443
5444 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5445 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5446
5447 if (put_user(len, optlen)) {
5448 retval = -EFAULT;
5449 goto out;
5450 }
5451
5452 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5453 __func__, len, status.sstat_state, status.sstat_rwnd,
5454 status.sstat_assoc_id);
5455
5456 if (copy_to_user(optval, &status, len)) {
5457 retval = -EFAULT;
5458 goto out;
5459 }
5460
5461out:
5462 return retval;
5463}
5464
5465
5466/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5467 *
5468 * Applications can retrieve information about a specific peer address
5469 * of an association, including its reachability state, congestion
5470 * window, and retransmission timer values. This information is
5471 * read-only.
5472 */
5473static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5474 char __user *optval,
5475 int __user *optlen)
5476{
5477 struct sctp_paddrinfo pinfo;
5478 struct sctp_transport *transport;
5479 int retval = 0;
5480
5481 if (len < sizeof(pinfo)) {
5482 retval = -EINVAL;
5483 goto out;
5484 }
5485
5486 len = sizeof(pinfo);
5487 if (copy_from_user(&pinfo, optval, len)) {
5488 retval = -EFAULT;
5489 goto out;
5490 }
5491
5492 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5493 pinfo.spinfo_assoc_id);
5494 if (!transport) {
5495 retval = -EINVAL;
5496 goto out;
5497 }
5498
5499 if (transport->state == SCTP_PF &&
5500 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5501 retval = -EACCES;
5502 goto out;
5503 }
5504
5505 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5506 pinfo.spinfo_state = transport->state;
5507 pinfo.spinfo_cwnd = transport->cwnd;
5508 pinfo.spinfo_srtt = transport->srtt;
5509 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5510 pinfo.spinfo_mtu = transport->pathmtu;
5511
5512 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5513 pinfo.spinfo_state = SCTP_ACTIVE;
5514
5515 if (put_user(len, optlen)) {
5516 retval = -EFAULT;
5517 goto out;
5518 }
5519
5520 if (copy_to_user(optval, &pinfo, len)) {
5521 retval = -EFAULT;
5522 goto out;
5523 }
5524
5525out:
5526 return retval;
5527}
5528
5529/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5530 *
5531 * This option is a on/off flag. If enabled no SCTP message
5532 * fragmentation will be performed. Instead if a message being sent
5533 * exceeds the current PMTU size, the message will NOT be sent and
5534 * instead a error will be indicated to the user.
5535 */
5536static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5537 char __user *optval, int __user *optlen)
5538{
5539 int val;
5540
5541 if (len < sizeof(int))
5542 return -EINVAL;
5543
5544 len = sizeof(int);
5545 val = (sctp_sk(sk)->disable_fragments == 1);
5546 if (put_user(len, optlen))
5547 return -EFAULT;
5548 if (copy_to_user(optval, &val, len))
5549 return -EFAULT;
5550 return 0;
5551}
5552
5553/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5554 *
5555 * This socket option is used to specify various notifications and
5556 * ancillary data the user wishes to receive.
5557 */
5558static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5559 int __user *optlen)
5560{
5561 struct sctp_event_subscribe subscribe;
5562 __u8 *sn_type = (__u8 *)&subscribe;
5563 int i;
5564
5565 if (len == 0)
5566 return -EINVAL;
5567 if (len > sizeof(struct sctp_event_subscribe))
5568 len = sizeof(struct sctp_event_subscribe);
5569 if (put_user(len, optlen))
5570 return -EFAULT;
5571
5572 for (i = 0; i < len; i++)
5573 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5574 SCTP_SN_TYPE_BASE + i);
5575
5576 if (copy_to_user(optval, &subscribe, len))
5577 return -EFAULT;
5578
5579 return 0;
5580}
5581
5582/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5583 *
5584 * This socket option is applicable to the UDP-style socket only. When
5585 * set it will cause associations that are idle for more than the
5586 * specified number of seconds to automatically close. An association
5587 * being idle is defined an association that has NOT sent or received
5588 * user data. The special value of '0' indicates that no automatic
5589 * close of any associations should be performed. The option expects an
5590 * integer defining the number of seconds of idle time before an
5591 * association is closed.
5592 */
5593static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5594{
5595 /* Applicable to UDP-style socket only */
5596 if (sctp_style(sk, TCP))
5597 return -EOPNOTSUPP;
5598 if (len < sizeof(int))
5599 return -EINVAL;
5600 len = sizeof(int);
5601 if (put_user(len, optlen))
5602 return -EFAULT;
5603 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5604 return -EFAULT;
5605 return 0;
5606}
5607
5608/* Helper routine to branch off an association to a new socket. */
5609int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5610{
5611 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5612 struct sctp_sock *sp = sctp_sk(sk);
5613 struct socket *sock;
5614 int err = 0;
5615
5616 /* Do not peel off from one netns to another one. */
5617 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5618 return -EINVAL;
5619
5620 if (!asoc)
5621 return -EINVAL;
5622
5623 /* An association cannot be branched off from an already peeled-off
5624 * socket, nor is this supported for tcp style sockets.
5625 */
5626 if (!sctp_style(sk, UDP))
5627 return -EINVAL;
5628
5629 /* Create a new socket. */
5630 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5631 if (err < 0)
5632 return err;
5633
5634 sctp_copy_sock(sock->sk, sk, asoc);
5635
5636 /* Make peeled-off sockets more like 1-1 accepted sockets.
5637 * Set the daddr and initialize id to something more random and also
5638 * copy over any ip options.
5639 */
5640 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5641 sp->pf->copy_ip_options(sk, sock->sk);
5642
5643 /* Populate the fields of the newsk from the oldsk and migrate the
5644 * asoc to the newsk.
5645 */
5646 err = sctp_sock_migrate(sk, sock->sk, asoc,
5647 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5648 if (err) {
5649 sock_release(sock);
5650 sock = NULL;
5651 }
5652
5653 *sockp = sock;
5654
5655 return err;
5656}
5657EXPORT_SYMBOL(sctp_do_peeloff);
5658
5659static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5660 struct file **newfile, unsigned flags)
5661{
5662 struct socket *newsock;
5663 int retval;
5664
5665 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5666 if (retval < 0)
5667 goto out;
5668
5669 /* Map the socket to an unused fd that can be returned to the user. */
5670 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5671 if (retval < 0) {
5672 sock_release(newsock);
5673 goto out;
5674 }
5675
5676 *newfile = sock_alloc_file(newsock, 0, NULL);
5677 if (IS_ERR(*newfile)) {
5678 put_unused_fd(retval);
5679 retval = PTR_ERR(*newfile);
5680 *newfile = NULL;
5681 return retval;
5682 }
5683
5684 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5685 retval);
5686
5687 peeloff->sd = retval;
5688
5689 if (flags & SOCK_NONBLOCK)
5690 (*newfile)->f_flags |= O_NONBLOCK;
5691out:
5692 return retval;
5693}
5694
5695static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5696{
5697 sctp_peeloff_arg_t peeloff;
5698 struct file *newfile = NULL;
5699 int retval = 0;
5700
5701 if (len < sizeof(sctp_peeloff_arg_t))
5702 return -EINVAL;
5703 len = sizeof(sctp_peeloff_arg_t);
5704 if (copy_from_user(&peeloff, optval, len))
5705 return -EFAULT;
5706
5707 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5708 if (retval < 0)
5709 goto out;
5710
5711 /* Return the fd mapped to the new socket. */
5712 if (put_user(len, optlen)) {
5713 fput(newfile);
5714 put_unused_fd(retval);
5715 return -EFAULT;
5716 }
5717
5718 if (copy_to_user(optval, &peeloff, len)) {
5719 fput(newfile);
5720 put_unused_fd(retval);
5721 return -EFAULT;
5722 }
5723 fd_install(retval, newfile);
5724out:
5725 return retval;
5726}
5727
5728static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5729 char __user *optval, int __user *optlen)
5730{
5731 sctp_peeloff_flags_arg_t peeloff;
5732 struct file *newfile = NULL;
5733 int retval = 0;
5734
5735 if (len < sizeof(sctp_peeloff_flags_arg_t))
5736 return -EINVAL;
5737 len = sizeof(sctp_peeloff_flags_arg_t);
5738 if (copy_from_user(&peeloff, optval, len))
5739 return -EFAULT;
5740
5741 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5742 &newfile, peeloff.flags);
5743 if (retval < 0)
5744 goto out;
5745
5746 /* Return the fd mapped to the new socket. */
5747 if (put_user(len, optlen)) {
5748 fput(newfile);
5749 put_unused_fd(retval);
5750 return -EFAULT;
5751 }
5752
5753 if (copy_to_user(optval, &peeloff, len)) {
5754 fput(newfile);
5755 put_unused_fd(retval);
5756 return -EFAULT;
5757 }
5758 fd_install(retval, newfile);
5759out:
5760 return retval;
5761}
5762
5763/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5764 *
5765 * Applications can enable or disable heartbeats for any peer address of
5766 * an association, modify an address's heartbeat interval, force a
5767 * heartbeat to be sent immediately, and adjust the address's maximum
5768 * number of retransmissions sent before an address is considered
5769 * unreachable. The following structure is used to access and modify an
5770 * address's parameters:
5771 *
5772 * struct sctp_paddrparams {
5773 * sctp_assoc_t spp_assoc_id;
5774 * struct sockaddr_storage spp_address;
5775 * uint32_t spp_hbinterval;
5776 * uint16_t spp_pathmaxrxt;
5777 * uint32_t spp_pathmtu;
5778 * uint32_t spp_sackdelay;
5779 * uint32_t spp_flags;
5780 * };
5781 *
5782 * spp_assoc_id - (one-to-many style socket) This is filled in the
5783 * application, and identifies the association for
5784 * this query.
5785 * spp_address - This specifies which address is of interest.
5786 * spp_hbinterval - This contains the value of the heartbeat interval,
5787 * in milliseconds. If a value of zero
5788 * is present in this field then no changes are to
5789 * be made to this parameter.
5790 * spp_pathmaxrxt - This contains the maximum number of
5791 * retransmissions before this address shall be
5792 * considered unreachable. If a value of zero
5793 * is present in this field then no changes are to
5794 * be made to this parameter.
5795 * spp_pathmtu - When Path MTU discovery is disabled the value
5796 * specified here will be the "fixed" path mtu.
5797 * Note that if the spp_address field is empty
5798 * then all associations on this address will
5799 * have this fixed path mtu set upon them.
5800 *
5801 * spp_sackdelay - When delayed sack is enabled, this value specifies
5802 * the number of milliseconds that sacks will be delayed
5803 * for. This value will apply to all addresses of an
5804 * association if the spp_address field is empty. Note
5805 * also, that if delayed sack is enabled and this
5806 * value is set to 0, no change is made to the last
5807 * recorded delayed sack timer value.
5808 *
5809 * spp_flags - These flags are used to control various features
5810 * on an association. The flag field may contain
5811 * zero or more of the following options.
5812 *
5813 * SPP_HB_ENABLE - Enable heartbeats on the
5814 * specified address. Note that if the address
5815 * field is empty all addresses for the association
5816 * have heartbeats enabled upon them.
5817 *
5818 * SPP_HB_DISABLE - Disable heartbeats on the
5819 * speicifed address. Note that if the address
5820 * field is empty all addresses for the association
5821 * will have their heartbeats disabled. Note also
5822 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5823 * mutually exclusive, only one of these two should
5824 * be specified. Enabling both fields will have
5825 * undetermined results.
5826 *
5827 * SPP_HB_DEMAND - Request a user initiated heartbeat
5828 * to be made immediately.
5829 *
5830 * SPP_PMTUD_ENABLE - This field will enable PMTU
5831 * discovery upon the specified address. Note that
5832 * if the address feild is empty then all addresses
5833 * on the association are effected.
5834 *
5835 * SPP_PMTUD_DISABLE - This field will disable PMTU
5836 * discovery upon the specified address. Note that
5837 * if the address feild is empty then all addresses
5838 * on the association are effected. Not also that
5839 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5840 * exclusive. Enabling both will have undetermined
5841 * results.
5842 *
5843 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5844 * on delayed sack. The time specified in spp_sackdelay
5845 * is used to specify the sack delay for this address. Note
5846 * that if spp_address is empty then all addresses will
5847 * enable delayed sack and take on the sack delay
5848 * value specified in spp_sackdelay.
5849 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5850 * off delayed sack. If the spp_address field is blank then
5851 * delayed sack is disabled for the entire association. Note
5852 * also that this field is mutually exclusive to
5853 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5854 * results.
5855 *
5856 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5857 * setting of the IPV6 flow label value. The value is
5858 * contained in the spp_ipv6_flowlabel field.
5859 * Upon retrieval, this flag will be set to indicate that
5860 * the spp_ipv6_flowlabel field has a valid value returned.
5861 * If a specific destination address is set (in the
5862 * spp_address field), then the value returned is that of
5863 * the address. If just an association is specified (and
5864 * no address), then the association's default flow label
5865 * is returned. If neither an association nor a destination
5866 * is specified, then the socket's default flow label is
5867 * returned. For non-IPv6 sockets, this flag will be left
5868 * cleared.
5869 *
5870 * SPP_DSCP: Setting this flag enables the setting of the
5871 * Differentiated Services Code Point (DSCP) value
5872 * associated with either the association or a specific
5873 * address. The value is obtained in the spp_dscp field.
5874 * Upon retrieval, this flag will be set to indicate that
5875 * the spp_dscp field has a valid value returned. If a
5876 * specific destination address is set when called (in the
5877 * spp_address field), then that specific destination
5878 * address's DSCP value is returned. If just an association
5879 * is specified, then the association's default DSCP is
5880 * returned. If neither an association nor a destination is
5881 * specified, then the socket's default DSCP is returned.
5882 *
5883 * spp_ipv6_flowlabel
5884 * - This field is used in conjunction with the
5885 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5886 * The 20 least significant bits are used for the flow
5887 * label. This setting has precedence over any IPv6-layer
5888 * setting.
5889 *
5890 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5891 * and contains the DSCP. The 6 most significant bits are
5892 * used for the DSCP. This setting has precedence over any
5893 * IPv4- or IPv6- layer setting.
5894 */
5895static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5896 char __user *optval, int __user *optlen)
5897{
5898 struct sctp_paddrparams params;
5899 struct sctp_transport *trans = NULL;
5900 struct sctp_association *asoc = NULL;
5901 struct sctp_sock *sp = sctp_sk(sk);
5902
5903 if (len >= sizeof(params))
5904 len = sizeof(params);
5905 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5906 spp_ipv6_flowlabel), 4))
5907 len = ALIGN(offsetof(struct sctp_paddrparams,
5908 spp_ipv6_flowlabel), 4);
5909 else
5910 return -EINVAL;
5911
5912 if (copy_from_user(¶ms, optval, len))
5913 return -EFAULT;
5914
5915 /* If an address other than INADDR_ANY is specified, and
5916 * no transport is found, then the request is invalid.
5917 */
5918 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5919 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5920 params.spp_assoc_id);
5921 if (!trans) {
5922 pr_debug("%s: failed no transport\n", __func__);
5923 return -EINVAL;
5924 }
5925 }
5926
5927 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5928 * socket is a one to many style socket, and an association
5929 * was not found, then the id was invalid.
5930 */
5931 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5932 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5933 sctp_style(sk, UDP)) {
5934 pr_debug("%s: failed no association\n", __func__);
5935 return -EINVAL;
5936 }
5937
5938 if (trans) {
5939 /* Fetch transport values. */
5940 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5941 params.spp_pathmtu = trans->pathmtu;
5942 params.spp_pathmaxrxt = trans->pathmaxrxt;
5943 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5944
5945 /*draft-11 doesn't say what to return in spp_flags*/
5946 params.spp_flags = trans->param_flags;
5947 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5948 params.spp_ipv6_flowlabel = trans->flowlabel &
5949 SCTP_FLOWLABEL_VAL_MASK;
5950 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5951 }
5952 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5953 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5954 params.spp_flags |= SPP_DSCP;
5955 }
5956 } else if (asoc) {
5957 /* Fetch association values. */
5958 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5959 params.spp_pathmtu = asoc->pathmtu;
5960 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5961 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5962
5963 /*draft-11 doesn't say what to return in spp_flags*/
5964 params.spp_flags = asoc->param_flags;
5965 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5966 params.spp_ipv6_flowlabel = asoc->flowlabel &
5967 SCTP_FLOWLABEL_VAL_MASK;
5968 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5969 }
5970 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5971 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5972 params.spp_flags |= SPP_DSCP;
5973 }
5974 } else {
5975 /* Fetch socket values. */
5976 params.spp_hbinterval = sp->hbinterval;
5977 params.spp_pathmtu = sp->pathmtu;
5978 params.spp_sackdelay = sp->sackdelay;
5979 params.spp_pathmaxrxt = sp->pathmaxrxt;
5980
5981 /*draft-11 doesn't say what to return in spp_flags*/
5982 params.spp_flags = sp->param_flags;
5983 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5984 params.spp_ipv6_flowlabel = sp->flowlabel &
5985 SCTP_FLOWLABEL_VAL_MASK;
5986 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5987 }
5988 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5989 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5990 params.spp_flags |= SPP_DSCP;
5991 }
5992 }
5993
5994 if (copy_to_user(optval, ¶ms, len))
5995 return -EFAULT;
5996
5997 if (put_user(len, optlen))
5998 return -EFAULT;
5999
6000 return 0;
6001}
6002
6003/*
6004 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6005 *
6006 * This option will effect the way delayed acks are performed. This
6007 * option allows you to get or set the delayed ack time, in
6008 * milliseconds. It also allows changing the delayed ack frequency.
6009 * Changing the frequency to 1 disables the delayed sack algorithm. If
6010 * the assoc_id is 0, then this sets or gets the endpoints default
6011 * values. If the assoc_id field is non-zero, then the set or get
6012 * effects the specified association for the one to many model (the
6013 * assoc_id field is ignored by the one to one model). Note that if
6014 * sack_delay or sack_freq are 0 when setting this option, then the
6015 * current values will remain unchanged.
6016 *
6017 * struct sctp_sack_info {
6018 * sctp_assoc_t sack_assoc_id;
6019 * uint32_t sack_delay;
6020 * uint32_t sack_freq;
6021 * };
6022 *
6023 * sack_assoc_id - This parameter, indicates which association the user
6024 * is performing an action upon. Note that if this field's value is
6025 * zero then the endpoints default value is changed (effecting future
6026 * associations only).
6027 *
6028 * sack_delay - This parameter contains the number of milliseconds that
6029 * the user is requesting the delayed ACK timer be set to. Note that
6030 * this value is defined in the standard to be between 200 and 500
6031 * milliseconds.
6032 *
6033 * sack_freq - This parameter contains the number of packets that must
6034 * be received before a sack is sent without waiting for the delay
6035 * timer to expire. The default value for this is 2, setting this
6036 * value to 1 will disable the delayed sack algorithm.
6037 */
6038static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6039 char __user *optval,
6040 int __user *optlen)
6041{
6042 struct sctp_sack_info params;
6043 struct sctp_association *asoc = NULL;
6044 struct sctp_sock *sp = sctp_sk(sk);
6045
6046 if (len >= sizeof(struct sctp_sack_info)) {
6047 len = sizeof(struct sctp_sack_info);
6048
6049 if (copy_from_user(¶ms, optval, len))
6050 return -EFAULT;
6051 } else if (len == sizeof(struct sctp_assoc_value)) {
6052 pr_warn_ratelimited(DEPRECATED
6053 "%s (pid %d) "
6054 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6055 "Use struct sctp_sack_info instead\n",
6056 current->comm, task_pid_nr(current));
6057 if (copy_from_user(¶ms, optval, len))
6058 return -EFAULT;
6059 } else
6060 return -EINVAL;
6061
6062 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6063 * socket is a one to many style socket, and an association
6064 * was not found, then the id was invalid.
6065 */
6066 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6067 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6068 sctp_style(sk, UDP))
6069 return -EINVAL;
6070
6071 if (asoc) {
6072 /* Fetch association values. */
6073 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6074 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6075 params.sack_freq = asoc->sackfreq;
6076
6077 } else {
6078 params.sack_delay = 0;
6079 params.sack_freq = 1;
6080 }
6081 } else {
6082 /* Fetch socket values. */
6083 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6084 params.sack_delay = sp->sackdelay;
6085 params.sack_freq = sp->sackfreq;
6086 } else {
6087 params.sack_delay = 0;
6088 params.sack_freq = 1;
6089 }
6090 }
6091
6092 if (copy_to_user(optval, ¶ms, len))
6093 return -EFAULT;
6094
6095 if (put_user(len, optlen))
6096 return -EFAULT;
6097
6098 return 0;
6099}
6100
6101/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6102 *
6103 * Applications can specify protocol parameters for the default association
6104 * initialization. The option name argument to setsockopt() and getsockopt()
6105 * is SCTP_INITMSG.
6106 *
6107 * Setting initialization parameters is effective only on an unconnected
6108 * socket (for UDP-style sockets only future associations are effected
6109 * by the change). With TCP-style sockets, this option is inherited by
6110 * sockets derived from a listener socket.
6111 */
6112static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6113{
6114 if (len < sizeof(struct sctp_initmsg))
6115 return -EINVAL;
6116 len = sizeof(struct sctp_initmsg);
6117 if (put_user(len, optlen))
6118 return -EFAULT;
6119 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6120 return -EFAULT;
6121 return 0;
6122}
6123
6124
6125static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6126 char __user *optval, int __user *optlen)
6127{
6128 struct sctp_association *asoc;
6129 int cnt = 0;
6130 struct sctp_getaddrs getaddrs;
6131 struct sctp_transport *from;
6132 void __user *to;
6133 union sctp_addr temp;
6134 struct sctp_sock *sp = sctp_sk(sk);
6135 int addrlen;
6136 size_t space_left;
6137 int bytes_copied;
6138
6139 if (len < sizeof(struct sctp_getaddrs))
6140 return -EINVAL;
6141
6142 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6143 return -EFAULT;
6144
6145 /* For UDP-style sockets, id specifies the association to query. */
6146 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6147 if (!asoc)
6148 return -EINVAL;
6149
6150 to = optval + offsetof(struct sctp_getaddrs, addrs);
6151 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6152
6153 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6154 transports) {
6155 memcpy(&temp, &from->ipaddr, sizeof(temp));
6156 addrlen = sctp_get_pf_specific(sk->sk_family)
6157 ->addr_to_user(sp, &temp);
6158 if (space_left < addrlen)
6159 return -ENOMEM;
6160 if (copy_to_user(to, &temp, addrlen))
6161 return -EFAULT;
6162 to += addrlen;
6163 cnt++;
6164 space_left -= addrlen;
6165 }
6166
6167 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6168 return -EFAULT;
6169 bytes_copied = ((char __user *)to) - optval;
6170 if (put_user(bytes_copied, optlen))
6171 return -EFAULT;
6172
6173 return 0;
6174}
6175
6176static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6177 size_t space_left, int *bytes_copied)
6178{
6179 struct sctp_sockaddr_entry *addr;
6180 union sctp_addr temp;
6181 int cnt = 0;
6182 int addrlen;
6183 struct net *net = sock_net(sk);
6184
6185 rcu_read_lock();
6186 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6187 if (!addr->valid)
6188 continue;
6189
6190 if ((PF_INET == sk->sk_family) &&
6191 (AF_INET6 == addr->a.sa.sa_family))
6192 continue;
6193 if ((PF_INET6 == sk->sk_family) &&
6194 inet_v6_ipv6only(sk) &&
6195 (AF_INET == addr->a.sa.sa_family))
6196 continue;
6197 memcpy(&temp, &addr->a, sizeof(temp));
6198 if (!temp.v4.sin_port)
6199 temp.v4.sin_port = htons(port);
6200
6201 addrlen = sctp_get_pf_specific(sk->sk_family)
6202 ->addr_to_user(sctp_sk(sk), &temp);
6203
6204 if (space_left < addrlen) {
6205 cnt = -ENOMEM;
6206 break;
6207 }
6208 memcpy(to, &temp, addrlen);
6209
6210 to += addrlen;
6211 cnt++;
6212 space_left -= addrlen;
6213 *bytes_copied += addrlen;
6214 }
6215 rcu_read_unlock();
6216
6217 return cnt;
6218}
6219
6220
6221static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6222 char __user *optval, int __user *optlen)
6223{
6224 struct sctp_bind_addr *bp;
6225 struct sctp_association *asoc;
6226 int cnt = 0;
6227 struct sctp_getaddrs getaddrs;
6228 struct sctp_sockaddr_entry *addr;
6229 void __user *to;
6230 union sctp_addr temp;
6231 struct sctp_sock *sp = sctp_sk(sk);
6232 int addrlen;
6233 int err = 0;
6234 size_t space_left;
6235 int bytes_copied = 0;
6236 void *addrs;
6237 void *buf;
6238
6239 if (len < sizeof(struct sctp_getaddrs))
6240 return -EINVAL;
6241
6242 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6243 return -EFAULT;
6244
6245 /*
6246 * For UDP-style sockets, id specifies the association to query.
6247 * If the id field is set to the value '0' then the locally bound
6248 * addresses are returned without regard to any particular
6249 * association.
6250 */
6251 if (0 == getaddrs.assoc_id) {
6252 bp = &sctp_sk(sk)->ep->base.bind_addr;
6253 } else {
6254 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6255 if (!asoc)
6256 return -EINVAL;
6257 bp = &asoc->base.bind_addr;
6258 }
6259
6260 to = optval + offsetof(struct sctp_getaddrs, addrs);
6261 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6262
6263 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6264 if (!addrs)
6265 return -ENOMEM;
6266
6267 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6268 * addresses from the global local address list.
6269 */
6270 if (sctp_list_single_entry(&bp->address_list)) {
6271 addr = list_entry(bp->address_list.next,
6272 struct sctp_sockaddr_entry, list);
6273 if (sctp_is_any(sk, &addr->a)) {
6274 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6275 space_left, &bytes_copied);
6276 if (cnt < 0) {
6277 err = cnt;
6278 goto out;
6279 }
6280 goto copy_getaddrs;
6281 }
6282 }
6283
6284 buf = addrs;
6285 /* Protection on the bound address list is not needed since
6286 * in the socket option context we hold a socket lock and
6287 * thus the bound address list can't change.
6288 */
6289 list_for_each_entry(addr, &bp->address_list, list) {
6290 memcpy(&temp, &addr->a, sizeof(temp));
6291 addrlen = sctp_get_pf_specific(sk->sk_family)
6292 ->addr_to_user(sp, &temp);
6293 if (space_left < addrlen) {
6294 err = -ENOMEM; /*fixme: right error?*/
6295 goto out;
6296 }
6297 memcpy(buf, &temp, addrlen);
6298 buf += addrlen;
6299 bytes_copied += addrlen;
6300 cnt++;
6301 space_left -= addrlen;
6302 }
6303
6304copy_getaddrs:
6305 if (copy_to_user(to, addrs, bytes_copied)) {
6306 err = -EFAULT;
6307 goto out;
6308 }
6309 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6310 err = -EFAULT;
6311 goto out;
6312 }
6313 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6314 * but we can't change it anymore.
6315 */
6316 if (put_user(bytes_copied, optlen))
6317 err = -EFAULT;
6318out:
6319 kfree(addrs);
6320 return err;
6321}
6322
6323/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6324 *
6325 * Requests that the local SCTP stack use the enclosed peer address as
6326 * the association primary. The enclosed address must be one of the
6327 * association peer's addresses.
6328 */
6329static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6330 char __user *optval, int __user *optlen)
6331{
6332 struct sctp_prim prim;
6333 struct sctp_association *asoc;
6334 struct sctp_sock *sp = sctp_sk(sk);
6335
6336 if (len < sizeof(struct sctp_prim))
6337 return -EINVAL;
6338
6339 len = sizeof(struct sctp_prim);
6340
6341 if (copy_from_user(&prim, optval, len))
6342 return -EFAULT;
6343
6344 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6345 if (!asoc)
6346 return -EINVAL;
6347
6348 if (!asoc->peer.primary_path)
6349 return -ENOTCONN;
6350
6351 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6352 asoc->peer.primary_path->af_specific->sockaddr_len);
6353
6354 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6355 (union sctp_addr *)&prim.ssp_addr);
6356
6357 if (put_user(len, optlen))
6358 return -EFAULT;
6359 if (copy_to_user(optval, &prim, len))
6360 return -EFAULT;
6361
6362 return 0;
6363}
6364
6365/*
6366 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6367 *
6368 * Requests that the local endpoint set the specified Adaptation Layer
6369 * Indication parameter for all future INIT and INIT-ACK exchanges.
6370 */
6371static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6372 char __user *optval, int __user *optlen)
6373{
6374 struct sctp_setadaptation adaptation;
6375
6376 if (len < sizeof(struct sctp_setadaptation))
6377 return -EINVAL;
6378
6379 len = sizeof(struct sctp_setadaptation);
6380
6381 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6382
6383 if (put_user(len, optlen))
6384 return -EFAULT;
6385 if (copy_to_user(optval, &adaptation, len))
6386 return -EFAULT;
6387
6388 return 0;
6389}
6390
6391/*
6392 *
6393 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6394 *
6395 * Applications that wish to use the sendto() system call may wish to
6396 * specify a default set of parameters that would normally be supplied
6397 * through the inclusion of ancillary data. This socket option allows
6398 * such an application to set the default sctp_sndrcvinfo structure.
6399
6400
6401 * The application that wishes to use this socket option simply passes
6402 * in to this call the sctp_sndrcvinfo structure defined in Section
6403 * 5.2.2) The input parameters accepted by this call include
6404 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6405 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6406 * to this call if the caller is using the UDP model.
6407 *
6408 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6409 */
6410static int sctp_getsockopt_default_send_param(struct sock *sk,
6411 int len, char __user *optval,
6412 int __user *optlen)
6413{
6414 struct sctp_sock *sp = sctp_sk(sk);
6415 struct sctp_association *asoc;
6416 struct sctp_sndrcvinfo info;
6417
6418 if (len < sizeof(info))
6419 return -EINVAL;
6420
6421 len = sizeof(info);
6422
6423 if (copy_from_user(&info, optval, len))
6424 return -EFAULT;
6425
6426 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6427 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6428 sctp_style(sk, UDP))
6429 return -EINVAL;
6430
6431 if (asoc) {
6432 info.sinfo_stream = asoc->default_stream;
6433 info.sinfo_flags = asoc->default_flags;
6434 info.sinfo_ppid = asoc->default_ppid;
6435 info.sinfo_context = asoc->default_context;
6436 info.sinfo_timetolive = asoc->default_timetolive;
6437 } else {
6438 info.sinfo_stream = sp->default_stream;
6439 info.sinfo_flags = sp->default_flags;
6440 info.sinfo_ppid = sp->default_ppid;
6441 info.sinfo_context = sp->default_context;
6442 info.sinfo_timetolive = sp->default_timetolive;
6443 }
6444
6445 if (put_user(len, optlen))
6446 return -EFAULT;
6447 if (copy_to_user(optval, &info, len))
6448 return -EFAULT;
6449
6450 return 0;
6451}
6452
6453/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6454 * (SCTP_DEFAULT_SNDINFO)
6455 */
6456static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6457 char __user *optval,
6458 int __user *optlen)
6459{
6460 struct sctp_sock *sp = sctp_sk(sk);
6461 struct sctp_association *asoc;
6462 struct sctp_sndinfo info;
6463
6464 if (len < sizeof(info))
6465 return -EINVAL;
6466
6467 len = sizeof(info);
6468
6469 if (copy_from_user(&info, optval, len))
6470 return -EFAULT;
6471
6472 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6473 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6474 sctp_style(sk, UDP))
6475 return -EINVAL;
6476
6477 if (asoc) {
6478 info.snd_sid = asoc->default_stream;
6479 info.snd_flags = asoc->default_flags;
6480 info.snd_ppid = asoc->default_ppid;
6481 info.snd_context = asoc->default_context;
6482 } else {
6483 info.snd_sid = sp->default_stream;
6484 info.snd_flags = sp->default_flags;
6485 info.snd_ppid = sp->default_ppid;
6486 info.snd_context = sp->default_context;
6487 }
6488
6489 if (put_user(len, optlen))
6490 return -EFAULT;
6491 if (copy_to_user(optval, &info, len))
6492 return -EFAULT;
6493
6494 return 0;
6495}
6496
6497/*
6498 *
6499 * 7.1.5 SCTP_NODELAY
6500 *
6501 * Turn on/off any Nagle-like algorithm. This means that packets are
6502 * generally sent as soon as possible and no unnecessary delays are
6503 * introduced, at the cost of more packets in the network. Expects an
6504 * integer boolean flag.
6505 */
6506
6507static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6508 char __user *optval, int __user *optlen)
6509{
6510 int val;
6511
6512 if (len < sizeof(int))
6513 return -EINVAL;
6514
6515 len = sizeof(int);
6516 val = (sctp_sk(sk)->nodelay == 1);
6517 if (put_user(len, optlen))
6518 return -EFAULT;
6519 if (copy_to_user(optval, &val, len))
6520 return -EFAULT;
6521 return 0;
6522}
6523
6524/*
6525 *
6526 * 7.1.1 SCTP_RTOINFO
6527 *
6528 * The protocol parameters used to initialize and bound retransmission
6529 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6530 * and modify these parameters.
6531 * All parameters are time values, in milliseconds. A value of 0, when
6532 * modifying the parameters, indicates that the current value should not
6533 * be changed.
6534 *
6535 */
6536static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6537 char __user *optval,
6538 int __user *optlen) {
6539 struct sctp_rtoinfo rtoinfo;
6540 struct sctp_association *asoc;
6541
6542 if (len < sizeof (struct sctp_rtoinfo))
6543 return -EINVAL;
6544
6545 len = sizeof(struct sctp_rtoinfo);
6546
6547 if (copy_from_user(&rtoinfo, optval, len))
6548 return -EFAULT;
6549
6550 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6551
6552 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6553 sctp_style(sk, UDP))
6554 return -EINVAL;
6555
6556 /* Values corresponding to the specific association. */
6557 if (asoc) {
6558 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6559 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6560 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6561 } else {
6562 /* Values corresponding to the endpoint. */
6563 struct sctp_sock *sp = sctp_sk(sk);
6564
6565 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6566 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6567 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6568 }
6569
6570 if (put_user(len, optlen))
6571 return -EFAULT;
6572
6573 if (copy_to_user(optval, &rtoinfo, len))
6574 return -EFAULT;
6575
6576 return 0;
6577}
6578
6579/*
6580 *
6581 * 7.1.2 SCTP_ASSOCINFO
6582 *
6583 * This option is used to tune the maximum retransmission attempts
6584 * of the association.
6585 * Returns an error if the new association retransmission value is
6586 * greater than the sum of the retransmission value of the peer.
6587 * See [SCTP] for more information.
6588 *
6589 */
6590static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6591 char __user *optval,
6592 int __user *optlen)
6593{
6594
6595 struct sctp_assocparams assocparams;
6596 struct sctp_association *asoc;
6597 struct list_head *pos;
6598 int cnt = 0;
6599
6600 if (len < sizeof (struct sctp_assocparams))
6601 return -EINVAL;
6602
6603 len = sizeof(struct sctp_assocparams);
6604
6605 if (copy_from_user(&assocparams, optval, len))
6606 return -EFAULT;
6607
6608 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6609
6610 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6611 sctp_style(sk, UDP))
6612 return -EINVAL;
6613
6614 /* Values correspoinding to the specific association */
6615 if (asoc) {
6616 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6617 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6618 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6619 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6620
6621 list_for_each(pos, &asoc->peer.transport_addr_list) {
6622 cnt++;
6623 }
6624
6625 assocparams.sasoc_number_peer_destinations = cnt;
6626 } else {
6627 /* Values corresponding to the endpoint */
6628 struct sctp_sock *sp = sctp_sk(sk);
6629
6630 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6631 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6632 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6633 assocparams.sasoc_cookie_life =
6634 sp->assocparams.sasoc_cookie_life;
6635 assocparams.sasoc_number_peer_destinations =
6636 sp->assocparams.
6637 sasoc_number_peer_destinations;
6638 }
6639
6640 if (put_user(len, optlen))
6641 return -EFAULT;
6642
6643 if (copy_to_user(optval, &assocparams, len))
6644 return -EFAULT;
6645
6646 return 0;
6647}
6648
6649/*
6650 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6651 *
6652 * This socket option is a boolean flag which turns on or off mapped V4
6653 * addresses. If this option is turned on and the socket is type
6654 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6655 * If this option is turned off, then no mapping will be done of V4
6656 * addresses and a user will receive both PF_INET6 and PF_INET type
6657 * addresses on the socket.
6658 */
6659static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6660 char __user *optval, int __user *optlen)
6661{
6662 int val;
6663 struct sctp_sock *sp = sctp_sk(sk);
6664
6665 if (len < sizeof(int))
6666 return -EINVAL;
6667
6668 len = sizeof(int);
6669 val = sp->v4mapped;
6670 if (put_user(len, optlen))
6671 return -EFAULT;
6672 if (copy_to_user(optval, &val, len))
6673 return -EFAULT;
6674
6675 return 0;
6676}
6677
6678/*
6679 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6680 * (chapter and verse is quoted at sctp_setsockopt_context())
6681 */
6682static int sctp_getsockopt_context(struct sock *sk, int len,
6683 char __user *optval, int __user *optlen)
6684{
6685 struct sctp_assoc_value params;
6686 struct sctp_association *asoc;
6687
6688 if (len < sizeof(struct sctp_assoc_value))
6689 return -EINVAL;
6690
6691 len = sizeof(struct sctp_assoc_value);
6692
6693 if (copy_from_user(¶ms, optval, len))
6694 return -EFAULT;
6695
6696 asoc = sctp_id2assoc(sk, params.assoc_id);
6697 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6698 sctp_style(sk, UDP))
6699 return -EINVAL;
6700
6701 params.assoc_value = asoc ? asoc->default_rcv_context
6702 : sctp_sk(sk)->default_rcv_context;
6703
6704 if (put_user(len, optlen))
6705 return -EFAULT;
6706 if (copy_to_user(optval, ¶ms, len))
6707 return -EFAULT;
6708
6709 return 0;
6710}
6711
6712/*
6713 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6714 * This option will get or set the maximum size to put in any outgoing
6715 * SCTP DATA chunk. If a message is larger than this size it will be
6716 * fragmented by SCTP into the specified size. Note that the underlying
6717 * SCTP implementation may fragment into smaller sized chunks when the
6718 * PMTU of the underlying association is smaller than the value set by
6719 * the user. The default value for this option is '0' which indicates
6720 * the user is NOT limiting fragmentation and only the PMTU will effect
6721 * SCTP's choice of DATA chunk size. Note also that values set larger
6722 * than the maximum size of an IP datagram will effectively let SCTP
6723 * control fragmentation (i.e. the same as setting this option to 0).
6724 *
6725 * The following structure is used to access and modify this parameter:
6726 *
6727 * struct sctp_assoc_value {
6728 * sctp_assoc_t assoc_id;
6729 * uint32_t assoc_value;
6730 * };
6731 *
6732 * assoc_id: This parameter is ignored for one-to-one style sockets.
6733 * For one-to-many style sockets this parameter indicates which
6734 * association the user is performing an action upon. Note that if
6735 * this field's value is zero then the endpoints default value is
6736 * changed (effecting future associations only).
6737 * assoc_value: This parameter specifies the maximum size in bytes.
6738 */
6739static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6740 char __user *optval, int __user *optlen)
6741{
6742 struct sctp_assoc_value params;
6743 struct sctp_association *asoc;
6744
6745 if (len == sizeof(int)) {
6746 pr_warn_ratelimited(DEPRECATED
6747 "%s (pid %d) "
6748 "Use of int in maxseg socket option.\n"
6749 "Use struct sctp_assoc_value instead\n",
6750 current->comm, task_pid_nr(current));
6751 params.assoc_id = SCTP_FUTURE_ASSOC;
6752 } else if (len >= sizeof(struct sctp_assoc_value)) {
6753 len = sizeof(struct sctp_assoc_value);
6754 if (copy_from_user(¶ms, optval, len))
6755 return -EFAULT;
6756 } else
6757 return -EINVAL;
6758
6759 asoc = sctp_id2assoc(sk, params.assoc_id);
6760 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6761 sctp_style(sk, UDP))
6762 return -EINVAL;
6763
6764 if (asoc)
6765 params.assoc_value = asoc->frag_point;
6766 else
6767 params.assoc_value = sctp_sk(sk)->user_frag;
6768
6769 if (put_user(len, optlen))
6770 return -EFAULT;
6771 if (len == sizeof(int)) {
6772 if (copy_to_user(optval, ¶ms.assoc_value, len))
6773 return -EFAULT;
6774 } else {
6775 if (copy_to_user(optval, ¶ms, len))
6776 return -EFAULT;
6777 }
6778
6779 return 0;
6780}
6781
6782/*
6783 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6784 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6785 */
6786static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6787 char __user *optval, int __user *optlen)
6788{
6789 int val;
6790
6791 if (len < sizeof(int))
6792 return -EINVAL;
6793
6794 len = sizeof(int);
6795
6796 val = sctp_sk(sk)->frag_interleave;
6797 if (put_user(len, optlen))
6798 return -EFAULT;
6799 if (copy_to_user(optval, &val, len))
6800 return -EFAULT;
6801
6802 return 0;
6803}
6804
6805/*
6806 * 7.1.25. Set or Get the sctp partial delivery point
6807 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6808 */
6809static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6810 char __user *optval,
6811 int __user *optlen)
6812{
6813 u32 val;
6814
6815 if (len < sizeof(u32))
6816 return -EINVAL;
6817
6818 len = sizeof(u32);
6819
6820 val = sctp_sk(sk)->pd_point;
6821 if (put_user(len, optlen))
6822 return -EFAULT;
6823 if (copy_to_user(optval, &val, len))
6824 return -EFAULT;
6825
6826 return 0;
6827}
6828
6829/*
6830 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6831 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6832 */
6833static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6834 char __user *optval,
6835 int __user *optlen)
6836{
6837 struct sctp_assoc_value params;
6838 struct sctp_association *asoc;
6839
6840 if (len == sizeof(int)) {
6841 pr_warn_ratelimited(DEPRECATED
6842 "%s (pid %d) "
6843 "Use of int in max_burst socket option.\n"
6844 "Use struct sctp_assoc_value instead\n",
6845 current->comm, task_pid_nr(current));
6846 params.assoc_id = SCTP_FUTURE_ASSOC;
6847 } else if (len >= sizeof(struct sctp_assoc_value)) {
6848 len = sizeof(struct sctp_assoc_value);
6849 if (copy_from_user(¶ms, optval, len))
6850 return -EFAULT;
6851 } else
6852 return -EINVAL;
6853
6854 asoc = sctp_id2assoc(sk, params.assoc_id);
6855 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6856 sctp_style(sk, UDP))
6857 return -EINVAL;
6858
6859 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6860
6861 if (len == sizeof(int)) {
6862 if (copy_to_user(optval, ¶ms.assoc_value, len))
6863 return -EFAULT;
6864 } else {
6865 if (copy_to_user(optval, ¶ms, len))
6866 return -EFAULT;
6867 }
6868
6869 return 0;
6870
6871}
6872
6873static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6874 char __user *optval, int __user *optlen)
6875{
6876 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6877 struct sctp_hmacalgo __user *p = (void __user *)optval;
6878 struct sctp_hmac_algo_param *hmacs;
6879 __u16 data_len = 0;
6880 u32 num_idents;
6881 int i;
6882
6883 if (!ep->auth_enable)
6884 return -EACCES;
6885
6886 hmacs = ep->auth_hmacs_list;
6887 data_len = ntohs(hmacs->param_hdr.length) -
6888 sizeof(struct sctp_paramhdr);
6889
6890 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6891 return -EINVAL;
6892
6893 len = sizeof(struct sctp_hmacalgo) + data_len;
6894 num_idents = data_len / sizeof(u16);
6895
6896 if (put_user(len, optlen))
6897 return -EFAULT;
6898 if (put_user(num_idents, &p->shmac_num_idents))
6899 return -EFAULT;
6900 for (i = 0; i < num_idents; i++) {
6901 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6902
6903 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6904 return -EFAULT;
6905 }
6906 return 0;
6907}
6908
6909static int sctp_getsockopt_active_key(struct sock *sk, int len,
6910 char __user *optval, int __user *optlen)
6911{
6912 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6913 struct sctp_authkeyid val;
6914 struct sctp_association *asoc;
6915
6916 if (len < sizeof(struct sctp_authkeyid))
6917 return -EINVAL;
6918
6919 len = sizeof(struct sctp_authkeyid);
6920 if (copy_from_user(&val, optval, len))
6921 return -EFAULT;
6922
6923 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6924 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6925 return -EINVAL;
6926
6927 if (asoc) {
6928 if (!asoc->peer.auth_capable)
6929 return -EACCES;
6930 val.scact_keynumber = asoc->active_key_id;
6931 } else {
6932 if (!ep->auth_enable)
6933 return -EACCES;
6934 val.scact_keynumber = ep->active_key_id;
6935 }
6936
6937 if (put_user(len, optlen))
6938 return -EFAULT;
6939 if (copy_to_user(optval, &val, len))
6940 return -EFAULT;
6941
6942 return 0;
6943}
6944
6945static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6946 char __user *optval, int __user *optlen)
6947{
6948 struct sctp_authchunks __user *p = (void __user *)optval;
6949 struct sctp_authchunks val;
6950 struct sctp_association *asoc;
6951 struct sctp_chunks_param *ch;
6952 u32 num_chunks = 0;
6953 char __user *to;
6954
6955 if (len < sizeof(struct sctp_authchunks))
6956 return -EINVAL;
6957
6958 if (copy_from_user(&val, optval, sizeof(val)))
6959 return -EFAULT;
6960
6961 to = p->gauth_chunks;
6962 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6963 if (!asoc)
6964 return -EINVAL;
6965
6966 if (!asoc->peer.auth_capable)
6967 return -EACCES;
6968
6969 ch = asoc->peer.peer_chunks;
6970 if (!ch)
6971 goto num;
6972
6973 /* See if the user provided enough room for all the data */
6974 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6975 if (len < num_chunks)
6976 return -EINVAL;
6977
6978 if (copy_to_user(to, ch->chunks, num_chunks))
6979 return -EFAULT;
6980num:
6981 len = sizeof(struct sctp_authchunks) + num_chunks;
6982 if (put_user(len, optlen))
6983 return -EFAULT;
6984 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6985 return -EFAULT;
6986 return 0;
6987}
6988
6989static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6990 char __user *optval, int __user *optlen)
6991{
6992 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6993 struct sctp_authchunks __user *p = (void __user *)optval;
6994 struct sctp_authchunks val;
6995 struct sctp_association *asoc;
6996 struct sctp_chunks_param *ch;
6997 u32 num_chunks = 0;
6998 char __user *to;
6999
7000 if (len < sizeof(struct sctp_authchunks))
7001 return -EINVAL;
7002
7003 if (copy_from_user(&val, optval, sizeof(val)))
7004 return -EFAULT;
7005
7006 to = p->gauth_chunks;
7007 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7008 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7009 sctp_style(sk, UDP))
7010 return -EINVAL;
7011
7012 if (asoc) {
7013 if (!asoc->peer.auth_capable)
7014 return -EACCES;
7015 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7016 } else {
7017 if (!ep->auth_enable)
7018 return -EACCES;
7019 ch = ep->auth_chunk_list;
7020 }
7021 if (!ch)
7022 goto num;
7023
7024 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7025 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7026 return -EINVAL;
7027
7028 if (copy_to_user(to, ch->chunks, num_chunks))
7029 return -EFAULT;
7030num:
7031 len = sizeof(struct sctp_authchunks) + num_chunks;
7032 if (put_user(len, optlen))
7033 return -EFAULT;
7034 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7035 return -EFAULT;
7036
7037 return 0;
7038}
7039
7040/*
7041 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7042 * This option gets the current number of associations that are attached
7043 * to a one-to-many style socket. The option value is an uint32_t.
7044 */
7045static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7046 char __user *optval, int __user *optlen)
7047{
7048 struct sctp_sock *sp = sctp_sk(sk);
7049 struct sctp_association *asoc;
7050 u32 val = 0;
7051
7052 if (sctp_style(sk, TCP))
7053 return -EOPNOTSUPP;
7054
7055 if (len < sizeof(u32))
7056 return -EINVAL;
7057
7058 len = sizeof(u32);
7059
7060 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7061 val++;
7062 }
7063
7064 if (put_user(len, optlen))
7065 return -EFAULT;
7066 if (copy_to_user(optval, &val, len))
7067 return -EFAULT;
7068
7069 return 0;
7070}
7071
7072/*
7073 * 8.1.23 SCTP_AUTO_ASCONF
7074 * See the corresponding setsockopt entry as description
7075 */
7076static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7077 char __user *optval, int __user *optlen)
7078{
7079 int val = 0;
7080
7081 if (len < sizeof(int))
7082 return -EINVAL;
7083
7084 len = sizeof(int);
7085 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7086 val = 1;
7087 if (put_user(len, optlen))
7088 return -EFAULT;
7089 if (copy_to_user(optval, &val, len))
7090 return -EFAULT;
7091 return 0;
7092}
7093
7094/*
7095 * 8.2.6. Get the Current Identifiers of Associations
7096 * (SCTP_GET_ASSOC_ID_LIST)
7097 *
7098 * This option gets the current list of SCTP association identifiers of
7099 * the SCTP associations handled by a one-to-many style socket.
7100 */
7101static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7102 char __user *optval, int __user *optlen)
7103{
7104 struct sctp_sock *sp = sctp_sk(sk);
7105 struct sctp_association *asoc;
7106 struct sctp_assoc_ids *ids;
7107 u32 num = 0;
7108
7109 if (sctp_style(sk, TCP))
7110 return -EOPNOTSUPP;
7111
7112 if (len < sizeof(struct sctp_assoc_ids))
7113 return -EINVAL;
7114
7115 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7116 num++;
7117 }
7118
7119 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7120 return -EINVAL;
7121
7122 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7123
7124 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7125 if (unlikely(!ids))
7126 return -ENOMEM;
7127
7128 ids->gaids_number_of_ids = num;
7129 num = 0;
7130 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7131 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7132 }
7133
7134 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7135 kfree(ids);
7136 return -EFAULT;
7137 }
7138
7139 kfree(ids);
7140 return 0;
7141}
7142
7143/*
7144 * SCTP_PEER_ADDR_THLDS
7145 *
7146 * This option allows us to fetch the partially failed threshold for one or all
7147 * transports in an association. See Section 6.1 of:
7148 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7149 */
7150static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7151 char __user *optval, int len,
7152 int __user *optlen, bool v2)
7153{
7154 struct sctp_paddrthlds_v2 val;
7155 struct sctp_transport *trans;
7156 struct sctp_association *asoc;
7157 int min;
7158
7159 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7160 if (len < min)
7161 return -EINVAL;
7162 len = min;
7163 if (copy_from_user(&val, optval, len))
7164 return -EFAULT;
7165
7166 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7167 trans = sctp_addr_id2transport(sk, &val.spt_address,
7168 val.spt_assoc_id);
7169 if (!trans)
7170 return -ENOENT;
7171
7172 val.spt_pathmaxrxt = trans->pathmaxrxt;
7173 val.spt_pathpfthld = trans->pf_retrans;
7174 val.spt_pathcpthld = trans->ps_retrans;
7175
7176 goto out;
7177 }
7178
7179 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7180 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7181 sctp_style(sk, UDP))
7182 return -EINVAL;
7183
7184 if (asoc) {
7185 val.spt_pathpfthld = asoc->pf_retrans;
7186 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7187 val.spt_pathcpthld = asoc->ps_retrans;
7188 } else {
7189 struct sctp_sock *sp = sctp_sk(sk);
7190
7191 val.spt_pathpfthld = sp->pf_retrans;
7192 val.spt_pathmaxrxt = sp->pathmaxrxt;
7193 val.spt_pathcpthld = sp->ps_retrans;
7194 }
7195
7196out:
7197 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7198 return -EFAULT;
7199
7200 return 0;
7201}
7202
7203/*
7204 * SCTP_GET_ASSOC_STATS
7205 *
7206 * This option retrieves local per endpoint statistics. It is modeled
7207 * after OpenSolaris' implementation
7208 */
7209static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7210 char __user *optval,
7211 int __user *optlen)
7212{
7213 struct sctp_assoc_stats sas;
7214 struct sctp_association *asoc = NULL;
7215
7216 /* User must provide at least the assoc id */
7217 if (len < sizeof(sctp_assoc_t))
7218 return -EINVAL;
7219
7220 /* Allow the struct to grow and fill in as much as possible */
7221 len = min_t(size_t, len, sizeof(sas));
7222
7223 if (copy_from_user(&sas, optval, len))
7224 return -EFAULT;
7225
7226 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7227 if (!asoc)
7228 return -EINVAL;
7229
7230 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7231 sas.sas_gapcnt = asoc->stats.gapcnt;
7232 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7233 sas.sas_osacks = asoc->stats.osacks;
7234 sas.sas_isacks = asoc->stats.isacks;
7235 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7236 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7237 sas.sas_oodchunks = asoc->stats.oodchunks;
7238 sas.sas_iodchunks = asoc->stats.iodchunks;
7239 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7240 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7241 sas.sas_idupchunks = asoc->stats.idupchunks;
7242 sas.sas_opackets = asoc->stats.opackets;
7243 sas.sas_ipackets = asoc->stats.ipackets;
7244
7245 /* New high max rto observed, will return 0 if not a single
7246 * RTO update took place. obs_rto_ipaddr will be bogus
7247 * in such a case
7248 */
7249 sas.sas_maxrto = asoc->stats.max_obs_rto;
7250 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7251 sizeof(struct sockaddr_storage));
7252
7253 /* Mark beginning of a new observation period */
7254 asoc->stats.max_obs_rto = asoc->rto_min;
7255
7256 if (put_user(len, optlen))
7257 return -EFAULT;
7258
7259 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7260
7261 if (copy_to_user(optval, &sas, len))
7262 return -EFAULT;
7263
7264 return 0;
7265}
7266
7267static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7268 char __user *optval,
7269 int __user *optlen)
7270{
7271 int val = 0;
7272
7273 if (len < sizeof(int))
7274 return -EINVAL;
7275
7276 len = sizeof(int);
7277 if (sctp_sk(sk)->recvrcvinfo)
7278 val = 1;
7279 if (put_user(len, optlen))
7280 return -EFAULT;
7281 if (copy_to_user(optval, &val, len))
7282 return -EFAULT;
7283
7284 return 0;
7285}
7286
7287static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7288 char __user *optval,
7289 int __user *optlen)
7290{
7291 int val = 0;
7292
7293 if (len < sizeof(int))
7294 return -EINVAL;
7295
7296 len = sizeof(int);
7297 if (sctp_sk(sk)->recvnxtinfo)
7298 val = 1;
7299 if (put_user(len, optlen))
7300 return -EFAULT;
7301 if (copy_to_user(optval, &val, len))
7302 return -EFAULT;
7303
7304 return 0;
7305}
7306
7307static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7308 char __user *optval,
7309 int __user *optlen)
7310{
7311 struct sctp_assoc_value params;
7312 struct sctp_association *asoc;
7313 int retval = -EFAULT;
7314
7315 if (len < sizeof(params)) {
7316 retval = -EINVAL;
7317 goto out;
7318 }
7319
7320 len = sizeof(params);
7321 if (copy_from_user(¶ms, optval, len))
7322 goto out;
7323
7324 asoc = sctp_id2assoc(sk, params.assoc_id);
7325 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7326 sctp_style(sk, UDP)) {
7327 retval = -EINVAL;
7328 goto out;
7329 }
7330
7331 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7332 : sctp_sk(sk)->ep->prsctp_enable;
7333
7334 if (put_user(len, optlen))
7335 goto out;
7336
7337 if (copy_to_user(optval, ¶ms, len))
7338 goto out;
7339
7340 retval = 0;
7341
7342out:
7343 return retval;
7344}
7345
7346static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7347 char __user *optval,
7348 int __user *optlen)
7349{
7350 struct sctp_default_prinfo info;
7351 struct sctp_association *asoc;
7352 int retval = -EFAULT;
7353
7354 if (len < sizeof(info)) {
7355 retval = -EINVAL;
7356 goto out;
7357 }
7358
7359 len = sizeof(info);
7360 if (copy_from_user(&info, optval, len))
7361 goto out;
7362
7363 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7364 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7365 sctp_style(sk, UDP)) {
7366 retval = -EINVAL;
7367 goto out;
7368 }
7369
7370 if (asoc) {
7371 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7372 info.pr_value = asoc->default_timetolive;
7373 } else {
7374 struct sctp_sock *sp = sctp_sk(sk);
7375
7376 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7377 info.pr_value = sp->default_timetolive;
7378 }
7379
7380 if (put_user(len, optlen))
7381 goto out;
7382
7383 if (copy_to_user(optval, &info, len))
7384 goto out;
7385
7386 retval = 0;
7387
7388out:
7389 return retval;
7390}
7391
7392static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7393 char __user *optval,
7394 int __user *optlen)
7395{
7396 struct sctp_prstatus params;
7397 struct sctp_association *asoc;
7398 int policy;
7399 int retval = -EINVAL;
7400
7401 if (len < sizeof(params))
7402 goto out;
7403
7404 len = sizeof(params);
7405 if (copy_from_user(¶ms, optval, len)) {
7406 retval = -EFAULT;
7407 goto out;
7408 }
7409
7410 policy = params.sprstat_policy;
7411 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7412 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7413 goto out;
7414
7415 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7416 if (!asoc)
7417 goto out;
7418
7419 if (policy == SCTP_PR_SCTP_ALL) {
7420 params.sprstat_abandoned_unsent = 0;
7421 params.sprstat_abandoned_sent = 0;
7422 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7423 params.sprstat_abandoned_unsent +=
7424 asoc->abandoned_unsent[policy];
7425 params.sprstat_abandoned_sent +=
7426 asoc->abandoned_sent[policy];
7427 }
7428 } else {
7429 params.sprstat_abandoned_unsent =
7430 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7431 params.sprstat_abandoned_sent =
7432 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7433 }
7434
7435 if (put_user(len, optlen)) {
7436 retval = -EFAULT;
7437 goto out;
7438 }
7439
7440 if (copy_to_user(optval, ¶ms, len)) {
7441 retval = -EFAULT;
7442 goto out;
7443 }
7444
7445 retval = 0;
7446
7447out:
7448 return retval;
7449}
7450
7451static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7452 char __user *optval,
7453 int __user *optlen)
7454{
7455 struct sctp_stream_out_ext *streamoute;
7456 struct sctp_association *asoc;
7457 struct sctp_prstatus params;
7458 int retval = -EINVAL;
7459 int policy;
7460
7461 if (len < sizeof(params))
7462 goto out;
7463
7464 len = sizeof(params);
7465 if (copy_from_user(¶ms, optval, len)) {
7466 retval = -EFAULT;
7467 goto out;
7468 }
7469
7470 policy = params.sprstat_policy;
7471 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7472 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7473 goto out;
7474
7475 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7476 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7477 goto out;
7478
7479 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7480 if (!streamoute) {
7481 /* Not allocated yet, means all stats are 0 */
7482 params.sprstat_abandoned_unsent = 0;
7483 params.sprstat_abandoned_sent = 0;
7484 retval = 0;
7485 goto out;
7486 }
7487
7488 if (policy == SCTP_PR_SCTP_ALL) {
7489 params.sprstat_abandoned_unsent = 0;
7490 params.sprstat_abandoned_sent = 0;
7491 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7492 params.sprstat_abandoned_unsent +=
7493 streamoute->abandoned_unsent[policy];
7494 params.sprstat_abandoned_sent +=
7495 streamoute->abandoned_sent[policy];
7496 }
7497 } else {
7498 params.sprstat_abandoned_unsent =
7499 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7500 params.sprstat_abandoned_sent =
7501 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7502 }
7503
7504 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7505 retval = -EFAULT;
7506 goto out;
7507 }
7508
7509 retval = 0;
7510
7511out:
7512 return retval;
7513}
7514
7515static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7516 char __user *optval,
7517 int __user *optlen)
7518{
7519 struct sctp_assoc_value params;
7520 struct sctp_association *asoc;
7521 int retval = -EFAULT;
7522
7523 if (len < sizeof(params)) {
7524 retval = -EINVAL;
7525 goto out;
7526 }
7527
7528 len = sizeof(params);
7529 if (copy_from_user(¶ms, optval, len))
7530 goto out;
7531
7532 asoc = sctp_id2assoc(sk, params.assoc_id);
7533 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7534 sctp_style(sk, UDP)) {
7535 retval = -EINVAL;
7536 goto out;
7537 }
7538
7539 params.assoc_value = asoc ? asoc->peer.reconf_capable
7540 : sctp_sk(sk)->ep->reconf_enable;
7541
7542 if (put_user(len, optlen))
7543 goto out;
7544
7545 if (copy_to_user(optval, ¶ms, len))
7546 goto out;
7547
7548 retval = 0;
7549
7550out:
7551 return retval;
7552}
7553
7554static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7555 char __user *optval,
7556 int __user *optlen)
7557{
7558 struct sctp_assoc_value params;
7559 struct sctp_association *asoc;
7560 int retval = -EFAULT;
7561
7562 if (len < sizeof(params)) {
7563 retval = -EINVAL;
7564 goto out;
7565 }
7566
7567 len = sizeof(params);
7568 if (copy_from_user(¶ms, optval, len))
7569 goto out;
7570
7571 asoc = sctp_id2assoc(sk, params.assoc_id);
7572 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7573 sctp_style(sk, UDP)) {
7574 retval = -EINVAL;
7575 goto out;
7576 }
7577
7578 params.assoc_value = asoc ? asoc->strreset_enable
7579 : sctp_sk(sk)->ep->strreset_enable;
7580
7581 if (put_user(len, optlen))
7582 goto out;
7583
7584 if (copy_to_user(optval, ¶ms, len))
7585 goto out;
7586
7587 retval = 0;
7588
7589out:
7590 return retval;
7591}
7592
7593static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7594 char __user *optval,
7595 int __user *optlen)
7596{
7597 struct sctp_assoc_value params;
7598 struct sctp_association *asoc;
7599 int retval = -EFAULT;
7600
7601 if (len < sizeof(params)) {
7602 retval = -EINVAL;
7603 goto out;
7604 }
7605
7606 len = sizeof(params);
7607 if (copy_from_user(¶ms, optval, len))
7608 goto out;
7609
7610 asoc = sctp_id2assoc(sk, params.assoc_id);
7611 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7612 sctp_style(sk, UDP)) {
7613 retval = -EINVAL;
7614 goto out;
7615 }
7616
7617 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7618 : sctp_sk(sk)->default_ss;
7619
7620 if (put_user(len, optlen))
7621 goto out;
7622
7623 if (copy_to_user(optval, ¶ms, len))
7624 goto out;
7625
7626 retval = 0;
7627
7628out:
7629 return retval;
7630}
7631
7632static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7633 char __user *optval,
7634 int __user *optlen)
7635{
7636 struct sctp_stream_value params;
7637 struct sctp_association *asoc;
7638 int retval = -EFAULT;
7639
7640 if (len < sizeof(params)) {
7641 retval = -EINVAL;
7642 goto out;
7643 }
7644
7645 len = sizeof(params);
7646 if (copy_from_user(¶ms, optval, len))
7647 goto out;
7648
7649 asoc = sctp_id2assoc(sk, params.assoc_id);
7650 if (!asoc) {
7651 retval = -EINVAL;
7652 goto out;
7653 }
7654
7655 retval = sctp_sched_get_value(asoc, params.stream_id,
7656 ¶ms.stream_value);
7657 if (retval)
7658 goto out;
7659
7660 if (put_user(len, optlen)) {
7661 retval = -EFAULT;
7662 goto out;
7663 }
7664
7665 if (copy_to_user(optval, ¶ms, len)) {
7666 retval = -EFAULT;
7667 goto out;
7668 }
7669
7670out:
7671 return retval;
7672}
7673
7674static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7675 char __user *optval,
7676 int __user *optlen)
7677{
7678 struct sctp_assoc_value params;
7679 struct sctp_association *asoc;
7680 int retval = -EFAULT;
7681
7682 if (len < sizeof(params)) {
7683 retval = -EINVAL;
7684 goto out;
7685 }
7686
7687 len = sizeof(params);
7688 if (copy_from_user(¶ms, optval, len))
7689 goto out;
7690
7691 asoc = sctp_id2assoc(sk, params.assoc_id);
7692 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7693 sctp_style(sk, UDP)) {
7694 retval = -EINVAL;
7695 goto out;
7696 }
7697
7698 params.assoc_value = asoc ? asoc->peer.intl_capable
7699 : sctp_sk(sk)->ep->intl_enable;
7700
7701 if (put_user(len, optlen))
7702 goto out;
7703
7704 if (copy_to_user(optval, ¶ms, len))
7705 goto out;
7706
7707 retval = 0;
7708
7709out:
7710 return retval;
7711}
7712
7713static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7714 char __user *optval,
7715 int __user *optlen)
7716{
7717 int val;
7718
7719 if (len < sizeof(int))
7720 return -EINVAL;
7721
7722 len = sizeof(int);
7723 val = sctp_sk(sk)->reuse;
7724 if (put_user(len, optlen))
7725 return -EFAULT;
7726
7727 if (copy_to_user(optval, &val, len))
7728 return -EFAULT;
7729
7730 return 0;
7731}
7732
7733static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7734 int __user *optlen)
7735{
7736 struct sctp_association *asoc;
7737 struct sctp_event param;
7738 __u16 subscribe;
7739
7740 if (len < sizeof(param))
7741 return -EINVAL;
7742
7743 len = sizeof(param);
7744 if (copy_from_user(¶m, optval, len))
7745 return -EFAULT;
7746
7747 if (param.se_type < SCTP_SN_TYPE_BASE ||
7748 param.se_type > SCTP_SN_TYPE_MAX)
7749 return -EINVAL;
7750
7751 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7752 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7753 sctp_style(sk, UDP))
7754 return -EINVAL;
7755
7756 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7757 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7758
7759 if (put_user(len, optlen))
7760 return -EFAULT;
7761
7762 if (copy_to_user(optval, ¶m, len))
7763 return -EFAULT;
7764
7765 return 0;
7766}
7767
7768static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7769 char __user *optval,
7770 int __user *optlen)
7771{
7772 struct sctp_assoc_value params;
7773 struct sctp_association *asoc;
7774 int retval = -EFAULT;
7775
7776 if (len < sizeof(params)) {
7777 retval = -EINVAL;
7778 goto out;
7779 }
7780
7781 len = sizeof(params);
7782 if (copy_from_user(¶ms, optval, len))
7783 goto out;
7784
7785 asoc = sctp_id2assoc(sk, params.assoc_id);
7786 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7787 sctp_style(sk, UDP)) {
7788 retval = -EINVAL;
7789 goto out;
7790 }
7791
7792 params.assoc_value = asoc ? asoc->peer.asconf_capable
7793 : sctp_sk(sk)->ep->asconf_enable;
7794
7795 if (put_user(len, optlen))
7796 goto out;
7797
7798 if (copy_to_user(optval, ¶ms, len))
7799 goto out;
7800
7801 retval = 0;
7802
7803out:
7804 return retval;
7805}
7806
7807static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7808 char __user *optval,
7809 int __user *optlen)
7810{
7811 struct sctp_assoc_value params;
7812 struct sctp_association *asoc;
7813 int retval = -EFAULT;
7814
7815 if (len < sizeof(params)) {
7816 retval = -EINVAL;
7817 goto out;
7818 }
7819
7820 len = sizeof(params);
7821 if (copy_from_user(¶ms, optval, len))
7822 goto out;
7823
7824 asoc = sctp_id2assoc(sk, params.assoc_id);
7825 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7826 sctp_style(sk, UDP)) {
7827 retval = -EINVAL;
7828 goto out;
7829 }
7830
7831 params.assoc_value = asoc ? asoc->peer.auth_capable
7832 : sctp_sk(sk)->ep->auth_enable;
7833
7834 if (put_user(len, optlen))
7835 goto out;
7836
7837 if (copy_to_user(optval, ¶ms, len))
7838 goto out;
7839
7840 retval = 0;
7841
7842out:
7843 return retval;
7844}
7845
7846static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7847 char __user *optval,
7848 int __user *optlen)
7849{
7850 struct sctp_assoc_value params;
7851 struct sctp_association *asoc;
7852 int retval = -EFAULT;
7853
7854 if (len < sizeof(params)) {
7855 retval = -EINVAL;
7856 goto out;
7857 }
7858
7859 len = sizeof(params);
7860 if (copy_from_user(¶ms, optval, len))
7861 goto out;
7862
7863 asoc = sctp_id2assoc(sk, params.assoc_id);
7864 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7865 sctp_style(sk, UDP)) {
7866 retval = -EINVAL;
7867 goto out;
7868 }
7869
7870 params.assoc_value = asoc ? asoc->peer.ecn_capable
7871 : sctp_sk(sk)->ep->ecn_enable;
7872
7873 if (put_user(len, optlen))
7874 goto out;
7875
7876 if (copy_to_user(optval, ¶ms, len))
7877 goto out;
7878
7879 retval = 0;
7880
7881out:
7882 return retval;
7883}
7884
7885static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7886 char __user *optval,
7887 int __user *optlen)
7888{
7889 struct sctp_assoc_value params;
7890 struct sctp_association *asoc;
7891 int retval = -EFAULT;
7892
7893 if (len < sizeof(params)) {
7894 retval = -EINVAL;
7895 goto out;
7896 }
7897
7898 len = sizeof(params);
7899 if (copy_from_user(¶ms, optval, len))
7900 goto out;
7901
7902 asoc = sctp_id2assoc(sk, params.assoc_id);
7903 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7904 sctp_style(sk, UDP)) {
7905 retval = -EINVAL;
7906 goto out;
7907 }
7908
7909 params.assoc_value = asoc ? asoc->pf_expose
7910 : sctp_sk(sk)->pf_expose;
7911
7912 if (put_user(len, optlen))
7913 goto out;
7914
7915 if (copy_to_user(optval, ¶ms, len))
7916 goto out;
7917
7918 retval = 0;
7919
7920out:
7921 return retval;
7922}
7923
7924static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7925 char __user *optval, int __user *optlen)
7926{
7927 struct sctp_association *asoc;
7928 struct sctp_udpencaps encap;
7929 struct sctp_transport *t;
7930 __be16 encap_port;
7931
7932 if (len < sizeof(encap))
7933 return -EINVAL;
7934
7935 len = sizeof(encap);
7936 if (copy_from_user(&encap, optval, len))
7937 return -EFAULT;
7938
7939 /* If an address other than INADDR_ANY is specified, and
7940 * no transport is found, then the request is invalid.
7941 */
7942 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7943 t = sctp_addr_id2transport(sk, &encap.sue_address,
7944 encap.sue_assoc_id);
7945 if (!t) {
7946 pr_debug("%s: failed no transport\n", __func__);
7947 return -EINVAL;
7948 }
7949
7950 encap_port = t->encap_port;
7951 goto out;
7952 }
7953
7954 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7955 * socket is a one to many style socket, and an association
7956 * was not found, then the id was invalid.
7957 */
7958 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7959 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7960 sctp_style(sk, UDP)) {
7961 pr_debug("%s: failed no association\n", __func__);
7962 return -EINVAL;
7963 }
7964
7965 if (asoc) {
7966 encap_port = asoc->encap_port;
7967 goto out;
7968 }
7969
7970 encap_port = sctp_sk(sk)->encap_port;
7971
7972out:
7973 encap.sue_port = (__force uint16_t)encap_port;
7974 if (copy_to_user(optval, &encap, len))
7975 return -EFAULT;
7976
7977 if (put_user(len, optlen))
7978 return -EFAULT;
7979
7980 return 0;
7981}
7982
7983static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7984 char __user *optval,
7985 int __user *optlen)
7986{
7987 struct sctp_probeinterval params;
7988 struct sctp_association *asoc;
7989 struct sctp_transport *t;
7990 __u32 probe_interval;
7991
7992 if (len < sizeof(params))
7993 return -EINVAL;
7994
7995 len = sizeof(params);
7996 if (copy_from_user(¶ms, optval, len))
7997 return -EFAULT;
7998
7999 /* If an address other than INADDR_ANY is specified, and
8000 * no transport is found, then the request is invalid.
8001 */
8002 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
8003 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
8004 params.spi_assoc_id);
8005 if (!t) {
8006 pr_debug("%s: failed no transport\n", __func__);
8007 return -EINVAL;
8008 }
8009
8010 probe_interval = jiffies_to_msecs(t->probe_interval);
8011 goto out;
8012 }
8013
8014 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8015 * socket is a one to many style socket, and an association
8016 * was not found, then the id was invalid.
8017 */
8018 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8019 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8020 sctp_style(sk, UDP)) {
8021 pr_debug("%s: failed no association\n", __func__);
8022 return -EINVAL;
8023 }
8024
8025 if (asoc) {
8026 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8027 goto out;
8028 }
8029
8030 probe_interval = sctp_sk(sk)->probe_interval;
8031
8032out:
8033 params.spi_interval = probe_interval;
8034 if (copy_to_user(optval, ¶ms, len))
8035 return -EFAULT;
8036
8037 if (put_user(len, optlen))
8038 return -EFAULT;
8039
8040 return 0;
8041}
8042
8043static int sctp_getsockopt(struct sock *sk, int level, int optname,
8044 char __user *optval, int __user *optlen)
8045{
8046 int retval = 0;
8047 int len;
8048
8049 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8050
8051 /* I can hardly begin to describe how wrong this is. This is
8052 * so broken as to be worse than useless. The API draft
8053 * REALLY is NOT helpful here... I am not convinced that the
8054 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8055 * are at all well-founded.
8056 */
8057 if (level != SOL_SCTP) {
8058 struct sctp_af *af = sctp_sk(sk)->pf->af;
8059
8060 retval = af->getsockopt(sk, level, optname, optval, optlen);
8061 return retval;
8062 }
8063
8064 if (get_user(len, optlen))
8065 return -EFAULT;
8066
8067 if (len < 0)
8068 return -EINVAL;
8069
8070 lock_sock(sk);
8071
8072 switch (optname) {
8073 case SCTP_STATUS:
8074 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8075 break;
8076 case SCTP_DISABLE_FRAGMENTS:
8077 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8078 optlen);
8079 break;
8080 case SCTP_EVENTS:
8081 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8082 break;
8083 case SCTP_AUTOCLOSE:
8084 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8085 break;
8086 case SCTP_SOCKOPT_PEELOFF:
8087 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8088 break;
8089 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8090 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8091 break;
8092 case SCTP_PEER_ADDR_PARAMS:
8093 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8094 optlen);
8095 break;
8096 case SCTP_DELAYED_SACK:
8097 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8098 optlen);
8099 break;
8100 case SCTP_INITMSG:
8101 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8102 break;
8103 case SCTP_GET_PEER_ADDRS:
8104 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8105 optlen);
8106 break;
8107 case SCTP_GET_LOCAL_ADDRS:
8108 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8109 optlen);
8110 break;
8111 case SCTP_SOCKOPT_CONNECTX3:
8112 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8113 break;
8114 case SCTP_DEFAULT_SEND_PARAM:
8115 retval = sctp_getsockopt_default_send_param(sk, len,
8116 optval, optlen);
8117 break;
8118 case SCTP_DEFAULT_SNDINFO:
8119 retval = sctp_getsockopt_default_sndinfo(sk, len,
8120 optval, optlen);
8121 break;
8122 case SCTP_PRIMARY_ADDR:
8123 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8124 break;
8125 case SCTP_NODELAY:
8126 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8127 break;
8128 case SCTP_RTOINFO:
8129 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8130 break;
8131 case SCTP_ASSOCINFO:
8132 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8133 break;
8134 case SCTP_I_WANT_MAPPED_V4_ADDR:
8135 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8136 break;
8137 case SCTP_MAXSEG:
8138 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8139 break;
8140 case SCTP_GET_PEER_ADDR_INFO:
8141 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8142 optlen);
8143 break;
8144 case SCTP_ADAPTATION_LAYER:
8145 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8146 optlen);
8147 break;
8148 case SCTP_CONTEXT:
8149 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8150 break;
8151 case SCTP_FRAGMENT_INTERLEAVE:
8152 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8153 optlen);
8154 break;
8155 case SCTP_PARTIAL_DELIVERY_POINT:
8156 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8157 optlen);
8158 break;
8159 case SCTP_MAX_BURST:
8160 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8161 break;
8162 case SCTP_AUTH_KEY:
8163 case SCTP_AUTH_CHUNK:
8164 case SCTP_AUTH_DELETE_KEY:
8165 case SCTP_AUTH_DEACTIVATE_KEY:
8166 retval = -EOPNOTSUPP;
8167 break;
8168 case SCTP_HMAC_IDENT:
8169 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8170 break;
8171 case SCTP_AUTH_ACTIVE_KEY:
8172 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8173 break;
8174 case SCTP_PEER_AUTH_CHUNKS:
8175 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8176 optlen);
8177 break;
8178 case SCTP_LOCAL_AUTH_CHUNKS:
8179 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8180 optlen);
8181 break;
8182 case SCTP_GET_ASSOC_NUMBER:
8183 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8184 break;
8185 case SCTP_GET_ASSOC_ID_LIST:
8186 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8187 break;
8188 case SCTP_AUTO_ASCONF:
8189 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8190 break;
8191 case SCTP_PEER_ADDR_THLDS:
8192 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8193 optlen, false);
8194 break;
8195 case SCTP_PEER_ADDR_THLDS_V2:
8196 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8197 optlen, true);
8198 break;
8199 case SCTP_GET_ASSOC_STATS:
8200 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8201 break;
8202 case SCTP_RECVRCVINFO:
8203 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8204 break;
8205 case SCTP_RECVNXTINFO:
8206 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8207 break;
8208 case SCTP_PR_SUPPORTED:
8209 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8210 break;
8211 case SCTP_DEFAULT_PRINFO:
8212 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8213 optlen);
8214 break;
8215 case SCTP_PR_ASSOC_STATUS:
8216 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8217 optlen);
8218 break;
8219 case SCTP_PR_STREAM_STATUS:
8220 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8221 optlen);
8222 break;
8223 case SCTP_RECONFIG_SUPPORTED:
8224 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8225 optlen);
8226 break;
8227 case SCTP_ENABLE_STREAM_RESET:
8228 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8229 optlen);
8230 break;
8231 case SCTP_STREAM_SCHEDULER:
8232 retval = sctp_getsockopt_scheduler(sk, len, optval,
8233 optlen);
8234 break;
8235 case SCTP_STREAM_SCHEDULER_VALUE:
8236 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8237 optlen);
8238 break;
8239 case SCTP_INTERLEAVING_SUPPORTED:
8240 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8241 optlen);
8242 break;
8243 case SCTP_REUSE_PORT:
8244 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8245 break;
8246 case SCTP_EVENT:
8247 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8248 break;
8249 case SCTP_ASCONF_SUPPORTED:
8250 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8251 optlen);
8252 break;
8253 case SCTP_AUTH_SUPPORTED:
8254 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8255 optlen);
8256 break;
8257 case SCTP_ECN_SUPPORTED:
8258 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8259 break;
8260 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8261 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8262 break;
8263 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8264 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8265 break;
8266 case SCTP_PLPMTUD_PROBE_INTERVAL:
8267 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8268 break;
8269 default:
8270 retval = -ENOPROTOOPT;
8271 break;
8272 }
8273
8274 release_sock(sk);
8275 return retval;
8276}
8277
8278static int sctp_hash(struct sock *sk)
8279{
8280 /* STUB */
8281 return 0;
8282}
8283
8284static void sctp_unhash(struct sock *sk)
8285{
8286 /* STUB */
8287}
8288
8289/* Check if port is acceptable. Possibly find first available port.
8290 *
8291 * The port hash table (contained in the 'global' SCTP protocol storage
8292 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8293 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8294 * list (the list number is the port number hashed out, so as you
8295 * would expect from a hash function, all the ports in a given list have
8296 * such a number that hashes out to the same list number; you were
8297 * expecting that, right?); so each list has a set of ports, with a
8298 * link to the socket (struct sock) that uses it, the port number and
8299 * a fastreuse flag (FIXME: NPI ipg).
8300 */
8301static struct sctp_bind_bucket *sctp_bucket_create(
8302 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8303
8304static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8305{
8306 struct sctp_sock *sp = sctp_sk(sk);
8307 bool reuse = (sk->sk_reuse || sp->reuse);
8308 struct sctp_bind_hashbucket *head; /* hash list */
8309 struct net *net = sock_net(sk);
8310 kuid_t uid = sock_i_uid(sk);
8311 struct sctp_bind_bucket *pp;
8312 unsigned short snum;
8313 int ret;
8314
8315 snum = ntohs(addr->v4.sin_port);
8316
8317 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8318
8319 if (snum == 0) {
8320 /* Search for an available port. */
8321 int low, high, remaining, index;
8322 unsigned int rover;
8323
8324 inet_get_local_port_range(net, &low, &high);
8325 remaining = (high - low) + 1;
8326 rover = get_random_u32_below(remaining) + low;
8327
8328 do {
8329 rover++;
8330 if ((rover < low) || (rover > high))
8331 rover = low;
8332 if (inet_is_local_reserved_port(net, rover))
8333 continue;
8334 index = sctp_phashfn(net, rover);
8335 head = &sctp_port_hashtable[index];
8336 spin_lock_bh(&head->lock);
8337 sctp_for_each_hentry(pp, &head->chain)
8338 if ((pp->port == rover) &&
8339 net_eq(net, pp->net))
8340 goto next;
8341 break;
8342 next:
8343 spin_unlock_bh(&head->lock);
8344 cond_resched();
8345 } while (--remaining > 0);
8346
8347 /* Exhausted local port range during search? */
8348 ret = 1;
8349 if (remaining <= 0)
8350 return ret;
8351
8352 /* OK, here is the one we will use. HEAD (the port
8353 * hash table list entry) is non-NULL and we hold it's
8354 * mutex.
8355 */
8356 snum = rover;
8357 } else {
8358 /* We are given an specific port number; we verify
8359 * that it is not being used. If it is used, we will
8360 * exahust the search in the hash list corresponding
8361 * to the port number (snum) - we detect that with the
8362 * port iterator, pp being NULL.
8363 */
8364 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8365 spin_lock_bh(&head->lock);
8366 sctp_for_each_hentry(pp, &head->chain) {
8367 if ((pp->port == snum) && net_eq(pp->net, net))
8368 goto pp_found;
8369 }
8370 }
8371 pp = NULL;
8372 goto pp_not_found;
8373pp_found:
8374 if (!hlist_empty(&pp->owner)) {
8375 /* We had a port hash table hit - there is an
8376 * available port (pp != NULL) and it is being
8377 * used by other socket (pp->owner not empty); that other
8378 * socket is going to be sk2.
8379 */
8380 struct sock *sk2;
8381
8382 pr_debug("%s: found a possible match\n", __func__);
8383
8384 if ((pp->fastreuse && reuse &&
8385 sk->sk_state != SCTP_SS_LISTENING) ||
8386 (pp->fastreuseport && sk->sk_reuseport &&
8387 uid_eq(pp->fastuid, uid)))
8388 goto success;
8389
8390 /* Run through the list of sockets bound to the port
8391 * (pp->port) [via the pointers bind_next and
8392 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8393 * we get the endpoint they describe and run through
8394 * the endpoint's list of IP (v4 or v6) addresses,
8395 * comparing each of the addresses with the address of
8396 * the socket sk. If we find a match, then that means
8397 * that this port/socket (sk) combination are already
8398 * in an endpoint.
8399 */
8400 sk_for_each_bound(sk2, &pp->owner) {
8401 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8402 struct sctp_sock *sp2 = sctp_sk(sk2);
8403 struct sctp_endpoint *ep2 = sp2->ep;
8404
8405 if (sk == sk2 ||
8406 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8407 sk2->sk_state != SCTP_SS_LISTENING) ||
8408 (sk->sk_reuseport && sk2->sk_reuseport &&
8409 uid_eq(uid, sock_i_uid(sk2))))
8410 continue;
8411
8412 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8413 sk->sk_bound_dev_if == bound_dev_if2) &&
8414 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8415 addr, sp2, sp)) {
8416 ret = 1;
8417 goto fail_unlock;
8418 }
8419 }
8420
8421 pr_debug("%s: found a match\n", __func__);
8422 }
8423pp_not_found:
8424 /* If there was a hash table miss, create a new port. */
8425 ret = 1;
8426 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8427 goto fail_unlock;
8428
8429 /* In either case (hit or miss), make sure fastreuse is 1 only
8430 * if sk->sk_reuse is too (that is, if the caller requested
8431 * SO_REUSEADDR on this socket -sk-).
8432 */
8433 if (hlist_empty(&pp->owner)) {
8434 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8435 pp->fastreuse = 1;
8436 else
8437 pp->fastreuse = 0;
8438
8439 if (sk->sk_reuseport) {
8440 pp->fastreuseport = 1;
8441 pp->fastuid = uid;
8442 } else {
8443 pp->fastreuseport = 0;
8444 }
8445 } else {
8446 if (pp->fastreuse &&
8447 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8448 pp->fastreuse = 0;
8449
8450 if (pp->fastreuseport &&
8451 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8452 pp->fastreuseport = 0;
8453 }
8454
8455 /* We are set, so fill up all the data in the hash table
8456 * entry, tie the socket list information with the rest of the
8457 * sockets FIXME: Blurry, NPI (ipg).
8458 */
8459success:
8460 if (!sp->bind_hash) {
8461 inet_sk(sk)->inet_num = snum;
8462 sk_add_bind_node(sk, &pp->owner);
8463 sp->bind_hash = pp;
8464 }
8465 ret = 0;
8466
8467fail_unlock:
8468 spin_unlock_bh(&head->lock);
8469 return ret;
8470}
8471
8472/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8473 * port is requested.
8474 */
8475static int sctp_get_port(struct sock *sk, unsigned short snum)
8476{
8477 union sctp_addr addr;
8478 struct sctp_af *af = sctp_sk(sk)->pf->af;
8479
8480 /* Set up a dummy address struct from the sk. */
8481 af->from_sk(&addr, sk);
8482 addr.v4.sin_port = htons(snum);
8483
8484 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8485 return sctp_get_port_local(sk, &addr);
8486}
8487
8488/*
8489 * Move a socket to LISTENING state.
8490 */
8491static int sctp_listen_start(struct sock *sk, int backlog)
8492{
8493 struct sctp_sock *sp = sctp_sk(sk);
8494 struct sctp_endpoint *ep = sp->ep;
8495 struct crypto_shash *tfm = NULL;
8496 char alg[32];
8497
8498 /* Allocate HMAC for generating cookie. */
8499 if (!sp->hmac && sp->sctp_hmac_alg) {
8500 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8501 tfm = crypto_alloc_shash(alg, 0, 0);
8502 if (IS_ERR(tfm)) {
8503 net_info_ratelimited("failed to load transform for %s: %ld\n",
8504 sp->sctp_hmac_alg, PTR_ERR(tfm));
8505 return -ENOSYS;
8506 }
8507 sctp_sk(sk)->hmac = tfm;
8508 }
8509
8510 /*
8511 * If a bind() or sctp_bindx() is not called prior to a listen()
8512 * call that allows new associations to be accepted, the system
8513 * picks an ephemeral port and will choose an address set equivalent
8514 * to binding with a wildcard address.
8515 *
8516 * This is not currently spelled out in the SCTP sockets
8517 * extensions draft, but follows the practice as seen in TCP
8518 * sockets.
8519 *
8520 */
8521 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8522 if (!ep->base.bind_addr.port) {
8523 if (sctp_autobind(sk))
8524 return -EAGAIN;
8525 } else {
8526 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8527 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8528 return -EADDRINUSE;
8529 }
8530 }
8531
8532 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8533 return sctp_hash_endpoint(ep);
8534}
8535
8536/*
8537 * 4.1.3 / 5.1.3 listen()
8538 *
8539 * By default, new associations are not accepted for UDP style sockets.
8540 * An application uses listen() to mark a socket as being able to
8541 * accept new associations.
8542 *
8543 * On TCP style sockets, applications use listen() to ready the SCTP
8544 * endpoint for accepting inbound associations.
8545 *
8546 * On both types of endpoints a backlog of '0' disables listening.
8547 *
8548 * Move a socket to LISTENING state.
8549 */
8550int sctp_inet_listen(struct socket *sock, int backlog)
8551{
8552 struct sock *sk = sock->sk;
8553 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8554 int err = -EINVAL;
8555
8556 if (unlikely(backlog < 0))
8557 return err;
8558
8559 lock_sock(sk);
8560
8561 /* Peeled-off sockets are not allowed to listen(). */
8562 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8563 goto out;
8564
8565 if (sock->state != SS_UNCONNECTED)
8566 goto out;
8567
8568 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8569 goto out;
8570
8571 /* If backlog is zero, disable listening. */
8572 if (!backlog) {
8573 if (sctp_sstate(sk, CLOSED))
8574 goto out;
8575
8576 err = 0;
8577 sctp_unhash_endpoint(ep);
8578 sk->sk_state = SCTP_SS_CLOSED;
8579 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8580 sctp_sk(sk)->bind_hash->fastreuse = 1;
8581 goto out;
8582 }
8583
8584 /* If we are already listening, just update the backlog */
8585 if (sctp_sstate(sk, LISTENING))
8586 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8587 else {
8588 err = sctp_listen_start(sk, backlog);
8589 if (err)
8590 goto out;
8591 }
8592
8593 err = 0;
8594out:
8595 release_sock(sk);
8596 return err;
8597}
8598
8599/*
8600 * This function is done by modeling the current datagram_poll() and the
8601 * tcp_poll(). Note that, based on these implementations, we don't
8602 * lock the socket in this function, even though it seems that,
8603 * ideally, locking or some other mechanisms can be used to ensure
8604 * the integrity of the counters (sndbuf and wmem_alloc) used
8605 * in this place. We assume that we don't need locks either until proven
8606 * otherwise.
8607 *
8608 * Another thing to note is that we include the Async I/O support
8609 * here, again, by modeling the current TCP/UDP code. We don't have
8610 * a good way to test with it yet.
8611 */
8612__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8613{
8614 struct sock *sk = sock->sk;
8615 struct sctp_sock *sp = sctp_sk(sk);
8616 __poll_t mask;
8617
8618 poll_wait(file, sk_sleep(sk), wait);
8619
8620 sock_rps_record_flow(sk);
8621
8622 /* A TCP-style listening socket becomes readable when the accept queue
8623 * is not empty.
8624 */
8625 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8626 return (!list_empty(&sp->ep->asocs)) ?
8627 (EPOLLIN | EPOLLRDNORM) : 0;
8628
8629 mask = 0;
8630
8631 /* Is there any exceptional events? */
8632 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8633 mask |= EPOLLERR |
8634 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8635 if (sk->sk_shutdown & RCV_SHUTDOWN)
8636 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8637 if (sk->sk_shutdown == SHUTDOWN_MASK)
8638 mask |= EPOLLHUP;
8639
8640 /* Is it readable? Reconsider this code with TCP-style support. */
8641 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8642 mask |= EPOLLIN | EPOLLRDNORM;
8643
8644 /* The association is either gone or not ready. */
8645 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8646 return mask;
8647
8648 /* Is it writable? */
8649 if (sctp_writeable(sk)) {
8650 mask |= EPOLLOUT | EPOLLWRNORM;
8651 } else {
8652 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8653 /*
8654 * Since the socket is not locked, the buffer
8655 * might be made available after the writeable check and
8656 * before the bit is set. This could cause a lost I/O
8657 * signal. tcp_poll() has a race breaker for this race
8658 * condition. Based on their implementation, we put
8659 * in the following code to cover it as well.
8660 */
8661 if (sctp_writeable(sk))
8662 mask |= EPOLLOUT | EPOLLWRNORM;
8663 }
8664 return mask;
8665}
8666
8667/********************************************************************
8668 * 2nd Level Abstractions
8669 ********************************************************************/
8670
8671static struct sctp_bind_bucket *sctp_bucket_create(
8672 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8673{
8674 struct sctp_bind_bucket *pp;
8675
8676 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8677 if (pp) {
8678 SCTP_DBG_OBJCNT_INC(bind_bucket);
8679 pp->port = snum;
8680 pp->fastreuse = 0;
8681 INIT_HLIST_HEAD(&pp->owner);
8682 pp->net = net;
8683 hlist_add_head(&pp->node, &head->chain);
8684 }
8685 return pp;
8686}
8687
8688/* Caller must hold hashbucket lock for this tb with local BH disabled */
8689static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8690{
8691 if (pp && hlist_empty(&pp->owner)) {
8692 __hlist_del(&pp->node);
8693 kmem_cache_free(sctp_bucket_cachep, pp);
8694 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8695 }
8696}
8697
8698/* Release this socket's reference to a local port. */
8699static inline void __sctp_put_port(struct sock *sk)
8700{
8701 struct sctp_bind_hashbucket *head =
8702 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8703 inet_sk(sk)->inet_num)];
8704 struct sctp_bind_bucket *pp;
8705
8706 spin_lock(&head->lock);
8707 pp = sctp_sk(sk)->bind_hash;
8708 __sk_del_bind_node(sk);
8709 sctp_sk(sk)->bind_hash = NULL;
8710 inet_sk(sk)->inet_num = 0;
8711 sctp_bucket_destroy(pp);
8712 spin_unlock(&head->lock);
8713}
8714
8715void sctp_put_port(struct sock *sk)
8716{
8717 local_bh_disable();
8718 __sctp_put_port(sk);
8719 local_bh_enable();
8720}
8721
8722/*
8723 * The system picks an ephemeral port and choose an address set equivalent
8724 * to binding with a wildcard address.
8725 * One of those addresses will be the primary address for the association.
8726 * This automatically enables the multihoming capability of SCTP.
8727 */
8728static int sctp_autobind(struct sock *sk)
8729{
8730 union sctp_addr autoaddr;
8731 struct sctp_af *af;
8732 __be16 port;
8733
8734 /* Initialize a local sockaddr structure to INADDR_ANY. */
8735 af = sctp_sk(sk)->pf->af;
8736
8737 port = htons(inet_sk(sk)->inet_num);
8738 af->inaddr_any(&autoaddr, port);
8739
8740 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8741}
8742
8743/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8744 *
8745 * From RFC 2292
8746 * 4.2 The cmsghdr Structure *
8747 *
8748 * When ancillary data is sent or received, any number of ancillary data
8749 * objects can be specified by the msg_control and msg_controllen members of
8750 * the msghdr structure, because each object is preceded by
8751 * a cmsghdr structure defining the object's length (the cmsg_len member).
8752 * Historically Berkeley-derived implementations have passed only one object
8753 * at a time, but this API allows multiple objects to be
8754 * passed in a single call to sendmsg() or recvmsg(). The following example
8755 * shows two ancillary data objects in a control buffer.
8756 *
8757 * |<--------------------------- msg_controllen -------------------------->|
8758 * | |
8759 *
8760 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8761 *
8762 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8763 * | | |
8764 *
8765 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8766 *
8767 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8768 * | | | | |
8769 *
8770 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8771 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8772 *
8773 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8774 *
8775 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8776 * ^
8777 * |
8778 *
8779 * msg_control
8780 * points here
8781 */
8782static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8783{
8784 struct msghdr *my_msg = (struct msghdr *)msg;
8785 struct cmsghdr *cmsg;
8786
8787 for_each_cmsghdr(cmsg, my_msg) {
8788 if (!CMSG_OK(my_msg, cmsg))
8789 return -EINVAL;
8790
8791 /* Should we parse this header or ignore? */
8792 if (cmsg->cmsg_level != IPPROTO_SCTP)
8793 continue;
8794
8795 /* Strictly check lengths following example in SCM code. */
8796 switch (cmsg->cmsg_type) {
8797 case SCTP_INIT:
8798 /* SCTP Socket API Extension
8799 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8800 *
8801 * This cmsghdr structure provides information for
8802 * initializing new SCTP associations with sendmsg().
8803 * The SCTP_INITMSG socket option uses this same data
8804 * structure. This structure is not used for
8805 * recvmsg().
8806 *
8807 * cmsg_level cmsg_type cmsg_data[]
8808 * ------------ ------------ ----------------------
8809 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8810 */
8811 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8812 return -EINVAL;
8813
8814 cmsgs->init = CMSG_DATA(cmsg);
8815 break;
8816
8817 case SCTP_SNDRCV:
8818 /* SCTP Socket API Extension
8819 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8820 *
8821 * This cmsghdr structure specifies SCTP options for
8822 * sendmsg() and describes SCTP header information
8823 * about a received message through recvmsg().
8824 *
8825 * cmsg_level cmsg_type cmsg_data[]
8826 * ------------ ------------ ----------------------
8827 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8828 */
8829 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8830 return -EINVAL;
8831
8832 cmsgs->srinfo = CMSG_DATA(cmsg);
8833
8834 if (cmsgs->srinfo->sinfo_flags &
8835 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8836 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8837 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8838 return -EINVAL;
8839 break;
8840
8841 case SCTP_SNDINFO:
8842 /* SCTP Socket API Extension
8843 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8844 *
8845 * This cmsghdr structure specifies SCTP options for
8846 * sendmsg(). This structure and SCTP_RCVINFO replaces
8847 * SCTP_SNDRCV which has been deprecated.
8848 *
8849 * cmsg_level cmsg_type cmsg_data[]
8850 * ------------ ------------ ---------------------
8851 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8852 */
8853 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8854 return -EINVAL;
8855
8856 cmsgs->sinfo = CMSG_DATA(cmsg);
8857
8858 if (cmsgs->sinfo->snd_flags &
8859 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8860 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8861 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8862 return -EINVAL;
8863 break;
8864 case SCTP_PRINFO:
8865 /* SCTP Socket API Extension
8866 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8867 *
8868 * This cmsghdr structure specifies SCTP options for sendmsg().
8869 *
8870 * cmsg_level cmsg_type cmsg_data[]
8871 * ------------ ------------ ---------------------
8872 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8873 */
8874 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8875 return -EINVAL;
8876
8877 cmsgs->prinfo = CMSG_DATA(cmsg);
8878 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8879 return -EINVAL;
8880
8881 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8882 cmsgs->prinfo->pr_value = 0;
8883 break;
8884 case SCTP_AUTHINFO:
8885 /* SCTP Socket API Extension
8886 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8887 *
8888 * This cmsghdr structure specifies SCTP options for sendmsg().
8889 *
8890 * cmsg_level cmsg_type cmsg_data[]
8891 * ------------ ------------ ---------------------
8892 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8893 */
8894 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8895 return -EINVAL;
8896
8897 cmsgs->authinfo = CMSG_DATA(cmsg);
8898 break;
8899 case SCTP_DSTADDRV4:
8900 case SCTP_DSTADDRV6:
8901 /* SCTP Socket API Extension
8902 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8903 *
8904 * This cmsghdr structure specifies SCTP options for sendmsg().
8905 *
8906 * cmsg_level cmsg_type cmsg_data[]
8907 * ------------ ------------ ---------------------
8908 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8909 * ------------ ------------ ---------------------
8910 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8911 */
8912 cmsgs->addrs_msg = my_msg;
8913 break;
8914 default:
8915 return -EINVAL;
8916 }
8917 }
8918
8919 return 0;
8920}
8921
8922/*
8923 * Wait for a packet..
8924 * Note: This function is the same function as in core/datagram.c
8925 * with a few modifications to make lksctp work.
8926 */
8927static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8928{
8929 int error;
8930 DEFINE_WAIT(wait);
8931
8932 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8933
8934 /* Socket errors? */
8935 error = sock_error(sk);
8936 if (error)
8937 goto out;
8938
8939 if (!skb_queue_empty(&sk->sk_receive_queue))
8940 goto ready;
8941
8942 /* Socket shut down? */
8943 if (sk->sk_shutdown & RCV_SHUTDOWN)
8944 goto out;
8945
8946 /* Sequenced packets can come disconnected. If so we report the
8947 * problem.
8948 */
8949 error = -ENOTCONN;
8950
8951 /* Is there a good reason to think that we may receive some data? */
8952 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8953 goto out;
8954
8955 /* Handle signals. */
8956 if (signal_pending(current))
8957 goto interrupted;
8958
8959 /* Let another process have a go. Since we are going to sleep
8960 * anyway. Note: This may cause odd behaviors if the message
8961 * does not fit in the user's buffer, but this seems to be the
8962 * only way to honor MSG_DONTWAIT realistically.
8963 */
8964 release_sock(sk);
8965 *timeo_p = schedule_timeout(*timeo_p);
8966 lock_sock(sk);
8967
8968ready:
8969 finish_wait(sk_sleep(sk), &wait);
8970 return 0;
8971
8972interrupted:
8973 error = sock_intr_errno(*timeo_p);
8974
8975out:
8976 finish_wait(sk_sleep(sk), &wait);
8977 *err = error;
8978 return error;
8979}
8980
8981/* Receive a datagram.
8982 * Note: This is pretty much the same routine as in core/datagram.c
8983 * with a few changes to make lksctp work.
8984 */
8985struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
8986{
8987 int error;
8988 struct sk_buff *skb;
8989 long timeo;
8990
8991 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
8992
8993 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8994 MAX_SCHEDULE_TIMEOUT);
8995
8996 do {
8997 /* Again only user level code calls this function,
8998 * so nothing interrupt level
8999 * will suddenly eat the receive_queue.
9000 *
9001 * Look at current nfs client by the way...
9002 * However, this function was correct in any case. 8)
9003 */
9004 if (flags & MSG_PEEK) {
9005 skb = skb_peek(&sk->sk_receive_queue);
9006 if (skb)
9007 refcount_inc(&skb->users);
9008 } else {
9009 skb = __skb_dequeue(&sk->sk_receive_queue);
9010 }
9011
9012 if (skb)
9013 return skb;
9014
9015 /* Caller is allowed not to check sk->sk_err before calling. */
9016 error = sock_error(sk);
9017 if (error)
9018 goto no_packet;
9019
9020 if (sk->sk_shutdown & RCV_SHUTDOWN)
9021 break;
9022
9023 if (sk_can_busy_loop(sk)) {
9024 sk_busy_loop(sk, flags & MSG_DONTWAIT);
9025
9026 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9027 continue;
9028 }
9029
9030 /* User doesn't want to wait. */
9031 error = -EAGAIN;
9032 if (!timeo)
9033 goto no_packet;
9034 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9035
9036 return NULL;
9037
9038no_packet:
9039 *err = error;
9040 return NULL;
9041}
9042
9043/* If sndbuf has changed, wake up per association sndbuf waiters. */
9044static void __sctp_write_space(struct sctp_association *asoc)
9045{
9046 struct sock *sk = asoc->base.sk;
9047
9048 if (sctp_wspace(asoc) <= 0)
9049 return;
9050
9051 if (waitqueue_active(&asoc->wait))
9052 wake_up_interruptible(&asoc->wait);
9053
9054 if (sctp_writeable(sk)) {
9055 struct socket_wq *wq;
9056
9057 rcu_read_lock();
9058 wq = rcu_dereference(sk->sk_wq);
9059 if (wq) {
9060 if (waitqueue_active(&wq->wait))
9061 wake_up_interruptible(&wq->wait);
9062
9063 /* Note that we try to include the Async I/O support
9064 * here by modeling from the current TCP/UDP code.
9065 * We have not tested with it yet.
9066 */
9067 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9068 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9069 }
9070 rcu_read_unlock();
9071 }
9072}
9073
9074static void sctp_wake_up_waiters(struct sock *sk,
9075 struct sctp_association *asoc)
9076{
9077 struct sctp_association *tmp = asoc;
9078
9079 /* We do accounting for the sndbuf space per association,
9080 * so we only need to wake our own association.
9081 */
9082 if (asoc->ep->sndbuf_policy)
9083 return __sctp_write_space(asoc);
9084
9085 /* If association goes down and is just flushing its
9086 * outq, then just normally notify others.
9087 */
9088 if (asoc->base.dead)
9089 return sctp_write_space(sk);
9090
9091 /* Accounting for the sndbuf space is per socket, so we
9092 * need to wake up others, try to be fair and in case of
9093 * other associations, let them have a go first instead
9094 * of just doing a sctp_write_space() call.
9095 *
9096 * Note that we reach sctp_wake_up_waiters() only when
9097 * associations free up queued chunks, thus we are under
9098 * lock and the list of associations on a socket is
9099 * guaranteed not to change.
9100 */
9101 for (tmp = list_next_entry(tmp, asocs); 1;
9102 tmp = list_next_entry(tmp, asocs)) {
9103 /* Manually skip the head element. */
9104 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9105 continue;
9106 /* Wake up association. */
9107 __sctp_write_space(tmp);
9108 /* We've reached the end. */
9109 if (tmp == asoc)
9110 break;
9111 }
9112}
9113
9114/* Do accounting for the sndbuf space.
9115 * Decrement the used sndbuf space of the corresponding association by the
9116 * data size which was just transmitted(freed).
9117 */
9118static void sctp_wfree(struct sk_buff *skb)
9119{
9120 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9121 struct sctp_association *asoc = chunk->asoc;
9122 struct sock *sk = asoc->base.sk;
9123
9124 sk_mem_uncharge(sk, skb->truesize);
9125 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9126 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9127 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9128 &sk->sk_wmem_alloc));
9129
9130 if (chunk->shkey) {
9131 struct sctp_shared_key *shkey = chunk->shkey;
9132
9133 /* refcnt == 2 and !list_empty mean after this release, it's
9134 * not being used anywhere, and it's time to notify userland
9135 * that this shkey can be freed if it's been deactivated.
9136 */
9137 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9138 refcount_read(&shkey->refcnt) == 2) {
9139 struct sctp_ulpevent *ev;
9140
9141 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9142 SCTP_AUTH_FREE_KEY,
9143 GFP_KERNEL);
9144 if (ev)
9145 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9146 }
9147 sctp_auth_shkey_release(chunk->shkey);
9148 }
9149
9150 sock_wfree(skb);
9151 sctp_wake_up_waiters(sk, asoc);
9152
9153 sctp_association_put(asoc);
9154}
9155
9156/* Do accounting for the receive space on the socket.
9157 * Accounting for the association is done in ulpevent.c
9158 * We set this as a destructor for the cloned data skbs so that
9159 * accounting is done at the correct time.
9160 */
9161void sctp_sock_rfree(struct sk_buff *skb)
9162{
9163 struct sock *sk = skb->sk;
9164 struct sctp_ulpevent *event = sctp_skb2event(skb);
9165
9166 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9167
9168 /*
9169 * Mimic the behavior of sock_rfree
9170 */
9171 sk_mem_uncharge(sk, event->rmem_len);
9172}
9173
9174
9175/* Helper function to wait for space in the sndbuf. */
9176static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9177 size_t msg_len)
9178{
9179 struct sock *sk = asoc->base.sk;
9180 long current_timeo = *timeo_p;
9181 DEFINE_WAIT(wait);
9182 int err = 0;
9183
9184 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9185 *timeo_p, msg_len);
9186
9187 /* Increment the association's refcnt. */
9188 sctp_association_hold(asoc);
9189
9190 /* Wait on the association specific sndbuf space. */
9191 for (;;) {
9192 prepare_to_wait_exclusive(&asoc->wait, &wait,
9193 TASK_INTERRUPTIBLE);
9194 if (asoc->base.dead)
9195 goto do_dead;
9196 if (!*timeo_p)
9197 goto do_nonblock;
9198 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9199 goto do_error;
9200 if (signal_pending(current))
9201 goto do_interrupted;
9202 if ((int)msg_len <= sctp_wspace(asoc) &&
9203 sk_wmem_schedule(sk, msg_len))
9204 break;
9205
9206 /* Let another process have a go. Since we are going
9207 * to sleep anyway.
9208 */
9209 release_sock(sk);
9210 current_timeo = schedule_timeout(current_timeo);
9211 lock_sock(sk);
9212 if (sk != asoc->base.sk)
9213 goto do_error;
9214
9215 *timeo_p = current_timeo;
9216 }
9217
9218out:
9219 finish_wait(&asoc->wait, &wait);
9220
9221 /* Release the association's refcnt. */
9222 sctp_association_put(asoc);
9223
9224 return err;
9225
9226do_dead:
9227 err = -ESRCH;
9228 goto out;
9229
9230do_error:
9231 err = -EPIPE;
9232 goto out;
9233
9234do_interrupted:
9235 err = sock_intr_errno(*timeo_p);
9236 goto out;
9237
9238do_nonblock:
9239 err = -EAGAIN;
9240 goto out;
9241}
9242
9243void sctp_data_ready(struct sock *sk)
9244{
9245 struct socket_wq *wq;
9246
9247 rcu_read_lock();
9248 wq = rcu_dereference(sk->sk_wq);
9249 if (skwq_has_sleeper(wq))
9250 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9251 EPOLLRDNORM | EPOLLRDBAND);
9252 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9253 rcu_read_unlock();
9254}
9255
9256/* If socket sndbuf has changed, wake up all per association waiters. */
9257void sctp_write_space(struct sock *sk)
9258{
9259 struct sctp_association *asoc;
9260
9261 /* Wake up the tasks in each wait queue. */
9262 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9263 __sctp_write_space(asoc);
9264 }
9265}
9266
9267/* Is there any sndbuf space available on the socket?
9268 *
9269 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9270 * associations on the same socket. For a UDP-style socket with
9271 * multiple associations, it is possible for it to be "unwriteable"
9272 * prematurely. I assume that this is acceptable because
9273 * a premature "unwriteable" is better than an accidental "writeable" which
9274 * would cause an unwanted block under certain circumstances. For the 1-1
9275 * UDP-style sockets or TCP-style sockets, this code should work.
9276 * - Daisy
9277 */
9278static bool sctp_writeable(struct sock *sk)
9279{
9280 return sk->sk_sndbuf > sk->sk_wmem_queued;
9281}
9282
9283/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9284 * returns immediately with EINPROGRESS.
9285 */
9286static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9287{
9288 struct sock *sk = asoc->base.sk;
9289 int err = 0;
9290 long current_timeo = *timeo_p;
9291 DEFINE_WAIT(wait);
9292
9293 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9294
9295 /* Increment the association's refcnt. */
9296 sctp_association_hold(asoc);
9297
9298 for (;;) {
9299 prepare_to_wait_exclusive(&asoc->wait, &wait,
9300 TASK_INTERRUPTIBLE);
9301 if (!*timeo_p)
9302 goto do_nonblock;
9303 if (sk->sk_shutdown & RCV_SHUTDOWN)
9304 break;
9305 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9306 asoc->base.dead)
9307 goto do_error;
9308 if (signal_pending(current))
9309 goto do_interrupted;
9310
9311 if (sctp_state(asoc, ESTABLISHED))
9312 break;
9313
9314 /* Let another process have a go. Since we are going
9315 * to sleep anyway.
9316 */
9317 release_sock(sk);
9318 current_timeo = schedule_timeout(current_timeo);
9319 lock_sock(sk);
9320
9321 *timeo_p = current_timeo;
9322 }
9323
9324out:
9325 finish_wait(&asoc->wait, &wait);
9326
9327 /* Release the association's refcnt. */
9328 sctp_association_put(asoc);
9329
9330 return err;
9331
9332do_error:
9333 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9334 err = -ETIMEDOUT;
9335 else
9336 err = -ECONNREFUSED;
9337 goto out;
9338
9339do_interrupted:
9340 err = sock_intr_errno(*timeo_p);
9341 goto out;
9342
9343do_nonblock:
9344 err = -EINPROGRESS;
9345 goto out;
9346}
9347
9348static int sctp_wait_for_accept(struct sock *sk, long timeo)
9349{
9350 struct sctp_endpoint *ep;
9351 int err = 0;
9352 DEFINE_WAIT(wait);
9353
9354 ep = sctp_sk(sk)->ep;
9355
9356
9357 for (;;) {
9358 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9359 TASK_INTERRUPTIBLE);
9360
9361 if (list_empty(&ep->asocs)) {
9362 release_sock(sk);
9363 timeo = schedule_timeout(timeo);
9364 lock_sock(sk);
9365 }
9366
9367 err = -EINVAL;
9368 if (!sctp_sstate(sk, LISTENING))
9369 break;
9370
9371 err = 0;
9372 if (!list_empty(&ep->asocs))
9373 break;
9374
9375 err = sock_intr_errno(timeo);
9376 if (signal_pending(current))
9377 break;
9378
9379 err = -EAGAIN;
9380 if (!timeo)
9381 break;
9382 }
9383
9384 finish_wait(sk_sleep(sk), &wait);
9385
9386 return err;
9387}
9388
9389static void sctp_wait_for_close(struct sock *sk, long timeout)
9390{
9391 DEFINE_WAIT(wait);
9392
9393 do {
9394 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9395 if (list_empty(&sctp_sk(sk)->ep->asocs))
9396 break;
9397 release_sock(sk);
9398 timeout = schedule_timeout(timeout);
9399 lock_sock(sk);
9400 } while (!signal_pending(current) && timeout);
9401
9402 finish_wait(sk_sleep(sk), &wait);
9403}
9404
9405static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9406{
9407 struct sk_buff *frag;
9408
9409 if (!skb->data_len)
9410 goto done;
9411
9412 /* Don't forget the fragments. */
9413 skb_walk_frags(skb, frag)
9414 sctp_skb_set_owner_r_frag(frag, sk);
9415
9416done:
9417 sctp_skb_set_owner_r(skb, sk);
9418}
9419
9420void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9421 struct sctp_association *asoc)
9422{
9423 struct inet_sock *inet = inet_sk(sk);
9424 struct inet_sock *newinet;
9425 struct sctp_sock *sp = sctp_sk(sk);
9426
9427 newsk->sk_type = sk->sk_type;
9428 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9429 newsk->sk_flags = sk->sk_flags;
9430 newsk->sk_tsflags = sk->sk_tsflags;
9431 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9432 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9433 newsk->sk_reuse = sk->sk_reuse;
9434 sctp_sk(newsk)->reuse = sp->reuse;
9435
9436 newsk->sk_shutdown = sk->sk_shutdown;
9437 newsk->sk_destruct = sk->sk_destruct;
9438 newsk->sk_family = sk->sk_family;
9439 newsk->sk_protocol = IPPROTO_SCTP;
9440 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9441 newsk->sk_sndbuf = sk->sk_sndbuf;
9442 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9443 newsk->sk_lingertime = sk->sk_lingertime;
9444 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9445 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9446 newsk->sk_rxhash = sk->sk_rxhash;
9447
9448 newinet = inet_sk(newsk);
9449
9450 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9451 * getsockname() and getpeername()
9452 */
9453 newinet->inet_sport = inet->inet_sport;
9454 newinet->inet_saddr = inet->inet_saddr;
9455 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9456 newinet->inet_dport = htons(asoc->peer.port);
9457 newinet->pmtudisc = inet->pmtudisc;
9458 newinet->inet_id = get_random_u16();
9459
9460 newinet->uc_ttl = inet->uc_ttl;
9461 newinet->mc_loop = 1;
9462 newinet->mc_ttl = 1;
9463 newinet->mc_index = 0;
9464 newinet->mc_list = NULL;
9465
9466 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9467 net_enable_timestamp();
9468
9469 /* Set newsk security attributes from original sk and connection
9470 * security attribute from asoc.
9471 */
9472 security_sctp_sk_clone(asoc, sk, newsk);
9473}
9474
9475static inline void sctp_copy_descendant(struct sock *sk_to,
9476 const struct sock *sk_from)
9477{
9478 size_t ancestor_size = sizeof(struct inet_sock);
9479
9480 ancestor_size += sk_from->sk_prot->obj_size;
9481 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9482 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9483}
9484
9485/* Populate the fields of the newsk from the oldsk and migrate the assoc
9486 * and its messages to the newsk.
9487 */
9488static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9489 struct sctp_association *assoc,
9490 enum sctp_socket_type type)
9491{
9492 struct sctp_sock *oldsp = sctp_sk(oldsk);
9493 struct sctp_sock *newsp = sctp_sk(newsk);
9494 struct sctp_bind_bucket *pp; /* hash list port iterator */
9495 struct sctp_endpoint *newep = newsp->ep;
9496 struct sk_buff *skb, *tmp;
9497 struct sctp_ulpevent *event;
9498 struct sctp_bind_hashbucket *head;
9499 int err;
9500
9501 /* Migrate socket buffer sizes and all the socket level options to the
9502 * new socket.
9503 */
9504 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9505 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9506 /* Brute force copy old sctp opt. */
9507 sctp_copy_descendant(newsk, oldsk);
9508
9509 /* Restore the ep value that was overwritten with the above structure
9510 * copy.
9511 */
9512 newsp->ep = newep;
9513 newsp->hmac = NULL;
9514
9515 /* Hook this new socket in to the bind_hash list. */
9516 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9517 inet_sk(oldsk)->inet_num)];
9518 spin_lock_bh(&head->lock);
9519 pp = sctp_sk(oldsk)->bind_hash;
9520 sk_add_bind_node(newsk, &pp->owner);
9521 sctp_sk(newsk)->bind_hash = pp;
9522 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9523 spin_unlock_bh(&head->lock);
9524
9525 /* Copy the bind_addr list from the original endpoint to the new
9526 * endpoint so that we can handle restarts properly
9527 */
9528 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9529 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9530 if (err)
9531 return err;
9532
9533 /* New ep's auth_hmacs should be set if old ep's is set, in case
9534 * that net->sctp.auth_enable has been changed to 0 by users and
9535 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9536 */
9537 if (oldsp->ep->auth_hmacs) {
9538 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9539 if (err)
9540 return err;
9541 }
9542
9543 sctp_auto_asconf_init(newsp);
9544
9545 /* Move any messages in the old socket's receive queue that are for the
9546 * peeled off association to the new socket's receive queue.
9547 */
9548 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9549 event = sctp_skb2event(skb);
9550 if (event->asoc == assoc) {
9551 __skb_unlink(skb, &oldsk->sk_receive_queue);
9552 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9553 sctp_skb_set_owner_r_frag(skb, newsk);
9554 }
9555 }
9556
9557 /* Clean up any messages pending delivery due to partial
9558 * delivery. Three cases:
9559 * 1) No partial deliver; no work.
9560 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9561 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9562 */
9563 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9564
9565 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9566 struct sk_buff_head *queue;
9567
9568 /* Decide which queue to move pd_lobby skbs to. */
9569 if (assoc->ulpq.pd_mode) {
9570 queue = &newsp->pd_lobby;
9571 } else
9572 queue = &newsk->sk_receive_queue;
9573
9574 /* Walk through the pd_lobby, looking for skbs that
9575 * need moved to the new socket.
9576 */
9577 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9578 event = sctp_skb2event(skb);
9579 if (event->asoc == assoc) {
9580 __skb_unlink(skb, &oldsp->pd_lobby);
9581 __skb_queue_tail(queue, skb);
9582 sctp_skb_set_owner_r_frag(skb, newsk);
9583 }
9584 }
9585
9586 /* Clear up any skbs waiting for the partial
9587 * delivery to finish.
9588 */
9589 if (assoc->ulpq.pd_mode)
9590 sctp_clear_pd(oldsk, NULL);
9591
9592 }
9593
9594 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9595
9596 /* Set the type of socket to indicate that it is peeled off from the
9597 * original UDP-style socket or created with the accept() call on a
9598 * TCP-style socket..
9599 */
9600 newsp->type = type;
9601
9602 /* Mark the new socket "in-use" by the user so that any packets
9603 * that may arrive on the association after we've moved it are
9604 * queued to the backlog. This prevents a potential race between
9605 * backlog processing on the old socket and new-packet processing
9606 * on the new socket.
9607 *
9608 * The caller has just allocated newsk so we can guarantee that other
9609 * paths won't try to lock it and then oldsk.
9610 */
9611 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9612 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9613 sctp_assoc_migrate(assoc, newsk);
9614 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9615
9616 /* If the association on the newsk is already closed before accept()
9617 * is called, set RCV_SHUTDOWN flag.
9618 */
9619 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9620 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9621 newsk->sk_shutdown |= RCV_SHUTDOWN;
9622 } else {
9623 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9624 }
9625
9626 release_sock(newsk);
9627
9628 return 0;
9629}
9630
9631
9632/* This proto struct describes the ULP interface for SCTP. */
9633struct proto sctp_prot = {
9634 .name = "SCTP",
9635 .owner = THIS_MODULE,
9636 .close = sctp_close,
9637 .disconnect = sctp_disconnect,
9638 .accept = sctp_accept,
9639 .ioctl = sctp_ioctl,
9640 .init = sctp_init_sock,
9641 .destroy = sctp_destroy_sock,
9642 .shutdown = sctp_shutdown,
9643 .setsockopt = sctp_setsockopt,
9644 .getsockopt = sctp_getsockopt,
9645 .sendmsg = sctp_sendmsg,
9646 .recvmsg = sctp_recvmsg,
9647 .bind = sctp_bind,
9648 .bind_add = sctp_bind_add,
9649 .backlog_rcv = sctp_backlog_rcv,
9650 .hash = sctp_hash,
9651 .unhash = sctp_unhash,
9652 .no_autobind = true,
9653 .obj_size = sizeof(struct sctp_sock),
9654 .useroffset = offsetof(struct sctp_sock, subscribe),
9655 .usersize = offsetof(struct sctp_sock, initmsg) -
9656 offsetof(struct sctp_sock, subscribe) +
9657 sizeof_field(struct sctp_sock, initmsg),
9658 .sysctl_mem = sysctl_sctp_mem,
9659 .sysctl_rmem = sysctl_sctp_rmem,
9660 .sysctl_wmem = sysctl_sctp_wmem,
9661 .memory_pressure = &sctp_memory_pressure,
9662 .enter_memory_pressure = sctp_enter_memory_pressure,
9663
9664 .memory_allocated = &sctp_memory_allocated,
9665 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9666
9667 .sockets_allocated = &sctp_sockets_allocated,
9668};
9669
9670#if IS_ENABLED(CONFIG_IPV6)
9671
9672static void sctp_v6_destruct_sock(struct sock *sk)
9673{
9674 sctp_destruct_common(sk);
9675 inet6_sock_destruct(sk);
9676}
9677
9678static int sctp_v6_init_sock(struct sock *sk)
9679{
9680 int ret = sctp_init_sock(sk);
9681
9682 if (!ret)
9683 sk->sk_destruct = sctp_v6_destruct_sock;
9684
9685 return ret;
9686}
9687
9688struct proto sctpv6_prot = {
9689 .name = "SCTPv6",
9690 .owner = THIS_MODULE,
9691 .close = sctp_close,
9692 .disconnect = sctp_disconnect,
9693 .accept = sctp_accept,
9694 .ioctl = sctp_ioctl,
9695 .init = sctp_v6_init_sock,
9696 .destroy = sctp_destroy_sock,
9697 .shutdown = sctp_shutdown,
9698 .setsockopt = sctp_setsockopt,
9699 .getsockopt = sctp_getsockopt,
9700 .sendmsg = sctp_sendmsg,
9701 .recvmsg = sctp_recvmsg,
9702 .bind = sctp_bind,
9703 .bind_add = sctp_bind_add,
9704 .backlog_rcv = sctp_backlog_rcv,
9705 .hash = sctp_hash,
9706 .unhash = sctp_unhash,
9707 .no_autobind = true,
9708 .obj_size = sizeof(struct sctp6_sock),
9709 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9710 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9711 offsetof(struct sctp6_sock, sctp.subscribe) +
9712 sizeof_field(struct sctp6_sock, sctp.initmsg),
9713 .sysctl_mem = sysctl_sctp_mem,
9714 .sysctl_rmem = sysctl_sctp_rmem,
9715 .sysctl_wmem = sysctl_sctp_wmem,
9716 .memory_pressure = &sctp_memory_pressure,
9717 .enter_memory_pressure = sctp_enter_memory_pressure,
9718
9719 .memory_allocated = &sctp_memory_allocated,
9720 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9721
9722 .sockets_allocated = &sctp_sockets_allocated,
9723};
9724#endif /* IS_ENABLED(CONFIG_IPV6) */