Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 Intel Corp.
   6 *
   7 * This file is part of the SCTP kernel implementation
   8 *
   9 * These functions implement the sctp_outq class.   The outqueue handles
  10 * bundling and queueing of outgoing SCTP chunks.
  11 *
  12 * This SCTP implementation is free software;
  13 * you can redistribute it and/or modify it under the terms of
  14 * the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2, or (at your option)
  16 * any later version.
  17 *
  18 * This SCTP implementation is distributed in the hope that it
  19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  20 *                 ************************
  21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  22 * See the GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with GNU CC; see the file COPYING.  If not, see
  26 * <http://www.gnu.org/licenses/>.
  27 *
  28 * Please send any bug reports or fixes you make to the
  29 * email address(es):
  30 *    lksctp developers <linux-sctp@vger.kernel.org>
  31 *
  32 * Written or modified by:
  33 *    La Monte H.P. Yarroll <piggy@acm.org>
  34 *    Karl Knutson          <karl@athena.chicago.il.us>
  35 *    Perry Melange         <pmelange@null.cc.uic.edu>
  36 *    Xingang Guo           <xingang.guo@intel.com>
  37 *    Hui Huang 	    <hui.huang@nokia.com>
  38 *    Sridhar Samudrala     <sri@us.ibm.com>
  39 *    Jon Grimm             <jgrimm@us.ibm.com>
  40 */
  41
  42#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43
  44#include <linux/types.h>
  45#include <linux/list.h>   /* For struct list_head */
  46#include <linux/socket.h>
  47#include <linux/ip.h>
  48#include <linux/slab.h>
  49#include <net/sock.h>	  /* For skb_set_owner_w */
  50
  51#include <net/sctp/sctp.h>
  52#include <net/sctp/sm.h>
 
 
  53
  54/* Declare internal functions here.  */
  55static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
  56static void sctp_check_transmitted(struct sctp_outq *q,
  57				   struct list_head *transmitted_queue,
  58				   struct sctp_transport *transport,
  59				   union sctp_addr *saddr,
  60				   struct sctp_sackhdr *sack,
  61				   __u32 *highest_new_tsn);
  62
  63static void sctp_mark_missing(struct sctp_outq *q,
  64			      struct list_head *transmitted_queue,
  65			      struct sctp_transport *transport,
  66			      __u32 highest_new_tsn,
  67			      int count_of_newacks);
  68
  69static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
  70
  71static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
  72
  73/* Add data to the front of the queue. */
  74static inline void sctp_outq_head_data(struct sctp_outq *q,
  75					struct sctp_chunk *ch)
  76{
 
 
 
  77	list_add(&ch->list, &q->out_chunk_list);
  78	q->out_qlen += ch->skb->len;
 
 
 
 
  79}
  80
  81/* Take data from the front of the queue. */
  82static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
  83{
  84	struct sctp_chunk *ch = NULL;
  85
  86	if (!list_empty(&q->out_chunk_list)) {
  87		struct list_head *entry = q->out_chunk_list.next;
  88
  89		ch = list_entry(entry, struct sctp_chunk, list);
  90		list_del_init(entry);
  91		q->out_qlen -= ch->skb->len;
  92	}
  93	return ch;
  94}
 
  95/* Add data chunk to the end of the queue. */
  96static inline void sctp_outq_tail_data(struct sctp_outq *q,
  97				       struct sctp_chunk *ch)
  98{
 
 
 
  99	list_add_tail(&ch->list, &q->out_chunk_list);
 100	q->out_qlen += ch->skb->len;
 
 
 
 
 101}
 102
 103/*
 104 * SFR-CACC algorithm:
 105 * D) If count_of_newacks is greater than or equal to 2
 106 * and t was not sent to the current primary then the
 107 * sender MUST NOT increment missing report count for t.
 108 */
 109static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
 110				       struct sctp_transport *transport,
 111				       int count_of_newacks)
 112{
 113	if (count_of_newacks >= 2 && transport != primary)
 114		return 1;
 115	return 0;
 116}
 117
 118/*
 119 * SFR-CACC algorithm:
 120 * F) If count_of_newacks is less than 2, let d be the
 121 * destination to which t was sent. If cacc_saw_newack
 122 * is 0 for destination d, then the sender MUST NOT
 123 * increment missing report count for t.
 124 */
 125static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
 126				       int count_of_newacks)
 127{
 128	if (count_of_newacks < 2 &&
 129			(transport && !transport->cacc.cacc_saw_newack))
 130		return 1;
 131	return 0;
 132}
 133
 134/*
 135 * SFR-CACC algorithm:
 136 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
 137 * execute steps C, D, F.
 138 *
 139 * C has been implemented in sctp_outq_sack
 140 */
 141static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
 142				     struct sctp_transport *transport,
 143				     int count_of_newacks)
 144{
 145	if (!primary->cacc.cycling_changeover) {
 146		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
 147			return 1;
 148		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
 149			return 1;
 150		return 0;
 151	}
 152	return 0;
 153}
 154
 155/*
 156 * SFR-CACC algorithm:
 157 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
 158 * than next_tsn_at_change of the current primary, then
 159 * the sender MUST NOT increment missing report count
 160 * for t.
 161 */
 162static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
 163{
 164	if (primary->cacc.cycling_changeover &&
 165	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
 166		return 1;
 167	return 0;
 168}
 169
 170/*
 171 * SFR-CACC algorithm:
 172 * 3) If the missing report count for TSN t is to be
 173 * incremented according to [RFC2960] and
 174 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
 175 * then the sender MUST further execute steps 3.1 and
 176 * 3.2 to determine if the missing report count for
 177 * TSN t SHOULD NOT be incremented.
 178 *
 179 * 3.3) If 3.1 and 3.2 do not dictate that the missing
 180 * report count for t should not be incremented, then
 181 * the sender SHOULD increment missing report count for
 182 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
 183 */
 184static inline int sctp_cacc_skip(struct sctp_transport *primary,
 185				 struct sctp_transport *transport,
 186				 int count_of_newacks,
 187				 __u32 tsn)
 188{
 189	if (primary->cacc.changeover_active &&
 190	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
 191	     sctp_cacc_skip_3_2(primary, tsn)))
 192		return 1;
 193	return 0;
 194}
 195
 196/* Initialize an existing sctp_outq.  This does the boring stuff.
 197 * You still need to define handlers if you really want to DO
 198 * something with this structure...
 199 */
 200void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
 201{
 202	memset(q, 0, sizeof(struct sctp_outq));
 203
 204	q->asoc = asoc;
 205	INIT_LIST_HEAD(&q->out_chunk_list);
 206	INIT_LIST_HEAD(&q->control_chunk_list);
 207	INIT_LIST_HEAD(&q->retransmit);
 208	INIT_LIST_HEAD(&q->sacked);
 209	INIT_LIST_HEAD(&q->abandoned);
 
 210}
 211
 212/* Free the outqueue structure and any related pending chunks.
 213 */
 214static void __sctp_outq_teardown(struct sctp_outq *q)
 215{
 216	struct sctp_transport *transport;
 217	struct list_head *lchunk, *temp;
 218	struct sctp_chunk *chunk, *tmp;
 219
 220	/* Throw away unacknowledged chunks. */
 221	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
 222			transports) {
 223		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
 224			chunk = list_entry(lchunk, struct sctp_chunk,
 225					   transmitted_list);
 226			/* Mark as part of a failed message. */
 227			sctp_chunk_fail(chunk, q->error);
 228			sctp_chunk_free(chunk);
 229		}
 230	}
 231
 232	/* Throw away chunks that have been gap ACKed.  */
 233	list_for_each_safe(lchunk, temp, &q->sacked) {
 234		list_del_init(lchunk);
 235		chunk = list_entry(lchunk, struct sctp_chunk,
 236				   transmitted_list);
 237		sctp_chunk_fail(chunk, q->error);
 238		sctp_chunk_free(chunk);
 239	}
 240
 241	/* Throw away any chunks in the retransmit queue. */
 242	list_for_each_safe(lchunk, temp, &q->retransmit) {
 243		list_del_init(lchunk);
 244		chunk = list_entry(lchunk, struct sctp_chunk,
 245				   transmitted_list);
 246		sctp_chunk_fail(chunk, q->error);
 247		sctp_chunk_free(chunk);
 248	}
 249
 250	/* Throw away any chunks that are in the abandoned queue. */
 251	list_for_each_safe(lchunk, temp, &q->abandoned) {
 252		list_del_init(lchunk);
 253		chunk = list_entry(lchunk, struct sctp_chunk,
 254				   transmitted_list);
 255		sctp_chunk_fail(chunk, q->error);
 256		sctp_chunk_free(chunk);
 257	}
 258
 259	/* Throw away any leftover data chunks. */
 260	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
 
 261
 262		/* Mark as send failure. */
 263		sctp_chunk_fail(chunk, q->error);
 264		sctp_chunk_free(chunk);
 265	}
 266
 267	/* Throw away any leftover control chunks. */
 268	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
 269		list_del_init(&chunk->list);
 270		sctp_chunk_free(chunk);
 271	}
 272}
 273
 274void sctp_outq_teardown(struct sctp_outq *q)
 275{
 276	__sctp_outq_teardown(q);
 277	sctp_outq_init(q->asoc, q);
 278}
 279
 280/* Free the outqueue structure and any related pending chunks.  */
 281void sctp_outq_free(struct sctp_outq *q)
 282{
 283	/* Throw away leftover chunks. */
 284	__sctp_outq_teardown(q);
 285}
 286
 287/* Put a new chunk in an sctp_outq.  */
 288int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
 289{
 290	struct net *net = sock_net(q->asoc->base.sk);
 291	int error = 0;
 292
 293	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
 294		 chunk && chunk->chunk_hdr ?
 295		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
 296		 "illegal chunk");
 297
 298	/* If it is data, queue it up, otherwise, send it
 299	 * immediately.
 300	 */
 301	if (sctp_chunk_is_data(chunk)) {
 302		/* Is it OK to queue data chunks?  */
 303		/* From 9. Termination of Association
 304		 *
 305		 * When either endpoint performs a shutdown, the
 306		 * association on each peer will stop accepting new
 307		 * data from its user and only deliver data in queue
 308		 * at the time of sending or receiving the SHUTDOWN
 309		 * chunk.
 310		 */
 311		switch (q->asoc->state) {
 312		case SCTP_STATE_CLOSED:
 313		case SCTP_STATE_SHUTDOWN_PENDING:
 314		case SCTP_STATE_SHUTDOWN_SENT:
 315		case SCTP_STATE_SHUTDOWN_RECEIVED:
 316		case SCTP_STATE_SHUTDOWN_ACK_SENT:
 317			/* Cannot send after transport endpoint shutdown */
 318			error = -ESHUTDOWN;
 319			break;
 320
 321		default:
 322			pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
 323				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
 324				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
 325				 "illegal chunk");
 326
 327			sctp_outq_tail_data(q, chunk);
 328			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
 329				SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
 330			else
 331				SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
 332			break;
 333		}
 334	} else {
 335		list_add_tail(&chunk->list, &q->control_chunk_list);
 336		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
 337	}
 338
 339	if (error < 0)
 340		return error;
 341
 342	if (!q->cork)
 343		error = sctp_outq_flush(q, 0);
 344
 345	return error;
 346}
 347
 348/* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
 349 * and the abandoned list are in ascending order.
 350 */
 351static void sctp_insert_list(struct list_head *head, struct list_head *new)
 352{
 353	struct list_head *pos;
 354	struct sctp_chunk *nchunk, *lchunk;
 355	__u32 ntsn, ltsn;
 356	int done = 0;
 357
 358	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
 359	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
 360
 361	list_for_each(pos, head) {
 362		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
 363		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
 364		if (TSN_lt(ntsn, ltsn)) {
 365			list_add(new, pos->prev);
 366			done = 1;
 367			break;
 368		}
 369	}
 370	if (!done)
 371		list_add_tail(new, head);
 372}
 373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374/* Mark all the eligible packets on a transport for retransmission.  */
 375void sctp_retransmit_mark(struct sctp_outq *q,
 376			  struct sctp_transport *transport,
 377			  __u8 reason)
 378{
 379	struct list_head *lchunk, *ltemp;
 380	struct sctp_chunk *chunk;
 381
 382	/* Walk through the specified transmitted queue.  */
 383	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
 384		chunk = list_entry(lchunk, struct sctp_chunk,
 385				   transmitted_list);
 386
 387		/* If the chunk is abandoned, move it to abandoned list. */
 388		if (sctp_chunk_abandoned(chunk)) {
 389			list_del_init(lchunk);
 390			sctp_insert_list(&q->abandoned, lchunk);
 391
 392			/* If this chunk has not been previousely acked,
 393			 * stop considering it 'outstanding'.  Our peer
 394			 * will most likely never see it since it will
 395			 * not be retransmitted
 396			 */
 397			if (!chunk->tsn_gap_acked) {
 398				if (chunk->transport)
 399					chunk->transport->flight_size -=
 400							sctp_data_size(chunk);
 401				q->outstanding_bytes -= sctp_data_size(chunk);
 402				q->asoc->peer.rwnd += sctp_data_size(chunk);
 403			}
 404			continue;
 405		}
 406
 407		/* If we are doing  retransmission due to a timeout or pmtu
 408		 * discovery, only the  chunks that are not yet acked should
 409		 * be added to the retransmit queue.
 410		 */
 411		if ((reason == SCTP_RTXR_FAST_RTX  &&
 412			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
 413		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
 414			/* RFC 2960 6.2.1 Processing a Received SACK
 415			 *
 416			 * C) Any time a DATA chunk is marked for
 417			 * retransmission (via either T3-rtx timer expiration
 418			 * (Section 6.3.3) or via fast retransmit
 419			 * (Section 7.2.4)), add the data size of those
 420			 * chunks to the rwnd.
 421			 */
 422			q->asoc->peer.rwnd += sctp_data_size(chunk);
 423			q->outstanding_bytes -= sctp_data_size(chunk);
 424			if (chunk->transport)
 425				transport->flight_size -= sctp_data_size(chunk);
 426
 427			/* sctpimpguide-05 Section 2.8.2
 428			 * M5) If a T3-rtx timer expires, the
 429			 * 'TSN.Missing.Report' of all affected TSNs is set
 430			 * to 0.
 431			 */
 432			chunk->tsn_missing_report = 0;
 433
 434			/* If a chunk that is being used for RTT measurement
 435			 * has to be retransmitted, we cannot use this chunk
 436			 * anymore for RTT measurements. Reset rto_pending so
 437			 * that a new RTT measurement is started when a new
 438			 * data chunk is sent.
 439			 */
 440			if (chunk->rtt_in_progress) {
 441				chunk->rtt_in_progress = 0;
 442				transport->rto_pending = 0;
 443			}
 444
 445			chunk->resent = 1;
 446
 447			/* Move the chunk to the retransmit queue. The chunks
 448			 * on the retransmit queue are always kept in order.
 449			 */
 450			list_del_init(lchunk);
 451			sctp_insert_list(&q->retransmit, lchunk);
 452		}
 453	}
 454
 455	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
 456		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
 457		 transport->cwnd, transport->ssthresh, transport->flight_size,
 458		 transport->partial_bytes_acked);
 459}
 460
 461/* Mark all the eligible packets on a transport for retransmission and force
 462 * one packet out.
 463 */
 464void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
 465		     sctp_retransmit_reason_t reason)
 466{
 467	struct net *net = sock_net(q->asoc->base.sk);
 468	int error = 0;
 469
 470	switch (reason) {
 471	case SCTP_RTXR_T3_RTX:
 472		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
 473		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
 474		/* Update the retran path if the T3-rtx timer has expired for
 475		 * the current retran path.
 476		 */
 477		if (transport == transport->asoc->peer.retran_path)
 478			sctp_assoc_update_retran_path(transport->asoc);
 479		transport->asoc->rtx_data_chunks +=
 480			transport->asoc->unack_data;
 
 
 
 481		break;
 482	case SCTP_RTXR_FAST_RTX:
 483		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
 484		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
 485		q->fast_rtx = 1;
 486		break;
 487	case SCTP_RTXR_PMTUD:
 488		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
 489		break;
 490	case SCTP_RTXR_T1_RTX:
 491		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
 492		transport->asoc->init_retries++;
 493		break;
 494	default:
 495		BUG();
 496	}
 497
 498	sctp_retransmit_mark(q, transport, reason);
 499
 500	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
 501	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
 502	 * following the procedures outlined in C1 - C5.
 503	 */
 504	if (reason == SCTP_RTXR_T3_RTX)
 505		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
 506
 507	/* Flush the queues only on timeout, since fast_rtx is only
 508	 * triggered during sack processing and the queue
 509	 * will be flushed at the end.
 510	 */
 511	if (reason != SCTP_RTXR_FAST_RTX)
 512		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
 513
 514	if (error)
 515		q->asoc->base.sk->sk_err = -error;
 516}
 517
 518/*
 519 * Transmit DATA chunks on the retransmit queue.  Upon return from
 520 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
 521 * need to be transmitted by the caller.
 522 * We assume that pkt->transport has already been set.
 523 *
 524 * The return value is a normal kernel error return value.
 525 */
 526static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
 527			       int rtx_timeout, int *start_timer)
 528{
 529	struct list_head *lqueue;
 530	struct sctp_transport *transport = pkt->transport;
 531	sctp_xmit_t status;
 532	struct sctp_chunk *chunk, *chunk1;
 533	int fast_rtx;
 
 534	int error = 0;
 535	int timer = 0;
 536	int done = 0;
 
 537
 538	lqueue = &q->retransmit;
 539	fast_rtx = q->fast_rtx;
 540
 541	/* This loop handles time-out retransmissions, fast retransmissions,
 542	 * and retransmissions due to opening of whindow.
 543	 *
 544	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
 545	 *
 546	 * E3) Determine how many of the earliest (i.e., lowest TSN)
 547	 * outstanding DATA chunks for the address for which the
 548	 * T3-rtx has expired will fit into a single packet, subject
 549	 * to the MTU constraint for the path corresponding to the
 550	 * destination transport address to which the retransmission
 551	 * is being sent (this may be different from the address for
 552	 * which the timer expires [see Section 6.4]). Call this value
 553	 * K. Bundle and retransmit those K DATA chunks in a single
 554	 * packet to the destination endpoint.
 555	 *
 556	 * [Just to be painfully clear, if we are retransmitting
 557	 * because a timeout just happened, we should send only ONE
 558	 * packet of retransmitted data.]
 559	 *
 560	 * For fast retransmissions we also send only ONE packet.  However,
 561	 * if we are just flushing the queue due to open window, we'll
 562	 * try to send as much as possible.
 563	 */
 564	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
 565		/* If the chunk is abandoned, move it to abandoned list. */
 566		if (sctp_chunk_abandoned(chunk)) {
 567			list_del_init(&chunk->transmitted_list);
 568			sctp_insert_list(&q->abandoned,
 569					 &chunk->transmitted_list);
 570			continue;
 571		}
 572
 573		/* Make sure that Gap Acked TSNs are not retransmitted.  A
 574		 * simple approach is just to move such TSNs out of the
 575		 * way and into a 'transmitted' queue and skip to the
 576		 * next chunk.
 577		 */
 578		if (chunk->tsn_gap_acked) {
 579			list_move_tail(&chunk->transmitted_list,
 580				       &transport->transmitted);
 581			continue;
 582		}
 583
 584		/* If we are doing fast retransmit, ignore non-fast_rtransmit
 585		 * chunks
 586		 */
 587		if (fast_rtx && !chunk->fast_retransmit)
 588			continue;
 589
 590redo:
 591		/* Attempt to append this chunk to the packet. */
 592		status = sctp_packet_append_chunk(pkt, chunk);
 593
 594		switch (status) {
 595		case SCTP_XMIT_PMTU_FULL:
 596			if (!pkt->has_data && !pkt->has_cookie_echo) {
 597				/* If this packet did not contain DATA then
 598				 * retransmission did not happen, so do it
 599				 * again.  We'll ignore the error here since
 600				 * control chunks are already freed so there
 601				 * is nothing we can do.
 602				 */
 603				sctp_packet_transmit(pkt);
 604				goto redo;
 605			}
 606
 607			/* Send this packet.  */
 608			error = sctp_packet_transmit(pkt);
 609
 610			/* If we are retransmitting, we should only
 611			 * send a single packet.
 612			 * Otherwise, try appending this chunk again.
 613			 */
 614			if (rtx_timeout || fast_rtx)
 615				done = 1;
 616			else
 617				goto redo;
 618
 619			/* Bundle next chunk in the next round.  */
 620			break;
 621
 622		case SCTP_XMIT_RWND_FULL:
 623			/* Send this packet. */
 624			error = sctp_packet_transmit(pkt);
 625
 626			/* Stop sending DATA as there is no more room
 627			 * at the receiver.
 628			 */
 629			done = 1;
 630			break;
 631
 632		case SCTP_XMIT_NAGLE_DELAY:
 633			/* Send this packet. */
 634			error = sctp_packet_transmit(pkt);
 635
 636			/* Stop sending DATA because of nagle delay. */
 637			done = 1;
 638			break;
 639
 640		default:
 641			/* The append was successful, so add this chunk to
 642			 * the transmitted list.
 643			 */
 644			list_move_tail(&chunk->transmitted_list,
 645				       &transport->transmitted);
 646
 647			/* Mark the chunk as ineligible for fast retransmit
 648			 * after it is retransmitted.
 649			 */
 650			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
 651				chunk->fast_retransmit = SCTP_DONT_FRTX;
 652
 653			q->asoc->stats.rtxchunks++;
 654			break;
 655		}
 656
 657		/* Set the timer if there were no errors */
 658		if (!error && !timer)
 659			timer = 1;
 660
 661		if (done)
 662			break;
 663	}
 664
 665	/* If we are here due to a retransmit timeout or a fast
 666	 * retransmit and if there are any chunks left in the retransmit
 667	 * queue that could not fit in the PMTU sized packet, they need
 668	 * to be marked as ineligible for a subsequent fast retransmit.
 669	 */
 670	if (rtx_timeout || fast_rtx) {
 671		list_for_each_entry(chunk1, lqueue, transmitted_list) {
 672			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
 673				chunk1->fast_retransmit = SCTP_DONT_FRTX;
 674		}
 675	}
 676
 677	*start_timer = timer;
 678
 679	/* Clear fast retransmit hint */
 680	if (fast_rtx)
 681		q->fast_rtx = 0;
 682
 683	return error;
 684}
 685
 686/* Cork the outqueue so queued chunks are really queued. */
 687int sctp_outq_uncork(struct sctp_outq *q)
 688{
 689	if (q->cork)
 690		q->cork = 0;
 691
 692	return sctp_outq_flush(q, 0);
 693}
 694
 695
 696/*
 697 * Try to flush an outqueue.
 698 *
 699 * Description: Send everything in q which we legally can, subject to
 700 * congestion limitations.
 701 * * Note: This function can be called from multiple contexts so appropriate
 702 * locking concerns must be made.  Today we use the sock lock to protect
 703 * this function.
 704 */
 705static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
 706{
 707	struct sctp_packet *packet;
 
 
 
 708	struct sctp_packet singleton;
 709	struct sctp_association *asoc = q->asoc;
 710	__u16 sport = asoc->base.bind_addr.port;
 711	__u16 dport = asoc->peer.port;
 712	__u32 vtag = asoc->peer.i.init_tag;
 713	struct sctp_transport *transport = NULL;
 714	struct sctp_transport *new_transport;
 715	struct sctp_chunk *chunk, *tmp;
 716	sctp_xmit_t status;
 717	int error = 0;
 718	int start_timer = 0;
 719	int one_packet = 0;
 720
 721	/* These transports have chunks to send. */
 722	struct list_head transport_list;
 723	struct list_head *ltransport;
 724
 725	INIT_LIST_HEAD(&transport_list);
 726	packet = NULL;
 727
 728	/*
 729	 * 6.10 Bundling
 730	 *   ...
 731	 *   When bundling control chunks with DATA chunks, an
 732	 *   endpoint MUST place control chunks first in the outbound
 733	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
 734	 *   within a SCTP packet in increasing order of TSN.
 735	 *   ...
 736	 */
 737
 738	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
 739		/* RFC 5061, 5.3
 740		 * F1) This means that until such time as the ASCONF
 741		 * containing the add is acknowledged, the sender MUST
 742		 * NOT use the new IP address as a source for ANY SCTP
 743		 * packet except on carrying an ASCONF Chunk.
 744		 */
 745		if (asoc->src_out_of_asoc_ok &&
 746		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
 747			continue;
 748
 
 
 
 749		list_del_init(&chunk->list);
 
 
 
 
 
 750
 751		/* Pick the right transport to use. */
 752		new_transport = chunk->transport;
 
 
 
 
 
 
 
 
 
 
 753
 754		if (!new_transport) {
 755			/*
 756			 * If we have a prior transport pointer, see if
 
 
 
 
 
 
 757			 * the destination address of the chunk
 758			 * matches the destination address of the
 759			 * current transport.  If not a match, then
 760			 * try to look up the transport with a given
 761			 * destination address.  We do this because
 762			 * after processing ASCONFs, we may have new
 763			 * transports created.
 764			 */
 765			if (transport &&
 766			    sctp_cmp_addr_exact(&chunk->dest,
 767						&transport->ipaddr))
 768					new_transport = transport;
 769			else
 770				new_transport = sctp_assoc_lookup_paddr(asoc,
 771								&chunk->dest);
 
 772
 773			/* if we still don't have a new transport, then
 774			 * use the current active path.
 775			 */
 776			if (!new_transport)
 777				new_transport = asoc->peer.active_path;
 778		} else if ((new_transport->state == SCTP_INACTIVE) ||
 779			   (new_transport->state == SCTP_UNCONFIRMED) ||
 780			   (new_transport->state == SCTP_PF)) {
 
 
 
 
 781			/* If the chunk is Heartbeat or Heartbeat Ack,
 782			 * send it to chunk->transport, even if it's
 783			 * inactive.
 784			 *
 785			 * 3.3.6 Heartbeat Acknowledgement:
 786			 * ...
 787			 * A HEARTBEAT ACK is always sent to the source IP
 788			 * address of the IP datagram containing the
 789			 * HEARTBEAT chunk to which this ack is responding.
 790			 * ...
 791			 *
 792			 * ASCONF_ACKs also must be sent to the source.
 793			 */
 794			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
 795			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
 796			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
 797				new_transport = asoc->peer.active_path;
 
 
 
 
 798		}
 
 799
 800		/* Are we switching transports?
 801		 * Take care of transport locks.
 
 
 
 
 
 
 
 
 
 
 
 
 802		 */
 803		if (new_transport != transport) {
 804			transport = new_transport;
 805			if (list_empty(&transport->send_ready)) {
 806				list_add_tail(&transport->send_ready,
 807					      &transport_list);
 808			}
 809			packet = &transport->packet;
 810			sctp_packet_config(packet, vtag,
 811					   asoc->peer.ecn_capable);
 812		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814		switch (chunk->chunk_hdr->type) {
 815		/*
 816		 * 6.10 Bundling
 817		 *   ...
 818		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
 819		 *   COMPLETE with any other chunks.  [Send them immediately.]
 820		 */
 821		case SCTP_CID_INIT:
 822		case SCTP_CID_INIT_ACK:
 823		case SCTP_CID_SHUTDOWN_COMPLETE:
 824			sctp_packet_init(&singleton, transport, sport, dport);
 825			sctp_packet_config(&singleton, vtag, 0);
 826			sctp_packet_append_chunk(&singleton, chunk);
 827			error = sctp_packet_transmit(&singleton);
 828			if (error < 0)
 829				return error;
 
 830			break;
 831
 832		case SCTP_CID_ABORT:
 833			if (sctp_test_T_bit(chunk)) {
 834				packet->vtag = asoc->c.my_vtag;
 835			}
 
 836		/* The following chunks are "response" chunks, i.e.
 837		 * they are generated in response to something we
 838		 * received.  If we are sending these, then we can
 839		 * send only 1 packet containing these chunks.
 840		 */
 841		case SCTP_CID_HEARTBEAT_ACK:
 842		case SCTP_CID_SHUTDOWN_ACK:
 843		case SCTP_CID_COOKIE_ACK:
 844		case SCTP_CID_COOKIE_ECHO:
 845		case SCTP_CID_ERROR:
 846		case SCTP_CID_ECN_CWR:
 847		case SCTP_CID_ASCONF_ACK:
 848			one_packet = 1;
 849			/* Fall through */
 850
 851		case SCTP_CID_SACK:
 852		case SCTP_CID_HEARTBEAT:
 
 
 
 
 
 
 
 
 
 853		case SCTP_CID_SHUTDOWN:
 854		case SCTP_CID_ECN_ECNE:
 855		case SCTP_CID_ASCONF:
 856		case SCTP_CID_FWD_TSN:
 857			status = sctp_packet_transmit_chunk(packet, chunk,
 858							    one_packet);
 859			if (status  != SCTP_XMIT_OK) {
 
 
 860				/* put the chunk back */
 861				list_add(&chunk->list, &q->control_chunk_list);
 862			} else {
 863				asoc->stats.octrlchunks++;
 864				/* PR-SCTP C5) If a FORWARD TSN is sent, the
 865				 * sender MUST assure that at least one T3-rtx
 866				 * timer is running.
 867				 */
 868				if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN)
 869					sctp_transport_reset_timers(transport);
 
 
 
 
 870			}
 
 
 
 
 871			break;
 872
 873		default:
 874			/* We built a chunk with an illegal type! */
 875			BUG();
 876		}
 877	}
 
 878
 879	if (q->asoc->src_out_of_asoc_ok)
 880		goto sctp_flush_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882	/* Is it OK to send data chunks?  */
 883	switch (asoc->state) {
 884	case SCTP_STATE_COOKIE_ECHOED:
 885		/* Only allow bundling when this packet has a COOKIE-ECHO
 886		 * chunk.
 887		 */
 888		if (!packet || !packet->has_cookie_echo)
 889			break;
 890
 891		/* fallthru */
 892	case SCTP_STATE_ESTABLISHED:
 893	case SCTP_STATE_SHUTDOWN_PENDING:
 894	case SCTP_STATE_SHUTDOWN_RECEIVED:
 895		/*
 896		 * RFC 2960 6.1  Transmission of DATA Chunks
 897		 *
 898		 * C) When the time comes for the sender to transmit,
 899		 * before sending new DATA chunks, the sender MUST
 900		 * first transmit any outstanding DATA chunks which
 901		 * are marked for retransmission (limited by the
 902		 * current cwnd).
 903		 */
 904		if (!list_empty(&q->retransmit)) {
 905			if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
 906				goto sctp_flush_out;
 907			if (transport == asoc->peer.retran_path)
 908				goto retran;
 909
 910			/* Switch transports & prepare the packet.  */
 911
 912			transport = asoc->peer.retran_path;
 913
 914			if (list_empty(&transport->send_ready)) {
 915				list_add_tail(&transport->send_ready,
 916					      &transport_list);
 917			}
 918
 919			packet = &transport->packet;
 920			sctp_packet_config(packet, vtag,
 921					   asoc->peer.ecn_capable);
 922		retran:
 923			error = sctp_outq_flush_rtx(q, packet,
 924						    rtx_timeout, &start_timer);
 925
 926			if (start_timer)
 927				sctp_transport_reset_timers(transport);
 
 
 
 
 
 
 
 
 
 928
 929			/* This can happen on COOKIE-ECHO resend.  Only
 930			 * one chunk can get bundled with a COOKIE-ECHO.
 931			 */
 932			if (packet->has_cookie_echo)
 933				goto sctp_flush_out;
 
 
 934
 935			/* Don't send new data if there is still data
 936			 * waiting to retransmit.
 937			 */
 938			if (!list_empty(&q->retransmit))
 939				goto sctp_flush_out;
 
 
 
 
 
 
 940		}
 941
 942		/* Apply Max.Burst limitation to the current transport in
 943		 * case it will be used for new data.  We are going to
 944		 * rest it before we return, but we want to apply the limit
 945		 * to the currently queued data.
 946		 */
 947		if (transport)
 948			sctp_transport_burst_limited(transport);
 949
 950		/* Finally, transmit new packets.  */
 951		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
 952			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
 953			 * stream identifier.
 954			 */
 955			if (chunk->sinfo.sinfo_stream >=
 956			    asoc->c.sinit_num_ostreams) {
 957
 958				/* Mark as failed send. */
 959				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
 960				sctp_chunk_free(chunk);
 961				continue;
 962			}
 963
 964			/* Has this chunk expired? */
 965			if (sctp_chunk_abandoned(chunk)) {
 966				sctp_chunk_fail(chunk, 0);
 967				sctp_chunk_free(chunk);
 968				continue;
 969			}
 
 
 
 
 
 
 
 
 
 
 
 970
 971			/* If there is a specified transport, use it.
 972			 * Otherwise, we want to use the active path.
 973			 */
 974			new_transport = chunk->transport;
 975			if (!new_transport ||
 976			    ((new_transport->state == SCTP_INACTIVE) ||
 977			     (new_transport->state == SCTP_UNCONFIRMED) ||
 978			     (new_transport->state == SCTP_PF)))
 979				new_transport = asoc->peer.active_path;
 980			if (new_transport->state == SCTP_UNCONFIRMED)
 981				continue;
 982
 983			/* Change packets if necessary.  */
 984			if (new_transport != transport) {
 985				transport = new_transport;
 986
 987				/* Schedule to have this transport's
 988				 * packet flushed.
 989				 */
 990				if (list_empty(&transport->send_ready)) {
 991					list_add_tail(&transport->send_ready,
 992						      &transport_list);
 993				}
 
 
 
 994
 995				packet = &transport->packet;
 996				sctp_packet_config(packet, vtag,
 997						   asoc->peer.ecn_capable);
 998				/* We've switched transports, so apply the
 999				 * Burst limit to the new transport.
1000				 */
1001				sctp_transport_burst_limited(transport);
1002			}
1003
1004			pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1005				 "skb->users:%d\n",
1006				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1007				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1008				 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1009				 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1010				 atomic_read(&chunk->skb->users) : -1);
1011
1012			/* Add the chunk to the packet.  */
1013			status = sctp_packet_transmit_chunk(packet, chunk, 0);
1014
1015			switch (status) {
1016			case SCTP_XMIT_PMTU_FULL:
1017			case SCTP_XMIT_RWND_FULL:
1018			case SCTP_XMIT_NAGLE_DELAY:
1019				/* We could not append this chunk, so put
1020				 * the chunk back on the output queue.
1021				 */
1022				pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1023					 __func__, ntohl(chunk->subh.data_hdr->tsn),
1024					 status);
1025
1026				sctp_outq_head_data(q, chunk);
1027				goto sctp_flush_out;
1028				break;
1029
1030			case SCTP_XMIT_OK:
1031				/* The sender is in the SHUTDOWN-PENDING state,
1032				 * The sender MAY set the I-bit in the DATA
1033				 * chunk header.
1034				 */
1035				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1036					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1037				if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1038					asoc->stats.ouodchunks++;
1039				else
1040					asoc->stats.oodchunks++;
1041
1042				break;
 
 
 
 
 
 
1043
1044			default:
1045				BUG();
 
 
 
 
 
 
1046			}
1047
1048			/* BUG: We assume that the sctp_packet_transmit()
1049			 * call below will succeed all the time and add the
1050			 * chunk to the transmitted list and restart the
1051			 * timers.
1052			 * It is possible that the call can fail under OOM
1053			 * conditions.
1054			 *
1055			 * Is this really a problem?  Won't this behave
1056			 * like a lost TSN?
1057			 */
1058			list_add_tail(&chunk->transmitted_list,
1059				      &transport->transmitted);
1060
1061			sctp_transport_reset_timers(transport);
1062
1063			/* Only let one DATA chunk get bundled with a
1064			 * COOKIE-ECHO chunk.
1065			 */
1066			if (packet->has_cookie_echo)
1067				goto sctp_flush_out;
1068		}
1069		break;
1070
1071	default:
1072		/* Do nothing.  */
1073		break;
1074	}
 
1075
1076sctp_flush_out:
 
 
 
 
 
 
 
1077
1078	/* Before returning, examine all the transports touched in
1079	 * this call.  Right now, we bluntly force clear all the
1080	 * transports.  Things might change after we implement Nagle.
1081	 * But such an examination is still required.
1082	 *
1083	 * --xguo
 
 
 
 
 
 
 
 
 
 
 
 
1084	 */
1085	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1086		struct sctp_transport *t = list_entry(ltransport,
1087						      struct sctp_transport,
1088						      send_ready);
1089		packet = &t->packet;
1090		if (!sctp_packet_empty(packet))
1091			error = sctp_packet_transmit(packet);
1092
1093		/* Clear the burst limited state, if any */
1094		sctp_transport_burst_reset(t);
1095	}
1096
1097	return error;
 
 
 
 
 
 
 
1098}
1099
1100/* Update unack_data based on the incoming SACK chunk */
1101static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1102					struct sctp_sackhdr *sack)
1103{
1104	sctp_sack_variable_t *frags;
1105	__u16 unack_data;
1106	int i;
1107
1108	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1109
1110	frags = sack->variable;
1111	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1112		unack_data -= ((ntohs(frags[i].gab.end) -
1113				ntohs(frags[i].gab.start) + 1));
1114	}
1115
1116	assoc->unack_data = unack_data;
1117}
1118
1119/* This is where we REALLY process a SACK.
1120 *
1121 * Process the SACK against the outqueue.  Mostly, this just frees
1122 * things off the transmitted queue.
1123 */
1124int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1125{
1126	struct sctp_association *asoc = q->asoc;
1127	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1128	struct sctp_transport *transport;
1129	struct sctp_chunk *tchunk = NULL;
1130	struct list_head *lchunk, *transport_list, *temp;
1131	sctp_sack_variable_t *frags = sack->variable;
1132	__u32 sack_ctsn, ctsn, tsn;
1133	__u32 highest_tsn, highest_new_tsn;
1134	__u32 sack_a_rwnd;
1135	unsigned int outstanding;
1136	struct sctp_transport *primary = asoc->peer.primary_path;
1137	int count_of_newacks = 0;
1138	int gap_ack_blocks;
1139	u8 accum_moved = 0;
1140
1141	/* Grab the association's destination address list. */
1142	transport_list = &asoc->peer.transport_addr_list;
1143
 
 
 
 
 
 
1144	sack_ctsn = ntohl(sack->cum_tsn_ack);
1145	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1146	asoc->stats.gapcnt += gap_ack_blocks;
1147	/*
1148	 * SFR-CACC algorithm:
1149	 * On receipt of a SACK the sender SHOULD execute the
1150	 * following statements.
1151	 *
1152	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1153	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1154	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1155	 * all destinations.
1156	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1157	 * is set the receiver of the SACK MUST take the following actions:
1158	 *
1159	 * A) Initialize the cacc_saw_newack to 0 for all destination
1160	 * addresses.
1161	 *
1162	 * Only bother if changeover_active is set. Otherwise, this is
1163	 * totally suboptimal to do on every SACK.
1164	 */
1165	if (primary->cacc.changeover_active) {
1166		u8 clear_cycling = 0;
1167
1168		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1169			primary->cacc.changeover_active = 0;
1170			clear_cycling = 1;
1171		}
1172
1173		if (clear_cycling || gap_ack_blocks) {
1174			list_for_each_entry(transport, transport_list,
1175					transports) {
1176				if (clear_cycling)
1177					transport->cacc.cycling_changeover = 0;
1178				if (gap_ack_blocks)
1179					transport->cacc.cacc_saw_newack = 0;
1180			}
1181		}
1182	}
1183
1184	/* Get the highest TSN in the sack. */
1185	highest_tsn = sack_ctsn;
1186	if (gap_ack_blocks)
1187		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1188
1189	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1190		asoc->highest_sacked = highest_tsn;
1191
1192	highest_new_tsn = sack_ctsn;
1193
1194	/* Run through the retransmit queue.  Credit bytes received
1195	 * and free those chunks that we can.
1196	 */
1197	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1198
1199	/* Run through the transmitted queue.
1200	 * Credit bytes received and free those chunks which we can.
1201	 *
1202	 * This is a MASSIVE candidate for optimization.
1203	 */
1204	list_for_each_entry(transport, transport_list, transports) {
1205		sctp_check_transmitted(q, &transport->transmitted,
1206				       transport, &chunk->source, sack,
1207				       &highest_new_tsn);
1208		/*
1209		 * SFR-CACC algorithm:
1210		 * C) Let count_of_newacks be the number of
1211		 * destinations for which cacc_saw_newack is set.
1212		 */
1213		if (transport->cacc.cacc_saw_newack)
1214			count_of_newacks++;
1215	}
1216
1217	/* Move the Cumulative TSN Ack Point if appropriate.  */
1218	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1219		asoc->ctsn_ack_point = sack_ctsn;
1220		accum_moved = 1;
1221	}
1222
1223	if (gap_ack_blocks) {
1224
1225		if (asoc->fast_recovery && accum_moved)
1226			highest_new_tsn = highest_tsn;
1227
1228		list_for_each_entry(transport, transport_list, transports)
1229			sctp_mark_missing(q, &transport->transmitted, transport,
1230					  highest_new_tsn, count_of_newacks);
1231	}
1232
1233	/* Update unack_data field in the assoc. */
1234	sctp_sack_update_unack_data(asoc, sack);
1235
1236	ctsn = asoc->ctsn_ack_point;
1237
1238	/* Throw away stuff rotting on the sack queue.  */
1239	list_for_each_safe(lchunk, temp, &q->sacked) {
1240		tchunk = list_entry(lchunk, struct sctp_chunk,
1241				    transmitted_list);
1242		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1243		if (TSN_lte(tsn, ctsn)) {
1244			list_del_init(&tchunk->transmitted_list);
 
 
 
1245			sctp_chunk_free(tchunk);
1246		}
1247	}
1248
1249	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1250	 *     number of bytes still outstanding after processing the
1251	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1252	 */
1253
1254	sack_a_rwnd = ntohl(sack->a_rwnd);
 
1255	outstanding = q->outstanding_bytes;
1256
1257	if (outstanding < sack_a_rwnd)
1258		sack_a_rwnd -= outstanding;
1259	else
1260		sack_a_rwnd = 0;
1261
1262	asoc->peer.rwnd = sack_a_rwnd;
1263
1264	sctp_generate_fwdtsn(q, sack_ctsn);
1265
1266	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1267	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1268		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1269		 asoc->adv_peer_ack_point);
1270
1271	return sctp_outq_is_empty(q);
1272}
1273
1274/* Is the outqueue empty?
1275 * The queue is empty when we have not pending data, no in-flight data
1276 * and nothing pending retransmissions.
1277 */
1278int sctp_outq_is_empty(const struct sctp_outq *q)
1279{
1280	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1281	       list_empty(&q->retransmit);
1282}
1283
1284/********************************************************************
1285 * 2nd Level Abstractions
1286 ********************************************************************/
1287
1288/* Go through a transport's transmitted list or the association's retransmit
1289 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1290 * The retransmit list will not have an associated transport.
1291 *
1292 * I added coherent debug information output.	--xguo
1293 *
1294 * Instead of printing 'sacked' or 'kept' for each TSN on the
1295 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1296 * KEPT TSN6-TSN7, etc.
1297 */
1298static void sctp_check_transmitted(struct sctp_outq *q,
1299				   struct list_head *transmitted_queue,
1300				   struct sctp_transport *transport,
1301				   union sctp_addr *saddr,
1302				   struct sctp_sackhdr *sack,
1303				   __u32 *highest_new_tsn_in_sack)
1304{
1305	struct list_head *lchunk;
1306	struct sctp_chunk *tchunk;
1307	struct list_head tlist;
1308	__u32 tsn;
1309	__u32 sack_ctsn;
1310	__u32 rtt;
1311	__u8 restart_timer = 0;
1312	int bytes_acked = 0;
1313	int migrate_bytes = 0;
1314	bool forward_progress = false;
1315
1316	sack_ctsn = ntohl(sack->cum_tsn_ack);
1317
1318	INIT_LIST_HEAD(&tlist);
1319
1320	/* The while loop will skip empty transmitted queues. */
1321	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1322		tchunk = list_entry(lchunk, struct sctp_chunk,
1323				    transmitted_list);
1324
1325		if (sctp_chunk_abandoned(tchunk)) {
1326			/* Move the chunk to abandoned list. */
1327			sctp_insert_list(&q->abandoned, lchunk);
1328
1329			/* If this chunk has not been acked, stop
1330			 * considering it as 'outstanding'.
1331			 */
1332			if (!tchunk->tsn_gap_acked) {
 
1333				if (tchunk->transport)
1334					tchunk->transport->flight_size -=
1335							sctp_data_size(tchunk);
1336				q->outstanding_bytes -= sctp_data_size(tchunk);
1337			}
1338			continue;
1339		}
1340
1341		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1342		if (sctp_acked(sack, tsn)) {
1343			/* If this queue is the retransmit queue, the
1344			 * retransmit timer has already reclaimed
1345			 * the outstanding bytes for this chunk, so only
1346			 * count bytes associated with a transport.
1347			 */
1348			if (transport) {
1349				/* If this chunk is being used for RTT
1350				 * measurement, calculate the RTT and update
1351				 * the RTO using this value.
1352				 *
1353				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1354				 * MUST NOT be made using packets that were
1355				 * retransmitted (and thus for which it is
1356				 * ambiguous whether the reply was for the
1357				 * first instance of the packet or a later
1358				 * instance).
1359				 */
1360				if (!tchunk->tsn_gap_acked &&
1361				    !tchunk->resent &&
1362				    tchunk->rtt_in_progress) {
1363					tchunk->rtt_in_progress = 0;
1364					rtt = jiffies - tchunk->sent_at;
1365					sctp_transport_update_rto(transport,
1366								  rtt);
1367				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368			}
1369
1370			/* If the chunk hasn't been marked as ACKED,
1371			 * mark it and account bytes_acked if the
1372			 * chunk had a valid transport (it will not
1373			 * have a transport if ASCONF had deleted it
1374			 * while DATA was outstanding).
1375			 */
1376			if (!tchunk->tsn_gap_acked) {
1377				tchunk->tsn_gap_acked = 1;
1378				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1379					*highest_new_tsn_in_sack = tsn;
1380				bytes_acked += sctp_data_size(tchunk);
1381				if (!tchunk->transport)
1382					migrate_bytes += sctp_data_size(tchunk);
1383				forward_progress = true;
1384			}
1385
1386			if (TSN_lte(tsn, sack_ctsn)) {
1387				/* RFC 2960  6.3.2 Retransmission Timer Rules
1388				 *
1389				 * R3) Whenever a SACK is received
1390				 * that acknowledges the DATA chunk
1391				 * with the earliest outstanding TSN
1392				 * for that address, restart T3-rtx
1393				 * timer for that address with its
1394				 * current RTO.
1395				 */
1396				restart_timer = 1;
1397				forward_progress = true;
1398
1399				if (!tchunk->tsn_gap_acked) {
1400					/*
1401					 * SFR-CACC algorithm:
1402					 * 2) If the SACK contains gap acks
1403					 * and the flag CHANGEOVER_ACTIVE is
1404					 * set the receiver of the SACK MUST
1405					 * take the following action:
1406					 *
1407					 * B) For each TSN t being acked that
1408					 * has not been acked in any SACK so
1409					 * far, set cacc_saw_newack to 1 for
1410					 * the destination that the TSN was
1411					 * sent to.
1412					 */
1413					if (transport &&
1414					    sack->num_gap_ack_blocks &&
1415					    q->asoc->peer.primary_path->cacc.
1416					    changeover_active)
1417						transport->cacc.cacc_saw_newack
1418							= 1;
1419				}
1420
1421				list_add_tail(&tchunk->transmitted_list,
1422					      &q->sacked);
1423			} else {
1424				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1425				 * M2) Each time a SACK arrives reporting
1426				 * 'Stray DATA chunk(s)' record the highest TSN
1427				 * reported as newly acknowledged, call this
1428				 * value 'HighestTSNinSack'. A newly
1429				 * acknowledged DATA chunk is one not
1430				 * previously acknowledged in a SACK.
1431				 *
1432				 * When the SCTP sender of data receives a SACK
1433				 * chunk that acknowledges, for the first time,
1434				 * the receipt of a DATA chunk, all the still
1435				 * unacknowledged DATA chunks whose TSN is
1436				 * older than that newly acknowledged DATA
1437				 * chunk, are qualified as 'Stray DATA chunks'.
1438				 */
1439				list_add_tail(lchunk, &tlist);
1440			}
1441		} else {
1442			if (tchunk->tsn_gap_acked) {
1443				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1444					 __func__, tsn);
1445
1446				tchunk->tsn_gap_acked = 0;
1447
1448				if (tchunk->transport)
1449					bytes_acked -= sctp_data_size(tchunk);
1450
1451				/* RFC 2960 6.3.2 Retransmission Timer Rules
1452				 *
1453				 * R4) Whenever a SACK is received missing a
1454				 * TSN that was previously acknowledged via a
1455				 * Gap Ack Block, start T3-rtx for the
1456				 * destination address to which the DATA
1457				 * chunk was originally
1458				 * transmitted if it is not already running.
1459				 */
1460				restart_timer = 1;
1461			}
1462
1463			list_add_tail(lchunk, &tlist);
1464		}
1465	}
1466
1467	if (transport) {
1468		if (bytes_acked) {
1469			struct sctp_association *asoc = transport->asoc;
1470
1471			/* We may have counted DATA that was migrated
1472			 * to this transport due to DEL-IP operation.
1473			 * Subtract those bytes, since the were never
1474			 * send on this transport and shouldn't be
1475			 * credited to this transport.
1476			 */
1477			bytes_acked -= migrate_bytes;
1478
1479			/* 8.2. When an outstanding TSN is acknowledged,
1480			 * the endpoint shall clear the error counter of
1481			 * the destination transport address to which the
1482			 * DATA chunk was last sent.
1483			 * The association's overall error counter is
1484			 * also cleared.
1485			 */
1486			transport->error_count = 0;
1487			transport->asoc->overall_error_count = 0;
1488			forward_progress = true;
1489
1490			/*
1491			 * While in SHUTDOWN PENDING, we may have started
1492			 * the T5 shutdown guard timer after reaching the
1493			 * retransmission limit. Stop that timer as soon
1494			 * as the receiver acknowledged any data.
1495			 */
1496			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1497			    del_timer(&asoc->timers
1498				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1499					sctp_association_put(asoc);
1500
1501			/* Mark the destination transport address as
1502			 * active if it is not so marked.
1503			 */
1504			if ((transport->state == SCTP_INACTIVE ||
1505			     transport->state == SCTP_UNCONFIRMED) &&
1506			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1507				sctp_assoc_control_transport(
1508					transport->asoc,
1509					transport,
1510					SCTP_TRANSPORT_UP,
1511					SCTP_RECEIVED_SACK);
1512			}
1513
1514			sctp_transport_raise_cwnd(transport, sack_ctsn,
1515						  bytes_acked);
1516
1517			transport->flight_size -= bytes_acked;
1518			if (transport->flight_size == 0)
1519				transport->partial_bytes_acked = 0;
1520			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1521		} else {
1522			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1523			 * When a sender is doing zero window probing, it
1524			 * should not timeout the association if it continues
1525			 * to receive new packets from the receiver. The
1526			 * reason is that the receiver MAY keep its window
1527			 * closed for an indefinite time.
1528			 * A sender is doing zero window probing when the
1529			 * receiver's advertised window is zero, and there is
1530			 * only one data chunk in flight to the receiver.
1531			 *
1532			 * Allow the association to timeout while in SHUTDOWN
1533			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1534			 * stays in zero window mode forever.
1535			 */
1536			if (!q->asoc->peer.rwnd &&
1537			    !list_empty(&tlist) &&
1538			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1539			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1540				pr_debug("%s: sack received for zero window "
1541					 "probe:%u\n", __func__, sack_ctsn);
1542
1543				q->asoc->overall_error_count = 0;
1544				transport->error_count = 0;
1545			}
1546		}
1547
1548		/* RFC 2960 6.3.2 Retransmission Timer Rules
1549		 *
1550		 * R2) Whenever all outstanding data sent to an address have
1551		 * been acknowledged, turn off the T3-rtx timer of that
1552		 * address.
1553		 */
1554		if (!transport->flight_size) {
1555			if (del_timer(&transport->T3_rtx_timer))
1556				sctp_transport_put(transport);
1557		} else if (restart_timer) {
1558			if (!mod_timer(&transport->T3_rtx_timer,
1559				       jiffies + transport->rto))
1560				sctp_transport_hold(transport);
1561		}
1562
1563		if (forward_progress) {
1564			if (transport->dst)
1565				dst_confirm(transport->dst);
1566		}
1567	}
1568
1569	list_splice(&tlist, transmitted_queue);
1570}
1571
1572/* Mark chunks as missing and consequently may get retransmitted. */
1573static void sctp_mark_missing(struct sctp_outq *q,
1574			      struct list_head *transmitted_queue,
1575			      struct sctp_transport *transport,
1576			      __u32 highest_new_tsn_in_sack,
1577			      int count_of_newacks)
1578{
1579	struct sctp_chunk *chunk;
1580	__u32 tsn;
1581	char do_fast_retransmit = 0;
1582	struct sctp_association *asoc = q->asoc;
1583	struct sctp_transport *primary = asoc->peer.primary_path;
1584
1585	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1586
1587		tsn = ntohl(chunk->subh.data_hdr->tsn);
1588
1589		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1590		 * 'Unacknowledged TSN's', if the TSN number of an
1591		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1592		 * value, increment the 'TSN.Missing.Report' count on that
1593		 * chunk if it has NOT been fast retransmitted or marked for
1594		 * fast retransmit already.
1595		 */
1596		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1597		    !chunk->tsn_gap_acked &&
1598		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1599
1600			/* SFR-CACC may require us to skip marking
1601			 * this chunk as missing.
1602			 */
1603			if (!transport || !sctp_cacc_skip(primary,
1604						chunk->transport,
1605						count_of_newacks, tsn)) {
1606				chunk->tsn_missing_report++;
1607
1608				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1609					 __func__, tsn, chunk->tsn_missing_report);
1610			}
1611		}
1612		/*
1613		 * M4) If any DATA chunk is found to have a
1614		 * 'TSN.Missing.Report'
1615		 * value larger than or equal to 3, mark that chunk for
1616		 * retransmission and start the fast retransmit procedure.
1617		 */
1618
1619		if (chunk->tsn_missing_report >= 3) {
1620			chunk->fast_retransmit = SCTP_NEED_FRTX;
1621			do_fast_retransmit = 1;
1622		}
1623	}
1624
1625	if (transport) {
1626		if (do_fast_retransmit)
1627			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1628
1629		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1630			 "flight_size:%d, pba:%d\n",  __func__, transport,
1631			 transport->cwnd, transport->ssthresh,
1632			 transport->flight_size, transport->partial_bytes_acked);
1633	}
1634}
1635
1636/* Is the given TSN acked by this packet?  */
1637static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1638{
1639	int i;
1640	sctp_sack_variable_t *frags;
1641	__u16 gap;
1642	__u32 ctsn = ntohl(sack->cum_tsn_ack);
 
 
 
1643
1644	if (TSN_lte(tsn, ctsn))
1645		goto pass;
1646
1647	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1648	 *
1649	 * Gap Ack Blocks:
1650	 *  These fields contain the Gap Ack Blocks. They are repeated
1651	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1652	 *  defined in the Number of Gap Ack Blocks field. All DATA
1653	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1654	 *  Ack + Gap Ack Block Start) and less than or equal to
1655	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1656	 *  Block are assumed to have been received correctly.
1657	 */
1658
1659	frags = sack->variable;
1660	gap = tsn - ctsn;
1661	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1662		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1663		    TSN_lte(gap, ntohs(frags[i].gab.end)))
 
1664			goto pass;
1665	}
1666
1667	return 0;
1668pass:
1669	return 1;
1670}
1671
1672static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1673				    int nskips, __be16 stream)
1674{
1675	int i;
1676
1677	for (i = 0; i < nskips; i++) {
1678		if (skiplist[i].stream == stream)
1679			return i;
1680	}
1681	return i;
1682}
1683
1684/* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1685static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1686{
1687	struct sctp_association *asoc = q->asoc;
1688	struct sctp_chunk *ftsn_chunk = NULL;
1689	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1690	int nskips = 0;
1691	int skip_pos = 0;
1692	__u32 tsn;
1693	struct sctp_chunk *chunk;
1694	struct list_head *lchunk, *temp;
1695
1696	if (!asoc->peer.prsctp_capable)
1697		return;
1698
1699	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1700	 * received SACK.
1701	 *
1702	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1703	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1704	 */
1705	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1706		asoc->adv_peer_ack_point = ctsn;
1707
1708	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1709	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1710	 * the chunk next in the out-queue space is marked as "abandoned" as
1711	 * shown in the following example:
1712	 *
1713	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1714	 * and the Advanced.Peer.Ack.Point is updated to this value:
1715	 *
1716	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1717	 *   normal SACK processing           local advancement
1718	 *                ...                           ...
1719	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1720	 *                103 abandoned                 103 abandoned
1721	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1722	 *                105                           105
1723	 *                106 acked                     106 acked
1724	 *                ...                           ...
1725	 *
1726	 * In this example, the data sender successfully advanced the
1727	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1728	 */
1729	list_for_each_safe(lchunk, temp, &q->abandoned) {
1730		chunk = list_entry(lchunk, struct sctp_chunk,
1731					transmitted_list);
1732		tsn = ntohl(chunk->subh.data_hdr->tsn);
1733
1734		/* Remove any chunks in the abandoned queue that are acked by
1735		 * the ctsn.
1736		 */
1737		if (TSN_lte(tsn, ctsn)) {
1738			list_del_init(lchunk);
1739			sctp_chunk_free(chunk);
1740		} else {
1741			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1742				asoc->adv_peer_ack_point = tsn;
1743				if (chunk->chunk_hdr->flags &
1744					 SCTP_DATA_UNORDERED)
1745					continue;
1746				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1747						nskips,
1748						chunk->subh.data_hdr->stream);
1749				ftsn_skip_arr[skip_pos].stream =
1750					chunk->subh.data_hdr->stream;
1751				ftsn_skip_arr[skip_pos].ssn =
1752					 chunk->subh.data_hdr->ssn;
1753				if (skip_pos == nskips)
1754					nskips++;
1755				if (nskips == 10)
1756					break;
1757			} else
1758				break;
1759		}
1760	}
1761
1762	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1763	 * is greater than the Cumulative TSN ACK carried in the received
1764	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1765	 * chunk containing the latest value of the
1766	 * "Advanced.Peer.Ack.Point".
1767	 *
1768	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1769	 * list each stream and sequence number in the forwarded TSN. This
1770	 * information will enable the receiver to easily find any
1771	 * stranded TSN's waiting on stream reorder queues. Each stream
1772	 * SHOULD only be reported once; this means that if multiple
1773	 * abandoned messages occur in the same stream then only the
1774	 * highest abandoned stream sequence number is reported. If the
1775	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1776	 * the sender of the FORWARD TSN SHOULD lower the
1777	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1778	 * single MTU.
1779	 */
1780	if (asoc->adv_peer_ack_point > ctsn)
1781		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1782					      nskips, &ftsn_skip_arr[0]);
1783
1784	if (ftsn_chunk) {
1785		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1786		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1787	}
1788}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * (C) Copyright IBM Corp. 2001, 2004
   4 * Copyright (c) 1999-2000 Cisco, Inc.
   5 * Copyright (c) 1999-2001 Motorola, Inc.
   6 * Copyright (c) 2001-2003 Intel Corp.
   7 *
   8 * This file is part of the SCTP kernel implementation
   9 *
  10 * These functions implement the sctp_outq class.   The outqueue handles
  11 * bundling and queueing of outgoing SCTP chunks.
  12 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13 * Please send any bug reports or fixes you make to the
  14 * email address(es):
  15 *    lksctp developers <linux-sctp@vger.kernel.org>
  16 *
  17 * Written or modified by:
  18 *    La Monte H.P. Yarroll <piggy@acm.org>
  19 *    Karl Knutson          <karl@athena.chicago.il.us>
  20 *    Perry Melange         <pmelange@null.cc.uic.edu>
  21 *    Xingang Guo           <xingang.guo@intel.com>
  22 *    Hui Huang 	    <hui.huang@nokia.com>
  23 *    Sridhar Samudrala     <sri@us.ibm.com>
  24 *    Jon Grimm             <jgrimm@us.ibm.com>
  25 */
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/types.h>
  30#include <linux/list.h>   /* For struct list_head */
  31#include <linux/socket.h>
  32#include <linux/ip.h>
  33#include <linux/slab.h>
  34#include <net/sock.h>	  /* For skb_set_owner_w */
  35
  36#include <net/sctp/sctp.h>
  37#include <net/sctp/sm.h>
  38#include <net/sctp/stream_sched.h>
  39#include <trace/events/sctp.h>
  40
  41/* Declare internal functions here.  */
  42static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
  43static void sctp_check_transmitted(struct sctp_outq *q,
  44				   struct list_head *transmitted_queue,
  45				   struct sctp_transport *transport,
  46				   union sctp_addr *saddr,
  47				   struct sctp_sackhdr *sack,
  48				   __u32 *highest_new_tsn);
  49
  50static void sctp_mark_missing(struct sctp_outq *q,
  51			      struct list_head *transmitted_queue,
  52			      struct sctp_transport *transport,
  53			      __u32 highest_new_tsn,
  54			      int count_of_newacks);
  55
  56static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
 
 
  57
  58/* Add data to the front of the queue. */
  59static inline void sctp_outq_head_data(struct sctp_outq *q,
  60				       struct sctp_chunk *ch)
  61{
  62	struct sctp_stream_out_ext *oute;
  63	__u16 stream;
  64
  65	list_add(&ch->list, &q->out_chunk_list);
  66	q->out_qlen += ch->skb->len;
  67
  68	stream = sctp_chunk_stream_no(ch);
  69	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
  70	list_add(&ch->stream_list, &oute->outq);
  71}
  72
  73/* Take data from the front of the queue. */
  74static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
  75{
  76	return q->sched->dequeue(q);
 
 
 
 
 
 
 
 
 
  77}
  78
  79/* Add data chunk to the end of the queue. */
  80static inline void sctp_outq_tail_data(struct sctp_outq *q,
  81				       struct sctp_chunk *ch)
  82{
  83	struct sctp_stream_out_ext *oute;
  84	__u16 stream;
  85
  86	list_add_tail(&ch->list, &q->out_chunk_list);
  87	q->out_qlen += ch->skb->len;
  88
  89	stream = sctp_chunk_stream_no(ch);
  90	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
  91	list_add_tail(&ch->stream_list, &oute->outq);
  92}
  93
  94/*
  95 * SFR-CACC algorithm:
  96 * D) If count_of_newacks is greater than or equal to 2
  97 * and t was not sent to the current primary then the
  98 * sender MUST NOT increment missing report count for t.
  99 */
 100static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
 101				       struct sctp_transport *transport,
 102				       int count_of_newacks)
 103{
 104	if (count_of_newacks >= 2 && transport != primary)
 105		return 1;
 106	return 0;
 107}
 108
 109/*
 110 * SFR-CACC algorithm:
 111 * F) If count_of_newacks is less than 2, let d be the
 112 * destination to which t was sent. If cacc_saw_newack
 113 * is 0 for destination d, then the sender MUST NOT
 114 * increment missing report count for t.
 115 */
 116static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
 117				       int count_of_newacks)
 118{
 119	if (count_of_newacks < 2 &&
 120			(transport && !transport->cacc.cacc_saw_newack))
 121		return 1;
 122	return 0;
 123}
 124
 125/*
 126 * SFR-CACC algorithm:
 127 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
 128 * execute steps C, D, F.
 129 *
 130 * C has been implemented in sctp_outq_sack
 131 */
 132static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
 133				     struct sctp_transport *transport,
 134				     int count_of_newacks)
 135{
 136	if (!primary->cacc.cycling_changeover) {
 137		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
 138			return 1;
 139		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
 140			return 1;
 141		return 0;
 142	}
 143	return 0;
 144}
 145
 146/*
 147 * SFR-CACC algorithm:
 148 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
 149 * than next_tsn_at_change of the current primary, then
 150 * the sender MUST NOT increment missing report count
 151 * for t.
 152 */
 153static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
 154{
 155	if (primary->cacc.cycling_changeover &&
 156	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
 157		return 1;
 158	return 0;
 159}
 160
 161/*
 162 * SFR-CACC algorithm:
 163 * 3) If the missing report count for TSN t is to be
 164 * incremented according to [RFC2960] and
 165 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
 166 * then the sender MUST further execute steps 3.1 and
 167 * 3.2 to determine if the missing report count for
 168 * TSN t SHOULD NOT be incremented.
 169 *
 170 * 3.3) If 3.1 and 3.2 do not dictate that the missing
 171 * report count for t should not be incremented, then
 172 * the sender SHOULD increment missing report count for
 173 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
 174 */
 175static inline int sctp_cacc_skip(struct sctp_transport *primary,
 176				 struct sctp_transport *transport,
 177				 int count_of_newacks,
 178				 __u32 tsn)
 179{
 180	if (primary->cacc.changeover_active &&
 181	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
 182	     sctp_cacc_skip_3_2(primary, tsn)))
 183		return 1;
 184	return 0;
 185}
 186
 187/* Initialize an existing sctp_outq.  This does the boring stuff.
 188 * You still need to define handlers if you really want to DO
 189 * something with this structure...
 190 */
 191void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
 192{
 193	memset(q, 0, sizeof(struct sctp_outq));
 194
 195	q->asoc = asoc;
 196	INIT_LIST_HEAD(&q->out_chunk_list);
 197	INIT_LIST_HEAD(&q->control_chunk_list);
 198	INIT_LIST_HEAD(&q->retransmit);
 199	INIT_LIST_HEAD(&q->sacked);
 200	INIT_LIST_HEAD(&q->abandoned);
 201	sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
 202}
 203
 204/* Free the outqueue structure and any related pending chunks.
 205 */
 206static void __sctp_outq_teardown(struct sctp_outq *q)
 207{
 208	struct sctp_transport *transport;
 209	struct list_head *lchunk, *temp;
 210	struct sctp_chunk *chunk, *tmp;
 211
 212	/* Throw away unacknowledged chunks. */
 213	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
 214			transports) {
 215		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
 216			chunk = list_entry(lchunk, struct sctp_chunk,
 217					   transmitted_list);
 218			/* Mark as part of a failed message. */
 219			sctp_chunk_fail(chunk, q->error);
 220			sctp_chunk_free(chunk);
 221		}
 222	}
 223
 224	/* Throw away chunks that have been gap ACKed.  */
 225	list_for_each_safe(lchunk, temp, &q->sacked) {
 226		list_del_init(lchunk);
 227		chunk = list_entry(lchunk, struct sctp_chunk,
 228				   transmitted_list);
 229		sctp_chunk_fail(chunk, q->error);
 230		sctp_chunk_free(chunk);
 231	}
 232
 233	/* Throw away any chunks in the retransmit queue. */
 234	list_for_each_safe(lchunk, temp, &q->retransmit) {
 235		list_del_init(lchunk);
 236		chunk = list_entry(lchunk, struct sctp_chunk,
 237				   transmitted_list);
 238		sctp_chunk_fail(chunk, q->error);
 239		sctp_chunk_free(chunk);
 240	}
 241
 242	/* Throw away any chunks that are in the abandoned queue. */
 243	list_for_each_safe(lchunk, temp, &q->abandoned) {
 244		list_del_init(lchunk);
 245		chunk = list_entry(lchunk, struct sctp_chunk,
 246				   transmitted_list);
 247		sctp_chunk_fail(chunk, q->error);
 248		sctp_chunk_free(chunk);
 249	}
 250
 251	/* Throw away any leftover data chunks. */
 252	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
 253		sctp_sched_dequeue_done(q, chunk);
 254
 255		/* Mark as send failure. */
 256		sctp_chunk_fail(chunk, q->error);
 257		sctp_chunk_free(chunk);
 258	}
 259
 260	/* Throw away any leftover control chunks. */
 261	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
 262		list_del_init(&chunk->list);
 263		sctp_chunk_free(chunk);
 264	}
 265}
 266
 267void sctp_outq_teardown(struct sctp_outq *q)
 268{
 269	__sctp_outq_teardown(q);
 270	sctp_outq_init(q->asoc, q);
 271}
 272
 273/* Free the outqueue structure and any related pending chunks.  */
 274void sctp_outq_free(struct sctp_outq *q)
 275{
 276	/* Throw away leftover chunks. */
 277	__sctp_outq_teardown(q);
 278}
 279
 280/* Put a new chunk in an sctp_outq.  */
 281void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
 282{
 283	struct net *net = q->asoc->base.net;
 
 284
 285	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
 286		 chunk && chunk->chunk_hdr ?
 287		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
 288		 "illegal chunk");
 289
 290	/* If it is data, queue it up, otherwise, send it
 291	 * immediately.
 292	 */
 293	if (sctp_chunk_is_data(chunk)) {
 294		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
 295			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
 296			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
 297			 "illegal chunk");
 298
 299		sctp_outq_tail_data(q, chunk);
 300		if (chunk->asoc->peer.prsctp_capable &&
 301		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
 302			chunk->asoc->sent_cnt_removable++;
 303		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
 304			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
 305		else
 306			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307	} else {
 308		list_add_tail(&chunk->list, &q->control_chunk_list);
 309		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
 310	}
 311
 
 
 
 312	if (!q->cork)
 313		sctp_outq_flush(q, 0, gfp);
 
 
 314}
 315
 316/* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
 317 * and the abandoned list are in ascending order.
 318 */
 319static void sctp_insert_list(struct list_head *head, struct list_head *new)
 320{
 321	struct list_head *pos;
 322	struct sctp_chunk *nchunk, *lchunk;
 323	__u32 ntsn, ltsn;
 324	int done = 0;
 325
 326	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
 327	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
 328
 329	list_for_each(pos, head) {
 330		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
 331		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
 332		if (TSN_lt(ntsn, ltsn)) {
 333			list_add(new, pos->prev);
 334			done = 1;
 335			break;
 336		}
 337	}
 338	if (!done)
 339		list_add_tail(new, head);
 340}
 341
 342static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
 343				  struct sctp_sndrcvinfo *sinfo,
 344				  struct list_head *queue, int msg_len)
 345{
 346	struct sctp_chunk *chk, *temp;
 347
 348	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
 349		struct sctp_stream_out *streamout;
 350
 351		if (!chk->msg->abandoned &&
 352		    (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
 353		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
 354			continue;
 355
 356		chk->msg->abandoned = 1;
 357		list_del_init(&chk->transmitted_list);
 358		sctp_insert_list(&asoc->outqueue.abandoned,
 359				 &chk->transmitted_list);
 360
 361		streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
 362		asoc->sent_cnt_removable--;
 363		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
 364		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
 365
 366		if (queue != &asoc->outqueue.retransmit &&
 367		    !chk->tsn_gap_acked) {
 368			if (chk->transport)
 369				chk->transport->flight_size -=
 370						sctp_data_size(chk);
 371			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
 372		}
 373
 374		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
 375		if (msg_len <= 0)
 376			break;
 377	}
 378
 379	return msg_len;
 380}
 381
 382static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
 383				    struct sctp_sndrcvinfo *sinfo, int msg_len)
 384{
 385	struct sctp_outq *q = &asoc->outqueue;
 386	struct sctp_chunk *chk, *temp;
 387	struct sctp_stream_out *sout;
 388
 389	q->sched->unsched_all(&asoc->stream);
 390
 391	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
 392		if (!chk->msg->abandoned &&
 393		    (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
 394		     !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
 395		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
 396			continue;
 397
 398		chk->msg->abandoned = 1;
 399		sctp_sched_dequeue_common(q, chk);
 400		asoc->sent_cnt_removable--;
 401		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
 402
 403		sout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
 404		sout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
 405
 406		/* clear out_curr if all frag chunks are pruned */
 407		if (asoc->stream.out_curr == sout &&
 408		    list_is_last(&chk->frag_list, &chk->msg->chunks))
 409			asoc->stream.out_curr = NULL;
 410
 411		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
 412		sctp_chunk_free(chk);
 413		if (msg_len <= 0)
 414			break;
 415	}
 416
 417	q->sched->sched_all(&asoc->stream);
 418
 419	return msg_len;
 420}
 421
 422/* Abandon the chunks according their priorities */
 423void sctp_prsctp_prune(struct sctp_association *asoc,
 424		       struct sctp_sndrcvinfo *sinfo, int msg_len)
 425{
 426	struct sctp_transport *transport;
 427
 428	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
 429		return;
 430
 431	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
 432					 &asoc->outqueue.retransmit,
 433					 msg_len);
 434	if (msg_len <= 0)
 435		return;
 436
 437	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 438			    transports) {
 439		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
 440						 &transport->transmitted,
 441						 msg_len);
 442		if (msg_len <= 0)
 443			return;
 444	}
 445
 446	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
 447}
 448
 449/* Mark all the eligible packets on a transport for retransmission.  */
 450void sctp_retransmit_mark(struct sctp_outq *q,
 451			  struct sctp_transport *transport,
 452			  __u8 reason)
 453{
 454	struct list_head *lchunk, *ltemp;
 455	struct sctp_chunk *chunk;
 456
 457	/* Walk through the specified transmitted queue.  */
 458	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
 459		chunk = list_entry(lchunk, struct sctp_chunk,
 460				   transmitted_list);
 461
 462		/* If the chunk is abandoned, move it to abandoned list. */
 463		if (sctp_chunk_abandoned(chunk)) {
 464			list_del_init(lchunk);
 465			sctp_insert_list(&q->abandoned, lchunk);
 466
 467			/* If this chunk has not been previousely acked,
 468			 * stop considering it 'outstanding'.  Our peer
 469			 * will most likely never see it since it will
 470			 * not be retransmitted
 471			 */
 472			if (!chunk->tsn_gap_acked) {
 473				if (chunk->transport)
 474					chunk->transport->flight_size -=
 475							sctp_data_size(chunk);
 476				q->outstanding_bytes -= sctp_data_size(chunk);
 477				q->asoc->peer.rwnd += sctp_data_size(chunk);
 478			}
 479			continue;
 480		}
 481
 482		/* If we are doing  retransmission due to a timeout or pmtu
 483		 * discovery, only the  chunks that are not yet acked should
 484		 * be added to the retransmit queue.
 485		 */
 486		if ((reason == SCTP_RTXR_FAST_RTX  &&
 487			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
 488		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
 489			/* RFC 2960 6.2.1 Processing a Received SACK
 490			 *
 491			 * C) Any time a DATA chunk is marked for
 492			 * retransmission (via either T3-rtx timer expiration
 493			 * (Section 6.3.3) or via fast retransmit
 494			 * (Section 7.2.4)), add the data size of those
 495			 * chunks to the rwnd.
 496			 */
 497			q->asoc->peer.rwnd += sctp_data_size(chunk);
 498			q->outstanding_bytes -= sctp_data_size(chunk);
 499			if (chunk->transport)
 500				transport->flight_size -= sctp_data_size(chunk);
 501
 502			/* sctpimpguide-05 Section 2.8.2
 503			 * M5) If a T3-rtx timer expires, the
 504			 * 'TSN.Missing.Report' of all affected TSNs is set
 505			 * to 0.
 506			 */
 507			chunk->tsn_missing_report = 0;
 508
 509			/* If a chunk that is being used for RTT measurement
 510			 * has to be retransmitted, we cannot use this chunk
 511			 * anymore for RTT measurements. Reset rto_pending so
 512			 * that a new RTT measurement is started when a new
 513			 * data chunk is sent.
 514			 */
 515			if (chunk->rtt_in_progress) {
 516				chunk->rtt_in_progress = 0;
 517				transport->rto_pending = 0;
 518			}
 519
 
 
 520			/* Move the chunk to the retransmit queue. The chunks
 521			 * on the retransmit queue are always kept in order.
 522			 */
 523			list_del_init(lchunk);
 524			sctp_insert_list(&q->retransmit, lchunk);
 525		}
 526	}
 527
 528	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
 529		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
 530		 transport->cwnd, transport->ssthresh, transport->flight_size,
 531		 transport->partial_bytes_acked);
 532}
 533
 534/* Mark all the eligible packets on a transport for retransmission and force
 535 * one packet out.
 536 */
 537void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
 538		     enum sctp_retransmit_reason reason)
 539{
 540	struct net *net = q->asoc->base.net;
 
 541
 542	switch (reason) {
 543	case SCTP_RTXR_T3_RTX:
 544		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
 545		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
 546		/* Update the retran path if the T3-rtx timer has expired for
 547		 * the current retran path.
 548		 */
 549		if (transport == transport->asoc->peer.retran_path)
 550			sctp_assoc_update_retran_path(transport->asoc);
 551		transport->asoc->rtx_data_chunks +=
 552			transport->asoc->unack_data;
 553		if (transport->pl.state == SCTP_PL_COMPLETE &&
 554		    transport->asoc->unack_data)
 555			sctp_transport_reset_probe_timer(transport);
 556		break;
 557	case SCTP_RTXR_FAST_RTX:
 558		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
 559		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
 560		q->fast_rtx = 1;
 561		break;
 562	case SCTP_RTXR_PMTUD:
 563		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
 564		break;
 565	case SCTP_RTXR_T1_RTX:
 566		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
 567		transport->asoc->init_retries++;
 568		break;
 569	default:
 570		BUG();
 571	}
 572
 573	sctp_retransmit_mark(q, transport, reason);
 574
 575	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
 576	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
 577	 * following the procedures outlined in C1 - C5.
 578	 */
 579	if (reason == SCTP_RTXR_T3_RTX)
 580		q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
 581
 582	/* Flush the queues only on timeout, since fast_rtx is only
 583	 * triggered during sack processing and the queue
 584	 * will be flushed at the end.
 585	 */
 586	if (reason != SCTP_RTXR_FAST_RTX)
 587		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
 
 
 
 588}
 589
 590/*
 591 * Transmit DATA chunks on the retransmit queue.  Upon return from
 592 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
 593 * need to be transmitted by the caller.
 594 * We assume that pkt->transport has already been set.
 595 *
 596 * The return value is a normal kernel error return value.
 597 */
 598static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
 599				 int rtx_timeout, int *start_timer, gfp_t gfp)
 600{
 
 601	struct sctp_transport *transport = pkt->transport;
 
 602	struct sctp_chunk *chunk, *chunk1;
 603	struct list_head *lqueue;
 604	enum sctp_xmit status;
 605	int error = 0;
 606	int timer = 0;
 607	int done = 0;
 608	int fast_rtx;
 609
 610	lqueue = &q->retransmit;
 611	fast_rtx = q->fast_rtx;
 612
 613	/* This loop handles time-out retransmissions, fast retransmissions,
 614	 * and retransmissions due to opening of whindow.
 615	 *
 616	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
 617	 *
 618	 * E3) Determine how many of the earliest (i.e., lowest TSN)
 619	 * outstanding DATA chunks for the address for which the
 620	 * T3-rtx has expired will fit into a single packet, subject
 621	 * to the MTU constraint for the path corresponding to the
 622	 * destination transport address to which the retransmission
 623	 * is being sent (this may be different from the address for
 624	 * which the timer expires [see Section 6.4]). Call this value
 625	 * K. Bundle and retransmit those K DATA chunks in a single
 626	 * packet to the destination endpoint.
 627	 *
 628	 * [Just to be painfully clear, if we are retransmitting
 629	 * because a timeout just happened, we should send only ONE
 630	 * packet of retransmitted data.]
 631	 *
 632	 * For fast retransmissions we also send only ONE packet.  However,
 633	 * if we are just flushing the queue due to open window, we'll
 634	 * try to send as much as possible.
 635	 */
 636	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
 637		/* If the chunk is abandoned, move it to abandoned list. */
 638		if (sctp_chunk_abandoned(chunk)) {
 639			list_del_init(&chunk->transmitted_list);
 640			sctp_insert_list(&q->abandoned,
 641					 &chunk->transmitted_list);
 642			continue;
 643		}
 644
 645		/* Make sure that Gap Acked TSNs are not retransmitted.  A
 646		 * simple approach is just to move such TSNs out of the
 647		 * way and into a 'transmitted' queue and skip to the
 648		 * next chunk.
 649		 */
 650		if (chunk->tsn_gap_acked) {
 651			list_move_tail(&chunk->transmitted_list,
 652				       &transport->transmitted);
 653			continue;
 654		}
 655
 656		/* If we are doing fast retransmit, ignore non-fast_rtransmit
 657		 * chunks
 658		 */
 659		if (fast_rtx && !chunk->fast_retransmit)
 660			continue;
 661
 662redo:
 663		/* Attempt to append this chunk to the packet. */
 664		status = sctp_packet_append_chunk(pkt, chunk);
 665
 666		switch (status) {
 667		case SCTP_XMIT_PMTU_FULL:
 668			if (!pkt->has_data && !pkt->has_cookie_echo) {
 669				/* If this packet did not contain DATA then
 670				 * retransmission did not happen, so do it
 671				 * again.  We'll ignore the error here since
 672				 * control chunks are already freed so there
 673				 * is nothing we can do.
 674				 */
 675				sctp_packet_transmit(pkt, gfp);
 676				goto redo;
 677			}
 678
 679			/* Send this packet.  */
 680			error = sctp_packet_transmit(pkt, gfp);
 681
 682			/* If we are retransmitting, we should only
 683			 * send a single packet.
 684			 * Otherwise, try appending this chunk again.
 685			 */
 686			if (rtx_timeout || fast_rtx)
 687				done = 1;
 688			else
 689				goto redo;
 690
 691			/* Bundle next chunk in the next round.  */
 692			break;
 693
 694		case SCTP_XMIT_RWND_FULL:
 695			/* Send this packet. */
 696			error = sctp_packet_transmit(pkt, gfp);
 697
 698			/* Stop sending DATA as there is no more room
 699			 * at the receiver.
 700			 */
 701			done = 1;
 702			break;
 703
 704		case SCTP_XMIT_DELAY:
 705			/* Send this packet. */
 706			error = sctp_packet_transmit(pkt, gfp);
 707
 708			/* Stop sending DATA because of nagle delay. */
 709			done = 1;
 710			break;
 711
 712		default:
 713			/* The append was successful, so add this chunk to
 714			 * the transmitted list.
 715			 */
 716			list_move_tail(&chunk->transmitted_list,
 717				       &transport->transmitted);
 718
 719			/* Mark the chunk as ineligible for fast retransmit
 720			 * after it is retransmitted.
 721			 */
 722			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
 723				chunk->fast_retransmit = SCTP_DONT_FRTX;
 724
 725			q->asoc->stats.rtxchunks++;
 726			break;
 727		}
 728
 729		/* Set the timer if there were no errors */
 730		if (!error && !timer)
 731			timer = 1;
 732
 733		if (done)
 734			break;
 735	}
 736
 737	/* If we are here due to a retransmit timeout or a fast
 738	 * retransmit and if there are any chunks left in the retransmit
 739	 * queue that could not fit in the PMTU sized packet, they need
 740	 * to be marked as ineligible for a subsequent fast retransmit.
 741	 */
 742	if (rtx_timeout || fast_rtx) {
 743		list_for_each_entry(chunk1, lqueue, transmitted_list) {
 744			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
 745				chunk1->fast_retransmit = SCTP_DONT_FRTX;
 746		}
 747	}
 748
 749	*start_timer = timer;
 750
 751	/* Clear fast retransmit hint */
 752	if (fast_rtx)
 753		q->fast_rtx = 0;
 754
 755	return error;
 756}
 757
 758/* Cork the outqueue so queued chunks are really queued. */
 759void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
 760{
 761	if (q->cork)
 762		q->cork = 0;
 763
 764	sctp_outq_flush(q, 0, gfp);
 765}
 766
 767static int sctp_packet_singleton(struct sctp_transport *transport,
 768				 struct sctp_chunk *chunk, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 769{
 770	const struct sctp_association *asoc = transport->asoc;
 771	const __u16 sport = asoc->base.bind_addr.port;
 772	const __u16 dport = asoc->peer.port;
 773	const __u32 vtag = asoc->peer.i.init_tag;
 774	struct sctp_packet singleton;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775
 776	sctp_packet_init(&singleton, transport, sport, dport);
 777	sctp_packet_config(&singleton, vtag, 0);
 778	if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) {
 779		list_del_init(&chunk->list);
 780		sctp_chunk_free(chunk);
 781		return -ENOMEM;
 782	}
 783	return sctp_packet_transmit(&singleton, gfp);
 784}
 785
 786/* Struct to hold the context during sctp outq flush */
 787struct sctp_flush_ctx {
 788	struct sctp_outq *q;
 789	/* Current transport being used. It's NOT the same as curr active one */
 790	struct sctp_transport *transport;
 791	/* These transports have chunks to send. */
 792	struct list_head transport_list;
 793	struct sctp_association *asoc;
 794	/* Packet on the current transport above */
 795	struct sctp_packet *packet;
 796	gfp_t gfp;
 797};
 798
 799/* transport: current transport */
 800static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
 801				       struct sctp_chunk *chunk)
 802{
 803	struct sctp_transport *new_transport = chunk->transport;
 804
 805	if (!new_transport) {
 806		if (!sctp_chunk_is_data(chunk)) {
 807			/* If we have a prior transport pointer, see if
 808			 * the destination address of the chunk
 809			 * matches the destination address of the
 810			 * current transport.  If not a match, then
 811			 * try to look up the transport with a given
 812			 * destination address.  We do this because
 813			 * after processing ASCONFs, we may have new
 814			 * transports created.
 815			 */
 816			if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
 817							&ctx->transport->ipaddr))
 818				new_transport = ctx->transport;
 
 819			else
 820				new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
 821								  &chunk->dest);
 822		}
 823
 824		/* if we still don't have a new transport, then
 825		 * use the current active path.
 826		 */
 827		if (!new_transport)
 828			new_transport = ctx->asoc->peer.active_path;
 829	} else {
 830		__u8 type;
 831
 832		switch (new_transport->state) {
 833		case SCTP_INACTIVE:
 834		case SCTP_UNCONFIRMED:
 835		case SCTP_PF:
 836			/* If the chunk is Heartbeat or Heartbeat Ack,
 837			 * send it to chunk->transport, even if it's
 838			 * inactive.
 839			 *
 840			 * 3.3.6 Heartbeat Acknowledgement:
 841			 * ...
 842			 * A HEARTBEAT ACK is always sent to the source IP
 843			 * address of the IP datagram containing the
 844			 * HEARTBEAT chunk to which this ack is responding.
 845			 * ...
 846			 *
 847			 * ASCONF_ACKs also must be sent to the source.
 848			 */
 849			type = chunk->chunk_hdr->type;
 850			if (type != SCTP_CID_HEARTBEAT &&
 851			    type != SCTP_CID_HEARTBEAT_ACK &&
 852			    type != SCTP_CID_ASCONF_ACK)
 853				new_transport = ctx->asoc->peer.active_path;
 854			break;
 855		default:
 856			break;
 857		}
 858	}
 859
 860	/* Are we switching transports? Take care of transport locks. */
 861	if (new_transport != ctx->transport) {
 862		ctx->transport = new_transport;
 863		ctx->packet = &ctx->transport->packet;
 864
 865		if (list_empty(&ctx->transport->send_ready))
 866			list_add_tail(&ctx->transport->send_ready,
 867				      &ctx->transport_list);
 868
 869		sctp_packet_config(ctx->packet,
 870				   ctx->asoc->peer.i.init_tag,
 871				   ctx->asoc->peer.ecn_capable);
 872		/* We've switched transports, so apply the
 873		 * Burst limit to the new transport.
 874		 */
 875		sctp_transport_burst_limited(ctx->transport);
 876	}
 877}
 878
 879static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
 880{
 881	struct sctp_chunk *chunk, *tmp;
 882	enum sctp_xmit status;
 883	int one_packet, error;
 884
 885	list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
 886		one_packet = 0;
 887
 888		/* RFC 5061, 5.3
 889		 * F1) This means that until such time as the ASCONF
 890		 * containing the add is acknowledged, the sender MUST
 891		 * NOT use the new IP address as a source for ANY SCTP
 892		 * packet except on carrying an ASCONF Chunk.
 893		 */
 894		if (ctx->asoc->src_out_of_asoc_ok &&
 895		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
 896			continue;
 897
 898		list_del_init(&chunk->list);
 899
 900		/* Pick the right transport to use. Should always be true for
 901		 * the first chunk as we don't have a transport by then.
 902		 */
 903		sctp_outq_select_transport(ctx, chunk);
 904
 905		switch (chunk->chunk_hdr->type) {
 906		/* 6.10 Bundling
 
 907		 *   ...
 908		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
 909		 *   COMPLETE with any other chunks.  [Send them immediately.]
 910		 */
 911		case SCTP_CID_INIT:
 912		case SCTP_CID_INIT_ACK:
 913		case SCTP_CID_SHUTDOWN_COMPLETE:
 914			error = sctp_packet_singleton(ctx->transport, chunk,
 915						      ctx->gfp);
 916			if (error < 0) {
 917				ctx->asoc->base.sk->sk_err = -error;
 918				return;
 919			}
 920			ctx->asoc->stats.octrlchunks++;
 921			break;
 922
 923		case SCTP_CID_ABORT:
 924			if (sctp_test_T_bit(chunk))
 925				ctx->packet->vtag = ctx->asoc->c.my_vtag;
 926			fallthrough;
 927
 928		/* The following chunks are "response" chunks, i.e.
 929		 * they are generated in response to something we
 930		 * received.  If we are sending these, then we can
 931		 * send only 1 packet containing these chunks.
 932		 */
 933		case SCTP_CID_HEARTBEAT_ACK:
 934		case SCTP_CID_SHUTDOWN_ACK:
 935		case SCTP_CID_COOKIE_ACK:
 936		case SCTP_CID_COOKIE_ECHO:
 937		case SCTP_CID_ERROR:
 938		case SCTP_CID_ECN_CWR:
 939		case SCTP_CID_ASCONF_ACK:
 940			one_packet = 1;
 941			fallthrough;
 942
 
 943		case SCTP_CID_HEARTBEAT:
 944			if (chunk->pmtu_probe) {
 945				error = sctp_packet_singleton(ctx->transport,
 946							      chunk, ctx->gfp);
 947				if (!error)
 948					ctx->asoc->stats.octrlchunks++;
 949				break;
 950			}
 951			fallthrough;
 952		case SCTP_CID_SACK:
 953		case SCTP_CID_SHUTDOWN:
 954		case SCTP_CID_ECN_ECNE:
 955		case SCTP_CID_ASCONF:
 956		case SCTP_CID_FWD_TSN:
 957		case SCTP_CID_I_FWD_TSN:
 958		case SCTP_CID_RECONF:
 959			status = sctp_packet_transmit_chunk(ctx->packet, chunk,
 960							    one_packet, ctx->gfp);
 961			if (status != SCTP_XMIT_OK) {
 962				/* put the chunk back */
 963				list_add(&chunk->list, &ctx->q->control_chunk_list);
 964				break;
 965			}
 966
 967			ctx->asoc->stats.octrlchunks++;
 968			/* PR-SCTP C5) If a FORWARD TSN is sent, the
 969			 * sender MUST assure that at least one T3-rtx
 970			 * timer is running.
 971			 */
 972			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
 973			    chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
 974				sctp_transport_reset_t3_rtx(ctx->transport);
 975				ctx->transport->last_time_sent = jiffies;
 976			}
 977
 978			if (chunk == ctx->asoc->strreset_chunk)
 979				sctp_transport_reset_reconf_timer(ctx->transport);
 980
 981			break;
 982
 983		default:
 984			/* We built a chunk with an illegal type! */
 985			BUG();
 986		}
 987	}
 988}
 989
 990/* Returns false if new data shouldn't be sent */
 991static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
 992				int rtx_timeout)
 993{
 994	int error, start_timer = 0;
 995
 996	if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
 997		return false;
 998
 999	if (ctx->transport != ctx->asoc->peer.retran_path) {
1000		/* Switch transports & prepare the packet.  */
1001		ctx->transport = ctx->asoc->peer.retran_path;
1002		ctx->packet = &ctx->transport->packet;
1003
1004		if (list_empty(&ctx->transport->send_ready))
1005			list_add_tail(&ctx->transport->send_ready,
1006				      &ctx->transport_list);
1007
1008		sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1009				   ctx->asoc->peer.ecn_capable);
1010	}
1011
1012	error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1013				      &start_timer, ctx->gfp);
1014	if (error < 0)
1015		ctx->asoc->base.sk->sk_err = -error;
1016
1017	if (start_timer) {
1018		sctp_transport_reset_t3_rtx(ctx->transport);
1019		ctx->transport->last_time_sent = jiffies;
1020	}
1021
1022	/* This can happen on COOKIE-ECHO resend.  Only
1023	 * one chunk can get bundled with a COOKIE-ECHO.
1024	 */
1025	if (ctx->packet->has_cookie_echo)
1026		return false;
1027
1028	/* Don't send new data if there is still data
1029	 * waiting to retransmit.
1030	 */
1031	if (!list_empty(&ctx->q->retransmit))
1032		return false;
1033
1034	return true;
1035}
1036
1037static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1038				 int rtx_timeout)
1039{
1040	struct sctp_chunk *chunk;
1041	enum sctp_xmit status;
1042
1043	/* Is it OK to send data chunks?  */
1044	switch (ctx->asoc->state) {
1045	case SCTP_STATE_COOKIE_ECHOED:
1046		/* Only allow bundling when this packet has a COOKIE-ECHO
1047		 * chunk.
1048		 */
1049		if (!ctx->packet || !ctx->packet->has_cookie_echo)
1050			return;
1051
1052		fallthrough;
1053	case SCTP_STATE_ESTABLISHED:
1054	case SCTP_STATE_SHUTDOWN_PENDING:
1055	case SCTP_STATE_SHUTDOWN_RECEIVED:
1056		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	default:
1059		/* Do nothing. */
1060		return;
1061	}
 
 
1062
1063	/* RFC 2960 6.1  Transmission of DATA Chunks
1064	 *
1065	 * C) When the time comes for the sender to transmit,
1066	 * before sending new DATA chunks, the sender MUST
1067	 * first transmit any outstanding DATA chunks which
1068	 * are marked for retransmission (limited by the
1069	 * current cwnd).
1070	 */
1071	if (!list_empty(&ctx->q->retransmit) &&
1072	    !sctp_outq_flush_rtx(ctx, rtx_timeout))
1073		return;
1074
1075	/* Apply Max.Burst limitation to the current transport in
1076	 * case it will be used for new data.  We are going to
1077	 * rest it before we return, but we want to apply the limit
1078	 * to the currently queued data.
1079	 */
1080	if (ctx->transport)
1081		sctp_transport_burst_limited(ctx->transport);
1082
1083	/* Finally, transmit new packets.  */
1084	while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1085		__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1086		__u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1087
1088		/* Has this chunk expired? */
1089		if (sctp_chunk_abandoned(chunk)) {
1090			sctp_sched_dequeue_done(ctx->q, chunk);
1091			sctp_chunk_fail(chunk, 0);
1092			sctp_chunk_free(chunk);
1093			continue;
1094		}
1095
1096		if (stream_state == SCTP_STREAM_CLOSED) {
1097			sctp_outq_head_data(ctx->q, chunk);
1098			break;
1099		}
 
 
 
1100
1101		sctp_outq_select_transport(ctx, chunk);
 
 
 
 
 
 
 
 
 
 
 
 
1102
1103		pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1104			 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1105			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1106			 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1107			 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1108			 refcount_read(&chunk->skb->users) : -1);
1109
1110		/* Add the chunk to the packet.  */
1111		status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1112						    ctx->gfp);
1113		if (status != SCTP_XMIT_OK) {
1114			/* We could not append this chunk, so put
1115			 * the chunk back on the output queue.
1116			 */
1117			pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1118				 __func__, ntohl(chunk->subh.data_hdr->tsn),
1119				 status);
1120
1121			sctp_outq_head_data(ctx->q, chunk);
1122			break;
1123		}
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125		/* The sender is in the SHUTDOWN-PENDING state,
1126		 * The sender MAY set the I-bit in the DATA
1127		 * chunk header.
1128		 */
1129		if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1130			chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1131		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1132			ctx->asoc->stats.ouodchunks++;
1133		else
1134			ctx->asoc->stats.oodchunks++;
1135
1136		/* Only now it's safe to consider this
1137		 * chunk as sent, sched-wise.
1138		 */
1139		sctp_sched_dequeue_done(ctx->q, chunk);
 
 
 
 
1140
1141		list_add_tail(&chunk->transmitted_list,
1142			      &ctx->transport->transmitted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144		sctp_transport_reset_t3_rtx(ctx->transport);
1145		ctx->transport->last_time_sent = jiffies;
 
1146
1147		/* Only let one DATA chunk get bundled with a
1148		 * COOKIE-ECHO chunk.
1149		 */
1150		if (ctx->packet->has_cookie_echo)
1151			break;
1152	}
1153}
 
 
 
 
1154
1155static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1156{
1157	struct sock *sk = ctx->asoc->base.sk;
1158	struct list_head *ltransport;
1159	struct sctp_packet *packet;
1160	struct sctp_transport *t;
1161	int error = 0;
1162
1163	while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1164		t = list_entry(ltransport, struct sctp_transport, send_ready);
1165		packet = &t->packet;
1166		if (!sctp_packet_empty(packet)) {
1167			rcu_read_lock();
1168			if (t->dst && __sk_dst_get(sk) != t->dst) {
1169				dst_hold(t->dst);
1170				sk_setup_caps(sk, t->dst);
1171			}
1172			rcu_read_unlock();
1173			error = sctp_packet_transmit(packet, ctx->gfp);
1174			if (error < 0)
1175				ctx->q->asoc->base.sk->sk_err = -error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176		}
 
1177
1178		/* Clear the burst limited state, if any */
1179		sctp_transport_burst_reset(t);
 
1180	}
1181}
1182
1183/* Try to flush an outqueue.
1184 *
1185 * Description: Send everything in q which we legally can, subject to
1186 * congestion limitations.
1187 * * Note: This function can be called from multiple contexts so appropriate
1188 * locking concerns must be made.  Today we use the sock lock to protect
1189 * this function.
1190 */
1191
1192static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1193{
1194	struct sctp_flush_ctx ctx = {
1195		.q = q,
1196		.transport = NULL,
1197		.transport_list = LIST_HEAD_INIT(ctx.transport_list),
1198		.asoc = q->asoc,
1199		.packet = NULL,
1200		.gfp = gfp,
1201	};
1202
1203	/* 6.10 Bundling
1204	 *   ...
1205	 *   When bundling control chunks with DATA chunks, an
1206	 *   endpoint MUST place control chunks first in the outbound
1207	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
1208	 *   within a SCTP packet in increasing order of TSN.
1209	 *   ...
1210	 */
 
 
 
 
 
 
 
1211
1212	sctp_outq_flush_ctrl(&ctx);
 
 
1213
1214	if (q->asoc->src_out_of_asoc_ok)
1215		goto sctp_flush_out;
1216
1217	sctp_outq_flush_data(&ctx, rtx_timeout);
1218
1219sctp_flush_out:
1220
1221	sctp_outq_flush_transports(&ctx);
1222}
1223
1224/* Update unack_data based on the incoming SACK chunk */
1225static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1226					struct sctp_sackhdr *sack)
1227{
1228	union sctp_sack_variable *frags;
1229	__u16 unack_data;
1230	int i;
1231
1232	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1233
1234	frags = sack->variable;
1235	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1236		unack_data -= ((ntohs(frags[i].gab.end) -
1237				ntohs(frags[i].gab.start) + 1));
1238	}
1239
1240	assoc->unack_data = unack_data;
1241}
1242
1243/* This is where we REALLY process a SACK.
1244 *
1245 * Process the SACK against the outqueue.  Mostly, this just frees
1246 * things off the transmitted queue.
1247 */
1248int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1249{
1250	struct sctp_association *asoc = q->asoc;
1251	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1252	struct sctp_transport *transport;
1253	struct sctp_chunk *tchunk = NULL;
1254	struct list_head *lchunk, *transport_list, *temp;
1255	union sctp_sack_variable *frags = sack->variable;
1256	__u32 sack_ctsn, ctsn, tsn;
1257	__u32 highest_tsn, highest_new_tsn;
1258	__u32 sack_a_rwnd;
1259	unsigned int outstanding;
1260	struct sctp_transport *primary = asoc->peer.primary_path;
1261	int count_of_newacks = 0;
1262	int gap_ack_blocks;
1263	u8 accum_moved = 0;
1264
1265	/* Grab the association's destination address list. */
1266	transport_list = &asoc->peer.transport_addr_list;
1267
1268	/* SCTP path tracepoint for congestion control debugging. */
1269	if (trace_sctp_probe_path_enabled()) {
1270		list_for_each_entry(transport, transport_list, transports)
1271			trace_sctp_probe_path(transport, asoc);
1272	}
1273
1274	sack_ctsn = ntohl(sack->cum_tsn_ack);
1275	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1276	asoc->stats.gapcnt += gap_ack_blocks;
1277	/*
1278	 * SFR-CACC algorithm:
1279	 * On receipt of a SACK the sender SHOULD execute the
1280	 * following statements.
1281	 *
1282	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1283	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1284	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1285	 * all destinations.
1286	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1287	 * is set the receiver of the SACK MUST take the following actions:
1288	 *
1289	 * A) Initialize the cacc_saw_newack to 0 for all destination
1290	 * addresses.
1291	 *
1292	 * Only bother if changeover_active is set. Otherwise, this is
1293	 * totally suboptimal to do on every SACK.
1294	 */
1295	if (primary->cacc.changeover_active) {
1296		u8 clear_cycling = 0;
1297
1298		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1299			primary->cacc.changeover_active = 0;
1300			clear_cycling = 1;
1301		}
1302
1303		if (clear_cycling || gap_ack_blocks) {
1304			list_for_each_entry(transport, transport_list,
1305					transports) {
1306				if (clear_cycling)
1307					transport->cacc.cycling_changeover = 0;
1308				if (gap_ack_blocks)
1309					transport->cacc.cacc_saw_newack = 0;
1310			}
1311		}
1312	}
1313
1314	/* Get the highest TSN in the sack. */
1315	highest_tsn = sack_ctsn;
1316	if (gap_ack_blocks)
1317		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1318
1319	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1320		asoc->highest_sacked = highest_tsn;
1321
1322	highest_new_tsn = sack_ctsn;
1323
1324	/* Run through the retransmit queue.  Credit bytes received
1325	 * and free those chunks that we can.
1326	 */
1327	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1328
1329	/* Run through the transmitted queue.
1330	 * Credit bytes received and free those chunks which we can.
1331	 *
1332	 * This is a MASSIVE candidate for optimization.
1333	 */
1334	list_for_each_entry(transport, transport_list, transports) {
1335		sctp_check_transmitted(q, &transport->transmitted,
1336				       transport, &chunk->source, sack,
1337				       &highest_new_tsn);
1338		/*
1339		 * SFR-CACC algorithm:
1340		 * C) Let count_of_newacks be the number of
1341		 * destinations for which cacc_saw_newack is set.
1342		 */
1343		if (transport->cacc.cacc_saw_newack)
1344			count_of_newacks++;
1345	}
1346
1347	/* Move the Cumulative TSN Ack Point if appropriate.  */
1348	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1349		asoc->ctsn_ack_point = sack_ctsn;
1350		accum_moved = 1;
1351	}
1352
1353	if (gap_ack_blocks) {
1354
1355		if (asoc->fast_recovery && accum_moved)
1356			highest_new_tsn = highest_tsn;
1357
1358		list_for_each_entry(transport, transport_list, transports)
1359			sctp_mark_missing(q, &transport->transmitted, transport,
1360					  highest_new_tsn, count_of_newacks);
1361	}
1362
1363	/* Update unack_data field in the assoc. */
1364	sctp_sack_update_unack_data(asoc, sack);
1365
1366	ctsn = asoc->ctsn_ack_point;
1367
1368	/* Throw away stuff rotting on the sack queue.  */
1369	list_for_each_safe(lchunk, temp, &q->sacked) {
1370		tchunk = list_entry(lchunk, struct sctp_chunk,
1371				    transmitted_list);
1372		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1373		if (TSN_lte(tsn, ctsn)) {
1374			list_del_init(&tchunk->transmitted_list);
1375			if (asoc->peer.prsctp_capable &&
1376			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1377				asoc->sent_cnt_removable--;
1378			sctp_chunk_free(tchunk);
1379		}
1380	}
1381
1382	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1383	 *     number of bytes still outstanding after processing the
1384	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1385	 */
1386
1387	sack_a_rwnd = ntohl(sack->a_rwnd);
1388	asoc->peer.zero_window_announced = !sack_a_rwnd;
1389	outstanding = q->outstanding_bytes;
1390
1391	if (outstanding < sack_a_rwnd)
1392		sack_a_rwnd -= outstanding;
1393	else
1394		sack_a_rwnd = 0;
1395
1396	asoc->peer.rwnd = sack_a_rwnd;
1397
1398	asoc->stream.si->generate_ftsn(q, sack_ctsn);
1399
1400	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1401	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1402		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1403		 asoc->adv_peer_ack_point);
1404
1405	return sctp_outq_is_empty(q);
1406}
1407
1408/* Is the outqueue empty?
1409 * The queue is empty when we have not pending data, no in-flight data
1410 * and nothing pending retransmissions.
1411 */
1412int sctp_outq_is_empty(const struct sctp_outq *q)
1413{
1414	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1415	       list_empty(&q->retransmit);
1416}
1417
1418/********************************************************************
1419 * 2nd Level Abstractions
1420 ********************************************************************/
1421
1422/* Go through a transport's transmitted list or the association's retransmit
1423 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1424 * The retransmit list will not have an associated transport.
1425 *
1426 * I added coherent debug information output.	--xguo
1427 *
1428 * Instead of printing 'sacked' or 'kept' for each TSN on the
1429 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1430 * KEPT TSN6-TSN7, etc.
1431 */
1432static void sctp_check_transmitted(struct sctp_outq *q,
1433				   struct list_head *transmitted_queue,
1434				   struct sctp_transport *transport,
1435				   union sctp_addr *saddr,
1436				   struct sctp_sackhdr *sack,
1437				   __u32 *highest_new_tsn_in_sack)
1438{
1439	struct list_head *lchunk;
1440	struct sctp_chunk *tchunk;
1441	struct list_head tlist;
1442	__u32 tsn;
1443	__u32 sack_ctsn;
1444	__u32 rtt;
1445	__u8 restart_timer = 0;
1446	int bytes_acked = 0;
1447	int migrate_bytes = 0;
1448	bool forward_progress = false;
1449
1450	sack_ctsn = ntohl(sack->cum_tsn_ack);
1451
1452	INIT_LIST_HEAD(&tlist);
1453
1454	/* The while loop will skip empty transmitted queues. */
1455	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1456		tchunk = list_entry(lchunk, struct sctp_chunk,
1457				    transmitted_list);
1458
1459		if (sctp_chunk_abandoned(tchunk)) {
1460			/* Move the chunk to abandoned list. */
1461			sctp_insert_list(&q->abandoned, lchunk);
1462
1463			/* If this chunk has not been acked, stop
1464			 * considering it as 'outstanding'.
1465			 */
1466			if (transmitted_queue != &q->retransmit &&
1467			    !tchunk->tsn_gap_acked) {
1468				if (tchunk->transport)
1469					tchunk->transport->flight_size -=
1470							sctp_data_size(tchunk);
1471				q->outstanding_bytes -= sctp_data_size(tchunk);
1472			}
1473			continue;
1474		}
1475
1476		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1477		if (sctp_acked(sack, tsn)) {
1478			/* If this queue is the retransmit queue, the
1479			 * retransmit timer has already reclaimed
1480			 * the outstanding bytes for this chunk, so only
1481			 * count bytes associated with a transport.
1482			 */
1483			if (transport && !tchunk->tsn_gap_acked) {
1484				/* If this chunk is being used for RTT
1485				 * measurement, calculate the RTT and update
1486				 * the RTO using this value.
1487				 *
1488				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1489				 * MUST NOT be made using packets that were
1490				 * retransmitted (and thus for which it is
1491				 * ambiguous whether the reply was for the
1492				 * first instance of the packet or a later
1493				 * instance).
1494				 */
1495				if (!sctp_chunk_retransmitted(tchunk) &&
 
1496				    tchunk->rtt_in_progress) {
1497					tchunk->rtt_in_progress = 0;
1498					rtt = jiffies - tchunk->sent_at;
1499					sctp_transport_update_rto(transport,
1500								  rtt);
1501				}
1502
1503				if (TSN_lte(tsn, sack_ctsn)) {
1504					/*
1505					 * SFR-CACC algorithm:
1506					 * 2) If the SACK contains gap acks
1507					 * and the flag CHANGEOVER_ACTIVE is
1508					 * set the receiver of the SACK MUST
1509					 * take the following action:
1510					 *
1511					 * B) For each TSN t being acked that
1512					 * has not been acked in any SACK so
1513					 * far, set cacc_saw_newack to 1 for
1514					 * the destination that the TSN was
1515					 * sent to.
1516					 */
1517					if (sack->num_gap_ack_blocks &&
1518					    q->asoc->peer.primary_path->cacc.
1519					    changeover_active)
1520						transport->cacc.cacc_saw_newack
1521							= 1;
1522				}
1523			}
1524
1525			/* If the chunk hasn't been marked as ACKED,
1526			 * mark it and account bytes_acked if the
1527			 * chunk had a valid transport (it will not
1528			 * have a transport if ASCONF had deleted it
1529			 * while DATA was outstanding).
1530			 */
1531			if (!tchunk->tsn_gap_acked) {
1532				tchunk->tsn_gap_acked = 1;
1533				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1534					*highest_new_tsn_in_sack = tsn;
1535				bytes_acked += sctp_data_size(tchunk);
1536				if (!tchunk->transport)
1537					migrate_bytes += sctp_data_size(tchunk);
1538				forward_progress = true;
1539			}
1540
1541			if (TSN_lte(tsn, sack_ctsn)) {
1542				/* RFC 2960  6.3.2 Retransmission Timer Rules
1543				 *
1544				 * R3) Whenever a SACK is received
1545				 * that acknowledges the DATA chunk
1546				 * with the earliest outstanding TSN
1547				 * for that address, restart T3-rtx
1548				 * timer for that address with its
1549				 * current RTO.
1550				 */
1551				restart_timer = 1;
1552				forward_progress = true;
1553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554				list_add_tail(&tchunk->transmitted_list,
1555					      &q->sacked);
1556			} else {
1557				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1558				 * M2) Each time a SACK arrives reporting
1559				 * 'Stray DATA chunk(s)' record the highest TSN
1560				 * reported as newly acknowledged, call this
1561				 * value 'HighestTSNinSack'. A newly
1562				 * acknowledged DATA chunk is one not
1563				 * previously acknowledged in a SACK.
1564				 *
1565				 * When the SCTP sender of data receives a SACK
1566				 * chunk that acknowledges, for the first time,
1567				 * the receipt of a DATA chunk, all the still
1568				 * unacknowledged DATA chunks whose TSN is
1569				 * older than that newly acknowledged DATA
1570				 * chunk, are qualified as 'Stray DATA chunks'.
1571				 */
1572				list_add_tail(lchunk, &tlist);
1573			}
1574		} else {
1575			if (tchunk->tsn_gap_acked) {
1576				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1577					 __func__, tsn);
1578
1579				tchunk->tsn_gap_acked = 0;
1580
1581				if (tchunk->transport)
1582					bytes_acked -= sctp_data_size(tchunk);
1583
1584				/* RFC 2960 6.3.2 Retransmission Timer Rules
1585				 *
1586				 * R4) Whenever a SACK is received missing a
1587				 * TSN that was previously acknowledged via a
1588				 * Gap Ack Block, start T3-rtx for the
1589				 * destination address to which the DATA
1590				 * chunk was originally
1591				 * transmitted if it is not already running.
1592				 */
1593				restart_timer = 1;
1594			}
1595
1596			list_add_tail(lchunk, &tlist);
1597		}
1598	}
1599
1600	if (transport) {
1601		if (bytes_acked) {
1602			struct sctp_association *asoc = transport->asoc;
1603
1604			/* We may have counted DATA that was migrated
1605			 * to this transport due to DEL-IP operation.
1606			 * Subtract those bytes, since the were never
1607			 * send on this transport and shouldn't be
1608			 * credited to this transport.
1609			 */
1610			bytes_acked -= migrate_bytes;
1611
1612			/* 8.2. When an outstanding TSN is acknowledged,
1613			 * the endpoint shall clear the error counter of
1614			 * the destination transport address to which the
1615			 * DATA chunk was last sent.
1616			 * The association's overall error counter is
1617			 * also cleared.
1618			 */
1619			transport->error_count = 0;
1620			transport->asoc->overall_error_count = 0;
1621			forward_progress = true;
1622
1623			/*
1624			 * While in SHUTDOWN PENDING, we may have started
1625			 * the T5 shutdown guard timer after reaching the
1626			 * retransmission limit. Stop that timer as soon
1627			 * as the receiver acknowledged any data.
1628			 */
1629			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1630			    del_timer(&asoc->timers
1631				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1632					sctp_association_put(asoc);
1633
1634			/* Mark the destination transport address as
1635			 * active if it is not so marked.
1636			 */
1637			if ((transport->state == SCTP_INACTIVE ||
1638			     transport->state == SCTP_UNCONFIRMED) &&
1639			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1640				sctp_assoc_control_transport(
1641					transport->asoc,
1642					transport,
1643					SCTP_TRANSPORT_UP,
1644					SCTP_RECEIVED_SACK);
1645			}
1646
1647			sctp_transport_raise_cwnd(transport, sack_ctsn,
1648						  bytes_acked);
1649
1650			transport->flight_size -= bytes_acked;
1651			if (transport->flight_size == 0)
1652				transport->partial_bytes_acked = 0;
1653			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1654		} else {
1655			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1656			 * When a sender is doing zero window probing, it
1657			 * should not timeout the association if it continues
1658			 * to receive new packets from the receiver. The
1659			 * reason is that the receiver MAY keep its window
1660			 * closed for an indefinite time.
1661			 * A sender is doing zero window probing when the
1662			 * receiver's advertised window is zero, and there is
1663			 * only one data chunk in flight to the receiver.
1664			 *
1665			 * Allow the association to timeout while in SHUTDOWN
1666			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1667			 * stays in zero window mode forever.
1668			 */
1669			if (!q->asoc->peer.rwnd &&
1670			    !list_empty(&tlist) &&
1671			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1672			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1673				pr_debug("%s: sack received for zero window "
1674					 "probe:%u\n", __func__, sack_ctsn);
1675
1676				q->asoc->overall_error_count = 0;
1677				transport->error_count = 0;
1678			}
1679		}
1680
1681		/* RFC 2960 6.3.2 Retransmission Timer Rules
1682		 *
1683		 * R2) Whenever all outstanding data sent to an address have
1684		 * been acknowledged, turn off the T3-rtx timer of that
1685		 * address.
1686		 */
1687		if (!transport->flight_size) {
1688			if (del_timer(&transport->T3_rtx_timer))
1689				sctp_transport_put(transport);
1690		} else if (restart_timer) {
1691			if (!mod_timer(&transport->T3_rtx_timer,
1692				       jiffies + transport->rto))
1693				sctp_transport_hold(transport);
1694		}
1695
1696		if (forward_progress) {
1697			if (transport->dst)
1698				sctp_transport_dst_confirm(transport);
1699		}
1700	}
1701
1702	list_splice(&tlist, transmitted_queue);
1703}
1704
1705/* Mark chunks as missing and consequently may get retransmitted. */
1706static void sctp_mark_missing(struct sctp_outq *q,
1707			      struct list_head *transmitted_queue,
1708			      struct sctp_transport *transport,
1709			      __u32 highest_new_tsn_in_sack,
1710			      int count_of_newacks)
1711{
1712	struct sctp_chunk *chunk;
1713	__u32 tsn;
1714	char do_fast_retransmit = 0;
1715	struct sctp_association *asoc = q->asoc;
1716	struct sctp_transport *primary = asoc->peer.primary_path;
1717
1718	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1719
1720		tsn = ntohl(chunk->subh.data_hdr->tsn);
1721
1722		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1723		 * 'Unacknowledged TSN's', if the TSN number of an
1724		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1725		 * value, increment the 'TSN.Missing.Report' count on that
1726		 * chunk if it has NOT been fast retransmitted or marked for
1727		 * fast retransmit already.
1728		 */
1729		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1730		    !chunk->tsn_gap_acked &&
1731		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1732
1733			/* SFR-CACC may require us to skip marking
1734			 * this chunk as missing.
1735			 */
1736			if (!transport || !sctp_cacc_skip(primary,
1737						chunk->transport,
1738						count_of_newacks, tsn)) {
1739				chunk->tsn_missing_report++;
1740
1741				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1742					 __func__, tsn, chunk->tsn_missing_report);
1743			}
1744		}
1745		/*
1746		 * M4) If any DATA chunk is found to have a
1747		 * 'TSN.Missing.Report'
1748		 * value larger than or equal to 3, mark that chunk for
1749		 * retransmission and start the fast retransmit procedure.
1750		 */
1751
1752		if (chunk->tsn_missing_report >= 3) {
1753			chunk->fast_retransmit = SCTP_NEED_FRTX;
1754			do_fast_retransmit = 1;
1755		}
1756	}
1757
1758	if (transport) {
1759		if (do_fast_retransmit)
1760			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1761
1762		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1763			 "flight_size:%d, pba:%d\n",  __func__, transport,
1764			 transport->cwnd, transport->ssthresh,
1765			 transport->flight_size, transport->partial_bytes_acked);
1766	}
1767}
1768
1769/* Is the given TSN acked by this packet?  */
1770static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1771{
 
 
 
1772	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1773	union sctp_sack_variable *frags;
1774	__u16 tsn_offset, blocks;
1775	int i;
1776
1777	if (TSN_lte(tsn, ctsn))
1778		goto pass;
1779
1780	/* 3.3.4 Selective Acknowledgment (SACK) (3):
1781	 *
1782	 * Gap Ack Blocks:
1783	 *  These fields contain the Gap Ack Blocks. They are repeated
1784	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1785	 *  defined in the Number of Gap Ack Blocks field. All DATA
1786	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1787	 *  Ack + Gap Ack Block Start) and less than or equal to
1788	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1789	 *  Block are assumed to have been received correctly.
1790	 */
1791
1792	frags = sack->variable;
1793	blocks = ntohs(sack->num_gap_ack_blocks);
1794	tsn_offset = tsn - ctsn;
1795	for (i = 0; i < blocks; ++i) {
1796		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1797		    tsn_offset <= ntohs(frags[i].gab.end))
1798			goto pass;
1799	}
1800
1801	return 0;
1802pass:
1803	return 1;
1804}
1805
1806static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1807				    int nskips, __be16 stream)
1808{
1809	int i;
1810
1811	for (i = 0; i < nskips; i++) {
1812		if (skiplist[i].stream == stream)
1813			return i;
1814	}
1815	return i;
1816}
1817
1818/* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1819void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1820{
1821	struct sctp_association *asoc = q->asoc;
1822	struct sctp_chunk *ftsn_chunk = NULL;
1823	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1824	int nskips = 0;
1825	int skip_pos = 0;
1826	__u32 tsn;
1827	struct sctp_chunk *chunk;
1828	struct list_head *lchunk, *temp;
1829
1830	if (!asoc->peer.prsctp_capable)
1831		return;
1832
1833	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1834	 * received SACK.
1835	 *
1836	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1837	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1838	 */
1839	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1840		asoc->adv_peer_ack_point = ctsn;
1841
1842	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1843	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1844	 * the chunk next in the out-queue space is marked as "abandoned" as
1845	 * shown in the following example:
1846	 *
1847	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1848	 * and the Advanced.Peer.Ack.Point is updated to this value:
1849	 *
1850	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1851	 *   normal SACK processing           local advancement
1852	 *                ...                           ...
1853	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1854	 *                103 abandoned                 103 abandoned
1855	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1856	 *                105                           105
1857	 *                106 acked                     106 acked
1858	 *                ...                           ...
1859	 *
1860	 * In this example, the data sender successfully advanced the
1861	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1862	 */
1863	list_for_each_safe(lchunk, temp, &q->abandoned) {
1864		chunk = list_entry(lchunk, struct sctp_chunk,
1865					transmitted_list);
1866		tsn = ntohl(chunk->subh.data_hdr->tsn);
1867
1868		/* Remove any chunks in the abandoned queue that are acked by
1869		 * the ctsn.
1870		 */
1871		if (TSN_lte(tsn, ctsn)) {
1872			list_del_init(lchunk);
1873			sctp_chunk_free(chunk);
1874		} else {
1875			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1876				asoc->adv_peer_ack_point = tsn;
1877				if (chunk->chunk_hdr->flags &
1878					 SCTP_DATA_UNORDERED)
1879					continue;
1880				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1881						nskips,
1882						chunk->subh.data_hdr->stream);
1883				ftsn_skip_arr[skip_pos].stream =
1884					chunk->subh.data_hdr->stream;
1885				ftsn_skip_arr[skip_pos].ssn =
1886					 chunk->subh.data_hdr->ssn;
1887				if (skip_pos == nskips)
1888					nskips++;
1889				if (nskips == 10)
1890					break;
1891			} else
1892				break;
1893		}
1894	}
1895
1896	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1897	 * is greater than the Cumulative TSN ACK carried in the received
1898	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1899	 * chunk containing the latest value of the
1900	 * "Advanced.Peer.Ack.Point".
1901	 *
1902	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1903	 * list each stream and sequence number in the forwarded TSN. This
1904	 * information will enable the receiver to easily find any
1905	 * stranded TSN's waiting on stream reorder queues. Each stream
1906	 * SHOULD only be reported once; this means that if multiple
1907	 * abandoned messages occur in the same stream then only the
1908	 * highest abandoned stream sequence number is reported. If the
1909	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1910	 * the sender of the FORWARD TSN SHOULD lower the
1911	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1912	 * single MTU.
1913	 */
1914	if (asoc->adv_peer_ack_point > ctsn)
1915		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1916					      nskips, &ftsn_skip_arr[0]);
1917
1918	if (ftsn_chunk) {
1919		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1920		SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS);
1921	}
1922}