Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
 
 
 
 
 
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
 
 
 
 
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	psched_tdiff_t latency;
  81	psched_tdiff_t jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 
 
 
 
 
 
 
 
 138};
 139
 140/* Time stamp put into socket buffer control block
 141 * Only valid when skbs are in our internal t(ime)fifo queue.
 
 
 
 
 142 */
 143struct netem_skb_cb {
 144	psched_time_t	time_to_send;
 145	ktime_t		tstamp_save;
 146};
 147
 148/* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
 149 * to hold a rb_node structure.
 150 *
 151 * If struct sk_buff layout is changed, the following checks will complain.
 152 */
 153static struct rb_node *netem_rb_node(struct sk_buff *skb)
 154{
 155	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
 156	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
 157		     offsetof(struct sk_buff, next) + sizeof(skb->next));
 158	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
 159		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
 160	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
 161					      sizeof(skb->prev) +
 162					      sizeof(skb->tstamp));
 163	return (struct rb_node *)&skb->next;
 164}
 165
 166static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 167{
 168	return (struct sk_buff *)rb;
 169}
 170
 171static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 172{
 173	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 174	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 175	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 176}
 177
 178/* init_crandom - initialize correlated random number generator
 179 * Use entropy source for initial seed.
 180 */
 181static void init_crandom(struct crndstate *state, unsigned long rho)
 182{
 183	state->rho = rho;
 184	state->last = prandom_u32();
 185}
 186
 187/* get_crandom - correlated random number generator
 188 * Next number depends on last value.
 189 * rho is scaled to avoid floating point.
 190 */
 191static u32 get_crandom(struct crndstate *state)
 192{
 193	u64 value, rho;
 194	unsigned long answer;
 195
 196	if (state->rho == 0)	/* no correlation */
 197		return prandom_u32();
 198
 199	value = prandom_u32();
 200	rho = (u64)state->rho + 1;
 201	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 202	state->last = answer;
 203	return answer;
 204}
 205
 206/* loss_4state - 4-state model loss generator
 207 * Generates losses according to the 4-state Markov chain adopted in
 208 * the GI (General and Intuitive) loss model.
 209 */
 210static bool loss_4state(struct netem_sched_data *q)
 211{
 212	struct clgstate *clg = &q->clg;
 213	u32 rnd = prandom_u32();
 214
 215	/*
 216	 * Makes a comparison between rnd and the transition
 217	 * probabilities outgoing from the current state, then decides the
 218	 * next state and if the next packet has to be transmitted or lost.
 219	 * The four states correspond to:
 220	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 221	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 222	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 223	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 224	 */
 225	switch (clg->state) {
 226	case TX_IN_GAP_PERIOD:
 227		if (rnd < clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 231			clg->state = LOST_IN_GAP_PERIOD;
 232			return true;
 233		} else if (clg->a1 + clg->a4 < rnd) {
 234			clg->state = TX_IN_GAP_PERIOD;
 235		}
 236
 237		break;
 238	case TX_IN_BURST_PERIOD:
 239		if (rnd < clg->a5) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		} else {
 243			clg->state = TX_IN_BURST_PERIOD;
 244		}
 245
 246		break;
 247	case LOST_IN_GAP_PERIOD:
 248		if (rnd < clg->a3)
 249			clg->state = TX_IN_BURST_PERIOD;
 250		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 251			clg->state = TX_IN_GAP_PERIOD;
 252		} else if (clg->a2 + clg->a3 < rnd) {
 253			clg->state = LOST_IN_GAP_PERIOD;
 254			return true;
 255		}
 256		break;
 257	case LOST_IN_BURST_PERIOD:
 258		clg->state = TX_IN_GAP_PERIOD;
 259		break;
 260	}
 261
 262	return false;
 263}
 264
 265/* loss_gilb_ell - Gilbert-Elliot model loss generator
 266 * Generates losses according to the Gilbert-Elliot loss model or
 267 * its special cases  (Gilbert or Simple Gilbert)
 268 *
 269 * Makes a comparison between random number and the transition
 270 * probabilities outgoing from the current state, then decides the
 271 * next state. A second random number is extracted and the comparison
 272 * with the loss probability of the current state decides if the next
 273 * packet will be transmitted or lost.
 274 */
 275static bool loss_gilb_ell(struct netem_sched_data *q)
 276{
 277	struct clgstate *clg = &q->clg;
 278
 279	switch (clg->state) {
 280	case GOOD_STATE:
 281		if (prandom_u32() < clg->a1)
 282			clg->state = BAD_STATE;
 283		if (prandom_u32() < clg->a4)
 284			return true;
 285		break;
 286	case BAD_STATE:
 287		if (prandom_u32() < clg->a2)
 288			clg->state = GOOD_STATE;
 289		if (prandom_u32() > clg->a3)
 290			return true;
 291	}
 292
 293	return false;
 294}
 295
 296static bool loss_event(struct netem_sched_data *q)
 297{
 298	switch (q->loss_model) {
 299	case CLG_RANDOM:
 300		/* Random packet drop 0 => none, ~0 => all */
 301		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 302
 303	case CLG_4_STATES:
 304		/* 4state loss model algorithm (used also for GI model)
 305		* Extracts a value from the markov 4 state loss generator,
 306		* if it is 1 drops a packet and if needed writes the event in
 307		* the kernel logs
 308		*/
 309		return loss_4state(q);
 310
 311	case CLG_GILB_ELL:
 312		/* Gilbert-Elliot loss model algorithm
 313		* Extracts a value from the Gilbert-Elliot loss generator,
 314		* if it is 1 drops a packet and if needed writes the event in
 315		* the kernel logs
 316		*/
 317		return loss_gilb_ell(q);
 318	}
 319
 320	return false;	/* not reached */
 321}
 322
 323
 324/* tabledist - return a pseudo-randomly distributed value with mean mu and
 325 * std deviation sigma.  Uses table lookup to approximate the desired
 326 * distribution, and a uniformly-distributed pseudo-random source.
 327 */
 328static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 329				struct crndstate *state,
 330				const struct disttable *dist)
 331{
 332	psched_tdiff_t x;
 333	long t;
 334	u32 rnd;
 335
 336	if (sigma == 0)
 337		return mu;
 338
 339	rnd = get_crandom(state);
 340
 341	/* default uniform distribution */
 342	if (dist == NULL)
 343		return (rnd % (2*sigma)) - sigma + mu;
 344
 345	t = dist->table[rnd % dist->size];
 346	x = (sigma % NETEM_DIST_SCALE) * t;
 347	if (x >= 0)
 348		x += NETEM_DIST_SCALE/2;
 349	else
 350		x -= NETEM_DIST_SCALE/2;
 351
 352	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 353}
 354
 355static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 356{
 357	u64 ticks;
 358
 359	len += q->packet_overhead;
 360
 361	if (q->cell_size) {
 362		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 363
 364		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 365			cells++;
 366		len = cells * (q->cell_size + q->cell_overhead);
 367	}
 368
 369	ticks = (u64)len * NSEC_PER_SEC;
 370
 371	do_div(ticks, q->rate);
 372	return PSCHED_NS2TICKS(ticks);
 373}
 374
 375static void tfifo_reset(struct Qdisc *sch)
 376{
 377	struct netem_sched_data *q = qdisc_priv(sch);
 378	struct rb_node *p;
 379
 380	while ((p = rb_first(&q->t_root))) {
 381		struct sk_buff *skb = netem_rb_to_skb(p);
 382
 383		rb_erase(p, &q->t_root);
 384		skb->next = NULL;
 385		skb->prev = NULL;
 386		kfree_skb(skb);
 387	}
 
 
 
 
 388}
 389
 390static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 391{
 392	struct netem_sched_data *q = qdisc_priv(sch);
 393	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 394	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 395
 396	while (*p) {
 397		struct sk_buff *skb;
 398
 399		parent = *p;
 400		skb = netem_rb_to_skb(parent);
 401		if (tnext >= netem_skb_cb(skb)->time_to_send)
 402			p = &parent->rb_right;
 403		else
 404			p = &parent->rb_left;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405	}
 406	rb_link_node(netem_rb_node(nskb), parent, p);
 407	rb_insert_color(netem_rb_node(nskb), &q->t_root);
 408	sch->q.qlen++;
 409}
 410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411/*
 412 * Insert one skb into qdisc.
 413 * Note: parent depends on return value to account for queue length.
 414 * 	NET_XMIT_DROP: queue length didn't change.
 415 *      NET_XMIT_SUCCESS: one skb was queued.
 416 */
 417static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
 418{
 419	struct netem_sched_data *q = qdisc_priv(sch);
 420	/* We don't fill cb now as skb_unshare() may invalidate it */
 421	struct netem_skb_cb *cb;
 422	struct sk_buff *skb2;
 
 
 423	int count = 1;
 
 
 
 
 
 424
 425	/* Random duplication */
 426	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 427		++count;
 428
 429	/* Drop packet? */
 430	if (loss_event(q)) {
 431		if (q->ecn && INET_ECN_set_ce(skb))
 432			sch->qstats.drops++; /* mark packet */
 433		else
 434			--count;
 435	}
 436	if (count == 0) {
 437		sch->qstats.drops++;
 438		kfree_skb(skb);
 439		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 440	}
 441
 442	/* If a delay is expected, orphan the skb. (orphaning usually takes
 443	 * place at TX completion time, so _before_ the link transit delay)
 444	 */
 445	if (q->latency || q->jitter)
 446		skb_orphan_partial(skb);
 447
 448	/*
 449	 * If we need to duplicate packet, then re-insert at top of the
 450	 * qdisc tree, since parent queuer expects that only one
 451	 * skb will be queued.
 452	 */
 453	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 454		struct Qdisc *rootq = qdisc_root(sch);
 455		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 456		q->duplicate = 0;
 457
 458		qdisc_enqueue_root(skb2, rootq);
 
 459		q->duplicate = dupsave;
 
 460	}
 461
 462	/*
 463	 * Randomized packet corruption.
 464	 * Make copy if needed since we are modifying
 465	 * If packet is going to be hardware checksummed, then
 466	 * do it now in software before we mangle it.
 467	 */
 468	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 469		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 470		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 471		     skb_checksum_help(skb)))
 472			return qdisc_drop(skb, sch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 475			1<<(prandom_u32() % 8);
 476	}
 477
 478	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 479		return qdisc_reshape_fail(skb, sch);
 
 
 
 
 480
 481	sch->qstats.backlog += qdisc_pkt_len(skb);
 482
 483	cb = netem_skb_cb(skb);
 484	if (q->gap == 0 ||		/* not doing reordering */
 485	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 486	    q->reorder < get_crandom(&q->reorder_cor)) {
 487		psched_time_t now;
 488		psched_tdiff_t delay;
 489
 490		delay = tabledist(q->latency, q->jitter,
 491				  &q->delay_cor, q->delay_dist);
 492
 493		now = psched_get_time();
 494
 495		if (q->rate) {
 496			struct sk_buff *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498			if (!skb_queue_empty(&sch->q))
 499				last = skb_peek_tail(&sch->q);
 500			else
 501				last = netem_rb_to_skb(rb_last(&q->t_root));
 502			if (last) {
 503				/*
 504				 * Last packet in queue is reference point (now),
 505				 * calculate this time bonus and subtract
 506				 * from delay.
 507				 */
 508				delay -= netem_skb_cb(last)->time_to_send - now;
 509				delay = max_t(psched_tdiff_t, 0, delay);
 510				now = netem_skb_cb(last)->time_to_send;
 511			}
 512
 513			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 514		}
 515
 516		cb->time_to_send = now + delay;
 517		cb->tstamp_save = skb->tstamp;
 518		++q->counter;
 519		tfifo_enqueue(skb, sch);
 520	} else {
 521		/*
 522		 * Do re-ordering by putting one out of N packets at the front
 523		 * of the queue.
 524		 */
 525		cb->time_to_send = psched_get_time();
 526		q->counter = 0;
 527
 528		__skb_queue_head(&sch->q, skb);
 529		sch->qstats.requeues++;
 530	}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532	return NET_XMIT_SUCCESS;
 533}
 534
 535static unsigned int netem_drop(struct Qdisc *sch)
 
 
 
 
 536{
 537	struct netem_sched_data *q = qdisc_priv(sch);
 538	unsigned int len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540	len = qdisc_queue_drop(sch);
 
 
 
 541
 542	if (!len) {
 543		struct rb_node *p = rb_first(&q->t_root);
 
 
 544
 545		if (p) {
 546			struct sk_buff *skb = netem_rb_to_skb(p);
 
 
 
 
 547
 548			rb_erase(p, &q->t_root);
 549			sch->q.qlen--;
 550			skb->next = NULL;
 551			skb->prev = NULL;
 552			len = qdisc_pkt_len(skb);
 553			sch->qstats.backlog -= len;
 554			kfree_skb(skb);
 555		}
 556	}
 557	if (!len && q->qdisc && q->qdisc->ops->drop)
 558	    len = q->qdisc->ops->drop(q->qdisc);
 559	if (len)
 560		sch->qstats.drops++;
 561
 562	return len;
 563}
 564
 565static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 566{
 567	struct netem_sched_data *q = qdisc_priv(sch);
 568	struct sk_buff *skb;
 569	struct rb_node *p;
 570
 571	if (qdisc_is_throttled(sch))
 572		return NULL;
 573
 574tfifo_dequeue:
 575	skb = __skb_dequeue(&sch->q);
 576	if (skb) {
 
 577deliver:
 578		sch->qstats.backlog -= qdisc_pkt_len(skb);
 579		qdisc_unthrottled(sch);
 580		qdisc_bstats_update(sch, skb);
 581		return skb;
 582	}
 583	p = rb_first(&q->t_root);
 584	if (p) {
 585		psched_time_t time_to_send;
 586
 587		skb = netem_rb_to_skb(p);
 588
 589		/* if more time remaining? */
 590		time_to_send = netem_skb_cb(skb)->time_to_send;
 591		if (time_to_send <= psched_get_time()) {
 592			rb_erase(p, &q->t_root);
 593
 
 
 594			sch->q.qlen--;
 
 595			skb->next = NULL;
 596			skb->prev = NULL;
 597			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 598
 599#ifdef CONFIG_NET_CLS_ACT
 600			/*
 601			 * If it's at ingress let's pretend the delay is
 602			 * from the network (tstamp will be updated).
 603			 */
 604			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 605				skb->tstamp.tv64 = 0;
 606#endif
 607
 608			if (q->qdisc) {
 609				int err = qdisc_enqueue(skb, q->qdisc);
 
 
 
 
 
 610
 611				if (unlikely(err != NET_XMIT_SUCCESS)) {
 612					if (net_xmit_drop_count(err)) {
 613						sch->qstats.drops++;
 614						qdisc_tree_decrease_qlen(sch, 1);
 615					}
 
 
 
 
 
 
 
 616				}
 617				goto tfifo_dequeue;
 618			}
 619			goto deliver;
 620		}
 621
 622		if (q->qdisc) {
 623			skb = q->qdisc->ops->dequeue(q->qdisc);
 624			if (skb)
 625				goto deliver;
 626		}
 627		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 
 
 
 628	}
 629
 630	if (q->qdisc) {
 631		skb = q->qdisc->ops->dequeue(q->qdisc);
 632		if (skb)
 633			goto deliver;
 634	}
 635	return NULL;
 636}
 637
 638static void netem_reset(struct Qdisc *sch)
 639{
 640	struct netem_sched_data *q = qdisc_priv(sch);
 641
 642	qdisc_reset_queue(sch);
 643	tfifo_reset(sch);
 644	if (q->qdisc)
 645		qdisc_reset(q->qdisc);
 646	qdisc_watchdog_cancel(&q->watchdog);
 647}
 648
 649static void dist_free(struct disttable *d)
 650{
 651	if (d) {
 652		if (is_vmalloc_addr(d))
 653			vfree(d);
 654		else
 655			kfree(d);
 656	}
 657}
 658
 659/*
 660 * Distribution data is a variable size payload containing
 661 * signed 16 bit values.
 662 */
 663static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 
 
 664{
 665	struct netem_sched_data *q = qdisc_priv(sch);
 666	size_t n = nla_len(attr)/sizeof(__s16);
 667	const __s16 *data = nla_data(attr);
 668	spinlock_t *root_lock;
 669	struct disttable *d;
 670	int i;
 671	size_t s;
 672
 673	if (n > NETEM_DIST_MAX)
 674		return -EINVAL;
 675
 676	s = sizeof(struct disttable) + n * sizeof(s16);
 677	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 678	if (!d)
 679		d = vmalloc(s);
 680	if (!d)
 681		return -ENOMEM;
 682
 683	d->size = n;
 684	for (i = 0; i < n; i++)
 685		d->table[i] = data[i];
 686
 687	root_lock = qdisc_root_sleeping_lock(sch);
 688
 689	spin_lock_bh(root_lock);
 690	swap(q->delay_dist, d);
 691	spin_unlock_bh(root_lock);
 692
 693	dist_free(d);
 694	return 0;
 695}
 696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 698{
 699	const struct tc_netem_corr *c = nla_data(attr);
 700
 701	init_crandom(&q->delay_cor, c->delay_corr);
 702	init_crandom(&q->loss_cor, c->loss_corr);
 703	init_crandom(&q->dup_cor, c->dup_corr);
 704}
 705
 706static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 707{
 708	const struct tc_netem_reorder *r = nla_data(attr);
 709
 710	q->reorder = r->probability;
 711	init_crandom(&q->reorder_cor, r->correlation);
 712}
 713
 714static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 715{
 716	const struct tc_netem_corrupt *r = nla_data(attr);
 717
 718	q->corrupt = r->probability;
 719	init_crandom(&q->corrupt_cor, r->correlation);
 720}
 721
 722static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 723{
 724	const struct tc_netem_rate *r = nla_data(attr);
 725
 726	q->rate = r->rate;
 727	q->packet_overhead = r->packet_overhead;
 728	q->cell_size = r->cell_size;
 729	q->cell_overhead = r->cell_overhead;
 730	if (q->cell_size)
 731		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 732	else
 733		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 734}
 735
 736static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 737{
 738	const struct nlattr *la;
 739	int rem;
 740
 741	nla_for_each_nested(la, attr, rem) {
 742		u16 type = nla_type(la);
 743
 744		switch (type) {
 745		case NETEM_LOSS_GI: {
 746			const struct tc_netem_gimodel *gi = nla_data(la);
 747
 748			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 749				pr_info("netem: incorrect gi model size\n");
 750				return -EINVAL;
 751			}
 752
 753			q->loss_model = CLG_4_STATES;
 754
 755			q->clg.state = TX_IN_GAP_PERIOD;
 756			q->clg.a1 = gi->p13;
 757			q->clg.a2 = gi->p31;
 758			q->clg.a3 = gi->p32;
 759			q->clg.a4 = gi->p14;
 760			q->clg.a5 = gi->p23;
 761			break;
 762		}
 763
 764		case NETEM_LOSS_GE: {
 765			const struct tc_netem_gemodel *ge = nla_data(la);
 766
 767			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 768				pr_info("netem: incorrect ge model size\n");
 769				return -EINVAL;
 770			}
 771
 772			q->loss_model = CLG_GILB_ELL;
 773			q->clg.state = GOOD_STATE;
 774			q->clg.a1 = ge->p;
 775			q->clg.a2 = ge->r;
 776			q->clg.a3 = ge->h;
 777			q->clg.a4 = ge->k1;
 778			break;
 779		}
 780
 781		default:
 782			pr_info("netem: unknown loss type %u\n", type);
 783			return -EINVAL;
 784		}
 785	}
 786
 787	return 0;
 788}
 789
 790static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 791	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 792	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 793	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 794	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 795	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 796	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 797	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 
 
 
 798};
 799
 800static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 801		      const struct nla_policy *policy, int len)
 802{
 803	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 804
 805	if (nested_len < 0) {
 806		pr_info("netem: invalid attributes len %d\n", nested_len);
 807		return -EINVAL;
 808	}
 809
 810	if (nested_len >= nla_attr_size(0))
 811		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 812				 nested_len, policy);
 
 813
 814	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 815	return 0;
 816}
 817
 818/* Parse netlink message to set options */
 819static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 
 820{
 821	struct netem_sched_data *q = qdisc_priv(sch);
 822	struct nlattr *tb[TCA_NETEM_MAX + 1];
 823	struct tc_netem_qopt *qopt;
 824	struct clgstate old_clg;
 825	int old_loss_model = CLG_RANDOM;
 826	int ret;
 827
 828	if (opt == NULL)
 829		return -EINVAL;
 830
 831	qopt = nla_data(opt);
 832	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 833	if (ret < 0)
 834		return ret;
 835
 836	/* backup q->clg and q->loss_model */
 837	old_clg = q->clg;
 838	old_loss_model = q->loss_model;
 839
 840	if (tb[TCA_NETEM_LOSS]) {
 841		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 842		if (ret) {
 843			q->loss_model = old_loss_model;
 844			return ret;
 845		}
 846	} else {
 847		q->loss_model = CLG_RANDOM;
 848	}
 849
 850	if (tb[TCA_NETEM_DELAY_DIST]) {
 851		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 852		if (ret) {
 853			/* recover clg and loss_model, in case of
 854			 * q->clg and q->loss_model were modified
 855			 * in get_loss_clg()
 856			 */
 857			q->clg = old_clg;
 858			q->loss_model = old_loss_model;
 859			return ret;
 860		}
 
 861	}
 862
 863	sch->limit = qopt->limit;
 864
 865	q->latency = qopt->latency;
 866	q->jitter = qopt->jitter;
 867	q->limit = qopt->limit;
 868	q->gap = qopt->gap;
 869	q->counter = 0;
 870	q->loss = qopt->loss;
 871	q->duplicate = qopt->duplicate;
 872
 873	/* for compatibility with earlier versions.
 874	 * if gap is set, need to assume 100% probability
 875	 */
 876	if (q->gap)
 877		q->reorder = ~0;
 878
 879	if (tb[TCA_NETEM_CORR])
 880		get_correlation(q, tb[TCA_NETEM_CORR]);
 881
 882	if (tb[TCA_NETEM_REORDER])
 883		get_reorder(q, tb[TCA_NETEM_REORDER]);
 884
 885	if (tb[TCA_NETEM_CORRUPT])
 886		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 887
 888	if (tb[TCA_NETEM_RATE])
 889		get_rate(q, tb[TCA_NETEM_RATE]);
 890
 891	if (tb[TCA_NETEM_RATE64])
 892		q->rate = max_t(u64, q->rate,
 893				nla_get_u64(tb[TCA_NETEM_RATE64]));
 894
 
 
 
 
 
 
 895	if (tb[TCA_NETEM_ECN])
 896		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	return ret;
 899}
 900
 901static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 
 902{
 903	struct netem_sched_data *q = qdisc_priv(sch);
 904	int ret;
 905
 
 
 906	if (!opt)
 907		return -EINVAL;
 908
 909	qdisc_watchdog_init(&q->watchdog, sch);
 910
 911	q->loss_model = CLG_RANDOM;
 912	ret = netem_change(sch, opt);
 913	if (ret)
 914		pr_info("netem: change failed\n");
 915	return ret;
 916}
 917
 918static void netem_destroy(struct Qdisc *sch)
 919{
 920	struct netem_sched_data *q = qdisc_priv(sch);
 921
 922	qdisc_watchdog_cancel(&q->watchdog);
 923	if (q->qdisc)
 924		qdisc_destroy(q->qdisc);
 925	dist_free(q->delay_dist);
 
 926}
 927
 928static int dump_loss_model(const struct netem_sched_data *q,
 929			   struct sk_buff *skb)
 930{
 931	struct nlattr *nest;
 932
 933	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 934	if (nest == NULL)
 935		goto nla_put_failure;
 936
 937	switch (q->loss_model) {
 938	case CLG_RANDOM:
 939		/* legacy loss model */
 940		nla_nest_cancel(skb, nest);
 941		return 0;	/* no data */
 942
 943	case CLG_4_STATES: {
 944		struct tc_netem_gimodel gi = {
 945			.p13 = q->clg.a1,
 946			.p31 = q->clg.a2,
 947			.p32 = q->clg.a3,
 948			.p14 = q->clg.a4,
 949			.p23 = q->clg.a5,
 950		};
 951
 952		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 953			goto nla_put_failure;
 954		break;
 955	}
 956	case CLG_GILB_ELL: {
 957		struct tc_netem_gemodel ge = {
 958			.p = q->clg.a1,
 959			.r = q->clg.a2,
 960			.h = q->clg.a3,
 961			.k1 = q->clg.a4,
 962		};
 963
 964		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 965			goto nla_put_failure;
 966		break;
 967	}
 968	}
 969
 970	nla_nest_end(skb, nest);
 971	return 0;
 972
 973nla_put_failure:
 974	nla_nest_cancel(skb, nest);
 975	return -1;
 976}
 977
 978static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 979{
 980	const struct netem_sched_data *q = qdisc_priv(sch);
 981	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 982	struct tc_netem_qopt qopt;
 983	struct tc_netem_corr cor;
 984	struct tc_netem_reorder reorder;
 985	struct tc_netem_corrupt corrupt;
 986	struct tc_netem_rate rate;
 
 987
 988	qopt.latency = q->latency;
 989	qopt.jitter = q->jitter;
 
 
 990	qopt.limit = q->limit;
 991	qopt.loss = q->loss;
 992	qopt.gap = q->gap;
 993	qopt.duplicate = q->duplicate;
 994	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 995		goto nla_put_failure;
 996
 
 
 
 
 
 
 997	cor.delay_corr = q->delay_cor.rho;
 998	cor.loss_corr = q->loss_cor.rho;
 999	cor.dup_corr = q->dup_cor.rho;
1000	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1001		goto nla_put_failure;
1002
1003	reorder.probability = q->reorder;
1004	reorder.correlation = q->reorder_cor.rho;
1005	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1006		goto nla_put_failure;
1007
1008	corrupt.probability = q->corrupt;
1009	corrupt.correlation = q->corrupt_cor.rho;
1010	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1011		goto nla_put_failure;
1012
1013	if (q->rate >= (1ULL << 32)) {
1014		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
 
1015			goto nla_put_failure;
1016		rate.rate = ~0U;
1017	} else {
1018		rate.rate = q->rate;
1019	}
1020	rate.packet_overhead = q->packet_overhead;
1021	rate.cell_size = q->cell_size;
1022	rate.cell_overhead = q->cell_overhead;
1023	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1024		goto nla_put_failure;
1025
1026	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1027		goto nla_put_failure;
1028
1029	if (dump_loss_model(q, skb) != 0)
1030		goto nla_put_failure;
1031
 
 
 
 
 
 
 
 
 
 
 
1032	return nla_nest_end(skb, nla);
1033
1034nla_put_failure:
1035	nlmsg_trim(skb, nla);
1036	return -1;
1037}
1038
1039static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1040			  struct sk_buff *skb, struct tcmsg *tcm)
1041{
1042	struct netem_sched_data *q = qdisc_priv(sch);
1043
1044	if (cl != 1 || !q->qdisc) 	/* only one class */
1045		return -ENOENT;
1046
1047	tcm->tcm_handle |= TC_H_MIN(1);
1048	tcm->tcm_info = q->qdisc->handle;
1049
1050	return 0;
1051}
1052
1053static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1054		     struct Qdisc **old)
1055{
1056	struct netem_sched_data *q = qdisc_priv(sch);
1057
1058	sch_tree_lock(sch);
1059	*old = q->qdisc;
1060	q->qdisc = new;
1061	if (*old) {
1062		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1063		qdisc_reset(*old);
1064	}
1065	sch_tree_unlock(sch);
1066
1067	return 0;
1068}
1069
1070static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1071{
1072	struct netem_sched_data *q = qdisc_priv(sch);
1073	return q->qdisc;
1074}
1075
1076static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1077{
1078	return 1;
1079}
1080
1081static void netem_put(struct Qdisc *sch, unsigned long arg)
1082{
1083}
1084
1085static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1086{
1087	if (!walker->stop) {
1088		if (walker->count >= walker->skip)
1089			if (walker->fn(sch, 1, walker) < 0) {
1090				walker->stop = 1;
1091				return;
1092			}
1093		walker->count++;
1094	}
1095}
1096
1097static const struct Qdisc_class_ops netem_class_ops = {
1098	.graft		=	netem_graft,
1099	.leaf		=	netem_leaf,
1100	.get		=	netem_get,
1101	.put		=	netem_put,
1102	.walk		=	netem_walk,
1103	.dump		=	netem_dump_class,
1104};
1105
1106static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1107	.id		=	"netem",
1108	.cl_ops		=	&netem_class_ops,
1109	.priv_size	=	sizeof(struct netem_sched_data),
1110	.enqueue	=	netem_enqueue,
1111	.dequeue	=	netem_dequeue,
1112	.peek		=	qdisc_peek_dequeued,
1113	.drop		=	netem_drop,
1114	.init		=	netem_init,
1115	.reset		=	netem_reset,
1116	.destroy	=	netem_destroy,
1117	.change		=	netem_change,
1118	.dump		=	netem_dump,
1119	.owner		=	THIS_MODULE,
1120};
1121
1122
1123static int __init netem_module_init(void)
1124{
1125	pr_info("netem: version " VERSION "\n");
1126	return register_qdisc(&netem_qdisc_ops);
1127}
1128static void __exit netem_module_exit(void)
1129{
1130	unregister_qdisc(&netem_qdisc_ops);
1131}
1132module_init(netem_module_init)
1133module_exit(netem_module_exit)
1134MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
 
 
 
 
 
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
  24#include <net/netlink.h>
  25#include <net/pkt_sched.h>
  26#include <net/inet_ecn.h>
  27
  28#define VERSION "1.3"
  29
  30/*	Network Emulation Queuing algorithm.
  31	====================================
  32
  33	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  34		 Network Emulation Tool
  35		 [2] Luigi Rizzo, DummyNet for FreeBSD
  36
  37	 ----------------------------------------------------------------
  38
  39	 This started out as a simple way to delay outgoing packets to
  40	 test TCP but has grown to include most of the functionality
  41	 of a full blown network emulator like NISTnet. It can delay
  42	 packets and add random jitter (and correlation). The random
  43	 distribution can be loaded from a table as well to provide
  44	 normal, Pareto, or experimental curves. Packet loss,
  45	 duplication, and reordering can also be emulated.
  46
  47	 This qdisc does not do classification that can be handled in
  48	 layering other disciplines.  It does not need to do bandwidth
  49	 control either since that can be handled by using token
  50	 bucket or other rate control.
  51
  52     Correlated Loss Generator models
  53
  54	Added generation of correlated loss according to the
  55	"Gilbert-Elliot" model, a 4-state markov model.
  56
  57	References:
  58	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  59	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  60	and intuitive loss model for packet networks and its implementation
  61	in the Netem module in the Linux kernel", available in [1]
  62
  63	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  64		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  65*/
  66
  67struct disttable {
  68	u32  size;
  69	s16 table[];
  70};
  71
  72struct netem_sched_data {
  73	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  74	struct rb_root t_root;
  75
  76	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  77	struct sk_buff	*t_head;
  78	struct sk_buff	*t_tail;
  79
  80	/* optional qdisc for classful handling (NULL at netem init) */
  81	struct Qdisc	*qdisc;
  82
  83	struct qdisc_watchdog watchdog;
  84
  85	s64 latency;
  86	s64 jitter;
  87
  88	u32 loss;
  89	u32 ecn;
  90	u32 limit;
  91	u32 counter;
  92	u32 gap;
  93	u32 duplicate;
  94	u32 reorder;
  95	u32 corrupt;
  96	u64 rate;
  97	s32 packet_overhead;
  98	u32 cell_size;
  99	struct reciprocal_value cell_size_reciprocal;
 100	s32 cell_overhead;
 101
 102	struct crndstate {
 103		u32 last;
 104		u32 rho;
 105	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 106
 107	struct disttable *delay_dist;
 
 
 
 108
 109	enum  {
 110		CLG_RANDOM,
 111		CLG_4_STATES,
 112		CLG_GILB_ELL,
 113	} loss_model;
 114
 115	enum {
 116		TX_IN_GAP_PERIOD = 1,
 117		TX_IN_BURST_PERIOD,
 118		LOST_IN_GAP_PERIOD,
 119		LOST_IN_BURST_PERIOD,
 120	} _4_state_model;
 121
 122	enum {
 123		GOOD_STATE = 1,
 124		BAD_STATE,
 125	} GE_state_model;
 126
 127	/* Correlated Loss Generation models */
 128	struct clgstate {
 129		/* state of the Markov chain */
 130		u8 state;
 131
 132		/* 4-states and Gilbert-Elliot models */
 133		u32 a1;	/* p13 for 4-states or p for GE */
 134		u32 a2;	/* p31 for 4-states or r for GE */
 135		u32 a3;	/* p32 for 4-states or h for GE */
 136		u32 a4;	/* p14 for 4-states or 1-k for GE */
 137		u32 a5; /* p23 used only in 4-states */
 138	} clg;
 139
 140	struct tc_netem_slot slot_config;
 141	struct slotstate {
 142		u64 slot_next;
 143		s32 packets_left;
 144		s32 bytes_left;
 145	} slot;
 146
 147	struct disttable *slot_dist;
 148};
 149
 150/* Time stamp put into socket buffer control block
 151 * Only valid when skbs are in our internal t(ime)fifo queue.
 152 *
 153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 154 * and skb->next & skb->prev are scratch space for a qdisc,
 155 * we save skb->tstamp value in skb->cb[] before destroying it.
 156 */
 157struct netem_skb_cb {
 158	u64	        time_to_send;
 
 159};
 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 162{
 163	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 164	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 165	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 166}
 167
 168/* init_crandom - initialize correlated random number generator
 169 * Use entropy source for initial seed.
 170 */
 171static void init_crandom(struct crndstate *state, unsigned long rho)
 172{
 173	state->rho = rho;
 174	state->last = get_random_u32();
 175}
 176
 177/* get_crandom - correlated random number generator
 178 * Next number depends on last value.
 179 * rho is scaled to avoid floating point.
 180 */
 181static u32 get_crandom(struct crndstate *state)
 182{
 183	u64 value, rho;
 184	unsigned long answer;
 185
 186	if (!state || state->rho == 0)	/* no correlation */
 187		return get_random_u32();
 188
 189	value = get_random_u32();
 190	rho = (u64)state->rho + 1;
 191	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 192	state->last = answer;
 193	return answer;
 194}
 195
 196/* loss_4state - 4-state model loss generator
 197 * Generates losses according to the 4-state Markov chain adopted in
 198 * the GI (General and Intuitive) loss model.
 199 */
 200static bool loss_4state(struct netem_sched_data *q)
 201{
 202	struct clgstate *clg = &q->clg;
 203	u32 rnd = get_random_u32();
 204
 205	/*
 206	 * Makes a comparison between rnd and the transition
 207	 * probabilities outgoing from the current state, then decides the
 208	 * next state and if the next packet has to be transmitted or lost.
 209	 * The four states correspond to:
 210	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 211	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
 212	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
 213	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
 214	 */
 215	switch (clg->state) {
 216	case TX_IN_GAP_PERIOD:
 217		if (rnd < clg->a4) {
 218			clg->state = LOST_IN_GAP_PERIOD;
 219			return true;
 220		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 221			clg->state = LOST_IN_BURST_PERIOD;
 222			return true;
 223		} else if (clg->a1 + clg->a4 < rnd) {
 224			clg->state = TX_IN_GAP_PERIOD;
 225		}
 226
 227		break;
 228	case TX_IN_BURST_PERIOD:
 229		if (rnd < clg->a5) {
 230			clg->state = LOST_IN_BURST_PERIOD;
 231			return true;
 232		} else {
 233			clg->state = TX_IN_BURST_PERIOD;
 234		}
 235
 236		break;
 237	case LOST_IN_BURST_PERIOD:
 238		if (rnd < clg->a3)
 239			clg->state = TX_IN_BURST_PERIOD;
 240		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 241			clg->state = TX_IN_GAP_PERIOD;
 242		} else if (clg->a2 + clg->a3 < rnd) {
 243			clg->state = LOST_IN_BURST_PERIOD;
 244			return true;
 245		}
 246		break;
 247	case LOST_IN_GAP_PERIOD:
 248		clg->state = TX_IN_GAP_PERIOD;
 249		break;
 250	}
 251
 252	return false;
 253}
 254
 255/* loss_gilb_ell - Gilbert-Elliot model loss generator
 256 * Generates losses according to the Gilbert-Elliot loss model or
 257 * its special cases  (Gilbert or Simple Gilbert)
 258 *
 259 * Makes a comparison between random number and the transition
 260 * probabilities outgoing from the current state, then decides the
 261 * next state. A second random number is extracted and the comparison
 262 * with the loss probability of the current state decides if the next
 263 * packet will be transmitted or lost.
 264 */
 265static bool loss_gilb_ell(struct netem_sched_data *q)
 266{
 267	struct clgstate *clg = &q->clg;
 268
 269	switch (clg->state) {
 270	case GOOD_STATE:
 271		if (get_random_u32() < clg->a1)
 272			clg->state = BAD_STATE;
 273		if (get_random_u32() < clg->a4)
 274			return true;
 275		break;
 276	case BAD_STATE:
 277		if (get_random_u32() < clg->a2)
 278			clg->state = GOOD_STATE;
 279		if (get_random_u32() > clg->a3)
 280			return true;
 281	}
 282
 283	return false;
 284}
 285
 286static bool loss_event(struct netem_sched_data *q)
 287{
 288	switch (q->loss_model) {
 289	case CLG_RANDOM:
 290		/* Random packet drop 0 => none, ~0 => all */
 291		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 292
 293	case CLG_4_STATES:
 294		/* 4state loss model algorithm (used also for GI model)
 295		* Extracts a value from the markov 4 state loss generator,
 296		* if it is 1 drops a packet and if needed writes the event in
 297		* the kernel logs
 298		*/
 299		return loss_4state(q);
 300
 301	case CLG_GILB_ELL:
 302		/* Gilbert-Elliot loss model algorithm
 303		* Extracts a value from the Gilbert-Elliot loss generator,
 304		* if it is 1 drops a packet and if needed writes the event in
 305		* the kernel logs
 306		*/
 307		return loss_gilb_ell(q);
 308	}
 309
 310	return false;	/* not reached */
 311}
 312
 313
 314/* tabledist - return a pseudo-randomly distributed value with mean mu and
 315 * std deviation sigma.  Uses table lookup to approximate the desired
 316 * distribution, and a uniformly-distributed pseudo-random source.
 317 */
 318static s64 tabledist(s64 mu, s32 sigma,
 319		     struct crndstate *state,
 320		     const struct disttable *dist)
 321{
 322	s64 x;
 323	long t;
 324	u32 rnd;
 325
 326	if (sigma == 0)
 327		return mu;
 328
 329	rnd = get_crandom(state);
 330
 331	/* default uniform distribution */
 332	if (dist == NULL)
 333		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 334
 335	t = dist->table[rnd % dist->size];
 336	x = (sigma % NETEM_DIST_SCALE) * t;
 337	if (x >= 0)
 338		x += NETEM_DIST_SCALE/2;
 339	else
 340		x -= NETEM_DIST_SCALE/2;
 341
 342	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 343}
 344
 345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 346{
 
 
 347	len += q->packet_overhead;
 348
 349	if (q->cell_size) {
 350		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 351
 352		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 353			cells++;
 354		len = cells * (q->cell_size + q->cell_overhead);
 355	}
 356
 357	return div64_u64(len * NSEC_PER_SEC, q->rate);
 
 
 
 358}
 359
 360static void tfifo_reset(struct Qdisc *sch)
 361{
 362	struct netem_sched_data *q = qdisc_priv(sch);
 363	struct rb_node *p = rb_first(&q->t_root);
 364
 365	while (p) {
 366		struct sk_buff *skb = rb_to_skb(p);
 367
 368		p = rb_next(p);
 369		rb_erase(&skb->rbnode, &q->t_root);
 370		rtnl_kfree_skbs(skb, skb);
 
 371	}
 372
 373	rtnl_kfree_skbs(q->t_head, q->t_tail);
 374	q->t_head = NULL;
 375	q->t_tail = NULL;
 376}
 377
 378static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 379{
 380	struct netem_sched_data *q = qdisc_priv(sch);
 381	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 
 
 
 
 382
 383	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 384		if (q->t_tail)
 385			q->t_tail->next = nskb;
 
 386		else
 387			q->t_head = nskb;
 388		q->t_tail = nskb;
 389	} else {
 390		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 391
 392		while (*p) {
 393			struct sk_buff *skb;
 394
 395			parent = *p;
 396			skb = rb_to_skb(parent);
 397			if (tnext >= netem_skb_cb(skb)->time_to_send)
 398				p = &parent->rb_right;
 399			else
 400				p = &parent->rb_left;
 401		}
 402		rb_link_node(&nskb->rbnode, parent, p);
 403		rb_insert_color(&nskb->rbnode, &q->t_root);
 404	}
 
 
 405	sch->q.qlen++;
 406}
 407
 408/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 409 * when we statistically choose to corrupt one, we instead segment it, returning
 410 * the first packet to be corrupted, and re-enqueue the remaining frames
 411 */
 412static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 413				     struct sk_buff **to_free)
 414{
 415	struct sk_buff *segs;
 416	netdev_features_t features = netif_skb_features(skb);
 417
 418	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 419
 420	if (IS_ERR_OR_NULL(segs)) {
 421		qdisc_drop(skb, sch, to_free);
 422		return NULL;
 423	}
 424	consume_skb(skb);
 425	return segs;
 426}
 427
 428/*
 429 * Insert one skb into qdisc.
 430 * Note: parent depends on return value to account for queue length.
 431 * 	NET_XMIT_DROP: queue length didn't change.
 432 *      NET_XMIT_SUCCESS: one skb was queued.
 433 */
 434static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 435			 struct sk_buff **to_free)
 436{
 437	struct netem_sched_data *q = qdisc_priv(sch);
 438	/* We don't fill cb now as skb_unshare() may invalidate it */
 439	struct netem_skb_cb *cb;
 440	struct sk_buff *skb2;
 441	struct sk_buff *segs = NULL;
 442	unsigned int prev_len = qdisc_pkt_len(skb);
 443	int count = 1;
 444	int rc = NET_XMIT_SUCCESS;
 445	int rc_drop = NET_XMIT_DROP;
 446
 447	/* Do not fool qdisc_drop_all() */
 448	skb->prev = NULL;
 449
 450	/* Random duplication */
 451	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 452		++count;
 453
 454	/* Drop packet? */
 455	if (loss_event(q)) {
 456		if (q->ecn && INET_ECN_set_ce(skb))
 457			qdisc_qstats_drop(sch); /* mark packet */
 458		else
 459			--count;
 460	}
 461	if (count == 0) {
 462		qdisc_qstats_drop(sch);
 463		__qdisc_drop(skb, to_free);
 464		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 465	}
 466
 467	/* If a delay is expected, orphan the skb. (orphaning usually takes
 468	 * place at TX completion time, so _before_ the link transit delay)
 469	 */
 470	if (q->latency || q->jitter || q->rate)
 471		skb_orphan_partial(skb);
 472
 473	/*
 474	 * If we need to duplicate packet, then re-insert at top of the
 475	 * qdisc tree, since parent queuer expects that only one
 476	 * skb will be queued.
 477	 */
 478	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 479		struct Qdisc *rootq = qdisc_root_bh(sch);
 480		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 
 481
 482		q->duplicate = 0;
 483		rootq->enqueue(skb2, rootq, to_free);
 484		q->duplicate = dupsave;
 485		rc_drop = NET_XMIT_SUCCESS;
 486	}
 487
 488	/*
 489	 * Randomized packet corruption.
 490	 * Make copy if needed since we are modifying
 491	 * If packet is going to be hardware checksummed, then
 492	 * do it now in software before we mangle it.
 493	 */
 494	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 495		if (skb_is_gso(skb)) {
 496			skb = netem_segment(skb, sch, to_free);
 497			if (!skb)
 498				return rc_drop;
 499			segs = skb->next;
 500			skb_mark_not_on_list(skb);
 501			qdisc_skb_cb(skb)->pkt_len = skb->len;
 502		}
 503
 504		skb = skb_unshare(skb, GFP_ATOMIC);
 505		if (unlikely(!skb)) {
 506			qdisc_qstats_drop(sch);
 507			goto finish_segs;
 508		}
 509		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 510		    skb_checksum_help(skb)) {
 511			qdisc_drop(skb, sch, to_free);
 512			skb = NULL;
 513			goto finish_segs;
 514		}
 515
 516		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
 517			1<<get_random_u32_below(8);
 518	}
 519
 520	if (unlikely(sch->q.qlen >= sch->limit)) {
 521		/* re-link segs, so that qdisc_drop_all() frees them all */
 522		skb->next = segs;
 523		qdisc_drop_all(skb, sch, to_free);
 524		return rc_drop;
 525	}
 526
 527	qdisc_qstats_backlog_inc(sch, skb);
 528
 529	cb = netem_skb_cb(skb);
 530	if (q->gap == 0 ||		/* not doing reordering */
 531	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 532	    q->reorder < get_crandom(&q->reorder_cor)) {
 533		u64 now;
 534		s64 delay;
 535
 536		delay = tabledist(q->latency, q->jitter,
 537				  &q->delay_cor, q->delay_dist);
 538
 539		now = ktime_get_ns();
 540
 541		if (q->rate) {
 542			struct netem_skb_cb *last = NULL;
 543
 544			if (sch->q.tail)
 545				last = netem_skb_cb(sch->q.tail);
 546			if (q->t_root.rb_node) {
 547				struct sk_buff *t_skb;
 548				struct netem_skb_cb *t_last;
 549
 550				t_skb = skb_rb_last(&q->t_root);
 551				t_last = netem_skb_cb(t_skb);
 552				if (!last ||
 553				    t_last->time_to_send > last->time_to_send)
 554					last = t_last;
 555			}
 556			if (q->t_tail) {
 557				struct netem_skb_cb *t_last =
 558					netem_skb_cb(q->t_tail);
 559
 560				if (!last ||
 561				    t_last->time_to_send > last->time_to_send)
 562					last = t_last;
 563			}
 564
 
 
 
 
 565			if (last) {
 566				/*
 567				 * Last packet in queue is reference point (now),
 568				 * calculate this time bonus and subtract
 569				 * from delay.
 570				 */
 571				delay -= last->time_to_send - now;
 572				delay = max_t(s64, 0, delay);
 573				now = last->time_to_send;
 574			}
 575
 576			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 577		}
 578
 579		cb->time_to_send = now + delay;
 
 580		++q->counter;
 581		tfifo_enqueue(skb, sch);
 582	} else {
 583		/*
 584		 * Do re-ordering by putting one out of N packets at the front
 585		 * of the queue.
 586		 */
 587		cb->time_to_send = ktime_get_ns();
 588		q->counter = 0;
 589
 590		__qdisc_enqueue_head(skb, &sch->q);
 591		sch->qstats.requeues++;
 592	}
 593
 594finish_segs:
 595	if (segs) {
 596		unsigned int len, last_len;
 597		int nb;
 598
 599		len = skb ? skb->len : 0;
 600		nb = skb ? 1 : 0;
 601
 602		while (segs) {
 603			skb2 = segs->next;
 604			skb_mark_not_on_list(segs);
 605			qdisc_skb_cb(segs)->pkt_len = segs->len;
 606			last_len = segs->len;
 607			rc = qdisc_enqueue(segs, sch, to_free);
 608			if (rc != NET_XMIT_SUCCESS) {
 609				if (net_xmit_drop_count(rc))
 610					qdisc_qstats_drop(sch);
 611			} else {
 612				nb++;
 613				len += last_len;
 614			}
 615			segs = skb2;
 616		}
 617		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 618		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 619	} else if (!skb) {
 620		return NET_XMIT_DROP;
 621	}
 622	return NET_XMIT_SUCCESS;
 623}
 624
 625/* Delay the next round with a new future slot with a
 626 * correct number of bytes and packets.
 627 */
 628
 629static void get_slot_next(struct netem_sched_data *q, u64 now)
 630{
 631	s64 next_delay;
 632
 633	if (!q->slot_dist)
 634		next_delay = q->slot_config.min_delay +
 635				(get_random_u32() *
 636				 (q->slot_config.max_delay -
 637				  q->slot_config.min_delay) >> 32);
 638	else
 639		next_delay = tabledist(q->slot_config.dist_delay,
 640				       (s32)(q->slot_config.dist_jitter),
 641				       NULL, q->slot_dist);
 642
 643	q->slot.slot_next = now + next_delay;
 644	q->slot.packets_left = q->slot_config.max_packets;
 645	q->slot.bytes_left = q->slot_config.max_bytes;
 646}
 647
 648static struct sk_buff *netem_peek(struct netem_sched_data *q)
 649{
 650	struct sk_buff *skb = skb_rb_first(&q->t_root);
 651	u64 t1, t2;
 652
 653	if (!skb)
 654		return q->t_head;
 655	if (!q->t_head)
 656		return skb;
 657
 658	t1 = netem_skb_cb(skb)->time_to_send;
 659	t2 = netem_skb_cb(q->t_head)->time_to_send;
 660	if (t1 < t2)
 661		return skb;
 662	return q->t_head;
 663}
 664
 665static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 666{
 667	if (skb == q->t_head) {
 668		q->t_head = skb->next;
 669		if (!q->t_head)
 670			q->t_tail = NULL;
 671	} else {
 672		rb_erase(&skb->rbnode, &q->t_root);
 673	}
 
 
 
 
 
 
 674}
 675
 676static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 677{
 678	struct netem_sched_data *q = qdisc_priv(sch);
 679	struct sk_buff *skb;
 
 
 
 
 680
 681tfifo_dequeue:
 682	skb = __qdisc_dequeue_head(&sch->q);
 683	if (skb) {
 684		qdisc_qstats_backlog_dec(sch, skb);
 685deliver:
 
 
 686		qdisc_bstats_update(sch, skb);
 687		return skb;
 688	}
 689	skb = netem_peek(q);
 690	if (skb) {
 691		u64 time_to_send;
 692		u64 now = ktime_get_ns();
 
 693
 694		/* if more time remaining? */
 695		time_to_send = netem_skb_cb(skb)->time_to_send;
 696		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 697			get_slot_next(q, now);
 698
 699		if (time_to_send <= now && q->slot.slot_next <= now) {
 700			netem_erase_head(q, skb);
 701			sch->q.qlen--;
 702			qdisc_qstats_backlog_dec(sch, skb);
 703			skb->next = NULL;
 704			skb->prev = NULL;
 705			/* skb->dev shares skb->rbnode area,
 706			 * we need to restore its value.
 
 
 
 
 707			 */
 708			skb->dev = qdisc_dev(sch);
 
 
 709
 710			if (q->slot.slot_next) {
 711				q->slot.packets_left--;
 712				q->slot.bytes_left -= qdisc_pkt_len(skb);
 713				if (q->slot.packets_left <= 0 ||
 714				    q->slot.bytes_left <= 0)
 715					get_slot_next(q, now);
 716			}
 717
 718			if (q->qdisc) {
 719				unsigned int pkt_len = qdisc_pkt_len(skb);
 720				struct sk_buff *to_free = NULL;
 721				int err;
 722
 723				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 724				kfree_skb_list(to_free);
 725				if (err != NET_XMIT_SUCCESS &&
 726				    net_xmit_drop_count(err)) {
 727					qdisc_qstats_drop(sch);
 728					qdisc_tree_reduce_backlog(sch, 1,
 729								  pkt_len);
 730				}
 731				goto tfifo_dequeue;
 732			}
 733			goto deliver;
 734		}
 735
 736		if (q->qdisc) {
 737			skb = q->qdisc->ops->dequeue(q->qdisc);
 738			if (skb)
 739				goto deliver;
 740		}
 741
 742		qdisc_watchdog_schedule_ns(&q->watchdog,
 743					   max(time_to_send,
 744					       q->slot.slot_next));
 745	}
 746
 747	if (q->qdisc) {
 748		skb = q->qdisc->ops->dequeue(q->qdisc);
 749		if (skb)
 750			goto deliver;
 751	}
 752	return NULL;
 753}
 754
 755static void netem_reset(struct Qdisc *sch)
 756{
 757	struct netem_sched_data *q = qdisc_priv(sch);
 758
 759	qdisc_reset_queue(sch);
 760	tfifo_reset(sch);
 761	if (q->qdisc)
 762		qdisc_reset(q->qdisc);
 763	qdisc_watchdog_cancel(&q->watchdog);
 764}
 765
 766static void dist_free(struct disttable *d)
 767{
 768	kvfree(d);
 
 
 
 
 
 769}
 770
 771/*
 772 * Distribution data is a variable size payload containing
 773 * signed 16 bit values.
 774 */
 775
 776static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
 777			  const struct nlattr *attr)
 778{
 
 779	size_t n = nla_len(attr)/sizeof(__s16);
 780	const __s16 *data = nla_data(attr);
 781	spinlock_t *root_lock;
 782	struct disttable *d;
 783	int i;
 
 784
 785	if (!n || n > NETEM_DIST_MAX)
 786		return -EINVAL;
 787
 788	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
 
 
 
 789	if (!d)
 790		return -ENOMEM;
 791
 792	d->size = n;
 793	for (i = 0; i < n; i++)
 794		d->table[i] = data[i];
 795
 796	root_lock = qdisc_root_sleeping_lock(sch);
 797
 798	spin_lock_bh(root_lock);
 799	swap(*tbl, d);
 800	spin_unlock_bh(root_lock);
 801
 802	dist_free(d);
 803	return 0;
 804}
 805
 806static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 807{
 808	const struct tc_netem_slot *c = nla_data(attr);
 809
 810	q->slot_config = *c;
 811	if (q->slot_config.max_packets == 0)
 812		q->slot_config.max_packets = INT_MAX;
 813	if (q->slot_config.max_bytes == 0)
 814		q->slot_config.max_bytes = INT_MAX;
 815
 816	/* capping dist_jitter to the range acceptable by tabledist() */
 817	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 818
 819	q->slot.packets_left = q->slot_config.max_packets;
 820	q->slot.bytes_left = q->slot_config.max_bytes;
 821	if (q->slot_config.min_delay | q->slot_config.max_delay |
 822	    q->slot_config.dist_jitter)
 823		q->slot.slot_next = ktime_get_ns();
 824	else
 825		q->slot.slot_next = 0;
 826}
 827
 828static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 829{
 830	const struct tc_netem_corr *c = nla_data(attr);
 831
 832	init_crandom(&q->delay_cor, c->delay_corr);
 833	init_crandom(&q->loss_cor, c->loss_corr);
 834	init_crandom(&q->dup_cor, c->dup_corr);
 835}
 836
 837static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 838{
 839	const struct tc_netem_reorder *r = nla_data(attr);
 840
 841	q->reorder = r->probability;
 842	init_crandom(&q->reorder_cor, r->correlation);
 843}
 844
 845static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 846{
 847	const struct tc_netem_corrupt *r = nla_data(attr);
 848
 849	q->corrupt = r->probability;
 850	init_crandom(&q->corrupt_cor, r->correlation);
 851}
 852
 853static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 854{
 855	const struct tc_netem_rate *r = nla_data(attr);
 856
 857	q->rate = r->rate;
 858	q->packet_overhead = r->packet_overhead;
 859	q->cell_size = r->cell_size;
 860	q->cell_overhead = r->cell_overhead;
 861	if (q->cell_size)
 862		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 863	else
 864		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 865}
 866
 867static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 868{
 869	const struct nlattr *la;
 870	int rem;
 871
 872	nla_for_each_nested(la, attr, rem) {
 873		u16 type = nla_type(la);
 874
 875		switch (type) {
 876		case NETEM_LOSS_GI: {
 877			const struct tc_netem_gimodel *gi = nla_data(la);
 878
 879			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 880				pr_info("netem: incorrect gi model size\n");
 881				return -EINVAL;
 882			}
 883
 884			q->loss_model = CLG_4_STATES;
 885
 886			q->clg.state = TX_IN_GAP_PERIOD;
 887			q->clg.a1 = gi->p13;
 888			q->clg.a2 = gi->p31;
 889			q->clg.a3 = gi->p32;
 890			q->clg.a4 = gi->p14;
 891			q->clg.a5 = gi->p23;
 892			break;
 893		}
 894
 895		case NETEM_LOSS_GE: {
 896			const struct tc_netem_gemodel *ge = nla_data(la);
 897
 898			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 899				pr_info("netem: incorrect ge model size\n");
 900				return -EINVAL;
 901			}
 902
 903			q->loss_model = CLG_GILB_ELL;
 904			q->clg.state = GOOD_STATE;
 905			q->clg.a1 = ge->p;
 906			q->clg.a2 = ge->r;
 907			q->clg.a3 = ge->h;
 908			q->clg.a4 = ge->k1;
 909			break;
 910		}
 911
 912		default:
 913			pr_info("netem: unknown loss type %u\n", type);
 914			return -EINVAL;
 915		}
 916	}
 917
 918	return 0;
 919}
 920
 921static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 922	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 923	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 924	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 925	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 926	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 927	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 928	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 929	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 930	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 931	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 932};
 933
 934static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 935		      const struct nla_policy *policy, int len)
 936{
 937	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 938
 939	if (nested_len < 0) {
 940		pr_info("netem: invalid attributes len %d\n", nested_len);
 941		return -EINVAL;
 942	}
 943
 944	if (nested_len >= nla_attr_size(0))
 945		return nla_parse_deprecated(tb, maxtype,
 946					    nla_data(nla) + NLA_ALIGN(len),
 947					    nested_len, policy, NULL);
 948
 949	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 950	return 0;
 951}
 952
 953/* Parse netlink message to set options */
 954static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 955			struct netlink_ext_ack *extack)
 956{
 957	struct netem_sched_data *q = qdisc_priv(sch);
 958	struct nlattr *tb[TCA_NETEM_MAX + 1];
 959	struct tc_netem_qopt *qopt;
 960	struct clgstate old_clg;
 961	int old_loss_model = CLG_RANDOM;
 962	int ret;
 963
 
 
 
 964	qopt = nla_data(opt);
 965	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 966	if (ret < 0)
 967		return ret;
 968
 969	/* backup q->clg and q->loss_model */
 970	old_clg = q->clg;
 971	old_loss_model = q->loss_model;
 972
 973	if (tb[TCA_NETEM_LOSS]) {
 974		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 975		if (ret) {
 976			q->loss_model = old_loss_model;
 977			return ret;
 978		}
 979	} else {
 980		q->loss_model = CLG_RANDOM;
 981	}
 982
 983	if (tb[TCA_NETEM_DELAY_DIST]) {
 984		ret = get_dist_table(sch, &q->delay_dist,
 985				     tb[TCA_NETEM_DELAY_DIST]);
 986		if (ret)
 987			goto get_table_failure;
 988	}
 989
 990	if (tb[TCA_NETEM_SLOT_DIST]) {
 991		ret = get_dist_table(sch, &q->slot_dist,
 992				     tb[TCA_NETEM_SLOT_DIST]);
 993		if (ret)
 994			goto get_table_failure;
 995	}
 996
 997	sch->limit = qopt->limit;
 998
 999	q->latency = PSCHED_TICKS2NS(qopt->latency);
1000	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1001	q->limit = qopt->limit;
1002	q->gap = qopt->gap;
1003	q->counter = 0;
1004	q->loss = qopt->loss;
1005	q->duplicate = qopt->duplicate;
1006
1007	/* for compatibility with earlier versions.
1008	 * if gap is set, need to assume 100% probability
1009	 */
1010	if (q->gap)
1011		q->reorder = ~0;
1012
1013	if (tb[TCA_NETEM_CORR])
1014		get_correlation(q, tb[TCA_NETEM_CORR]);
1015
1016	if (tb[TCA_NETEM_REORDER])
1017		get_reorder(q, tb[TCA_NETEM_REORDER]);
1018
1019	if (tb[TCA_NETEM_CORRUPT])
1020		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1021
1022	if (tb[TCA_NETEM_RATE])
1023		get_rate(q, tb[TCA_NETEM_RATE]);
1024
1025	if (tb[TCA_NETEM_RATE64])
1026		q->rate = max_t(u64, q->rate,
1027				nla_get_u64(tb[TCA_NETEM_RATE64]));
1028
1029	if (tb[TCA_NETEM_LATENCY64])
1030		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1031
1032	if (tb[TCA_NETEM_JITTER64])
1033		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1034
1035	if (tb[TCA_NETEM_ECN])
1036		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1037
1038	if (tb[TCA_NETEM_SLOT])
1039		get_slot(q, tb[TCA_NETEM_SLOT]);
1040
1041	/* capping jitter to the range acceptable by tabledist() */
1042	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1043
1044	return ret;
1045
1046get_table_failure:
1047	/* recover clg and loss_model, in case of
1048	 * q->clg and q->loss_model were modified
1049	 * in get_loss_clg()
1050	 */
1051	q->clg = old_clg;
1052	q->loss_model = old_loss_model;
1053	return ret;
1054}
1055
1056static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1057		      struct netlink_ext_ack *extack)
1058{
1059	struct netem_sched_data *q = qdisc_priv(sch);
1060	int ret;
1061
1062	qdisc_watchdog_init(&q->watchdog, sch);
1063
1064	if (!opt)
1065		return -EINVAL;
1066
 
 
1067	q->loss_model = CLG_RANDOM;
1068	ret = netem_change(sch, opt, extack);
1069	if (ret)
1070		pr_info("netem: change failed\n");
1071	return ret;
1072}
1073
1074static void netem_destroy(struct Qdisc *sch)
1075{
1076	struct netem_sched_data *q = qdisc_priv(sch);
1077
1078	qdisc_watchdog_cancel(&q->watchdog);
1079	if (q->qdisc)
1080		qdisc_put(q->qdisc);
1081	dist_free(q->delay_dist);
1082	dist_free(q->slot_dist);
1083}
1084
1085static int dump_loss_model(const struct netem_sched_data *q,
1086			   struct sk_buff *skb)
1087{
1088	struct nlattr *nest;
1089
1090	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1091	if (nest == NULL)
1092		goto nla_put_failure;
1093
1094	switch (q->loss_model) {
1095	case CLG_RANDOM:
1096		/* legacy loss model */
1097		nla_nest_cancel(skb, nest);
1098		return 0;	/* no data */
1099
1100	case CLG_4_STATES: {
1101		struct tc_netem_gimodel gi = {
1102			.p13 = q->clg.a1,
1103			.p31 = q->clg.a2,
1104			.p32 = q->clg.a3,
1105			.p14 = q->clg.a4,
1106			.p23 = q->clg.a5,
1107		};
1108
1109		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1110			goto nla_put_failure;
1111		break;
1112	}
1113	case CLG_GILB_ELL: {
1114		struct tc_netem_gemodel ge = {
1115			.p = q->clg.a1,
1116			.r = q->clg.a2,
1117			.h = q->clg.a3,
1118			.k1 = q->clg.a4,
1119		};
1120
1121		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1122			goto nla_put_failure;
1123		break;
1124	}
1125	}
1126
1127	nla_nest_end(skb, nest);
1128	return 0;
1129
1130nla_put_failure:
1131	nla_nest_cancel(skb, nest);
1132	return -1;
1133}
1134
1135static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1136{
1137	const struct netem_sched_data *q = qdisc_priv(sch);
1138	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1139	struct tc_netem_qopt qopt;
1140	struct tc_netem_corr cor;
1141	struct tc_netem_reorder reorder;
1142	struct tc_netem_corrupt corrupt;
1143	struct tc_netem_rate rate;
1144	struct tc_netem_slot slot;
1145
1146	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1147			     UINT_MAX);
1148	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1149			    UINT_MAX);
1150	qopt.limit = q->limit;
1151	qopt.loss = q->loss;
1152	qopt.gap = q->gap;
1153	qopt.duplicate = q->duplicate;
1154	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1155		goto nla_put_failure;
1156
1157	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1158		goto nla_put_failure;
1159
1160	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1161		goto nla_put_failure;
1162
1163	cor.delay_corr = q->delay_cor.rho;
1164	cor.loss_corr = q->loss_cor.rho;
1165	cor.dup_corr = q->dup_cor.rho;
1166	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1167		goto nla_put_failure;
1168
1169	reorder.probability = q->reorder;
1170	reorder.correlation = q->reorder_cor.rho;
1171	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1172		goto nla_put_failure;
1173
1174	corrupt.probability = q->corrupt;
1175	corrupt.correlation = q->corrupt_cor.rho;
1176	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1177		goto nla_put_failure;
1178
1179	if (q->rate >= (1ULL << 32)) {
1180		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1181				      TCA_NETEM_PAD))
1182			goto nla_put_failure;
1183		rate.rate = ~0U;
1184	} else {
1185		rate.rate = q->rate;
1186	}
1187	rate.packet_overhead = q->packet_overhead;
1188	rate.cell_size = q->cell_size;
1189	rate.cell_overhead = q->cell_overhead;
1190	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1191		goto nla_put_failure;
1192
1193	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1194		goto nla_put_failure;
1195
1196	if (dump_loss_model(q, skb) != 0)
1197		goto nla_put_failure;
1198
1199	if (q->slot_config.min_delay | q->slot_config.max_delay |
1200	    q->slot_config.dist_jitter) {
1201		slot = q->slot_config;
1202		if (slot.max_packets == INT_MAX)
1203			slot.max_packets = 0;
1204		if (slot.max_bytes == INT_MAX)
1205			slot.max_bytes = 0;
1206		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1207			goto nla_put_failure;
1208	}
1209
1210	return nla_nest_end(skb, nla);
1211
1212nla_put_failure:
1213	nlmsg_trim(skb, nla);
1214	return -1;
1215}
1216
1217static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1218			  struct sk_buff *skb, struct tcmsg *tcm)
1219{
1220	struct netem_sched_data *q = qdisc_priv(sch);
1221
1222	if (cl != 1 || !q->qdisc) 	/* only one class */
1223		return -ENOENT;
1224
1225	tcm->tcm_handle |= TC_H_MIN(1);
1226	tcm->tcm_info = q->qdisc->handle;
1227
1228	return 0;
1229}
1230
1231static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1232		     struct Qdisc **old, struct netlink_ext_ack *extack)
1233{
1234	struct netem_sched_data *q = qdisc_priv(sch);
1235
1236	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
 
 
 
 
 
 
1237	return 0;
1238}
1239
1240static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1241{
1242	struct netem_sched_data *q = qdisc_priv(sch);
1243	return q->qdisc;
1244}
1245
1246static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1247{
1248	return 1;
1249}
1250
 
 
 
 
1251static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1252{
1253	if (!walker->stop) {
1254		if (!tc_qdisc_stats_dump(sch, 1, walker))
1255			return;
 
 
 
 
1256	}
1257}
1258
1259static const struct Qdisc_class_ops netem_class_ops = {
1260	.graft		=	netem_graft,
1261	.leaf		=	netem_leaf,
1262	.find		=	netem_find,
 
1263	.walk		=	netem_walk,
1264	.dump		=	netem_dump_class,
1265};
1266
1267static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1268	.id		=	"netem",
1269	.cl_ops		=	&netem_class_ops,
1270	.priv_size	=	sizeof(struct netem_sched_data),
1271	.enqueue	=	netem_enqueue,
1272	.dequeue	=	netem_dequeue,
1273	.peek		=	qdisc_peek_dequeued,
 
1274	.init		=	netem_init,
1275	.reset		=	netem_reset,
1276	.destroy	=	netem_destroy,
1277	.change		=	netem_change,
1278	.dump		=	netem_dump,
1279	.owner		=	THIS_MODULE,
1280};
1281
1282
1283static int __init netem_module_init(void)
1284{
1285	pr_info("netem: version " VERSION "\n");
1286	return register_qdisc(&netem_qdisc_ops);
1287}
1288static void __exit netem_module_exit(void)
1289{
1290	unregister_qdisc(&netem_qdisc_ops);
1291}
1292module_init(netem_module_init)
1293module_exit(netem_module_exit)
1294MODULE_LICENSE("GPL");