Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2
   3/* COMMON Applications Kept Enhanced (CAKE) discipline
   4 *
   5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
   6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
   7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
   8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
   9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
  10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
  11 *
  12 * The CAKE Principles:
  13 *		   (or, how to have your cake and eat it too)
  14 *
  15 * This is a combination of several shaping, AQM and FQ techniques into one
  16 * easy-to-use package:
  17 *
  18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
  19 *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
  20 *   eliminating the need for any sort of burst parameter (eg. token bucket
  21 *   depth).  Burst support is limited to that necessary to overcome scheduling
  22 *   latency.
  23 *
  24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
  25 *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
  26 *   the priority is reduced to avoid starving other tins.
  27 *
  28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
  29 *   flows from each other.  This prevents a burst on one flow from increasing
  30 *   the delay to another.  Flows are distributed to queues using a
  31 *   set-associative hash function.
  32 *
  33 * - Each queue is actively managed by Cobalt, which is a combination of the
  34 *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
  35 *   congestion early via ECN (if available) and/or packet drops, to keep
  36 *   latency low.  The codel parameters are auto-tuned based on the bandwidth
  37 *   setting, as is necessary at low bandwidths.
  38 *
  39 * The configuration parameters are kept deliberately simple for ease of use.
  40 * Everything has sane defaults.  Complete generality of configuration is *not*
  41 * a goal.
  42 *
  43 * The priority queue operates according to a weighted DRR scheme, combined with
  44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
  45 * bandwidth sharing threshold the tin is operating.  This determines whether a
  46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
  47 * that tin in the current pass.
  48 *
  49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
  50 * granted us permission to leverage.
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/types.h>
  55#include <linux/kernel.h>
  56#include <linux/jiffies.h>
  57#include <linux/string.h>
  58#include <linux/in.h>
  59#include <linux/errno.h>
  60#include <linux/init.h>
  61#include <linux/skbuff.h>
  62#include <linux/jhash.h>
  63#include <linux/slab.h>
  64#include <linux/vmalloc.h>
  65#include <linux/reciprocal_div.h>
  66#include <net/netlink.h>
  67#include <linux/if_vlan.h>
  68#include <net/pkt_sched.h>
  69#include <net/pkt_cls.h>
  70#include <net/tcp.h>
  71#include <net/flow_dissector.h>
  72
  73#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  74#include <net/netfilter/nf_conntrack_core.h>
  75#endif
  76
  77#define CAKE_SET_WAYS (8)
  78#define CAKE_MAX_TINS (8)
  79#define CAKE_QUEUES (1024)
  80#define CAKE_FLOW_MASK 63
  81#define CAKE_FLOW_NAT_FLAG 64
  82
  83/* struct cobalt_params - contains codel and blue parameters
  84 * @interval:	codel initial drop rate
  85 * @target:     maximum persistent sojourn time & blue update rate
  86 * @mtu_time:   serialisation delay of maximum-size packet
  87 * @p_inc:      increment of blue drop probability (0.32 fxp)
  88 * @p_dec:      decrement of blue drop probability (0.32 fxp)
  89 */
  90struct cobalt_params {
  91	u64	interval;
  92	u64	target;
  93	u64	mtu_time;
  94	u32	p_inc;
  95	u32	p_dec;
  96};
  97
  98/* struct cobalt_vars - contains codel and blue variables
  99 * @count:		codel dropping frequency
 100 * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
 101 * @drop_next:		time to drop next packet, or when we dropped last
 102 * @blue_timer:		Blue time to next drop
 103 * @p_drop:		BLUE drop probability (0.32 fxp)
 104 * @dropping:		set if in dropping state
 105 * @ecn_marked:		set if marked
 106 */
 107struct cobalt_vars {
 108	u32	count;
 109	u32	rec_inv_sqrt;
 110	ktime_t	drop_next;
 111	ktime_t	blue_timer;
 112	u32     p_drop;
 113	bool	dropping;
 114	bool    ecn_marked;
 115};
 116
 117enum {
 118	CAKE_SET_NONE = 0,
 119	CAKE_SET_SPARSE,
 120	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
 121	CAKE_SET_BULK,
 122	CAKE_SET_DECAYING
 123};
 124
 125struct cake_flow {
 126	/* this stuff is all needed per-flow at dequeue time */
 127	struct sk_buff	  *head;
 128	struct sk_buff	  *tail;
 129	struct list_head  flowchain;
 130	s32		  deficit;
 131	u32		  dropped;
 132	struct cobalt_vars cvars;
 133	u16		  srchost; /* index into cake_host table */
 134	u16		  dsthost;
 135	u8		  set;
 136}; /* please try to keep this structure <= 64 bytes */
 137
 138struct cake_host {
 139	u32 srchost_tag;
 140	u32 dsthost_tag;
 141	u16 srchost_bulk_flow_count;
 142	u16 dsthost_bulk_flow_count;
 143};
 144
 145struct cake_heap_entry {
 146	u16 t:3, b:10;
 147};
 148
 149struct cake_tin_data {
 150	struct cake_flow flows[CAKE_QUEUES];
 151	u32	backlogs[CAKE_QUEUES];
 152	u32	tags[CAKE_QUEUES]; /* for set association */
 153	u16	overflow_idx[CAKE_QUEUES];
 154	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
 155	u16	flow_quantum;
 156
 157	struct cobalt_params cparams;
 158	u32	drop_overlimit;
 159	u16	bulk_flow_count;
 160	u16	sparse_flow_count;
 161	u16	decaying_flow_count;
 162	u16	unresponsive_flow_count;
 163
 164	u32	max_skblen;
 165
 166	struct list_head new_flows;
 167	struct list_head old_flows;
 168	struct list_head decaying_flows;
 169
 170	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
 171	ktime_t	time_next_packet;
 172	u64	tin_rate_ns;
 173	u64	tin_rate_bps;
 174	u16	tin_rate_shft;
 175
 176	u16	tin_quantum;
 177	s32	tin_deficit;
 178	u32	tin_backlog;
 179	u32	tin_dropped;
 180	u32	tin_ecn_mark;
 181
 182	u32	packets;
 183	u64	bytes;
 184
 185	u32	ack_drops;
 186
 187	/* moving averages */
 188	u64 avge_delay;
 189	u64 peak_delay;
 190	u64 base_delay;
 191
 192	/* hash function stats */
 193	u32	way_directs;
 194	u32	way_hits;
 195	u32	way_misses;
 196	u32	way_collisions;
 197}; /* number of tins is small, so size of this struct doesn't matter much */
 198
 199struct cake_sched_data {
 200	struct tcf_proto __rcu *filter_list; /* optional external classifier */
 201	struct tcf_block *block;
 202	struct cake_tin_data *tins;
 203
 204	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
 205	u16		overflow_timeout;
 206
 207	u16		tin_cnt;
 208	u8		tin_mode;
 209	u8		flow_mode;
 210	u8		ack_filter;
 211	u8		atm_mode;
 212
 213	u32		fwmark_mask;
 214	u16		fwmark_shft;
 215
 216	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
 217	u16		rate_shft;
 218	ktime_t		time_next_packet;
 219	ktime_t		failsafe_next_packet;
 220	u64		rate_ns;
 221	u64		rate_bps;
 222	u16		rate_flags;
 223	s16		rate_overhead;
 224	u16		rate_mpu;
 225	u64		interval;
 226	u64		target;
 227
 228	/* resource tracking */
 229	u32		buffer_used;
 230	u32		buffer_max_used;
 231	u32		buffer_limit;
 232	u32		buffer_config_limit;
 233
 234	/* indices for dequeue */
 235	u16		cur_tin;
 236	u16		cur_flow;
 237
 238	struct qdisc_watchdog watchdog;
 239	const u8	*tin_index;
 240	const u8	*tin_order;
 241
 242	/* bandwidth capacity estimate */
 243	ktime_t		last_packet_time;
 244	ktime_t		avg_window_begin;
 245	u64		avg_packet_interval;
 246	u64		avg_window_bytes;
 247	u64		avg_peak_bandwidth;
 248	ktime_t		last_reconfig_time;
 249
 250	/* packet length stats */
 251	u32		avg_netoff;
 252	u16		max_netlen;
 253	u16		max_adjlen;
 254	u16		min_netlen;
 255	u16		min_adjlen;
 256};
 257
 258enum {
 259	CAKE_FLAG_OVERHEAD	   = BIT(0),
 260	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
 261	CAKE_FLAG_INGRESS	   = BIT(2),
 262	CAKE_FLAG_WASH		   = BIT(3),
 263	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
 264};
 265
 266/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
 267 * obtain the best features of each.  Codel is excellent on flows which
 268 * respond to congestion signals in a TCP-like way.  BLUE is more effective on
 269 * unresponsive flows.
 270 */
 271
 272struct cobalt_skb_cb {
 273	ktime_t enqueue_time;
 274	u32     adjusted_len;
 275};
 276
 277static u64 us_to_ns(u64 us)
 278{
 279	return us * NSEC_PER_USEC;
 280}
 281
 282static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
 283{
 284	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
 285	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
 286}
 287
 288static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
 289{
 290	return get_cobalt_cb(skb)->enqueue_time;
 291}
 292
 293static void cobalt_set_enqueue_time(struct sk_buff *skb,
 294				    ktime_t now)
 295{
 296	get_cobalt_cb(skb)->enqueue_time = now;
 297}
 298
 299static u16 quantum_div[CAKE_QUEUES + 1] = {0};
 300
 301/* Diffserv lookup tables */
 302
 303static const u8 precedence[] = {
 304	0, 0, 0, 0, 0, 0, 0, 0,
 305	1, 1, 1, 1, 1, 1, 1, 1,
 306	2, 2, 2, 2, 2, 2, 2, 2,
 307	3, 3, 3, 3, 3, 3, 3, 3,
 308	4, 4, 4, 4, 4, 4, 4, 4,
 309	5, 5, 5, 5, 5, 5, 5, 5,
 310	6, 6, 6, 6, 6, 6, 6, 6,
 311	7, 7, 7, 7, 7, 7, 7, 7,
 312};
 313
 314static const u8 diffserv8[] = {
 315	2, 0, 1, 2, 4, 2, 2, 2,
 316	1, 2, 1, 2, 1, 2, 1, 2,
 317	5, 2, 4, 2, 4, 2, 4, 2,
 318	3, 2, 3, 2, 3, 2, 3, 2,
 319	6, 2, 3, 2, 3, 2, 3, 2,
 320	6, 2, 2, 2, 6, 2, 6, 2,
 321	7, 2, 2, 2, 2, 2, 2, 2,
 322	7, 2, 2, 2, 2, 2, 2, 2,
 323};
 324
 325static const u8 diffserv4[] = {
 326	0, 1, 0, 0, 2, 0, 0, 0,
 327	1, 0, 0, 0, 0, 0, 0, 0,
 328	2, 0, 2, 0, 2, 0, 2, 0,
 329	2, 0, 2, 0, 2, 0, 2, 0,
 330	3, 0, 2, 0, 2, 0, 2, 0,
 331	3, 0, 0, 0, 3, 0, 3, 0,
 332	3, 0, 0, 0, 0, 0, 0, 0,
 333	3, 0, 0, 0, 0, 0, 0, 0,
 334};
 335
 336static const u8 diffserv3[] = {
 337	0, 1, 0, 0, 2, 0, 0, 0,
 338	1, 0, 0, 0, 0, 0, 0, 0,
 339	0, 0, 0, 0, 0, 0, 0, 0,
 340	0, 0, 0, 0, 0, 0, 0, 0,
 341	0, 0, 0, 0, 0, 0, 0, 0,
 342	0, 0, 0, 0, 2, 0, 2, 0,
 343	2, 0, 0, 0, 0, 0, 0, 0,
 344	2, 0, 0, 0, 0, 0, 0, 0,
 345};
 346
 347static const u8 besteffort[] = {
 348	0, 0, 0, 0, 0, 0, 0, 0,
 349	0, 0, 0, 0, 0, 0, 0, 0,
 350	0, 0, 0, 0, 0, 0, 0, 0,
 351	0, 0, 0, 0, 0, 0, 0, 0,
 352	0, 0, 0, 0, 0, 0, 0, 0,
 353	0, 0, 0, 0, 0, 0, 0, 0,
 354	0, 0, 0, 0, 0, 0, 0, 0,
 355	0, 0, 0, 0, 0, 0, 0, 0,
 356};
 357
 358/* tin priority order for stats dumping */
 359
 360static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
 361static const u8 bulk_order[] = {1, 0, 2, 3};
 362
 363#define REC_INV_SQRT_CACHE (16)
 364static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
 365
 366/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
 367 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
 368 *
 369 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
 370 */
 371
 372static void cobalt_newton_step(struct cobalt_vars *vars)
 373{
 374	u32 invsqrt, invsqrt2;
 375	u64 val;
 376
 377	invsqrt = vars->rec_inv_sqrt;
 378	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
 379	val = (3LL << 32) - ((u64)vars->count * invsqrt2);
 380
 381	val >>= 2; /* avoid overflow in following multiply */
 382	val = (val * invsqrt) >> (32 - 2 + 1);
 383
 384	vars->rec_inv_sqrt = val;
 385}
 386
 387static void cobalt_invsqrt(struct cobalt_vars *vars)
 388{
 389	if (vars->count < REC_INV_SQRT_CACHE)
 390		vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
 391	else
 392		cobalt_newton_step(vars);
 393}
 394
 395/* There is a big difference in timing between the accurate values placed in
 396 * the cache and the approximations given by a single Newton step for small
 397 * count values, particularly when stepping from count 1 to 2 or vice versa.
 398 * Above 16, a single Newton step gives sufficient accuracy in either
 399 * direction, given the precision stored.
 400 *
 401 * The magnitude of the error when stepping up to count 2 is such as to give
 402 * the value that *should* have been produced at count 4.
 403 */
 404
 405static void cobalt_cache_init(void)
 406{
 407	struct cobalt_vars v;
 408
 409	memset(&v, 0, sizeof(v));
 410	v.rec_inv_sqrt = ~0U;
 411	cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
 412
 413	for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
 414		cobalt_newton_step(&v);
 415		cobalt_newton_step(&v);
 416		cobalt_newton_step(&v);
 417		cobalt_newton_step(&v);
 418
 419		cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
 420	}
 421}
 422
 423static void cobalt_vars_init(struct cobalt_vars *vars)
 424{
 425	memset(vars, 0, sizeof(*vars));
 426
 427	if (!cobalt_rec_inv_sqrt_cache[0]) {
 428		cobalt_cache_init();
 429		cobalt_rec_inv_sqrt_cache[0] = ~0;
 430	}
 431}
 432
 433/* CoDel control_law is t + interval/sqrt(count)
 434 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
 435 * both sqrt() and divide operation.
 436 */
 437static ktime_t cobalt_control(ktime_t t,
 438			      u64 interval,
 439			      u32 rec_inv_sqrt)
 440{
 441	return ktime_add_ns(t, reciprocal_scale(interval,
 442						rec_inv_sqrt));
 443}
 444
 445/* Call this when a packet had to be dropped due to queue overflow.  Returns
 446 * true if the BLUE state was quiescent before but active after this call.
 447 */
 448static bool cobalt_queue_full(struct cobalt_vars *vars,
 449			      struct cobalt_params *p,
 450			      ktime_t now)
 451{
 452	bool up = false;
 453
 454	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
 455		up = !vars->p_drop;
 456		vars->p_drop += p->p_inc;
 457		if (vars->p_drop < p->p_inc)
 458			vars->p_drop = ~0;
 459		vars->blue_timer = now;
 460	}
 461	vars->dropping = true;
 462	vars->drop_next = now;
 463	if (!vars->count)
 464		vars->count = 1;
 465
 466	return up;
 467}
 468
 469/* Call this when the queue was serviced but turned out to be empty.  Returns
 470 * true if the BLUE state was active before but quiescent after this call.
 471 */
 472static bool cobalt_queue_empty(struct cobalt_vars *vars,
 473			       struct cobalt_params *p,
 474			       ktime_t now)
 475{
 476	bool down = false;
 477
 478	if (vars->p_drop &&
 479	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
 480		if (vars->p_drop < p->p_dec)
 481			vars->p_drop = 0;
 482		else
 483			vars->p_drop -= p->p_dec;
 484		vars->blue_timer = now;
 485		down = !vars->p_drop;
 486	}
 487	vars->dropping = false;
 488
 489	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
 490		vars->count--;
 491		cobalt_invsqrt(vars);
 492		vars->drop_next = cobalt_control(vars->drop_next,
 493						 p->interval,
 494						 vars->rec_inv_sqrt);
 495	}
 496
 497	return down;
 498}
 499
 500/* Call this with a freshly dequeued packet for possible congestion marking.
 501 * Returns true as an instruction to drop the packet, false for delivery.
 502 */
 503static bool cobalt_should_drop(struct cobalt_vars *vars,
 504			       struct cobalt_params *p,
 505			       ktime_t now,
 506			       struct sk_buff *skb,
 507			       u32 bulk_flows)
 508{
 509	bool next_due, over_target, drop = false;
 510	ktime_t schedule;
 511	u64 sojourn;
 512
 513/* The 'schedule' variable records, in its sign, whether 'now' is before or
 514 * after 'drop_next'.  This allows 'drop_next' to be updated before the next
 515 * scheduling decision is actually branched, without destroying that
 516 * information.  Similarly, the first 'schedule' value calculated is preserved
 517 * in the boolean 'next_due'.
 518 *
 519 * As for 'drop_next', we take advantage of the fact that 'interval' is both
 520 * the delay between first exceeding 'target' and the first signalling event,
 521 * *and* the scaling factor for the signalling frequency.  It's therefore very
 522 * natural to use a single mechanism for both purposes, and eliminates a
 523 * significant amount of reference Codel's spaghetti code.  To help with this,
 524 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
 525 * as possible to 1.0 in fixed-point.
 526 */
 527
 528	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
 529	schedule = ktime_sub(now, vars->drop_next);
 530	over_target = sojourn > p->target &&
 531		      sojourn > p->mtu_time * bulk_flows * 2 &&
 532		      sojourn > p->mtu_time * 4;
 533	next_due = vars->count && ktime_to_ns(schedule) >= 0;
 534
 535	vars->ecn_marked = false;
 536
 537	if (over_target) {
 538		if (!vars->dropping) {
 539			vars->dropping = true;
 540			vars->drop_next = cobalt_control(now,
 541							 p->interval,
 542							 vars->rec_inv_sqrt);
 543		}
 544		if (!vars->count)
 545			vars->count = 1;
 546	} else if (vars->dropping) {
 547		vars->dropping = false;
 548	}
 549
 550	if (next_due && vars->dropping) {
 551		/* Use ECN mark if possible, otherwise drop */
 552		drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
 553
 554		vars->count++;
 555		if (!vars->count)
 556			vars->count--;
 557		cobalt_invsqrt(vars);
 558		vars->drop_next = cobalt_control(vars->drop_next,
 559						 p->interval,
 560						 vars->rec_inv_sqrt);
 561		schedule = ktime_sub(now, vars->drop_next);
 562	} else {
 563		while (next_due) {
 564			vars->count--;
 565			cobalt_invsqrt(vars);
 566			vars->drop_next = cobalt_control(vars->drop_next,
 567							 p->interval,
 568							 vars->rec_inv_sqrt);
 569			schedule = ktime_sub(now, vars->drop_next);
 570			next_due = vars->count && ktime_to_ns(schedule) >= 0;
 571		}
 572	}
 573
 574	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
 575	if (vars->p_drop)
 576		drop |= (get_random_u32() < vars->p_drop);
 577
 578	/* Overload the drop_next field as an activity timeout */
 579	if (!vars->count)
 580		vars->drop_next = ktime_add_ns(now, p->interval);
 581	else if (ktime_to_ns(schedule) > 0 && !drop)
 582		vars->drop_next = now;
 583
 584	return drop;
 585}
 586
 587static bool cake_update_flowkeys(struct flow_keys *keys,
 588				 const struct sk_buff *skb)
 589{
 590#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 591	struct nf_conntrack_tuple tuple = {};
 592	bool rev = !skb->_nfct, upd = false;
 593	__be32 ip;
 594
 595	if (skb_protocol(skb, true) != htons(ETH_P_IP))
 596		return false;
 597
 598	if (!nf_ct_get_tuple_skb(&tuple, skb))
 599		return false;
 600
 601	ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
 602	if (ip != keys->addrs.v4addrs.src) {
 603		keys->addrs.v4addrs.src = ip;
 604		upd = true;
 605	}
 606	ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
 607	if (ip != keys->addrs.v4addrs.dst) {
 608		keys->addrs.v4addrs.dst = ip;
 609		upd = true;
 610	}
 611
 612	if (keys->ports.ports) {
 613		__be16 port;
 614
 615		port = rev ? tuple.dst.u.all : tuple.src.u.all;
 616		if (port != keys->ports.src) {
 617			keys->ports.src = port;
 618			upd = true;
 619		}
 620		port = rev ? tuple.src.u.all : tuple.dst.u.all;
 621		if (port != keys->ports.dst) {
 622			port = keys->ports.dst;
 623			upd = true;
 624		}
 625	}
 626	return upd;
 627#else
 628	return false;
 629#endif
 630}
 631
 632/* Cake has several subtle multiple bit settings. In these cases you
 633 *  would be matching triple isolate mode as well.
 634 */
 635
 636static bool cake_dsrc(int flow_mode)
 637{
 638	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
 639}
 640
 641static bool cake_ddst(int flow_mode)
 642{
 643	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
 644}
 645
 646static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
 647		     int flow_mode, u16 flow_override, u16 host_override)
 648{
 649	bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
 650	bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
 651	bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
 652	u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
 653	u16 reduced_hash, srchost_idx, dsthost_idx;
 654	struct flow_keys keys, host_keys;
 655	bool use_skbhash = skb->l4_hash;
 656
 657	if (unlikely(flow_mode == CAKE_FLOW_NONE))
 658		return 0;
 659
 660	/* If both overrides are set, or we can use the SKB hash and nat mode is
 661	 * disabled, we can skip packet dissection entirely. If nat mode is
 662	 * enabled there's another check below after doing the conntrack lookup.
 663	 */
 664	if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
 665		goto skip_hash;
 666
 667	skb_flow_dissect_flow_keys(skb, &keys,
 668				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
 669
 670	/* Don't use the SKB hash if we change the lookup keys from conntrack */
 671	if (nat_enabled && cake_update_flowkeys(&keys, skb))
 672		use_skbhash = false;
 673
 674	/* If we can still use the SKB hash and don't need the host hash, we can
 675	 * skip the rest of the hashing procedure
 676	 */
 677	if (use_skbhash && !hash_hosts)
 678		goto skip_hash;
 679
 680	/* flow_hash_from_keys() sorts the addresses by value, so we have
 681	 * to preserve their order in a separate data structure to treat
 682	 * src and dst host addresses as independently selectable.
 683	 */
 684	host_keys = keys;
 685	host_keys.ports.ports     = 0;
 686	host_keys.basic.ip_proto  = 0;
 687	host_keys.keyid.keyid     = 0;
 688	host_keys.tags.flow_label = 0;
 689
 690	switch (host_keys.control.addr_type) {
 691	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
 692		host_keys.addrs.v4addrs.src = 0;
 693		dsthost_hash = flow_hash_from_keys(&host_keys);
 694		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
 695		host_keys.addrs.v4addrs.dst = 0;
 696		srchost_hash = flow_hash_from_keys(&host_keys);
 697		break;
 698
 699	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
 700		memset(&host_keys.addrs.v6addrs.src, 0,
 701		       sizeof(host_keys.addrs.v6addrs.src));
 702		dsthost_hash = flow_hash_from_keys(&host_keys);
 703		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
 704		memset(&host_keys.addrs.v6addrs.dst, 0,
 705		       sizeof(host_keys.addrs.v6addrs.dst));
 706		srchost_hash = flow_hash_from_keys(&host_keys);
 707		break;
 708
 709	default:
 710		dsthost_hash = 0;
 711		srchost_hash = 0;
 712	}
 713
 714	/* This *must* be after the above switch, since as a
 715	 * side-effect it sorts the src and dst addresses.
 716	 */
 717	if (hash_flows && !use_skbhash)
 718		flow_hash = flow_hash_from_keys(&keys);
 719
 720skip_hash:
 721	if (flow_override)
 722		flow_hash = flow_override - 1;
 723	else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
 724		flow_hash = skb->hash;
 725	if (host_override) {
 726		dsthost_hash = host_override - 1;
 727		srchost_hash = host_override - 1;
 728	}
 729
 730	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
 731		if (flow_mode & CAKE_FLOW_SRC_IP)
 732			flow_hash ^= srchost_hash;
 733
 734		if (flow_mode & CAKE_FLOW_DST_IP)
 735			flow_hash ^= dsthost_hash;
 736	}
 737
 738	reduced_hash = flow_hash % CAKE_QUEUES;
 739
 740	/* set-associative hashing */
 741	/* fast path if no hash collision (direct lookup succeeds) */
 742	if (likely(q->tags[reduced_hash] == flow_hash &&
 743		   q->flows[reduced_hash].set)) {
 744		q->way_directs++;
 745	} else {
 746		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
 747		u32 outer_hash = reduced_hash - inner_hash;
 748		bool allocate_src = false;
 749		bool allocate_dst = false;
 750		u32 i, k;
 751
 752		/* check if any active queue in the set is reserved for
 753		 * this flow.
 754		 */
 755		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 756		     i++, k = (k + 1) % CAKE_SET_WAYS) {
 757			if (q->tags[outer_hash + k] == flow_hash) {
 758				if (i)
 759					q->way_hits++;
 760
 761				if (!q->flows[outer_hash + k].set) {
 762					/* need to increment host refcnts */
 763					allocate_src = cake_dsrc(flow_mode);
 764					allocate_dst = cake_ddst(flow_mode);
 765				}
 766
 767				goto found;
 768			}
 769		}
 770
 771		/* no queue is reserved for this flow, look for an
 772		 * empty one.
 773		 */
 774		for (i = 0; i < CAKE_SET_WAYS;
 775			 i++, k = (k + 1) % CAKE_SET_WAYS) {
 776			if (!q->flows[outer_hash + k].set) {
 777				q->way_misses++;
 778				allocate_src = cake_dsrc(flow_mode);
 779				allocate_dst = cake_ddst(flow_mode);
 780				goto found;
 781			}
 782		}
 783
 784		/* With no empty queues, default to the original
 785		 * queue, accept the collision, update the host tags.
 786		 */
 787		q->way_collisions++;
 788		if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
 789			q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
 790			q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
 791		}
 792		allocate_src = cake_dsrc(flow_mode);
 793		allocate_dst = cake_ddst(flow_mode);
 794found:
 795		/* reserve queue for future packets in same flow */
 796		reduced_hash = outer_hash + k;
 797		q->tags[reduced_hash] = flow_hash;
 798
 799		if (allocate_src) {
 800			srchost_idx = srchost_hash % CAKE_QUEUES;
 801			inner_hash = srchost_idx % CAKE_SET_WAYS;
 802			outer_hash = srchost_idx - inner_hash;
 803			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 804				i++, k = (k + 1) % CAKE_SET_WAYS) {
 805				if (q->hosts[outer_hash + k].srchost_tag ==
 806				    srchost_hash)
 807					goto found_src;
 808			}
 809			for (i = 0; i < CAKE_SET_WAYS;
 810				i++, k = (k + 1) % CAKE_SET_WAYS) {
 811				if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
 812					break;
 813			}
 814			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
 815found_src:
 816			srchost_idx = outer_hash + k;
 817			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
 818				q->hosts[srchost_idx].srchost_bulk_flow_count++;
 819			q->flows[reduced_hash].srchost = srchost_idx;
 820		}
 821
 822		if (allocate_dst) {
 823			dsthost_idx = dsthost_hash % CAKE_QUEUES;
 824			inner_hash = dsthost_idx % CAKE_SET_WAYS;
 825			outer_hash = dsthost_idx - inner_hash;
 826			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 827			     i++, k = (k + 1) % CAKE_SET_WAYS) {
 828				if (q->hosts[outer_hash + k].dsthost_tag ==
 829				    dsthost_hash)
 830					goto found_dst;
 831			}
 832			for (i = 0; i < CAKE_SET_WAYS;
 833			     i++, k = (k + 1) % CAKE_SET_WAYS) {
 834				if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
 835					break;
 836			}
 837			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
 838found_dst:
 839			dsthost_idx = outer_hash + k;
 840			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
 841				q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
 842			q->flows[reduced_hash].dsthost = dsthost_idx;
 843		}
 844	}
 845
 846	return reduced_hash;
 847}
 848
 849/* helper functions : might be changed when/if skb use a standard list_head */
 850/* remove one skb from head of slot queue */
 851
 852static struct sk_buff *dequeue_head(struct cake_flow *flow)
 853{
 854	struct sk_buff *skb = flow->head;
 855
 856	if (skb) {
 857		flow->head = skb->next;
 858		skb_mark_not_on_list(skb);
 859	}
 860
 861	return skb;
 862}
 863
 864/* add skb to flow queue (tail add) */
 865
 866static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
 867{
 868	if (!flow->head)
 869		flow->head = skb;
 870	else
 871		flow->tail->next = skb;
 872	flow->tail = skb;
 873	skb->next = NULL;
 874}
 875
 876static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
 877				    struct ipv6hdr *buf)
 878{
 879	unsigned int offset = skb_network_offset(skb);
 880	struct iphdr *iph;
 881
 882	iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
 883
 884	if (!iph)
 885		return NULL;
 886
 887	if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
 888		return skb_header_pointer(skb, offset + iph->ihl * 4,
 889					  sizeof(struct ipv6hdr), buf);
 890
 891	else if (iph->version == 4)
 892		return iph;
 893
 894	else if (iph->version == 6)
 895		return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
 896					  buf);
 897
 898	return NULL;
 899}
 900
 901static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
 902				      void *buf, unsigned int bufsize)
 903{
 904	unsigned int offset = skb_network_offset(skb);
 905	const struct ipv6hdr *ipv6h;
 906	const struct tcphdr *tcph;
 907	const struct iphdr *iph;
 908	struct ipv6hdr _ipv6h;
 909	struct tcphdr _tcph;
 910
 911	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 912
 913	if (!ipv6h)
 914		return NULL;
 915
 916	if (ipv6h->version == 4) {
 917		iph = (struct iphdr *)ipv6h;
 918		offset += iph->ihl * 4;
 919
 920		/* special-case 6in4 tunnelling, as that is a common way to get
 921		 * v6 connectivity in the home
 922		 */
 923		if (iph->protocol == IPPROTO_IPV6) {
 924			ipv6h = skb_header_pointer(skb, offset,
 925						   sizeof(_ipv6h), &_ipv6h);
 926
 927			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 928				return NULL;
 929
 930			offset += sizeof(struct ipv6hdr);
 931
 932		} else if (iph->protocol != IPPROTO_TCP) {
 933			return NULL;
 934		}
 935
 936	} else if (ipv6h->version == 6) {
 937		if (ipv6h->nexthdr != IPPROTO_TCP)
 938			return NULL;
 939
 940		offset += sizeof(struct ipv6hdr);
 941	} else {
 942		return NULL;
 943	}
 944
 945	tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
 946	if (!tcph || tcph->doff < 5)
 947		return NULL;
 948
 949	return skb_header_pointer(skb, offset,
 950				  min(__tcp_hdrlen(tcph), bufsize), buf);
 951}
 952
 953static const void *cake_get_tcpopt(const struct tcphdr *tcph,
 954				   int code, int *oplen)
 955{
 956	/* inspired by tcp_parse_options in tcp_input.c */
 957	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
 958	const u8 *ptr = (const u8 *)(tcph + 1);
 959
 960	while (length > 0) {
 961		int opcode = *ptr++;
 962		int opsize;
 963
 964		if (opcode == TCPOPT_EOL)
 965			break;
 966		if (opcode == TCPOPT_NOP) {
 967			length--;
 968			continue;
 969		}
 970		if (length < 2)
 971			break;
 972		opsize = *ptr++;
 973		if (opsize < 2 || opsize > length)
 974			break;
 975
 976		if (opcode == code) {
 977			*oplen = opsize;
 978			return ptr;
 979		}
 980
 981		ptr += opsize - 2;
 982		length -= opsize;
 983	}
 984
 985	return NULL;
 986}
 987
 988/* Compare two SACK sequences. A sequence is considered greater if it SACKs more
 989 * bytes than the other. In the case where both sequences ACKs bytes that the
 990 * other doesn't, A is considered greater. DSACKs in A also makes A be
 991 * considered greater.
 992 *
 993 * @return -1, 0 or 1 as normal compare functions
 994 */
 995static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
 996				  const struct tcphdr *tcph_b)
 997{
 998	const struct tcp_sack_block_wire *sack_a, *sack_b;
 999	u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1000	u32 bytes_a = 0, bytes_b = 0;
1001	int oplen_a, oplen_b;
1002	bool first = true;
1003
1004	sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1005	sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1006
1007	/* pointers point to option contents */
1008	oplen_a -= TCPOLEN_SACK_BASE;
1009	oplen_b -= TCPOLEN_SACK_BASE;
1010
1011	if (sack_a && oplen_a >= sizeof(*sack_a) &&
1012	    (!sack_b || oplen_b < sizeof(*sack_b)))
1013		return -1;
1014	else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1015		 (!sack_a || oplen_a < sizeof(*sack_a)))
1016		return 1;
1017	else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1018		 (!sack_b || oplen_b < sizeof(*sack_b)))
1019		return 0;
1020
1021	while (oplen_a >= sizeof(*sack_a)) {
1022		const struct tcp_sack_block_wire *sack_tmp = sack_b;
1023		u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1024		u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1025		int oplen_tmp = oplen_b;
1026		bool found = false;
1027
1028		/* DSACK; always considered greater to prevent dropping */
1029		if (before(start_a, ack_seq_a))
1030			return -1;
1031
1032		bytes_a += end_a - start_a;
1033
1034		while (oplen_tmp >= sizeof(*sack_tmp)) {
1035			u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1036			u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1037
1038			/* first time through we count the total size */
1039			if (first)
1040				bytes_b += end_b - start_b;
1041
1042			if (!after(start_b, start_a) && !before(end_b, end_a)) {
1043				found = true;
1044				if (!first)
1045					break;
1046			}
1047			oplen_tmp -= sizeof(*sack_tmp);
1048			sack_tmp++;
1049		}
1050
1051		if (!found)
1052			return -1;
1053
1054		oplen_a -= sizeof(*sack_a);
1055		sack_a++;
1056		first = false;
1057	}
1058
1059	/* If we made it this far, all ranges SACKed by A are covered by B, so
1060	 * either the SACKs are equal, or B SACKs more bytes.
1061	 */
1062	return bytes_b > bytes_a ? 1 : 0;
1063}
1064
1065static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1066				 u32 *tsval, u32 *tsecr)
1067{
1068	const u8 *ptr;
1069	int opsize;
1070
1071	ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1072
1073	if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1074		*tsval = get_unaligned_be32(ptr);
1075		*tsecr = get_unaligned_be32(ptr + 4);
1076	}
1077}
1078
1079static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1080			       u32 tstamp_new, u32 tsecr_new)
1081{
1082	/* inspired by tcp_parse_options in tcp_input.c */
1083	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1084	const u8 *ptr = (const u8 *)(tcph + 1);
1085	u32 tstamp, tsecr;
1086
1087	/* 3 reserved flags must be unset to avoid future breakage
1088	 * ACK must be set
1089	 * ECE/CWR are handled separately
1090	 * All other flags URG/PSH/RST/SYN/FIN must be unset
1091	 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1092	 * 0x00C00000 = CWR/ECE (handled separately)
1093	 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1094	 */
1095	if (((tcp_flag_word(tcph) &
1096	      cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1097		return false;
1098
1099	while (length > 0) {
1100		int opcode = *ptr++;
1101		int opsize;
1102
1103		if (opcode == TCPOPT_EOL)
1104			break;
1105		if (opcode == TCPOPT_NOP) {
1106			length--;
1107			continue;
1108		}
1109		if (length < 2)
1110			break;
1111		opsize = *ptr++;
1112		if (opsize < 2 || opsize > length)
1113			break;
1114
1115		switch (opcode) {
1116		case TCPOPT_MD5SIG: /* doesn't influence state */
1117			break;
1118
1119		case TCPOPT_SACK: /* stricter checking performed later */
1120			if (opsize % 8 != 2)
1121				return false;
1122			break;
1123
1124		case TCPOPT_TIMESTAMP:
1125			/* only drop timestamps lower than new */
1126			if (opsize != TCPOLEN_TIMESTAMP)
1127				return false;
1128			tstamp = get_unaligned_be32(ptr);
1129			tsecr = get_unaligned_be32(ptr + 4);
1130			if (after(tstamp, tstamp_new) ||
1131			    after(tsecr, tsecr_new))
1132				return false;
1133			break;
1134
1135		case TCPOPT_MSS:  /* these should only be set on SYN */
1136		case TCPOPT_WINDOW:
1137		case TCPOPT_SACK_PERM:
1138		case TCPOPT_FASTOPEN:
1139		case TCPOPT_EXP:
1140		default: /* don't drop if any unknown options are present */
1141			return false;
1142		}
1143
1144		ptr += opsize - 2;
1145		length -= opsize;
1146	}
1147
1148	return true;
1149}
1150
1151static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1152				       struct cake_flow *flow)
1153{
1154	bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1155	struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1156	struct sk_buff *skb_check, *skb_prev = NULL;
1157	const struct ipv6hdr *ipv6h, *ipv6h_check;
1158	unsigned char _tcph[64], _tcph_check[64];
1159	const struct tcphdr *tcph, *tcph_check;
1160	const struct iphdr *iph, *iph_check;
1161	struct ipv6hdr _iph, _iph_check;
1162	const struct sk_buff *skb;
1163	int seglen, num_found = 0;
1164	u32 tstamp = 0, tsecr = 0;
1165	__be32 elig_flags = 0;
1166	int sack_comp;
1167
1168	/* no other possible ACKs to filter */
1169	if (flow->head == flow->tail)
1170		return NULL;
1171
1172	skb = flow->tail;
1173	tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1174	iph = cake_get_iphdr(skb, &_iph);
1175	if (!tcph)
1176		return NULL;
1177
1178	cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1179
1180	/* the 'triggering' packet need only have the ACK flag set.
1181	 * also check that SYN is not set, as there won't be any previous ACKs.
1182	 */
1183	if ((tcp_flag_word(tcph) &
1184	     (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1185		return NULL;
1186
1187	/* the 'triggering' ACK is at the tail of the queue, we have already
1188	 * returned if it is the only packet in the flow. loop through the rest
1189	 * of the queue looking for pure ACKs with the same 5-tuple as the
1190	 * triggering one.
1191	 */
1192	for (skb_check = flow->head;
1193	     skb_check && skb_check != skb;
1194	     skb_prev = skb_check, skb_check = skb_check->next) {
1195		iph_check = cake_get_iphdr(skb_check, &_iph_check);
1196		tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1197					     sizeof(_tcph_check));
1198
1199		/* only TCP packets with matching 5-tuple are eligible, and only
1200		 * drop safe headers
1201		 */
1202		if (!tcph_check || iph->version != iph_check->version ||
1203		    tcph_check->source != tcph->source ||
1204		    tcph_check->dest != tcph->dest)
1205			continue;
1206
1207		if (iph_check->version == 4) {
1208			if (iph_check->saddr != iph->saddr ||
1209			    iph_check->daddr != iph->daddr)
1210				continue;
1211
1212			seglen = ntohs(iph_check->tot_len) -
1213				       (4 * iph_check->ihl);
1214		} else if (iph_check->version == 6) {
1215			ipv6h = (struct ipv6hdr *)iph;
1216			ipv6h_check = (struct ipv6hdr *)iph_check;
1217
1218			if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1219			    ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1220				continue;
1221
1222			seglen = ntohs(ipv6h_check->payload_len);
1223		} else {
1224			WARN_ON(1);  /* shouldn't happen */
1225			continue;
1226		}
1227
1228		/* If the ECE/CWR flags changed from the previous eligible
1229		 * packet in the same flow, we should no longer be dropping that
1230		 * previous packet as this would lose information.
1231		 */
1232		if (elig_ack && (tcp_flag_word(tcph_check) &
1233				 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1234			elig_ack = NULL;
1235			elig_ack_prev = NULL;
1236			num_found--;
1237		}
1238
1239		/* Check TCP options and flags, don't drop ACKs with segment
1240		 * data, and don't drop ACKs with a higher cumulative ACK
1241		 * counter than the triggering packet. Check ACK seqno here to
1242		 * avoid parsing SACK options of packets we are going to exclude
1243		 * anyway.
1244		 */
1245		if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1246		    (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1247		    after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1248			continue;
1249
1250		/* Check SACK options. The triggering packet must SACK more data
1251		 * than the ACK under consideration, or SACK the same range but
1252		 * have a larger cumulative ACK counter. The latter is a
1253		 * pathological case, but is contained in the following check
1254		 * anyway, just to be safe.
1255		 */
1256		sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1257
1258		if (sack_comp < 0 ||
1259		    (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1260		     sack_comp == 0))
1261			continue;
1262
1263		/* At this point we have found an eligible pure ACK to drop; if
1264		 * we are in aggressive mode, we are done. Otherwise, keep
1265		 * searching unless this is the second eligible ACK we
1266		 * found.
1267		 *
1268		 * Since we want to drop ACK closest to the head of the queue,
1269		 * save the first eligible ACK we find, even if we need to loop
1270		 * again.
1271		 */
1272		if (!elig_ack) {
1273			elig_ack = skb_check;
1274			elig_ack_prev = skb_prev;
1275			elig_flags = (tcp_flag_word(tcph_check)
1276				      & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1277		}
1278
1279		if (num_found++ > 0)
1280			goto found;
1281	}
1282
1283	/* We made it through the queue without finding two eligible ACKs . If
1284	 * we found a single eligible ACK we can drop it in aggressive mode if
1285	 * we can guarantee that this does not interfere with ECN flag
1286	 * information. We ensure this by dropping it only if the enqueued
1287	 * packet is consecutive with the eligible ACK, and their flags match.
1288	 */
1289	if (elig_ack && aggressive && elig_ack->next == skb &&
1290	    (elig_flags == (tcp_flag_word(tcph) &
1291			    (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1292		goto found;
1293
1294	return NULL;
1295
1296found:
1297	if (elig_ack_prev)
1298		elig_ack_prev->next = elig_ack->next;
1299	else
1300		flow->head = elig_ack->next;
1301
1302	skb_mark_not_on_list(elig_ack);
1303
1304	return elig_ack;
1305}
1306
1307static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1308{
1309	avg -= avg >> shift;
1310	avg += sample >> shift;
1311	return avg;
1312}
1313
1314static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1315{
1316	if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1317		len -= off;
1318
1319	if (q->max_netlen < len)
1320		q->max_netlen = len;
1321	if (q->min_netlen > len)
1322		q->min_netlen = len;
1323
1324	len += q->rate_overhead;
1325
1326	if (len < q->rate_mpu)
1327		len = q->rate_mpu;
1328
1329	if (q->atm_mode == CAKE_ATM_ATM) {
1330		len += 47;
1331		len /= 48;
1332		len *= 53;
1333	} else if (q->atm_mode == CAKE_ATM_PTM) {
1334		/* Add one byte per 64 bytes or part thereof.
1335		 * This is conservative and easier to calculate than the
1336		 * precise value.
1337		 */
1338		len += (len + 63) / 64;
1339	}
1340
1341	if (q->max_adjlen < len)
1342		q->max_adjlen = len;
1343	if (q->min_adjlen > len)
1344		q->min_adjlen = len;
1345
1346	return len;
1347}
1348
1349static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1350{
1351	const struct skb_shared_info *shinfo = skb_shinfo(skb);
1352	unsigned int hdr_len, last_len = 0;
1353	u32 off = skb_network_offset(skb);
1354	u32 len = qdisc_pkt_len(skb);
1355	u16 segs = 1;
1356
1357	q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1358
1359	if (!shinfo->gso_size)
1360		return cake_calc_overhead(q, len, off);
1361
1362	/* borrowed from qdisc_pkt_len_init() */
1363	hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1364
1365	/* + transport layer */
1366	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1367						SKB_GSO_TCPV6))) {
1368		const struct tcphdr *th;
1369		struct tcphdr _tcphdr;
1370
1371		th = skb_header_pointer(skb, skb_transport_offset(skb),
1372					sizeof(_tcphdr), &_tcphdr);
1373		if (likely(th))
1374			hdr_len += __tcp_hdrlen(th);
1375	} else {
1376		struct udphdr _udphdr;
1377
1378		if (skb_header_pointer(skb, skb_transport_offset(skb),
1379				       sizeof(_udphdr), &_udphdr))
1380			hdr_len += sizeof(struct udphdr);
1381	}
1382
1383	if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1384		segs = DIV_ROUND_UP(skb->len - hdr_len,
1385				    shinfo->gso_size);
1386	else
1387		segs = shinfo->gso_segs;
1388
1389	len = shinfo->gso_size + hdr_len;
1390	last_len = skb->len - shinfo->gso_size * (segs - 1);
1391
1392	return (cake_calc_overhead(q, len, off) * (segs - 1) +
1393		cake_calc_overhead(q, last_len, off));
1394}
1395
1396static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1397{
1398	struct cake_heap_entry ii = q->overflow_heap[i];
1399	struct cake_heap_entry jj = q->overflow_heap[j];
1400
1401	q->overflow_heap[i] = jj;
1402	q->overflow_heap[j] = ii;
1403
1404	q->tins[ii.t].overflow_idx[ii.b] = j;
1405	q->tins[jj.t].overflow_idx[jj.b] = i;
1406}
1407
1408static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1409{
1410	struct cake_heap_entry ii = q->overflow_heap[i];
1411
1412	return q->tins[ii.t].backlogs[ii.b];
1413}
1414
1415static void cake_heapify(struct cake_sched_data *q, u16 i)
1416{
1417	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1418	u32 mb = cake_heap_get_backlog(q, i);
1419	u32 m = i;
1420
1421	while (m < a) {
1422		u32 l = m + m + 1;
1423		u32 r = l + 1;
1424
1425		if (l < a) {
1426			u32 lb = cake_heap_get_backlog(q, l);
1427
1428			if (lb > mb) {
1429				m  = l;
1430				mb = lb;
1431			}
1432		}
1433
1434		if (r < a) {
1435			u32 rb = cake_heap_get_backlog(q, r);
1436
1437			if (rb > mb) {
1438				m  = r;
1439				mb = rb;
1440			}
1441		}
1442
1443		if (m != i) {
1444			cake_heap_swap(q, i, m);
1445			i = m;
1446		} else {
1447			break;
1448		}
1449	}
1450}
1451
1452static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1453{
1454	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1455		u16 p = (i - 1) >> 1;
1456		u32 ib = cake_heap_get_backlog(q, i);
1457		u32 pb = cake_heap_get_backlog(q, p);
1458
1459		if (ib > pb) {
1460			cake_heap_swap(q, i, p);
1461			i = p;
1462		} else {
1463			break;
1464		}
1465	}
1466}
1467
1468static int cake_advance_shaper(struct cake_sched_data *q,
1469			       struct cake_tin_data *b,
1470			       struct sk_buff *skb,
1471			       ktime_t now, bool drop)
1472{
1473	u32 len = get_cobalt_cb(skb)->adjusted_len;
1474
1475	/* charge packet bandwidth to this tin
1476	 * and to the global shaper.
1477	 */
1478	if (q->rate_ns) {
1479		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1480		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1481		u64 failsafe_dur = global_dur + (global_dur >> 1);
1482
1483		if (ktime_before(b->time_next_packet, now))
1484			b->time_next_packet = ktime_add_ns(b->time_next_packet,
1485							   tin_dur);
1486
1487		else if (ktime_before(b->time_next_packet,
1488				      ktime_add_ns(now, tin_dur)))
1489			b->time_next_packet = ktime_add_ns(now, tin_dur);
1490
1491		q->time_next_packet = ktime_add_ns(q->time_next_packet,
1492						   global_dur);
1493		if (!drop)
1494			q->failsafe_next_packet = \
1495				ktime_add_ns(q->failsafe_next_packet,
1496					     failsafe_dur);
1497	}
1498	return len;
1499}
1500
1501static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1502{
1503	struct cake_sched_data *q = qdisc_priv(sch);
1504	ktime_t now = ktime_get();
1505	u32 idx = 0, tin = 0, len;
1506	struct cake_heap_entry qq;
1507	struct cake_tin_data *b;
1508	struct cake_flow *flow;
1509	struct sk_buff *skb;
1510
1511	if (!q->overflow_timeout) {
1512		int i;
1513		/* Build fresh max-heap */
1514		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1515			cake_heapify(q, i);
1516	}
1517	q->overflow_timeout = 65535;
1518
1519	/* select longest queue for pruning */
1520	qq  = q->overflow_heap[0];
1521	tin = qq.t;
1522	idx = qq.b;
1523
1524	b = &q->tins[tin];
1525	flow = &b->flows[idx];
1526	skb = dequeue_head(flow);
1527	if (unlikely(!skb)) {
1528		/* heap has gone wrong, rebuild it next time */
1529		q->overflow_timeout = 0;
1530		return idx + (tin << 16);
1531	}
1532
1533	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1534		b->unresponsive_flow_count++;
1535
1536	len = qdisc_pkt_len(skb);
1537	q->buffer_used      -= skb->truesize;
1538	b->backlogs[idx]    -= len;
1539	b->tin_backlog      -= len;
1540	sch->qstats.backlog -= len;
1541	qdisc_tree_reduce_backlog(sch, 1, len);
1542
1543	flow->dropped++;
1544	b->tin_dropped++;
1545	sch->qstats.drops++;
1546
1547	if (q->rate_flags & CAKE_FLAG_INGRESS)
1548		cake_advance_shaper(q, b, skb, now, true);
1549
1550	__qdisc_drop(skb, to_free);
1551	sch->q.qlen--;
1552
1553	cake_heapify(q, 0);
1554
1555	return idx + (tin << 16);
1556}
1557
1558static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1559{
1560	const int offset = skb_network_offset(skb);
1561	u16 *buf, buf_;
1562	u8 dscp;
1563
1564	switch (skb_protocol(skb, true)) {
1565	case htons(ETH_P_IP):
1566		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1567		if (unlikely(!buf))
1568			return 0;
1569
1570		/* ToS is in the second byte of iphdr */
1571		dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1572
1573		if (wash && dscp) {
1574			const int wlen = offset + sizeof(struct iphdr);
1575
1576			if (!pskb_may_pull(skb, wlen) ||
1577			    skb_try_make_writable(skb, wlen))
1578				return 0;
1579
1580			ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1581		}
1582
1583		return dscp;
1584
1585	case htons(ETH_P_IPV6):
1586		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1587		if (unlikely(!buf))
1588			return 0;
1589
1590		/* Traffic class is in the first and second bytes of ipv6hdr */
1591		dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1592
1593		if (wash && dscp) {
1594			const int wlen = offset + sizeof(struct ipv6hdr);
1595
1596			if (!pskb_may_pull(skb, wlen) ||
1597			    skb_try_make_writable(skb, wlen))
1598				return 0;
1599
1600			ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1601		}
1602
1603		return dscp;
1604
1605	case htons(ETH_P_ARP):
1606		return 0x38;  /* CS7 - Net Control */
1607
1608	default:
1609		/* If there is no Diffserv field, treat as best-effort */
1610		return 0;
1611	}
1612}
1613
1614static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1615					     struct sk_buff *skb)
1616{
1617	struct cake_sched_data *q = qdisc_priv(sch);
1618	u32 tin, mark;
1619	bool wash;
1620	u8 dscp;
1621
1622	/* Tin selection: Default to diffserv-based selection, allow overriding
1623	 * using firewall marks or skb->priority. Call DSCP parsing early if
1624	 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1625	 */
1626	mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1627	wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1628	if (wash)
1629		dscp = cake_handle_diffserv(skb, wash);
1630
1631	if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1632		tin = 0;
1633
1634	else if (mark && mark <= q->tin_cnt)
1635		tin = q->tin_order[mark - 1];
1636
1637	else if (TC_H_MAJ(skb->priority) == sch->handle &&
1638		 TC_H_MIN(skb->priority) > 0 &&
1639		 TC_H_MIN(skb->priority) <= q->tin_cnt)
1640		tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1641
1642	else {
1643		if (!wash)
1644			dscp = cake_handle_diffserv(skb, wash);
1645		tin = q->tin_index[dscp];
1646
1647		if (unlikely(tin >= q->tin_cnt))
1648			tin = 0;
1649	}
1650
1651	return &q->tins[tin];
1652}
1653
1654static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1655			 struct sk_buff *skb, int flow_mode, int *qerr)
1656{
1657	struct cake_sched_data *q = qdisc_priv(sch);
1658	struct tcf_proto *filter;
1659	struct tcf_result res;
1660	u16 flow = 0, host = 0;
1661	int result;
1662
1663	filter = rcu_dereference_bh(q->filter_list);
1664	if (!filter)
1665		goto hash;
1666
1667	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1668	result = tcf_classify(skb, NULL, filter, &res, false);
1669
1670	if (result >= 0) {
1671#ifdef CONFIG_NET_CLS_ACT
1672		switch (result) {
1673		case TC_ACT_STOLEN:
1674		case TC_ACT_QUEUED:
1675		case TC_ACT_TRAP:
1676			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1677			fallthrough;
1678		case TC_ACT_SHOT:
1679			return 0;
1680		}
1681#endif
1682		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1683			flow = TC_H_MIN(res.classid);
1684		if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1685			host = TC_H_MAJ(res.classid) >> 16;
1686	}
1687hash:
1688	*t = cake_select_tin(sch, skb);
1689	return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1690}
1691
1692static void cake_reconfigure(struct Qdisc *sch);
1693
1694static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1695			struct sk_buff **to_free)
1696{
1697	struct cake_sched_data *q = qdisc_priv(sch);
1698	int len = qdisc_pkt_len(skb);
1699	int ret;
1700	struct sk_buff *ack = NULL;
1701	ktime_t now = ktime_get();
1702	struct cake_tin_data *b;
1703	struct cake_flow *flow;
1704	u32 idx;
1705
1706	/* choose flow to insert into */
1707	idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1708	if (idx == 0) {
1709		if (ret & __NET_XMIT_BYPASS)
1710			qdisc_qstats_drop(sch);
1711		__qdisc_drop(skb, to_free);
1712		return ret;
1713	}
1714	idx--;
1715	flow = &b->flows[idx];
1716
1717	/* ensure shaper state isn't stale */
1718	if (!b->tin_backlog) {
1719		if (ktime_before(b->time_next_packet, now))
1720			b->time_next_packet = now;
1721
1722		if (!sch->q.qlen) {
1723			if (ktime_before(q->time_next_packet, now)) {
1724				q->failsafe_next_packet = now;
1725				q->time_next_packet = now;
1726			} else if (ktime_after(q->time_next_packet, now) &&
1727				   ktime_after(q->failsafe_next_packet, now)) {
1728				u64 next = \
1729					min(ktime_to_ns(q->time_next_packet),
1730					    ktime_to_ns(
1731						   q->failsafe_next_packet));
1732				sch->qstats.overlimits++;
1733				qdisc_watchdog_schedule_ns(&q->watchdog, next);
1734			}
1735		}
1736	}
1737
1738	if (unlikely(len > b->max_skblen))
1739		b->max_skblen = len;
1740
1741	if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1742		struct sk_buff *segs, *nskb;
1743		netdev_features_t features = netif_skb_features(skb);
1744		unsigned int slen = 0, numsegs = 0;
1745
1746		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1747		if (IS_ERR_OR_NULL(segs))
1748			return qdisc_drop(skb, sch, to_free);
1749
1750		skb_list_walk_safe(segs, segs, nskb) {
1751			skb_mark_not_on_list(segs);
1752			qdisc_skb_cb(segs)->pkt_len = segs->len;
1753			cobalt_set_enqueue_time(segs, now);
1754			get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1755									  segs);
1756			flow_queue_add(flow, segs);
1757
1758			sch->q.qlen++;
1759			numsegs++;
1760			slen += segs->len;
1761			q->buffer_used += segs->truesize;
1762			b->packets++;
1763		}
1764
1765		/* stats */
1766		b->bytes	    += slen;
1767		b->backlogs[idx]    += slen;
1768		b->tin_backlog      += slen;
1769		sch->qstats.backlog += slen;
1770		q->avg_window_bytes += slen;
1771
1772		qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1773		consume_skb(skb);
1774	} else {
1775		/* not splitting */
1776		cobalt_set_enqueue_time(skb, now);
1777		get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1778		flow_queue_add(flow, skb);
1779
1780		if (q->ack_filter)
1781			ack = cake_ack_filter(q, flow);
1782
1783		if (ack) {
1784			b->ack_drops++;
1785			sch->qstats.drops++;
1786			b->bytes += qdisc_pkt_len(ack);
1787			len -= qdisc_pkt_len(ack);
1788			q->buffer_used += skb->truesize - ack->truesize;
1789			if (q->rate_flags & CAKE_FLAG_INGRESS)
1790				cake_advance_shaper(q, b, ack, now, true);
1791
1792			qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1793			consume_skb(ack);
1794		} else {
1795			sch->q.qlen++;
1796			q->buffer_used      += skb->truesize;
1797		}
1798
1799		/* stats */
1800		b->packets++;
1801		b->bytes	    += len;
1802		b->backlogs[idx]    += len;
1803		b->tin_backlog      += len;
1804		sch->qstats.backlog += len;
1805		q->avg_window_bytes += len;
1806	}
1807
1808	if (q->overflow_timeout)
1809		cake_heapify_up(q, b->overflow_idx[idx]);
1810
1811	/* incoming bandwidth capacity estimate */
1812	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1813		u64 packet_interval = \
1814			ktime_to_ns(ktime_sub(now, q->last_packet_time));
1815
1816		if (packet_interval > NSEC_PER_SEC)
1817			packet_interval = NSEC_PER_SEC;
1818
1819		/* filter out short-term bursts, eg. wifi aggregation */
1820		q->avg_packet_interval = \
1821			cake_ewma(q->avg_packet_interval,
1822				  packet_interval,
1823				  (packet_interval > q->avg_packet_interval ?
1824					  2 : 8));
1825
1826		q->last_packet_time = now;
1827
1828		if (packet_interval > q->avg_packet_interval) {
1829			u64 window_interval = \
1830				ktime_to_ns(ktime_sub(now,
1831						      q->avg_window_begin));
1832			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1833
1834			b = div64_u64(b, window_interval);
1835			q->avg_peak_bandwidth =
1836				cake_ewma(q->avg_peak_bandwidth, b,
1837					  b > q->avg_peak_bandwidth ? 2 : 8);
1838			q->avg_window_bytes = 0;
1839			q->avg_window_begin = now;
1840
1841			if (ktime_after(now,
1842					ktime_add_ms(q->last_reconfig_time,
1843						     250))) {
1844				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1845				cake_reconfigure(sch);
1846			}
1847		}
1848	} else {
1849		q->avg_window_bytes = 0;
1850		q->last_packet_time = now;
1851	}
1852
1853	/* flowchain */
1854	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1855		struct cake_host *srchost = &b->hosts[flow->srchost];
1856		struct cake_host *dsthost = &b->hosts[flow->dsthost];
1857		u16 host_load = 1;
1858
1859		if (!flow->set) {
1860			list_add_tail(&flow->flowchain, &b->new_flows);
1861		} else {
1862			b->decaying_flow_count--;
1863			list_move_tail(&flow->flowchain, &b->new_flows);
1864		}
1865		flow->set = CAKE_SET_SPARSE;
1866		b->sparse_flow_count++;
1867
1868		if (cake_dsrc(q->flow_mode))
1869			host_load = max(host_load, srchost->srchost_bulk_flow_count);
1870
1871		if (cake_ddst(q->flow_mode))
1872			host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1873
1874		flow->deficit = (b->flow_quantum *
1875				 quantum_div[host_load]) >> 16;
1876	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1877		struct cake_host *srchost = &b->hosts[flow->srchost];
1878		struct cake_host *dsthost = &b->hosts[flow->dsthost];
1879
1880		/* this flow was empty, accounted as a sparse flow, but actually
1881		 * in the bulk rotation.
1882		 */
1883		flow->set = CAKE_SET_BULK;
1884		b->sparse_flow_count--;
1885		b->bulk_flow_count++;
1886
1887		if (cake_dsrc(q->flow_mode))
1888			srchost->srchost_bulk_flow_count++;
1889
1890		if (cake_ddst(q->flow_mode))
1891			dsthost->dsthost_bulk_flow_count++;
1892
1893	}
1894
1895	if (q->buffer_used > q->buffer_max_used)
1896		q->buffer_max_used = q->buffer_used;
1897
1898	if (q->buffer_used > q->buffer_limit) {
1899		u32 dropped = 0;
1900
1901		while (q->buffer_used > q->buffer_limit) {
1902			dropped++;
1903			cake_drop(sch, to_free);
1904		}
1905		b->drop_overlimit += dropped;
1906	}
1907	return NET_XMIT_SUCCESS;
1908}
1909
1910static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1911{
1912	struct cake_sched_data *q = qdisc_priv(sch);
1913	struct cake_tin_data *b = &q->tins[q->cur_tin];
1914	struct cake_flow *flow = &b->flows[q->cur_flow];
1915	struct sk_buff *skb = NULL;
1916	u32 len;
1917
1918	if (flow->head) {
1919		skb = dequeue_head(flow);
1920		len = qdisc_pkt_len(skb);
1921		b->backlogs[q->cur_flow] -= len;
1922		b->tin_backlog		 -= len;
1923		sch->qstats.backlog      -= len;
1924		q->buffer_used		 -= skb->truesize;
1925		sch->q.qlen--;
1926
1927		if (q->overflow_timeout)
1928			cake_heapify(q, b->overflow_idx[q->cur_flow]);
1929	}
1930	return skb;
1931}
1932
1933/* Discard leftover packets from a tin no longer in use. */
1934static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1935{
1936	struct cake_sched_data *q = qdisc_priv(sch);
1937	struct sk_buff *skb;
1938
1939	q->cur_tin = tin;
1940	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1941		while (!!(skb = cake_dequeue_one(sch)))
1942			kfree_skb(skb);
1943}
1944
1945static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1946{
1947	struct cake_sched_data *q = qdisc_priv(sch);
1948	struct cake_tin_data *b = &q->tins[q->cur_tin];
1949	struct cake_host *srchost, *dsthost;
1950	ktime_t now = ktime_get();
1951	struct cake_flow *flow;
1952	struct list_head *head;
1953	bool first_flow = true;
1954	struct sk_buff *skb;
1955	u16 host_load;
1956	u64 delay;
1957	u32 len;
1958
1959begin:
1960	if (!sch->q.qlen)
1961		return NULL;
1962
1963	/* global hard shaper */
1964	if (ktime_after(q->time_next_packet, now) &&
1965	    ktime_after(q->failsafe_next_packet, now)) {
1966		u64 next = min(ktime_to_ns(q->time_next_packet),
1967			       ktime_to_ns(q->failsafe_next_packet));
1968
1969		sch->qstats.overlimits++;
1970		qdisc_watchdog_schedule_ns(&q->watchdog, next);
1971		return NULL;
1972	}
1973
1974	/* Choose a class to work on. */
1975	if (!q->rate_ns) {
1976		/* In unlimited mode, can't rely on shaper timings, just balance
1977		 * with DRR
1978		 */
1979		bool wrapped = false, empty = true;
1980
1981		while (b->tin_deficit < 0 ||
1982		       !(b->sparse_flow_count + b->bulk_flow_count)) {
1983			if (b->tin_deficit <= 0)
1984				b->tin_deficit += b->tin_quantum;
1985			if (b->sparse_flow_count + b->bulk_flow_count)
1986				empty = false;
1987
1988			q->cur_tin++;
1989			b++;
1990			if (q->cur_tin >= q->tin_cnt) {
1991				q->cur_tin = 0;
1992				b = q->tins;
1993
1994				if (wrapped) {
1995					/* It's possible for q->qlen to be
1996					 * nonzero when we actually have no
1997					 * packets anywhere.
1998					 */
1999					if (empty)
2000						return NULL;
2001				} else {
2002					wrapped = true;
2003				}
2004			}
2005		}
2006	} else {
2007		/* In shaped mode, choose:
2008		 * - Highest-priority tin with queue and meeting schedule, or
2009		 * - The earliest-scheduled tin with queue.
2010		 */
2011		ktime_t best_time = KTIME_MAX;
2012		int tin, best_tin = 0;
2013
2014		for (tin = 0; tin < q->tin_cnt; tin++) {
2015			b = q->tins + tin;
2016			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2017				ktime_t time_to_pkt = \
2018					ktime_sub(b->time_next_packet, now);
2019
2020				if (ktime_to_ns(time_to_pkt) <= 0 ||
2021				    ktime_compare(time_to_pkt,
2022						  best_time) <= 0) {
2023					best_time = time_to_pkt;
2024					best_tin = tin;
2025				}
2026			}
2027		}
2028
2029		q->cur_tin = best_tin;
2030		b = q->tins + best_tin;
2031
2032		/* No point in going further if no packets to deliver. */
2033		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2034			return NULL;
2035	}
2036
2037retry:
2038	/* service this class */
2039	head = &b->decaying_flows;
2040	if (!first_flow || list_empty(head)) {
2041		head = &b->new_flows;
2042		if (list_empty(head)) {
2043			head = &b->old_flows;
2044			if (unlikely(list_empty(head))) {
2045				head = &b->decaying_flows;
2046				if (unlikely(list_empty(head)))
2047					goto begin;
2048			}
2049		}
2050	}
2051	flow = list_first_entry(head, struct cake_flow, flowchain);
2052	q->cur_flow = flow - b->flows;
2053	first_flow = false;
2054
2055	/* triple isolation (modified DRR++) */
2056	srchost = &b->hosts[flow->srchost];
2057	dsthost = &b->hosts[flow->dsthost];
2058	host_load = 1;
2059
2060	/* flow isolation (DRR++) */
2061	if (flow->deficit <= 0) {
2062		/* Keep all flows with deficits out of the sparse and decaying
2063		 * rotations.  No non-empty flow can go into the decaying
2064		 * rotation, so they can't get deficits
2065		 */
2066		if (flow->set == CAKE_SET_SPARSE) {
2067			if (flow->head) {
2068				b->sparse_flow_count--;
2069				b->bulk_flow_count++;
2070
2071				if (cake_dsrc(q->flow_mode))
2072					srchost->srchost_bulk_flow_count++;
2073
2074				if (cake_ddst(q->flow_mode))
2075					dsthost->dsthost_bulk_flow_count++;
2076
2077				flow->set = CAKE_SET_BULK;
2078			} else {
2079				/* we've moved it to the bulk rotation for
2080				 * correct deficit accounting but we still want
2081				 * to count it as a sparse flow, not a bulk one.
2082				 */
2083				flow->set = CAKE_SET_SPARSE_WAIT;
2084			}
2085		}
2086
2087		if (cake_dsrc(q->flow_mode))
2088			host_load = max(host_load, srchost->srchost_bulk_flow_count);
2089
2090		if (cake_ddst(q->flow_mode))
2091			host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2092
2093		WARN_ON(host_load > CAKE_QUEUES);
2094
2095		/* The get_random_u16() is a way to apply dithering to avoid
2096		 * accumulating roundoff errors
2097		 */
2098		flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2099				  get_random_u16()) >> 16;
2100		list_move_tail(&flow->flowchain, &b->old_flows);
2101
2102		goto retry;
2103	}
2104
2105	/* Retrieve a packet via the AQM */
2106	while (1) {
2107		skb = cake_dequeue_one(sch);
2108		if (!skb) {
2109			/* this queue was actually empty */
2110			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2111				b->unresponsive_flow_count--;
2112
2113			if (flow->cvars.p_drop || flow->cvars.count ||
2114			    ktime_before(now, flow->cvars.drop_next)) {
2115				/* keep in the flowchain until the state has
2116				 * decayed to rest
2117				 */
2118				list_move_tail(&flow->flowchain,
2119					       &b->decaying_flows);
2120				if (flow->set == CAKE_SET_BULK) {
2121					b->bulk_flow_count--;
2122
2123					if (cake_dsrc(q->flow_mode))
2124						srchost->srchost_bulk_flow_count--;
2125
2126					if (cake_ddst(q->flow_mode))
2127						dsthost->dsthost_bulk_flow_count--;
2128
2129					b->decaying_flow_count++;
2130				} else if (flow->set == CAKE_SET_SPARSE ||
2131					   flow->set == CAKE_SET_SPARSE_WAIT) {
2132					b->sparse_flow_count--;
2133					b->decaying_flow_count++;
2134				}
2135				flow->set = CAKE_SET_DECAYING;
2136			} else {
2137				/* remove empty queue from the flowchain */
2138				list_del_init(&flow->flowchain);
2139				if (flow->set == CAKE_SET_SPARSE ||
2140				    flow->set == CAKE_SET_SPARSE_WAIT)
2141					b->sparse_flow_count--;
2142				else if (flow->set == CAKE_SET_BULK) {
2143					b->bulk_flow_count--;
2144
2145					if (cake_dsrc(q->flow_mode))
2146						srchost->srchost_bulk_flow_count--;
2147
2148					if (cake_ddst(q->flow_mode))
2149						dsthost->dsthost_bulk_flow_count--;
2150
2151				} else
2152					b->decaying_flow_count--;
2153
2154				flow->set = CAKE_SET_NONE;
2155			}
2156			goto begin;
2157		}
2158
2159		/* Last packet in queue may be marked, shouldn't be dropped */
2160		if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2161					(b->bulk_flow_count *
2162					 !!(q->rate_flags &
2163					    CAKE_FLAG_INGRESS))) ||
2164		    !flow->head)
2165			break;
2166
2167		/* drop this packet, get another one */
2168		if (q->rate_flags & CAKE_FLAG_INGRESS) {
2169			len = cake_advance_shaper(q, b, skb,
2170						  now, true);
2171			flow->deficit -= len;
2172			b->tin_deficit -= len;
2173		}
2174		flow->dropped++;
2175		b->tin_dropped++;
2176		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2177		qdisc_qstats_drop(sch);
2178		kfree_skb(skb);
2179		if (q->rate_flags & CAKE_FLAG_INGRESS)
2180			goto retry;
2181	}
2182
2183	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2184	qdisc_bstats_update(sch, skb);
2185
2186	/* collect delay stats */
2187	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2188	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2189	b->peak_delay = cake_ewma(b->peak_delay, delay,
2190				  delay > b->peak_delay ? 2 : 8);
2191	b->base_delay = cake_ewma(b->base_delay, delay,
2192				  delay < b->base_delay ? 2 : 8);
2193
2194	len = cake_advance_shaper(q, b, skb, now, false);
2195	flow->deficit -= len;
2196	b->tin_deficit -= len;
2197
2198	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2199		u64 next = min(ktime_to_ns(q->time_next_packet),
2200			       ktime_to_ns(q->failsafe_next_packet));
2201
2202		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2203	} else if (!sch->q.qlen) {
2204		int i;
2205
2206		for (i = 0; i < q->tin_cnt; i++) {
2207			if (q->tins[i].decaying_flow_count) {
2208				ktime_t next = \
2209					ktime_add_ns(now,
2210						     q->tins[i].cparams.target);
2211
2212				qdisc_watchdog_schedule_ns(&q->watchdog,
2213							   ktime_to_ns(next));
2214				break;
2215			}
2216		}
2217	}
2218
2219	if (q->overflow_timeout)
2220		q->overflow_timeout--;
2221
2222	return skb;
2223}
2224
2225static void cake_reset(struct Qdisc *sch)
2226{
2227	struct cake_sched_data *q = qdisc_priv(sch);
2228	u32 c;
2229
2230	if (!q->tins)
2231		return;
2232
2233	for (c = 0; c < CAKE_MAX_TINS; c++)
2234		cake_clear_tin(sch, c);
2235}
2236
2237static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2238	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
2239	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2240	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
2241	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
2242	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
2243	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
2244	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
2245	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
2246	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
2247	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
2248	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
2249	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
2250	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
2251	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
2252	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
2253	[TCA_CAKE_SPLIT_GSO]	 = { .type = NLA_U32 },
2254	[TCA_CAKE_FWMARK]	 = { .type = NLA_U32 },
2255};
2256
2257static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2258			  u64 target_ns, u64 rtt_est_ns)
2259{
2260	/* convert byte-rate into time-per-byte
2261	 * so it will always unwedge in reasonable time.
2262	 */
2263	static const u64 MIN_RATE = 64;
2264	u32 byte_target = mtu;
2265	u64 byte_target_ns;
2266	u8  rate_shft = 0;
2267	u64 rate_ns = 0;
2268
2269	b->flow_quantum = 1514;
2270	if (rate) {
2271		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2272		rate_shft = 34;
2273		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2274		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2275		while (!!(rate_ns >> 34)) {
2276			rate_ns >>= 1;
2277			rate_shft--;
2278		}
2279	} /* else unlimited, ie. zero delay */
2280
2281	b->tin_rate_bps  = rate;
2282	b->tin_rate_ns   = rate_ns;
2283	b->tin_rate_shft = rate_shft;
2284
2285	byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2286
2287	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2288	b->cparams.interval = max(rtt_est_ns +
2289				     b->cparams.target - target_ns,
2290				     b->cparams.target * 2);
2291	b->cparams.mtu_time = byte_target_ns;
2292	b->cparams.p_inc = 1 << 24; /* 1/256 */
2293	b->cparams.p_dec = 1 << 20; /* 1/4096 */
2294}
2295
2296static int cake_config_besteffort(struct Qdisc *sch)
2297{
2298	struct cake_sched_data *q = qdisc_priv(sch);
2299	struct cake_tin_data *b = &q->tins[0];
2300	u32 mtu = psched_mtu(qdisc_dev(sch));
2301	u64 rate = q->rate_bps;
2302
2303	q->tin_cnt = 1;
2304
2305	q->tin_index = besteffort;
2306	q->tin_order = normal_order;
2307
2308	cake_set_rate(b, rate, mtu,
2309		      us_to_ns(q->target), us_to_ns(q->interval));
2310	b->tin_quantum = 65535;
2311
2312	return 0;
2313}
2314
2315static int cake_config_precedence(struct Qdisc *sch)
2316{
2317	/* convert high-level (user visible) parameters into internal format */
2318	struct cake_sched_data *q = qdisc_priv(sch);
2319	u32 mtu = psched_mtu(qdisc_dev(sch));
2320	u64 rate = q->rate_bps;
2321	u32 quantum = 256;
2322	u32 i;
2323
2324	q->tin_cnt = 8;
2325	q->tin_index = precedence;
2326	q->tin_order = normal_order;
2327
2328	for (i = 0; i < q->tin_cnt; i++) {
2329		struct cake_tin_data *b = &q->tins[i];
2330
2331		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2332			      us_to_ns(q->interval));
2333
2334		b->tin_quantum = max_t(u16, 1U, quantum);
2335
2336		/* calculate next class's parameters */
2337		rate  *= 7;
2338		rate >>= 3;
2339
2340		quantum  *= 7;
2341		quantum >>= 3;
2342	}
2343
2344	return 0;
2345}
2346
2347/*	List of known Diffserv codepoints:
2348 *
2349 *	Default Forwarding (DF/CS0) - Best Effort
2350 *	Max Throughput (TOS2)
2351 *	Min Delay (TOS4)
2352 *	LLT "La" (TOS5)
2353 *	Assured Forwarding 1 (AF1x) - x3
2354 *	Assured Forwarding 2 (AF2x) - x3
2355 *	Assured Forwarding 3 (AF3x) - x3
2356 *	Assured Forwarding 4 (AF4x) - x3
2357 *	Precedence Class 1 (CS1)
2358 *	Precedence Class 2 (CS2)
2359 *	Precedence Class 3 (CS3)
2360 *	Precedence Class 4 (CS4)
2361 *	Precedence Class 5 (CS5)
2362 *	Precedence Class 6 (CS6)
2363 *	Precedence Class 7 (CS7)
2364 *	Voice Admit (VA)
2365 *	Expedited Forwarding (EF)
2366 *	Lower Effort (LE)
2367 *
2368 *	Total 26 codepoints.
2369 */
2370
2371/*	List of traffic classes in RFC 4594, updated by RFC 8622:
2372 *		(roughly descending order of contended priority)
2373 *		(roughly ascending order of uncontended throughput)
2374 *
2375 *	Network Control (CS6,CS7)      - routing traffic
2376 *	Telephony (EF,VA)         - aka. VoIP streams
2377 *	Signalling (CS5)               - VoIP setup
2378 *	Multimedia Conferencing (AF4x) - aka. video calls
2379 *	Realtime Interactive (CS4)     - eg. games
2380 *	Multimedia Streaming (AF3x)    - eg. YouTube, NetFlix, Twitch
2381 *	Broadcast Video (CS3)
2382 *	Low-Latency Data (AF2x,TOS4)      - eg. database
2383 *	Ops, Admin, Management (CS2)      - eg. ssh
2384 *	Standard Service (DF & unrecognised codepoints)
2385 *	High-Throughput Data (AF1x,TOS2)  - eg. web traffic
2386 *	Low-Priority Data (LE,CS1)        - eg. BitTorrent
2387 *
2388 *	Total 12 traffic classes.
2389 */
2390
2391static int cake_config_diffserv8(struct Qdisc *sch)
2392{
2393/*	Pruned list of traffic classes for typical applications:
2394 *
2395 *		Network Control          (CS6, CS7)
2396 *		Minimum Latency          (EF, VA, CS5, CS4)
2397 *		Interactive Shell        (CS2)
2398 *		Low Latency Transactions (AF2x, TOS4)
2399 *		Video Streaming          (AF4x, AF3x, CS3)
2400 *		Bog Standard             (DF etc.)
2401 *		High Throughput          (AF1x, TOS2, CS1)
2402 *		Background Traffic       (LE)
2403 *
2404 *		Total 8 traffic classes.
2405 */
2406
2407	struct cake_sched_data *q = qdisc_priv(sch);
2408	u32 mtu = psched_mtu(qdisc_dev(sch));
2409	u64 rate = q->rate_bps;
2410	u32 quantum = 256;
2411	u32 i;
2412
2413	q->tin_cnt = 8;
2414
2415	/* codepoint to class mapping */
2416	q->tin_index = diffserv8;
2417	q->tin_order = normal_order;
2418
2419	/* class characteristics */
2420	for (i = 0; i < q->tin_cnt; i++) {
2421		struct cake_tin_data *b = &q->tins[i];
2422
2423		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2424			      us_to_ns(q->interval));
2425
2426		b->tin_quantum = max_t(u16, 1U, quantum);
2427
2428		/* calculate next class's parameters */
2429		rate  *= 7;
2430		rate >>= 3;
2431
2432		quantum  *= 7;
2433		quantum >>= 3;
2434	}
2435
2436	return 0;
2437}
2438
2439static int cake_config_diffserv4(struct Qdisc *sch)
2440{
2441/*  Further pruned list of traffic classes for four-class system:
2442 *
2443 *	    Latency Sensitive  (CS7, CS6, EF, VA, CS5, CS4)
2444 *	    Streaming Media    (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2445 *	    Best Effort        (DF, AF1x, TOS2, and those not specified)
2446 *	    Background Traffic (LE, CS1)
2447 *
2448 *		Total 4 traffic classes.
2449 */
2450
2451	struct cake_sched_data *q = qdisc_priv(sch);
2452	u32 mtu = psched_mtu(qdisc_dev(sch));
2453	u64 rate = q->rate_bps;
2454	u32 quantum = 1024;
2455
2456	q->tin_cnt = 4;
2457
2458	/* codepoint to class mapping */
2459	q->tin_index = diffserv4;
2460	q->tin_order = bulk_order;
2461
2462	/* class characteristics */
2463	cake_set_rate(&q->tins[0], rate, mtu,
2464		      us_to_ns(q->target), us_to_ns(q->interval));
2465	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2466		      us_to_ns(q->target), us_to_ns(q->interval));
2467	cake_set_rate(&q->tins[2], rate >> 1, mtu,
2468		      us_to_ns(q->target), us_to_ns(q->interval));
2469	cake_set_rate(&q->tins[3], rate >> 2, mtu,
2470		      us_to_ns(q->target), us_to_ns(q->interval));
2471
2472	/* bandwidth-sharing weights */
2473	q->tins[0].tin_quantum = quantum;
2474	q->tins[1].tin_quantum = quantum >> 4;
2475	q->tins[2].tin_quantum = quantum >> 1;
2476	q->tins[3].tin_quantum = quantum >> 2;
2477
2478	return 0;
2479}
2480
2481static int cake_config_diffserv3(struct Qdisc *sch)
2482{
2483/*  Simplified Diffserv structure with 3 tins.
2484 *		Latency Sensitive	(CS7, CS6, EF, VA, TOS4)
2485 *		Best Effort
2486 *		Low Priority		(LE, CS1)
2487 */
2488	struct cake_sched_data *q = qdisc_priv(sch);
2489	u32 mtu = psched_mtu(qdisc_dev(sch));
2490	u64 rate = q->rate_bps;
2491	u32 quantum = 1024;
2492
2493	q->tin_cnt = 3;
2494
2495	/* codepoint to class mapping */
2496	q->tin_index = diffserv3;
2497	q->tin_order = bulk_order;
2498
2499	/* class characteristics */
2500	cake_set_rate(&q->tins[0], rate, mtu,
2501		      us_to_ns(q->target), us_to_ns(q->interval));
2502	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2503		      us_to_ns(q->target), us_to_ns(q->interval));
2504	cake_set_rate(&q->tins[2], rate >> 2, mtu,
2505		      us_to_ns(q->target), us_to_ns(q->interval));
2506
2507	/* bandwidth-sharing weights */
2508	q->tins[0].tin_quantum = quantum;
2509	q->tins[1].tin_quantum = quantum >> 4;
2510	q->tins[2].tin_quantum = quantum >> 2;
2511
2512	return 0;
2513}
2514
2515static void cake_reconfigure(struct Qdisc *sch)
2516{
2517	struct cake_sched_data *q = qdisc_priv(sch);
2518	int c, ft;
2519
2520	switch (q->tin_mode) {
2521	case CAKE_DIFFSERV_BESTEFFORT:
2522		ft = cake_config_besteffort(sch);
2523		break;
2524
2525	case CAKE_DIFFSERV_PRECEDENCE:
2526		ft = cake_config_precedence(sch);
2527		break;
2528
2529	case CAKE_DIFFSERV_DIFFSERV8:
2530		ft = cake_config_diffserv8(sch);
2531		break;
2532
2533	case CAKE_DIFFSERV_DIFFSERV4:
2534		ft = cake_config_diffserv4(sch);
2535		break;
2536
2537	case CAKE_DIFFSERV_DIFFSERV3:
2538	default:
2539		ft = cake_config_diffserv3(sch);
2540		break;
2541	}
2542
2543	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2544		cake_clear_tin(sch, c);
2545		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2546	}
2547
2548	q->rate_ns   = q->tins[ft].tin_rate_ns;
2549	q->rate_shft = q->tins[ft].tin_rate_shft;
2550
2551	if (q->buffer_config_limit) {
2552		q->buffer_limit = q->buffer_config_limit;
2553	} else if (q->rate_bps) {
2554		u64 t = q->rate_bps * q->interval;
2555
2556		do_div(t, USEC_PER_SEC / 4);
2557		q->buffer_limit = max_t(u32, t, 4U << 20);
2558	} else {
2559		q->buffer_limit = ~0;
2560	}
2561
2562	sch->flags &= ~TCQ_F_CAN_BYPASS;
2563
2564	q->buffer_limit = min(q->buffer_limit,
2565			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
2566				  q->buffer_config_limit));
2567}
2568
2569static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2570		       struct netlink_ext_ack *extack)
2571{
2572	struct cake_sched_data *q = qdisc_priv(sch);
2573	struct nlattr *tb[TCA_CAKE_MAX + 1];
2574	int err;
2575
2576	err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2577					  extack);
2578	if (err < 0)
2579		return err;
2580
2581	if (tb[TCA_CAKE_NAT]) {
2582#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2583		q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2584		q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2585			!!nla_get_u32(tb[TCA_CAKE_NAT]);
2586#else
2587		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2588				    "No conntrack support in kernel");
2589		return -EOPNOTSUPP;
2590#endif
2591	}
2592
2593	if (tb[TCA_CAKE_BASE_RATE64])
2594		q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2595
2596	if (tb[TCA_CAKE_DIFFSERV_MODE])
2597		q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2598
2599	if (tb[TCA_CAKE_WASH]) {
2600		if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2601			q->rate_flags |= CAKE_FLAG_WASH;
2602		else
2603			q->rate_flags &= ~CAKE_FLAG_WASH;
2604	}
2605
2606	if (tb[TCA_CAKE_FLOW_MODE])
2607		q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2608				(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2609					CAKE_FLOW_MASK));
2610
2611	if (tb[TCA_CAKE_ATM])
2612		q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2613
2614	if (tb[TCA_CAKE_OVERHEAD]) {
2615		q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2616		q->rate_flags |= CAKE_FLAG_OVERHEAD;
2617
2618		q->max_netlen = 0;
2619		q->max_adjlen = 0;
2620		q->min_netlen = ~0;
2621		q->min_adjlen = ~0;
2622	}
2623
2624	if (tb[TCA_CAKE_RAW]) {
2625		q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2626
2627		q->max_netlen = 0;
2628		q->max_adjlen = 0;
2629		q->min_netlen = ~0;
2630		q->min_adjlen = ~0;
2631	}
2632
2633	if (tb[TCA_CAKE_MPU])
2634		q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2635
2636	if (tb[TCA_CAKE_RTT]) {
2637		q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2638
2639		if (!q->interval)
2640			q->interval = 1;
2641	}
2642
2643	if (tb[TCA_CAKE_TARGET]) {
2644		q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2645
2646		if (!q->target)
2647			q->target = 1;
2648	}
2649
2650	if (tb[TCA_CAKE_AUTORATE]) {
2651		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2652			q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2653		else
2654			q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2655	}
2656
2657	if (tb[TCA_CAKE_INGRESS]) {
2658		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2659			q->rate_flags |= CAKE_FLAG_INGRESS;
2660		else
2661			q->rate_flags &= ~CAKE_FLAG_INGRESS;
2662	}
2663
2664	if (tb[TCA_CAKE_ACK_FILTER])
2665		q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2666
2667	if (tb[TCA_CAKE_MEMORY])
2668		q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2669
2670	if (tb[TCA_CAKE_SPLIT_GSO]) {
2671		if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2672			q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2673		else
2674			q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2675	}
2676
2677	if (tb[TCA_CAKE_FWMARK]) {
2678		q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2679		q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2680	}
2681
2682	if (q->tins) {
2683		sch_tree_lock(sch);
2684		cake_reconfigure(sch);
2685		sch_tree_unlock(sch);
2686	}
2687
2688	return 0;
2689}
2690
2691static void cake_destroy(struct Qdisc *sch)
2692{
2693	struct cake_sched_data *q = qdisc_priv(sch);
2694
2695	qdisc_watchdog_cancel(&q->watchdog);
2696	tcf_block_put(q->block);
2697	kvfree(q->tins);
2698}
2699
2700static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2701		     struct netlink_ext_ack *extack)
2702{
2703	struct cake_sched_data *q = qdisc_priv(sch);
2704	int i, j, err;
2705
2706	sch->limit = 10240;
2707	q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2708	q->flow_mode  = CAKE_FLOW_TRIPLE;
2709
2710	q->rate_bps = 0; /* unlimited by default */
2711
2712	q->interval = 100000; /* 100ms default */
2713	q->target   =   5000; /* 5ms: codel RFC argues
2714			       * for 5 to 10% of interval
2715			       */
2716	q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2717	q->cur_tin = 0;
2718	q->cur_flow  = 0;
2719
2720	qdisc_watchdog_init(&q->watchdog, sch);
2721
2722	if (opt) {
2723		err = cake_change(sch, opt, extack);
2724
2725		if (err)
2726			return err;
2727	}
2728
2729	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2730	if (err)
2731		return err;
2732
2733	quantum_div[0] = ~0;
2734	for (i = 1; i <= CAKE_QUEUES; i++)
2735		quantum_div[i] = 65535 / i;
2736
2737	q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2738			   GFP_KERNEL);
2739	if (!q->tins)
2740		return -ENOMEM;
2741
2742	for (i = 0; i < CAKE_MAX_TINS; i++) {
2743		struct cake_tin_data *b = q->tins + i;
2744
2745		INIT_LIST_HEAD(&b->new_flows);
2746		INIT_LIST_HEAD(&b->old_flows);
2747		INIT_LIST_HEAD(&b->decaying_flows);
2748		b->sparse_flow_count = 0;
2749		b->bulk_flow_count = 0;
2750		b->decaying_flow_count = 0;
2751
2752		for (j = 0; j < CAKE_QUEUES; j++) {
2753			struct cake_flow *flow = b->flows + j;
2754			u32 k = j * CAKE_MAX_TINS + i;
2755
2756			INIT_LIST_HEAD(&flow->flowchain);
2757			cobalt_vars_init(&flow->cvars);
2758
2759			q->overflow_heap[k].t = i;
2760			q->overflow_heap[k].b = j;
2761			b->overflow_idx[j] = k;
2762		}
2763	}
2764
2765	cake_reconfigure(sch);
2766	q->avg_peak_bandwidth = q->rate_bps;
2767	q->min_netlen = ~0;
2768	q->min_adjlen = ~0;
2769	return 0;
2770}
2771
2772static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2773{
2774	struct cake_sched_data *q = qdisc_priv(sch);
2775	struct nlattr *opts;
2776
2777	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2778	if (!opts)
2779		goto nla_put_failure;
2780
2781	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2782			      TCA_CAKE_PAD))
2783		goto nla_put_failure;
2784
2785	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2786			q->flow_mode & CAKE_FLOW_MASK))
2787		goto nla_put_failure;
2788
2789	if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2790		goto nla_put_failure;
2791
2792	if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2793		goto nla_put_failure;
2794
2795	if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2796		goto nla_put_failure;
2797
2798	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2799			!!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2800		goto nla_put_failure;
2801
2802	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2803			!!(q->rate_flags & CAKE_FLAG_INGRESS)))
2804		goto nla_put_failure;
2805
2806	if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2807		goto nla_put_failure;
2808
2809	if (nla_put_u32(skb, TCA_CAKE_NAT,
2810			!!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2811		goto nla_put_failure;
2812
2813	if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2814		goto nla_put_failure;
2815
2816	if (nla_put_u32(skb, TCA_CAKE_WASH,
2817			!!(q->rate_flags & CAKE_FLAG_WASH)))
2818		goto nla_put_failure;
2819
2820	if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2821		goto nla_put_failure;
2822
2823	if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2824		if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2825			goto nla_put_failure;
2826
2827	if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2828		goto nla_put_failure;
2829
2830	if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2831		goto nla_put_failure;
2832
2833	if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2834			!!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2835		goto nla_put_failure;
2836
2837	if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2838		goto nla_put_failure;
2839
2840	return nla_nest_end(skb, opts);
2841
2842nla_put_failure:
2843	return -1;
2844}
2845
2846static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2847{
2848	struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2849	struct cake_sched_data *q = qdisc_priv(sch);
2850	struct nlattr *tstats, *ts;
2851	int i;
2852
2853	if (!stats)
2854		return -1;
2855
2856#define PUT_STAT_U32(attr, data) do {				       \
2857		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2858			goto nla_put_failure;			       \
2859	} while (0)
2860#define PUT_STAT_U64(attr, data) do {				       \
2861		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2862					data, TCA_CAKE_STATS_PAD)) \
2863			goto nla_put_failure;			       \
2864	} while (0)
2865
2866	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2867	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2868	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2869	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2870	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2871	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2872	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2873	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2874
2875#undef PUT_STAT_U32
2876#undef PUT_STAT_U64
2877
2878	tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2879	if (!tstats)
2880		goto nla_put_failure;
2881
2882#define PUT_TSTAT_U32(attr, data) do {					\
2883		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2884			goto nla_put_failure;				\
2885	} while (0)
2886#define PUT_TSTAT_U64(attr, data) do {					\
2887		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2888					data, TCA_CAKE_TIN_STATS_PAD))	\
2889			goto nla_put_failure;				\
2890	} while (0)
2891
2892	for (i = 0; i < q->tin_cnt; i++) {
2893		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2894
2895		ts = nla_nest_start_noflag(d->skb, i + 1);
2896		if (!ts)
2897			goto nla_put_failure;
2898
2899		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2900		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2901		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2902
2903		PUT_TSTAT_U32(TARGET_US,
2904			      ktime_to_us(ns_to_ktime(b->cparams.target)));
2905		PUT_TSTAT_U32(INTERVAL_US,
2906			      ktime_to_us(ns_to_ktime(b->cparams.interval)));
2907
2908		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2909		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2910		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2911		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2912
2913		PUT_TSTAT_U32(PEAK_DELAY_US,
2914			      ktime_to_us(ns_to_ktime(b->peak_delay)));
2915		PUT_TSTAT_U32(AVG_DELAY_US,
2916			      ktime_to_us(ns_to_ktime(b->avge_delay)));
2917		PUT_TSTAT_U32(BASE_DELAY_US,
2918			      ktime_to_us(ns_to_ktime(b->base_delay)));
2919
2920		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2921		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2922		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2923
2924		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2925					    b->decaying_flow_count);
2926		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2927		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2928		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2929
2930		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2931		nla_nest_end(d->skb, ts);
2932	}
2933
2934#undef PUT_TSTAT_U32
2935#undef PUT_TSTAT_U64
2936
2937	nla_nest_end(d->skb, tstats);
2938	return nla_nest_end(d->skb, stats);
2939
2940nla_put_failure:
2941	nla_nest_cancel(d->skb, stats);
2942	return -1;
2943}
2944
2945static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2946{
2947	return NULL;
2948}
2949
2950static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2951{
2952	return 0;
2953}
2954
2955static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2956			       u32 classid)
2957{
2958	return 0;
2959}
2960
2961static void cake_unbind(struct Qdisc *q, unsigned long cl)
2962{
2963}
2964
2965static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2966					struct netlink_ext_ack *extack)
2967{
2968	struct cake_sched_data *q = qdisc_priv(sch);
2969
2970	if (cl)
2971		return NULL;
2972	return q->block;
2973}
2974
2975static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2976			   struct sk_buff *skb, struct tcmsg *tcm)
2977{
2978	tcm->tcm_handle |= TC_H_MIN(cl);
2979	return 0;
2980}
2981
2982static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2983				 struct gnet_dump *d)
2984{
2985	struct cake_sched_data *q = qdisc_priv(sch);
2986	const struct cake_flow *flow = NULL;
2987	struct gnet_stats_queue qs = { 0 };
2988	struct nlattr *stats;
2989	u32 idx = cl - 1;
2990
2991	if (idx < CAKE_QUEUES * q->tin_cnt) {
2992		const struct cake_tin_data *b = \
2993			&q->tins[q->tin_order[idx / CAKE_QUEUES]];
2994		const struct sk_buff *skb;
2995
2996		flow = &b->flows[idx % CAKE_QUEUES];
2997
2998		if (flow->head) {
2999			sch_tree_lock(sch);
3000			skb = flow->head;
3001			while (skb) {
3002				qs.qlen++;
3003				skb = skb->next;
3004			}
3005			sch_tree_unlock(sch);
3006		}
3007		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3008		qs.drops = flow->dropped;
3009	}
3010	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3011		return -1;
3012	if (flow) {
3013		ktime_t now = ktime_get();
3014
3015		stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3016		if (!stats)
3017			return -1;
3018
3019#define PUT_STAT_U32(attr, data) do {				       \
3020		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3021			goto nla_put_failure;			       \
3022	} while (0)
3023#define PUT_STAT_S32(attr, data) do {				       \
3024		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3025			goto nla_put_failure;			       \
3026	} while (0)
3027
3028		PUT_STAT_S32(DEFICIT, flow->deficit);
3029		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3030		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3031		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3032		if (flow->cvars.p_drop) {
3033			PUT_STAT_S32(BLUE_TIMER_US,
3034				     ktime_to_us(
3035					     ktime_sub(now,
3036						       flow->cvars.blue_timer)));
3037		}
3038		if (flow->cvars.dropping) {
3039			PUT_STAT_S32(DROP_NEXT_US,
3040				     ktime_to_us(
3041					     ktime_sub(now,
3042						       flow->cvars.drop_next)));
3043		}
3044
3045		if (nla_nest_end(d->skb, stats) < 0)
3046			return -1;
3047	}
3048
3049	return 0;
3050
3051nla_put_failure:
3052	nla_nest_cancel(d->skb, stats);
3053	return -1;
3054}
3055
3056static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3057{
3058	struct cake_sched_data *q = qdisc_priv(sch);
3059	unsigned int i, j;
3060
3061	if (arg->stop)
3062		return;
3063
3064	for (i = 0; i < q->tin_cnt; i++) {
3065		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3066
3067		for (j = 0; j < CAKE_QUEUES; j++) {
3068			if (list_empty(&b->flows[j].flowchain)) {
3069				arg->count++;
3070				continue;
3071			}
3072			if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3073						 arg))
3074				break;
3075		}
3076	}
3077}
3078
3079static const struct Qdisc_class_ops cake_class_ops = {
3080	.leaf		=	cake_leaf,
3081	.find		=	cake_find,
3082	.tcf_block	=	cake_tcf_block,
3083	.bind_tcf	=	cake_bind,
3084	.unbind_tcf	=	cake_unbind,
3085	.dump		=	cake_dump_class,
3086	.dump_stats	=	cake_dump_class_stats,
3087	.walk		=	cake_walk,
3088};
3089
3090static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3091	.cl_ops		=	&cake_class_ops,
3092	.id		=	"cake",
3093	.priv_size	=	sizeof(struct cake_sched_data),
3094	.enqueue	=	cake_enqueue,
3095	.dequeue	=	cake_dequeue,
3096	.peek		=	qdisc_peek_dequeued,
3097	.init		=	cake_init,
3098	.reset		=	cake_reset,
3099	.destroy	=	cake_destroy,
3100	.change		=	cake_change,
3101	.dump		=	cake_dump,
3102	.dump_stats	=	cake_dump_stats,
3103	.owner		=	THIS_MODULE,
3104};
3105
3106static int __init cake_module_init(void)
3107{
3108	return register_qdisc(&cake_qdisc_ops);
3109}
3110
3111static void __exit cake_module_exit(void)
3112{
3113	unregister_qdisc(&cake_qdisc_ops);
3114}
3115
3116module_init(cake_module_init)
3117module_exit(cake_module_exit)
3118MODULE_AUTHOR("Jonathan Morton");
3119MODULE_LICENSE("Dual BSD/GPL");
3120MODULE_DESCRIPTION("The CAKE shaper.");