Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/mm.h>
 
  2#include <linux/highmem.h>
  3#include <linux/sched.h>
  4#include <linux/hugetlb.h>
  5
  6static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  7			  struct mm_walk *walk)
 
 
 
 
  8{
  9	pte_t *pte;
 
 
 
 
 
 
 
 
 
 
 
 
 10	int err = 0;
 11
 12	pte = pte_offset_map(pmd, addr);
 13	for (;;) {
 14		err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 15		if (err)
 16		       break;
 17		addr += PAGE_SIZE;
 18		if (addr == end)
 19			break;
 
 20		pte++;
 21	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23	pte_unmap(pte);
 
 
 
 
 
 
 
 
 
 
 24	return err;
 25}
 
 
 
 
 
 
 
 26
 27static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 28			  struct mm_walk *walk)
 29{
 30	pmd_t *pmd;
 31	unsigned long next;
 
 32	int err = 0;
 
 33
 34	pmd = pmd_offset(pud, addr);
 35	do {
 36again:
 37		next = pmd_addr_end(addr, end);
 38		if (pmd_none(*pmd)) {
 39			if (walk->pte_hole)
 40				err = walk->pte_hole(addr, next, walk);
 41			if (err)
 42				break;
 43			continue;
 44		}
 
 
 
 45		/*
 46		 * This implies that each ->pmd_entry() handler
 47		 * needs to know about pmd_trans_huge() pmds
 48		 */
 49		if (walk->pmd_entry)
 50			err = walk->pmd_entry(pmd, addr, next, walk);
 51		if (err)
 52			break;
 53
 
 
 
 54		/*
 55		 * Check this here so we only break down trans_huge
 56		 * pages when we _need_ to
 57		 */
 58		if (!walk->pte_entry)
 
 
 59			continue;
 60
 61		split_huge_page_pmd_mm(walk->mm, addr, pmd);
 62		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 63			goto again;
 64		err = walk_pte_range(pmd, addr, next, walk);
 
 
 
 
 
 
 65		if (err)
 66			break;
 67	} while (pmd++, addr = next, addr != end);
 68
 69	return err;
 70}
 71
 72static int walk_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 73			  struct mm_walk *walk)
 74{
 75	pud_t *pud;
 76	unsigned long next;
 
 77	int err = 0;
 
 78
 79	pud = pud_offset(pgd, addr);
 80	do {
 
 81		next = pud_addr_end(addr, end);
 82		if (pud_none_or_clear_bad(pud)) {
 83			if (walk->pte_hole)
 84				err = walk->pte_hole(addr, next, walk);
 85			if (err)
 86				break;
 87			continue;
 88		}
 89		if (walk->pud_entry)
 90			err = walk->pud_entry(pud, addr, next, walk);
 91		if (!err && (walk->pmd_entry || walk->pte_entry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92			err = walk_pmd_range(pud, addr, next, walk);
 93		if (err)
 94			break;
 95	} while (pud++, addr = next, addr != end);
 96
 97	return err;
 98}
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100#ifdef CONFIG_HUGETLB_PAGE
101static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
102				       unsigned long end)
103{
104	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
105	return boundary < end ? boundary : end;
106}
107
108static int walk_hugetlb_range(struct vm_area_struct *vma,
109			      unsigned long addr, unsigned long end,
110			      struct mm_walk *walk)
111{
 
112	struct hstate *h = hstate_vma(vma);
113	unsigned long next;
114	unsigned long hmask = huge_page_mask(h);
 
115	pte_t *pte;
 
116	int err = 0;
117
118	do {
119		next = hugetlb_entry_end(h, addr, end);
120		pte = huge_pte_offset(walk->mm, addr & hmask);
121		if (pte && walk->hugetlb_entry)
122			err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
 
 
 
 
123		if (err)
124			return err;
125	} while (addr = next, addr != end);
126
127	return 0;
128}
129
130#else /* CONFIG_HUGETLB_PAGE */
131static int walk_hugetlb_range(struct vm_area_struct *vma,
132			      unsigned long addr, unsigned long end,
133			      struct mm_walk *walk)
134{
135	return 0;
136}
137
138#endif /* CONFIG_HUGETLB_PAGE */
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
 
 
 
 
141
142/**
143 * walk_page_range - walk a memory map's page tables with a callback
144 * @addr: starting address
145 * @end: ending address
146 * @walk: set of callbacks to invoke for each level of the tree
147 *
148 * Recursively walk the page table for the memory area in a VMA,
149 * calling supplied callbacks. Callbacks are called in-order (first
150 * PGD, first PUD, first PMD, first PTE, second PTE... second PMD,
151 * etc.). If lower-level callbacks are omitted, walking depth is reduced.
152 *
153 * Each callback receives an entry pointer and the start and end of the
154 * associated range, and a copy of the original mm_walk for access to
155 * the ->private or ->mm fields.
156 *
157 * Usually no locks are taken, but splitting transparent huge page may
158 * take page table lock. And the bottom level iterator will map PTE
159 * directories from highmem if necessary.
160 *
161 * If any callback returns a non-zero value, the walk is aborted and
162 * the return value is propagated back to the caller. Otherwise 0 is returned.
 
 
 
 
163 *
164 * walk->mm->mmap_sem must be held for at least read if walk->hugetlb_entry
165 * is !NULL.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166 */
167int walk_page_range(unsigned long addr, unsigned long end,
168		    struct mm_walk *walk)
 
169{
170	pgd_t *pgd;
171	unsigned long next;
172	int err = 0;
 
 
 
 
 
 
 
173
174	if (addr >= end)
175		return err;
176
177	if (!walk->mm)
178		return -EINVAL;
179
180	VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
181
182	pgd = pgd_offset(walk->mm, addr);
183	do {
184		struct vm_area_struct *vma = NULL;
185
186		next = pgd_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
187
188		/*
189		 * This function was not intended to be vma based.
190		 * But there are vma special cases to be handled:
191		 * - hugetlb vma's
192		 * - VM_PFNMAP vma's
193		 */
194		vma = find_vma(walk->mm, addr);
195		if (vma) {
196			/*
197			 * There are no page structures backing a VM_PFNMAP
198			 * range, so do not allow split_huge_page_pmd().
199			 */
200			if ((vma->vm_start <= addr) &&
201			    (vma->vm_flags & VM_PFNMAP)) {
202				next = vma->vm_end;
203				pgd = pgd_offset(walk->mm, next);
204				continue;
205			}
206			/*
207			 * Handle hugetlb vma individually because pagetable
208			 * walk for the hugetlb page is dependent on the
209			 * architecture and we can't handled it in the same
210			 * manner as non-huge pages.
211			 */
212			if (walk->hugetlb_entry && (vma->vm_start <= addr) &&
213			    is_vm_hugetlb_page(vma)) {
214				if (vma->vm_end < next)
215					next = vma->vm_end;
216				/*
217				 * Hugepage is very tightly coupled with vma,
218				 * so walk through hugetlb entries within a
219				 * given vma.
220				 */
221				err = walk_hugetlb_range(vma, addr, next, walk);
222				if (err)
223					break;
224				pgd = pgd_offset(walk->mm, next);
225				continue;
226			}
 
 
 
227		}
 
 
 
 
 
228
229		if (pgd_none_or_clear_bad(pgd)) {
230			if (walk->pte_hole)
231				err = walk->pte_hole(addr, next, walk);
232			if (err)
233				break;
234			pgd++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235			continue;
236		}
237		if (walk->pgd_entry)
238			err = walk->pgd_entry(pgd, addr, next, walk);
239		if (!err &&
240		    (walk->pud_entry || walk->pmd_entry || walk->pte_entry))
241			err = walk_pud_range(pgd, addr, next, walk);
 
 
 
 
 
 
242		if (err)
243			break;
244		pgd++;
245	} while (addr = next, addr < end);
246
247	return err;
248}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 56	}
 57
 58	return err;
 59}
 60
 61#ifdef CONFIG_ARCH_HAS_HUGEPD
 62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 63			     unsigned long end, struct mm_walk *walk, int pdshift)
 64{
 65	int err = 0;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int shift = hugepd_shift(*phpd);
 68	int page_size = 1 << shift;
 69
 70	if (!ops->pte_entry)
 71		return 0;
 72
 73	if (addr & (page_size - 1))
 74		return 0;
 75
 76	for (;;) {
 77		pte_t *pte;
 78
 79		spin_lock(&walk->mm->page_table_lock);
 80		pte = hugepte_offset(*phpd, addr, pdshift);
 81		err = ops->pte_entry(pte, addr, addr + page_size, walk);
 82		spin_unlock(&walk->mm->page_table_lock);
 83
 84		if (err)
 85			break;
 86		if (addr >= end - page_size)
 87			break;
 88		addr += page_size;
 89	}
 90	return err;
 91}
 92#else
 93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 94			     unsigned long end, struct mm_walk *walk, int pdshift)
 95{
 96	return 0;
 97}
 98#endif
 99
100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101			  struct mm_walk *walk)
102{
103	pmd_t *pmd;
104	unsigned long next;
105	const struct mm_walk_ops *ops = walk->ops;
106	int err = 0;
107	int depth = real_depth(3);
108
109	pmd = pmd_offset(pud, addr);
110	do {
111again:
112		next = pmd_addr_end(addr, end);
113		if (pmd_none(*pmd)) {
114			if (ops->pte_hole)
115				err = ops->pte_hole(addr, next, depth, walk);
116			if (err)
117				break;
118			continue;
119		}
120
121		walk->action = ACTION_SUBTREE;
122
123		/*
124		 * This implies that each ->pmd_entry() handler
125		 * needs to know about pmd_trans_huge() pmds
126		 */
127		if (ops->pmd_entry)
128			err = ops->pmd_entry(pmd, addr, next, walk);
129		if (err)
130			break;
131
132		if (walk->action == ACTION_AGAIN)
133			goto again;
134
135		/*
136		 * Check this here so we only break down trans_huge
137		 * pages when we _need_ to
138		 */
139		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140		    walk->action == ACTION_CONTINUE ||
141		    !(ops->pte_entry))
142			continue;
143
144		if (walk->vma) {
145			split_huge_pmd(walk->vma, pmd, addr);
146			if (pmd_trans_unstable(pmd))
147				goto again;
148		}
149
150		if (is_hugepd(__hugepd(pmd_val(*pmd))))
151			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152		else
153			err = walk_pte_range(pmd, addr, next, walk);
154		if (err)
155			break;
156	} while (pmd++, addr = next, addr != end);
157
158	return err;
159}
160
161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162			  struct mm_walk *walk)
163{
164	pud_t *pud;
165	unsigned long next;
166	const struct mm_walk_ops *ops = walk->ops;
167	int err = 0;
168	int depth = real_depth(2);
169
170	pud = pud_offset(p4d, addr);
171	do {
172 again:
173		next = pud_addr_end(addr, end);
174		if (pud_none(*pud)) {
175			if (ops->pte_hole)
176				err = ops->pte_hole(addr, next, depth, walk);
177			if (err)
178				break;
179			continue;
180		}
181
182		walk->action = ACTION_SUBTREE;
183
184		if (ops->pud_entry)
185			err = ops->pud_entry(pud, addr, next, walk);
186		if (err)
187			break;
188
189		if (walk->action == ACTION_AGAIN)
190			goto again;
191
192		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193		    walk->action == ACTION_CONTINUE ||
194		    !(ops->pmd_entry || ops->pte_entry))
195			continue;
196
197		if (walk->vma)
198			split_huge_pud(walk->vma, pud, addr);
199		if (pud_none(*pud))
200			goto again;
201
202		if (is_hugepd(__hugepd(pud_val(*pud))))
203			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204		else
205			err = walk_pmd_range(pud, addr, next, walk);
206		if (err)
207			break;
208	} while (pud++, addr = next, addr != end);
209
210	return err;
211}
212
213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214			  struct mm_walk *walk)
215{
216	p4d_t *p4d;
217	unsigned long next;
218	const struct mm_walk_ops *ops = walk->ops;
219	int err = 0;
220	int depth = real_depth(1);
221
222	p4d = p4d_offset(pgd, addr);
223	do {
224		next = p4d_addr_end(addr, end);
225		if (p4d_none_or_clear_bad(p4d)) {
226			if (ops->pte_hole)
227				err = ops->pte_hole(addr, next, depth, walk);
228			if (err)
229				break;
230			continue;
231		}
232		if (ops->p4d_entry) {
233			err = ops->p4d_entry(p4d, addr, next, walk);
234			if (err)
235				break;
236		}
237		if (is_hugepd(__hugepd(p4d_val(*p4d))))
238			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240			err = walk_pud_range(p4d, addr, next, walk);
241		if (err)
242			break;
243	} while (p4d++, addr = next, addr != end);
244
245	return err;
246}
247
248static int walk_pgd_range(unsigned long addr, unsigned long end,
249			  struct mm_walk *walk)
250{
251	pgd_t *pgd;
252	unsigned long next;
253	const struct mm_walk_ops *ops = walk->ops;
254	int err = 0;
255
256	if (walk->pgd)
257		pgd = walk->pgd + pgd_index(addr);
258	else
259		pgd = pgd_offset(walk->mm, addr);
260	do {
261		next = pgd_addr_end(addr, end);
262		if (pgd_none_or_clear_bad(pgd)) {
263			if (ops->pte_hole)
264				err = ops->pte_hole(addr, next, 0, walk);
265			if (err)
266				break;
267			continue;
268		}
269		if (ops->pgd_entry) {
270			err = ops->pgd_entry(pgd, addr, next, walk);
271			if (err)
272				break;
273		}
274		if (is_hugepd(__hugepd(pgd_val(*pgd))))
275			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277			err = walk_p4d_range(pgd, addr, next, walk);
278		if (err)
279			break;
280	} while (pgd++, addr = next, addr != end);
281
282	return err;
283}
284
285#ifdef CONFIG_HUGETLB_PAGE
286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287				       unsigned long end)
288{
289	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290	return boundary < end ? boundary : end;
291}
292
293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 
294			      struct mm_walk *walk)
295{
296	struct vm_area_struct *vma = walk->vma;
297	struct hstate *h = hstate_vma(vma);
298	unsigned long next;
299	unsigned long hmask = huge_page_mask(h);
300	unsigned long sz = huge_page_size(h);
301	pte_t *pte;
302	const struct mm_walk_ops *ops = walk->ops;
303	int err = 0;
304
305	do {
306		next = hugetlb_entry_end(h, addr, end);
307		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309		if (pte)
310			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311		else if (ops->pte_hole)
312			err = ops->pte_hole(addr, next, -1, walk);
313
314		if (err)
315			break;
316	} while (addr = next, addr != end);
317
318	return err;
319}
320
321#else /* CONFIG_HUGETLB_PAGE */
322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 
323			      struct mm_walk *walk)
324{
325	return 0;
326}
327
328#endif /* CONFIG_HUGETLB_PAGE */
329
330/*
331 * Decide whether we really walk over the current vma on [@start, @end)
332 * or skip it via the returned value. Return 0 if we do walk over the
333 * current vma, and return 1 if we skip the vma. Negative values means
334 * error, where we abort the current walk.
335 */
336static int walk_page_test(unsigned long start, unsigned long end,
337			struct mm_walk *walk)
338{
339	struct vm_area_struct *vma = walk->vma;
340	const struct mm_walk_ops *ops = walk->ops;
341
342	if (ops->test_walk)
343		return ops->test_walk(start, end, walk);
344
345	/*
346	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347	 * range, so we don't walk over it as we do for normal vmas. However,
348	 * Some callers are interested in handling hole range and they don't
349	 * want to just ignore any single address range. Such users certainly
350	 * define their ->pte_hole() callbacks, so let's delegate them to handle
351	 * vma(VM_PFNMAP).
352	 */
353	if (vma->vm_flags & VM_PFNMAP) {
354		int err = 1;
355		if (ops->pte_hole)
356			err = ops->pte_hole(start, end, -1, walk);
357		return err ? err : 1;
358	}
359	return 0;
360}
361
362static int __walk_page_range(unsigned long start, unsigned long end,
363			struct mm_walk *walk)
364{
365	int err = 0;
366	struct vm_area_struct *vma = walk->vma;
367	const struct mm_walk_ops *ops = walk->ops;
368
369	if (ops->pre_vma) {
370		err = ops->pre_vma(start, end, walk);
371		if (err)
372			return err;
373	}
374
375	if (is_vm_hugetlb_page(vma)) {
376		if (ops->hugetlb_entry)
377			err = walk_hugetlb_range(start, end, walk);
378	} else
379		err = walk_pgd_range(start, end, walk);
380
381	if (ops->post_vma)
382		ops->post_vma(walk);
383
384	return err;
385}
386
387/**
388 * walk_page_range - walk page table with caller specific callbacks
389 * @mm:		mm_struct representing the target process of page table walk
390 * @start:	start address of the virtual address range
391 * @end:	end address of the virtual address range
392 * @ops:	operation to call during the walk
393 * @private:	private data for callbacks' usage
 
 
 
 
 
 
 
 
 
 
 
394 *
395 * Recursively walk the page table tree of the process represented by @mm
396 * within the virtual address range [@start, @end). During walking, we can do
397 * some caller-specific works for each entry, by setting up pmd_entry(),
398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399 * callbacks, the associated entries/pages are just ignored.
400 * The return values of these callbacks are commonly defined like below:
401 *
402 *  - 0  : succeeded to handle the current entry, and if you don't reach the
403 *         end address yet, continue to walk.
404 *  - >0 : succeeded to handle the current entry, and return to the caller
405 *         with caller specific value.
406 *  - <0 : failed to handle the current entry, and return to the caller
407 *         with error code.
408 *
409 * Before starting to walk page table, some callers want to check whether
410 * they really want to walk over the current vma, typically by checking
411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412 * purpose.
413 *
414 * If operations need to be staged before and committed after a vma is walked,
415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416 * since it is intended to handle commit-type operations, can't return any
417 * errors.
418 *
419 * struct mm_walk keeps current values of some common data like vma and pmd,
420 * which are useful for the access from callbacks. If you want to pass some
421 * caller-specific data to callbacks, @private should be helpful.
422 *
423 * Locking:
424 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425 *   because these function traverse vma list and/or access to vma's data.
426 */
427int walk_page_range(struct mm_struct *mm, unsigned long start,
428		unsigned long end, const struct mm_walk_ops *ops,
429		void *private)
430{
 
 
431	int err = 0;
432	unsigned long next;
433	struct vm_area_struct *vma;
434	struct mm_walk walk = {
435		.ops		= ops,
436		.mm		= mm,
437		.private	= private,
438	};
439
440	if (start >= end)
441		return -EINVAL;
442
443	if (!walk.mm)
444		return -EINVAL;
445
446	mmap_assert_locked(walk.mm);
447
448	vma = find_vma(walk.mm, start);
449	do {
450		if (!vma) { /* after the last vma */
451			walk.vma = NULL;
452			next = end;
453			if (ops->pte_hole)
454				err = ops->pte_hole(start, next, -1, &walk);
455		} else if (start < vma->vm_start) { /* outside vma */
456			walk.vma = NULL;
457			next = min(end, vma->vm_start);
458			if (ops->pte_hole)
459				err = ops->pte_hole(start, next, -1, &walk);
460		} else { /* inside vma */
461			walk.vma = vma;
462			next = min(end, vma->vm_end);
463			vma = find_vma(mm, vma->vm_end);
464
465			err = walk_page_test(start, next, &walk);
466			if (err > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467				/*
468				 * positive return values are purely for
469				 * controlling the pagewalk, so should never
470				 * be passed to the callers.
471				 */
472				err = 0;
 
 
 
473				continue;
474			}
475			if (err < 0)
476				break;
477			err = __walk_page_range(start, next, &walk);
478		}
479		if (err)
480			break;
481	} while (start = next, start < end);
482	return err;
483}
484
485/**
486 * walk_page_range_novma - walk a range of pagetables not backed by a vma
487 * @mm:		mm_struct representing the target process of page table walk
488 * @start:	start address of the virtual address range
489 * @end:	end address of the virtual address range
490 * @ops:	operation to call during the walk
491 * @pgd:	pgd to walk if different from mm->pgd
492 * @private:	private data for callbacks' usage
493 *
494 * Similar to walk_page_range() but can walk any page tables even if they are
495 * not backed by VMAs. Because 'unusual' entries may be walked this function
496 * will also not lock the PTEs for the pte_entry() callback. This is useful for
497 * walking the kernel pages tables or page tables for firmware.
498 */
499int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500			  unsigned long end, const struct mm_walk_ops *ops,
501			  pgd_t *pgd,
502			  void *private)
503{
504	struct mm_walk walk = {
505		.ops		= ops,
506		.mm		= mm,
507		.pgd		= pgd,
508		.private	= private,
509		.no_vma		= true
510	};
511
512	if (start >= end || !walk.mm)
513		return -EINVAL;
514
515	mmap_assert_write_locked(walk.mm);
516
517	return walk_pgd_range(start, end, &walk);
518}
519
520int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
521			unsigned long end, const struct mm_walk_ops *ops,
522			void *private)
523{
524	struct mm_walk walk = {
525		.ops		= ops,
526		.mm		= vma->vm_mm,
527		.vma		= vma,
528		.private	= private,
529	};
530
531	if (start >= end || !walk.mm)
532		return -EINVAL;
533	if (start < vma->vm_start || end > vma->vm_end)
534		return -EINVAL;
535
536	mmap_assert_locked(walk.mm);
537	return __walk_page_range(start, end, &walk);
538}
539
540int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
541		void *private)
542{
543	struct mm_walk walk = {
544		.ops		= ops,
545		.mm		= vma->vm_mm,
546		.vma		= vma,
547		.private	= private,
548	};
549
550	if (!walk.mm)
551		return -EINVAL;
552
553	mmap_assert_locked(walk.mm);
554	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
555}
556
557/**
558 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
559 * @mapping: Pointer to the struct address_space
560 * @first_index: First page offset in the address_space
561 * @nr: Number of incremental page offsets to cover
562 * @ops:	operation to call during the walk
563 * @private:	private data for callbacks' usage
564 *
565 * This function walks all memory areas mapped into a struct address_space.
566 * The walk is limited to only the given page-size index range, but if
567 * the index boundaries cross a huge page-table entry, that entry will be
568 * included.
569 *
570 * Also see walk_page_range() for additional information.
571 *
572 * Locking:
573 *   This function can't require that the struct mm_struct::mmap_lock is held,
574 *   since @mapping may be mapped by multiple processes. Instead
575 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
576 *   callbacks, and it's up tho the caller to ensure that the
577 *   struct mm_struct::mmap_lock is not needed.
578 *
579 *   Also this means that a caller can't rely on the struct
580 *   vm_area_struct::vm_flags to be constant across a call,
581 *   except for immutable flags. Callers requiring this shouldn't use
582 *   this function.
583 *
584 * Return: 0 on success, negative error code on failure, positive number on
585 * caller defined premature termination.
586 */
587int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
588		      pgoff_t nr, const struct mm_walk_ops *ops,
589		      void *private)
590{
591	struct mm_walk walk = {
592		.ops		= ops,
593		.private	= private,
594	};
595	struct vm_area_struct *vma;
596	pgoff_t vba, vea, cba, cea;
597	unsigned long start_addr, end_addr;
598	int err = 0;
599
600	lockdep_assert_held(&mapping->i_mmap_rwsem);
601	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
602				  first_index + nr - 1) {
603		/* Clip to the vma */
604		vba = vma->vm_pgoff;
605		vea = vba + vma_pages(vma);
606		cba = first_index;
607		cba = max(cba, vba);
608		cea = first_index + nr;
609		cea = min(cea, vea);
610
611		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
612		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
613		if (start_addr >= end_addr)
614			continue;
615
616		walk.vma = vma;
617		walk.mm = vma->vm_mm;
618
619		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
620		if (err > 0) {
621			err = 0;
622			break;
623		} else if (err < 0)
624			break;
625
626		err = __walk_page_range(start_addr, end_addr, &walk);
627		if (err)
628			break;
629	}
 
630
631	return err;
632}