Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
 
 
 
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
 
 
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
 
 
 
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
 
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93#include <linux/mmu_notifier.h>
 
 
  94
  95#include <asm/tlbflush.h>
  96#include <asm/uaccess.h>
  97#include <linux/random.h>
  98
  99#include "internal.h"
 100
 101/* Internal flags */
 102#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 103#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 104
 105static struct kmem_cache *policy_cache;
 106static struct kmem_cache *sn_cache;
 107
 108/* Highest zone. An specific allocation for a zone below that is not
 109   policied. */
 110enum zone_type policy_zone = 0;
 111
 112/*
 113 * run-time system-wide default policy => local allocation
 114 */
 115static struct mempolicy default_policy = {
 116	.refcnt = ATOMIC_INIT(1), /* never free it */
 117	.mode = MPOL_PREFERRED,
 118	.flags = MPOL_F_LOCAL,
 119};
 120
 121static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 122
 123static struct mempolicy *get_task_policy(struct task_struct *p)
 
 
 
 
 
 
 
 
 124{
 125	struct mempolicy *pol = p->mempolicy;
 126
 127	if (!pol) {
 128		int node = numa_node_id();
 129
 130		if (node != NUMA_NO_NODE) {
 131			pol = &preferred_node_policy[node];
 132			/*
 133			 * preferred_node_policy is not initialised early in
 134			 * boot
 135			 */
 136			if (!pol->mode)
 137				pol = NULL;
 138		}
 139	}
 140
 141	return pol;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142}
 143
 144static const struct mempolicy_operations {
 145	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146	/*
 147	 * If read-side task has no lock to protect task->mempolicy, write-side
 148	 * task will rebind the task->mempolicy by two step. The first step is
 149	 * setting all the newly nodes, and the second step is cleaning all the
 150	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 151	 * page.
 152	 * If we have a lock to protect task->mempolicy in read-side, we do
 153	 * rebind directly.
 154	 *
 155	 * step:
 156	 * 	MPOL_REBIND_ONCE - do rebind work at once
 157	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 158	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159	 */
 160	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161			enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164/* Check that the nodemask contains at least one populated zone */
 165static int is_valid_nodemask(const nodemask_t *nodemask)
 166{
 167	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
 168}
 169
 170static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 171{
 172	return pol->flags & MPOL_MODE_FLAGS;
 173}
 174
 175static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 176				   const nodemask_t *rel)
 177{
 178	nodemask_t tmp;
 179	nodes_fold(tmp, *orig, nodes_weight(*rel));
 180	nodes_onto(*ret, tmp, *rel);
 181}
 182
 183static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 184{
 185	if (nodes_empty(*nodes))
 186		return -EINVAL;
 187	pol->v.nodes = *nodes;
 188	return 0;
 189}
 190
 191static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 192{
 193	if (!nodes)
 194		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 195	else if (nodes_empty(*nodes))
 196		return -EINVAL;			/*  no allowed nodes */
 197	else
 198		pol->v.preferred_node = first_node(*nodes);
 199	return 0;
 200}
 201
 202static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 203{
 204	if (!is_valid_nodemask(nodes))
 205		return -EINVAL;
 206	pol->v.nodes = *nodes;
 
 
 207	return 0;
 208}
 209
 210/*
 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 212 * any, for the new policy.  mpol_new() has already validated the nodes
 213 * parameter with respect to the policy mode and flags.  But, we need to
 214 * handle an empty nodemask with MPOL_PREFERRED here.
 215 *
 216 * Must be called holding task's alloc_lock to protect task's mems_allowed
 217 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 218 */
 219static int mpol_set_nodemask(struct mempolicy *pol,
 220		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 221{
 222	int ret;
 223
 224	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 225	if (pol == NULL)
 
 
 
 
 226		return 0;
 
 227	/* Check N_MEMORY */
 228	nodes_and(nsc->mask1,
 229		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 230
 231	VM_BUG_ON(!nodes);
 232	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 233		nodes = NULL;	/* explicit local allocation */
 234	else {
 235		if (pol->flags & MPOL_F_RELATIVE_NODES)
 236			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 237		else
 238			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 239
 240		if (mpol_store_user_nodemask(pol))
 241			pol->w.user_nodemask = *nodes;
 242		else
 243			pol->w.cpuset_mems_allowed =
 244						cpuset_current_mems_allowed;
 245	}
 246
 247	if (nodes)
 248		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 249	else
 250		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 251	return ret;
 252}
 253
 254/*
 255 * This function just creates a new policy, does some check and simple
 256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 257 */
 258static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 259				  nodemask_t *nodes)
 260{
 261	struct mempolicy *policy;
 262
 263	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 264		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 265
 266	if (mode == MPOL_DEFAULT) {
 267		if (nodes && !nodes_empty(*nodes))
 268			return ERR_PTR(-EINVAL);
 269		return NULL;
 270	}
 271	VM_BUG_ON(!nodes);
 272
 273	/*
 274	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 275	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 276	 * All other modes require a valid pointer to a non-empty nodemask.
 277	 */
 278	if (mode == MPOL_PREFERRED) {
 279		if (nodes_empty(*nodes)) {
 280			if (((flags & MPOL_F_STATIC_NODES) ||
 281			     (flags & MPOL_F_RELATIVE_NODES)))
 282				return ERR_PTR(-EINVAL);
 
 
 283		}
 284	} else if (mode == MPOL_LOCAL) {
 285		if (!nodes_empty(*nodes))
 
 
 286			return ERR_PTR(-EINVAL);
 287		mode = MPOL_PREFERRED;
 288	} else if (nodes_empty(*nodes))
 289		return ERR_PTR(-EINVAL);
 290	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 291	if (!policy)
 292		return ERR_PTR(-ENOMEM);
 293	atomic_set(&policy->refcnt, 1);
 294	policy->mode = mode;
 295	policy->flags = flags;
 
 296
 297	return policy;
 298}
 299
 300/* Slow path of a mpol destructor. */
 301void __mpol_put(struct mempolicy *p)
 302{
 303	if (!atomic_dec_and_test(&p->refcnt))
 304		return;
 305	kmem_cache_free(policy_cache, p);
 306}
 307
 308static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 309				enum mpol_rebind_step step)
 310{
 311}
 312
 313/*
 314 * step:
 315 * 	MPOL_REBIND_ONCE  - do rebind work at once
 316 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 317 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 318 */
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 320				 enum mpol_rebind_step step)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		/*
 330		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 331		 * result
 332		 */
 333		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 334			nodes_remap(tmp, pol->v.nodes,
 335					pol->w.cpuset_mems_allowed, *nodes);
 336			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 337		} else if (step == MPOL_REBIND_STEP2) {
 338			tmp = pol->w.cpuset_mems_allowed;
 339			pol->w.cpuset_mems_allowed = *nodes;
 340		} else
 341			BUG();
 342	}
 343
 344	if (nodes_empty(tmp))
 345		tmp = *nodes;
 346
 347	if (step == MPOL_REBIND_STEP1)
 348		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 349	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 350		pol->v.nodes = tmp;
 351	else
 352		BUG();
 353
 354	if (!node_isset(current->il_next, tmp)) {
 355		current->il_next = next_node(current->il_next, tmp);
 356		if (current->il_next >= MAX_NUMNODES)
 357			current->il_next = first_node(tmp);
 358		if (current->il_next >= MAX_NUMNODES)
 359			current->il_next = numa_node_id();
 360	}
 361}
 362
 363static void mpol_rebind_preferred(struct mempolicy *pol,
 364				  const nodemask_t *nodes,
 365				  enum mpol_rebind_step step)
 366{
 367	nodemask_t tmp;
 368
 369	if (pol->flags & MPOL_F_STATIC_NODES) {
 370		int node = first_node(pol->w.user_nodemask);
 371
 372		if (node_isset(node, *nodes)) {
 373			pol->v.preferred_node = node;
 374			pol->flags &= ~MPOL_F_LOCAL;
 375		} else
 376			pol->flags |= MPOL_F_LOCAL;
 377	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 378		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 379		pol->v.preferred_node = first_node(tmp);
 380	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 381		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 382						   pol->w.cpuset_mems_allowed,
 383						   *nodes);
 384		pol->w.cpuset_mems_allowed = *nodes;
 385	}
 386}
 387
 388/*
 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 390 *
 391 * If read-side task has no lock to protect task->mempolicy, write-side
 392 * task will rebind the task->mempolicy by two step. The first step is
 393 * setting all the newly nodes, and the second step is cleaning all the
 394 * disallowed nodes. In this way, we can avoid finding no node to alloc
 395 * page.
 396 * If we have a lock to protect task->mempolicy in read-side, we do
 397 * rebind directly.
 398 *
 399 * step:
 400 * 	MPOL_REBIND_ONCE  - do rebind work at once
 401 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 402 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 403 */
 404static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 405				enum mpol_rebind_step step)
 406{
 407	if (!pol)
 408		return;
 409	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 410	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 411		return;
 412
 413	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 414		return;
 415
 416	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 417		BUG();
 418
 419	if (step == MPOL_REBIND_STEP1)
 420		pol->flags |= MPOL_F_REBINDING;
 421	else if (step == MPOL_REBIND_STEP2)
 422		pol->flags &= ~MPOL_F_REBINDING;
 423	else if (step >= MPOL_REBIND_NSTEP)
 424		BUG();
 425
 426	mpol_ops[pol->mode].rebind(pol, newmask, step);
 427}
 428
 429/*
 430 * Wrapper for mpol_rebind_policy() that just requires task
 431 * pointer, and updates task mempolicy.
 432 *
 433 * Called with task's alloc_lock held.
 434 */
 435
 436void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 437			enum mpol_rebind_step step)
 438{
 439	mpol_rebind_policy(tsk->mempolicy, new, step);
 440}
 441
 442/*
 443 * Rebind each vma in mm to new nodemask.
 444 *
 445 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 446 */
 447
 448void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 449{
 450	struct vm_area_struct *vma;
 
 451
 452	down_write(&mm->mmap_sem);
 453	for (vma = mm->mmap; vma; vma = vma->vm_next)
 454		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 455	up_write(&mm->mmap_sem);
 456}
 457
 458static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 459	[MPOL_DEFAULT] = {
 460		.rebind = mpol_rebind_default,
 461	},
 462	[MPOL_INTERLEAVE] = {
 463		.create = mpol_new_interleave,
 464		.rebind = mpol_rebind_nodemask,
 465	},
 466	[MPOL_PREFERRED] = {
 467		.create = mpol_new_preferred,
 468		.rebind = mpol_rebind_preferred,
 469	},
 470	[MPOL_BIND] = {
 471		.create = mpol_new_bind,
 472		.rebind = mpol_rebind_nodemask,
 473	},
 
 
 
 
 
 
 
 474};
 475
 476static void migrate_page_add(struct page *page, struct list_head *pagelist,
 477				unsigned long flags);
 478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 
 
 
 
 
 
 
 
 482 */
 483static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 484		unsigned long addr, unsigned long end,
 485		const nodemask_t *nodes, unsigned long flags,
 486		void *private)
 487{
 488	pte_t *orig_pte;
 489	pte_t *pte;
 
 
 
 
 490	spinlock_t *ptl;
 491
 492	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 493	do {
 494		struct page *page;
 495		int nid;
 
 
 496
 
 
 497		if (!pte_present(*pte))
 498			continue;
 499		page = vm_normal_page(vma, addr, *pte);
 500		if (!page)
 501			continue;
 502		/*
 503		 * vm_normal_page() filters out zero pages, but there might
 504		 * still be PageReserved pages to skip, perhaps in a VDSO.
 505		 */
 506		if (PageReserved(page))
 507			continue;
 508		nid = page_to_nid(page);
 509		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 510			continue;
 
 
 
 
 
 
 511
 512		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 513			migrate_page_add(page, private, flags);
 514		else
 
 
 
 
 
 515			break;
 516	} while (pte++, addr += PAGE_SIZE, addr != end);
 517	pte_unmap_unlock(orig_pte, ptl);
 518	return addr != end;
 
 
 
 
 
 519}
 520
 521static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
 522		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
 523				    void *private)
 524{
 
 525#ifdef CONFIG_HUGETLB_PAGE
 526	int nid;
 
 527	struct page *page;
 528	spinlock_t *ptl;
 529	pte_t entry;
 530
 531	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
 532	entry = huge_ptep_get((pte_t *)pmd);
 533	if (!pte_present(entry))
 534		goto unlock;
 535	page = pte_page(entry);
 536	nid = page_to_nid(page);
 537	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 538		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 540	if (flags & (MPOL_MF_MOVE_ALL) ||
 541	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 542		isolate_huge_page(page, private);
 
 
 
 
 
 
 
 
 543unlock:
 544	spin_unlock(ptl);
 545#else
 546	BUG();
 547#endif
 548}
 549
 550static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 551		unsigned long addr, unsigned long end,
 552		const nodemask_t *nodes, unsigned long flags,
 553		void *private)
 554{
 555	pmd_t *pmd;
 556	unsigned long next;
 557
 558	pmd = pmd_offset(pud, addr);
 559	do {
 560		next = pmd_addr_end(addr, end);
 561		if (!pmd_present(*pmd))
 562			continue;
 563		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
 564			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
 565						flags, private);
 566			continue;
 567		}
 568		split_huge_page_pmd(vma, addr, pmd);
 569		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 570			continue;
 571		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
 572				    flags, private))
 573			return -EIO;
 574	} while (pmd++, addr = next, addr != end);
 575	return 0;
 576}
 577
 578static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 579		unsigned long addr, unsigned long end,
 580		const nodemask_t *nodes, unsigned long flags,
 581		void *private)
 582{
 583	pud_t *pud;
 584	unsigned long next;
 585
 586	pud = pud_offset(pgd, addr);
 587	do {
 588		next = pud_addr_end(addr, end);
 589		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
 590			continue;
 591		if (pud_none_or_clear_bad(pud))
 592			continue;
 593		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
 594				    flags, private))
 595			return -EIO;
 596	} while (pud++, addr = next, addr != end);
 597	return 0;
 598}
 599
 600static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
 601		unsigned long addr, unsigned long end,
 602		const nodemask_t *nodes, unsigned long flags,
 603		void *private)
 604{
 605	pgd_t *pgd;
 606	unsigned long next;
 607
 608	pgd = pgd_offset(vma->vm_mm, addr);
 609	do {
 610		next = pgd_addr_end(addr, end);
 611		if (pgd_none_or_clear_bad(pgd))
 612			continue;
 613		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
 614				    flags, private))
 615			return -EIO;
 616	} while (pgd++, addr = next, addr != end);
 617	return 0;
 618}
 619
 620#ifdef CONFIG_NUMA_BALANCING
 621/*
 622 * This is used to mark a range of virtual addresses to be inaccessible.
 623 * These are later cleared by a NUMA hinting fault. Depending on these
 624 * faults, pages may be migrated for better NUMA placement.
 625 *
 626 * This is assuming that NUMA faults are handled using PROT_NONE. If
 627 * an architecture makes a different choice, it will need further
 628 * changes to the core.
 629 */
 630unsigned long change_prot_numa(struct vm_area_struct *vma,
 631			unsigned long addr, unsigned long end)
 632{
 
 633	int nr_updated;
 634
 635	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
 
 
 
 636	if (nr_updated)
 637		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 638
 
 
 639	return nr_updated;
 640}
 641#else
 642static unsigned long change_prot_numa(struct vm_area_struct *vma,
 643			unsigned long addr, unsigned long end)
 644{
 645	return 0;
 646}
 647#endif /* CONFIG_NUMA_BALANCING */
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/*
 650 * Walk through page tables and collect pages to be migrated.
 651 *
 652 * If pages found in a given range are on a set of nodes (determined by
 653 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 654 * passed via @private.)
 
 
 
 
 
 
 
 
 655 */
 656static struct vm_area_struct *
 657queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 658		const nodemask_t *nodes, unsigned long flags, void *private)
 
 659{
 660	int err;
 661	struct vm_area_struct *first, *vma, *prev;
 662
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664	first = find_vma(mm, start);
 665	if (!first)
 666		return ERR_PTR(-EFAULT);
 667	prev = NULL;
 668	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 669		unsigned long endvma = vma->vm_end;
 670
 671		if (endvma > end)
 672			endvma = end;
 673		if (vma->vm_start > start)
 674			start = vma->vm_start;
 675
 676		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 677			if (!vma->vm_next && vma->vm_end < end)
 678				return ERR_PTR(-EFAULT);
 679			if (prev && prev->vm_end < vma->vm_start)
 680				return ERR_PTR(-EFAULT);
 681		}
 682
 683		if (flags & MPOL_MF_LAZY) {
 684			change_prot_numa(vma, start, endvma);
 685			goto next;
 686		}
 687
 688		if ((flags & MPOL_MF_STRICT) ||
 689		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 690		      vma_migratable(vma))) {
 691
 692			err = queue_pages_pgd_range(vma, start, endvma, nodes,
 693						flags, private);
 694			if (err) {
 695				first = ERR_PTR(err);
 696				break;
 697			}
 698		}
 699next:
 700		prev = vma;
 701	}
 702	return first;
 703}
 704
 705/*
 706 * Apply policy to a single VMA
 707 * This must be called with the mmap_sem held for writing.
 708 */
 709static int vma_replace_policy(struct vm_area_struct *vma,
 710						struct mempolicy *pol)
 711{
 712	int err;
 713	struct mempolicy *old;
 714	struct mempolicy *new;
 715
 716	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 717		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 718		 vma->vm_ops, vma->vm_file,
 719		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 720
 721	new = mpol_dup(pol);
 722	if (IS_ERR(new))
 723		return PTR_ERR(new);
 724
 725	if (vma->vm_ops && vma->vm_ops->set_policy) {
 726		err = vma->vm_ops->set_policy(vma, new);
 727		if (err)
 728			goto err_out;
 729	}
 730
 731	old = vma->vm_policy;
 732	vma->vm_policy = new; /* protected by mmap_sem */
 733	mpol_put(old);
 734
 735	return 0;
 736 err_out:
 737	mpol_put(new);
 738	return err;
 739}
 740
 741/* Step 2: apply policy to a range and do splits. */
 742static int mbind_range(struct mm_struct *mm, unsigned long start,
 743		       unsigned long end, struct mempolicy *new_pol)
 744{
 745	struct vm_area_struct *next;
 746	struct vm_area_struct *prev;
 747	struct vm_area_struct *vma;
 748	int err = 0;
 749	pgoff_t pgoff;
 750	unsigned long vmstart;
 751	unsigned long vmend;
 752
 753	vma = find_vma(mm, start);
 754	if (!vma || vma->vm_start > start)
 755		return -EFAULT;
 
 
 
 
 756
 757	prev = vma->vm_prev;
 758	if (start > vma->vm_start)
 759		prev = vma;
 760
 761	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 762		next = vma->vm_next;
 763		vmstart = max(start, vma->vm_start);
 764		vmend   = min(end, vma->vm_end);
 765
 766		if (mpol_equal(vma_policy(vma), new_pol))
 767			continue;
 768
 769		pgoff = vma->vm_pgoff +
 770			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 771		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 772				  vma->anon_vma, vma->vm_file, pgoff,
 773				  new_pol);
 
 774		if (prev) {
 
 
 775			vma = prev;
 776			next = vma->vm_next;
 777			if (mpol_equal(vma_policy(vma), new_pol))
 778				continue;
 779			/* vma_merge() joined vma && vma->next, case 8 */
 780			goto replace;
 781		}
 782		if (vma->vm_start != vmstart) {
 783			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 784			if (err)
 785				goto out;
 
 
 786		}
 787		if (vma->vm_end != vmend) {
 788			err = split_vma(vma->vm_mm, vma, vmend, 0);
 789			if (err)
 790				goto out;
 
 
 791		}
 792 replace:
 793		err = vma_replace_policy(vma, new_pol);
 794		if (err)
 795			goto out;
 
 
 796	}
 797
 798 out:
 799	return err;
 800}
 801
 802/* Set the process memory policy */
 803static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 804			     nodemask_t *nodes)
 805{
 806	struct mempolicy *new, *old;
 807	struct mm_struct *mm = current->mm;
 808	NODEMASK_SCRATCH(scratch);
 809	int ret;
 810
 811	if (!scratch)
 812		return -ENOMEM;
 813
 814	new = mpol_new(mode, flags, nodes);
 815	if (IS_ERR(new)) {
 816		ret = PTR_ERR(new);
 817		goto out;
 818	}
 819	/*
 820	 * prevent changing our mempolicy while show_numa_maps()
 821	 * is using it.
 822	 * Note:  do_set_mempolicy() can be called at init time
 823	 * with no 'mm'.
 824	 */
 825	if (mm)
 826		down_write(&mm->mmap_sem);
 827	task_lock(current);
 828	ret = mpol_set_nodemask(new, nodes, scratch);
 829	if (ret) {
 830		task_unlock(current);
 831		if (mm)
 832			up_write(&mm->mmap_sem);
 833		mpol_put(new);
 834		goto out;
 835	}
 
 836	old = current->mempolicy;
 837	current->mempolicy = new;
 838	if (new && new->mode == MPOL_INTERLEAVE &&
 839	    nodes_weight(new->v.nodes))
 840		current->il_next = first_node(new->v.nodes);
 841	task_unlock(current);
 842	if (mm)
 843		up_write(&mm->mmap_sem);
 844
 845	mpol_put(old);
 846	ret = 0;
 847out:
 848	NODEMASK_SCRATCH_FREE(scratch);
 849	return ret;
 850}
 851
 852/*
 853 * Return nodemask for policy for get_mempolicy() query
 854 *
 855 * Called with task's alloc_lock held
 856 */
 857static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 858{
 859	nodes_clear(*nodes);
 860	if (p == &default_policy)
 861		return;
 862
 863	switch (p->mode) {
 864	case MPOL_BIND:
 865		/* Fall through */
 866	case MPOL_INTERLEAVE:
 867		*nodes = p->v.nodes;
 868		break;
 869	case MPOL_PREFERRED:
 870		if (!(p->flags & MPOL_F_LOCAL))
 871			node_set(p->v.preferred_node, *nodes);
 872		/* else return empty node mask for local allocation */
 
 
 873		break;
 874	default:
 875		BUG();
 876	}
 877}
 878
 879static int lookup_node(struct mm_struct *mm, unsigned long addr)
 880{
 881	struct page *p;
 882	int err;
 883
 884	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 885	if (err >= 0) {
 886		err = page_to_nid(p);
 887		put_page(p);
 888	}
 889	return err;
 890}
 891
 892/* Retrieve NUMA policy */
 893static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 894			     unsigned long addr, unsigned long flags)
 895{
 896	int err;
 897	struct mm_struct *mm = current->mm;
 898	struct vm_area_struct *vma = NULL;
 899	struct mempolicy *pol = current->mempolicy;
 900
 901	if (flags &
 902		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 903		return -EINVAL;
 904
 905	if (flags & MPOL_F_MEMS_ALLOWED) {
 906		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 907			return -EINVAL;
 908		*policy = 0;	/* just so it's initialized */
 909		task_lock(current);
 910		*nmask  = cpuset_current_mems_allowed;
 911		task_unlock(current);
 912		return 0;
 913	}
 914
 915	if (flags & MPOL_F_ADDR) {
 916		/*
 917		 * Do NOT fall back to task policy if the
 918		 * vma/shared policy at addr is NULL.  We
 919		 * want to return MPOL_DEFAULT in this case.
 920		 */
 921		down_read(&mm->mmap_sem);
 922		vma = find_vma_intersection(mm, addr, addr+1);
 923		if (!vma) {
 924			up_read(&mm->mmap_sem);
 925			return -EFAULT;
 926		}
 927		if (vma->vm_ops && vma->vm_ops->get_policy)
 928			pol = vma->vm_ops->get_policy(vma, addr);
 929		else
 930			pol = vma->vm_policy;
 931	} else if (addr)
 932		return -EINVAL;
 933
 934	if (!pol)
 935		pol = &default_policy;	/* indicates default behavior */
 936
 937	if (flags & MPOL_F_NODE) {
 938		if (flags & MPOL_F_ADDR) {
 
 
 
 
 
 
 
 
 
 939			err = lookup_node(mm, addr);
 940			if (err < 0)
 941				goto out;
 942			*policy = err;
 943		} else if (pol == current->mempolicy &&
 944				pol->mode == MPOL_INTERLEAVE) {
 945			*policy = current->il_next;
 946		} else {
 947			err = -EINVAL;
 948			goto out;
 949		}
 950	} else {
 951		*policy = pol == &default_policy ? MPOL_DEFAULT :
 952						pol->mode;
 953		/*
 954		 * Internal mempolicy flags must be masked off before exposing
 955		 * the policy to userspace.
 956		 */
 957		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 958	}
 959
 960	if (vma) {
 961		up_read(&current->mm->mmap_sem);
 962		vma = NULL;
 963	}
 964
 965	err = 0;
 966	if (nmask) {
 967		if (mpol_store_user_nodemask(pol)) {
 968			*nmask = pol->w.user_nodemask;
 969		} else {
 970			task_lock(current);
 971			get_policy_nodemask(pol, nmask);
 972			task_unlock(current);
 973		}
 974	}
 975
 976 out:
 977	mpol_cond_put(pol);
 978	if (vma)
 979		up_read(&current->mm->mmap_sem);
 
 
 980	return err;
 981}
 982
 983#ifdef CONFIG_MIGRATION
 984/*
 985 * page migration
 986 */
 987static void migrate_page_add(struct page *page, struct list_head *pagelist,
 988				unsigned long flags)
 989{
 
 990	/*
 991	 * Avoid migrating a page that is shared with others.
 992	 */
 993	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 994		if (!isolate_lru_page(page)) {
 995			list_add_tail(&page->lru, pagelist);
 996			inc_zone_page_state(page, NR_ISOLATED_ANON +
 997					    page_is_file_cache(page));
 
 
 
 
 
 
 
 
 
 
 998		}
 999	}
1000}
1001
1002static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1003{
1004	if (PageHuge(page))
1005		return alloc_huge_page_node(page_hstate(compound_head(page)),
1006					node);
1007	else
1008		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1009}
1010
1011/*
1012 * Migrate pages from one node to a target node.
1013 * Returns error or the number of pages not migrated.
1014 */
1015static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1016			   int flags)
1017{
1018	nodemask_t nmask;
 
1019	LIST_HEAD(pagelist);
1020	int err = 0;
 
 
 
 
1021
1022	nodes_clear(nmask);
1023	node_set(source, nmask);
1024
1025	/*
1026	 * This does not "check" the range but isolates all pages that
1027	 * need migration.  Between passing in the full user address
1028	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1029	 */
 
1030	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1031	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1032			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1033
1034	if (!list_empty(&pagelist)) {
1035		err = migrate_pages(&pagelist, new_node_page, dest,
1036					MIGRATE_SYNC, MR_SYSCALL);
1037		if (err)
1038			putback_movable_pages(&pagelist);
1039	}
1040
1041	return err;
1042}
1043
1044/*
1045 * Move pages between the two nodesets so as to preserve the physical
1046 * layout as much as possible.
1047 *
1048 * Returns the number of page that could not be moved.
1049 */
1050int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1051		     const nodemask_t *to, int flags)
1052{
1053	int busy = 0;
1054	int err;
1055	nodemask_t tmp;
1056
1057	err = migrate_prep();
1058	if (err)
1059		return err;
1060
1061	down_read(&mm->mmap_sem);
1062
1063	err = migrate_vmas(mm, from, to, flags);
1064	if (err)
1065		goto out;
1066
1067	/*
1068	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1069	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1070	 * bit in 'tmp', and return that <source, dest> pair for migration.
1071	 * The pair of nodemasks 'to' and 'from' define the map.
1072	 *
1073	 * If no pair of bits is found that way, fallback to picking some
1074	 * pair of 'source' and 'dest' bits that are not the same.  If the
1075	 * 'source' and 'dest' bits are the same, this represents a node
1076	 * that will be migrating to itself, so no pages need move.
1077	 *
1078	 * If no bits are left in 'tmp', or if all remaining bits left
1079	 * in 'tmp' correspond to the same bit in 'to', return false
1080	 * (nothing left to migrate).
1081	 *
1082	 * This lets us pick a pair of nodes to migrate between, such that
1083	 * if possible the dest node is not already occupied by some other
1084	 * source node, minimizing the risk of overloading the memory on a
1085	 * node that would happen if we migrated incoming memory to a node
1086	 * before migrating outgoing memory source that same node.
1087	 *
1088	 * A single scan of tmp is sufficient.  As we go, we remember the
1089	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1090	 * that not only moved, but what's better, moved to an empty slot
1091	 * (d is not set in tmp), then we break out then, with that pair.
1092	 * Otherwise when we finish scanning from_tmp, we at least have the
1093	 * most recent <s, d> pair that moved.  If we get all the way through
1094	 * the scan of tmp without finding any node that moved, much less
1095	 * moved to an empty node, then there is nothing left worth migrating.
1096	 */
1097
1098	tmp = *from;
1099	while (!nodes_empty(tmp)) {
1100		int s,d;
1101		int source = NUMA_NO_NODE;
1102		int dest = 0;
1103
1104		for_each_node_mask(s, tmp) {
1105
1106			/*
1107			 * do_migrate_pages() tries to maintain the relative
1108			 * node relationship of the pages established between
1109			 * threads and memory areas.
1110                         *
1111			 * However if the number of source nodes is not equal to
1112			 * the number of destination nodes we can not preserve
1113			 * this node relative relationship.  In that case, skip
1114			 * copying memory from a node that is in the destination
1115			 * mask.
1116			 *
1117			 * Example: [2,3,4] -> [3,4,5] moves everything.
1118			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1119			 */
1120
1121			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1122						(node_isset(s, *to)))
1123				continue;
1124
1125			d = node_remap(s, *from, *to);
1126			if (s == d)
1127				continue;
1128
1129			source = s;	/* Node moved. Memorize */
1130			dest = d;
1131
1132			/* dest not in remaining from nodes? */
1133			if (!node_isset(dest, tmp))
1134				break;
1135		}
1136		if (source == NUMA_NO_NODE)
1137			break;
1138
1139		node_clear(source, tmp);
1140		err = migrate_to_node(mm, source, dest, flags);
1141		if (err > 0)
1142			busy += err;
1143		if (err < 0)
1144			break;
1145	}
1146out:
1147	up_read(&mm->mmap_sem);
 
1148	if (err < 0)
1149		return err;
1150	return busy;
1151
1152}
1153
1154/*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start assuming that page is mapped by vma pointed to by @private.
1157 * Search forward from there, if not.  N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
1161static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1162{
1163	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1164	unsigned long uninitialized_var(address);
 
 
 
1165
1166	while (vma) {
1167		address = page_address_in_vma(page, vma);
1168		if (address != -EFAULT)
1169			break;
1170		vma = vma->vm_next;
1171	}
1172
1173	if (PageHuge(page)) {
1174		BUG_ON(!vma);
1175		return alloc_huge_page_noerr(vma, address, 1);
1176	}
 
 
 
1177	/*
1178	 * if !vma, alloc_page_vma() will use task or system default policy
1179	 */
1180	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
 
1181}
1182#else
1183
1184static void migrate_page_add(struct page *page, struct list_head *pagelist,
1185				unsigned long flags)
1186{
 
1187}
1188
1189int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1190		     const nodemask_t *to, int flags)
1191{
1192	return -ENOSYS;
1193}
1194
1195static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1196{
1197	return NULL;
1198}
1199#endif
1200
1201static long do_mbind(unsigned long start, unsigned long len,
1202		     unsigned short mode, unsigned short mode_flags,
1203		     nodemask_t *nmask, unsigned long flags)
1204{
1205	struct vm_area_struct *vma;
1206	struct mm_struct *mm = current->mm;
1207	struct mempolicy *new;
1208	unsigned long end;
1209	int err;
 
1210	LIST_HEAD(pagelist);
1211
1212	if (flags & ~(unsigned long)MPOL_MF_VALID)
1213		return -EINVAL;
1214	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1215		return -EPERM;
1216
1217	if (start & ~PAGE_MASK)
1218		return -EINVAL;
1219
1220	if (mode == MPOL_DEFAULT)
1221		flags &= ~MPOL_MF_STRICT;
1222
1223	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1224	end = start + len;
1225
1226	if (end < start)
1227		return -EINVAL;
1228	if (end == start)
1229		return 0;
1230
1231	new = mpol_new(mode, mode_flags, nmask);
1232	if (IS_ERR(new))
1233		return PTR_ERR(new);
1234
1235	if (flags & MPOL_MF_LAZY)
1236		new->flags |= MPOL_F_MOF;
1237
1238	/*
1239	 * If we are using the default policy then operation
1240	 * on discontinuous address spaces is okay after all
1241	 */
1242	if (!new)
1243		flags |= MPOL_MF_DISCONTIG_OK;
1244
1245	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1246		 start, start + len, mode, mode_flags,
1247		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1248
1249	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1250
1251		err = migrate_prep();
1252		if (err)
1253			goto mpol_out;
1254	}
1255	{
1256		NODEMASK_SCRATCH(scratch);
1257		if (scratch) {
1258			down_write(&mm->mmap_sem);
1259			task_lock(current);
1260			err = mpol_set_nodemask(new, nmask, scratch);
1261			task_unlock(current);
1262			if (err)
1263				up_write(&mm->mmap_sem);
1264		} else
1265			err = -ENOMEM;
1266		NODEMASK_SCRATCH_FREE(scratch);
1267	}
1268	if (err)
1269		goto mpol_out;
1270
1271	vma = queue_pages_range(mm, start, end, nmask,
1272			  flags | MPOL_MF_INVERT, &pagelist);
1273
1274	err = PTR_ERR(vma);	/* maybe ... */
1275	if (!IS_ERR(vma))
1276		err = mbind_range(mm, start, end, new);
 
 
 
1277
1278	if (!err) {
1279		int nr_failed = 0;
1280
1281		if (!list_empty(&pagelist)) {
1282			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1283			nr_failed = migrate_pages(&pagelist, new_vma_page,
1284					(unsigned long)vma,
1285					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1286			if (nr_failed)
1287				putback_movable_pages(&pagelist);
1288		}
1289
1290		if (nr_failed && (flags & MPOL_MF_STRICT))
1291			err = -EIO;
1292	} else
1293		putback_movable_pages(&pagelist);
 
 
 
1294
1295	up_write(&mm->mmap_sem);
1296 mpol_out:
1297	mpol_put(new);
 
 
1298	return err;
1299}
1300
1301/*
1302 * User space interface with variable sized bitmaps for nodelists.
1303 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304
1305/* Copy a node mask from user space. */
1306static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1307		     unsigned long maxnode)
1308{
1309	unsigned long k;
1310	unsigned long nlongs;
1311	unsigned long endmask;
1312
1313	--maxnode;
1314	nodes_clear(*nodes);
1315	if (maxnode == 0 || !nmask)
1316		return 0;
1317	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1318		return -EINVAL;
1319
1320	nlongs = BITS_TO_LONGS(maxnode);
1321	if ((maxnode % BITS_PER_LONG) == 0)
1322		endmask = ~0UL;
1323	else
1324		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 
 
 
1325
1326	/* When the user specified more nodes than supported just check
1327	   if the non supported part is all zero. */
1328	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1329		if (nlongs > PAGE_SIZE/sizeof(long))
1330			return -EINVAL;
1331		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1332			unsigned long t;
1333			if (get_user(t, nmask + k))
1334				return -EFAULT;
1335			if (k == nlongs - 1) {
1336				if (t & endmask)
1337					return -EINVAL;
1338			} else if (t)
1339				return -EINVAL;
1340		}
1341		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1342		endmask = ~0UL;
1343	}
1344
1345	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1346		return -EFAULT;
1347	nodes_addr(*nodes)[nlongs-1] &= endmask;
1348	return 0;
1349}
1350
1351/* Copy a kernel node mask to user space */
1352static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1353			      nodemask_t *nodes)
1354{
1355	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1356	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 
 
 
 
1357
1358	if (copy > nbytes) {
1359		if (copy > PAGE_SIZE)
1360			return -EINVAL;
1361		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1362			return -EFAULT;
1363		copy = nbytes;
 
1364	}
 
 
 
 
 
1365	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1366}
1367
1368SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1369		unsigned long, mode, unsigned long __user *, nmask,
1370		unsigned long, maxnode, unsigned, flags)
1371{
1372	nodemask_t nodes;
1373	int err;
1374	unsigned short mode_flags;
1375
1376	mode_flags = mode & MPOL_MODE_FLAGS;
1377	mode &= ~MPOL_MODE_FLAGS;
1378	if (mode >= MPOL_MAX)
1379		return -EINVAL;
1380	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1381	    (mode_flags & MPOL_F_RELATIVE_NODES))
1382		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383	err = get_nodes(&nodes, nmask, maxnode);
1384	if (err)
1385		return err;
1386	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1387}
1388
1389/* Set the process memory policy */
1390SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1391		unsigned long, maxnode)
1392{
1393	int err;
1394	nodemask_t nodes;
1395	unsigned short flags;
 
 
 
 
 
1396
1397	flags = mode & MPOL_MODE_FLAGS;
1398	mode &= ~MPOL_MODE_FLAGS;
1399	if ((unsigned int)mode >= MPOL_MAX)
1400		return -EINVAL;
1401	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
 
 
 
1402		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403	err = get_nodes(&nodes, nmask, maxnode);
1404	if (err)
1405		return err;
1406	return do_set_mempolicy(mode, flags, &nodes);
 
1407}
1408
1409SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1410		const unsigned long __user *, old_nodes,
1411		const unsigned long __user *, new_nodes)
 
 
 
 
 
 
1412{
1413	const struct cred *cred = current_cred(), *tcred;
1414	struct mm_struct *mm = NULL;
1415	struct task_struct *task;
1416	nodemask_t task_nodes;
1417	int err;
1418	nodemask_t *old;
1419	nodemask_t *new;
1420	NODEMASK_SCRATCH(scratch);
1421
1422	if (!scratch)
1423		return -ENOMEM;
1424
1425	old = &scratch->mask1;
1426	new = &scratch->mask2;
1427
1428	err = get_nodes(old, old_nodes, maxnode);
1429	if (err)
1430		goto out;
1431
1432	err = get_nodes(new, new_nodes, maxnode);
1433	if (err)
1434		goto out;
1435
1436	/* Find the mm_struct */
1437	rcu_read_lock();
1438	task = pid ? find_task_by_vpid(pid) : current;
1439	if (!task) {
1440		rcu_read_unlock();
1441		err = -ESRCH;
1442		goto out;
1443	}
1444	get_task_struct(task);
1445
1446	err = -EINVAL;
1447
1448	/*
1449	 * Check if this process has the right to modify the specified
1450	 * process. The right exists if the process has administrative
1451	 * capabilities, superuser privileges or the same
1452	 * userid as the target process.
1453	 */
1454	tcred = __task_cred(task);
1455	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457	    !capable(CAP_SYS_NICE)) {
1458		rcu_read_unlock();
1459		err = -EPERM;
1460		goto out_put;
1461	}
1462	rcu_read_unlock();
1463
1464	task_nodes = cpuset_mems_allowed(task);
1465	/* Is the user allowed to access the target nodes? */
1466	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1467		err = -EPERM;
1468		goto out_put;
1469	}
1470
1471	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1472		err = -EINVAL;
 
1473		goto out_put;
1474	}
1475
1476	err = security_task_movememory(task);
1477	if (err)
1478		goto out_put;
1479
1480	mm = get_task_mm(task);
1481	put_task_struct(task);
1482
1483	if (!mm) {
1484		err = -EINVAL;
1485		goto out;
1486	}
1487
1488	err = do_migrate_pages(mm, old, new,
1489		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1490
1491	mmput(mm);
1492out:
1493	NODEMASK_SCRATCH_FREE(scratch);
1494
1495	return err;
1496
1497out_put:
1498	put_task_struct(task);
1499	goto out;
1500
1501}
1502
 
 
 
 
 
 
 
1503
1504/* Retrieve NUMA policy */
1505SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1506		unsigned long __user *, nmask, unsigned long, maxnode,
1507		unsigned long, addr, unsigned long, flags)
 
 
1508{
1509	int err;
1510	int uninitialized_var(pval);
1511	nodemask_t nodes;
1512
1513	if (nmask != NULL && maxnode < MAX_NUMNODES)
1514		return -EINVAL;
1515
 
 
1516	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1517
1518	if (err)
1519		return err;
1520
1521	if (policy && put_user(pval, policy))
1522		return -EFAULT;
1523
1524	if (nmask)
1525		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1526
1527	return err;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1533		       compat_ulong_t __user *, nmask,
1534		       compat_ulong_t, maxnode,
1535		       compat_ulong_t, addr, compat_ulong_t, flags)
1536{
1537	long err;
1538	unsigned long __user *nm = NULL;
1539	unsigned long nr_bits, alloc_size;
1540	DECLARE_BITMAP(bm, MAX_NUMNODES);
1541
1542	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1543	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1544
1545	if (nmask)
1546		nm = compat_alloc_user_space(alloc_size);
1547
1548	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1549
1550	if (!err && nmask) {
1551		unsigned long copy_size;
1552		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1553		err = copy_from_user(bm, nm, copy_size);
1554		/* ensure entire bitmap is zeroed */
1555		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1556		err |= compat_put_bitmap(nmask, bm, nr_bits);
1557	}
1558
1559	return err;
1560}
1561
1562COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1563		       compat_ulong_t, maxnode)
1564{
1565	long err = 0;
1566	unsigned long __user *nm = NULL;
1567	unsigned long nr_bits, alloc_size;
1568	DECLARE_BITMAP(bm, MAX_NUMNODES);
1569
1570	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572
1573	if (nmask) {
1574		err = compat_get_bitmap(bm, nmask, nr_bits);
1575		nm = compat_alloc_user_space(alloc_size);
1576		err |= copy_to_user(nm, bm, alloc_size);
1577	}
1578
1579	if (err)
1580		return -EFAULT;
1581
1582	return sys_set_mempolicy(mode, nm, nr_bits+1);
1583}
1584
1585COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1586		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1587		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1588{
1589	long err = 0;
1590	unsigned long __user *nm = NULL;
1591	unsigned long nr_bits, alloc_size;
1592	nodemask_t bm;
1593
1594	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1595	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1596
1597	if (nmask) {
1598		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1599		nm = compat_alloc_user_space(alloc_size);
1600		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1601	}
 
1602
1603	if (err)
1604		return -EFAULT;
 
1605
1606	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 
 
 
 
 
 
 
 
 
1607}
1608
1609#endif
1610
1611/*
1612 * get_vma_policy(@task, @vma, @addr)
1613 * @task - task for fallback if vma policy == default
1614 * @vma   - virtual memory area whose policy is sought
1615 * @addr  - address in @vma for shared policy lookup
1616 *
1617 * Returns effective policy for a VMA at specified address.
1618 * Falls back to @task or system default policy, as necessary.
1619 * Current or other task's task mempolicy and non-shared vma policies must be
1620 * protected by task_lock(task) by the caller.
1621 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1622 * count--added by the get_policy() vm_op, as appropriate--to protect against
1623 * freeing by another task.  It is the caller's responsibility to free the
1624 * extra reference for shared policies.
1625 */
1626struct mempolicy *get_vma_policy(struct task_struct *task,
1627		struct vm_area_struct *vma, unsigned long addr)
1628{
1629	struct mempolicy *pol = get_task_policy(task);
1630
1631	if (vma) {
1632		if (vma->vm_ops && vma->vm_ops->get_policy) {
1633			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1634									addr);
1635			if (vpol)
1636				pol = vpol;
1637		} else if (vma->vm_policy) {
1638			pol = vma->vm_policy;
1639
1640			/*
1641			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1642			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1643			 * count on these policies which will be dropped by
1644			 * mpol_cond_put() later
1645			 */
1646			if (mpol_needs_cond_ref(pol))
1647				mpol_get(pol);
1648		}
1649	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650	if (!pol)
1651		pol = &default_policy;
 
1652	return pol;
1653}
1654
1655bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1656{
1657	struct mempolicy *pol = get_task_policy(task);
1658	if (vma) {
1659		if (vma->vm_ops && vma->vm_ops->get_policy) {
1660			bool ret = false;
1661
1662			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1663			if (pol && (pol->flags & MPOL_F_MOF))
1664				ret = true;
1665			mpol_cond_put(pol);
1666
1667			return ret;
1668		} else if (vma->vm_policy) {
1669			pol = vma->vm_policy;
1670		}
 
 
1671	}
1672
 
1673	if (!pol)
1674		return default_policy.flags & MPOL_F_MOF;
1675
1676	return pol->flags & MPOL_F_MOF;
1677}
1678
1679static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1680{
1681	enum zone_type dynamic_policy_zone = policy_zone;
1682
1683	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1684
1685	/*
1686	 * if policy->v.nodes has movable memory only,
1687	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1688	 *
1689	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690	 * so if the following test faile, it implies
1691	 * policy->v.nodes has movable memory only.
1692	 */
1693	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1694		dynamic_policy_zone = ZONE_MOVABLE;
1695
1696	return zone >= dynamic_policy_zone;
1697}
1698
1699/*
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1701 * page allocation
1702 */
1703static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1704{
 
 
1705	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1706	if (unlikely(policy->mode == MPOL_BIND) &&
1707			apply_policy_zone(policy, gfp_zone(gfp)) &&
1708			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1709		return &policy->v.nodes;
 
 
 
1710
1711	return NULL;
1712}
1713
1714/* Return a zonelist indicated by gfp for node representing a mempolicy */
1715static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1716	int nd)
 
 
 
 
 
1717{
1718	switch (policy->mode) {
1719	case MPOL_PREFERRED:
1720		if (!(policy->flags & MPOL_F_LOCAL))
1721			nd = policy->v.preferred_node;
1722		break;
1723	case MPOL_BIND:
1724		/*
1725		 * Normally, MPOL_BIND allocations are node-local within the
1726		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1727		 * current node isn't part of the mask, we use the zonelist for
1728		 * the first node in the mask instead.
1729		 */
1730		if (unlikely(gfp & __GFP_THISNODE) &&
1731				unlikely(!node_isset(nd, policy->v.nodes)))
1732			nd = first_node(policy->v.nodes);
1733		break;
1734	default:
1735		BUG();
1736	}
1737	return node_zonelist(nd, gfp);
 
 
 
 
 
 
1738}
1739
1740/* Do dynamic interleaving for a process */
1741static unsigned interleave_nodes(struct mempolicy *policy)
1742{
1743	unsigned nid, next;
1744	struct task_struct *me = current;
1745
1746	nid = me->il_next;
1747	next = next_node(nid, policy->v.nodes);
1748	if (next >= MAX_NUMNODES)
1749		next = first_node(policy->v.nodes);
1750	if (next < MAX_NUMNODES)
1751		me->il_next = next;
1752	return nid;
1753}
1754
1755/*
1756 * Depending on the memory policy provide a node from which to allocate the
1757 * next slab entry.
1758 */
1759unsigned int mempolicy_slab_node(void)
1760{
1761	struct mempolicy *policy;
1762	int node = numa_mem_id();
1763
1764	if (in_interrupt())
1765		return node;
1766
1767	policy = current->mempolicy;
1768	if (!policy || policy->flags & MPOL_F_LOCAL)
1769		return node;
1770
1771	switch (policy->mode) {
1772	case MPOL_PREFERRED:
1773		/*
1774		 * handled MPOL_F_LOCAL above
1775		 */
1776		return policy->v.preferred_node;
1777
1778	case MPOL_INTERLEAVE:
1779		return interleave_nodes(policy);
1780
1781	case MPOL_BIND: {
 
 
 
 
1782		/*
1783		 * Follow bind policy behavior and start allocation at the
1784		 * first node.
1785		 */
1786		struct zonelist *zonelist;
1787		struct zone *zone;
1788		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1789		zonelist = &NODE_DATA(node)->node_zonelists[0];
1790		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1791							&policy->v.nodes,
1792							&zone);
1793		return zone ? zone->node : node;
1794	}
 
 
1795
1796	default:
1797		BUG();
1798	}
1799}
1800
1801/* Do static interleaving for a VMA with known offset. */
1802static unsigned offset_il_node(struct mempolicy *pol,
1803		struct vm_area_struct *vma, unsigned long off)
1804{
1805	unsigned nnodes = nodes_weight(pol->v.nodes);
1806	unsigned target;
1807	int c;
1808	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
1809
 
1810	if (!nnodes)
1811		return numa_node_id();
1812	target = (unsigned int)off % nnodes;
1813	c = 0;
1814	do {
1815		nid = next_node(nid, pol->v.nodes);
1816		c++;
1817	} while (c <= target);
1818	return nid;
1819}
1820
1821/* Determine a node number for interleave */
1822static inline unsigned interleave_nid(struct mempolicy *pol,
1823		 struct vm_area_struct *vma, unsigned long addr, int shift)
1824{
1825	if (vma) {
1826		unsigned long off;
1827
1828		/*
1829		 * for small pages, there is no difference between
1830		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1831		 * for huge pages, since vm_pgoff is in units of small
1832		 * pages, we need to shift off the always 0 bits to get
1833		 * a useful offset.
1834		 */
1835		BUG_ON(shift < PAGE_SHIFT);
1836		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1837		off += (addr - vma->vm_start) >> shift;
1838		return offset_il_node(pol, vma, off);
1839	} else
1840		return interleave_nodes(pol);
1841}
1842
1843/*
1844 * Return the bit number of a random bit set in the nodemask.
1845 * (returns NUMA_NO_NODE if nodemask is empty)
1846 */
1847int node_random(const nodemask_t *maskp)
1848{
1849	int w, bit = NUMA_NO_NODE;
1850
1851	w = nodes_weight(*maskp);
1852	if (w)
1853		bit = bitmap_ord_to_pos(maskp->bits,
1854			get_random_int() % w, MAX_NUMNODES);
1855	return bit;
1856}
1857
1858#ifdef CONFIG_HUGETLBFS
1859/*
1860 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1861 * @vma = virtual memory area whose policy is sought
1862 * @addr = address in @vma for shared policy lookup and interleave policy
1863 * @gfp_flags = for requested zone
1864 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1865 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1866 *
1867 * Returns a zonelist suitable for a huge page allocation and a pointer
1868 * to the struct mempolicy for conditional unref after allocation.
1869 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1870 * @nodemask for filtering the zonelist.
1871 *
1872 * Must be protected by read_mems_allowed_begin()
1873 */
1874struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1875				gfp_t gfp_flags, struct mempolicy **mpol,
1876				nodemask_t **nodemask)
1877{
1878	struct zonelist *zl;
1879
1880	*mpol = get_vma_policy(current, vma, addr);
1881	*nodemask = NULL;	/* assume !MPOL_BIND */
1882
1883	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1884		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1885				huge_page_shift(hstate_vma(vma))), gfp_flags);
 
1886	} else {
1887		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1888		if ((*mpol)->mode == MPOL_BIND)
1889			*nodemask = &(*mpol)->v.nodes;
1890	}
1891	return zl;
1892}
1893
1894/*
1895 * init_nodemask_of_mempolicy
1896 *
1897 * If the current task's mempolicy is "default" [NULL], return 'false'
1898 * to indicate default policy.  Otherwise, extract the policy nodemask
1899 * for 'bind' or 'interleave' policy into the argument nodemask, or
1900 * initialize the argument nodemask to contain the single node for
1901 * 'preferred' or 'local' policy and return 'true' to indicate presence
1902 * of non-default mempolicy.
1903 *
1904 * We don't bother with reference counting the mempolicy [mpol_get/put]
1905 * because the current task is examining it's own mempolicy and a task's
1906 * mempolicy is only ever changed by the task itself.
1907 *
1908 * N.B., it is the caller's responsibility to free a returned nodemask.
1909 */
1910bool init_nodemask_of_mempolicy(nodemask_t *mask)
1911{
1912	struct mempolicy *mempolicy;
1913	int nid;
1914
1915	if (!(mask && current->mempolicy))
1916		return false;
1917
1918	task_lock(current);
1919	mempolicy = current->mempolicy;
1920	switch (mempolicy->mode) {
1921	case MPOL_PREFERRED:
1922		if (mempolicy->flags & MPOL_F_LOCAL)
1923			nid = numa_node_id();
1924		else
1925			nid = mempolicy->v.preferred_node;
1926		init_nodemask_of_node(mask, nid);
1927		break;
1928
1929	case MPOL_BIND:
1930		/* Fall through */
1931	case MPOL_INTERLEAVE:
1932		*mask =  mempolicy->v.nodes;
 
 
 
 
1933		break;
1934
1935	default:
1936		BUG();
1937	}
1938	task_unlock(current);
1939
1940	return true;
1941}
1942#endif
1943
1944/*
1945 * mempolicy_nodemask_intersects
1946 *
1947 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1948 * policy.  Otherwise, check for intersection between mask and the policy
1949 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1950 * policy, always return true since it may allocate elsewhere on fallback.
1951 *
1952 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1953 */
1954bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1955					const nodemask_t *mask)
1956{
1957	struct mempolicy *mempolicy;
1958	bool ret = true;
1959
1960	if (!mask)
1961		return ret;
 
1962	task_lock(tsk);
1963	mempolicy = tsk->mempolicy;
1964	if (!mempolicy)
1965		goto out;
1966
1967	switch (mempolicy->mode) {
1968	case MPOL_PREFERRED:
1969		/*
1970		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1971		 * allocate from, they may fallback to other nodes when oom.
1972		 * Thus, it's possible for tsk to have allocated memory from
1973		 * nodes in mask.
1974		 */
1975		break;
1976	case MPOL_BIND:
1977	case MPOL_INTERLEAVE:
1978		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1979		break;
1980	default:
1981		BUG();
1982	}
1983out:
1984	task_unlock(tsk);
 
1985	return ret;
1986}
1987
1988/* Allocate a page in interleaved policy.
1989   Own path because it needs to do special accounting. */
1990static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1991					unsigned nid)
1992{
1993	struct zonelist *zl;
1994	struct page *page;
1995
1996	zl = node_zonelist(nid, gfp);
1997	page = __alloc_pages(gfp, order, zl);
1998	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1999		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000	return page;
2001}
2002
2003/**
2004 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
 
 
 
 
 
2005 *
2006 * 	@gfp:
2007 *      %GFP_USER    user allocation.
2008 *      %GFP_KERNEL  kernel allocations,
2009 *      %GFP_HIGHMEM highmem/user allocations,
2010 *      %GFP_FS      allocation should not call back into a file system.
2011 *      %GFP_ATOMIC  don't sleep.
2012 *
2013 *	@order:Order of the GFP allocation.
2014 * 	@vma:  Pointer to VMA or NULL if not available.
2015 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2016 *
2017 * 	This function allocates a page from the kernel page pool and applies
2018 *	a NUMA policy associated with the VMA or the current process.
2019 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2020 *	mm_struct of the VMA to prevent it from going away. Should be used for
2021 *	all allocations for pages that will be mapped into
2022 * 	user space. Returns NULL when no page can be allocated.
2023 *
2024 *	Should be called with the mm_sem of the vma hold.
2025 */
2026struct page *
2027alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2028		unsigned long addr, int node)
2029{
2030	struct mempolicy *pol;
2031	struct page *page;
2032	unsigned int cpuset_mems_cookie;
 
 
2033
2034retry_cpuset:
2035	pol = get_vma_policy(current, vma, addr);
2036	cpuset_mems_cookie = read_mems_allowed_begin();
2037
2038	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
 
2039		unsigned nid;
2040
2041		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2042		mpol_cond_put(pol);
 
2043		page = alloc_page_interleave(gfp, order, nid);
2044		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2045			goto retry_cpuset;
 
 
 
2046
2047		return page;
 
 
 
 
 
 
 
 
 
 
2048	}
2049	page = __alloc_pages_nodemask(gfp, order,
2050				      policy_zonelist(gfp, pol, node),
2051				      policy_nodemask(gfp, pol));
2052	if (unlikely(mpol_needs_cond_ref(pol)))
2053		__mpol_put(pol);
2054	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2055		goto retry_cpuset;
2056	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057}
 
2058
2059/**
2060 * 	alloc_pages_current - Allocate pages.
2061 *
2062 *	@gfp:
2063 *		%GFP_USER   user allocation,
2064 *      	%GFP_KERNEL kernel allocation,
2065 *      	%GFP_HIGHMEM highmem allocation,
2066 *      	%GFP_FS     don't call back into a file system.
2067 *      	%GFP_ATOMIC don't sleep.
2068 *	@order: Power of two of allocation size in pages. 0 is a single page.
2069 *
2070 *	Allocate a page from the kernel page pool.  When not in
2071 *	interrupt context and apply the current process NUMA policy.
2072 *	Returns NULL when no page can be allocated.
2073 *
2074 *	Don't call cpuset_update_task_memory_state() unless
2075 *	1) it's ok to take cpuset_sem (can WAIT), and
2076 *	2) allocating for current task (not interrupt).
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = get_task_policy(current);
2081	struct page *page;
2082	unsigned int cpuset_mems_cookie;
2083
2084	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2085		pol = &default_policy;
2086
2087retry_cpuset:
2088	cpuset_mems_cookie = read_mems_allowed_begin();
2089
2090	/*
2091	 * No reference counting needed for current->mempolicy
2092	 * nor system default_policy
2093	 */
2094	if (pol->mode == MPOL_INTERLEAVE)
2095		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
 
 
 
2096	else
2097		page = __alloc_pages_nodemask(gfp, order,
2098				policy_zonelist(gfp, pol, numa_node_id()),
2099				policy_nodemask(gfp, pol));
2100
2101	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2102		goto retry_cpuset;
2103
2104	return page;
2105}
2106EXPORT_SYMBOL(alloc_pages_current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107
2108int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2109{
2110	struct mempolicy *pol = mpol_dup(vma_policy(src));
2111
2112	if (IS_ERR(pol))
2113		return PTR_ERR(pol);
2114	dst->vm_policy = pol;
2115	return 0;
2116}
2117
2118/*
2119 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2120 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2121 * with the mems_allowed returned by cpuset_mems_allowed().  This
2122 * keeps mempolicies cpuset relative after its cpuset moves.  See
2123 * further kernel/cpuset.c update_nodemask().
2124 *
2125 * current's mempolicy may be rebinded by the other task(the task that changes
2126 * cpuset's mems), so we needn't do rebind work for current task.
2127 */
2128
2129/* Slow path of a mempolicy duplicate */
2130struct mempolicy *__mpol_dup(struct mempolicy *old)
2131{
2132	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2133
2134	if (!new)
2135		return ERR_PTR(-ENOMEM);
2136
2137	/* task's mempolicy is protected by alloc_lock */
2138	if (old == current->mempolicy) {
2139		task_lock(current);
2140		*new = *old;
2141		task_unlock(current);
2142	} else
2143		*new = *old;
2144
2145	rcu_read_lock();
2146	if (current_cpuset_is_being_rebound()) {
2147		nodemask_t mems = cpuset_mems_allowed(current);
2148		if (new->flags & MPOL_F_REBINDING)
2149			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2150		else
2151			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2152	}
2153	rcu_read_unlock();
2154	atomic_set(&new->refcnt, 1);
2155	return new;
2156}
2157
2158/* Slow path of a mempolicy comparison */
2159bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2160{
2161	if (!a || !b)
2162		return false;
2163	if (a->mode != b->mode)
2164		return false;
2165	if (a->flags != b->flags)
2166		return false;
 
 
2167	if (mpol_store_user_nodemask(a))
2168		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2169			return false;
2170
2171	switch (a->mode) {
2172	case MPOL_BIND:
2173		/* Fall through */
2174	case MPOL_INTERLEAVE:
2175		return !!nodes_equal(a->v.nodes, b->v.nodes);
2176	case MPOL_PREFERRED:
2177		return a->v.preferred_node == b->v.preferred_node;
 
 
 
2178	default:
2179		BUG();
2180		return false;
2181	}
2182}
2183
2184/*
2185 * Shared memory backing store policy support.
2186 *
2187 * Remember policies even when nobody has shared memory mapped.
2188 * The policies are kept in Red-Black tree linked from the inode.
2189 * They are protected by the sp->lock spinlock, which should be held
2190 * for any accesses to the tree.
2191 */
2192
2193/* lookup first element intersecting start-end */
2194/* Caller holds sp->lock */
 
 
2195static struct sp_node *
2196sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2197{
2198	struct rb_node *n = sp->root.rb_node;
2199
2200	while (n) {
2201		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2202
2203		if (start >= p->end)
2204			n = n->rb_right;
2205		else if (end <= p->start)
2206			n = n->rb_left;
2207		else
2208			break;
2209	}
2210	if (!n)
2211		return NULL;
2212	for (;;) {
2213		struct sp_node *w = NULL;
2214		struct rb_node *prev = rb_prev(n);
2215		if (!prev)
2216			break;
2217		w = rb_entry(prev, struct sp_node, nd);
2218		if (w->end <= start)
2219			break;
2220		n = prev;
2221	}
2222	return rb_entry(n, struct sp_node, nd);
2223}
2224
2225/* Insert a new shared policy into the list. */
2226/* Caller holds sp->lock */
 
 
2227static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2228{
2229	struct rb_node **p = &sp->root.rb_node;
2230	struct rb_node *parent = NULL;
2231	struct sp_node *nd;
2232
2233	while (*p) {
2234		parent = *p;
2235		nd = rb_entry(parent, struct sp_node, nd);
2236		if (new->start < nd->start)
2237			p = &(*p)->rb_left;
2238		else if (new->end > nd->end)
2239			p = &(*p)->rb_right;
2240		else
2241			BUG();
2242	}
2243	rb_link_node(&new->nd, parent, p);
2244	rb_insert_color(&new->nd, &sp->root);
2245	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2246		 new->policy ? new->policy->mode : 0);
2247}
2248
2249/* Find shared policy intersecting idx */
2250struct mempolicy *
2251mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2252{
2253	struct mempolicy *pol = NULL;
2254	struct sp_node *sn;
2255
2256	if (!sp->root.rb_node)
2257		return NULL;
2258	spin_lock(&sp->lock);
2259	sn = sp_lookup(sp, idx, idx+1);
2260	if (sn) {
2261		mpol_get(sn->policy);
2262		pol = sn->policy;
2263	}
2264	spin_unlock(&sp->lock);
2265	return pol;
2266}
2267
2268static void sp_free(struct sp_node *n)
2269{
2270	mpol_put(n->policy);
2271	kmem_cache_free(sn_cache, n);
2272}
2273
2274/**
2275 * mpol_misplaced - check whether current page node is valid in policy
2276 *
2277 * @page   - page to be checked
2278 * @vma    - vm area where page mapped
2279 * @addr   - virtual address where page mapped
2280 *
2281 * Lookup current policy node id for vma,addr and "compare to" page's
2282 * node id.
2283 *
2284 * Returns:
2285 *	-1	- not misplaced, page is in the right node
2286 *	node	- node id where the page should be
2287 *
2288 * Policy determination "mimics" alloc_page_vma().
2289 * Called from fault path where we know the vma and faulting address.
 
 
 
2290 */
2291int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2292{
2293	struct mempolicy *pol;
2294	struct zone *zone;
2295	int curnid = page_to_nid(page);
2296	unsigned long pgoff;
2297	int thiscpu = raw_smp_processor_id();
2298	int thisnid = cpu_to_node(thiscpu);
2299	int polnid = -1;
2300	int ret = -1;
2301
2302	BUG_ON(!vma);
2303
2304	pol = get_vma_policy(current, vma, addr);
2305	if (!(pol->flags & MPOL_F_MOF))
2306		goto out;
2307
2308	switch (pol->mode) {
2309	case MPOL_INTERLEAVE:
2310		BUG_ON(addr >= vma->vm_end);
2311		BUG_ON(addr < vma->vm_start);
2312
2313		pgoff = vma->vm_pgoff;
2314		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2315		polnid = offset_il_node(pol, vma, pgoff);
2316		break;
2317
2318	case MPOL_PREFERRED:
2319		if (pol->flags & MPOL_F_LOCAL)
2320			polnid = numa_node_id();
2321		else
2322			polnid = pol->v.preferred_node;
 
 
 
2323		break;
2324
2325	case MPOL_BIND:
 
 
 
 
 
 
 
 
 
2326		/*
2327		 * allows binding to multiple nodes.
2328		 * use current page if in policy nodemask,
2329		 * else select nearest allowed node, if any.
2330		 * If no allowed nodes, use current [!misplaced].
2331		 */
2332		if (node_isset(curnid, pol->v.nodes))
2333			goto out;
2334		(void)first_zones_zonelist(
2335				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2336				gfp_zone(GFP_HIGHUSER),
2337				&pol->v.nodes, &zone);
2338		polnid = zone->node;
2339		break;
2340
2341	default:
2342		BUG();
2343	}
2344
2345	/* Migrate the page towards the node whose CPU is referencing it */
2346	if (pol->flags & MPOL_F_MORON) {
2347		polnid = thisnid;
2348
2349		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2350			goto out;
2351	}
2352
2353	if (curnid != polnid)
2354		ret = polnid;
2355out:
2356	mpol_cond_put(pol);
2357
2358	return ret;
2359}
2360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2362{
2363	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2364	rb_erase(&n->nd, &sp->root);
2365	sp_free(n);
2366}
2367
2368static void sp_node_init(struct sp_node *node, unsigned long start,
2369			unsigned long end, struct mempolicy *pol)
2370{
2371	node->start = start;
2372	node->end = end;
2373	node->policy = pol;
2374}
2375
2376static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2377				struct mempolicy *pol)
2378{
2379	struct sp_node *n;
2380	struct mempolicy *newpol;
2381
2382	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2383	if (!n)
2384		return NULL;
2385
2386	newpol = mpol_dup(pol);
2387	if (IS_ERR(newpol)) {
2388		kmem_cache_free(sn_cache, n);
2389		return NULL;
2390	}
2391	newpol->flags |= MPOL_F_SHARED;
2392	sp_node_init(n, start, end, newpol);
2393
2394	return n;
2395}
2396
2397/* Replace a policy range. */
2398static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2399				 unsigned long end, struct sp_node *new)
2400{
2401	struct sp_node *n;
2402	struct sp_node *n_new = NULL;
2403	struct mempolicy *mpol_new = NULL;
2404	int ret = 0;
2405
2406restart:
2407	spin_lock(&sp->lock);
2408	n = sp_lookup(sp, start, end);
2409	/* Take care of old policies in the same range. */
2410	while (n && n->start < end) {
2411		struct rb_node *next = rb_next(&n->nd);
2412		if (n->start >= start) {
2413			if (n->end <= end)
2414				sp_delete(sp, n);
2415			else
2416				n->start = end;
2417		} else {
2418			/* Old policy spanning whole new range. */
2419			if (n->end > end) {
2420				if (!n_new)
2421					goto alloc_new;
2422
2423				*mpol_new = *n->policy;
2424				atomic_set(&mpol_new->refcnt, 1);
2425				sp_node_init(n_new, end, n->end, mpol_new);
2426				n->end = start;
2427				sp_insert(sp, n_new);
2428				n_new = NULL;
2429				mpol_new = NULL;
2430				break;
2431			} else
2432				n->end = start;
2433		}
2434		if (!next)
2435			break;
2436		n = rb_entry(next, struct sp_node, nd);
2437	}
2438	if (new)
2439		sp_insert(sp, new);
2440	spin_unlock(&sp->lock);
2441	ret = 0;
2442
2443err_out:
2444	if (mpol_new)
2445		mpol_put(mpol_new);
2446	if (n_new)
2447		kmem_cache_free(sn_cache, n_new);
2448
2449	return ret;
2450
2451alloc_new:
2452	spin_unlock(&sp->lock);
2453	ret = -ENOMEM;
2454	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2455	if (!n_new)
2456		goto err_out;
2457	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2458	if (!mpol_new)
2459		goto err_out;
 
2460	goto restart;
2461}
2462
2463/**
2464 * mpol_shared_policy_init - initialize shared policy for inode
2465 * @sp: pointer to inode shared policy
2466 * @mpol:  struct mempolicy to install
2467 *
2468 * Install non-NULL @mpol in inode's shared policy rb-tree.
2469 * On entry, the current task has a reference on a non-NULL @mpol.
2470 * This must be released on exit.
2471 * This is called at get_inode() calls and we can use GFP_KERNEL.
2472 */
2473void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2474{
2475	int ret;
2476
2477	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2478	spin_lock_init(&sp->lock);
2479
2480	if (mpol) {
2481		struct vm_area_struct pvma;
2482		struct mempolicy *new;
2483		NODEMASK_SCRATCH(scratch);
2484
2485		if (!scratch)
2486			goto put_mpol;
2487		/* contextualize the tmpfs mount point mempolicy */
2488		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2489		if (IS_ERR(new))
2490			goto free_scratch; /* no valid nodemask intersection */
2491
2492		task_lock(current);
2493		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2494		task_unlock(current);
2495		if (ret)
2496			goto put_new;
2497
2498		/* Create pseudo-vma that contains just the policy */
2499		memset(&pvma, 0, sizeof(struct vm_area_struct));
2500		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2501		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2502
2503put_new:
2504		mpol_put(new);			/* drop initial ref */
2505free_scratch:
2506		NODEMASK_SCRATCH_FREE(scratch);
2507put_mpol:
2508		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2509	}
2510}
2511
2512int mpol_set_shared_policy(struct shared_policy *info,
2513			struct vm_area_struct *vma, struct mempolicy *npol)
2514{
2515	int err;
2516	struct sp_node *new = NULL;
2517	unsigned long sz = vma_pages(vma);
2518
2519	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2520		 vma->vm_pgoff,
2521		 sz, npol ? npol->mode : -1,
2522		 npol ? npol->flags : -1,
2523		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2524
2525	if (npol) {
2526		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2527		if (!new)
2528			return -ENOMEM;
2529	}
2530	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2531	if (err && new)
2532		sp_free(new);
2533	return err;
2534}
2535
2536/* Free a backing policy store on inode delete. */
2537void mpol_free_shared_policy(struct shared_policy *p)
2538{
2539	struct sp_node *n;
2540	struct rb_node *next;
2541
2542	if (!p->root.rb_node)
2543		return;
2544	spin_lock(&p->lock);
2545	next = rb_first(&p->root);
2546	while (next) {
2547		n = rb_entry(next, struct sp_node, nd);
2548		next = rb_next(&n->nd);
2549		sp_delete(p, n);
2550	}
2551	spin_unlock(&p->lock);
2552}
2553
2554#ifdef CONFIG_NUMA_BALANCING
2555static int __initdata numabalancing_override;
2556
2557static void __init check_numabalancing_enable(void)
2558{
2559	bool numabalancing_default = false;
2560
2561	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2562		numabalancing_default = true;
2563
2564	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2565	if (numabalancing_override)
2566		set_numabalancing_state(numabalancing_override == 1);
2567
2568	if (nr_node_ids > 1 && !numabalancing_override) {
2569		pr_info("%s automatic NUMA balancing. "
2570			"Configure with numa_balancing= or the "
2571			"kernel.numa_balancing sysctl",
2572			numabalancing_default ? "Enabling" : "Disabling");
2573		set_numabalancing_state(numabalancing_default);
2574	}
2575}
2576
2577static int __init setup_numabalancing(char *str)
2578{
2579	int ret = 0;
2580	if (!str)
2581		goto out;
2582
2583	if (!strcmp(str, "enable")) {
2584		numabalancing_override = 1;
2585		ret = 1;
2586	} else if (!strcmp(str, "disable")) {
2587		numabalancing_override = -1;
2588		ret = 1;
2589	}
2590out:
2591	if (!ret)
2592		pr_warn("Unable to parse numa_balancing=\n");
2593
2594	return ret;
2595}
2596__setup("numa_balancing=", setup_numabalancing);
2597#else
2598static inline void __init check_numabalancing_enable(void)
2599{
2600}
2601#endif /* CONFIG_NUMA_BALANCING */
2602
2603/* assumes fs == KERNEL_DS */
2604void __init numa_policy_init(void)
2605{
2606	nodemask_t interleave_nodes;
2607	unsigned long largest = 0;
2608	int nid, prefer = 0;
2609
2610	policy_cache = kmem_cache_create("numa_policy",
2611					 sizeof(struct mempolicy),
2612					 0, SLAB_PANIC, NULL);
2613
2614	sn_cache = kmem_cache_create("shared_policy_node",
2615				     sizeof(struct sp_node),
2616				     0, SLAB_PANIC, NULL);
2617
2618	for_each_node(nid) {
2619		preferred_node_policy[nid] = (struct mempolicy) {
2620			.refcnt = ATOMIC_INIT(1),
2621			.mode = MPOL_PREFERRED,
2622			.flags = MPOL_F_MOF | MPOL_F_MORON,
2623			.v = { .preferred_node = nid, },
2624		};
2625	}
2626
2627	/*
2628	 * Set interleaving policy for system init. Interleaving is only
2629	 * enabled across suitably sized nodes (default is >= 16MB), or
2630	 * fall back to the largest node if they're all smaller.
2631	 */
2632	nodes_clear(interleave_nodes);
2633	for_each_node_state(nid, N_MEMORY) {
2634		unsigned long total_pages = node_present_pages(nid);
2635
2636		/* Preserve the largest node */
2637		if (largest < total_pages) {
2638			largest = total_pages;
2639			prefer = nid;
2640		}
2641
2642		/* Interleave this node? */
2643		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2644			node_set(nid, interleave_nodes);
2645	}
2646
2647	/* All too small, use the largest */
2648	if (unlikely(nodes_empty(interleave_nodes)))
2649		node_set(prefer, interleave_nodes);
2650
2651	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2652		printk("numa_policy_init: interleaving failed\n");
2653
2654	check_numabalancing_enable();
2655}
2656
2657/* Reset policy of current process to default */
2658void numa_default_policy(void)
2659{
2660	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2661}
2662
2663/*
2664 * Parse and format mempolicy from/to strings
2665 */
2666
2667/*
2668 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2669 */
2670static const char * const policy_modes[] =
2671{
2672	[MPOL_DEFAULT]    = "default",
2673	[MPOL_PREFERRED]  = "prefer",
2674	[MPOL_BIND]       = "bind",
2675	[MPOL_INTERLEAVE] = "interleave",
2676	[MPOL_LOCAL]      = "local",
 
2677};
2678
2679
2680#ifdef CONFIG_TMPFS
2681/**
2682 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2683 * @str:  string containing mempolicy to parse
2684 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2685 *
2686 * Format of input:
2687 *	<mode>[=<flags>][:<nodelist>]
2688 *
2689 * On success, returns 0, else 1
2690 */
2691int mpol_parse_str(char *str, struct mempolicy **mpol)
2692{
2693	struct mempolicy *new = NULL;
2694	unsigned short mode;
2695	unsigned short mode_flags;
2696	nodemask_t nodes;
2697	char *nodelist = strchr(str, ':');
2698	char *flags = strchr(str, '=');
2699	int err = 1;
 
 
 
2700
2701	if (nodelist) {
2702		/* NUL-terminate mode or flags string */
2703		*nodelist++ = '\0';
2704		if (nodelist_parse(nodelist, nodes))
2705			goto out;
2706		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2707			goto out;
2708	} else
2709		nodes_clear(nodes);
2710
2711	if (flags)
2712		*flags++ = '\0';	/* terminate mode string */
2713
2714	for (mode = 0; mode < MPOL_MAX; mode++) {
2715		if (!strcmp(str, policy_modes[mode])) {
2716			break;
2717		}
2718	}
2719	if (mode >= MPOL_MAX)
2720		goto out;
2721
2722	switch (mode) {
2723	case MPOL_PREFERRED:
2724		/*
2725		 * Insist on a nodelist of one node only
 
 
2726		 */
2727		if (nodelist) {
2728			char *rest = nodelist;
2729			while (isdigit(*rest))
2730				rest++;
2731			if (*rest)
2732				goto out;
 
 
2733		}
2734		break;
2735	case MPOL_INTERLEAVE:
2736		/*
2737		 * Default to online nodes with memory if no nodelist
2738		 */
2739		if (!nodelist)
2740			nodes = node_states[N_MEMORY];
2741		break;
2742	case MPOL_LOCAL:
2743		/*
2744		 * Don't allow a nodelist;  mpol_new() checks flags
2745		 */
2746		if (nodelist)
2747			goto out;
2748		mode = MPOL_PREFERRED;
2749		break;
2750	case MPOL_DEFAULT:
2751		/*
2752		 * Insist on a empty nodelist
2753		 */
2754		if (!nodelist)
2755			err = 0;
2756		goto out;
 
2757	case MPOL_BIND:
2758		/*
2759		 * Insist on a nodelist
2760		 */
2761		if (!nodelist)
2762			goto out;
2763	}
2764
2765	mode_flags = 0;
2766	if (flags) {
2767		/*
2768		 * Currently, we only support two mutually exclusive
2769		 * mode flags.
2770		 */
2771		if (!strcmp(flags, "static"))
2772			mode_flags |= MPOL_F_STATIC_NODES;
2773		else if (!strcmp(flags, "relative"))
2774			mode_flags |= MPOL_F_RELATIVE_NODES;
2775		else
2776			goto out;
2777	}
2778
2779	new = mpol_new(mode, mode_flags, &nodes);
2780	if (IS_ERR(new))
2781		goto out;
2782
2783	/*
2784	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2785	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2786	 */
2787	if (mode != MPOL_PREFERRED)
2788		new->v.nodes = nodes;
2789	else if (nodelist)
2790		new->v.preferred_node = first_node(nodes);
2791	else
2792		new->flags |= MPOL_F_LOCAL;
 
 
2793
2794	/*
2795	 * Save nodes for contextualization: this will be used to "clone"
2796	 * the mempolicy in a specific context [cpuset] at a later time.
2797	 */
2798	new->w.user_nodemask = nodes;
2799
2800	err = 0;
2801
2802out:
2803	/* Restore string for error message */
2804	if (nodelist)
2805		*--nodelist = ':';
2806	if (flags)
2807		*--flags = '=';
2808	if (!err)
2809		*mpol = new;
2810	return err;
2811}
2812#endif /* CONFIG_TMPFS */
2813
2814/**
2815 * mpol_to_str - format a mempolicy structure for printing
2816 * @buffer:  to contain formatted mempolicy string
2817 * @maxlen:  length of @buffer
2818 * @pol:  pointer to mempolicy to be formatted
2819 *
2820 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2821 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2822 * longest flag, "relative", and to display at least a few node ids.
2823 */
2824void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2825{
2826	char *p = buffer;
2827	nodemask_t nodes = NODE_MASK_NONE;
2828	unsigned short mode = MPOL_DEFAULT;
2829	unsigned short flags = 0;
2830
2831	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2832		mode = pol->mode;
2833		flags = pol->flags;
2834	}
2835
2836	switch (mode) {
2837	case MPOL_DEFAULT:
 
2838		break;
2839	case MPOL_PREFERRED:
2840		if (flags & MPOL_F_LOCAL)
2841			mode = MPOL_LOCAL;
2842		else
2843			node_set(pol->v.preferred_node, nodes);
2844		break;
2845	case MPOL_BIND:
2846	case MPOL_INTERLEAVE:
2847		nodes = pol->v.nodes;
2848		break;
2849	default:
2850		WARN_ON_ONCE(1);
2851		snprintf(p, maxlen, "unknown");
2852		return;
2853	}
2854
2855	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2856
2857	if (flags & MPOL_MODE_FLAGS) {
2858		p += snprintf(p, buffer + maxlen - p, "=");
2859
2860		/*
2861		 * Currently, the only defined flags are mutually exclusive
2862		 */
2863		if (flags & MPOL_F_STATIC_NODES)
2864			p += snprintf(p, buffer + maxlen - p, "static");
2865		else if (flags & MPOL_F_RELATIVE_NODES)
2866			p += snprintf(p, buffer + maxlen - p, "relative");
2867	}
2868
2869	if (!nodes_empty(nodes)) {
2870		p += snprintf(p, buffer + maxlen - p, ":");
2871	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2872	}
2873}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * preferred many Try a set of nodes first before normal fallback. This is
  35 *                similar to preferred without the special case.
  36 *
  37 * default        Allocate on the local node first, or when on a VMA
  38 *                use the process policy. This is what Linux always did
  39 *		  in a NUMA aware kernel and still does by, ahem, default.
  40 *
  41 * The process policy is applied for most non interrupt memory allocations
  42 * in that process' context. Interrupts ignore the policies and always
  43 * try to allocate on the local CPU. The VMA policy is only applied for memory
  44 * allocations for a VMA in the VM.
  45 *
  46 * Currently there are a few corner cases in swapping where the policy
  47 * is not applied, but the majority should be handled. When process policy
  48 * is used it is not remembered over swap outs/swap ins.
  49 *
  50 * Only the highest zone in the zone hierarchy gets policied. Allocations
  51 * requesting a lower zone just use default policy. This implies that
  52 * on systems with highmem kernel lowmem allocation don't get policied.
  53 * Same with GFP_DMA allocations.
  54 *
  55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  56 * all users and remembered even when nobody has memory mapped.
  57 */
  58
  59/* Notebook:
  60   fix mmap readahead to honour policy and enable policy for any page cache
  61   object
  62   statistics for bigpages
  63   global policy for page cache? currently it uses process policy. Requires
  64   first item above.
  65   handle mremap for shared memory (currently ignored for the policy)
  66   grows down?
  67   make bind policy root only? It can trigger oom much faster and the
  68   kernel is not always grateful with that.
  69*/
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/mempolicy.h>
  74#include <linux/pagewalk.h>
  75#include <linux/highmem.h>
  76#include <linux/hugetlb.h>
  77#include <linux/kernel.h>
  78#include <linux/sched.h>
  79#include <linux/sched/mm.h>
  80#include <linux/sched/numa_balancing.h>
  81#include <linux/sched/task.h>
  82#include <linux/nodemask.h>
  83#include <linux/cpuset.h>
  84#include <linux/slab.h>
  85#include <linux/string.h>
  86#include <linux/export.h>
  87#include <linux/nsproxy.h>
  88#include <linux/interrupt.h>
  89#include <linux/init.h>
  90#include <linux/compat.h>
  91#include <linux/ptrace.h>
  92#include <linux/swap.h>
  93#include <linux/seq_file.h>
  94#include <linux/proc_fs.h>
  95#include <linux/migrate.h>
  96#include <linux/ksm.h>
  97#include <linux/rmap.h>
  98#include <linux/security.h>
  99#include <linux/syscalls.h>
 100#include <linux/ctype.h>
 101#include <linux/mm_inline.h>
 102#include <linux/mmu_notifier.h>
 103#include <linux/printk.h>
 104#include <linux/swapops.h>
 105
 106#include <asm/tlbflush.h>
 107#include <asm/tlb.h>
 108#include <linux/uaccess.h>
 109
 110#include "internal.h"
 111
 112/* Internal flags */
 113#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 114#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 115
 116static struct kmem_cache *policy_cache;
 117static struct kmem_cache *sn_cache;
 118
 119/* Highest zone. An specific allocation for a zone below that is not
 120   policied. */
 121enum zone_type policy_zone = 0;
 122
 123/*
 124 * run-time system-wide default policy => local allocation
 125 */
 126static struct mempolicy default_policy = {
 127	.refcnt = ATOMIC_INIT(1), /* never free it */
 128	.mode = MPOL_LOCAL,
 
 129};
 130
 131static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 132
 133/**
 134 * numa_map_to_online_node - Find closest online node
 135 * @node: Node id to start the search
 136 *
 137 * Lookup the next closest node by distance if @nid is not online.
 138 *
 139 * Return: this @node if it is online, otherwise the closest node by distance
 140 */
 141int numa_map_to_online_node(int node)
 142{
 143	int min_dist = INT_MAX, dist, n, min_node;
 144
 145	if (node == NUMA_NO_NODE || node_online(node))
 146		return node;
 147
 148	min_node = node;
 149	for_each_online_node(n) {
 150		dist = node_distance(node, n);
 151		if (dist < min_dist) {
 152			min_dist = dist;
 153			min_node = n;
 
 
 154		}
 155	}
 156
 157	return min_node;
 158}
 159EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 160
 161struct mempolicy *get_task_policy(struct task_struct *p)
 162{
 163	struct mempolicy *pol = p->mempolicy;
 164	int node;
 165
 166	if (pol)
 167		return pol;
 168
 169	node = numa_node_id();
 170	if (node != NUMA_NO_NODE) {
 171		pol = &preferred_node_policy[node];
 172		/* preferred_node_policy is not initialised early in boot */
 173		if (pol->mode)
 174			return pol;
 175	}
 176
 177	return &default_policy;
 178}
 179
 180static const struct mempolicy_operations {
 181	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 182	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183} mpol_ops[MPOL_MAX];
 184
 
 
 
 
 
 
 185static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 186{
 187	return pol->flags & MPOL_MODE_FLAGS;
 188}
 189
 190static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 191				   const nodemask_t *rel)
 192{
 193	nodemask_t tmp;
 194	nodes_fold(tmp, *orig, nodes_weight(*rel));
 195	nodes_onto(*ret, tmp, *rel);
 196}
 197
 198static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 199{
 200	if (nodes_empty(*nodes))
 201		return -EINVAL;
 202	pol->nodes = *nodes;
 203	return 0;
 204}
 205
 206static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 207{
 208	if (nodes_empty(*nodes))
 
 
 
 
 
 
 
 
 
 
 
 209		return -EINVAL;
 210
 211	nodes_clear(pol->nodes);
 212	node_set(first_node(*nodes), pol->nodes);
 213	return 0;
 214}
 215
 216/*
 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 218 * any, for the new policy.  mpol_new() has already validated the nodes
 219 * parameter with respect to the policy mode and flags.
 
 220 *
 221 * Must be called holding task's alloc_lock to protect task's mems_allowed
 222 * and mempolicy.  May also be called holding the mmap_lock for write.
 223 */
 224static int mpol_set_nodemask(struct mempolicy *pol,
 225		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 226{
 227	int ret;
 228
 229	/*
 230	 * Default (pol==NULL) resp. local memory policies are not a
 231	 * subject of any remapping. They also do not need any special
 232	 * constructor.
 233	 */
 234	if (!pol || pol->mode == MPOL_LOCAL)
 235		return 0;
 236
 237	/* Check N_MEMORY */
 238	nodes_and(nsc->mask1,
 239		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 240
 241	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 242
 243	if (pol->flags & MPOL_F_RELATIVE_NODES)
 244		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 245	else
 246		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 247
 248	if (mpol_store_user_nodemask(pol))
 249		pol->w.user_nodemask = *nodes;
 250	else
 251		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 252
 253	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 254	return ret;
 255}
 256
 257/*
 258 * This function just creates a new policy, does some check and simple
 259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 260 */
 261static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 262				  nodemask_t *nodes)
 263{
 264	struct mempolicy *policy;
 265
 266	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 267		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 268
 269	if (mode == MPOL_DEFAULT) {
 270		if (nodes && !nodes_empty(*nodes))
 271			return ERR_PTR(-EINVAL);
 272		return NULL;
 273	}
 274	VM_BUG_ON(!nodes);
 275
 276	/*
 277	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 278	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 279	 * All other modes require a valid pointer to a non-empty nodemask.
 280	 */
 281	if (mode == MPOL_PREFERRED) {
 282		if (nodes_empty(*nodes)) {
 283			if (((flags & MPOL_F_STATIC_NODES) ||
 284			     (flags & MPOL_F_RELATIVE_NODES)))
 285				return ERR_PTR(-EINVAL);
 286
 287			mode = MPOL_LOCAL;
 288		}
 289	} else if (mode == MPOL_LOCAL) {
 290		if (!nodes_empty(*nodes) ||
 291		    (flags & MPOL_F_STATIC_NODES) ||
 292		    (flags & MPOL_F_RELATIVE_NODES))
 293			return ERR_PTR(-EINVAL);
 
 294	} else if (nodes_empty(*nodes))
 295		return ERR_PTR(-EINVAL);
 296	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 297	if (!policy)
 298		return ERR_PTR(-ENOMEM);
 299	atomic_set(&policy->refcnt, 1);
 300	policy->mode = mode;
 301	policy->flags = flags;
 302	policy->home_node = NUMA_NO_NODE;
 303
 304	return policy;
 305}
 306
 307/* Slow path of a mpol destructor. */
 308void __mpol_put(struct mempolicy *p)
 309{
 310	if (!atomic_dec_and_test(&p->refcnt))
 311		return;
 312	kmem_cache_free(policy_cache, p);
 313}
 314
 315static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 
 316{
 317}
 318
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 
 
 
 
 
 
 
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES)
 324		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 325	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 326		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 327	else {
 328		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 329								*nodes);
 330		pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 331	}
 332
 333	if (nodes_empty(tmp))
 334		tmp = *nodes;
 335
 336	pol->nodes = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339static void mpol_rebind_preferred(struct mempolicy *pol,
 340						const nodemask_t *nodes)
 
 341{
 342	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343}
 344
 345/*
 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 347 *
 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 349 * policies are protected by task->mems_allowed_seq to prevent a premature
 350 * OOM/allocation failure due to parallel nodemask modification.
 
 
 
 
 
 
 
 
 
 351 */
 352static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 
 353{
 354	if (!pol || pol->mode == MPOL_LOCAL)
 355		return;
 356	if (!mpol_store_user_nodemask(pol) &&
 357	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 358		return;
 359
 360	mpol_ops[pol->mode].rebind(pol, newmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363/*
 364 * Wrapper for mpol_rebind_policy() that just requires task
 365 * pointer, and updates task mempolicy.
 366 *
 367 * Called with task's alloc_lock held.
 368 */
 369
 370void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 
 371{
 372	mpol_rebind_policy(tsk->mempolicy, new);
 373}
 374
 375/*
 376 * Rebind each vma in mm to new nodemask.
 377 *
 378 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 379 */
 380
 381void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 382{
 383	struct vm_area_struct *vma;
 384	VMA_ITERATOR(vmi, mm, 0);
 385
 386	mmap_write_lock(mm);
 387	for_each_vma(vmi, vma)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_nodemask,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_nodemask,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411	[MPOL_PREFERRED_MANY] = {
 412		.create = mpol_new_nodemask,
 413		.rebind = mpol_rebind_preferred,
 414	},
 415};
 416
 417static int migrate_page_add(struct page *page, struct list_head *pagelist,
 418				unsigned long flags);
 419
 420struct queue_pages {
 421	struct list_head *pagelist;
 422	unsigned long flags;
 423	nodemask_t *nmask;
 424	unsigned long start;
 425	unsigned long end;
 426	struct vm_area_struct *first;
 427};
 428
 429/*
 430 * Check if the page's nid is in qp->nmask.
 431 *
 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 433 * in the invert of qp->nmask.
 434 */
 435static inline bool queue_pages_required(struct page *page,
 436					struct queue_pages *qp)
 437{
 438	int nid = page_to_nid(page);
 439	unsigned long flags = qp->flags;
 440
 441	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 442}
 443
 444/*
 445 * queue_pages_pmd() has three possible return values:
 446 * 0 - pages are placed on the right node or queued successfully, or
 447 *     special page is met, i.e. huge zero page.
 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 449 *     specified.
 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 451 *        existing page was already on a node that does not follow the
 452 *        policy.
 453 */
 454static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 455				unsigned long end, struct mm_walk *walk)
 456	__releases(ptl)
 457{
 458	int ret = 0;
 459	struct page *page;
 460	struct queue_pages *qp = walk->private;
 461	unsigned long flags;
 462
 463	if (unlikely(is_pmd_migration_entry(*pmd))) {
 464		ret = -EIO;
 465		goto unlock;
 466	}
 467	page = pmd_page(*pmd);
 468	if (is_huge_zero_page(page)) {
 469		walk->action = ACTION_CONTINUE;
 470		goto unlock;
 471	}
 472	if (!queue_pages_required(page, qp))
 473		goto unlock;
 474
 475	flags = qp->flags;
 476	/* go to thp migration */
 477	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 478		if (!vma_migratable(walk->vma) ||
 479		    migrate_page_add(page, qp->pagelist, flags)) {
 480			ret = 1;
 481			goto unlock;
 482		}
 483	} else
 484		ret = -EIO;
 485unlock:
 486	spin_unlock(ptl);
 487	return ret;
 488}
 489
 490/*
 491 * Scan through pages checking if pages follow certain conditions,
 492 * and move them to the pagelist if they do.
 493 *
 494 * queue_pages_pte_range() has three possible return values:
 495 * 0 - pages are placed on the right node or queued successfully, or
 496 *     special page is met, i.e. zero page.
 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 498 *     specified.
 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 500 *        on a node that does not follow the policy.
 501 */
 502static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 503			unsigned long end, struct mm_walk *walk)
 
 
 504{
 505	struct vm_area_struct *vma = walk->vma;
 506	struct page *page;
 507	struct queue_pages *qp = walk->private;
 508	unsigned long flags = qp->flags;
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl)
 515		return queue_pages_pmd(pmd, ptl, addr, end, walk);
 516
 517	if (pmd_trans_unstable(pmd))
 518		return 0;
 519
 520	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 521	for (; addr != end; pte++, addr += PAGE_SIZE) {
 522		if (!pte_present(*pte))
 523			continue;
 524		page = vm_normal_page(vma, addr, *pte);
 525		if (!page || is_zone_device_page(page))
 526			continue;
 527		/*
 528		 * vm_normal_page() filters out zero pages, but there might
 529		 * still be PageReserved pages to skip, perhaps in a VDSO.
 530		 */
 531		if (PageReserved(page))
 532			continue;
 533		if (!queue_pages_required(page, qp))
 
 534			continue;
 535		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 536			/* MPOL_MF_STRICT must be specified if we get here */
 537			if (!vma_migratable(vma)) {
 538				has_unmovable = true;
 539				break;
 540			}
 541
 542			/*
 543			 * Do not abort immediately since there may be
 544			 * temporary off LRU pages in the range.  Still
 545			 * need migrate other LRU pages.
 546			 */
 547			if (migrate_page_add(page, qp->pagelist, flags))
 548				has_unmovable = true;
 549		} else
 550			break;
 551	}
 552	pte_unmap_unlock(mapped_pte, ptl);
 553	cond_resched();
 554
 555	if (has_unmovable)
 556		return 1;
 557
 558	return addr != end ? -EIO : 0;
 559}
 560
 561static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 562			       unsigned long addr, unsigned long end,
 563			       struct mm_walk *walk)
 564{
 565	int ret = 0;
 566#ifdef CONFIG_HUGETLB_PAGE
 567	struct queue_pages *qp = walk->private;
 568	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 569	struct page *page;
 570	spinlock_t *ptl;
 571	pte_t entry;
 572
 573	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 574	entry = huge_ptep_get(pte);
 575	if (!pte_present(entry))
 576		goto unlock;
 577	page = pte_page(entry);
 578	if (!queue_pages_required(page, qp))
 
 579		goto unlock;
 580
 581	if (flags == MPOL_MF_STRICT) {
 582		/*
 583		 * STRICT alone means only detecting misplaced page and no
 584		 * need to further check other vma.
 585		 */
 586		ret = -EIO;
 587		goto unlock;
 588	}
 589
 590	if (!vma_migratable(walk->vma)) {
 591		/*
 592		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 593		 * stopped walking current vma.
 594		 * Detecting misplaced page but allow migrating pages which
 595		 * have been queued.
 596		 */
 597		ret = 1;
 598		goto unlock;
 599	}
 600
 601	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 602	if (flags & (MPOL_MF_MOVE_ALL) ||
 603	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
 604	     !hugetlb_pmd_shared(pte))) {
 605		if (isolate_hugetlb(page, qp->pagelist) &&
 606			(flags & MPOL_MF_STRICT))
 607			/*
 608			 * Failed to isolate page but allow migrating pages
 609			 * which have been queued.
 610			 */
 611			ret = 1;
 612	}
 613unlock:
 614	spin_unlock(ptl);
 615#else
 616	BUG();
 617#endif
 618	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619}
 620
 621#ifdef CONFIG_NUMA_BALANCING
 622/*
 623 * This is used to mark a range of virtual addresses to be inaccessible.
 624 * These are later cleared by a NUMA hinting fault. Depending on these
 625 * faults, pages may be migrated for better NUMA placement.
 626 *
 627 * This is assuming that NUMA faults are handled using PROT_NONE. If
 628 * an architecture makes a different choice, it will need further
 629 * changes to the core.
 630 */
 631unsigned long change_prot_numa(struct vm_area_struct *vma,
 632			unsigned long addr, unsigned long end)
 633{
 634	struct mmu_gather tlb;
 635	int nr_updated;
 636
 637	tlb_gather_mmu(&tlb, vma->vm_mm);
 638
 639	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
 640				       MM_CP_PROT_NUMA);
 641	if (nr_updated)
 642		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 643
 644	tlb_finish_mmu(&tlb);
 645
 646	return nr_updated;
 647}
 648#else
 649static unsigned long change_prot_numa(struct vm_area_struct *vma,
 650			unsigned long addr, unsigned long end)
 651{
 652	return 0;
 653}
 654#endif /* CONFIG_NUMA_BALANCING */
 655
 656static int queue_pages_test_walk(unsigned long start, unsigned long end,
 657				struct mm_walk *walk)
 658{
 659	struct vm_area_struct *next, *vma = walk->vma;
 660	struct queue_pages *qp = walk->private;
 661	unsigned long endvma = vma->vm_end;
 662	unsigned long flags = qp->flags;
 663
 664	/* range check first */
 665	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 666
 667	if (!qp->first) {
 668		qp->first = vma;
 669		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 670			(qp->start < vma->vm_start))
 671			/* hole at head side of range */
 672			return -EFAULT;
 673	}
 674	next = find_vma(vma->vm_mm, vma->vm_end);
 675	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 676		((vma->vm_end < qp->end) &&
 677		(!next || vma->vm_end < next->vm_start)))
 678		/* hole at middle or tail of range */
 679		return -EFAULT;
 680
 681	/*
 682	 * Need check MPOL_MF_STRICT to return -EIO if possible
 683	 * regardless of vma_migratable
 684	 */
 685	if (!vma_migratable(vma) &&
 686	    !(flags & MPOL_MF_STRICT))
 687		return 1;
 688
 689	if (endvma > end)
 690		endvma = end;
 691
 692	if (flags & MPOL_MF_LAZY) {
 693		/* Similar to task_numa_work, skip inaccessible VMAs */
 694		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 695			!(vma->vm_flags & VM_MIXEDMAP))
 696			change_prot_numa(vma, start, endvma);
 697		return 1;
 698	}
 699
 700	/* queue pages from current vma */
 701	if (flags & MPOL_MF_VALID)
 702		return 0;
 703	return 1;
 704}
 705
 706static const struct mm_walk_ops queue_pages_walk_ops = {
 707	.hugetlb_entry		= queue_pages_hugetlb,
 708	.pmd_entry		= queue_pages_pte_range,
 709	.test_walk		= queue_pages_test_walk,
 710};
 711
 712/*
 713 * Walk through page tables and collect pages to be migrated.
 714 *
 715 * If pages found in a given range are on a set of nodes (determined by
 716 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 717 * passed via @private.
 718 *
 719 * queue_pages_range() has three possible return values:
 720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 721 *     specified.
 722 * 0 - queue pages successfully or no misplaced page.
 723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 724 *         memory range specified by nodemask and maxnode points outside
 725 *         your accessible address space (-EFAULT)
 726 */
 727static int
 728queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 729		nodemask_t *nodes, unsigned long flags,
 730		struct list_head *pagelist)
 731{
 732	int err;
 733	struct queue_pages qp = {
 734		.pagelist = pagelist,
 735		.flags = flags,
 736		.nmask = nodes,
 737		.start = start,
 738		.end = end,
 739		.first = NULL,
 740	};
 741
 742	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 743
 744	if (!qp.first)
 745		/* whole range in hole */
 746		err = -EFAULT;
 747
 748	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749}
 750
 751/*
 752 * Apply policy to a single VMA
 753 * This must be called with the mmap_lock held for writing.
 754 */
 755static int vma_replace_policy(struct vm_area_struct *vma,
 756						struct mempolicy *pol)
 757{
 758	int err;
 759	struct mempolicy *old;
 760	struct mempolicy *new;
 761
 762	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 763		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 764		 vma->vm_ops, vma->vm_file,
 765		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 766
 767	new = mpol_dup(pol);
 768	if (IS_ERR(new))
 769		return PTR_ERR(new);
 770
 771	if (vma->vm_ops && vma->vm_ops->set_policy) {
 772		err = vma->vm_ops->set_policy(vma, new);
 773		if (err)
 774			goto err_out;
 775	}
 776
 777	old = vma->vm_policy;
 778	vma->vm_policy = new; /* protected by mmap_lock */
 779	mpol_put(old);
 780
 781	return 0;
 782 err_out:
 783	mpol_put(new);
 784	return err;
 785}
 786
 787/* Step 2: apply policy to a range and do splits. */
 788static int mbind_range(struct mm_struct *mm, unsigned long start,
 789		       unsigned long end, struct mempolicy *new_pol)
 790{
 791	MA_STATE(mas, &mm->mm_mt, start, start);
 792	struct vm_area_struct *prev;
 793	struct vm_area_struct *vma;
 794	int err = 0;
 795	pgoff_t pgoff;
 
 
 796
 797	prev = mas_prev(&mas, 0);
 798	if (unlikely(!prev))
 799		mas_set(&mas, start);
 800
 801	vma = mas_find(&mas, end - 1);
 802	if (WARN_ON(!vma))
 803		return 0;
 804
 
 805	if (start > vma->vm_start)
 806		prev = vma;
 807
 808	for (; vma; vma = mas_next(&mas, end - 1)) {
 809		unsigned long vmstart = max(start, vma->vm_start);
 810		unsigned long vmend = min(end, vma->vm_end);
 
 811
 812		if (mpol_equal(vma_policy(vma), new_pol))
 813			goto next;
 814
 815		pgoff = vma->vm_pgoff +
 816			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 817		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 818				 vma->anon_vma, vma->vm_file, pgoff,
 819				 new_pol, vma->vm_userfaultfd_ctx,
 820				 anon_vma_name(vma));
 821		if (prev) {
 822			/* vma_merge() invalidated the mas */
 823			mas_pause(&mas);
 824			vma = prev;
 
 
 
 
 825			goto replace;
 826		}
 827		if (vma->vm_start != vmstart) {
 828			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 829			if (err)
 830				goto out;
 831			/* split_vma() invalidated the mas */
 832			mas_pause(&mas);
 833		}
 834		if (vma->vm_end != vmend) {
 835			err = split_vma(vma->vm_mm, vma, vmend, 0);
 836			if (err)
 837				goto out;
 838			/* split_vma() invalidated the mas */
 839			mas_pause(&mas);
 840		}
 841replace:
 842		err = vma_replace_policy(vma, new_pol);
 843		if (err)
 844			goto out;
 845next:
 846		prev = vma;
 847	}
 848
 849out:
 850	return err;
 851}
 852
 853/* Set the process memory policy */
 854static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 855			     nodemask_t *nodes)
 856{
 857	struct mempolicy *new, *old;
 
 858	NODEMASK_SCRATCH(scratch);
 859	int ret;
 860
 861	if (!scratch)
 862		return -ENOMEM;
 863
 864	new = mpol_new(mode, flags, nodes);
 865	if (IS_ERR(new)) {
 866		ret = PTR_ERR(new);
 867		goto out;
 868	}
 869
 
 
 
 
 
 
 
 870	task_lock(current);
 871	ret = mpol_set_nodemask(new, nodes, scratch);
 872	if (ret) {
 873		task_unlock(current);
 
 
 874		mpol_put(new);
 875		goto out;
 876	}
 877
 878	old = current->mempolicy;
 879	current->mempolicy = new;
 880	if (new && new->mode == MPOL_INTERLEAVE)
 881		current->il_prev = MAX_NUMNODES-1;
 
 882	task_unlock(current);
 
 
 
 883	mpol_put(old);
 884	ret = 0;
 885out:
 886	NODEMASK_SCRATCH_FREE(scratch);
 887	return ret;
 888}
 889
 890/*
 891 * Return nodemask for policy for get_mempolicy() query
 892 *
 893 * Called with task's alloc_lock held
 894 */
 895static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 896{
 897	nodes_clear(*nodes);
 898	if (p == &default_policy)
 899		return;
 900
 901	switch (p->mode) {
 902	case MPOL_BIND:
 
 903	case MPOL_INTERLEAVE:
 
 
 904	case MPOL_PREFERRED:
 905	case MPOL_PREFERRED_MANY:
 906		*nodes = p->nodes;
 907		break;
 908	case MPOL_LOCAL:
 909		/* return empty node mask for local allocation */
 910		break;
 911	default:
 912		BUG();
 913	}
 914}
 915
 916static int lookup_node(struct mm_struct *mm, unsigned long addr)
 917{
 918	struct page *p = NULL;
 919	int ret;
 920
 921	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
 922	if (ret > 0) {
 923		ret = page_to_nid(p);
 924		put_page(p);
 925	}
 926	return ret;
 927}
 928
 929/* Retrieve NUMA policy */
 930static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 931			     unsigned long addr, unsigned long flags)
 932{
 933	int err;
 934	struct mm_struct *mm = current->mm;
 935	struct vm_area_struct *vma = NULL;
 936	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 937
 938	if (flags &
 939		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 940		return -EINVAL;
 941
 942	if (flags & MPOL_F_MEMS_ALLOWED) {
 943		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 944			return -EINVAL;
 945		*policy = 0;	/* just so it's initialized */
 946		task_lock(current);
 947		*nmask  = cpuset_current_mems_allowed;
 948		task_unlock(current);
 949		return 0;
 950	}
 951
 952	if (flags & MPOL_F_ADDR) {
 953		/*
 954		 * Do NOT fall back to task policy if the
 955		 * vma/shared policy at addr is NULL.  We
 956		 * want to return MPOL_DEFAULT in this case.
 957		 */
 958		mmap_read_lock(mm);
 959		vma = vma_lookup(mm, addr);
 960		if (!vma) {
 961			mmap_read_unlock(mm);
 962			return -EFAULT;
 963		}
 964		if (vma->vm_ops && vma->vm_ops->get_policy)
 965			pol = vma->vm_ops->get_policy(vma, addr);
 966		else
 967			pol = vma->vm_policy;
 968	} else if (addr)
 969		return -EINVAL;
 970
 971	if (!pol)
 972		pol = &default_policy;	/* indicates default behavior */
 973
 974	if (flags & MPOL_F_NODE) {
 975		if (flags & MPOL_F_ADDR) {
 976			/*
 977			 * Take a refcount on the mpol, because we are about to
 978			 * drop the mmap_lock, after which only "pol" remains
 979			 * valid, "vma" is stale.
 980			 */
 981			pol_refcount = pol;
 982			vma = NULL;
 983			mpol_get(pol);
 984			mmap_read_unlock(mm);
 985			err = lookup_node(mm, addr);
 986			if (err < 0)
 987				goto out;
 988			*policy = err;
 989		} else if (pol == current->mempolicy &&
 990				pol->mode == MPOL_INTERLEAVE) {
 991			*policy = next_node_in(current->il_prev, pol->nodes);
 992		} else {
 993			err = -EINVAL;
 994			goto out;
 995		}
 996	} else {
 997		*policy = pol == &default_policy ? MPOL_DEFAULT :
 998						pol->mode;
 999		/*
1000		 * Internal mempolicy flags must be masked off before exposing
1001		 * the policy to userspace.
1002		 */
1003		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004	}
1005
 
 
 
 
 
1006	err = 0;
1007	if (nmask) {
1008		if (mpol_store_user_nodemask(pol)) {
1009			*nmask = pol->w.user_nodemask;
1010		} else {
1011			task_lock(current);
1012			get_policy_nodemask(pol, nmask);
1013			task_unlock(current);
1014		}
1015	}
1016
1017 out:
1018	mpol_cond_put(pol);
1019	if (vma)
1020		mmap_read_unlock(mm);
1021	if (pol_refcount)
1022		mpol_put(pol_refcount);
1023	return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027/*
1028 * page migration, thp tail pages can be passed.
1029 */
1030static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031				unsigned long flags)
1032{
1033	struct page *head = compound_head(page);
1034	/*
1035	 * Avoid migrating a page that is shared with others.
1036	 */
1037	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038		if (!isolate_lru_page(head)) {
1039			list_add_tail(&head->lru, pagelist);
1040			mod_node_page_state(page_pgdat(head),
1041				NR_ISOLATED_ANON + page_is_file_lru(head),
1042				thp_nr_pages(head));
1043		} else if (flags & MPOL_MF_STRICT) {
1044			/*
1045			 * Non-movable page may reach here.  And, there may be
1046			 * temporary off LRU pages or non-LRU movable pages.
1047			 * Treat them as unmovable pages since they can't be
1048			 * isolated, so they can't be moved at the moment.  It
1049			 * should return -EIO for this case too.
1050			 */
1051			return -EIO;
1052		}
1053	}
 
1054
1055	return 0;
 
 
 
 
 
 
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			   int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	int err = 0;
1069	struct migration_target_control mtc = {
1070		.nid = dest,
1071		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1072	};
1073
1074	nodes_clear(nmask);
1075	node_set(source, nmask);
1076
1077	/*
1078	 * This does not "check" the range but isolates all pages that
1079	 * need migration.  Between passing in the full user address
1080	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081	 */
1082	vma = find_vma(mm, 0);
1083	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1085			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086
1087	if (!list_empty(&pagelist)) {
1088		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1089				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090		if (err)
1091			putback_movable_pages(&pagelist);
1092	}
1093
1094	return err;
1095}
1096
1097/*
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1100 *
1101 * Returns the number of page that could not be moved.
1102 */
1103int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104		     const nodemask_t *to, int flags)
1105{
1106	int busy = 0;
1107	int err = 0;
1108	nodemask_t tmp;
1109
1110	lru_cache_disable();
 
 
1111
1112	mmap_read_lock(mm);
 
 
 
 
1113
1114	/*
1115	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1116	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1117	 * bit in 'tmp', and return that <source, dest> pair for migration.
1118	 * The pair of nodemasks 'to' and 'from' define the map.
1119	 *
1120	 * If no pair of bits is found that way, fallback to picking some
1121	 * pair of 'source' and 'dest' bits that are not the same.  If the
1122	 * 'source' and 'dest' bits are the same, this represents a node
1123	 * that will be migrating to itself, so no pages need move.
1124	 *
1125	 * If no bits are left in 'tmp', or if all remaining bits left
1126	 * in 'tmp' correspond to the same bit in 'to', return false
1127	 * (nothing left to migrate).
1128	 *
1129	 * This lets us pick a pair of nodes to migrate between, such that
1130	 * if possible the dest node is not already occupied by some other
1131	 * source node, minimizing the risk of overloading the memory on a
1132	 * node that would happen if we migrated incoming memory to a node
1133	 * before migrating outgoing memory source that same node.
1134	 *
1135	 * A single scan of tmp is sufficient.  As we go, we remember the
1136	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1137	 * that not only moved, but what's better, moved to an empty slot
1138	 * (d is not set in tmp), then we break out then, with that pair.
1139	 * Otherwise when we finish scanning from_tmp, we at least have the
1140	 * most recent <s, d> pair that moved.  If we get all the way through
1141	 * the scan of tmp without finding any node that moved, much less
1142	 * moved to an empty node, then there is nothing left worth migrating.
1143	 */
1144
1145	tmp = *from;
1146	while (!nodes_empty(tmp)) {
1147		int s, d;
1148		int source = NUMA_NO_NODE;
1149		int dest = 0;
1150
1151		for_each_node_mask(s, tmp) {
1152
1153			/*
1154			 * do_migrate_pages() tries to maintain the relative
1155			 * node relationship of the pages established between
1156			 * threads and memory areas.
1157                         *
1158			 * However if the number of source nodes is not equal to
1159			 * the number of destination nodes we can not preserve
1160			 * this node relative relationship.  In that case, skip
1161			 * copying memory from a node that is in the destination
1162			 * mask.
1163			 *
1164			 * Example: [2,3,4] -> [3,4,5] moves everything.
1165			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166			 */
1167
1168			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1169						(node_isset(s, *to)))
1170				continue;
1171
1172			d = node_remap(s, *from, *to);
1173			if (s == d)
1174				continue;
1175
1176			source = s;	/* Node moved. Memorize */
1177			dest = d;
1178
1179			/* dest not in remaining from nodes? */
1180			if (!node_isset(dest, tmp))
1181				break;
1182		}
1183		if (source == NUMA_NO_NODE)
1184			break;
1185
1186		node_clear(source, tmp);
1187		err = migrate_to_node(mm, source, dest, flags);
1188		if (err > 0)
1189			busy += err;
1190		if (err < 0)
1191			break;
1192	}
1193	mmap_read_unlock(mm);
1194
1195	lru_cache_enable();
1196	if (err < 0)
1197		return err;
1198	return busy;
1199
1200}
1201
1202/*
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not.  N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1208 */
1209static struct page *new_page(struct page *page, unsigned long start)
1210{
1211	struct folio *dst, *src = page_folio(page);
1212	struct vm_area_struct *vma;
1213	unsigned long address;
1214	VMA_ITERATOR(vmi, current->mm, start);
1215	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216
1217	for_each_vma(vmi, vma) {
1218		address = page_address_in_vma(page, vma);
1219		if (address != -EFAULT)
1220			break;
 
1221	}
1222
1223	if (folio_test_hugetlb(src))
1224		return alloc_huge_page_vma(page_hstate(&src->page),
1225				vma, address);
1226
1227	if (folio_test_large(src))
1228		gfp = GFP_TRANSHUGE;
1229
1230	/*
1231	 * if !vma, vma_alloc_folio() will use task or system default policy
1232	 */
1233	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234			folio_test_large(src));
1235	return &dst->page;
1236}
1237#else
1238
1239static int migrate_page_add(struct page *page, struct list_head *pagelist,
1240				unsigned long flags)
1241{
1242	return -EIO;
1243}
1244
1245int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246		     const nodemask_t *to, int flags)
1247{
1248	return -ENOSYS;
1249}
1250
1251static struct page *new_page(struct page *page, unsigned long start)
1252{
1253	return NULL;
1254}
1255#endif
1256
1257static long do_mbind(unsigned long start, unsigned long len,
1258		     unsigned short mode, unsigned short mode_flags,
1259		     nodemask_t *nmask, unsigned long flags)
1260{
 
1261	struct mm_struct *mm = current->mm;
1262	struct mempolicy *new;
1263	unsigned long end;
1264	int err;
1265	int ret;
1266	LIST_HEAD(pagelist);
1267
1268	if (flags & ~(unsigned long)MPOL_MF_VALID)
1269		return -EINVAL;
1270	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271		return -EPERM;
1272
1273	if (start & ~PAGE_MASK)
1274		return -EINVAL;
1275
1276	if (mode == MPOL_DEFAULT)
1277		flags &= ~MPOL_MF_STRICT;
1278
1279	len = PAGE_ALIGN(len);
1280	end = start + len;
1281
1282	if (end < start)
1283		return -EINVAL;
1284	if (end == start)
1285		return 0;
1286
1287	new = mpol_new(mode, mode_flags, nmask);
1288	if (IS_ERR(new))
1289		return PTR_ERR(new);
1290
1291	if (flags & MPOL_MF_LAZY)
1292		new->flags |= MPOL_F_MOF;
1293
1294	/*
1295	 * If we are using the default policy then operation
1296	 * on discontinuous address spaces is okay after all
1297	 */
1298	if (!new)
1299		flags |= MPOL_MF_DISCONTIG_OK;
1300
1301	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302		 start, start + len, mode, mode_flags,
1303		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304
1305	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306
1307		lru_cache_disable();
 
 
1308	}
1309	{
1310		NODEMASK_SCRATCH(scratch);
1311		if (scratch) {
1312			mmap_write_lock(mm);
 
1313			err = mpol_set_nodemask(new, nmask, scratch);
 
1314			if (err)
1315				mmap_write_unlock(mm);
1316		} else
1317			err = -ENOMEM;
1318		NODEMASK_SCRATCH_FREE(scratch);
1319	}
1320	if (err)
1321		goto mpol_out;
1322
1323	ret = queue_pages_range(mm, start, end, nmask,
1324			  flags | MPOL_MF_INVERT, &pagelist);
1325
1326	if (ret < 0) {
1327		err = ret;
1328		goto up_out;
1329	}
1330
1331	err = mbind_range(mm, start, end, new);
1332
1333	if (!err) {
1334		int nr_failed = 0;
1335
1336		if (!list_empty(&pagelist)) {
1337			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
 
1340			if (nr_failed)
1341				putback_movable_pages(&pagelist);
1342		}
1343
1344		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345			err = -EIO;
1346	} else {
1347up_out:
1348		if (!list_empty(&pagelist))
1349			putback_movable_pages(&pagelist);
1350	}
1351
1352	mmap_write_unlock(mm);
1353mpol_out:
1354	mpol_put(new);
1355	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356		lru_cache_enable();
1357	return err;
1358}
1359
1360/*
1361 * User space interface with variable sized bitmaps for nodelists.
1362 */
1363static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364		      unsigned long maxnode)
1365{
1366	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367	int ret;
1368
1369	if (in_compat_syscall())
1370		ret = compat_get_bitmap(mask,
1371					(const compat_ulong_t __user *)nmask,
1372					maxnode);
1373	else
1374		ret = copy_from_user(mask, nmask,
1375				     nlongs * sizeof(unsigned long));
1376
1377	if (ret)
1378		return -EFAULT;
1379
1380	if (maxnode % BITS_PER_LONG)
1381		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382
1383	return 0;
1384}
1385
1386/* Copy a node mask from user space. */
1387static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388		     unsigned long maxnode)
1389{
 
 
 
 
1390	--maxnode;
1391	nodes_clear(*nodes);
1392	if (maxnode == 0 || !nmask)
1393		return 0;
1394	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395		return -EINVAL;
1396
1397	/*
1398	 * When the user specified more nodes than supported just check
1399	 * if the non supported part is all zero, one word at a time,
1400	 * starting at the end.
1401	 */
1402	while (maxnode > MAX_NUMNODES) {
1403		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404		unsigned long t;
1405
1406		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1407			return -EFAULT;
1408
1409		if (maxnode - bits >= MAX_NUMNODES) {
1410			maxnode -= bits;
1411		} else {
1412			maxnode = MAX_NUMNODES;
1413			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
 
 
 
 
 
 
1414		}
1415		if (t)
1416			return -EINVAL;
1417	}
1418
1419	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
 
 
 
1420}
1421
1422/* Copy a kernel node mask to user space */
1423static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424			      nodemask_t *nodes)
1425{
1426	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428	bool compat = in_compat_syscall();
1429
1430	if (compat)
1431		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432
1433	if (copy > nbytes) {
1434		if (copy > PAGE_SIZE)
1435			return -EINVAL;
1436		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437			return -EFAULT;
1438		copy = nbytes;
1439		maxnode = nr_node_ids;
1440	}
1441
1442	if (compat)
1443		return compat_put_bitmap((compat_ulong_t __user *)mask,
1444					 nodes_addr(*nodes), maxnode);
1445
1446	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447}
1448
1449/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
 
1451{
1452	*flags = *mode & MPOL_MODE_FLAGS;
1453	*mode &= ~MPOL_MODE_FLAGS;
 
1454
1455	if ((unsigned int)(*mode) >=  MPOL_MAX)
 
 
1456		return -EINVAL;
1457	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
 
1458		return -EINVAL;
1459	if (*flags & MPOL_F_NUMA_BALANCING) {
1460		if (*mode != MPOL_BIND)
1461			return -EINVAL;
1462		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463	}
1464	return 0;
1465}
1466
1467static long kernel_mbind(unsigned long start, unsigned long len,
1468			 unsigned long mode, const unsigned long __user *nmask,
1469			 unsigned long maxnode, unsigned int flags)
1470{
1471	unsigned short mode_flags;
1472	nodemask_t nodes;
1473	int lmode = mode;
1474	int err;
1475
1476	start = untagged_addr(start);
1477	err = sanitize_mpol_flags(&lmode, &mode_flags);
1478	if (err)
1479		return err;
1480
1481	err = get_nodes(&nodes, nmask, maxnode);
1482	if (err)
1483		return err;
1484
1485	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486}
1487
1488SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489		unsigned long, home_node, unsigned long, flags)
 
1490{
1491	struct mm_struct *mm = current->mm;
1492	struct vm_area_struct *vma;
1493	struct mempolicy *new;
1494	unsigned long vmstart;
1495	unsigned long vmend;
1496	unsigned long end;
1497	int err = -ENOENT;
1498	VMA_ITERATOR(vmi, mm, start);
1499
1500	start = untagged_addr(start);
1501	if (start & ~PAGE_MASK)
 
1502		return -EINVAL;
1503	/*
1504	 * flags is used for future extension if any.
1505	 */
1506	if (flags != 0)
1507		return -EINVAL;
1508
1509	/*
1510	 * Check home_node is online to avoid accessing uninitialized
1511	 * NODE_DATA.
1512	 */
1513	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514		return -EINVAL;
1515
1516	len = PAGE_ALIGN(len);
1517	end = start + len;
1518
1519	if (end < start)
1520		return -EINVAL;
1521	if (end == start)
1522		return 0;
1523	mmap_write_lock(mm);
1524	for_each_vma_range(vmi, vma, end) {
1525		vmstart = max(start, vma->vm_start);
1526		vmend   = min(end, vma->vm_end);
1527		new = mpol_dup(vma_policy(vma));
1528		if (IS_ERR(new)) {
1529			err = PTR_ERR(new);
1530			break;
1531		}
1532		/*
1533		 * Only update home node if there is an existing vma policy
1534		 */
1535		if (!new)
1536			continue;
1537
1538		/*
1539		 * If any vma in the range got policy other than MPOL_BIND
1540		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1541		 * the home node for vmas we already updated before.
1542		 */
1543		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1544			mpol_put(new);
1545			err = -EOPNOTSUPP;
1546			break;
1547		}
1548
1549		new->home_node = home_node;
1550		err = mbind_range(mm, vmstart, vmend, new);
1551		mpol_put(new);
1552		if (err)
1553			break;
1554	}
1555	mmap_write_unlock(mm);
1556	return err;
1557}
1558
1559SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560		unsigned long, mode, const unsigned long __user *, nmask,
1561		unsigned long, maxnode, unsigned int, flags)
1562{
1563	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564}
1565
1566/* Set the process memory policy */
1567static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568				 unsigned long maxnode)
1569{
1570	unsigned short mode_flags;
1571	nodemask_t nodes;
1572	int lmode = mode;
1573	int err;
1574
1575	err = sanitize_mpol_flags(&lmode, &mode_flags);
1576	if (err)
1577		return err;
1578
1579	err = get_nodes(&nodes, nmask, maxnode);
1580	if (err)
1581		return err;
1582
1583	return do_set_mempolicy(lmode, mode_flags, &nodes);
1584}
1585
1586SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587		unsigned long, maxnode)
1588{
1589	return kernel_set_mempolicy(mode, nmask, maxnode);
1590}
1591
1592static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593				const unsigned long __user *old_nodes,
1594				const unsigned long __user *new_nodes)
1595{
 
1596	struct mm_struct *mm = NULL;
1597	struct task_struct *task;
1598	nodemask_t task_nodes;
1599	int err;
1600	nodemask_t *old;
1601	nodemask_t *new;
1602	NODEMASK_SCRATCH(scratch);
1603
1604	if (!scratch)
1605		return -ENOMEM;
1606
1607	old = &scratch->mask1;
1608	new = &scratch->mask2;
1609
1610	err = get_nodes(old, old_nodes, maxnode);
1611	if (err)
1612		goto out;
1613
1614	err = get_nodes(new, new_nodes, maxnode);
1615	if (err)
1616		goto out;
1617
1618	/* Find the mm_struct */
1619	rcu_read_lock();
1620	task = pid ? find_task_by_vpid(pid) : current;
1621	if (!task) {
1622		rcu_read_unlock();
1623		err = -ESRCH;
1624		goto out;
1625	}
1626	get_task_struct(task);
1627
1628	err = -EINVAL;
1629
1630	/*
1631	 * Check if this process has the right to modify the specified process.
1632	 * Use the regular "ptrace_may_access()" checks.
1633	 */
1634	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1635		rcu_read_unlock();
1636		err = -EPERM;
1637		goto out_put;
1638	}
1639	rcu_read_unlock();
1640
1641	task_nodes = cpuset_mems_allowed(task);
1642	/* Is the user allowed to access the target nodes? */
1643	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644		err = -EPERM;
1645		goto out_put;
1646	}
1647
1648	task_nodes = cpuset_mems_allowed(current);
1649	nodes_and(*new, *new, task_nodes);
1650	if (nodes_empty(*new))
1651		goto out_put;
 
1652
1653	err = security_task_movememory(task);
1654	if (err)
1655		goto out_put;
1656
1657	mm = get_task_mm(task);
1658	put_task_struct(task);
1659
1660	if (!mm) {
1661		err = -EINVAL;
1662		goto out;
1663	}
1664
1665	err = do_migrate_pages(mm, old, new,
1666		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667
1668	mmput(mm);
1669out:
1670	NODEMASK_SCRATCH_FREE(scratch);
1671
1672	return err;
1673
1674out_put:
1675	put_task_struct(task);
1676	goto out;
1677
1678}
1679
1680SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681		const unsigned long __user *, old_nodes,
1682		const unsigned long __user *, new_nodes)
1683{
1684	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685}
1686
1687
1688/* Retrieve NUMA policy */
1689static int kernel_get_mempolicy(int __user *policy,
1690				unsigned long __user *nmask,
1691				unsigned long maxnode,
1692				unsigned long addr,
1693				unsigned long flags)
1694{
1695	int err;
1696	int pval;
1697	nodemask_t nodes;
1698
1699	if (nmask != NULL && maxnode < nr_node_ids)
1700		return -EINVAL;
1701
1702	addr = untagged_addr(addr);
1703
1704	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705
1706	if (err)
1707		return err;
1708
1709	if (policy && put_user(pval, policy))
1710		return -EFAULT;
1711
1712	if (nmask)
1713		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714
1715	return err;
1716}
1717
1718SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719		unsigned long __user *, nmask, unsigned long, maxnode,
1720		unsigned long, addr, unsigned long, flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721{
1722	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725bool vma_migratable(struct vm_area_struct *vma)
 
 
1726{
1727	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728		return false;
 
 
 
 
 
1729
1730	/*
1731	 * DAX device mappings require predictable access latency, so avoid
1732	 * incurring periodic faults.
1733	 */
1734	if (vma_is_dax(vma))
1735		return false;
1736
1737	if (is_vm_hugetlb_page(vma) &&
1738		!hugepage_migration_supported(hstate_vma(vma)))
1739		return false;
1740
1741	/*
1742	 * Migration allocates pages in the highest zone. If we cannot
1743	 * do so then migration (at least from node to node) is not
1744	 * possible.
1745	 */
1746	if (vma->vm_file &&
1747		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748			< policy_zone)
1749		return false;
1750	return true;
1751}
1752
1753struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754						unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755{
1756	struct mempolicy *pol = NULL;
1757
1758	if (vma) {
1759		if (vma->vm_ops && vma->vm_ops->get_policy) {
1760			pol = vma->vm_ops->get_policy(vma, addr);
 
 
 
1761		} else if (vma->vm_policy) {
1762			pol = vma->vm_policy;
1763
1764			/*
1765			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767			 * count on these policies which will be dropped by
1768			 * mpol_cond_put() later
1769			 */
1770			if (mpol_needs_cond_ref(pol))
1771				mpol_get(pol);
1772		}
1773	}
1774
1775	return pol;
1776}
1777
1778/*
1779 * get_vma_policy(@vma, @addr)
1780 * @vma: virtual memory area whose policy is sought
1781 * @addr: address in @vma for shared policy lookup
1782 *
1783 * Returns effective policy for a VMA at specified address.
1784 * Falls back to current->mempolicy or system default policy, as necessary.
1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786 * count--added by the get_policy() vm_op, as appropriate--to protect against
1787 * freeing by another task.  It is the caller's responsibility to free the
1788 * extra reference for shared policies.
1789 */
1790static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791						unsigned long addr)
1792{
1793	struct mempolicy *pol = __get_vma_policy(vma, addr);
1794
1795	if (!pol)
1796		pol = get_task_policy(current);
1797
1798	return pol;
1799}
1800
1801bool vma_policy_mof(struct vm_area_struct *vma)
1802{
1803	struct mempolicy *pol;
 
 
 
1804
1805	if (vma->vm_ops && vma->vm_ops->get_policy) {
1806		bool ret = false;
 
 
1807
1808		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809		if (pol && (pol->flags & MPOL_F_MOF))
1810			ret = true;
1811		mpol_cond_put(pol);
1812
1813		return ret;
1814	}
1815
1816	pol = vma->vm_policy;
1817	if (!pol)
1818		pol = get_task_policy(current);
1819
1820	return pol->flags & MPOL_F_MOF;
1821}
1822
1823bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824{
1825	enum zone_type dynamic_policy_zone = policy_zone;
1826
1827	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828
1829	/*
1830	 * if policy->nodes has movable memory only,
1831	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832	 *
1833	 * policy->nodes is intersect with node_states[N_MEMORY].
1834	 * so if the following test fails, it implies
1835	 * policy->nodes has movable memory only.
1836	 */
1837	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838		dynamic_policy_zone = ZONE_MOVABLE;
1839
1840	return zone >= dynamic_policy_zone;
1841}
1842
1843/*
1844 * Return a nodemask representing a mempolicy for filtering nodes for
1845 * page allocation
1846 */
1847nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848{
1849	int mode = policy->mode;
1850
1851	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1852	if (unlikely(mode == MPOL_BIND) &&
1853		apply_policy_zone(policy, gfp_zone(gfp)) &&
1854		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855		return &policy->nodes;
1856
1857	if (mode == MPOL_PREFERRED_MANY)
1858		return &policy->nodes;
1859
1860	return NULL;
1861}
1862
1863/*
1864 * Return the  preferred node id for 'prefer' mempolicy, and return
1865 * the given id for all other policies.
1866 *
1867 * policy_node() is always coupled with policy_nodemask(), which
1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 */
1870static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871{
1872	if (policy->mode == MPOL_PREFERRED) {
1873		nd = first_node(policy->nodes);
1874	} else {
 
 
 
1875		/*
1876		 * __GFP_THISNODE shouldn't even be used with the bind policy
1877		 * because we might easily break the expectation to stay on the
1878		 * requested node and not break the policy.
 
1879		 */
1880		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
 
 
 
 
 
1881	}
1882
1883	if ((policy->mode == MPOL_BIND ||
1884	     policy->mode == MPOL_PREFERRED_MANY) &&
1885	    policy->home_node != NUMA_NO_NODE)
1886		return policy->home_node;
1887
1888	return nd;
1889}
1890
1891/* Do dynamic interleaving for a process */
1892static unsigned interleave_nodes(struct mempolicy *policy)
1893{
1894	unsigned next;
1895	struct task_struct *me = current;
1896
1897	next = next_node_in(me->il_prev, policy->nodes);
 
 
 
1898	if (next < MAX_NUMNODES)
1899		me->il_prev = next;
1900	return next;
1901}
1902
1903/*
1904 * Depending on the memory policy provide a node from which to allocate the
1905 * next slab entry.
1906 */
1907unsigned int mempolicy_slab_node(void)
1908{
1909	struct mempolicy *policy;
1910	int node = numa_mem_id();
1911
1912	if (!in_task())
1913		return node;
1914
1915	policy = current->mempolicy;
1916	if (!policy)
1917		return node;
1918
1919	switch (policy->mode) {
1920	case MPOL_PREFERRED:
1921		return first_node(policy->nodes);
 
 
 
1922
1923	case MPOL_INTERLEAVE:
1924		return interleave_nodes(policy);
1925
1926	case MPOL_BIND:
1927	case MPOL_PREFERRED_MANY:
1928	{
1929		struct zoneref *z;
1930
1931		/*
1932		 * Follow bind policy behavior and start allocation at the
1933		 * first node.
1934		 */
1935		struct zonelist *zonelist;
 
1936		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938		z = first_zones_zonelist(zonelist, highest_zoneidx,
1939							&policy->nodes);
1940		return z->zone ? zone_to_nid(z->zone) : node;
 
1941	}
1942	case MPOL_LOCAL:
1943		return node;
1944
1945	default:
1946		BUG();
1947	}
1948}
1949
1950/*
1951 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953 * number of present nodes.
1954 */
1955static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956{
1957	nodemask_t nodemask = pol->nodes;
1958	unsigned int target, nnodes;
1959	int i;
1960	int nid;
1961	/*
1962	 * The barrier will stabilize the nodemask in a register or on
1963	 * the stack so that it will stop changing under the code.
1964	 *
1965	 * Between first_node() and next_node(), pol->nodes could be changed
1966	 * by other threads. So we put pol->nodes in a local stack.
1967	 */
1968	barrier();
1969
1970	nnodes = nodes_weight(nodemask);
1971	if (!nnodes)
1972		return numa_node_id();
1973	target = (unsigned int)n % nnodes;
1974	nid = first_node(nodemask);
1975	for (i = 0; i < target; i++)
1976		nid = next_node(nid, nodemask);
 
 
1977	return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984	if (vma) {
1985		unsigned long off;
1986
1987		/*
1988		 * for small pages, there is no difference between
1989		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990		 * for huge pages, since vm_pgoff is in units of small
1991		 * pages, we need to shift off the always 0 bits to get
1992		 * a useful offset.
1993		 */
1994		BUG_ON(shift < PAGE_SHIFT);
1995		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996		off += (addr - vma->vm_start) >> shift;
1997		return offset_il_node(pol, off);
1998	} else
1999		return interleave_nodes(pol);
2000}
2001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014 * to the mempolicy's @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019				struct mempolicy **mpol, nodemask_t **nodemask)
2020{
2021	int nid;
2022	int mode;
2023
2024	*mpol = get_vma_policy(vma, addr);
2025	*nodemask = NULL;
2026	mode = (*mpol)->mode;
2027
2028	if (unlikely(mode == MPOL_INTERLEAVE)) {
2029		nid = interleave_nid(*mpol, vma, addr,
2030					huge_page_shift(hstate_vma(vma)));
2031	} else {
2032		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034			*nodemask = &(*mpol)->nodes;
2035	}
2036	return nid;
2037}
2038
2039/*
2040 * init_nodemask_of_mempolicy
2041 *
2042 * If the current task's mempolicy is "default" [NULL], return 'false'
2043 * to indicate default policy.  Otherwise, extract the policy nodemask
2044 * for 'bind' or 'interleave' policy into the argument nodemask, or
2045 * initialize the argument nodemask to contain the single node for
2046 * 'preferred' or 'local' policy and return 'true' to indicate presence
2047 * of non-default mempolicy.
2048 *
2049 * We don't bother with reference counting the mempolicy [mpol_get/put]
2050 * because the current task is examining it's own mempolicy and a task's
2051 * mempolicy is only ever changed by the task itself.
2052 *
2053 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 */
2055bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056{
2057	struct mempolicy *mempolicy;
 
2058
2059	if (!(mask && current->mempolicy))
2060		return false;
2061
2062	task_lock(current);
2063	mempolicy = current->mempolicy;
2064	switch (mempolicy->mode) {
2065	case MPOL_PREFERRED:
2066	case MPOL_PREFERRED_MANY:
 
 
 
 
 
 
2067	case MPOL_BIND:
 
2068	case MPOL_INTERLEAVE:
2069		*mask = mempolicy->nodes;
2070		break;
2071
2072	case MPOL_LOCAL:
2073		init_nodemask_of_node(mask, numa_node_id());
2074		break;
2075
2076	default:
2077		BUG();
2078	}
2079	task_unlock(current);
2080
2081	return true;
2082}
2083#endif
2084
2085/*
2086 * mempolicy_in_oom_domain
2087 *
2088 * If tsk's mempolicy is "bind", check for intersection between mask and
2089 * the policy nodemask. Otherwise, return true for all other policies
2090 * including "interleave", as a tsk with "interleave" policy may have
2091 * memory allocated from all nodes in system.
2092 *
2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 */
2095bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096					const nodemask_t *mask)
2097{
2098	struct mempolicy *mempolicy;
2099	bool ret = true;
2100
2101	if (!mask)
2102		return ret;
2103
2104	task_lock(tsk);
2105	mempolicy = tsk->mempolicy;
2106	if (mempolicy && mempolicy->mode == MPOL_BIND)
2107		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108	task_unlock(tsk);
2109
2110	return ret;
2111}
2112
2113/* Allocate a page in interleaved policy.
2114   Own path because it needs to do special accounting. */
2115static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116					unsigned nid)
2117{
 
2118	struct page *page;
2119
2120	page = __alloc_pages(gfp, order, nid, NULL);
2121	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122	if (!static_branch_likely(&vm_numa_stat_key))
2123		return page;
2124	if (page && page_to_nid(page) == nid) {
2125		preempt_disable();
2126		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127		preempt_enable();
2128	}
2129	return page;
2130}
2131
2132static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133						int nid, struct mempolicy *pol)
2134{
2135	struct page *page;
2136	gfp_t preferred_gfp;
2137
2138	/*
2139	 * This is a two pass approach. The first pass will only try the
2140	 * preferred nodes but skip the direct reclaim and allow the
2141	 * allocation to fail, while the second pass will try all the
2142	 * nodes in system.
2143	 */
2144	preferred_gfp = gfp | __GFP_NOWARN;
2145	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147	if (!page)
2148		page = __alloc_pages(gfp, order, nid, NULL);
2149
2150	return page;
2151}
2152
2153/**
2154 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @gfp: GFP flags.
2156 * @order: Order of the folio.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual address of the allocation.  Must be inside @vma.
2159 * @hugepage: For hugepages try only the preferred node if possible.
2160 *
2161 * Allocate a folio for a specific address in @vma, using the appropriate
2162 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2163 * of the mm_struct of the VMA to prevent it from going away.  Should be
2164 * used for all allocations for folios that will be mapped into user space.
2165 *
2166 * Return: The folio on success or NULL if allocation fails.
2167 */
2168struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169		unsigned long addr, bool hugepage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	struct mempolicy *pol;
2172	int node = numa_node_id();
2173	struct folio *folio;
2174	int preferred_nid;
2175	nodemask_t *nmask;
2176
2177	pol = get_vma_policy(vma, addr);
 
 
2178
2179	if (pol->mode == MPOL_INTERLEAVE) {
2180		struct page *page;
2181		unsigned nid;
2182
2183		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184		mpol_cond_put(pol);
2185		gfp |= __GFP_COMP;
2186		page = alloc_page_interleave(gfp, order, nid);
2187		if (page && order > 1)
2188			prep_transhuge_page(page);
2189		folio = (struct folio *)page;
2190		goto out;
2191	}
2192
2193	if (pol->mode == MPOL_PREFERRED_MANY) {
2194		struct page *page;
2195
2196		node = policy_node(gfp, pol, node);
2197		gfp |= __GFP_COMP;
2198		page = alloc_pages_preferred_many(gfp, order, node, pol);
2199		mpol_cond_put(pol);
2200		if (page && order > 1)
2201			prep_transhuge_page(page);
2202		folio = (struct folio *)page;
2203		goto out;
2204	}
2205
2206	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2207		int hpage_node = node;
2208
2209		/*
2210		 * For hugepage allocation and non-interleave policy which
2211		 * allows the current node (or other explicitly preferred
2212		 * node) we only try to allocate from the current/preferred
2213		 * node and don't fall back to other nodes, as the cost of
2214		 * remote accesses would likely offset THP benefits.
2215		 *
2216		 * If the policy is interleave or does not allow the current
2217		 * node in its nodemask, we allocate the standard way.
2218		 */
2219		if (pol->mode == MPOL_PREFERRED)
2220			hpage_node = first_node(pol->nodes);
2221
2222		nmask = policy_nodemask(gfp, pol);
2223		if (!nmask || node_isset(hpage_node, *nmask)) {
2224			mpol_cond_put(pol);
2225			/*
2226			 * First, try to allocate THP only on local node, but
2227			 * don't reclaim unnecessarily, just compact.
2228			 */
2229			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2230					__GFP_NORETRY, order, hpage_node);
2231
2232			/*
2233			 * If hugepage allocations are configured to always
2234			 * synchronous compact or the vma has been madvised
2235			 * to prefer hugepage backing, retry allowing remote
2236			 * memory with both reclaim and compact as well.
2237			 */
2238			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2239				folio = __folio_alloc(gfp, order, hpage_node,
2240						      nmask);
2241
2242			goto out;
2243		}
2244	}
2245
2246	nmask = policy_nodemask(gfp, pol);
2247	preferred_nid = policy_node(gfp, pol, node);
2248	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249	mpol_cond_put(pol);
2250out:
2251	return folio;
2252}
2253EXPORT_SYMBOL(vma_alloc_folio);
2254
2255/**
2256 * alloc_pages - Allocate pages.
2257 * @gfp: GFP flags.
2258 * @order: Power of two of number of pages to allocate.
2259 *
2260 * Allocate 1 << @order contiguous pages.  The physical address of the
2261 * first page is naturally aligned (eg an order-3 allocation will be aligned
2262 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2263 * process is honoured when in process context.
2264 *
2265 * Context: Can be called from any context, providing the appropriate GFP
2266 * flags are used.
2267 * Return: The page on success or NULL if allocation fails.
 
 
 
 
 
2268 */
2269struct page *alloc_pages(gfp_t gfp, unsigned order)
2270{
2271	struct mempolicy *pol = &default_policy;
2272	struct page *page;
 
 
 
 
2273
2274	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2275		pol = get_task_policy(current);
2276
2277	/*
2278	 * No reference counting needed for current->mempolicy
2279	 * nor system default_policy
2280	 */
2281	if (pol->mode == MPOL_INTERLEAVE)
2282		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2283	else if (pol->mode == MPOL_PREFERRED_MANY)
2284		page = alloc_pages_preferred_many(gfp, order,
2285				  policy_node(gfp, pol, numa_node_id()), pol);
2286	else
2287		page = __alloc_pages(gfp, order,
2288				policy_node(gfp, pol, numa_node_id()),
2289				policy_nodemask(gfp, pol));
2290
 
 
 
2291	return page;
2292}
2293EXPORT_SYMBOL(alloc_pages);
2294
2295struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296{
2297	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298
2299	if (page && order > 1)
2300		prep_transhuge_page(page);
2301	return (struct folio *)page;
2302}
2303EXPORT_SYMBOL(folio_alloc);
2304
2305static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2306		struct mempolicy *pol, unsigned long nr_pages,
2307		struct page **page_array)
2308{
2309	int nodes;
2310	unsigned long nr_pages_per_node;
2311	int delta;
2312	int i;
2313	unsigned long nr_allocated;
2314	unsigned long total_allocated = 0;
2315
2316	nodes = nodes_weight(pol->nodes);
2317	nr_pages_per_node = nr_pages / nodes;
2318	delta = nr_pages - nodes * nr_pages_per_node;
2319
2320	for (i = 0; i < nodes; i++) {
2321		if (delta) {
2322			nr_allocated = __alloc_pages_bulk(gfp,
2323					interleave_nodes(pol), NULL,
2324					nr_pages_per_node + 1, NULL,
2325					page_array);
2326			delta--;
2327		} else {
2328			nr_allocated = __alloc_pages_bulk(gfp,
2329					interleave_nodes(pol), NULL,
2330					nr_pages_per_node, NULL, page_array);
2331		}
2332
2333		page_array += nr_allocated;
2334		total_allocated += nr_allocated;
2335	}
2336
2337	return total_allocated;
2338}
2339
2340static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2341		struct mempolicy *pol, unsigned long nr_pages,
2342		struct page **page_array)
2343{
2344	gfp_t preferred_gfp;
2345	unsigned long nr_allocated = 0;
2346
2347	preferred_gfp = gfp | __GFP_NOWARN;
2348	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349
2350	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2351					   nr_pages, NULL, page_array);
2352
2353	if (nr_allocated < nr_pages)
2354		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2355				nr_pages - nr_allocated, NULL,
2356				page_array + nr_allocated);
2357	return nr_allocated;
2358}
2359
2360/* alloc pages bulk and mempolicy should be considered at the
2361 * same time in some situation such as vmalloc.
2362 *
2363 * It can accelerate memory allocation especially interleaving
2364 * allocate memory.
2365 */
2366unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2367		unsigned long nr_pages, struct page **page_array)
2368{
2369	struct mempolicy *pol = &default_policy;
2370
2371	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2372		pol = get_task_policy(current);
2373
2374	if (pol->mode == MPOL_INTERLEAVE)
2375		return alloc_pages_bulk_array_interleave(gfp, pol,
2376							 nr_pages, page_array);
2377
2378	if (pol->mode == MPOL_PREFERRED_MANY)
2379		return alloc_pages_bulk_array_preferred_many(gfp,
2380				numa_node_id(), pol, nr_pages, page_array);
2381
2382	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2383				  policy_nodemask(gfp, pol), nr_pages, NULL,
2384				  page_array);
2385}
2386
2387int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388{
2389	struct mempolicy *pol = mpol_dup(vma_policy(src));
2390
2391	if (IS_ERR(pol))
2392		return PTR_ERR(pol);
2393	dst->vm_policy = pol;
2394	return 0;
2395}
2396
2397/*
2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2400 * with the mems_allowed returned by cpuset_mems_allowed().  This
2401 * keeps mempolicies cpuset relative after its cpuset moves.  See
2402 * further kernel/cpuset.c update_nodemask().
2403 *
2404 * current's mempolicy may be rebinded by the other task(the task that changes
2405 * cpuset's mems), so we needn't do rebind work for current task.
2406 */
2407
2408/* Slow path of a mempolicy duplicate */
2409struct mempolicy *__mpol_dup(struct mempolicy *old)
2410{
2411	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2412
2413	if (!new)
2414		return ERR_PTR(-ENOMEM);
2415
2416	/* task's mempolicy is protected by alloc_lock */
2417	if (old == current->mempolicy) {
2418		task_lock(current);
2419		*new = *old;
2420		task_unlock(current);
2421	} else
2422		*new = *old;
2423
 
2424	if (current_cpuset_is_being_rebound()) {
2425		nodemask_t mems = cpuset_mems_allowed(current);
2426		mpol_rebind_policy(new, &mems);
 
 
 
2427	}
 
2428	atomic_set(&new->refcnt, 1);
2429	return new;
2430}
2431
2432/* Slow path of a mempolicy comparison */
2433bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2434{
2435	if (!a || !b)
2436		return false;
2437	if (a->mode != b->mode)
2438		return false;
2439	if (a->flags != b->flags)
2440		return false;
2441	if (a->home_node != b->home_node)
2442		return false;
2443	if (mpol_store_user_nodemask(a))
2444		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445			return false;
2446
2447	switch (a->mode) {
2448	case MPOL_BIND:
 
2449	case MPOL_INTERLEAVE:
 
2450	case MPOL_PREFERRED:
2451	case MPOL_PREFERRED_MANY:
2452		return !!nodes_equal(a->nodes, b->nodes);
2453	case MPOL_LOCAL:
2454		return true;
2455	default:
2456		BUG();
2457		return false;
2458	}
2459}
2460
2461/*
2462 * Shared memory backing store policy support.
2463 *
2464 * Remember policies even when nobody has shared memory mapped.
2465 * The policies are kept in Red-Black tree linked from the inode.
2466 * They are protected by the sp->lock rwlock, which should be held
2467 * for any accesses to the tree.
2468 */
2469
2470/*
2471 * lookup first element intersecting start-end.  Caller holds sp->lock for
2472 * reading or for writing
2473 */
2474static struct sp_node *
2475sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476{
2477	struct rb_node *n = sp->root.rb_node;
2478
2479	while (n) {
2480		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481
2482		if (start >= p->end)
2483			n = n->rb_right;
2484		else if (end <= p->start)
2485			n = n->rb_left;
2486		else
2487			break;
2488	}
2489	if (!n)
2490		return NULL;
2491	for (;;) {
2492		struct sp_node *w = NULL;
2493		struct rb_node *prev = rb_prev(n);
2494		if (!prev)
2495			break;
2496		w = rb_entry(prev, struct sp_node, nd);
2497		if (w->end <= start)
2498			break;
2499		n = prev;
2500	}
2501	return rb_entry(n, struct sp_node, nd);
2502}
2503
2504/*
2505 * Insert a new shared policy into the list.  Caller holds sp->lock for
2506 * writing.
2507 */
2508static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509{
2510	struct rb_node **p = &sp->root.rb_node;
2511	struct rb_node *parent = NULL;
2512	struct sp_node *nd;
2513
2514	while (*p) {
2515		parent = *p;
2516		nd = rb_entry(parent, struct sp_node, nd);
2517		if (new->start < nd->start)
2518			p = &(*p)->rb_left;
2519		else if (new->end > nd->end)
2520			p = &(*p)->rb_right;
2521		else
2522			BUG();
2523	}
2524	rb_link_node(&new->nd, parent, p);
2525	rb_insert_color(&new->nd, &sp->root);
2526	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2527		 new->policy ? new->policy->mode : 0);
2528}
2529
2530/* Find shared policy intersecting idx */
2531struct mempolicy *
2532mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533{
2534	struct mempolicy *pol = NULL;
2535	struct sp_node *sn;
2536
2537	if (!sp->root.rb_node)
2538		return NULL;
2539	read_lock(&sp->lock);
2540	sn = sp_lookup(sp, idx, idx+1);
2541	if (sn) {
2542		mpol_get(sn->policy);
2543		pol = sn->policy;
2544	}
2545	read_unlock(&sp->lock);
2546	return pol;
2547}
2548
2549static void sp_free(struct sp_node *n)
2550{
2551	mpol_put(n->policy);
2552	kmem_cache_free(sn_cache, n);
2553}
2554
2555/**
2556 * mpol_misplaced - check whether current page node is valid in policy
2557 *
2558 * @page: page to be checked
2559 * @vma: vm area where page mapped
2560 * @addr: virtual address where page mapped
2561 *
2562 * Lookup current policy node id for vma,addr and "compare to" page's
2563 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
 
 
 
2564 * Called from fault path where we know the vma and faulting address.
2565 *
2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2567 * policy, or a suitable node ID to allocate a replacement page from.
2568 */
2569int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570{
2571	struct mempolicy *pol;
2572	struct zoneref *z;
2573	int curnid = page_to_nid(page);
2574	unsigned long pgoff;
2575	int thiscpu = raw_smp_processor_id();
2576	int thisnid = cpu_to_node(thiscpu);
2577	int polnid = NUMA_NO_NODE;
2578	int ret = NUMA_NO_NODE;
 
 
2579
2580	pol = get_vma_policy(vma, addr);
2581	if (!(pol->flags & MPOL_F_MOF))
2582		goto out;
2583
2584	switch (pol->mode) {
2585	case MPOL_INTERLEAVE:
 
 
 
2586		pgoff = vma->vm_pgoff;
2587		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2588		polnid = offset_il_node(pol, pgoff);
2589		break;
2590
2591	case MPOL_PREFERRED:
2592		if (node_isset(curnid, pol->nodes))
2593			goto out;
2594		polnid = first_node(pol->nodes);
2595		break;
2596
2597	case MPOL_LOCAL:
2598		polnid = numa_node_id();
2599		break;
2600
2601	case MPOL_BIND:
2602		/* Optimize placement among multiple nodes via NUMA balancing */
2603		if (pol->flags & MPOL_F_MORON) {
2604			if (node_isset(thisnid, pol->nodes))
2605				break;
2606			goto out;
2607		}
2608		fallthrough;
2609
2610	case MPOL_PREFERRED_MANY:
2611		/*
 
2612		 * use current page if in policy nodemask,
2613		 * else select nearest allowed node, if any.
2614		 * If no allowed nodes, use current [!misplaced].
2615		 */
2616		if (node_isset(curnid, pol->nodes))
2617			goto out;
2618		z = first_zones_zonelist(
2619				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2620				gfp_zone(GFP_HIGHUSER),
2621				&pol->nodes);
2622		polnid = zone_to_nid(z->zone);
2623		break;
2624
2625	default:
2626		BUG();
2627	}
2628
2629	/* Migrate the page towards the node whose CPU is referencing it */
2630	if (pol->flags & MPOL_F_MORON) {
2631		polnid = thisnid;
2632
2633		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2634			goto out;
2635	}
2636
2637	if (curnid != polnid)
2638		ret = polnid;
2639out:
2640	mpol_cond_put(pol);
2641
2642	return ret;
2643}
2644
2645/*
2646 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2647 * dropped after task->mempolicy is set to NULL so that any allocation done as
2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2649 * policy.
2650 */
2651void mpol_put_task_policy(struct task_struct *task)
2652{
2653	struct mempolicy *pol;
2654
2655	task_lock(task);
2656	pol = task->mempolicy;
2657	task->mempolicy = NULL;
2658	task_unlock(task);
2659	mpol_put(pol);
2660}
2661
2662static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663{
2664	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2665	rb_erase(&n->nd, &sp->root);
2666	sp_free(n);
2667}
2668
2669static void sp_node_init(struct sp_node *node, unsigned long start,
2670			unsigned long end, struct mempolicy *pol)
2671{
2672	node->start = start;
2673	node->end = end;
2674	node->policy = pol;
2675}
2676
2677static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2678				struct mempolicy *pol)
2679{
2680	struct sp_node *n;
2681	struct mempolicy *newpol;
2682
2683	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2684	if (!n)
2685		return NULL;
2686
2687	newpol = mpol_dup(pol);
2688	if (IS_ERR(newpol)) {
2689		kmem_cache_free(sn_cache, n);
2690		return NULL;
2691	}
2692	newpol->flags |= MPOL_F_SHARED;
2693	sp_node_init(n, start, end, newpol);
2694
2695	return n;
2696}
2697
2698/* Replace a policy range. */
2699static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2700				 unsigned long end, struct sp_node *new)
2701{
2702	struct sp_node *n;
2703	struct sp_node *n_new = NULL;
2704	struct mempolicy *mpol_new = NULL;
2705	int ret = 0;
2706
2707restart:
2708	write_lock(&sp->lock);
2709	n = sp_lookup(sp, start, end);
2710	/* Take care of old policies in the same range. */
2711	while (n && n->start < end) {
2712		struct rb_node *next = rb_next(&n->nd);
2713		if (n->start >= start) {
2714			if (n->end <= end)
2715				sp_delete(sp, n);
2716			else
2717				n->start = end;
2718		} else {
2719			/* Old policy spanning whole new range. */
2720			if (n->end > end) {
2721				if (!n_new)
2722					goto alloc_new;
2723
2724				*mpol_new = *n->policy;
2725				atomic_set(&mpol_new->refcnt, 1);
2726				sp_node_init(n_new, end, n->end, mpol_new);
2727				n->end = start;
2728				sp_insert(sp, n_new);
2729				n_new = NULL;
2730				mpol_new = NULL;
2731				break;
2732			} else
2733				n->end = start;
2734		}
2735		if (!next)
2736			break;
2737		n = rb_entry(next, struct sp_node, nd);
2738	}
2739	if (new)
2740		sp_insert(sp, new);
2741	write_unlock(&sp->lock);
2742	ret = 0;
2743
2744err_out:
2745	if (mpol_new)
2746		mpol_put(mpol_new);
2747	if (n_new)
2748		kmem_cache_free(sn_cache, n_new);
2749
2750	return ret;
2751
2752alloc_new:
2753	write_unlock(&sp->lock);
2754	ret = -ENOMEM;
2755	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2756	if (!n_new)
2757		goto err_out;
2758	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2759	if (!mpol_new)
2760		goto err_out;
2761	atomic_set(&mpol_new->refcnt, 1);
2762	goto restart;
2763}
2764
2765/**
2766 * mpol_shared_policy_init - initialize shared policy for inode
2767 * @sp: pointer to inode shared policy
2768 * @mpol:  struct mempolicy to install
2769 *
2770 * Install non-NULL @mpol in inode's shared policy rb-tree.
2771 * On entry, the current task has a reference on a non-NULL @mpol.
2772 * This must be released on exit.
2773 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 */
2775void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2776{
2777	int ret;
2778
2779	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2780	rwlock_init(&sp->lock);
2781
2782	if (mpol) {
2783		struct vm_area_struct pvma;
2784		struct mempolicy *new;
2785		NODEMASK_SCRATCH(scratch);
2786
2787		if (!scratch)
2788			goto put_mpol;
2789		/* contextualize the tmpfs mount point mempolicy */
2790		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791		if (IS_ERR(new))
2792			goto free_scratch; /* no valid nodemask intersection */
2793
2794		task_lock(current);
2795		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2796		task_unlock(current);
2797		if (ret)
2798			goto put_new;
2799
2800		/* Create pseudo-vma that contains just the policy */
2801		vma_init(&pvma, NULL);
2802		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2803		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2804
2805put_new:
2806		mpol_put(new);			/* drop initial ref */
2807free_scratch:
2808		NODEMASK_SCRATCH_FREE(scratch);
2809put_mpol:
2810		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2811	}
2812}
2813
2814int mpol_set_shared_policy(struct shared_policy *info,
2815			struct vm_area_struct *vma, struct mempolicy *npol)
2816{
2817	int err;
2818	struct sp_node *new = NULL;
2819	unsigned long sz = vma_pages(vma);
2820
2821	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822		 vma->vm_pgoff,
2823		 sz, npol ? npol->mode : -1,
2824		 npol ? npol->flags : -1,
2825		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2826
2827	if (npol) {
2828		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2829		if (!new)
2830			return -ENOMEM;
2831	}
2832	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2833	if (err && new)
2834		sp_free(new);
2835	return err;
2836}
2837
2838/* Free a backing policy store on inode delete. */
2839void mpol_free_shared_policy(struct shared_policy *p)
2840{
2841	struct sp_node *n;
2842	struct rb_node *next;
2843
2844	if (!p->root.rb_node)
2845		return;
2846	write_lock(&p->lock);
2847	next = rb_first(&p->root);
2848	while (next) {
2849		n = rb_entry(next, struct sp_node, nd);
2850		next = rb_next(&n->nd);
2851		sp_delete(p, n);
2852	}
2853	write_unlock(&p->lock);
2854}
2855
2856#ifdef CONFIG_NUMA_BALANCING
2857static int __initdata numabalancing_override;
2858
2859static void __init check_numabalancing_enable(void)
2860{
2861	bool numabalancing_default = false;
2862
2863	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2864		numabalancing_default = true;
2865
2866	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2867	if (numabalancing_override)
2868		set_numabalancing_state(numabalancing_override == 1);
2869
2870	if (num_online_nodes() > 1 && !numabalancing_override) {
2871		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
 
 
2872			numabalancing_default ? "Enabling" : "Disabling");
2873		set_numabalancing_state(numabalancing_default);
2874	}
2875}
2876
2877static int __init setup_numabalancing(char *str)
2878{
2879	int ret = 0;
2880	if (!str)
2881		goto out;
2882
2883	if (!strcmp(str, "enable")) {
2884		numabalancing_override = 1;
2885		ret = 1;
2886	} else if (!strcmp(str, "disable")) {
2887		numabalancing_override = -1;
2888		ret = 1;
2889	}
2890out:
2891	if (!ret)
2892		pr_warn("Unable to parse numa_balancing=\n");
2893
2894	return ret;
2895}
2896__setup("numa_balancing=", setup_numabalancing);
2897#else
2898static inline void __init check_numabalancing_enable(void)
2899{
2900}
2901#endif /* CONFIG_NUMA_BALANCING */
2902
2903/* assumes fs == KERNEL_DS */
2904void __init numa_policy_init(void)
2905{
2906	nodemask_t interleave_nodes;
2907	unsigned long largest = 0;
2908	int nid, prefer = 0;
2909
2910	policy_cache = kmem_cache_create("numa_policy",
2911					 sizeof(struct mempolicy),
2912					 0, SLAB_PANIC, NULL);
2913
2914	sn_cache = kmem_cache_create("shared_policy_node",
2915				     sizeof(struct sp_node),
2916				     0, SLAB_PANIC, NULL);
2917
2918	for_each_node(nid) {
2919		preferred_node_policy[nid] = (struct mempolicy) {
2920			.refcnt = ATOMIC_INIT(1),
2921			.mode = MPOL_PREFERRED,
2922			.flags = MPOL_F_MOF | MPOL_F_MORON,
2923			.nodes = nodemask_of_node(nid),
2924		};
2925	}
2926
2927	/*
2928	 * Set interleaving policy for system init. Interleaving is only
2929	 * enabled across suitably sized nodes (default is >= 16MB), or
2930	 * fall back to the largest node if they're all smaller.
2931	 */
2932	nodes_clear(interleave_nodes);
2933	for_each_node_state(nid, N_MEMORY) {
2934		unsigned long total_pages = node_present_pages(nid);
2935
2936		/* Preserve the largest node */
2937		if (largest < total_pages) {
2938			largest = total_pages;
2939			prefer = nid;
2940		}
2941
2942		/* Interleave this node? */
2943		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2944			node_set(nid, interleave_nodes);
2945	}
2946
2947	/* All too small, use the largest */
2948	if (unlikely(nodes_empty(interleave_nodes)))
2949		node_set(prefer, interleave_nodes);
2950
2951	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2952		pr_err("%s: interleaving failed\n", __func__);
2953
2954	check_numabalancing_enable();
2955}
2956
2957/* Reset policy of current process to default */
2958void numa_default_policy(void)
2959{
2960	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2961}
2962
2963/*
2964 * Parse and format mempolicy from/to strings
2965 */
2966
 
 
 
2967static const char * const policy_modes[] =
2968{
2969	[MPOL_DEFAULT]    = "default",
2970	[MPOL_PREFERRED]  = "prefer",
2971	[MPOL_BIND]       = "bind",
2972	[MPOL_INTERLEAVE] = "interleave",
2973	[MPOL_LOCAL]      = "local",
2974	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2975};
2976
2977
2978#ifdef CONFIG_TMPFS
2979/**
2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2981 * @str:  string containing mempolicy to parse
2982 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2983 *
2984 * Format of input:
2985 *	<mode>[=<flags>][:<nodelist>]
2986 *
2987 * Return: %0 on success, else %1
2988 */
2989int mpol_parse_str(char *str, struct mempolicy **mpol)
2990{
2991	struct mempolicy *new = NULL;
 
2992	unsigned short mode_flags;
2993	nodemask_t nodes;
2994	char *nodelist = strchr(str, ':');
2995	char *flags = strchr(str, '=');
2996	int err = 1, mode;
2997
2998	if (flags)
2999		*flags++ = '\0';	/* terminate mode string */
3000
3001	if (nodelist) {
3002		/* NUL-terminate mode or flags string */
3003		*nodelist++ = '\0';
3004		if (nodelist_parse(nodelist, nodes))
3005			goto out;
3006		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007			goto out;
3008	} else
3009		nodes_clear(nodes);
3010
3011	mode = match_string(policy_modes, MPOL_MAX, str);
3012	if (mode < 0)
 
 
 
 
 
 
 
3013		goto out;
3014
3015	switch (mode) {
3016	case MPOL_PREFERRED:
3017		/*
3018		 * Insist on a nodelist of one node only, although later
3019		 * we use first_node(nodes) to grab a single node, so here
3020		 * nodelist (or nodes) cannot be empty.
3021		 */
3022		if (nodelist) {
3023			char *rest = nodelist;
3024			while (isdigit(*rest))
3025				rest++;
3026			if (*rest)
3027				goto out;
3028			if (nodes_empty(nodes))
3029				goto out;
3030		}
3031		break;
3032	case MPOL_INTERLEAVE:
3033		/*
3034		 * Default to online nodes with memory if no nodelist
3035		 */
3036		if (!nodelist)
3037			nodes = node_states[N_MEMORY];
3038		break;
3039	case MPOL_LOCAL:
3040		/*
3041		 * Don't allow a nodelist;  mpol_new() checks flags
3042		 */
3043		if (nodelist)
3044			goto out;
 
3045		break;
3046	case MPOL_DEFAULT:
3047		/*
3048		 * Insist on a empty nodelist
3049		 */
3050		if (!nodelist)
3051			err = 0;
3052		goto out;
3053	case MPOL_PREFERRED_MANY:
3054	case MPOL_BIND:
3055		/*
3056		 * Insist on a nodelist
3057		 */
3058		if (!nodelist)
3059			goto out;
3060	}
3061
3062	mode_flags = 0;
3063	if (flags) {
3064		/*
3065		 * Currently, we only support two mutually exclusive
3066		 * mode flags.
3067		 */
3068		if (!strcmp(flags, "static"))
3069			mode_flags |= MPOL_F_STATIC_NODES;
3070		else if (!strcmp(flags, "relative"))
3071			mode_flags |= MPOL_F_RELATIVE_NODES;
3072		else
3073			goto out;
3074	}
3075
3076	new = mpol_new(mode, mode_flags, &nodes);
3077	if (IS_ERR(new))
3078		goto out;
3079
3080	/*
3081	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3082	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083	 */
3084	if (mode != MPOL_PREFERRED) {
3085		new->nodes = nodes;
3086	} else if (nodelist) {
3087		nodes_clear(new->nodes);
3088		node_set(first_node(nodes), new->nodes);
3089	} else {
3090		new->mode = MPOL_LOCAL;
3091	}
3092
3093	/*
3094	 * Save nodes for contextualization: this will be used to "clone"
3095	 * the mempolicy in a specific context [cpuset] at a later time.
3096	 */
3097	new->w.user_nodemask = nodes;
3098
3099	err = 0;
3100
3101out:
3102	/* Restore string for error message */
3103	if (nodelist)
3104		*--nodelist = ':';
3105	if (flags)
3106		*--flags = '=';
3107	if (!err)
3108		*mpol = new;
3109	return err;
3110}
3111#endif /* CONFIG_TMPFS */
3112
3113/**
3114 * mpol_to_str - format a mempolicy structure for printing
3115 * @buffer:  to contain formatted mempolicy string
3116 * @maxlen:  length of @buffer
3117 * @pol:  pointer to mempolicy to be formatted
3118 *
3119 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3121 * longest flag, "relative", and to display at least a few node ids.
3122 */
3123void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3124{
3125	char *p = buffer;
3126	nodemask_t nodes = NODE_MASK_NONE;
3127	unsigned short mode = MPOL_DEFAULT;
3128	unsigned short flags = 0;
3129
3130	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3131		mode = pol->mode;
3132		flags = pol->flags;
3133	}
3134
3135	switch (mode) {
3136	case MPOL_DEFAULT:
3137	case MPOL_LOCAL:
3138		break;
3139	case MPOL_PREFERRED:
3140	case MPOL_PREFERRED_MANY:
 
 
 
 
3141	case MPOL_BIND:
3142	case MPOL_INTERLEAVE:
3143		nodes = pol->nodes;
3144		break;
3145	default:
3146		WARN_ON_ONCE(1);
3147		snprintf(p, maxlen, "unknown");
3148		return;
3149	}
3150
3151	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3152
3153	if (flags & MPOL_MODE_FLAGS) {
3154		p += snprintf(p, buffer + maxlen - p, "=");
3155
3156		/*
3157		 * Currently, the only defined flags are mutually exclusive
3158		 */
3159		if (flags & MPOL_F_STATIC_NODES)
3160			p += snprintf(p, buffer + maxlen - p, "static");
3161		else if (flags & MPOL_F_RELATIVE_NODES)
3162			p += snprintf(p, buffer + maxlen - p, "relative");
3163	}
3164
3165	if (!nodes_empty(nodes))
3166		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167			       nodemask_pr_args(&nodes));
 
3168}