Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Frontswap frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of frontswap.  See
  6 * Documentation/vm/frontswap.txt for more information.
  7 *
  8 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/mman.h>
 15#include <linux/swap.h>
 16#include <linux/swapops.h>
 17#include <linux/security.h>
 18#include <linux/module.h>
 19#include <linux/debugfs.h>
 20#include <linux/frontswap.h>
 21#include <linux/swapfile.h>
 22
 23/*
 24 * frontswap_ops is set by frontswap_register_ops to contain the pointers
 25 * to the frontswap "backend" implementation functions.
 26 */
 27static struct frontswap_ops *frontswap_ops __read_mostly;
 28
 29/*
 30 * If enabled, frontswap_store will return failure even on success.  As
 31 * a result, the swap subsystem will always write the page to swap, in
 32 * effect converting frontswap into a writethrough cache.  In this mode,
 33 * there is no direct reduction in swap writes, but a frontswap backend
 34 * can unilaterally "reclaim" any pages in use with no data loss, thus
 35 * providing increases control over maximum memory usage due to frontswap.
 36 */
 37static bool frontswap_writethrough_enabled __read_mostly;
 38
 39/*
 40 * If enabled, the underlying tmem implementation is capable of doing
 41 * exclusive gets, so frontswap_load, on a successful tmem_get must
 42 * mark the page as no longer in frontswap AND mark it dirty.
 
 43 */
 44static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
 45
 46#ifdef CONFIG_DEBUG_FS
 47/*
 48 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 49 * properly configured).  These are for information only so are not protected
 50 * against increment races.
 51 */
 52static u64 frontswap_loads;
 53static u64 frontswap_succ_stores;
 54static u64 frontswap_failed_stores;
 55static u64 frontswap_invalidates;
 56
 57static inline void inc_frontswap_loads(void) {
 58	frontswap_loads++;
 
 59}
 60static inline void inc_frontswap_succ_stores(void) {
 61	frontswap_succ_stores++;
 
 62}
 63static inline void inc_frontswap_failed_stores(void) {
 64	frontswap_failed_stores++;
 
 65}
 66static inline void inc_frontswap_invalidates(void) {
 67	frontswap_invalidates++;
 
 68}
 69#else
 70static inline void inc_frontswap_loads(void) { }
 71static inline void inc_frontswap_succ_stores(void) { }
 72static inline void inc_frontswap_failed_stores(void) { }
 73static inline void inc_frontswap_invalidates(void) { }
 74#endif
 75
 76/*
 77 * Due to the asynchronous nature of the backends loading potentially
 78 * _after_ the swap system has been activated, we have chokepoints
 79 * on all frontswap functions to not call the backend until the backend
 80 * has registered.
 81 *
 82 * Specifically when no backend is registered (nobody called
 83 * frontswap_register_ops) all calls to frontswap_init (which is done via
 84 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
 85 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
 86 * backend registers with frontswap at some later point the previous
 87 * calls to frontswap_init are executed (by iterating over the need_init
 88 * bitmap) to create tmem_pools and set the respective poolids. All of that is
 89 * guarded by us using atomic bit operations on the 'need_init' bitmap.
 90 *
 91 * This would not guards us against the user deciding to call swapoff right as
 92 * we are calling the backend to initialize (so swapon is in action).
 93 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 94 * OK. The other scenario where calls to frontswap_store (called via
 95 * swap_writepage) is racing with frontswap_invalidate_area (called via
 96 * swapoff) is again guarded by the swap subsystem.
 97 *
 98 * While no backend is registered all calls to frontswap_[store|load|
 99 * invalidate_area|invalidate_page] are ignored or fail.
100 *
101 * The time between the backend being registered and the swap file system
102 * calling the backend (via the frontswap_* functions) is indeterminate as
103 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104 * That is OK as we are comfortable missing some of these calls to the newly
105 * registered backend.
106 *
107 * Obviously the opposite (unloading the backend) must be done after all
108 * the frontswap_[store|load|invalidate_area|invalidate_page] start
109 * ignorning or failing the requests - at which point frontswap_ops
110 * would have to be made in some fashion atomic.
111 */
112static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
113
114/*
115 * Register operations for frontswap, returning previous thus allowing
116 * detection of multiple backends and possible nesting.
117 */
118struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119{
120	struct frontswap_ops *old = frontswap_ops;
121	int i;
122
123	for (i = 0; i < MAX_SWAPFILES; i++) {
124		if (test_and_clear_bit(i, need_init)) {
125			struct swap_info_struct *sis = swap_info[i];
126			/* __frontswap_init _should_ have set it! */
127			if (!sis->frontswap_map)
128				return ERR_PTR(-EINVAL);
129			ops->init(i);
130		}
131	}
132	/*
133	 * We MUST have frontswap_ops set _after_ the frontswap_init's
134	 * have been called. Otherwise __frontswap_store might fail. Hence
135	 * the barrier to make sure compiler does not re-order us.
136	 */
137	barrier();
138	frontswap_ops = ops;
139	return old;
140}
141EXPORT_SYMBOL(frontswap_register_ops);
142
143/*
144 * Enable/disable frontswap writethrough (see above).
145 */
146void frontswap_writethrough(bool enable)
147{
148	frontswap_writethrough_enabled = enable;
149}
150EXPORT_SYMBOL(frontswap_writethrough);
151
152/*
153 * Enable/disable frontswap exclusive gets (see above).
154 */
155void frontswap_tmem_exclusive_gets(bool enable)
156{
157	frontswap_tmem_exclusive_gets_enabled = enable;
158}
159EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
160
161/*
162 * Called when a swap device is swapon'd.
163 */
164void __frontswap_init(unsigned type, unsigned long *map)
165{
166	struct swap_info_struct *sis = swap_info[type];
167
168	BUG_ON(sis == NULL);
169
170	/*
171	 * p->frontswap is a bitmap that we MUST have to figure out which page
172	 * has gone in frontswap. Without it there is no point of continuing.
173	 */
174	if (WARN_ON(!map))
175		return;
176	/*
177	 * Irregardless of whether the frontswap backend has been loaded
178	 * before this function or it will be later, we _MUST_ have the
179	 * p->frontswap set to something valid to work properly.
180	 */
181	frontswap_map_set(sis, map);
182	if (frontswap_ops)
183		frontswap_ops->init(type);
184	else {
185		BUG_ON(type > MAX_SWAPFILES);
186		set_bit(type, need_init);
187	}
188}
189EXPORT_SYMBOL(__frontswap_init);
190
191bool __frontswap_test(struct swap_info_struct *sis,
192				pgoff_t offset)
193{
194	bool ret = false;
 
 
 
195
196	if (frontswap_ops && sis->frontswap_map)
197		ret = test_bit(offset, sis->frontswap_map);
198	return ret;
 
 
199}
200EXPORT_SYMBOL(__frontswap_test);
201
202static inline void __frontswap_clear(struct swap_info_struct *sis,
203				pgoff_t offset)
204{
205	clear_bit(offset, sis->frontswap_map);
206	atomic_dec(&sis->frontswap_pages);
207}
208
209/*
210 * "Store" data from a page to frontswap and associate it with the page's
211 * swaptype and offset.  Page must be locked and in the swap cache.
212 * If frontswap already contains a page with matching swaptype and
213 * offset, the frontswap implementation may either overwrite the data and
214 * return success or invalidate the page from frontswap and return failure.
215 */
216int __frontswap_store(struct page *page)
217{
218	int ret = -1, dup = 0;
219	swp_entry_t entry = { .val = page_private(page), };
220	int type = swp_type(entry);
221	struct swap_info_struct *sis = swap_info[type];
222	pgoff_t offset = swp_offset(entry);
223
 
 
 
 
224	/*
225	 * Return if no backend registed.
226	 * Don't need to inc frontswap_failed_stores here.
 
 
227	 */
228	if (!frontswap_ops)
229		return ret;
 
 
230
231	BUG_ON(!PageLocked(page));
232	BUG_ON(sis == NULL);
233	if (__frontswap_test(sis, offset))
234		dup = 1;
235	ret = frontswap_ops->store(type, offset, page);
236	if (ret == 0) {
237		set_bit(offset, sis->frontswap_map);
238		inc_frontswap_succ_stores();
239		if (!dup)
240			atomic_inc(&sis->frontswap_pages);
241	} else {
242		/*
243		  failed dup always results in automatic invalidate of
244		  the (older) page from frontswap
245		 */
246		inc_frontswap_failed_stores();
247		if (dup)
248			__frontswap_clear(sis, offset);
249	}
250	if (frontswap_writethrough_enabled)
251		/* report failure so swap also writes to swap device */
252		ret = -1;
253	return ret;
254}
255EXPORT_SYMBOL(__frontswap_store);
256
257/*
258 * "Get" data from frontswap associated with swaptype and offset that were
259 * specified when the data was put to frontswap and use it to fill the
260 * specified page with data. Page must be locked and in the swap cache.
261 */
262int __frontswap_load(struct page *page)
263{
264	int ret = -1;
265	swp_entry_t entry = { .val = page_private(page), };
266	int type = swp_type(entry);
267	struct swap_info_struct *sis = swap_info[type];
268	pgoff_t offset = swp_offset(entry);
269
270	BUG_ON(!PageLocked(page));
271	BUG_ON(sis == NULL);
272	/*
273	 * __frontswap_test() will check whether there is backend registered
274	 */
275	if (__frontswap_test(sis, offset))
276		ret = frontswap_ops->load(type, offset, page);
277	if (ret == 0) {
 
 
278		inc_frontswap_loads();
279		if (frontswap_tmem_exclusive_gets_enabled) {
280			SetPageDirty(page);
281			__frontswap_clear(sis, offset);
282		}
283	}
284	return ret;
285}
286EXPORT_SYMBOL(__frontswap_load);
287
288/*
289 * Invalidate any data from frontswap associated with the specified swaptype
290 * and offset so that a subsequent "get" will fail.
291 */
292void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
293{
294	struct swap_info_struct *sis = swap_info[type];
295
296	BUG_ON(sis == NULL);
297	/*
298	 * __frontswap_test() will check whether there is backend registered
299	 */
300	if (__frontswap_test(sis, offset)) {
301		frontswap_ops->invalidate_page(type, offset);
302		__frontswap_clear(sis, offset);
303		inc_frontswap_invalidates();
304	}
305}
306EXPORT_SYMBOL(__frontswap_invalidate_page);
307
308/*
309 * Invalidate all data from frontswap associated with all offsets for the
310 * specified swaptype.
311 */
312void __frontswap_invalidate_area(unsigned type)
313{
314	struct swap_info_struct *sis = swap_info[type];
315
316	if (frontswap_ops) {
317		BUG_ON(sis == NULL);
318		if (sis->frontswap_map == NULL)
319			return;
320		frontswap_ops->invalidate_area(type);
321		atomic_set(&sis->frontswap_pages, 0);
322		bitmap_zero(sis->frontswap_map, sis->max);
323	}
324	clear_bit(type, need_init);
325}
326EXPORT_SYMBOL(__frontswap_invalidate_area);
327
328static unsigned long __frontswap_curr_pages(void)
329{
330	int type;
331	unsigned long totalpages = 0;
332	struct swap_info_struct *si = NULL;
333
334	assert_spin_locked(&swap_lock);
335	for (type = swap_list.head; type >= 0; type = si->next) {
336		si = swap_info[type];
337		totalpages += atomic_read(&si->frontswap_pages);
338	}
339	return totalpages;
340}
341
342static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
343					int *swapid)
344{
345	int ret = -EINVAL;
346	struct swap_info_struct *si = NULL;
347	int si_frontswap_pages;
348	unsigned long total_pages_to_unuse = total;
349	unsigned long pages = 0, pages_to_unuse = 0;
350	int type;
351
352	assert_spin_locked(&swap_lock);
353	for (type = swap_list.head; type >= 0; type = si->next) {
354		si = swap_info[type];
355		si_frontswap_pages = atomic_read(&si->frontswap_pages);
356		if (total_pages_to_unuse < si_frontswap_pages) {
357			pages = pages_to_unuse = total_pages_to_unuse;
358		} else {
359			pages = si_frontswap_pages;
360			pages_to_unuse = 0; /* unuse all */
361		}
362		/* ensure there is enough RAM to fetch pages from frontswap */
363		if (security_vm_enough_memory_mm(current->mm, pages)) {
364			ret = -ENOMEM;
365			continue;
366		}
367		vm_unacct_memory(pages);
368		*unused = pages_to_unuse;
369		*swapid = type;
370		ret = 0;
371		break;
372	}
373
374	return ret;
375}
376
377/*
378 * Used to check if it's necessory and feasible to unuse pages.
379 * Return 1 when nothing to do, 0 when need to shink pages,
380 * error code when there is an error.
381 */
382static int __frontswap_shrink(unsigned long target_pages,
383				unsigned long *pages_to_unuse,
384				int *type)
385{
386	unsigned long total_pages = 0, total_pages_to_unuse;
387
388	assert_spin_locked(&swap_lock);
389
390	total_pages = __frontswap_curr_pages();
391	if (total_pages <= target_pages) {
392		/* Nothing to do */
393		*pages_to_unuse = 0;
394		return 1;
395	}
396	total_pages_to_unuse = total_pages - target_pages;
397	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
398}
399
400/*
401 * Frontswap, like a true swap device, may unnecessarily retain pages
402 * under certain circumstances; "shrink" frontswap is essentially a
403 * "partial swapoff" and works by calling try_to_unuse to attempt to
404 * unuse enough frontswap pages to attempt to -- subject to memory
405 * constraints -- reduce the number of pages in frontswap to the
406 * number given in the parameter target_pages.
407 */
408void frontswap_shrink(unsigned long target_pages)
409{
410	unsigned long pages_to_unuse = 0;
411	int uninitialized_var(type), ret;
412
413	/*
414	 * we don't want to hold swap_lock while doing a very
415	 * lengthy try_to_unuse, but swap_list may change
416	 * so restart scan from swap_list.head each time
417	 */
418	spin_lock(&swap_lock);
419	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
420	spin_unlock(&swap_lock);
421	if (ret == 0)
422		try_to_unuse(type, true, pages_to_unuse);
423	return;
424}
425EXPORT_SYMBOL(frontswap_shrink);
426
427/*
428 * Count and return the number of frontswap pages across all
429 * swap devices.  This is exported so that backend drivers can
430 * determine current usage without reading debugfs.
431 */
432unsigned long frontswap_curr_pages(void)
433{
434	unsigned long totalpages = 0;
435
436	spin_lock(&swap_lock);
437	totalpages = __frontswap_curr_pages();
438	spin_unlock(&swap_lock);
439
440	return totalpages;
 
 
441}
442EXPORT_SYMBOL(frontswap_curr_pages);
443
444static int __init init_frontswap(void)
445{
446#ifdef CONFIG_DEBUG_FS
447	struct dentry *root = debugfs_create_dir("frontswap", NULL);
448	if (root == NULL)
449		return -ENXIO;
450	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
451	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
452	debugfs_create_u64("failed_stores", S_IRUGO, root,
453				&frontswap_failed_stores);
454	debugfs_create_u64("invalidates", S_IRUGO,
455				root, &frontswap_invalidates);
456#endif
457	return 0;
458}
459
460module_init(init_frontswap);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Frontswap frontend
  4 *
  5 * This code provides the generic "frontend" layer to call a matching
  6 * "backend" driver implementation of frontswap.  See
  7 * Documentation/mm/frontswap.rst for more information.
  8 *
  9 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
 10 * Author: Dan Magenheimer
 
 
 11 */
 12
 13#include <linux/mman.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/security.h>
 17#include <linux/module.h>
 18#include <linux/debugfs.h>
 19#include <linux/frontswap.h>
 20#include <linux/swapfile.h>
 21
 22DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24/*
 25 * frontswap_ops are added by frontswap_register_ops, and provide the
 26 * frontswap "backend" implementation functions.  Multiple implementations
 27 * may be registered, but implementations can never deregister.  This
 28 * is a simple singly-linked list of all registered implementations.
 29 */
 30static const struct frontswap_ops *frontswap_ops __read_mostly;
 31
 32#ifdef CONFIG_DEBUG_FS
 33/*
 34 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 35 * properly configured).  These are for information only so are not protected
 36 * against increment races.
 37 */
 38static u64 frontswap_loads;
 39static u64 frontswap_succ_stores;
 40static u64 frontswap_failed_stores;
 41static u64 frontswap_invalidates;
 42
 43static inline void inc_frontswap_loads(void)
 44{
 45	data_race(frontswap_loads++);
 46}
 47static inline void inc_frontswap_succ_stores(void)
 48{
 49	data_race(frontswap_succ_stores++);
 50}
 51static inline void inc_frontswap_failed_stores(void)
 52{
 53	data_race(frontswap_failed_stores++);
 54}
 55static inline void inc_frontswap_invalidates(void)
 56{
 57	data_race(frontswap_invalidates++);
 58}
 59#else
 60static inline void inc_frontswap_loads(void) { }
 61static inline void inc_frontswap_succ_stores(void) { }
 62static inline void inc_frontswap_failed_stores(void) { }
 63static inline void inc_frontswap_invalidates(void) { }
 64#endif
 65
 66/*
 67 * Due to the asynchronous nature of the backends loading potentially
 68 * _after_ the swap system has been activated, we have chokepoints
 69 * on all frontswap functions to not call the backend until the backend
 70 * has registered.
 71 *
 
 
 
 
 
 
 
 
 
 72 * This would not guards us against the user deciding to call swapoff right as
 73 * we are calling the backend to initialize (so swapon is in action).
 74 * Fortunately for us, the swapon_mutex has been taken by the callee so we are
 75 * OK. The other scenario where calls to frontswap_store (called via
 76 * swap_writepage) is racing with frontswap_invalidate_area (called via
 77 * swapoff) is again guarded by the swap subsystem.
 78 *
 79 * While no backend is registered all calls to frontswap_[store|load|
 80 * invalidate_area|invalidate_page] are ignored or fail.
 81 *
 82 * The time between the backend being registered and the swap file system
 83 * calling the backend (via the frontswap_* functions) is indeterminate as
 84 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
 85 * That is OK as we are comfortable missing some of these calls to the newly
 86 * registered backend.
 87 *
 88 * Obviously the opposite (unloading the backend) must be done after all
 89 * the frontswap_[store|load|invalidate_area|invalidate_page] start
 90 * ignoring or failing the requests.  However, there is currently no way
 91 * to unload a backend once it is registered.
 92 */
 
 93
 94/*
 95 * Register operations for frontswap
 
 96 */
 97int frontswap_register_ops(const struct frontswap_ops *ops)
 98{
 99	if (frontswap_ops)
100		return -EINVAL;
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102	frontswap_ops = ops;
103	static_branch_inc(&frontswap_enabled_key);
104	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105}
 
106
107/*
108 * Called when a swap device is swapon'd.
109 */
110void frontswap_init(unsigned type, unsigned long *map)
111{
112	struct swap_info_struct *sis = swap_info[type];
113
114	VM_BUG_ON(sis == NULL);
115
116	/*
117	 * p->frontswap is a bitmap that we MUST have to figure out which page
118	 * has gone in frontswap. Without it there is no point of continuing.
119	 */
120	if (WARN_ON(!map))
121		return;
122	/*
123	 * Irregardless of whether the frontswap backend has been loaded
124	 * before this function or it will be later, we _MUST_ have the
125	 * p->frontswap set to something valid to work properly.
126	 */
127	frontswap_map_set(sis, map);
128
129	if (!frontswap_enabled())
130		return;
131	frontswap_ops->init(type);
 
 
132}
 
133
134static bool __frontswap_test(struct swap_info_struct *sis,
135				pgoff_t offset)
136{
137	if (sis->frontswap_map)
138		return test_bit(offset, sis->frontswap_map);
139	return false;
140}
141
142static inline void __frontswap_set(struct swap_info_struct *sis,
143				   pgoff_t offset)
144{
145	set_bit(offset, sis->frontswap_map);
146	atomic_inc(&sis->frontswap_pages);
147}
 
148
149static inline void __frontswap_clear(struct swap_info_struct *sis,
150				     pgoff_t offset)
151{
152	clear_bit(offset, sis->frontswap_map);
153	atomic_dec(&sis->frontswap_pages);
154}
155
156/*
157 * "Store" data from a page to frontswap and associate it with the page's
158 * swaptype and offset.  Page must be locked and in the swap cache.
159 * If frontswap already contains a page with matching swaptype and
160 * offset, the frontswap implementation may either overwrite the data and
161 * return success or invalidate the page from frontswap and return failure.
162 */
163int __frontswap_store(struct page *page)
164{
165	int ret = -1;
166	swp_entry_t entry = { .val = page_private(page), };
167	int type = swp_type(entry);
168	struct swap_info_struct *sis = swap_info[type];
169	pgoff_t offset = swp_offset(entry);
170
171	VM_BUG_ON(!frontswap_ops);
172	VM_BUG_ON(!PageLocked(page));
173	VM_BUG_ON(sis == NULL);
174
175	/*
176	 * If a dup, we must remove the old page first; we can't leave the
177	 * old page no matter if the store of the new page succeeds or fails,
178	 * and we can't rely on the new page replacing the old page as we may
179	 * not store to the same implementation that contains the old page.
180	 */
181	if (__frontswap_test(sis, offset)) {
182		__frontswap_clear(sis, offset);
183		frontswap_ops->invalidate_page(type, offset);
184	}
185
 
 
 
 
186	ret = frontswap_ops->store(type, offset, page);
187	if (ret == 0) {
188		__frontswap_set(sis, offset);
189		inc_frontswap_succ_stores();
 
 
190	} else {
 
 
 
 
191		inc_frontswap_failed_stores();
 
 
192	}
193
 
 
194	return ret;
195}
 
196
197/*
198 * "Get" data from frontswap associated with swaptype and offset that were
199 * specified when the data was put to frontswap and use it to fill the
200 * specified page with data. Page must be locked and in the swap cache.
201 */
202int __frontswap_load(struct page *page)
203{
204	int ret = -1;
205	swp_entry_t entry = { .val = page_private(page), };
206	int type = swp_type(entry);
207	struct swap_info_struct *sis = swap_info[type];
208	pgoff_t offset = swp_offset(entry);
209
210	VM_BUG_ON(!frontswap_ops);
211	VM_BUG_ON(!PageLocked(page));
212	VM_BUG_ON(sis == NULL);
213
214	if (!__frontswap_test(sis, offset))
215		return -1;
216
217	/* Try loading from each implementation, until one succeeds. */
218	ret = frontswap_ops->load(type, offset, page);
219	if (ret == 0)
220		inc_frontswap_loads();
 
 
 
 
 
221	return ret;
222}
 
223
224/*
225 * Invalidate any data from frontswap associated with the specified swaptype
226 * and offset so that a subsequent "get" will fail.
227 */
228void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
229{
230	struct swap_info_struct *sis = swap_info[type];
231
232	VM_BUG_ON(!frontswap_ops);
233	VM_BUG_ON(sis == NULL);
234
235	if (!__frontswap_test(sis, offset))
236		return;
237
238	frontswap_ops->invalidate_page(type, offset);
239	__frontswap_clear(sis, offset);
240	inc_frontswap_invalidates();
241}
 
242
243/*
244 * Invalidate all data from frontswap associated with all offsets for the
245 * specified swaptype.
246 */
247void __frontswap_invalidate_area(unsigned type)
248{
249	struct swap_info_struct *sis = swap_info[type];
250
251	VM_BUG_ON(!frontswap_ops);
252	VM_BUG_ON(sis == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
254	if (sis->frontswap_map == NULL)
255		return;
 
 
 
 
 
 
 
 
 
 
256
257	frontswap_ops->invalidate_area(type);
258	atomic_set(&sis->frontswap_pages, 0);
259	bitmap_zero(sis->frontswap_map, sis->max);
260}
 
261
262static int __init init_frontswap(void)
263{
264#ifdef CONFIG_DEBUG_FS
265	struct dentry *root = debugfs_create_dir("frontswap", NULL);
266	if (root == NULL)
267		return -ENXIO;
268	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
269	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
270	debugfs_create_u64("failed_stores", 0444, root,
271			   &frontswap_failed_stores);
272	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
 
273#endif
274	return 0;
275}
276
277module_init(init_frontswap);