Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
 
 
  26#include <linux/device.h>
  27#include <linux/clocksource.h>
  28#include <linux/init.h>
  29#include <linux/module.h>
  30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  31#include <linux/tick.h>
  32#include <linux/kthread.h>
 
 
  33
  34#include "tick-internal.h"
  35
  36void timecounter_init(struct timecounter *tc,
  37		      const struct cyclecounter *cc,
  38		      u64 start_tstamp)
  39{
  40	tc->cc = cc;
  41	tc->cycle_last = cc->read(cc);
  42	tc->nsec = start_tstamp;
  43}
  44EXPORT_SYMBOL_GPL(timecounter_init);
  45
  46/**
  47 * timecounter_read_delta - get nanoseconds since last call of this function
  48 * @tc:         Pointer to time counter
  49 *
  50 * When the underlying cycle counter runs over, this will be handled
  51 * correctly as long as it does not run over more than once between
  52 * calls.
  53 *
  54 * The first call to this function for a new time counter initializes
  55 * the time tracking and returns an undefined result.
  56 */
  57static u64 timecounter_read_delta(struct timecounter *tc)
  58{
  59	cycle_t cycle_now, cycle_delta;
  60	u64 ns_offset;
  61
  62	/* read cycle counter: */
  63	cycle_now = tc->cc->read(tc->cc);
  64
  65	/* calculate the delta since the last timecounter_read_delta(): */
  66	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
  67
  68	/* convert to nanoseconds: */
  69	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
  70
  71	/* update time stamp of timecounter_read_delta() call: */
  72	tc->cycle_last = cycle_now;
  73
  74	return ns_offset;
  75}
  76
  77u64 timecounter_read(struct timecounter *tc)
  78{
  79	u64 nsec;
  80
  81	/* increment time by nanoseconds since last call */
  82	nsec = timecounter_read_delta(tc);
  83	nsec += tc->nsec;
  84	tc->nsec = nsec;
  85
  86	return nsec;
  87}
  88EXPORT_SYMBOL_GPL(timecounter_read);
  89
  90u64 timecounter_cyc2time(struct timecounter *tc,
  91			 cycle_t cycle_tstamp)
  92{
  93	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
  94	u64 nsec;
  95
  96	/*
  97	 * Instead of always treating cycle_tstamp as more recent
  98	 * than tc->cycle_last, detect when it is too far in the
  99	 * future and treat it as old time stamp instead.
 100	 */
 101	if (cycle_delta > tc->cc->mask / 2) {
 102		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
 103		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
 104	} else {
 105		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
 106	}
 107
 108	return nsec;
 109}
 110EXPORT_SYMBOL_GPL(timecounter_cyc2time);
 111
 112/**
 113 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 114 * @mult:	pointer to mult variable
 115 * @shift:	pointer to shift variable
 116 * @from:	frequency to convert from
 117 * @to:		frequency to convert to
 118 * @maxsec:	guaranteed runtime conversion range in seconds
 119 *
 120 * The function evaluates the shift/mult pair for the scaled math
 121 * operations of clocksources and clockevents.
 122 *
 123 * @to and @from are frequency values in HZ. For clock sources @to is
 124 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 125 * event @to is the counter frequency and @from is NSEC_PER_SEC.
 126 *
 127 * The @maxsec conversion range argument controls the time frame in
 128 * seconds which must be covered by the runtime conversion with the
 129 * calculated mult and shift factors. This guarantees that no 64bit
 130 * overflow happens when the input value of the conversion is
 131 * multiplied with the calculated mult factor. Larger ranges may
 132 * reduce the conversion accuracy by chosing smaller mult and shift
 133 * factors.
 134 */
 135void
 136clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
 137{
 138	u64 tmp;
 139	u32 sft, sftacc= 32;
 140
 141	/*
 142	 * Calculate the shift factor which is limiting the conversion
 143	 * range:
 144	 */
 145	tmp = ((u64)maxsec * from) >> 32;
 146	while (tmp) {
 147		tmp >>=1;
 148		sftacc--;
 149	}
 150
 151	/*
 152	 * Find the conversion shift/mult pair which has the best
 153	 * accuracy and fits the maxsec conversion range:
 154	 */
 155	for (sft = 32; sft > 0; sft--) {
 156		tmp = (u64) to << sft;
 157		tmp += from / 2;
 158		do_div(tmp, from);
 159		if ((tmp >> sftacc) == 0)
 160			break;
 161	}
 162	*mult = tmp;
 163	*shift = sft;
 164}
 
 165
 166/*[Clocksource internal variables]---------
 167 * curr_clocksource:
 168 *	currently selected clocksource.
 
 
 169 * clocksource_list:
 170 *	linked list with the registered clocksources
 171 * clocksource_mutex:
 172 *	protects manipulations to curr_clocksource and the clocksource_list
 173 * override_name:
 174 *	Name of the user-specified clocksource.
 175 */
 176static struct clocksource *curr_clocksource;
 
 177static LIST_HEAD(clocksource_list);
 178static DEFINE_MUTEX(clocksource_mutex);
 179static char override_name[CS_NAME_LEN];
 180static int finished_booting;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 183static void clocksource_watchdog_work(struct work_struct *work);
 184static void clocksource_select(void);
 185
 186static LIST_HEAD(watchdog_list);
 187static struct clocksource *watchdog;
 188static struct timer_list watchdog_timer;
 189static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 190static DEFINE_SPINLOCK(watchdog_lock);
 191static int watchdog_running;
 192static atomic_t watchdog_reset_pending;
 193
 
 
 
 
 
 
 
 
 
 
 194static int clocksource_watchdog_kthread(void *data);
 195static void __clocksource_change_rating(struct clocksource *cs, int rating);
 196
 197/*
 198 * Interval: 0.5sec Threshold: 0.0625s
 199 */
 200#define WATCHDOG_INTERVAL (HZ >> 1)
 201#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 202
 203static void clocksource_watchdog_work(struct work_struct *work)
 204{
 205	/*
 
 
 
 
 
 
 
 
 
 206	 * If kthread_run fails the next watchdog scan over the
 207	 * watchdog_list will find the unstable clock again.
 208	 */
 209	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 210}
 211
 212static void __clocksource_unstable(struct clocksource *cs)
 213{
 214	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 215	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	if (finished_booting)
 217		schedule_work(&watchdog_work);
 218}
 219
 220static void clocksource_unstable(struct clocksource *cs, int64_t delta)
 221{
 222	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
 223	       cs->name, delta);
 224	__clocksource_unstable(cs);
 225}
 226
 227/**
 228 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 229 * @cs:		clocksource to be marked unstable
 230 *
 231 * This function is called instead of clocksource_change_rating from
 232 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 233 * and the cpu hotplug mutex. It defers the update of the clocksource
 234 * to the watchdog thread.
 235 */
 236void clocksource_mark_unstable(struct clocksource *cs)
 237{
 238	unsigned long flags;
 239
 240	spin_lock_irqsave(&watchdog_lock, flags);
 241	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 242		if (list_empty(&cs->wd_list))
 243			list_add(&cs->wd_list, &watchdog_list);
 244		__clocksource_unstable(cs);
 245	}
 246	spin_unlock_irqrestore(&watchdog_lock, flags);
 247}
 248
 249static void clocksource_watchdog(unsigned long data)
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	struct clocksource *cs;
 252	cycle_t csnow, wdnow;
 253	int64_t wd_nsec, cs_nsec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254	int next_cpu, reset_pending;
 
 
 
 
 255
 256	spin_lock(&watchdog_lock);
 257	if (!watchdog_running)
 258		goto out;
 259
 260	reset_pending = atomic_read(&watchdog_reset_pending);
 261
 262	list_for_each_entry(cs, &watchdog_list, wd_list) {
 263
 264		/* Clocksource already marked unstable? */
 265		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 266			if (finished_booting)
 267				schedule_work(&watchdog_work);
 268			continue;
 269		}
 270
 271		local_irq_disable();
 272		csnow = cs->read(cs);
 273		wdnow = watchdog->read(watchdog);
 274		local_irq_enable();
 
 
 
 
 275
 276		/* Clocksource initialized ? */
 277		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 278		    atomic_read(&watchdog_reset_pending)) {
 279			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 280			cs->wd_last = wdnow;
 281			cs->cs_last = csnow;
 282			continue;
 283		}
 284
 285		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
 286					     watchdog->mult, watchdog->shift);
 287
 288		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
 289					     cs->mask, cs->mult, cs->shift);
 
 
 
 290		cs->cs_last = csnow;
 291		cs->wd_last = wdnow;
 292
 293		if (atomic_read(&watchdog_reset_pending))
 294			continue;
 295
 296		/* Check the deviation from the watchdog clocksource. */
 297		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
 298			clocksource_unstable(cs, cs_nsec - wd_nsec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 299			continue;
 300		}
 301
 
 
 
 302		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 303		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 304		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 305			/* Mark it valid for high-res. */
 306			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 307
 308			/*
 309			 * clocksource_done_booting() will sort it if
 310			 * finished_booting is not set yet.
 311			 */
 312			if (!finished_booting)
 313				continue;
 314
 315			/*
 316			 * If this is not the current clocksource let
 317			 * the watchdog thread reselect it. Due to the
 318			 * change to high res this clocksource might
 319			 * be preferred now. If it is the current
 320			 * clocksource let the tick code know about
 321			 * that change.
 322			 */
 323			if (cs != curr_clocksource) {
 324				cs->flags |= CLOCK_SOURCE_RESELECT;
 325				schedule_work(&watchdog_work);
 326			} else {
 327				tick_clock_notify();
 328			}
 329		}
 330	}
 331
 332	/*
 333	 * We only clear the watchdog_reset_pending, when we did a
 334	 * full cycle through all clocksources.
 335	 */
 336	if (reset_pending)
 337		atomic_dec(&watchdog_reset_pending);
 338
 339	/*
 340	 * Cycle through CPUs to check if the CPUs stay synchronized
 341	 * to each other.
 342	 */
 343	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 344	if (next_cpu >= nr_cpu_ids)
 345		next_cpu = cpumask_first(cpu_online_mask);
 346	watchdog_timer.expires += WATCHDOG_INTERVAL;
 347	add_timer_on(&watchdog_timer, next_cpu);
 
 
 
 
 
 
 
 348out:
 349	spin_unlock(&watchdog_lock);
 350}
 351
 352static inline void clocksource_start_watchdog(void)
 353{
 354	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 355		return;
 356	init_timer(&watchdog_timer);
 357	watchdog_timer.function = clocksource_watchdog;
 358	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 359	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 360	watchdog_running = 1;
 361}
 362
 363static inline void clocksource_stop_watchdog(void)
 364{
 365	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 366		return;
 367	del_timer(&watchdog_timer);
 368	watchdog_running = 0;
 369}
 370
 371static inline void clocksource_reset_watchdog(void)
 372{
 373	struct clocksource *cs;
 374
 375	list_for_each_entry(cs, &watchdog_list, wd_list)
 376		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 377}
 378
 379static void clocksource_resume_watchdog(void)
 380{
 381	atomic_inc(&watchdog_reset_pending);
 382}
 383
 384static void clocksource_enqueue_watchdog(struct clocksource *cs)
 385{
 386	unsigned long flags;
 387
 388	spin_lock_irqsave(&watchdog_lock, flags);
 389	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 390		/* cs is a clocksource to be watched. */
 391		list_add(&cs->wd_list, &watchdog_list);
 392		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 393	} else {
 394		/* cs is a watchdog. */
 395		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 396			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397		/* Pick the best watchdog. */
 398		if (!watchdog || cs->rating > watchdog->rating) {
 399			watchdog = cs;
 400			/* Reset watchdog cycles */
 401			clocksource_reset_watchdog();
 402		}
 403	}
 
 
 
 
 
 
 
 
 404	/* Check if the watchdog timer needs to be started. */
 405	clocksource_start_watchdog();
 406	spin_unlock_irqrestore(&watchdog_lock, flags);
 407}
 408
 409static void clocksource_dequeue_watchdog(struct clocksource *cs)
 410{
 411	unsigned long flags;
 412
 413	spin_lock_irqsave(&watchdog_lock, flags);
 414	if (cs != watchdog) {
 415		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 416			/* cs is a watched clocksource. */
 417			list_del_init(&cs->wd_list);
 418			/* Check if the watchdog timer needs to be stopped. */
 419			clocksource_stop_watchdog();
 420		}
 421	}
 422	spin_unlock_irqrestore(&watchdog_lock, flags);
 423}
 424
 425static int __clocksource_watchdog_kthread(void)
 426{
 427	struct clocksource *cs, *tmp;
 428	unsigned long flags;
 429	LIST_HEAD(unstable);
 430	int select = 0;
 431
 
 
 
 
 
 
 432	spin_lock_irqsave(&watchdog_lock, flags);
 433	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 434		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 435			list_del_init(&cs->wd_list);
 436			list_add(&cs->wd_list, &unstable);
 437			select = 1;
 438		}
 439		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 440			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 441			select = 1;
 442		}
 443	}
 444	/* Check if the watchdog timer needs to be stopped. */
 445	clocksource_stop_watchdog();
 446	spin_unlock_irqrestore(&watchdog_lock, flags);
 447
 448	/* Needs to be done outside of watchdog lock */
 449	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 450		list_del_init(&cs->wd_list);
 451		__clocksource_change_rating(cs, 0);
 452	}
 453	return select;
 454}
 455
 456static int clocksource_watchdog_kthread(void *data)
 457{
 458	mutex_lock(&clocksource_mutex);
 459	if (__clocksource_watchdog_kthread())
 460		clocksource_select();
 461	mutex_unlock(&clocksource_mutex);
 462	return 0;
 463}
 464
 465static bool clocksource_is_watchdog(struct clocksource *cs)
 466{
 467	return cs == watchdog;
 468}
 469
 470#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 471
 472static void clocksource_enqueue_watchdog(struct clocksource *cs)
 473{
 474	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 475		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 476}
 477
 
 478static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 479static inline void clocksource_resume_watchdog(void) { }
 480static inline int __clocksource_watchdog_kthread(void) { return 0; }
 481static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 482void clocksource_mark_unstable(struct clocksource *cs) { }
 483
 
 
 
 484#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486/**
 487 * clocksource_suspend - suspend the clocksource(s)
 488 */
 489void clocksource_suspend(void)
 490{
 491	struct clocksource *cs;
 492
 493	list_for_each_entry_reverse(cs, &clocksource_list, list)
 494		if (cs->suspend)
 495			cs->suspend(cs);
 496}
 497
 498/**
 499 * clocksource_resume - resume the clocksource(s)
 500 */
 501void clocksource_resume(void)
 502{
 503	struct clocksource *cs;
 504
 505	list_for_each_entry(cs, &clocksource_list, list)
 506		if (cs->resume)
 507			cs->resume(cs);
 508
 509	clocksource_resume_watchdog();
 510}
 511
 512/**
 513 * clocksource_touch_watchdog - Update watchdog
 514 *
 515 * Update the watchdog after exception contexts such as kgdb so as not
 516 * to incorrectly trip the watchdog. This might fail when the kernel
 517 * was stopped in code which holds watchdog_lock.
 518 */
 519void clocksource_touch_watchdog(void)
 520{
 521	clocksource_resume_watchdog();
 522}
 523
 524/**
 525 * clocksource_max_adjustment- Returns max adjustment amount
 526 * @cs:         Pointer to clocksource
 527 *
 528 */
 529static u32 clocksource_max_adjustment(struct clocksource *cs)
 530{
 531	u64 ret;
 532	/*
 533	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 534	 */
 535	ret = (u64)cs->mult * 11;
 536	do_div(ret,100);
 537	return (u32)ret;
 538}
 539
 540/**
 541 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 542 * @mult:	cycle to nanosecond multiplier
 543 * @shift:	cycle to nanosecond divisor (power of two)
 544 * @maxadj:	maximum adjustment value to mult (~11%)
 545 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 
 
 
 
 
 
 
 
 546 */
 547u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
 548{
 549	u64 max_nsecs, max_cycles;
 550
 551	/*
 552	 * Calculate the maximum number of cycles that we can pass to the
 553	 * cyc2ns function without overflowing a 64-bit signed result. The
 554	 * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
 555	 * which is equivalent to the below.
 556	 * max_cycles < (2^63)/(mult + maxadj)
 557	 * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
 558	 * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
 559	 * max_cycles < 2^(63 - log2(mult + maxadj))
 560	 * max_cycles < 1 << (63 - log2(mult + maxadj))
 561	 * Please note that we add 1 to the result of the log2 to account for
 562	 * any rounding errors, ensure the above inequality is satisfied and
 563	 * no overflow will occur.
 564	 */
 565	max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
 
 566
 567	/*
 568	 * The actual maximum number of cycles we can defer the clocksource is
 569	 * determined by the minimum of max_cycles and mask.
 570	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 571	 * too long if there's a large negative adjustment.
 572	 */
 573	max_cycles = min(max_cycles, mask);
 574	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 575
 
 
 
 
 
 
 
 576	return max_nsecs;
 577}
 578
 579/**
 580 * clocksource_max_deferment - Returns max time the clocksource can be deferred
 581 * @cs:         Pointer to clocksource
 582 *
 583 */
 584static u64 clocksource_max_deferment(struct clocksource *cs)
 585{
 586	u64 max_nsecs;
 587
 588	max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
 589					  cs->mask);
 590	/*
 591	 * To ensure that the clocksource does not wrap whilst we are idle,
 592	 * limit the time the clocksource can be deferred by 12.5%. Please
 593	 * note a margin of 12.5% is used because this can be computed with
 594	 * a shift, versus say 10% which would require division.
 595	 */
 596	return max_nsecs - (max_nsecs >> 3);
 597}
 598
 599#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 600
 601static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 602{
 603	struct clocksource *cs;
 604
 605	if (!finished_booting || list_empty(&clocksource_list))
 606		return NULL;
 607
 608	/*
 609	 * We pick the clocksource with the highest rating. If oneshot
 610	 * mode is active, we pick the highres valid clocksource with
 611	 * the best rating.
 612	 */
 613	list_for_each_entry(cs, &clocksource_list, list) {
 614		if (skipcur && cs == curr_clocksource)
 615			continue;
 616		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 617			continue;
 618		return cs;
 619	}
 620	return NULL;
 621}
 622
 623static void __clocksource_select(bool skipcur)
 624{
 625	bool oneshot = tick_oneshot_mode_active();
 626	struct clocksource *best, *cs;
 627
 628	/* Find the best suitable clocksource */
 629	best = clocksource_find_best(oneshot, skipcur);
 630	if (!best)
 631		return;
 632
 
 
 
 633	/* Check for the override clocksource. */
 634	list_for_each_entry(cs, &clocksource_list, list) {
 635		if (skipcur && cs == curr_clocksource)
 636			continue;
 637		if (strcmp(cs->name, override_name) != 0)
 638			continue;
 639		/*
 640		 * Check to make sure we don't switch to a non-highres
 641		 * capable clocksource if the tick code is in oneshot
 642		 * mode (highres or nohz)
 643		 */
 644		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 645			/* Override clocksource cannot be used. */
 646			printk(KERN_WARNING "Override clocksource %s is not "
 647			       "HRT compatible. Cannot switch while in "
 648			       "HRT/NOHZ mode\n", cs->name);
 649			override_name[0] = 0;
 
 
 
 
 
 
 
 
 650		} else
 651			/* Override clocksource can be used. */
 652			best = cs;
 653		break;
 654	}
 655
 
 656	if (curr_clocksource != best && !timekeeping_notify(best)) {
 657		pr_info("Switched to clocksource %s\n", best->name);
 658		curr_clocksource = best;
 659	}
 660}
 661
 662/**
 663 * clocksource_select - Select the best clocksource available
 664 *
 665 * Private function. Must hold clocksource_mutex when called.
 666 *
 667 * Select the clocksource with the best rating, or the clocksource,
 668 * which is selected by userspace override.
 669 */
 670static void clocksource_select(void)
 671{
 672	return __clocksource_select(false);
 673}
 674
 675static void clocksource_select_fallback(void)
 676{
 677	return __clocksource_select(true);
 678}
 679
 680#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 681
 682static inline void clocksource_select(void) { }
 683static inline void clocksource_select_fallback(void) { }
 684
 685#endif
 686
 687/*
 688 * clocksource_done_booting - Called near the end of core bootup
 689 *
 690 * Hack to avoid lots of clocksource churn at boot time.
 691 * We use fs_initcall because we want this to start before
 692 * device_initcall but after subsys_initcall.
 693 */
 694static int __init clocksource_done_booting(void)
 695{
 696	mutex_lock(&clocksource_mutex);
 697	curr_clocksource = clocksource_default_clock();
 698	finished_booting = 1;
 699	/*
 700	 * Run the watchdog first to eliminate unstable clock sources
 701	 */
 702	__clocksource_watchdog_kthread();
 703	clocksource_select();
 704	mutex_unlock(&clocksource_mutex);
 705	return 0;
 706}
 707fs_initcall(clocksource_done_booting);
 708
 709/*
 710 * Enqueue the clocksource sorted by rating
 711 */
 712static void clocksource_enqueue(struct clocksource *cs)
 713{
 714	struct list_head *entry = &clocksource_list;
 715	struct clocksource *tmp;
 716
 717	list_for_each_entry(tmp, &clocksource_list, list)
 718		/* Keep track of the place, where to insert */
 719		if (tmp->rating >= cs->rating)
 720			entry = &tmp->list;
 
 
 721	list_add(&cs->list, entry);
 722}
 723
 724/**
 725 * __clocksource_updatefreq_scale - Used update clocksource with new freq
 726 * @cs:		clocksource to be registered
 727 * @scale:	Scale factor multiplied against freq to get clocksource hz
 728 * @freq:	clocksource frequency (cycles per second) divided by scale
 729 *
 730 * This should only be called from the clocksource->enable() method.
 731 *
 732 * This *SHOULD NOT* be called directly! Please use the
 733 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
 
 734 */
 735void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
 736{
 737	u64 sec;
 
 738	/*
 739	 * Calc the maximum number of seconds which we can run before
 740	 * wrapping around. For clocksources which have a mask > 32bit
 741	 * we need to limit the max sleep time to have a good
 742	 * conversion precision. 10 minutes is still a reasonable
 743	 * amount. That results in a shift value of 24 for a
 744	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
 745	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
 746	 * margin as we do in clocksource_max_deferment()
 747	 */
 748	sec = (cs->mask - (cs->mask >> 3));
 749	do_div(sec, freq);
 750	do_div(sec, scale);
 751	if (!sec)
 752		sec = 1;
 753	else if (sec > 600 && cs->mask > UINT_MAX)
 754		sec = 600;
 
 
 
 
 755
 756	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 757			       NSEC_PER_SEC / scale, sec * scale);
 
 758
 759	/*
 760	 * for clocksources that have large mults, to avoid overflow.
 761	 * Since mult may be adjusted by ntp, add an safety extra margin
 762	 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	 */
 764	cs->maxadj = clocksource_max_adjustment(cs);
 765	while ((cs->mult + cs->maxadj < cs->mult)
 766		|| (cs->mult - cs->maxadj > cs->mult)) {
 767		cs->mult >>= 1;
 768		cs->shift--;
 769		cs->maxadj = clocksource_max_adjustment(cs);
 770	}
 771
 772	cs->max_idle_ns = clocksource_max_deferment(cs);
 
 
 
 
 
 
 
 
 
 
 
 773}
 774EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
 775
 776/**
 777 * __clocksource_register_scale - Used to install new clocksources
 778 * @cs:		clocksource to be registered
 779 * @scale:	Scale factor multiplied against freq to get clocksource hz
 780 * @freq:	clocksource frequency (cycles per second) divided by scale
 781 *
 782 * Returns -EBUSY if registration fails, zero otherwise.
 783 *
 784 * This *SHOULD NOT* be called directly! Please use the
 785 * clocksource_register_hz() or clocksource_register_khz helper functions.
 786 */
 787int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 788{
 
 789
 790	/* Initialize mult/shift and max_idle_ns */
 791	__clocksource_updatefreq_scale(cs, scale, freq);
 792
 793	/* Add clocksource to the clcoksource list */
 794	mutex_lock(&clocksource_mutex);
 795	clocksource_enqueue(cs);
 796	clocksource_enqueue_watchdog(cs);
 797	clocksource_select();
 798	mutex_unlock(&clocksource_mutex);
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 802
 803
 804/**
 805 * clocksource_register - Used to install new clocksources
 806 * @cs:		clocksource to be registered
 807 *
 808 * Returns -EBUSY if registration fails, zero otherwise.
 809 */
 810int clocksource_register(struct clocksource *cs)
 811{
 812	/* calculate max adjustment for given mult/shift */
 813	cs->maxadj = clocksource_max_adjustment(cs);
 814	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 815		"Clocksource %s might overflow on 11%% adjustment\n",
 816		cs->name);
 817
 818	/* calculate max idle time permitted for this clocksource */
 819	cs->max_idle_ns = clocksource_max_deferment(cs);
 820
 
 821	mutex_lock(&clocksource_mutex);
 
 
 822	clocksource_enqueue(cs);
 823	clocksource_enqueue_watchdog(cs);
 
 
 824	clocksource_select();
 
 
 825	mutex_unlock(&clocksource_mutex);
 826	return 0;
 827}
 828EXPORT_SYMBOL(clocksource_register);
 829
 830static void __clocksource_change_rating(struct clocksource *cs, int rating)
 831{
 832	list_del(&cs->list);
 833	cs->rating = rating;
 834	clocksource_enqueue(cs);
 835}
 836
 837/**
 838 * clocksource_change_rating - Change the rating of a registered clocksource
 839 * @cs:		clocksource to be changed
 840 * @rating:	new rating
 841 */
 842void clocksource_change_rating(struct clocksource *cs, int rating)
 843{
 
 
 844	mutex_lock(&clocksource_mutex);
 
 845	__clocksource_change_rating(cs, rating);
 
 
 846	clocksource_select();
 
 
 847	mutex_unlock(&clocksource_mutex);
 848}
 849EXPORT_SYMBOL(clocksource_change_rating);
 850
 851/*
 852 * Unbind clocksource @cs. Called with clocksource_mutex held
 853 */
 854static int clocksource_unbind(struct clocksource *cs)
 855{
 856	/*
 857	 * I really can't convince myself to support this on hardware
 858	 * designed by lobotomized monkeys.
 859	 */
 860	if (clocksource_is_watchdog(cs))
 861		return -EBUSY;
 
 
 862
 863	if (cs == curr_clocksource) {
 864		/* Select and try to install a replacement clock source */
 865		clocksource_select_fallback();
 866		if (curr_clocksource == cs)
 867			return -EBUSY;
 868	}
 
 
 
 
 
 
 
 
 
 
 
 869	clocksource_dequeue_watchdog(cs);
 870	list_del_init(&cs->list);
 
 
 871	return 0;
 872}
 873
 874/**
 875 * clocksource_unregister - remove a registered clocksource
 876 * @cs:	clocksource to be unregistered
 877 */
 878int clocksource_unregister(struct clocksource *cs)
 879{
 880	int ret = 0;
 881
 882	mutex_lock(&clocksource_mutex);
 883	if (!list_empty(&cs->list))
 884		ret = clocksource_unbind(cs);
 885	mutex_unlock(&clocksource_mutex);
 886	return ret;
 887}
 888EXPORT_SYMBOL(clocksource_unregister);
 889
 890#ifdef CONFIG_SYSFS
 891/**
 892 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 893 * @dev:	unused
 894 * @attr:	unused
 895 * @buf:	char buffer to be filled with clocksource list
 896 *
 897 * Provides sysfs interface for listing current clocksource.
 898 */
 899static ssize_t
 900sysfs_show_current_clocksources(struct device *dev,
 901				struct device_attribute *attr, char *buf)
 902{
 903	ssize_t count = 0;
 904
 905	mutex_lock(&clocksource_mutex);
 906	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 907	mutex_unlock(&clocksource_mutex);
 908
 909	return count;
 910}
 911
 912ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 913{
 914	size_t ret = cnt;
 915
 916	/* strings from sysfs write are not 0 terminated! */
 917	if (!cnt || cnt >= CS_NAME_LEN)
 918		return -EINVAL;
 919
 920	/* strip of \n: */
 921	if (buf[cnt-1] == '\n')
 922		cnt--;
 923	if (cnt > 0)
 924		memcpy(dst, buf, cnt);
 925	dst[cnt] = 0;
 926	return ret;
 927}
 928
 929/**
 930 * sysfs_override_clocksource - interface for manually overriding clocksource
 931 * @dev:	unused
 932 * @attr:	unused
 933 * @buf:	name of override clocksource
 934 * @count:	length of buffer
 935 *
 936 * Takes input from sysfs interface for manually overriding the default
 937 * clocksource selection.
 938 */
 939static ssize_t sysfs_override_clocksource(struct device *dev,
 940					  struct device_attribute *attr,
 941					  const char *buf, size_t count)
 942{
 943	ssize_t ret;
 944
 945	mutex_lock(&clocksource_mutex);
 946
 947	ret = sysfs_get_uname(buf, override_name, count);
 948	if (ret >= 0)
 949		clocksource_select();
 950
 951	mutex_unlock(&clocksource_mutex);
 952
 953	return ret;
 954}
 
 955
 956/**
 957 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
 958 * @dev:	unused
 959 * @attr:	unused
 960 * @buf:	unused
 961 * @count:	length of buffer
 962 *
 963 * Takes input from sysfs interface for manually unbinding a clocksource.
 964 */
 965static ssize_t sysfs_unbind_clocksource(struct device *dev,
 966					struct device_attribute *attr,
 967					const char *buf, size_t count)
 968{
 969	struct clocksource *cs;
 970	char name[CS_NAME_LEN];
 971	ssize_t ret;
 972
 973	ret = sysfs_get_uname(buf, name, count);
 974	if (ret < 0)
 975		return ret;
 976
 977	ret = -ENODEV;
 978	mutex_lock(&clocksource_mutex);
 979	list_for_each_entry(cs, &clocksource_list, list) {
 980		if (strcmp(cs->name, name))
 981			continue;
 982		ret = clocksource_unbind(cs);
 983		break;
 984	}
 985	mutex_unlock(&clocksource_mutex);
 986
 987	return ret ? ret : count;
 988}
 
 989
 990/**
 991 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 992 * @dev:	unused
 993 * @attr:	unused
 994 * @buf:	char buffer to be filled with clocksource list
 995 *
 996 * Provides sysfs interface for listing registered clocksources
 997 */
 998static ssize_t
 999sysfs_show_available_clocksources(struct device *dev,
1000				  struct device_attribute *attr,
1001				  char *buf)
1002{
1003	struct clocksource *src;
1004	ssize_t count = 0;
1005
1006	mutex_lock(&clocksource_mutex);
1007	list_for_each_entry(src, &clocksource_list, list) {
1008		/*
1009		 * Don't show non-HRES clocksource if the tick code is
1010		 * in one shot mode (highres=on or nohz=on)
1011		 */
1012		if (!tick_oneshot_mode_active() ||
1013		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1014			count += snprintf(buf + count,
1015				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1016				  "%s ", src->name);
1017	}
1018	mutex_unlock(&clocksource_mutex);
1019
1020	count += snprintf(buf + count,
1021			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1022
1023	return count;
1024}
 
1025
1026/*
1027 * Sysfs setup bits:
1028 */
1029static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
1030		   sysfs_override_clocksource);
1031
1032static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
1033
1034static DEVICE_ATTR(available_clocksource, 0444,
1035		   sysfs_show_available_clocksources, NULL);
1036
1037static struct bus_type clocksource_subsys = {
1038	.name = "clocksource",
1039	.dev_name = "clocksource",
1040};
1041
1042static struct device device_clocksource = {
1043	.id	= 0,
1044	.bus	= &clocksource_subsys,
 
1045};
1046
1047static int __init init_clocksource_sysfs(void)
1048{
1049	int error = subsys_system_register(&clocksource_subsys, NULL);
1050
1051	if (!error)
1052		error = device_register(&device_clocksource);
1053	if (!error)
1054		error = device_create_file(
1055				&device_clocksource,
1056				&dev_attr_current_clocksource);
1057	if (!error)
1058		error = device_create_file(&device_clocksource,
1059					   &dev_attr_unbind_clocksource);
1060	if (!error)
1061		error = device_create_file(
1062				&device_clocksource,
1063				&dev_attr_available_clocksource);
1064	return error;
1065}
1066
1067device_initcall(init_clocksource_sysfs);
1068#endif /* CONFIG_SYSFS */
1069
1070/**
1071 * boot_override_clocksource - boot clock override
1072 * @str:	override name
1073 *
1074 * Takes a clocksource= boot argument and uses it
1075 * as the clocksource override name.
1076 */
1077static int __init boot_override_clocksource(char* str)
1078{
1079	mutex_lock(&clocksource_mutex);
1080	if (str)
1081		strlcpy(override_name, str, sizeof(override_name));
1082	mutex_unlock(&clocksource_mutex);
1083	return 1;
1084}
1085
1086__setup("clocksource=", boot_override_clocksource);
1087
1088/**
1089 * boot_override_clock - Compatibility layer for deprecated boot option
1090 * @str:	override name
1091 *
1092 * DEPRECATED! Takes a clock= boot argument and uses it
1093 * as the clocksource override name
1094 */
1095static int __init boot_override_clock(char* str)
1096{
1097	if (!strcmp(str, "pmtmr")) {
1098		printk("Warning: clock=pmtmr is deprecated. "
1099			"Use clocksource=acpi_pm.\n");
1100		return boot_override_clocksource("acpi_pm");
1101	}
1102	printk("Warning! clock= boot option is deprecated. "
1103		"Use clocksource=xyz\n");
1104	return boot_override_clocksource(str);
1105}
1106
1107__setup("clock=", boot_override_clock);
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
 
 
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17#include <linux/prandom.h>
  18#include <linux/cpu.h>
  19
  20#include "tick-internal.h"
  21#include "timekeeping_internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22
  23/**
  24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  25 * @mult:	pointer to mult variable
  26 * @shift:	pointer to shift variable
  27 * @from:	frequency to convert from
  28 * @to:		frequency to convert to
  29 * @maxsec:	guaranteed runtime conversion range in seconds
  30 *
  31 * The function evaluates the shift/mult pair for the scaled math
  32 * operations of clocksources and clockevents.
  33 *
  34 * @to and @from are frequency values in HZ. For clock sources @to is
  35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  37 *
  38 * The @maxsec conversion range argument controls the time frame in
  39 * seconds which must be covered by the runtime conversion with the
  40 * calculated mult and shift factors. This guarantees that no 64bit
  41 * overflow happens when the input value of the conversion is
  42 * multiplied with the calculated mult factor. Larger ranges may
  43 * reduce the conversion accuracy by choosing smaller mult and shift
  44 * factors.
  45 */
  46void
  47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  48{
  49	u64 tmp;
  50	u32 sft, sftacc= 32;
  51
  52	/*
  53	 * Calculate the shift factor which is limiting the conversion
  54	 * range:
  55	 */
  56	tmp = ((u64)maxsec * from) >> 32;
  57	while (tmp) {
  58		tmp >>=1;
  59		sftacc--;
  60	}
  61
  62	/*
  63	 * Find the conversion shift/mult pair which has the best
  64	 * accuracy and fits the maxsec conversion range:
  65	 */
  66	for (sft = 32; sft > 0; sft--) {
  67		tmp = (u64) to << sft;
  68		tmp += from / 2;
  69		do_div(tmp, from);
  70		if ((tmp >> sftacc) == 0)
  71			break;
  72	}
  73	*mult = tmp;
  74	*shift = sft;
  75}
  76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  77
  78/*[Clocksource internal variables]---------
  79 * curr_clocksource:
  80 *	currently selected clocksource.
  81 * suspend_clocksource:
  82 *	used to calculate the suspend time.
  83 * clocksource_list:
  84 *	linked list with the registered clocksources
  85 * clocksource_mutex:
  86 *	protects manipulations to curr_clocksource and the clocksource_list
  87 * override_name:
  88 *	Name of the user-specified clocksource.
  89 */
  90static struct clocksource *curr_clocksource;
  91static struct clocksource *suspend_clocksource;
  92static LIST_HEAD(clocksource_list);
  93static DEFINE_MUTEX(clocksource_mutex);
  94static char override_name[CS_NAME_LEN];
  95static int finished_booting;
  96static u64 suspend_start;
  97
  98/*
  99 * Threshold: 0.0312s, when doubled: 0.0625s.
 100 * Also a default for cs->uncertainty_margin when registering clocks.
 101 */
 102#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
 103
 104/*
 105 * Maximum permissible delay between two readouts of the watchdog
 106 * clocksource surrounding a read of the clocksource being validated.
 107 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
 108 * a lower bound for cs->uncertainty_margin values when registering clocks.
 109 */
 110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
 111#define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
 112#else
 113#define MAX_SKEW_USEC	100
 114#endif
 115
 116#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
 117
 118#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 119static void clocksource_watchdog_work(struct work_struct *work);
 120static void clocksource_select(void);
 121
 122static LIST_HEAD(watchdog_list);
 123static struct clocksource *watchdog;
 124static struct timer_list watchdog_timer;
 125static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 126static DEFINE_SPINLOCK(watchdog_lock);
 127static int watchdog_running;
 128static atomic_t watchdog_reset_pending;
 129
 130static inline void clocksource_watchdog_lock(unsigned long *flags)
 131{
 132	spin_lock_irqsave(&watchdog_lock, *flags);
 133}
 134
 135static inline void clocksource_watchdog_unlock(unsigned long *flags)
 136{
 137	spin_unlock_irqrestore(&watchdog_lock, *flags);
 138}
 139
 140static int clocksource_watchdog_kthread(void *data);
 141static void __clocksource_change_rating(struct clocksource *cs, int rating);
 142
 143/*
 144 * Interval: 0.5sec.
 145 */
 146#define WATCHDOG_INTERVAL (HZ >> 1)
 
 147
 148static void clocksource_watchdog_work(struct work_struct *work)
 149{
 150	/*
 151	 * We cannot directly run clocksource_watchdog_kthread() here, because
 152	 * clocksource_select() calls timekeeping_notify() which uses
 153	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 154	 * lock inversions wrt CPU hotplug.
 155	 *
 156	 * Also, we only ever run this work once or twice during the lifetime
 157	 * of the kernel, so there is no point in creating a more permanent
 158	 * kthread for this.
 159	 *
 160	 * If kthread_run fails the next watchdog scan over the
 161	 * watchdog_list will find the unstable clock again.
 162	 */
 163	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 164}
 165
 166static void __clocksource_unstable(struct clocksource *cs)
 167{
 168	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 169	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 170
 171	/*
 172	 * If the clocksource is registered clocksource_watchdog_kthread() will
 173	 * re-rate and re-select.
 174	 */
 175	if (list_empty(&cs->list)) {
 176		cs->rating = 0;
 177		return;
 178	}
 179
 180	if (cs->mark_unstable)
 181		cs->mark_unstable(cs);
 182
 183	/* kick clocksource_watchdog_kthread() */
 184	if (finished_booting)
 185		schedule_work(&watchdog_work);
 186}
 187
 
 
 
 
 
 
 
 188/**
 189 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 190 * @cs:		clocksource to be marked unstable
 191 *
 192 * This function is called by the x86 TSC code to mark clocksources as unstable;
 193 * it defers demotion and re-selection to a kthread.
 
 
 194 */
 195void clocksource_mark_unstable(struct clocksource *cs)
 196{
 197	unsigned long flags;
 198
 199	spin_lock_irqsave(&watchdog_lock, flags);
 200	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 201		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 202			list_add(&cs->wd_list, &watchdog_list);
 203		__clocksource_unstable(cs);
 204	}
 205	spin_unlock_irqrestore(&watchdog_lock, flags);
 206}
 207
 208ulong max_cswd_read_retries = 2;
 209module_param(max_cswd_read_retries, ulong, 0644);
 210EXPORT_SYMBOL_GPL(max_cswd_read_retries);
 211static int verify_n_cpus = 8;
 212module_param(verify_n_cpus, int, 0644);
 213
 214enum wd_read_status {
 215	WD_READ_SUCCESS,
 216	WD_READ_UNSTABLE,
 217	WD_READ_SKIP
 218};
 219
 220static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
 221{
 222	unsigned int nretries;
 223	u64 wd_end, wd_end2, wd_delta;
 224	int64_t wd_delay, wd_seq_delay;
 225
 226	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
 227		local_irq_disable();
 228		*wdnow = watchdog->read(watchdog);
 229		*csnow = cs->read(cs);
 230		wd_end = watchdog->read(watchdog);
 231		wd_end2 = watchdog->read(watchdog);
 232		local_irq_enable();
 233
 234		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
 235		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
 236					      watchdog->shift);
 237		if (wd_delay <= WATCHDOG_MAX_SKEW) {
 238			if (nretries > 1 || nretries >= max_cswd_read_retries) {
 239				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
 240					smp_processor_id(), watchdog->name, nretries);
 241			}
 242			return WD_READ_SUCCESS;
 243		}
 244
 245		/*
 246		 * Now compute delay in consecutive watchdog read to see if
 247		 * there is too much external interferences that cause
 248		 * significant delay in reading both clocksource and watchdog.
 249		 *
 250		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
 251		 * report system busy, reinit the watchdog and skip the current
 252		 * watchdog test.
 253		 */
 254		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
 255		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
 256		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
 257			goto skip_test;
 258	}
 259
 260	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
 261		smp_processor_id(), watchdog->name, wd_delay, nretries);
 262	return WD_READ_UNSTABLE;
 263
 264skip_test:
 265	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
 266		smp_processor_id(), watchdog->name, wd_seq_delay);
 267	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
 268		cs->name, wd_delay);
 269	return WD_READ_SKIP;
 270}
 271
 272static u64 csnow_mid;
 273static cpumask_t cpus_ahead;
 274static cpumask_t cpus_behind;
 275static cpumask_t cpus_chosen;
 276
 277static void clocksource_verify_choose_cpus(void)
 278{
 279	int cpu, i, n = verify_n_cpus;
 280
 281	if (n < 0) {
 282		/* Check all of the CPUs. */
 283		cpumask_copy(&cpus_chosen, cpu_online_mask);
 284		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 285		return;
 286	}
 287
 288	/* If no checking desired, or no other CPU to check, leave. */
 289	cpumask_clear(&cpus_chosen);
 290	if (n == 0 || num_online_cpus() <= 1)
 291		return;
 292
 293	/* Make sure to select at least one CPU other than the current CPU. */
 294	cpu = cpumask_first(cpu_online_mask);
 295	if (cpu == smp_processor_id())
 296		cpu = cpumask_next(cpu, cpu_online_mask);
 297	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 298		return;
 299	cpumask_set_cpu(cpu, &cpus_chosen);
 300
 301	/* Force a sane value for the boot parameter. */
 302	if (n > nr_cpu_ids)
 303		n = nr_cpu_ids;
 304
 305	/*
 306	 * Randomly select the specified number of CPUs.  If the same
 307	 * CPU is selected multiple times, that CPU is checked only once,
 308	 * and no replacement CPU is selected.  This gracefully handles
 309	 * situations where verify_n_cpus is greater than the number of
 310	 * CPUs that are currently online.
 311	 */
 312	for (i = 1; i < n; i++) {
 313		cpu = get_random_u32_below(nr_cpu_ids);
 314		cpu = cpumask_next(cpu - 1, cpu_online_mask);
 315		if (cpu >= nr_cpu_ids)
 316			cpu = cpumask_first(cpu_online_mask);
 317		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
 318			cpumask_set_cpu(cpu, &cpus_chosen);
 319	}
 320
 321	/* Don't verify ourselves. */
 322	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 323}
 324
 325static void clocksource_verify_one_cpu(void *csin)
 326{
 327	struct clocksource *cs = (struct clocksource *)csin;
 328
 329	csnow_mid = cs->read(cs);
 330}
 331
 332void clocksource_verify_percpu(struct clocksource *cs)
 333{
 334	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
 335	u64 csnow_begin, csnow_end;
 336	int cpu, testcpu;
 337	s64 delta;
 338
 339	if (verify_n_cpus == 0)
 340		return;
 341	cpumask_clear(&cpus_ahead);
 342	cpumask_clear(&cpus_behind);
 343	cpus_read_lock();
 344	preempt_disable();
 345	clocksource_verify_choose_cpus();
 346	if (cpumask_empty(&cpus_chosen)) {
 347		preempt_enable();
 348		cpus_read_unlock();
 349		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
 350		return;
 351	}
 352	testcpu = smp_processor_id();
 353	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
 354	for_each_cpu(cpu, &cpus_chosen) {
 355		if (cpu == testcpu)
 356			continue;
 357		csnow_begin = cs->read(cs);
 358		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
 359		csnow_end = cs->read(cs);
 360		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
 361		if (delta < 0)
 362			cpumask_set_cpu(cpu, &cpus_behind);
 363		delta = (csnow_end - csnow_mid) & cs->mask;
 364		if (delta < 0)
 365			cpumask_set_cpu(cpu, &cpus_ahead);
 366		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
 367		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 368		if (cs_nsec > cs_nsec_max)
 369			cs_nsec_max = cs_nsec;
 370		if (cs_nsec < cs_nsec_min)
 371			cs_nsec_min = cs_nsec;
 372	}
 373	preempt_enable();
 374	cpus_read_unlock();
 375	if (!cpumask_empty(&cpus_ahead))
 376		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
 377			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
 378	if (!cpumask_empty(&cpus_behind))
 379		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
 380			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
 381	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
 382		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
 383			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
 384}
 385EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
 386
 387static void clocksource_watchdog(struct timer_list *unused)
 388{
 389	u64 csnow, wdnow, cslast, wdlast, delta;
 390	int next_cpu, reset_pending;
 391	int64_t wd_nsec, cs_nsec;
 392	struct clocksource *cs;
 393	enum wd_read_status read_ret;
 394	u32 md;
 395
 396	spin_lock(&watchdog_lock);
 397	if (!watchdog_running)
 398		goto out;
 399
 400	reset_pending = atomic_read(&watchdog_reset_pending);
 401
 402	list_for_each_entry(cs, &watchdog_list, wd_list) {
 403
 404		/* Clocksource already marked unstable? */
 405		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 406			if (finished_booting)
 407				schedule_work(&watchdog_work);
 408			continue;
 409		}
 410
 411		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
 412
 413		if (read_ret != WD_READ_SUCCESS) {
 414			if (read_ret == WD_READ_UNSTABLE)
 415				/* Clock readout unreliable, so give it up. */
 416				__clocksource_unstable(cs);
 417			continue;
 418		}
 419
 420		/* Clocksource initialized ? */
 421		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 422		    atomic_read(&watchdog_reset_pending)) {
 423			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 424			cs->wd_last = wdnow;
 425			cs->cs_last = csnow;
 426			continue;
 427		}
 428
 429		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 430		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 431					     watchdog->shift);
 432
 433		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 434		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 435		wdlast = cs->wd_last; /* save these in case we print them */
 436		cslast = cs->cs_last;
 437		cs->cs_last = csnow;
 438		cs->wd_last = wdnow;
 439
 440		if (atomic_read(&watchdog_reset_pending))
 441			continue;
 442
 443		/* Check the deviation from the watchdog clocksource. */
 444		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
 445		if (abs(cs_nsec - wd_nsec) > md) {
 446			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 447				smp_processor_id(), cs->name);
 448			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
 449				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
 450			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
 451				cs->name, cs_nsec, csnow, cslast, cs->mask);
 452			if (curr_clocksource == cs)
 453				pr_warn("                      '%s' is current clocksource.\n", cs->name);
 454			else if (curr_clocksource)
 455				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
 456			else
 457				pr_warn("                      No current clocksource.\n");
 458			__clocksource_unstable(cs);
 459			continue;
 460		}
 461
 462		if (cs == curr_clocksource && cs->tick_stable)
 463			cs->tick_stable(cs);
 464
 465		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 466		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 467		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 468			/* Mark it valid for high-res. */
 469			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 470
 471			/*
 472			 * clocksource_done_booting() will sort it if
 473			 * finished_booting is not set yet.
 474			 */
 475			if (!finished_booting)
 476				continue;
 477
 478			/*
 479			 * If this is not the current clocksource let
 480			 * the watchdog thread reselect it. Due to the
 481			 * change to high res this clocksource might
 482			 * be preferred now. If it is the current
 483			 * clocksource let the tick code know about
 484			 * that change.
 485			 */
 486			if (cs != curr_clocksource) {
 487				cs->flags |= CLOCK_SOURCE_RESELECT;
 488				schedule_work(&watchdog_work);
 489			} else {
 490				tick_clock_notify();
 491			}
 492		}
 493	}
 494
 495	/*
 496	 * We only clear the watchdog_reset_pending, when we did a
 497	 * full cycle through all clocksources.
 498	 */
 499	if (reset_pending)
 500		atomic_dec(&watchdog_reset_pending);
 501
 502	/*
 503	 * Cycle through CPUs to check if the CPUs stay synchronized
 504	 * to each other.
 505	 */
 506	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 507	if (next_cpu >= nr_cpu_ids)
 508		next_cpu = cpumask_first(cpu_online_mask);
 509
 510	/*
 511	 * Arm timer if not already pending: could race with concurrent
 512	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 513	 */
 514	if (!timer_pending(&watchdog_timer)) {
 515		watchdog_timer.expires += WATCHDOG_INTERVAL;
 516		add_timer_on(&watchdog_timer, next_cpu);
 517	}
 518out:
 519	spin_unlock(&watchdog_lock);
 520}
 521
 522static inline void clocksource_start_watchdog(void)
 523{
 524	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 525		return;
 526	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 
 527	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 528	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 529	watchdog_running = 1;
 530}
 531
 532static inline void clocksource_stop_watchdog(void)
 533{
 534	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 535		return;
 536	del_timer(&watchdog_timer);
 537	watchdog_running = 0;
 538}
 539
 540static inline void clocksource_reset_watchdog(void)
 541{
 542	struct clocksource *cs;
 543
 544	list_for_each_entry(cs, &watchdog_list, wd_list)
 545		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 546}
 547
 548static void clocksource_resume_watchdog(void)
 549{
 550	atomic_inc(&watchdog_reset_pending);
 551}
 552
 553static void clocksource_enqueue_watchdog(struct clocksource *cs)
 554{
 555	INIT_LIST_HEAD(&cs->wd_list);
 556
 
 557	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 558		/* cs is a clocksource to be watched. */
 559		list_add(&cs->wd_list, &watchdog_list);
 560		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 561	} else {
 562		/* cs is a watchdog. */
 563		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 564			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 565	}
 566}
 567
 568static void clocksource_select_watchdog(bool fallback)
 569{
 570	struct clocksource *cs, *old_wd;
 571	unsigned long flags;
 572
 573	spin_lock_irqsave(&watchdog_lock, flags);
 574	/* save current watchdog */
 575	old_wd = watchdog;
 576	if (fallback)
 577		watchdog = NULL;
 578
 579	list_for_each_entry(cs, &clocksource_list, list) {
 580		/* cs is a clocksource to be watched. */
 581		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 582			continue;
 583
 584		/* Skip current if we were requested for a fallback. */
 585		if (fallback && cs == old_wd)
 586			continue;
 587
 588		/* Pick the best watchdog. */
 589		if (!watchdog || cs->rating > watchdog->rating)
 590			watchdog = cs;
 
 
 
 591	}
 592	/* If we failed to find a fallback restore the old one. */
 593	if (!watchdog)
 594		watchdog = old_wd;
 595
 596	/* If we changed the watchdog we need to reset cycles. */
 597	if (watchdog != old_wd)
 598		clocksource_reset_watchdog();
 599
 600	/* Check if the watchdog timer needs to be started. */
 601	clocksource_start_watchdog();
 602	spin_unlock_irqrestore(&watchdog_lock, flags);
 603}
 604
 605static void clocksource_dequeue_watchdog(struct clocksource *cs)
 606{
 
 
 
 607	if (cs != watchdog) {
 608		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 609			/* cs is a watched clocksource. */
 610			list_del_init(&cs->wd_list);
 611			/* Check if the watchdog timer needs to be stopped. */
 612			clocksource_stop_watchdog();
 613		}
 614	}
 
 615}
 616
 617static int __clocksource_watchdog_kthread(void)
 618{
 619	struct clocksource *cs, *tmp;
 620	unsigned long flags;
 
 621	int select = 0;
 622
 623	/* Do any required per-CPU skew verification. */
 624	if (curr_clocksource &&
 625	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
 626	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
 627		clocksource_verify_percpu(curr_clocksource);
 628
 629	spin_lock_irqsave(&watchdog_lock, flags);
 630	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 631		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 632			list_del_init(&cs->wd_list);
 633			__clocksource_change_rating(cs, 0);
 634			select = 1;
 635		}
 636		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 637			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 638			select = 1;
 639		}
 640	}
 641	/* Check if the watchdog timer needs to be stopped. */
 642	clocksource_stop_watchdog();
 643	spin_unlock_irqrestore(&watchdog_lock, flags);
 644
 
 
 
 
 
 645	return select;
 646}
 647
 648static int clocksource_watchdog_kthread(void *data)
 649{
 650	mutex_lock(&clocksource_mutex);
 651	if (__clocksource_watchdog_kthread())
 652		clocksource_select();
 653	mutex_unlock(&clocksource_mutex);
 654	return 0;
 655}
 656
 657static bool clocksource_is_watchdog(struct clocksource *cs)
 658{
 659	return cs == watchdog;
 660}
 661
 662#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 663
 664static void clocksource_enqueue_watchdog(struct clocksource *cs)
 665{
 666	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 667		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 668}
 669
 670static void clocksource_select_watchdog(bool fallback) { }
 671static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 672static inline void clocksource_resume_watchdog(void) { }
 673static inline int __clocksource_watchdog_kthread(void) { return 0; }
 674static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 675void clocksource_mark_unstable(struct clocksource *cs) { }
 676
 677static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 678static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 679
 680#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 681
 682static bool clocksource_is_suspend(struct clocksource *cs)
 683{
 684	return cs == suspend_clocksource;
 685}
 686
 687static void __clocksource_suspend_select(struct clocksource *cs)
 688{
 689	/*
 690	 * Skip the clocksource which will be stopped in suspend state.
 691	 */
 692	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 693		return;
 694
 695	/*
 696	 * The nonstop clocksource can be selected as the suspend clocksource to
 697	 * calculate the suspend time, so it should not supply suspend/resume
 698	 * interfaces to suspend the nonstop clocksource when system suspends.
 699	 */
 700	if (cs->suspend || cs->resume) {
 701		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 702			cs->name);
 703	}
 704
 705	/* Pick the best rating. */
 706	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 707		suspend_clocksource = cs;
 708}
 709
 710/**
 711 * clocksource_suspend_select - Select the best clocksource for suspend timing
 712 * @fallback:	if select a fallback clocksource
 713 */
 714static void clocksource_suspend_select(bool fallback)
 715{
 716	struct clocksource *cs, *old_suspend;
 717
 718	old_suspend = suspend_clocksource;
 719	if (fallback)
 720		suspend_clocksource = NULL;
 721
 722	list_for_each_entry(cs, &clocksource_list, list) {
 723		/* Skip current if we were requested for a fallback. */
 724		if (fallback && cs == old_suspend)
 725			continue;
 726
 727		__clocksource_suspend_select(cs);
 728	}
 729}
 730
 731/**
 732 * clocksource_start_suspend_timing - Start measuring the suspend timing
 733 * @cs:			current clocksource from timekeeping
 734 * @start_cycles:	current cycles from timekeeping
 735 *
 736 * This function will save the start cycle values of suspend timer to calculate
 737 * the suspend time when resuming system.
 738 *
 739 * This function is called late in the suspend process from timekeeping_suspend(),
 740 * that means processes are frozen, non-boot cpus and interrupts are disabled
 741 * now. It is therefore possible to start the suspend timer without taking the
 742 * clocksource mutex.
 743 */
 744void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 745{
 746	if (!suspend_clocksource)
 747		return;
 748
 749	/*
 750	 * If current clocksource is the suspend timer, we should use the
 751	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 752	 * from suspend timer.
 753	 */
 754	if (clocksource_is_suspend(cs)) {
 755		suspend_start = start_cycles;
 756		return;
 757	}
 758
 759	if (suspend_clocksource->enable &&
 760	    suspend_clocksource->enable(suspend_clocksource)) {
 761		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 762		return;
 763	}
 764
 765	suspend_start = suspend_clocksource->read(suspend_clocksource);
 766}
 767
 768/**
 769 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 770 * @cs:		current clocksource from timekeeping
 771 * @cycle_now:	current cycles from timekeeping
 772 *
 773 * This function will calculate the suspend time from suspend timer.
 774 *
 775 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 776 *
 777 * This function is called early in the resume process from timekeeping_resume(),
 778 * that means there is only one cpu, no processes are running and the interrupts
 779 * are disabled. It is therefore possible to stop the suspend timer without
 780 * taking the clocksource mutex.
 781 */
 782u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 783{
 784	u64 now, delta, nsec = 0;
 785
 786	if (!suspend_clocksource)
 787		return 0;
 788
 789	/*
 790	 * If current clocksource is the suspend timer, we should use the
 791	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 792	 * avoid same reading from suspend timer.
 793	 */
 794	if (clocksource_is_suspend(cs))
 795		now = cycle_now;
 796	else
 797		now = suspend_clocksource->read(suspend_clocksource);
 798
 799	if (now > suspend_start) {
 800		delta = clocksource_delta(now, suspend_start,
 801					  suspend_clocksource->mask);
 802		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 803				       suspend_clocksource->shift);
 804	}
 805
 806	/*
 807	 * Disable the suspend timer to save power if current clocksource is
 808	 * not the suspend timer.
 809	 */
 810	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 811		suspend_clocksource->disable(suspend_clocksource);
 812
 813	return nsec;
 814}
 815
 816/**
 817 * clocksource_suspend - suspend the clocksource(s)
 818 */
 819void clocksource_suspend(void)
 820{
 821	struct clocksource *cs;
 822
 823	list_for_each_entry_reverse(cs, &clocksource_list, list)
 824		if (cs->suspend)
 825			cs->suspend(cs);
 826}
 827
 828/**
 829 * clocksource_resume - resume the clocksource(s)
 830 */
 831void clocksource_resume(void)
 832{
 833	struct clocksource *cs;
 834
 835	list_for_each_entry(cs, &clocksource_list, list)
 836		if (cs->resume)
 837			cs->resume(cs);
 838
 839	clocksource_resume_watchdog();
 840}
 841
 842/**
 843 * clocksource_touch_watchdog - Update watchdog
 844 *
 845 * Update the watchdog after exception contexts such as kgdb so as not
 846 * to incorrectly trip the watchdog. This might fail when the kernel
 847 * was stopped in code which holds watchdog_lock.
 848 */
 849void clocksource_touch_watchdog(void)
 850{
 851	clocksource_resume_watchdog();
 852}
 853
 854/**
 855 * clocksource_max_adjustment- Returns max adjustment amount
 856 * @cs:         Pointer to clocksource
 857 *
 858 */
 859static u32 clocksource_max_adjustment(struct clocksource *cs)
 860{
 861	u64 ret;
 862	/*
 863	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 864	 */
 865	ret = (u64)cs->mult * 11;
 866	do_div(ret,100);
 867	return (u32)ret;
 868}
 869
 870/**
 871 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 872 * @mult:	cycle to nanosecond multiplier
 873 * @shift:	cycle to nanosecond divisor (power of two)
 874 * @maxadj:	maximum adjustment value to mult (~11%)
 875 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 876 * @max_cyc:	maximum cycle value before potential overflow (does not include
 877 *		any safety margin)
 878 *
 879 * NOTE: This function includes a safety margin of 50%, in other words, we
 880 * return half the number of nanoseconds the hardware counter can technically
 881 * cover. This is done so that we can potentially detect problems caused by
 882 * delayed timers or bad hardware, which might result in time intervals that
 883 * are larger than what the math used can handle without overflows.
 884 */
 885u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 886{
 887	u64 max_nsecs, max_cycles;
 888
 889	/*
 890	 * Calculate the maximum number of cycles that we can pass to the
 891	 * cyc2ns() function without overflowing a 64-bit result.
 
 
 
 
 
 
 
 
 
 
 892	 */
 893	max_cycles = ULLONG_MAX;
 894	do_div(max_cycles, mult+maxadj);
 895
 896	/*
 897	 * The actual maximum number of cycles we can defer the clocksource is
 898	 * determined by the minimum of max_cycles and mask.
 899	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 900	 * too long if there's a large negative adjustment.
 901	 */
 902	max_cycles = min(max_cycles, mask);
 903	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 904
 905	/* return the max_cycles value as well if requested */
 906	if (max_cyc)
 907		*max_cyc = max_cycles;
 908
 909	/* Return 50% of the actual maximum, so we can detect bad values */
 910	max_nsecs >>= 1;
 911
 912	return max_nsecs;
 913}
 914
 915/**
 916 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 917 * @cs:         Pointer to clocksource to be updated
 918 *
 919 */
 920static inline void clocksource_update_max_deferment(struct clocksource *cs)
 921{
 922	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 923						cs->maxadj, cs->mask,
 924						&cs->max_cycles);
 
 
 
 
 
 
 
 
 925}
 926
 
 
 927static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 928{
 929	struct clocksource *cs;
 930
 931	if (!finished_booting || list_empty(&clocksource_list))
 932		return NULL;
 933
 934	/*
 935	 * We pick the clocksource with the highest rating. If oneshot
 936	 * mode is active, we pick the highres valid clocksource with
 937	 * the best rating.
 938	 */
 939	list_for_each_entry(cs, &clocksource_list, list) {
 940		if (skipcur && cs == curr_clocksource)
 941			continue;
 942		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 943			continue;
 944		return cs;
 945	}
 946	return NULL;
 947}
 948
 949static void __clocksource_select(bool skipcur)
 950{
 951	bool oneshot = tick_oneshot_mode_active();
 952	struct clocksource *best, *cs;
 953
 954	/* Find the best suitable clocksource */
 955	best = clocksource_find_best(oneshot, skipcur);
 956	if (!best)
 957		return;
 958
 959	if (!strlen(override_name))
 960		goto found;
 961
 962	/* Check for the override clocksource. */
 963	list_for_each_entry(cs, &clocksource_list, list) {
 964		if (skipcur && cs == curr_clocksource)
 965			continue;
 966		if (strcmp(cs->name, override_name) != 0)
 967			continue;
 968		/*
 969		 * Check to make sure we don't switch to a non-highres
 970		 * capable clocksource if the tick code is in oneshot
 971		 * mode (highres or nohz)
 972		 */
 973		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 974			/* Override clocksource cannot be used. */
 975			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 976				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 977					cs->name);
 978				override_name[0] = 0;
 979			} else {
 980				/*
 981				 * The override cannot be currently verified.
 982				 * Deferring to let the watchdog check.
 983				 */
 984				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 985					cs->name);
 986			}
 987		} else
 988			/* Override clocksource can be used. */
 989			best = cs;
 990		break;
 991	}
 992
 993found:
 994	if (curr_clocksource != best && !timekeeping_notify(best)) {
 995		pr_info("Switched to clocksource %s\n", best->name);
 996		curr_clocksource = best;
 997	}
 998}
 999
1000/**
1001 * clocksource_select - Select the best clocksource available
1002 *
1003 * Private function. Must hold clocksource_mutex when called.
1004 *
1005 * Select the clocksource with the best rating, or the clocksource,
1006 * which is selected by userspace override.
1007 */
1008static void clocksource_select(void)
1009{
1010	__clocksource_select(false);
1011}
1012
1013static void clocksource_select_fallback(void)
1014{
1015	__clocksource_select(true);
1016}
1017
 
 
 
 
 
 
 
1018/*
1019 * clocksource_done_booting - Called near the end of core bootup
1020 *
1021 * Hack to avoid lots of clocksource churn at boot time.
1022 * We use fs_initcall because we want this to start before
1023 * device_initcall but after subsys_initcall.
1024 */
1025static int __init clocksource_done_booting(void)
1026{
1027	mutex_lock(&clocksource_mutex);
1028	curr_clocksource = clocksource_default_clock();
1029	finished_booting = 1;
1030	/*
1031	 * Run the watchdog first to eliminate unstable clock sources
1032	 */
1033	__clocksource_watchdog_kthread();
1034	clocksource_select();
1035	mutex_unlock(&clocksource_mutex);
1036	return 0;
1037}
1038fs_initcall(clocksource_done_booting);
1039
1040/*
1041 * Enqueue the clocksource sorted by rating
1042 */
1043static void clocksource_enqueue(struct clocksource *cs)
1044{
1045	struct list_head *entry = &clocksource_list;
1046	struct clocksource *tmp;
1047
1048	list_for_each_entry(tmp, &clocksource_list, list) {
1049		/* Keep track of the place, where to insert */
1050		if (tmp->rating < cs->rating)
1051			break;
1052		entry = &tmp->list;
1053	}
1054	list_add(&cs->list, entry);
1055}
1056
1057/**
1058 * __clocksource_update_freq_scale - Used update clocksource with new freq
1059 * @cs:		clocksource to be registered
1060 * @scale:	Scale factor multiplied against freq to get clocksource hz
1061 * @freq:	clocksource frequency (cycles per second) divided by scale
1062 *
1063 * This should only be called from the clocksource->enable() method.
1064 *
1065 * This *SHOULD NOT* be called directly! Please use the
1066 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1067 * functions.
1068 */
1069void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1070{
1071	u64 sec;
1072
1073	/*
1074	 * Default clocksources are *special* and self-define their mult/shift.
1075	 * But, you're not special, so you should specify a freq value.
1076	 */
1077	if (freq) {
1078		/*
1079		 * Calc the maximum number of seconds which we can run before
1080		 * wrapping around. For clocksources which have a mask > 32-bit
1081		 * we need to limit the max sleep time to have a good
1082		 * conversion precision. 10 minutes is still a reasonable
1083		 * amount. That results in a shift value of 24 for a
1084		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1085		 * ~ 0.06ppm granularity for NTP.
1086		 */
1087		sec = cs->mask;
1088		do_div(sec, freq);
1089		do_div(sec, scale);
1090		if (!sec)
1091			sec = 1;
1092		else if (sec > 600 && cs->mask > UINT_MAX)
1093			sec = 600;
1094
1095		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1096				       NSEC_PER_SEC / scale, sec * scale);
1097	}
1098
1099	/*
1100	 * If the uncertainty margin is not specified, calculate it.
1101	 * If both scale and freq are non-zero, calculate the clock
1102	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1103	 * if either of scale or freq is zero, be very conservative and
1104	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1105	 * uncertainty margin.  Allow stupidly small uncertainty margins
1106	 * to be specified by the caller for testing purposes, but warn
1107	 * to discourage production use of this capability.
1108	 */
1109	if (scale && freq && !cs->uncertainty_margin) {
1110		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1111		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1112			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1113	} else if (!cs->uncertainty_margin) {
1114		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1115	}
1116	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1117
1118	/*
1119	 * Ensure clocksources that have large 'mult' values don't overflow
1120	 * when adjusted.
1121	 */
1122	cs->maxadj = clocksource_max_adjustment(cs);
1123	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1124		|| (cs->mult - cs->maxadj > cs->mult))) {
1125		cs->mult >>= 1;
1126		cs->shift--;
1127		cs->maxadj = clocksource_max_adjustment(cs);
1128	}
1129
1130	/*
1131	 * Only warn for *special* clocksources that self-define
1132	 * their mult/shift values and don't specify a freq.
1133	 */
1134	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1135		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1136		cs->name);
1137
1138	clocksource_update_max_deferment(cs);
1139
1140	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1141		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1142}
1143EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1144
1145/**
1146 * __clocksource_register_scale - Used to install new clocksources
1147 * @cs:		clocksource to be registered
1148 * @scale:	Scale factor multiplied against freq to get clocksource hz
1149 * @freq:	clocksource frequency (cycles per second) divided by scale
1150 *
1151 * Returns -EBUSY if registration fails, zero otherwise.
1152 *
1153 * This *SHOULD NOT* be called directly! Please use the
1154 * clocksource_register_hz() or clocksource_register_khz helper functions.
1155 */
1156int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1157{
1158	unsigned long flags;
1159
1160	clocksource_arch_init(cs);
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1163		cs->id = CSID_GENERIC;
1164	if (cs->vdso_clock_mode < 0 ||
1165	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1166		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1167			cs->name, cs->vdso_clock_mode);
1168		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1169	}
 
 
 
 
 
1170
1171	/* Initialize mult/shift and max_idle_ns */
1172	__clocksource_update_freq_scale(cs, scale, freq);
1173
1174	/* Add clocksource to the clocksource list */
1175	mutex_lock(&clocksource_mutex);
1176
1177	clocksource_watchdog_lock(&flags);
1178	clocksource_enqueue(cs);
1179	clocksource_enqueue_watchdog(cs);
1180	clocksource_watchdog_unlock(&flags);
1181
1182	clocksource_select();
1183	clocksource_select_watchdog(false);
1184	__clocksource_suspend_select(cs);
1185	mutex_unlock(&clocksource_mutex);
1186	return 0;
1187}
1188EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1189
1190static void __clocksource_change_rating(struct clocksource *cs, int rating)
1191{
1192	list_del(&cs->list);
1193	cs->rating = rating;
1194	clocksource_enqueue(cs);
1195}
1196
1197/**
1198 * clocksource_change_rating - Change the rating of a registered clocksource
1199 * @cs:		clocksource to be changed
1200 * @rating:	new rating
1201 */
1202void clocksource_change_rating(struct clocksource *cs, int rating)
1203{
1204	unsigned long flags;
1205
1206	mutex_lock(&clocksource_mutex);
1207	clocksource_watchdog_lock(&flags);
1208	__clocksource_change_rating(cs, rating);
1209	clocksource_watchdog_unlock(&flags);
1210
1211	clocksource_select();
1212	clocksource_select_watchdog(false);
1213	clocksource_suspend_select(false);
1214	mutex_unlock(&clocksource_mutex);
1215}
1216EXPORT_SYMBOL(clocksource_change_rating);
1217
1218/*
1219 * Unbind clocksource @cs. Called with clocksource_mutex held
1220 */
1221static int clocksource_unbind(struct clocksource *cs)
1222{
1223	unsigned long flags;
1224
1225	if (clocksource_is_watchdog(cs)) {
1226		/* Select and try to install a replacement watchdog. */
1227		clocksource_select_watchdog(true);
1228		if (clocksource_is_watchdog(cs))
1229			return -EBUSY;
1230	}
1231
1232	if (cs == curr_clocksource) {
1233		/* Select and try to install a replacement clock source */
1234		clocksource_select_fallback();
1235		if (curr_clocksource == cs)
1236			return -EBUSY;
1237	}
1238
1239	if (clocksource_is_suspend(cs)) {
1240		/*
1241		 * Select and try to install a replacement suspend clocksource.
1242		 * If no replacement suspend clocksource, we will just let the
1243		 * clocksource go and have no suspend clocksource.
1244		 */
1245		clocksource_suspend_select(true);
1246	}
1247
1248	clocksource_watchdog_lock(&flags);
1249	clocksource_dequeue_watchdog(cs);
1250	list_del_init(&cs->list);
1251	clocksource_watchdog_unlock(&flags);
1252
1253	return 0;
1254}
1255
1256/**
1257 * clocksource_unregister - remove a registered clocksource
1258 * @cs:	clocksource to be unregistered
1259 */
1260int clocksource_unregister(struct clocksource *cs)
1261{
1262	int ret = 0;
1263
1264	mutex_lock(&clocksource_mutex);
1265	if (!list_empty(&cs->list))
1266		ret = clocksource_unbind(cs);
1267	mutex_unlock(&clocksource_mutex);
1268	return ret;
1269}
1270EXPORT_SYMBOL(clocksource_unregister);
1271
1272#ifdef CONFIG_SYSFS
1273/**
1274 * current_clocksource_show - sysfs interface for current clocksource
1275 * @dev:	unused
1276 * @attr:	unused
1277 * @buf:	char buffer to be filled with clocksource list
1278 *
1279 * Provides sysfs interface for listing current clocksource.
1280 */
1281static ssize_t current_clocksource_show(struct device *dev,
1282					struct device_attribute *attr,
1283					char *buf)
1284{
1285	ssize_t count = 0;
1286
1287	mutex_lock(&clocksource_mutex);
1288	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1289	mutex_unlock(&clocksource_mutex);
1290
1291	return count;
1292}
1293
1294ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1295{
1296	size_t ret = cnt;
1297
1298	/* strings from sysfs write are not 0 terminated! */
1299	if (!cnt || cnt >= CS_NAME_LEN)
1300		return -EINVAL;
1301
1302	/* strip of \n: */
1303	if (buf[cnt-1] == '\n')
1304		cnt--;
1305	if (cnt > 0)
1306		memcpy(dst, buf, cnt);
1307	dst[cnt] = 0;
1308	return ret;
1309}
1310
1311/**
1312 * current_clocksource_store - interface for manually overriding clocksource
1313 * @dev:	unused
1314 * @attr:	unused
1315 * @buf:	name of override clocksource
1316 * @count:	length of buffer
1317 *
1318 * Takes input from sysfs interface for manually overriding the default
1319 * clocksource selection.
1320 */
1321static ssize_t current_clocksource_store(struct device *dev,
1322					 struct device_attribute *attr,
1323					 const char *buf, size_t count)
1324{
1325	ssize_t ret;
1326
1327	mutex_lock(&clocksource_mutex);
1328
1329	ret = sysfs_get_uname(buf, override_name, count);
1330	if (ret >= 0)
1331		clocksource_select();
1332
1333	mutex_unlock(&clocksource_mutex);
1334
1335	return ret;
1336}
1337static DEVICE_ATTR_RW(current_clocksource);
1338
1339/**
1340 * unbind_clocksource_store - interface for manually unbinding clocksource
1341 * @dev:	unused
1342 * @attr:	unused
1343 * @buf:	unused
1344 * @count:	length of buffer
1345 *
1346 * Takes input from sysfs interface for manually unbinding a clocksource.
1347 */
1348static ssize_t unbind_clocksource_store(struct device *dev,
1349					struct device_attribute *attr,
1350					const char *buf, size_t count)
1351{
1352	struct clocksource *cs;
1353	char name[CS_NAME_LEN];
1354	ssize_t ret;
1355
1356	ret = sysfs_get_uname(buf, name, count);
1357	if (ret < 0)
1358		return ret;
1359
1360	ret = -ENODEV;
1361	mutex_lock(&clocksource_mutex);
1362	list_for_each_entry(cs, &clocksource_list, list) {
1363		if (strcmp(cs->name, name))
1364			continue;
1365		ret = clocksource_unbind(cs);
1366		break;
1367	}
1368	mutex_unlock(&clocksource_mutex);
1369
1370	return ret ? ret : count;
1371}
1372static DEVICE_ATTR_WO(unbind_clocksource);
1373
1374/**
1375 * available_clocksource_show - sysfs interface for listing clocksource
1376 * @dev:	unused
1377 * @attr:	unused
1378 * @buf:	char buffer to be filled with clocksource list
1379 *
1380 * Provides sysfs interface for listing registered clocksources
1381 */
1382static ssize_t available_clocksource_show(struct device *dev,
1383					  struct device_attribute *attr,
1384					  char *buf)
 
1385{
1386	struct clocksource *src;
1387	ssize_t count = 0;
1388
1389	mutex_lock(&clocksource_mutex);
1390	list_for_each_entry(src, &clocksource_list, list) {
1391		/*
1392		 * Don't show non-HRES clocksource if the tick code is
1393		 * in one shot mode (highres=on or nohz=on)
1394		 */
1395		if (!tick_oneshot_mode_active() ||
1396		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1397			count += snprintf(buf + count,
1398				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1399				  "%s ", src->name);
1400	}
1401	mutex_unlock(&clocksource_mutex);
1402
1403	count += snprintf(buf + count,
1404			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1405
1406	return count;
1407}
1408static DEVICE_ATTR_RO(available_clocksource);
1409
1410static struct attribute *clocksource_attrs[] = {
1411	&dev_attr_current_clocksource.attr,
1412	&dev_attr_unbind_clocksource.attr,
1413	&dev_attr_available_clocksource.attr,
1414	NULL
1415};
1416ATTRIBUTE_GROUPS(clocksource);
 
 
 
1417
1418static struct bus_type clocksource_subsys = {
1419	.name = "clocksource",
1420	.dev_name = "clocksource",
1421};
1422
1423static struct device device_clocksource = {
1424	.id	= 0,
1425	.bus	= &clocksource_subsys,
1426	.groups	= clocksource_groups,
1427};
1428
1429static int __init init_clocksource_sysfs(void)
1430{
1431	int error = subsys_system_register(&clocksource_subsys, NULL);
1432
1433	if (!error)
1434		error = device_register(&device_clocksource);
1435
 
 
 
 
 
 
 
 
 
 
1436	return error;
1437}
1438
1439device_initcall(init_clocksource_sysfs);
1440#endif /* CONFIG_SYSFS */
1441
1442/**
1443 * boot_override_clocksource - boot clock override
1444 * @str:	override name
1445 *
1446 * Takes a clocksource= boot argument and uses it
1447 * as the clocksource override name.
1448 */
1449static int __init boot_override_clocksource(char* str)
1450{
1451	mutex_lock(&clocksource_mutex);
1452	if (str)
1453		strlcpy(override_name, str, sizeof(override_name));
1454	mutex_unlock(&clocksource_mutex);
1455	return 1;
1456}
1457
1458__setup("clocksource=", boot_override_clocksource);
1459
1460/**
1461 * boot_override_clock - Compatibility layer for deprecated boot option
1462 * @str:	override name
1463 *
1464 * DEPRECATED! Takes a clock= boot argument and uses it
1465 * as the clocksource override name
1466 */
1467static int __init boot_override_clock(char* str)
1468{
1469	if (!strcmp(str, "pmtmr")) {
1470		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
 
1471		return boot_override_clocksource("acpi_pm");
1472	}
1473	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
 
1474	return boot_override_clocksource(str);
1475}
1476
1477__setup("clock=", boot_override_clock);