Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *		Probes initial implementation (includes suggestions from
  23 *		Rusty Russell).
  24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *		hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *		interface to access function arguments.
  28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *		exceptions notifier to be first on the priority list.
  30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *		<prasanna@in.ibm.com> added function-return probes.
  33 */
 
 
 
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
 
 
  51
  52#include <asm-generic/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <asm/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
 
 
 
 
 
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
  84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
 
  85{
  86	return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/*
  90 * Normally, functions that we'd want to prohibit kprobes in, are marked
  91 * __kprobes. But, there are cases where such functions already belong to
  92 * a different section (__sched for preempt_schedule)
  93 *
  94 * For such cases, we now have a blacklist
  95 */
  96static struct kprobe_blackpoint kprobe_blacklist[] = {
  97	{"preempt_schedule",},
  98	{"native_get_debugreg",},
  99	{"irq_entries_start",},
 100	{"common_interrupt",},
 101	{"mcount",},	/* mcount can be called from everywhere */
 102	{NULL}    /* Terminator */
 103};
 104
 105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
 106/*
 107 * kprobe->ainsn.insn points to the copy of the instruction to be
 108 * single-stepped. x86_64, POWER4 and above have no-exec support and
 109 * stepping on the instruction on a vmalloced/kmalloced/data page
 110 * is a recipe for disaster
 111 */
 112struct kprobe_insn_page {
 113	struct list_head list;
 114	kprobe_opcode_t *insns;		/* Page of instruction slots */
 115	struct kprobe_insn_cache *cache;
 116	int nused;
 117	int ngarbage;
 118	char slot_used[];
 119};
 120
 121#define KPROBE_INSN_PAGE_SIZE(slots)			\
 122	(offsetof(struct kprobe_insn_page, slot_used) +	\
 123	 (sizeof(char) * (slots)))
 124
 125static int slots_per_page(struct kprobe_insn_cache *c)
 126{
 127	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 128}
 129
 130enum kprobe_slot_state {
 131	SLOT_CLEAN = 0,
 132	SLOT_DIRTY = 1,
 133	SLOT_USED = 2,
 134};
 135
 136static void *alloc_insn_page(void)
 137{
 
 
 
 
 
 
 138	return module_alloc(PAGE_SIZE);
 139}
 140
 141static void free_insn_page(void *page)
 142{
 143	module_free(NULL, page);
 144}
 145
 146struct kprobe_insn_cache kprobe_insn_slots = {
 147	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 148	.alloc = alloc_insn_page,
 149	.free = free_insn_page,
 
 150	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 151	.insn_size = MAX_INSN_SIZE,
 152	.nr_garbage = 0,
 153};
 154static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
 155
 156/**
 157 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 158 * We allocate an executable page if there's no room on existing ones.
 159 */
 160kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
 161{
 162	struct kprobe_insn_page *kip;
 163	kprobe_opcode_t *slot = NULL;
 164
 
 165	mutex_lock(&c->mutex);
 166 retry:
 167	list_for_each_entry(kip, &c->pages, list) {
 
 168		if (kip->nused < slots_per_page(c)) {
 169			int i;
 
 170			for (i = 0; i < slots_per_page(c); i++) {
 171				if (kip->slot_used[i] == SLOT_CLEAN) {
 172					kip->slot_used[i] = SLOT_USED;
 173					kip->nused++;
 174					slot = kip->insns + (i * c->insn_size);
 
 175					goto out;
 176				}
 177			}
 178			/* kip->nused is broken. Fix it. */
 179			kip->nused = slots_per_page(c);
 180			WARN_ON(1);
 181		}
 182	}
 
 183
 184	/* If there are any garbage slots, collect it and try again. */
 185	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 186		goto retry;
 187
 188	/* All out of space.  Need to allocate a new page. */
 189	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 190	if (!kip)
 191		goto out;
 192
 193	/*
 194	 * Use module_alloc so this page is within +/- 2GB of where the
 195	 * kernel image and loaded module images reside. This is required
 196	 * so x86_64 can correctly handle the %rip-relative fixups.
 197	 */
 198	kip->insns = c->alloc();
 199	if (!kip->insns) {
 200		kfree(kip);
 201		goto out;
 202	}
 203	INIT_LIST_HEAD(&kip->list);
 204	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 205	kip->slot_used[0] = SLOT_USED;
 206	kip->nused = 1;
 207	kip->ngarbage = 0;
 208	kip->cache = c;
 209	list_add(&kip->list, &c->pages);
 210	slot = kip->insns;
 
 
 
 
 211out:
 212	mutex_unlock(&c->mutex);
 213	return slot;
 214}
 215
 216/* Return 1 if all garbages are collected, otherwise 0. */
 217static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
 218{
 219	kip->slot_used[idx] = SLOT_CLEAN;
 220	kip->nused--;
 221	if (kip->nused == 0) {
 222		/*
 223		 * Page is no longer in use.  Free it unless
 224		 * it's the last one.  We keep the last one
 225		 * so as not to have to set it up again the
 226		 * next time somebody inserts a probe.
 227		 */
 228		if (!list_is_singular(&kip->list)) {
 229			list_del(&kip->list);
 
 
 
 
 
 
 
 
 230			kip->cache->free(kip->insns);
 231			kfree(kip);
 232		}
 233		return 1;
 234	}
 235	return 0;
 236}
 237
 238static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
 239{
 240	struct kprobe_insn_page *kip, *next;
 241
 242	/* Ensure no-one is interrupted on the garbages */
 243	synchronize_sched();
 244
 245	list_for_each_entry_safe(kip, next, &c->pages, list) {
 246		int i;
 
 247		if (kip->ngarbage == 0)
 248			continue;
 249		kip->ngarbage = 0;	/* we will collect all garbages */
 250		for (i = 0; i < slots_per_page(c); i++) {
 251			if (kip->slot_used[i] == SLOT_DIRTY &&
 252			    collect_one_slot(kip, i))
 253				break;
 254		}
 255	}
 256	c->nr_garbage = 0;
 257	return 0;
 258}
 259
 260void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
 261				kprobe_opcode_t *slot, int dirty)
 262{
 263	struct kprobe_insn_page *kip;
 
 264
 265	mutex_lock(&c->mutex);
 266	list_for_each_entry(kip, &c->pages, list) {
 267		long idx = ((long)slot - (long)kip->insns) /
 268				(c->insn_size * sizeof(kprobe_opcode_t));
 269		if (idx >= 0 && idx < slots_per_page(c)) {
 270			WARN_ON(kip->slot_used[idx] != SLOT_USED);
 271			if (dirty) {
 272				kip->slot_used[idx] = SLOT_DIRTY;
 273				kip->ngarbage++;
 274				if (++c->nr_garbage > slots_per_page(c))
 275					collect_garbage_slots(c);
 276			} else
 277				collect_one_slot(kip, idx);
 278			goto out;
 279		}
 280	}
 281	/* Could not free this slot. */
 282	WARN_ON(1);
 
 283out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	mutex_unlock(&c->mutex);
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287#ifdef CONFIG_OPTPROBES
 
 
 
 
 
 
 
 
 
 
 288/* For optimized_kprobe buffer */
 289struct kprobe_insn_cache kprobe_optinsn_slots = {
 290	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 291	.alloc = alloc_insn_page,
 292	.free = free_insn_page,
 
 293	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 294	/* .insn_size is initialized later */
 295	.nr_garbage = 0,
 296};
 297#endif
 298#endif
 299
 300/* We have preemption disabled.. so it is safe to use __ versions */
 301static inline void set_kprobe_instance(struct kprobe *kp)
 302{
 303	__this_cpu_write(kprobe_instance, kp);
 304}
 305
 306static inline void reset_kprobe_instance(void)
 307{
 308	__this_cpu_write(kprobe_instance, NULL);
 309}
 310
 311/*
 312 * This routine is called either:
 313 * 	- under the kprobe_mutex - during kprobe_[un]register()
 314 * 				OR
 315 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 316 */
 317struct kprobe __kprobes *get_kprobe(void *addr)
 318{
 319	struct hlist_head *head;
 320	struct kprobe *p;
 321
 322	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 323	hlist_for_each_entry_rcu(p, head, hlist) {
 
 324		if (p->addr == addr)
 325			return p;
 326	}
 327
 328	return NULL;
 329}
 
 330
 331static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 332
 333/* Return true if the kprobe is an aggregator */
 334static inline int kprobe_aggrprobe(struct kprobe *p)
 335{
 336	return p->pre_handler == aggr_pre_handler;
 337}
 338
 339/* Return true(!0) if the kprobe is unused */
 340static inline int kprobe_unused(struct kprobe *p)
 341{
 342	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 343	       list_empty(&p->list);
 344}
 345
 346/*
 347 * Keep all fields in the kprobe consistent
 348 */
 349static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 350{
 351	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 352	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 353}
 354
 355#ifdef CONFIG_OPTPROBES
 356/* NOTE: change this value only with kprobe_mutex held */
 357static bool kprobes_allow_optimization;
 358
 359/*
 360 * Call all pre_handler on the list, but ignores its return value.
 361 * This must be called from arch-dep optimized caller.
 362 */
 363void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 364{
 365	struct kprobe *kp;
 366
 367	list_for_each_entry_rcu(kp, &p->list, list) {
 368		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 369			set_kprobe_instance(kp);
 370			kp->pre_handler(kp, regs);
 371		}
 372		reset_kprobe_instance();
 373	}
 374}
 
 375
 376/* Free optimized instructions and optimized_kprobe */
 377static __kprobes void free_aggr_kprobe(struct kprobe *p)
 378{
 379	struct optimized_kprobe *op;
 380
 381	op = container_of(p, struct optimized_kprobe, kp);
 382	arch_remove_optimized_kprobe(op);
 383	arch_remove_kprobe(p);
 384	kfree(op);
 385}
 386
 387/* Return true(!0) if the kprobe is ready for optimization. */
 388static inline int kprobe_optready(struct kprobe *p)
 389{
 390	struct optimized_kprobe *op;
 391
 392	if (kprobe_aggrprobe(p)) {
 393		op = container_of(p, struct optimized_kprobe, kp);
 394		return arch_prepared_optinsn(&op->optinsn);
 395	}
 396
 397	return 0;
 398}
 399
 400/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 401static inline int kprobe_disarmed(struct kprobe *p)
 402{
 403	struct optimized_kprobe *op;
 404
 405	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 406	if (!kprobe_aggrprobe(p))
 407		return kprobe_disabled(p);
 408
 409	op = container_of(p, struct optimized_kprobe, kp);
 410
 411	return kprobe_disabled(p) && list_empty(&op->list);
 412}
 413
 414/* Return true(!0) if the probe is queued on (un)optimizing lists */
 415static int __kprobes kprobe_queued(struct kprobe *p)
 416{
 417	struct optimized_kprobe *op;
 418
 419	if (kprobe_aggrprobe(p)) {
 420		op = container_of(p, struct optimized_kprobe, kp);
 421		if (!list_empty(&op->list))
 422			return 1;
 423	}
 424	return 0;
 425}
 426
 427/*
 428 * Return an optimized kprobe whose optimizing code replaces
 429 * instructions including addr (exclude breakpoint).
 430 */
 431static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
 432{
 433	int i;
 434	struct kprobe *p = NULL;
 435	struct optimized_kprobe *op;
 436
 437	/* Don't check i == 0, since that is a breakpoint case. */
 438	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 439		p = get_kprobe((void *)(addr - i));
 440
 441	if (p && kprobe_optready(p)) {
 442		op = container_of(p, struct optimized_kprobe, kp);
 443		if (arch_within_optimized_kprobe(op, addr))
 444			return p;
 445	}
 446
 447	return NULL;
 448}
 449
 450/* Optimization staging list, protected by kprobe_mutex */
 451static LIST_HEAD(optimizing_list);
 452static LIST_HEAD(unoptimizing_list);
 453static LIST_HEAD(freeing_list);
 454
 455static void kprobe_optimizer(struct work_struct *work);
 456static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 457#define OPTIMIZE_DELAY 5
 458
 459/*
 460 * Optimize (replace a breakpoint with a jump) kprobes listed on
 461 * optimizing_list.
 462 */
 463static __kprobes void do_optimize_kprobes(void)
 464{
 
 
 
 
 
 
 
 
 
 
 
 
 
 465	/* Optimization never be done when disarmed */
 466	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 467	    list_empty(&optimizing_list))
 468		return;
 469
 470	/*
 471	 * The optimization/unoptimization refers online_cpus via
 472	 * stop_machine() and cpu-hotplug modifies online_cpus.
 473	 * And same time, text_mutex will be held in cpu-hotplug and here.
 474	 * This combination can cause a deadlock (cpu-hotplug try to lock
 475	 * text_mutex but stop_machine can not be done because online_cpus
 476	 * has been changed)
 477	 * To avoid this deadlock, we need to call get_online_cpus()
 478	 * for preventing cpu-hotplug outside of text_mutex locking.
 479	 */
 480	get_online_cpus();
 481	mutex_lock(&text_mutex);
 482	arch_optimize_kprobes(&optimizing_list);
 483	mutex_unlock(&text_mutex);
 484	put_online_cpus();
 485}
 486
 487/*
 488 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 489 * if need) kprobes listed on unoptimizing_list.
 490 */
 491static __kprobes void do_unoptimize_kprobes(void)
 492{
 493	struct optimized_kprobe *op, *tmp;
 494
 
 
 
 
 495	/* Unoptimization must be done anytime */
 496	if (list_empty(&unoptimizing_list))
 497		return;
 498
 499	/* Ditto to do_optimize_kprobes */
 500	get_online_cpus();
 501	mutex_lock(&text_mutex);
 502	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 503	/* Loop free_list for disarming */
 504	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 505		/* Disarm probes if marked disabled */
 506		if (kprobe_disabled(&op->kp))
 507			arch_disarm_kprobe(&op->kp);
 508		if (kprobe_unused(&op->kp)) {
 509			/*
 510			 * Remove unused probes from hash list. After waiting
 511			 * for synchronization, these probes are reclaimed.
 512			 * (reclaiming is done by do_free_cleaned_kprobes.)
 513			 */
 514			hlist_del_rcu(&op->kp.hlist);
 515		} else
 516			list_del_init(&op->list);
 517	}
 518	mutex_unlock(&text_mutex);
 519	put_online_cpus();
 520}
 521
 522/* Reclaim all kprobes on the free_list */
 523static __kprobes void do_free_cleaned_kprobes(void)
 524{
 525	struct optimized_kprobe *op, *tmp;
 526
 527	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 528		BUG_ON(!kprobe_unused(&op->kp));
 529		list_del_init(&op->list);
 
 
 
 
 
 
 
 530		free_aggr_kprobe(&op->kp);
 531	}
 532}
 533
 534/* Start optimizer after OPTIMIZE_DELAY passed */
 535static __kprobes void kick_kprobe_optimizer(void)
 536{
 537	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 538}
 539
 540/* Kprobe jump optimizer */
 541static __kprobes void kprobe_optimizer(struct work_struct *work)
 542{
 543	mutex_lock(&kprobe_mutex);
 544	/* Lock modules while optimizing kprobes */
 545	mutex_lock(&module_mutex);
 546
 547	/*
 548	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 549	 * kprobes before waiting for quiesence period.
 550	 */
 551	do_unoptimize_kprobes();
 552
 553	/*
 554	 * Step 2: Wait for quiesence period to ensure all running interrupts
 555	 * are done. Because optprobe may modify multiple instructions
 556	 * there is a chance that Nth instruction is interrupted. In that
 557	 * case, running interrupt can return to 2nd-Nth byte of jump
 558	 * instruction. This wait is for avoiding it.
 
 
 559	 */
 560	synchronize_sched();
 561
 562	/* Step 3: Optimize kprobes after quiesence period */
 563	do_optimize_kprobes();
 564
 565	/* Step 4: Free cleaned kprobes after quiesence period */
 566	do_free_cleaned_kprobes();
 567
 568	mutex_unlock(&module_mutex);
 569	mutex_unlock(&kprobe_mutex);
 570
 571	/* Step 5: Kick optimizer again if needed */
 572	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 573		kick_kprobe_optimizer();
 
 
 574}
 575
 576/* Wait for completing optimization and unoptimization */
 577static __kprobes void wait_for_kprobe_optimizer(void)
 578{
 579	mutex_lock(&kprobe_mutex);
 580
 581	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 582		mutex_unlock(&kprobe_mutex);
 583
 584		/* this will also make optimizing_work execute immmediately */
 585		flush_delayed_work(&optimizing_work);
 586		/* @optimizing_work might not have been queued yet, relax */
 587		cpu_relax();
 588
 589		mutex_lock(&kprobe_mutex);
 590	}
 591
 592	mutex_unlock(&kprobe_mutex);
 593}
 594
 
 
 
 
 
 
 
 
 
 
 
 
 595/* Optimize kprobe if p is ready to be optimized */
 596static __kprobes void optimize_kprobe(struct kprobe *p)
 597{
 598	struct optimized_kprobe *op;
 599
 600	/* Check if the kprobe is disabled or not ready for optimization. */
 601	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 602	    (kprobe_disabled(p) || kprobes_all_disarmed))
 603		return;
 604
 605	/* Both of break_handler and post_handler are not supported. */
 606	if (p->break_handler || p->post_handler)
 607		return;
 608
 609	op = container_of(p, struct optimized_kprobe, kp);
 610
 611	/* Check there is no other kprobes at the optimized instructions */
 612	if (arch_check_optimized_kprobe(op) < 0)
 613		return;
 614
 615	/* Check if it is already optimized. */
 616	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 617		return;
 
 618	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 619
 620	if (!list_empty(&op->list))
 621		/* This is under unoptimizing. Just dequeue the probe */
 622		list_del_init(&op->list);
 623	else {
 624		list_add(&op->list, &optimizing_list);
 625		kick_kprobe_optimizer();
 626	}
 
 
 627}
 628
 629/* Short cut to direct unoptimizing */
 630static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
 631{
 632	get_online_cpus();
 633	arch_unoptimize_kprobe(op);
 634	put_online_cpus();
 635	if (kprobe_disabled(&op->kp))
 636		arch_disarm_kprobe(&op->kp);
 637}
 638
 639/* Unoptimize a kprobe if p is optimized */
 640static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
 641{
 642	struct optimized_kprobe *op;
 643
 644	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 645		return; /* This is not an optprobe nor optimized */
 646
 647	op = container_of(p, struct optimized_kprobe, kp);
 648	if (!kprobe_optimized(p)) {
 649		/* Unoptimized or unoptimizing case */
 650		if (force && !list_empty(&op->list)) {
 651			/*
 652			 * Only if this is unoptimizing kprobe and forced,
 653			 * forcibly unoptimize it. (No need to unoptimize
 654			 * unoptimized kprobe again :)
 655			 */
 656			list_del_init(&op->list);
 657			force_unoptimize_kprobe(op);
 658		}
 659		return;
 660	}
 661
 662	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 663	if (!list_empty(&op->list)) {
 664		/* Dequeue from the optimization queue */
 665		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 666		return;
 667	}
 
 668	/* Optimized kprobe case */
 669	if (force)
 670		/* Forcibly update the code: this is a special case */
 671		force_unoptimize_kprobe(op);
 672	else {
 673		list_add(&op->list, &unoptimizing_list);
 674		kick_kprobe_optimizer();
 675	}
 676}
 677
 678/* Cancel unoptimizing for reusing */
 679static void reuse_unused_kprobe(struct kprobe *ap)
 680{
 681	struct optimized_kprobe *op;
 682
 683	BUG_ON(!kprobe_unused(ap));
 684	/*
 685	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 686	 * there is still a relative jump) and disabled.
 687	 */
 688	op = container_of(ap, struct optimized_kprobe, kp);
 689	if (unlikely(list_empty(&op->list)))
 690		printk(KERN_WARNING "Warning: found a stray unused "
 691			"aggrprobe@%p\n", ap->addr);
 692	/* Enable the probe again */
 693	ap->flags &= ~KPROBE_FLAG_DISABLED;
 694	/* Optimize it again (remove from op->list) */
 695	BUG_ON(!kprobe_optready(ap));
 
 
 696	optimize_kprobe(ap);
 
 697}
 698
 699/* Remove optimized instructions */
 700static void __kprobes kill_optimized_kprobe(struct kprobe *p)
 701{
 702	struct optimized_kprobe *op;
 703
 704	op = container_of(p, struct optimized_kprobe, kp);
 705	if (!list_empty(&op->list))
 706		/* Dequeue from the (un)optimization queue */
 707		list_del_init(&op->list);
 708	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 709
 710	if (kprobe_unused(p)) {
 711		/* Enqueue if it is unused */
 712		list_add(&op->list, &freeing_list);
 713		/*
 714		 * Remove unused probes from the hash list. After waiting
 715		 * for synchronization, this probe is reclaimed.
 716		 * (reclaiming is done by do_free_cleaned_kprobes().)
 717		 */
 718		hlist_del_rcu(&op->kp.hlist);
 719	}
 720
 721	/* Don't touch the code, because it is already freed. */
 722	arch_remove_optimized_kprobe(op);
 723}
 724
 
 
 
 
 
 
 
 725/* Try to prepare optimized instructions */
 726static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
 727{
 728	struct optimized_kprobe *op;
 729
 730	op = container_of(p, struct optimized_kprobe, kp);
 731	arch_prepare_optimized_kprobe(op);
 732}
 733
 734/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 735static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 736{
 737	struct optimized_kprobe *op;
 738
 739	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 740	if (!op)
 741		return NULL;
 742
 743	INIT_LIST_HEAD(&op->list);
 744	op->kp.addr = p->addr;
 745	arch_prepare_optimized_kprobe(op);
 746
 747	return &op->kp;
 748}
 749
 750static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 751
 752/*
 753 * Prepare an optimized_kprobe and optimize it
 754 * NOTE: p must be a normal registered kprobe
 755 */
 756static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
 757{
 758	struct kprobe *ap;
 759	struct optimized_kprobe *op;
 760
 761	/* Impossible to optimize ftrace-based kprobe */
 762	if (kprobe_ftrace(p))
 763		return;
 764
 765	/* For preparing optimization, jump_label_text_reserved() is called */
 
 766	jump_label_lock();
 767	mutex_lock(&text_mutex);
 768
 769	ap = alloc_aggr_kprobe(p);
 770	if (!ap)
 771		goto out;
 772
 773	op = container_of(ap, struct optimized_kprobe, kp);
 774	if (!arch_prepared_optinsn(&op->optinsn)) {
 775		/* If failed to setup optimizing, fallback to kprobe */
 776		arch_remove_optimized_kprobe(op);
 777		kfree(op);
 778		goto out;
 779	}
 780
 781	init_aggr_kprobe(ap, p);
 782	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 783
 784out:
 785	mutex_unlock(&text_mutex);
 786	jump_label_unlock();
 
 787}
 788
 789#ifdef CONFIG_SYSCTL
 790static void __kprobes optimize_all_kprobes(void)
 791{
 792	struct hlist_head *head;
 793	struct kprobe *p;
 794	unsigned int i;
 795
 796	mutex_lock(&kprobe_mutex);
 797	/* If optimization is already allowed, just return */
 798	if (kprobes_allow_optimization)
 799		goto out;
 800
 
 801	kprobes_allow_optimization = true;
 802	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 803		head = &kprobe_table[i];
 804		hlist_for_each_entry_rcu(p, head, hlist)
 805			if (!kprobe_disabled(p))
 806				optimize_kprobe(p);
 807	}
 808	printk(KERN_INFO "Kprobes globally optimized\n");
 
 809out:
 810	mutex_unlock(&kprobe_mutex);
 811}
 812
 813static void __kprobes unoptimize_all_kprobes(void)
 
 814{
 815	struct hlist_head *head;
 816	struct kprobe *p;
 817	unsigned int i;
 818
 819	mutex_lock(&kprobe_mutex);
 820	/* If optimization is already prohibited, just return */
 821	if (!kprobes_allow_optimization) {
 822		mutex_unlock(&kprobe_mutex);
 823		return;
 824	}
 825
 
 826	kprobes_allow_optimization = false;
 827	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 828		head = &kprobe_table[i];
 829		hlist_for_each_entry_rcu(p, head, hlist) {
 830			if (!kprobe_disabled(p))
 831				unoptimize_kprobe(p, false);
 832		}
 833	}
 
 834	mutex_unlock(&kprobe_mutex);
 835
 836	/* Wait for unoptimizing completion */
 837	wait_for_kprobe_optimizer();
 838	printk(KERN_INFO "Kprobes globally unoptimized\n");
 839}
 840
 841static DEFINE_MUTEX(kprobe_sysctl_mutex);
 842int sysctl_kprobes_optimization;
 843int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 844				      void __user *buffer, size_t *length,
 845				      loff_t *ppos)
 846{
 847	int ret;
 848
 849	mutex_lock(&kprobe_sysctl_mutex);
 850	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 851	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 852
 853	if (sysctl_kprobes_optimization)
 854		optimize_all_kprobes();
 855	else
 856		unoptimize_all_kprobes();
 857	mutex_unlock(&kprobe_sysctl_mutex);
 858
 859	return ret;
 860}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861#endif /* CONFIG_SYSCTL */
 862
 863/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 864static void __kprobes __arm_kprobe(struct kprobe *p)
 865{
 866	struct kprobe *_p;
 867
 868	/* Check collision with other optimized kprobes */
 869	_p = get_optimized_kprobe((unsigned long)p->addr);
 
 
 870	if (unlikely(_p))
 871		/* Fallback to unoptimized kprobe */
 872		unoptimize_kprobe(_p, true);
 873
 874	arch_arm_kprobe(p);
 875	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 876}
 877
 878/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 879static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
 880{
 881	struct kprobe *_p;
 882
 883	unoptimize_kprobe(p, false);	/* Try to unoptimize */
 
 
 
 884
 885	if (!kprobe_queued(p)) {
 886		arch_disarm_kprobe(p);
 887		/* If another kprobe was blocked, optimize it. */
 888		_p = get_optimized_kprobe((unsigned long)p->addr);
 889		if (unlikely(_p) && reopt)
 890			optimize_kprobe(_p);
 891	}
 892	/* TODO: reoptimize others after unoptimized this probe */
 
 
 
 
 
 893}
 894
 895#else /* !CONFIG_OPTPROBES */
 896
 897#define optimize_kprobe(p)			do {} while (0)
 898#define unoptimize_kprobe(p, f)			do {} while (0)
 899#define kill_optimized_kprobe(p)		do {} while (0)
 900#define prepare_optimized_kprobe(p)		do {} while (0)
 901#define try_to_optimize_kprobe(p)		do {} while (0)
 902#define __arm_kprobe(p)				arch_arm_kprobe(p)
 903#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 904#define kprobe_disarmed(p)			kprobe_disabled(p)
 905#define wait_for_kprobe_optimizer()		do {} while (0)
 906
 907/* There should be no unused kprobes can be reused without optimization */
 908static void reuse_unused_kprobe(struct kprobe *ap)
 909{
 910	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 911	BUG_ON(kprobe_unused(ap));
 
 
 
 
 
 
 912}
 913
 914static __kprobes void free_aggr_kprobe(struct kprobe *p)
 915{
 916	arch_remove_kprobe(p);
 917	kfree(p);
 918}
 919
 920static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 921{
 922	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 923}
 924#endif /* CONFIG_OPTPROBES */
 925
 926#ifdef CONFIG_KPROBES_ON_FTRACE
 927static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 928	.func = kprobe_ftrace_handler,
 929	.flags = FTRACE_OPS_FL_SAVE_REGS,
 930};
 
 
 
 
 
 
 
 931static int kprobe_ftrace_enabled;
 932
 933/* Must ensure p->addr is really on ftrace */
 934static int __kprobes prepare_kprobe(struct kprobe *p)
 935{
 936	if (!kprobe_ftrace(p))
 937		return arch_prepare_kprobe(p);
 
 
 
 
 
 
 
 
 
 
 
 938
 939	return arch_prepare_kprobe_ftrace(p);
 
 
 
 
 
 
 
 
 
 940}
 941
 942/* Caller must lock kprobe_mutex */
 943static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
 944{
 945	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 946
 947	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 948				   (unsigned long)p->addr, 0, 0);
 949	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 950	kprobe_ftrace_enabled++;
 951	if (kprobe_ftrace_enabled == 1) {
 952		ret = register_ftrace_function(&kprobe_ftrace_ops);
 953		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 954	}
 
 
 
 
 
 
 
 955}
 956
 957/* Caller must lock kprobe_mutex */
 958static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
 959{
 960	int ret;
 961
 962	kprobe_ftrace_enabled--;
 963	if (kprobe_ftrace_enabled == 0) {
 964		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
 965		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 966	}
 967	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 968			   (unsigned long)p->addr, 1, 0);
 969	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 970}
 971#else	/* !CONFIG_KPROBES_ON_FTRACE */
 972#define prepare_kprobe(p)	arch_prepare_kprobe(p)
 973#define arm_kprobe_ftrace(p)	do {} while (0)
 974#define disarm_kprobe_ftrace(p)	do {} while (0)
 
 
 
 
 
 
 975#endif
 976
 977/* Arm a kprobe with text_mutex */
 978static void __kprobes arm_kprobe(struct kprobe *kp)
 979{
 980	if (unlikely(kprobe_ftrace(kp))) {
 981		arm_kprobe_ftrace(kp);
 982		return;
 983	}
 984	/*
 985	 * Here, since __arm_kprobe() doesn't use stop_machine(),
 986	 * this doesn't cause deadlock on text_mutex. So, we don't
 987	 * need get_online_cpus().
 988	 */
 
 
 
 
 989	mutex_lock(&text_mutex);
 990	__arm_kprobe(kp);
 991	mutex_unlock(&text_mutex);
 
 
 
 992}
 993
 994/* Disarm a kprobe with text_mutex */
 995static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
 996{
 997	if (unlikely(kprobe_ftrace(kp))) {
 998		disarm_kprobe_ftrace(kp);
 999		return;
1000	}
1001	/* Ditto */
1002	mutex_lock(&text_mutex);
1003	__disarm_kprobe(kp, reopt);
1004	mutex_unlock(&text_mutex);
 
 
 
1005}
1006
1007/*
1008 * Aggregate handlers for multiple kprobes support - these handlers
1009 * take care of invoking the individual kprobe handlers on p->list
1010 */
1011static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1012{
1013	struct kprobe *kp;
1014
1015	list_for_each_entry_rcu(kp, &p->list, list) {
1016		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1017			set_kprobe_instance(kp);
1018			if (kp->pre_handler(kp, regs))
1019				return 1;
1020		}
1021		reset_kprobe_instance();
1022	}
1023	return 0;
1024}
 
1025
1026static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1027					unsigned long flags)
1028{
1029	struct kprobe *kp;
1030
1031	list_for_each_entry_rcu(kp, &p->list, list) {
1032		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1033			set_kprobe_instance(kp);
1034			kp->post_handler(kp, regs, flags);
1035			reset_kprobe_instance();
1036		}
1037	}
1038}
 
1039
1040static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041					int trapnr)
1042{
1043	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045	/*
1046	 * if we faulted "during" the execution of a user specified
1047	 * probe handler, invoke just that probe's fault handler
1048	 */
1049	if (cur && cur->fault_handler) {
1050		if (cur->fault_handler(cur, regs, trapnr))
1051			return 1;
1052	}
1053	return 0;
1054}
1055
1056static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1057{
1058	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1059	int ret = 0;
1060
1061	if (cur && cur->break_handler) {
1062		if (cur->break_handler(cur, regs))
1063			ret = 1;
1064	}
1065	reset_kprobe_instance();
1066	return ret;
1067}
1068
1069/* Walks the list and increments nmissed count for multiprobe case */
1070void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1071{
1072	struct kprobe *kp;
 
1073	if (!kprobe_aggrprobe(p)) {
1074		p->nmissed++;
1075	} else {
1076		list_for_each_entry_rcu(kp, &p->list, list)
1077			kp->nmissed++;
1078	}
1079	return;
1080}
1081
1082void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1083				struct hlist_head *head)
1084{
1085	struct kretprobe *rp = ri->rp;
1086
1087	/* remove rp inst off the rprobe_inst_table */
1088	hlist_del(&ri->hlist);
1089	INIT_HLIST_NODE(&ri->hlist);
1090	if (likely(rp)) {
1091		raw_spin_lock(&rp->lock);
1092		hlist_add_head(&ri->hlist, &rp->free_instances);
1093		raw_spin_unlock(&rp->lock);
1094	} else
1095		/* Unregistering */
1096		hlist_add_head(&ri->hlist, head);
1097}
 
1098
1099void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1100			 struct hlist_head **head, unsigned long *flags)
1101__acquires(hlist_lock)
1102{
1103	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1104	raw_spinlock_t *hlist_lock;
1105
1106	*head = &kretprobe_inst_table[hash];
1107	hlist_lock = kretprobe_table_lock_ptr(hash);
1108	raw_spin_lock_irqsave(hlist_lock, *flags);
1109}
1110
1111static void __kprobes kretprobe_table_lock(unsigned long hash,
1112	unsigned long *flags)
1113__acquires(hlist_lock)
1114{
1115	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1116	raw_spin_lock_irqsave(hlist_lock, *flags);
1117}
1118
1119void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1120	unsigned long *flags)
1121__releases(hlist_lock)
1122{
1123	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1124	raw_spinlock_t *hlist_lock;
1125
1126	hlist_lock = kretprobe_table_lock_ptr(hash);
1127	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1128}
1129
1130static void __kprobes kretprobe_table_unlock(unsigned long hash,
1131       unsigned long *flags)
1132__releases(hlist_lock)
1133{
1134	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1135	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136}
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void __kprobes kprobe_flush_task(struct task_struct *tk)
1145{
1146	struct kretprobe_instance *ri;
1147	struct hlist_head *head, empty_rp;
1148	struct hlist_node *tmp;
1149	unsigned long hash, flags = 0;
1150
1151	if (unlikely(!kprobes_initialized))
1152		/* Early boot.  kretprobe_table_locks not yet initialized. */
1153		return;
1154
1155	INIT_HLIST_HEAD(&empty_rp);
1156	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157	head = &kretprobe_inst_table[hash];
1158	kretprobe_table_lock(hash, &flags);
1159	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160		if (ri->task == tk)
1161			recycle_rp_inst(ri, &empty_rp);
1162	}
1163	kretprobe_table_unlock(hash, &flags);
1164	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165		hlist_del(&ri->hlist);
1166		kfree(ri);
1167	}
1168}
1169
1170static inline void free_rp_inst(struct kretprobe *rp)
1171{
1172	struct kretprobe_instance *ri;
1173	struct hlist_node *next;
1174
1175	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176		hlist_del(&ri->hlist);
1177		kfree(ri);
1178	}
1179}
1180
1181static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1182{
1183	unsigned long flags, hash;
1184	struct kretprobe_instance *ri;
1185	struct hlist_node *next;
1186	struct hlist_head *head;
1187
1188	/* No race here */
1189	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190		kretprobe_table_lock(hash, &flags);
1191		head = &kretprobe_inst_table[hash];
1192		hlist_for_each_entry_safe(ri, next, head, hlist) {
1193			if (ri->rp == rp)
1194				ri->rp = NULL;
1195		}
1196		kretprobe_table_unlock(hash, &flags);
1197	}
1198	free_rp_inst(rp);
1199}
1200
1201/*
1202* Add the new probe to ap->list. Fail if this is the
1203* second jprobe at the address - two jprobes can't coexist
1204*/
1205static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1206{
1207	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1208
1209	if (p->break_handler || p->post_handler)
1210		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1211
1212	if (p->break_handler) {
1213		if (ap->break_handler)
1214			return -EEXIST;
1215		list_add_tail_rcu(&p->list, &ap->list);
1216		ap->break_handler = aggr_break_handler;
1217	} else
1218		list_add_rcu(&p->list, &ap->list);
1219	if (p->post_handler && !ap->post_handler)
1220		ap->post_handler = aggr_post_handler;
1221
1222	return 0;
1223}
1224
1225/*
1226 * Fill in the required fields of the "manager kprobe". Replace the
1227 * earlier kprobe in the hlist with the manager kprobe
1228 */
1229static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1230{
1231	/* Copy p's insn slot to ap */
1232	copy_kprobe(p, ap);
1233	flush_insn_slot(ap);
1234	ap->addr = p->addr;
1235	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1236	ap->pre_handler = aggr_pre_handler;
1237	ap->fault_handler = aggr_fault_handler;
1238	/* We don't care the kprobe which has gone. */
1239	if (p->post_handler && !kprobe_gone(p))
1240		ap->post_handler = aggr_post_handler;
1241	if (p->break_handler && !kprobe_gone(p))
1242		ap->break_handler = aggr_break_handler;
1243
1244	INIT_LIST_HEAD(&ap->list);
1245	INIT_HLIST_NODE(&ap->hlist);
1246
1247	list_add_rcu(&p->list, &ap->list);
1248	hlist_replace_rcu(&p->hlist, &ap->hlist);
1249}
1250
1251/*
1252 * This is the second or subsequent kprobe at the address - handle
1253 * the intricacies
1254 */
1255static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1256					  struct kprobe *p)
1257{
1258	int ret = 0;
1259	struct kprobe *ap = orig_p;
1260
 
 
1261	/* For preparing optimization, jump_label_text_reserved() is called */
1262	jump_label_lock();
1263	/*
1264	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266	 */
1267	get_online_cpus();
1268	mutex_lock(&text_mutex);
1269
1270	if (!kprobe_aggrprobe(orig_p)) {
1271		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272		ap = alloc_aggr_kprobe(orig_p);
1273		if (!ap) {
1274			ret = -ENOMEM;
1275			goto out;
1276		}
1277		init_aggr_kprobe(ap, orig_p);
1278	} else if (kprobe_unused(ap))
1279		/* This probe is going to die. Rescue it */
1280		reuse_unused_kprobe(ap);
 
 
 
1281
1282	if (kprobe_gone(ap)) {
1283		/*
1284		 * Attempting to insert new probe at the same location that
1285		 * had a probe in the module vaddr area which already
1286		 * freed. So, the instruction slot has already been
1287		 * released. We need a new slot for the new probe.
1288		 */
1289		ret = arch_prepare_kprobe(ap);
1290		if (ret)
1291			/*
1292			 * Even if fail to allocate new slot, don't need to
1293			 * free aggr_probe. It will be used next time, or
1294			 * freed by unregister_kprobe.
1295			 */
1296			goto out;
1297
1298		/* Prepare optimized instructions if possible. */
1299		prepare_optimized_kprobe(ap);
1300
1301		/*
1302		 * Clear gone flag to prevent allocating new slot again, and
1303		 * set disabled flag because it is not armed yet.
1304		 */
1305		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306			    | KPROBE_FLAG_DISABLED;
1307	}
1308
1309	/* Copy ap's insn slot to p */
1310	copy_kprobe(ap, p);
1311	ret = add_new_kprobe(ap, p);
1312
1313out:
1314	mutex_unlock(&text_mutex);
1315	put_online_cpus();
1316	jump_label_unlock();
 
1317
1318	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319		ap->flags &= ~KPROBE_FLAG_DISABLED;
1320		if (!kprobes_all_disarmed)
1321			/* Arm the breakpoint again. */
1322			arm_kprobe(ap);
 
 
 
 
 
 
1323	}
1324	return ret;
1325}
1326
1327static int __kprobes in_kprobes_functions(unsigned long addr)
1328{
1329	struct kprobe_blackpoint *kb;
 
 
 
1330
1331	if (addr >= (unsigned long)__kprobes_text_start &&
1332	    addr < (unsigned long)__kprobes_text_end)
1333		return -EINVAL;
 
 
 
1334	/*
1335	 * If there exists a kprobe_blacklist, verify and
1336	 * fail any probe registration in the prohibited area
1337	 */
1338	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1339		if (kb->start_addr) {
1340			if (addr >= kb->start_addr &&
1341			    addr < (kb->start_addr + kb->range))
1342				return -EINVAL;
1343		}
1344	}
1345	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * If we have a symbol_name argument, look it up and add the offset field
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350 * to it. This way, we can specify a relative address to a symbol.
1351 * This returns encoded errors if it fails to look up symbol or invalid
1352 * combination of parameters.
1353 */
1354static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
 
 
1355{
1356	kprobe_opcode_t *addr = p->addr;
1357
1358	if ((p->symbol_name && p->addr) ||
1359	    (!p->symbol_name && !p->addr))
1360		goto invalid;
1361
1362	if (p->symbol_name) {
1363		kprobe_lookup_name(p->symbol_name, addr);
 
 
 
 
 
 
 
1364		if (!addr)
1365			return ERR_PTR(-ENOENT);
1366	}
1367
1368	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369	if (addr)
1370		return addr;
1371
1372invalid:
1373	return ERR_PTR(-EINVAL);
1374}
1375
1376/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1377static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
1378{
1379	struct kprobe *ap, *list_p;
1380
 
 
1381	ap = get_kprobe(p->addr);
1382	if (unlikely(!ap))
1383		return NULL;
1384
1385	if (p != ap) {
1386		list_for_each_entry_rcu(list_p, &ap->list, list)
1387			if (list_p == p)
1388			/* kprobe p is a valid probe */
1389				goto valid;
1390		return NULL;
1391	}
1392valid:
1393	return ap;
1394}
1395
1396/* Return error if the kprobe is being re-registered */
1397static inline int check_kprobe_rereg(struct kprobe *p)
 
 
 
1398{
1399	int ret = 0;
1400
1401	mutex_lock(&kprobe_mutex);
1402	if (__get_valid_kprobe(p))
1403		ret = -EINVAL;
1404	mutex_unlock(&kprobe_mutex);
1405
1406	return ret;
1407}
1408
1409static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1410					       struct module **probed_mod)
1411{
1412	int ret = 0;
1413	unsigned long ftrace_addr;
1414
1415	/*
1416	 * If the address is located on a ftrace nop, set the
1417	 * breakpoint to the following instruction.
1418	 */
1419	ftrace_addr = ftrace_location((unsigned long)p->addr);
1420	if (ftrace_addr) {
1421#ifdef CONFIG_KPROBES_ON_FTRACE
1422		/* Given address is not on the instruction boundary */
1423		if ((unsigned long)p->addr != ftrace_addr)
1424			return -EILSEQ;
1425		p->flags |= KPROBE_FLAG_FTRACE;
1426#else	/* !CONFIG_KPROBES_ON_FTRACE */
1427		return -EINVAL;
1428#endif
1429	}
 
 
1430
 
 
 
 
 
 
 
 
1431	jump_label_lock();
1432	preempt_disable();
1433
1434	/* Ensure it is not in reserved area nor out of text */
1435	if (!kernel_text_address((unsigned long) p->addr) ||
1436	    in_kprobes_functions((unsigned long) p->addr) ||
1437	    jump_label_text_reserved(p->addr, p->addr)) {
 
 
 
 
1438		ret = -EINVAL;
1439		goto out;
1440	}
1441
1442	/* Check if are we probing a module */
1443	*probed_mod = __module_text_address((unsigned long) p->addr);
1444	if (*probed_mod) {
1445		/*
1446		 * We must hold a refcount of the probed module while updating
1447		 * its code to prohibit unexpected unloading.
1448		 */
1449		if (unlikely(!try_module_get(*probed_mod))) {
1450			ret = -ENOENT;
1451			goto out;
1452		}
1453
1454		/*
1455		 * If the module freed .init.text, we couldn't insert
1456		 * kprobes in there.
1457		 */
1458		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1459		    (*probed_mod)->state != MODULE_STATE_COMING) {
1460			module_put(*probed_mod);
1461			*probed_mod = NULL;
1462			ret = -ENOENT;
1463		}
1464	}
1465out:
1466	preempt_enable();
1467	jump_label_unlock();
1468
1469	return ret;
1470}
1471
1472int __kprobes register_kprobe(struct kprobe *p)
1473{
1474	int ret;
1475	struct kprobe *old_p;
1476	struct module *probed_mod;
1477	kprobe_opcode_t *addr;
 
1478
1479	/* Adjust probe address from symbol */
1480	addr = kprobe_addr(p);
1481	if (IS_ERR(addr))
1482		return PTR_ERR(addr);
1483	p->addr = addr;
1484
1485	ret = check_kprobe_rereg(p);
1486	if (ret)
1487		return ret;
1488
1489	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1490	p->flags &= KPROBE_FLAG_DISABLED;
1491	p->nmissed = 0;
1492	INIT_LIST_HEAD(&p->list);
1493
1494	ret = check_kprobe_address_safe(p, &probed_mod);
1495	if (ret)
1496		return ret;
1497
1498	mutex_lock(&kprobe_mutex);
1499
 
 
 
1500	old_p = get_kprobe(p->addr);
1501	if (old_p) {
1502		/* Since this may unoptimize old_p, locking text_mutex. */
1503		ret = register_aggr_kprobe(old_p, p);
1504		goto out;
1505	}
1506
1507	mutex_lock(&text_mutex);	/* Avoiding text modification */
 
 
1508	ret = prepare_kprobe(p);
1509	mutex_unlock(&text_mutex);
 
1510	if (ret)
1511		goto out;
1512
1513	INIT_HLIST_NODE(&p->hlist);
1514	hlist_add_head_rcu(&p->hlist,
1515		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1516
1517	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1518		arm_kprobe(p);
 
 
 
 
 
 
1519
1520	/* Try to optimize kprobe */
1521	try_to_optimize_kprobe(p);
1522
1523out:
1524	mutex_unlock(&kprobe_mutex);
1525
1526	if (probed_mod)
1527		module_put(probed_mod);
1528
1529	return ret;
1530}
1531EXPORT_SYMBOL_GPL(register_kprobe);
1532
1533/* Check if all probes on the aggrprobe are disabled */
1534static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1535{
1536	struct kprobe *kp;
1537
1538	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1539		if (!kprobe_disabled(kp))
1540			/*
1541			 * There is an active probe on the list.
1542			 * We can't disable this ap.
1543			 */
1544			return 0;
1545
1546	return 1;
1547}
1548
1549/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1550static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1551{
1552	struct kprobe *orig_p;
 
 
 
1553
1554	/* Get an original kprobe for return */
1555	orig_p = __get_valid_kprobe(p);
1556	if (unlikely(orig_p == NULL))
1557		return NULL;
1558
1559	if (!kprobe_disabled(p)) {
1560		/* Disable probe if it is a child probe */
1561		if (p != orig_p)
1562			p->flags |= KPROBE_FLAG_DISABLED;
1563
1564		/* Try to disarm and disable this/parent probe */
1565		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1566			disarm_kprobe(orig_p, true);
 
 
 
 
 
 
 
 
 
 
 
 
1567			orig_p->flags |= KPROBE_FLAG_DISABLED;
1568		}
1569	}
1570
1571	return orig_p;
1572}
1573
1574/*
1575 * Unregister a kprobe without a scheduler synchronization.
1576 */
1577static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1578{
1579	struct kprobe *ap, *list_p;
1580
1581	/* Disable kprobe. This will disarm it if needed. */
1582	ap = __disable_kprobe(p);
1583	if (ap == NULL)
1584		return -EINVAL;
1585
1586	if (ap == p)
1587		/*
1588		 * This probe is an independent(and non-optimized) kprobe
1589		 * (not an aggrprobe). Remove from the hash list.
1590		 */
1591		goto disarmed;
1592
1593	/* Following process expects this probe is an aggrprobe */
1594	WARN_ON(!kprobe_aggrprobe(ap));
1595
1596	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1597		/*
1598		 * !disarmed could be happen if the probe is under delayed
1599		 * unoptimizing.
1600		 */
1601		goto disarmed;
1602	else {
1603		/* If disabling probe has special handlers, update aggrprobe */
1604		if (p->break_handler && !kprobe_gone(p))
1605			ap->break_handler = NULL;
1606		if (p->post_handler && !kprobe_gone(p)) {
1607			list_for_each_entry_rcu(list_p, &ap->list, list) {
1608				if ((list_p != p) && (list_p->post_handler))
1609					goto noclean;
1610			}
1611			ap->post_handler = NULL;
 
 
 
 
 
 
1612		}
1613noclean:
1614		/*
1615		 * Remove from the aggrprobe: this path will do nothing in
1616		 * __unregister_kprobe_bottom().
1617		 */
1618		list_del_rcu(&p->list);
1619		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1620			/*
1621			 * Try to optimize this probe again, because post
1622			 * handler may have been changed.
1623			 */
1624			optimize_kprobe(ap);
1625	}
1626	return 0;
1627
1628disarmed:
1629	BUG_ON(!kprobe_disarmed(ap));
1630	hlist_del_rcu(&ap->hlist);
1631	return 0;
1632}
1633
1634static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1635{
1636	struct kprobe *ap;
1637
1638	if (list_empty(&p->list))
1639		/* This is an independent kprobe */
1640		arch_remove_kprobe(p);
1641	else if (list_is_singular(&p->list)) {
1642		/* This is the last child of an aggrprobe */
1643		ap = list_entry(p->list.next, struct kprobe, list);
1644		list_del(&p->list);
1645		free_aggr_kprobe(ap);
1646	}
1647	/* Otherwise, do nothing. */
1648}
1649
1650int __kprobes register_kprobes(struct kprobe **kps, int num)
1651{
1652	int i, ret = 0;
1653
1654	if (num <= 0)
1655		return -EINVAL;
1656	for (i = 0; i < num; i++) {
1657		ret = register_kprobe(kps[i]);
1658		if (ret < 0) {
1659			if (i > 0)
1660				unregister_kprobes(kps, i);
1661			break;
1662		}
1663	}
1664	return ret;
1665}
1666EXPORT_SYMBOL_GPL(register_kprobes);
1667
1668void __kprobes unregister_kprobe(struct kprobe *p)
1669{
1670	unregister_kprobes(&p, 1);
1671}
1672EXPORT_SYMBOL_GPL(unregister_kprobe);
1673
1674void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1675{
1676	int i;
1677
1678	if (num <= 0)
1679		return;
1680	mutex_lock(&kprobe_mutex);
1681	for (i = 0; i < num; i++)
1682		if (__unregister_kprobe_top(kps[i]) < 0)
1683			kps[i]->addr = NULL;
1684	mutex_unlock(&kprobe_mutex);
1685
1686	synchronize_sched();
1687	for (i = 0; i < num; i++)
1688		if (kps[i]->addr)
1689			__unregister_kprobe_bottom(kps[i]);
1690}
1691EXPORT_SYMBOL_GPL(unregister_kprobes);
1692
 
 
 
 
 
 
 
1693static struct notifier_block kprobe_exceptions_nb = {
1694	.notifier_call = kprobe_exceptions_notify,
1695	.priority = 0x7fffffff /* we need to be notified first */
1696};
1697
1698unsigned long __weak arch_deref_entry_point(void *entry)
 
 
 
1699{
1700	return (unsigned long)entry;
 
 
 
 
1701}
 
1702
1703int __kprobes register_jprobes(struct jprobe **jps, int num)
1704{
1705	struct jprobe *jp;
1706	int ret = 0, i;
1707
1708	if (num <= 0)
1709		return -EINVAL;
1710	for (i = 0; i < num; i++) {
1711		unsigned long addr, offset;
1712		jp = jps[i];
1713		addr = arch_deref_entry_point(jp->entry);
1714
1715		/* Verify probepoint is a function entry point */
1716		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1717		    offset == 0) {
1718			jp->kp.pre_handler = setjmp_pre_handler;
1719			jp->kp.break_handler = longjmp_break_handler;
1720			ret = register_kprobe(&jp->kp);
1721		} else
1722			ret = -EINVAL;
1723
1724		if (ret < 0) {
1725			if (i > 0)
1726				unregister_jprobes(jps, i);
1727			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728		}
 
1729	}
1730	return ret;
1731}
1732EXPORT_SYMBOL_GPL(register_jprobes);
1733
1734int __kprobes register_jprobe(struct jprobe *jp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735{
1736	return register_jprobes(&jp, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1737}
1738EXPORT_SYMBOL_GPL(register_jprobe);
1739
1740void __kprobes unregister_jprobe(struct jprobe *jp)
 
1741{
1742	unregister_jprobes(&jp, 1);
 
 
 
1743}
1744EXPORT_SYMBOL_GPL(unregister_jprobe);
1745
1746void __kprobes unregister_jprobes(struct jprobe **jps, int num)
 
1747{
1748	int i;
 
 
 
 
 
 
 
 
 
 
1749
1750	if (num <= 0)
1751		return;
1752	mutex_lock(&kprobe_mutex);
1753	for (i = 0; i < num; i++)
1754		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1755			jps[i]->kp.addr = NULL;
1756	mutex_unlock(&kprobe_mutex);
1757
1758	synchronize_sched();
1759	for (i = 0; i < num; i++) {
1760		if (jps[i]->kp.addr)
1761			__unregister_kprobe_bottom(&jps[i]->kp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	}
 
 
1763}
1764EXPORT_SYMBOL_GPL(unregister_jprobes);
1765
1766#ifdef CONFIG_KRETPROBES
1767/*
1768 * This kprobe pre_handler is registered with every kretprobe. When probe
1769 * hits it will set up the return probe.
1770 */
1771static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1772					   struct pt_regs *regs)
1773{
1774	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1775	unsigned long hash, flags = 0;
1776	struct kretprobe_instance *ri;
 
1777
1778	/*TODO: consider to only swap the RA after the last pre_handler fired */
1779	hash = hash_ptr(current, KPROBE_HASH_BITS);
1780	raw_spin_lock_irqsave(&rp->lock, flags);
1781	if (!hlist_empty(&rp->free_instances)) {
1782		ri = hlist_entry(rp->free_instances.first,
1783				struct kretprobe_instance, hlist);
1784		hlist_del(&ri->hlist);
1785		raw_spin_unlock_irqrestore(&rp->lock, flags);
1786
1787		ri->rp = rp;
1788		ri->task = current;
1789
1790		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1791			raw_spin_lock_irqsave(&rp->lock, flags);
1792			hlist_add_head(&ri->hlist, &rp->free_instances);
1793			raw_spin_unlock_irqrestore(&rp->lock, flags);
1794			return 0;
1795		}
1796
1797		arch_prepare_kretprobe(ri, regs);
1798
1799		/* XXX(hch): why is there no hlist_move_head? */
1800		INIT_HLIST_NODE(&ri->hlist);
1801		kretprobe_table_lock(hash, &flags);
1802		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1803		kretprobe_table_unlock(hash, &flags);
1804	} else {
1805		rp->nmissed++;
1806		raw_spin_unlock_irqrestore(&rp->lock, flags);
 
 
 
 
 
 
 
1807	}
 
 
 
 
 
1808	return 0;
1809}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810
1811int __kprobes register_kretprobe(struct kretprobe *rp)
 
 
 
 
 
 
 
 
 
 
1812{
1813	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	struct kretprobe_instance *inst;
1815	int i;
1816	void *addr;
1817
 
 
 
 
 
 
 
 
1818	if (kretprobe_blacklist_size) {
1819		addr = kprobe_addr(&rp->kp);
1820		if (IS_ERR(addr))
1821			return PTR_ERR(addr);
1822
1823		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1824			if (kretprobe_blacklist[i].addr == addr)
1825				return -EINVAL;
1826		}
1827	}
1828
 
 
 
1829	rp->kp.pre_handler = pre_handler_kretprobe;
1830	rp->kp.post_handler = NULL;
1831	rp->kp.fault_handler = NULL;
1832	rp->kp.break_handler = NULL;
1833
1834	/* Pre-allocate memory for max kretprobe instances */
1835	if (rp->maxactive <= 0) {
1836#ifdef CONFIG_PREEMPT
1837		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1838#else
1839		rp->maxactive = num_possible_cpus();
1840#endif
 
 
 
 
 
 
 
 
 
 
 
 
1841	}
1842	raw_spin_lock_init(&rp->lock);
1843	INIT_HLIST_HEAD(&rp->free_instances);
 
 
 
 
 
 
 
 
 
 
 
 
1844	for (i = 0; i < rp->maxactive; i++) {
1845		inst = kmalloc(sizeof(struct kretprobe_instance) +
1846			       rp->data_size, GFP_KERNEL);
1847		if (inst == NULL) {
 
1848			free_rp_inst(rp);
1849			return -ENOMEM;
1850		}
1851		INIT_HLIST_NODE(&inst->hlist);
1852		hlist_add_head(&inst->hlist, &rp->free_instances);
1853	}
 
1854
1855	rp->nmissed = 0;
1856	/* Establish function entry probe point */
1857	ret = register_kprobe(&rp->kp);
1858	if (ret != 0)
1859		free_rp_inst(rp);
 
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(register_kretprobe);
1863
1864int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1865{
1866	int ret = 0, i;
1867
1868	if (num <= 0)
1869		return -EINVAL;
1870	for (i = 0; i < num; i++) {
1871		ret = register_kretprobe(rps[i]);
1872		if (ret < 0) {
1873			if (i > 0)
1874				unregister_kretprobes(rps, i);
1875			break;
1876		}
1877	}
1878	return ret;
1879}
1880EXPORT_SYMBOL_GPL(register_kretprobes);
1881
1882void __kprobes unregister_kretprobe(struct kretprobe *rp)
1883{
1884	unregister_kretprobes(&rp, 1);
1885}
1886EXPORT_SYMBOL_GPL(unregister_kretprobe);
1887
1888void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1889{
1890	int i;
1891
1892	if (num <= 0)
1893		return;
1894	mutex_lock(&kprobe_mutex);
1895	for (i = 0; i < num; i++)
1896		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1897			rps[i]->kp.addr = NULL;
 
 
 
 
 
 
1898	mutex_unlock(&kprobe_mutex);
1899
1900	synchronize_sched();
1901	for (i = 0; i < num; i++) {
1902		if (rps[i]->kp.addr) {
1903			__unregister_kprobe_bottom(&rps[i]->kp);
1904			cleanup_rp_inst(rps[i]);
 
 
1905		}
1906	}
1907}
1908EXPORT_SYMBOL_GPL(unregister_kretprobes);
1909
1910#else /* CONFIG_KRETPROBES */
1911int __kprobes register_kretprobe(struct kretprobe *rp)
1912{
1913	return -ENOSYS;
1914}
1915EXPORT_SYMBOL_GPL(register_kretprobe);
1916
1917int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1918{
1919	return -ENOSYS;
1920}
1921EXPORT_SYMBOL_GPL(register_kretprobes);
1922
1923void __kprobes unregister_kretprobe(struct kretprobe *rp)
1924{
1925}
1926EXPORT_SYMBOL_GPL(unregister_kretprobe);
1927
1928void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1929{
1930}
1931EXPORT_SYMBOL_GPL(unregister_kretprobes);
1932
1933static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1934					   struct pt_regs *regs)
1935{
1936	return 0;
1937}
 
1938
1939#endif /* CONFIG_KRETPROBES */
1940
1941/* Set the kprobe gone and remove its instruction buffer. */
1942static void __kprobes kill_kprobe(struct kprobe *p)
1943{
1944	struct kprobe *kp;
1945
 
 
 
 
 
 
 
 
 
 
1946	p->flags |= KPROBE_FLAG_GONE;
1947	if (kprobe_aggrprobe(p)) {
1948		/*
1949		 * If this is an aggr_kprobe, we have to list all the
1950		 * chained probes and mark them GONE.
1951		 */
1952		list_for_each_entry_rcu(kp, &p->list, list)
1953			kp->flags |= KPROBE_FLAG_GONE;
1954		p->post_handler = NULL;
1955		p->break_handler = NULL;
1956		kill_optimized_kprobe(p);
1957	}
1958	/*
1959	 * Here, we can remove insn_slot safely, because no thread calls
1960	 * the original probed function (which will be freed soon) any more.
1961	 */
1962	arch_remove_kprobe(p);
1963}
1964
1965/* Disable one kprobe */
1966int __kprobes disable_kprobe(struct kprobe *kp)
1967{
1968	int ret = 0;
 
1969
1970	mutex_lock(&kprobe_mutex);
1971
1972	/* Disable this kprobe */
1973	if (__disable_kprobe(kp) == NULL)
1974		ret = -EINVAL;
 
1975
1976	mutex_unlock(&kprobe_mutex);
1977	return ret;
1978}
1979EXPORT_SYMBOL_GPL(disable_kprobe);
1980
1981/* Enable one kprobe */
1982int __kprobes enable_kprobe(struct kprobe *kp)
1983{
1984	int ret = 0;
1985	struct kprobe *p;
1986
1987	mutex_lock(&kprobe_mutex);
1988
1989	/* Check whether specified probe is valid. */
1990	p = __get_valid_kprobe(kp);
1991	if (unlikely(p == NULL)) {
1992		ret = -EINVAL;
1993		goto out;
1994	}
1995
1996	if (kprobe_gone(kp)) {
1997		/* This kprobe has gone, we couldn't enable it. */
1998		ret = -EINVAL;
1999		goto out;
2000	}
2001
2002	if (p != kp)
2003		kp->flags &= ~KPROBE_FLAG_DISABLED;
2004
2005	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2006		p->flags &= ~KPROBE_FLAG_DISABLED;
2007		arm_kprobe(p);
 
 
 
 
 
2008	}
2009out:
2010	mutex_unlock(&kprobe_mutex);
2011	return ret;
2012}
2013EXPORT_SYMBOL_GPL(enable_kprobe);
2014
2015void __kprobes dump_kprobe(struct kprobe *kp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016{
2017	printk(KERN_WARNING "Dumping kprobe:\n");
2018	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2019	       kp->symbol_name, kp->addr, kp->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020}
2021
2022/* Module notifier call back, checking kprobes on the module */
2023static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2024					     unsigned long val, void *data)
2025{
2026	struct module *mod = data;
2027	struct hlist_head *head;
2028	struct kprobe *p;
2029	unsigned int i;
2030	int checkcore = (val == MODULE_STATE_GOING);
2031
 
 
 
 
 
2032	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2033		return NOTIFY_DONE;
2034
2035	/*
2036	 * When MODULE_STATE_GOING was notified, both of module .text and
2037	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2038	 * notified, only .init.text section would be freed. We need to
2039	 * disable kprobes which have been inserted in the sections.
2040	 */
2041	mutex_lock(&kprobe_mutex);
2042	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2043		head = &kprobe_table[i];
2044		hlist_for_each_entry_rcu(p, head, hlist)
2045			if (within_module_init((unsigned long)p->addr, mod) ||
2046			    (checkcore &&
2047			     within_module_core((unsigned long)p->addr, mod))) {
2048				/*
2049				 * The vaddr this probe is installed will soon
2050				 * be vfreed buy not synced to disk. Hence,
2051				 * disarming the breakpoint isn't needed.
 
 
 
 
 
 
2052				 */
2053				kill_kprobe(p);
2054			}
2055	}
 
 
2056	mutex_unlock(&kprobe_mutex);
2057	return NOTIFY_DONE;
2058}
2059
2060static struct notifier_block kprobe_module_nb = {
2061	.notifier_call = kprobes_module_callback,
2062	.priority = 0
2063};
2064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065static int __init init_kprobes(void)
2066{
2067	int i, err = 0;
2068	unsigned long offset = 0, size = 0;
2069	char *modname, namebuf[KSYM_NAME_LEN];
2070	const char *symbol_name;
2071	void *addr;
2072	struct kprobe_blackpoint *kb;
2073
2074	/* FIXME allocate the probe table, currently defined statically */
2075	/* initialize all list heads */
2076	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2077		INIT_HLIST_HEAD(&kprobe_table[i]);
2078		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2079		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2080	}
2081
2082	/*
2083	 * Lookup and populate the kprobe_blacklist.
2084	 *
2085	 * Unlike the kretprobe blacklist, we'll need to determine
2086	 * the range of addresses that belong to the said functions,
2087	 * since a kprobe need not necessarily be at the beginning
2088	 * of a function.
2089	 */
2090	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2091		kprobe_lookup_name(kb->name, addr);
2092		if (!addr)
2093			continue;
2094
2095		kb->start_addr = (unsigned long)addr;
2096		symbol_name = kallsyms_lookup(kb->start_addr,
2097				&size, &offset, &modname, namebuf);
2098		if (!symbol_name)
2099			kb->range = 0;
2100		else
2101			kb->range = size;
2102	}
2103
2104	if (kretprobe_blacklist_size) {
2105		/* lookup the function address from its name */
2106		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2107			kprobe_lookup_name(kretprobe_blacklist[i].name,
2108					   kretprobe_blacklist[i].addr);
2109			if (!kretprobe_blacklist[i].addr)
2110				printk("kretprobe: lookup failed: %s\n",
2111				       kretprobe_blacklist[i].name);
2112		}
2113	}
2114
2115#if defined(CONFIG_OPTPROBES)
2116#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2117	/* Init kprobe_optinsn_slots */
2118	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2119#endif
2120	/* By default, kprobes can be optimized */
2121	kprobes_allow_optimization = true;
2122#endif
2123
2124	/* By default, kprobes are armed */
2125	kprobes_all_disarmed = false;
2126
 
 
 
 
 
2127	err = arch_init_kprobes();
2128	if (!err)
2129		err = register_die_notifier(&kprobe_exceptions_nb);
2130	if (!err)
2131		err = register_module_notifier(&kprobe_module_nb);
2132
2133	kprobes_initialized = (err == 0);
2134
2135	if (!err)
2136		init_test_probes();
2137	return err;
2138}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140#ifdef CONFIG_DEBUG_FS
2141static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2142		const char *sym, int offset, char *modname, struct kprobe *pp)
2143{
2144	char *kprobe_type;
 
2145
2146	if (p->pre_handler == pre_handler_kretprobe)
2147		kprobe_type = "r";
2148	else if (p->pre_handler == setjmp_pre_handler)
2149		kprobe_type = "j";
2150	else
2151		kprobe_type = "k";
2152
 
 
 
2153	if (sym)
2154		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2155			p->addr, kprobe_type, sym, offset,
2156			(modname ? modname : " "));
2157	else
2158		seq_printf(pi, "%p  %s  %p ",
2159			p->addr, kprobe_type, p->addr);
2160
2161	if (!pp)
2162		pp = p;
2163	seq_printf(pi, "%s%s%s%s\n",
2164		(kprobe_gone(p) ? "[GONE]" : ""),
2165		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2166		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2167		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2168}
2169
2170static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2171{
2172	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2173}
2174
2175static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2176{
2177	(*pos)++;
2178	if (*pos >= KPROBE_TABLE_SIZE)
2179		return NULL;
2180	return pos;
2181}
2182
2183static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2184{
2185	/* Nothing to do */
2186}
2187
2188static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2189{
2190	struct hlist_head *head;
2191	struct kprobe *p, *kp;
2192	const char *sym = NULL;
2193	unsigned int i = *(loff_t *) v;
2194	unsigned long offset = 0;
2195	char *modname, namebuf[KSYM_NAME_LEN];
2196
2197	head = &kprobe_table[i];
2198	preempt_disable();
2199	hlist_for_each_entry_rcu(p, head, hlist) {
2200		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2201					&offset, &modname, namebuf);
2202		if (kprobe_aggrprobe(p)) {
2203			list_for_each_entry_rcu(kp, &p->list, list)
2204				report_probe(pi, kp, sym, offset, modname, p);
2205		} else
2206			report_probe(pi, p, sym, offset, modname, NULL);
2207	}
2208	preempt_enable();
2209	return 0;
2210}
2211
2212static const struct seq_operations kprobes_seq_ops = {
2213	.start = kprobe_seq_start,
2214	.next  = kprobe_seq_next,
2215	.stop  = kprobe_seq_stop,
2216	.show  = show_kprobe_addr
2217};
2218
2219static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220{
2221	return seq_open(filp, &kprobes_seq_ops);
2222}
2223
2224static const struct file_operations debugfs_kprobes_operations = {
2225	.open           = kprobes_open,
2226	.read           = seq_read,
2227	.llseek         = seq_lseek,
2228	.release        = seq_release,
2229};
 
2230
2231static void __kprobes arm_all_kprobes(void)
2232{
2233	struct hlist_head *head;
2234	struct kprobe *p;
2235	unsigned int i;
 
2236
2237	mutex_lock(&kprobe_mutex);
2238
2239	/* If kprobes are armed, just return */
2240	if (!kprobes_all_disarmed)
2241		goto already_enabled;
2242
 
 
 
 
 
 
2243	/* Arming kprobes doesn't optimize kprobe itself */
2244	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245		head = &kprobe_table[i];
2246		hlist_for_each_entry_rcu(p, head, hlist)
2247			if (!kprobe_disabled(p))
2248				arm_kprobe(p);
 
 
 
 
 
 
 
 
2249	}
2250
2251	kprobes_all_disarmed = false;
2252	printk(KERN_INFO "Kprobes globally enabled\n");
 
 
 
2253
2254already_enabled:
2255	mutex_unlock(&kprobe_mutex);
2256	return;
2257}
2258
2259static void __kprobes disarm_all_kprobes(void)
2260{
2261	struct hlist_head *head;
2262	struct kprobe *p;
2263	unsigned int i;
 
2264
2265	mutex_lock(&kprobe_mutex);
2266
2267	/* If kprobes are already disarmed, just return */
2268	if (kprobes_all_disarmed) {
2269		mutex_unlock(&kprobe_mutex);
2270		return;
2271	}
2272
2273	kprobes_all_disarmed = true;
2274	printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277		head = &kprobe_table[i];
2278		hlist_for_each_entry_rcu(p, head, hlist) {
2279			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280				disarm_kprobe(p, false);
 
 
 
 
 
 
 
2281		}
2282	}
 
 
 
 
 
 
 
2283	mutex_unlock(&kprobe_mutex);
2284
2285	/* Wait for disarming all kprobes by optimizer */
2286	wait_for_kprobe_optimizer();
 
 
2287}
2288
2289/*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294static ssize_t read_enabled_file_bool(struct file *file,
2295	       char __user *user_buf, size_t count, loff_t *ppos)
2296{
2297	char buf[3];
2298
2299	if (!kprobes_all_disarmed)
2300		buf[0] = '1';
2301	else
2302		buf[0] = '0';
2303	buf[1] = '\n';
2304	buf[2] = 0x00;
2305	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306}
2307
2308static ssize_t write_enabled_file_bool(struct file *file,
2309	       const char __user *user_buf, size_t count, loff_t *ppos)
2310{
2311	char buf[32];
2312	size_t buf_size;
2313
2314	buf_size = min(count, (sizeof(buf)-1));
2315	if (copy_from_user(buf, user_buf, buf_size))
2316		return -EFAULT;
2317
2318	buf[buf_size] = '\0';
2319	switch (buf[0]) {
2320	case 'y':
2321	case 'Y':
2322	case '1':
2323		arm_all_kprobes();
2324		break;
2325	case 'n':
2326	case 'N':
2327	case '0':
2328		disarm_all_kprobes();
2329		break;
2330	default:
2331		return -EINVAL;
2332	}
2333
2334	return count;
2335}
2336
2337static const struct file_operations fops_kp = {
2338	.read =         read_enabled_file_bool,
2339	.write =        write_enabled_file_bool,
2340	.llseek =	default_llseek,
2341};
2342
2343static int __kprobes debugfs_kprobe_init(void)
2344{
2345	struct dentry *dir, *file;
2346	unsigned int value = 1;
2347
2348	dir = debugfs_create_dir("kprobes", NULL);
2349	if (!dir)
2350		return -ENOMEM;
2351
2352	file = debugfs_create_file("list", 0444, dir, NULL,
2353				&debugfs_kprobes_operations);
2354	if (!file) {
2355		debugfs_remove(dir);
2356		return -ENOMEM;
2357	}
2358
2359	file = debugfs_create_file("enabled", 0600, dir,
2360					&value, &fops_kp);
2361	if (!file) {
2362		debugfs_remove(dir);
2363		return -ENOMEM;
2364	}
2365
2366	return 0;
2367}
2368
2369late_initcall(debugfs_kprobe_init);
2370#endif /* CONFIG_DEBUG_FS */
2371
2372module_init(init_kprobes);
2373
2374/* defined in arch/.../kernel/kprobes.c */
2375EXPORT_SYMBOL_GPL(jprobe_return);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation (includes suggestions from
   9 *		Rusty Russell).
  10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  11 *		hlists and exceptions notifier as suggested by Andi Kleen.
  12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  13 *		interface to access function arguments.
  14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  15 *		exceptions notifier to be first on the priority list.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 */
  20
  21#define pr_fmt(fmt) "kprobes: " fmt
  22
  23#include <linux/kprobes.h>
  24#include <linux/hash.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/stddef.h>
  28#include <linux/export.h>
  29#include <linux/moduleloader.h>
  30#include <linux/kallsyms.h>
  31#include <linux/freezer.h>
  32#include <linux/seq_file.h>
  33#include <linux/debugfs.h>
  34#include <linux/sysctl.h>
  35#include <linux/kdebug.h>
  36#include <linux/memory.h>
  37#include <linux/ftrace.h>
  38#include <linux/cpu.h>
  39#include <linux/jump_label.h>
  40#include <linux/static_call.h>
  41#include <linux/perf_event.h>
  42
  43#include <asm/sections.h>
  44#include <asm/cacheflush.h>
  45#include <asm/errno.h>
  46#include <linux/uaccess.h>
  47
  48#define KPROBE_HASH_BITS 6
  49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  50
  51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
  52#define kprobe_sysctls_init() do { } while (0)
 
 
 
 
 
 
  53#endif
  54
  55static int kprobes_initialized;
  56/* kprobe_table can be accessed by
  57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
  58 * Or
  59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  60 */
  61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
 
  62
  63/* NOTE: change this value only with 'kprobe_mutex' held */
  64static bool kprobes_all_disarmed;
  65
  66/* This protects 'kprobe_table' and 'optimizing_list' */
  67static DEFINE_MUTEX(kprobe_mutex);
  68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
 
 
 
  69
  70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  71					unsigned int __unused)
  72{
  73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  74}
  75
  76/*
  77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
  78 * kprobes can not probe.
 
 
 
  79 */
  80static LIST_HEAD(kprobe_blacklist);
 
 
 
 
 
 
 
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	/*
 116	 * Use module_alloc() so this page is within +/- 2GB of where the
 117	 * kernel image and loaded module images reside. This is required
 118	 * for most of the architectures.
 119	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
 120	 */
 121	return module_alloc(PAGE_SIZE);
 122}
 123
 124static void free_insn_page(void *page)
 125{
 126	module_memfree(page);
 127}
 128
 129struct kprobe_insn_cache kprobe_insn_slots = {
 130	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 131	.alloc = alloc_insn_page,
 132	.free = free_insn_page,
 133	.sym = KPROBE_INSN_PAGE_SYM,
 134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135	.insn_size = MAX_INSN_SIZE,
 136	.nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146	struct kprobe_insn_page *kip;
 147	kprobe_opcode_t *slot = NULL;
 148
 149	/* Since the slot array is not protected by rcu, we need a mutex */
 150	mutex_lock(&c->mutex);
 151 retry:
 152	rcu_read_lock();
 153	list_for_each_entry_rcu(kip, &c->pages, list) {
 154		if (kip->nused < slots_per_page(c)) {
 155			int i;
 156
 157			for (i = 0; i < slots_per_page(c); i++) {
 158				if (kip->slot_used[i] == SLOT_CLEAN) {
 159					kip->slot_used[i] = SLOT_USED;
 160					kip->nused++;
 161					slot = kip->insns + (i * c->insn_size);
 162					rcu_read_unlock();
 163					goto out;
 164				}
 165			}
 166			/* kip->nused is broken. Fix it. */
 167			kip->nused = slots_per_page(c);
 168			WARN_ON(1);
 169		}
 170	}
 171	rcu_read_unlock();
 172
 173	/* If there are any garbage slots, collect it and try again. */
 174	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 175		goto retry;
 176
 177	/* All out of space.  Need to allocate a new page. */
 178	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 179	if (!kip)
 180		goto out;
 181
 
 
 
 
 
 182	kip->insns = c->alloc();
 183	if (!kip->insns) {
 184		kfree(kip);
 185		goto out;
 186	}
 187	INIT_LIST_HEAD(&kip->list);
 188	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 189	kip->slot_used[0] = SLOT_USED;
 190	kip->nused = 1;
 191	kip->ngarbage = 0;
 192	kip->cache = c;
 193	list_add_rcu(&kip->list, &c->pages);
 194	slot = kip->insns;
 195
 196	/* Record the perf ksymbol register event after adding the page */
 197	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 198			   PAGE_SIZE, false, c->sym);
 199out:
 200	mutex_unlock(&c->mutex);
 201	return slot;
 202}
 203
 204/* Return true if all garbages are collected, otherwise false. */
 205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207	kip->slot_used[idx] = SLOT_CLEAN;
 208	kip->nused--;
 209	if (kip->nused == 0) {
 210		/*
 211		 * Page is no longer in use.  Free it unless
 212		 * it's the last one.  We keep the last one
 213		 * so as not to have to set it up again the
 214		 * next time somebody inserts a probe.
 215		 */
 216		if (!list_is_singular(&kip->list)) {
 217			/*
 218			 * Record perf ksymbol unregister event before removing
 219			 * the page.
 220			 */
 221			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 222					   (unsigned long)kip->insns, PAGE_SIZE, true,
 223					   kip->cache->sym);
 224			list_del_rcu(&kip->list);
 225			synchronize_rcu();
 226			kip->cache->free(kip->insns);
 227			kfree(kip);
 228		}
 229		return true;
 230	}
 231	return false;
 232}
 233
 234static int collect_garbage_slots(struct kprobe_insn_cache *c)
 235{
 236	struct kprobe_insn_page *kip, *next;
 237
 238	/* Ensure no-one is interrupted on the garbages */
 239	synchronize_rcu();
 240
 241	list_for_each_entry_safe(kip, next, &c->pages, list) {
 242		int i;
 243
 244		if (kip->ngarbage == 0)
 245			continue;
 246		kip->ngarbage = 0;	/* we will collect all garbages */
 247		for (i = 0; i < slots_per_page(c); i++) {
 248			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 
 249				break;
 250		}
 251	}
 252	c->nr_garbage = 0;
 253	return 0;
 254}
 255
 256void __free_insn_slot(struct kprobe_insn_cache *c,
 257		      kprobe_opcode_t *slot, int dirty)
 258{
 259	struct kprobe_insn_page *kip;
 260	long idx;
 261
 262	mutex_lock(&c->mutex);
 263	rcu_read_lock();
 264	list_for_each_entry_rcu(kip, &c->pages, list) {
 265		idx = ((long)slot - (long)kip->insns) /
 266			(c->insn_size * sizeof(kprobe_opcode_t));
 267		if (idx >= 0 && idx < slots_per_page(c))
 
 
 
 
 
 
 
 268			goto out;
 
 269	}
 270	/* Could not find this slot. */
 271	WARN_ON(1);
 272	kip = NULL;
 273out:
 274	rcu_read_unlock();
 275	/* Mark and sweep: this may sleep */
 276	if (kip) {
 277		/* Check double free */
 278		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 279		if (dirty) {
 280			kip->slot_used[idx] = SLOT_DIRTY;
 281			kip->ngarbage++;
 282			if (++c->nr_garbage > slots_per_page(c))
 283				collect_garbage_slots(c);
 284		} else {
 285			collect_one_slot(kip, idx);
 286		}
 287	}
 288	mutex_unlock(&c->mutex);
 289}
 290
 291/*
 292 * Check given address is on the page of kprobe instruction slots.
 293 * This will be used for checking whether the address on a stack
 294 * is on a text area or not.
 295 */
 296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 297{
 298	struct kprobe_insn_page *kip;
 299	bool ret = false;
 300
 301	rcu_read_lock();
 302	list_for_each_entry_rcu(kip, &c->pages, list) {
 303		if (addr >= (unsigned long)kip->insns &&
 304		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 305			ret = true;
 306			break;
 307		}
 308	}
 309	rcu_read_unlock();
 310
 311	return ret;
 312}
 313
 314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 315			     unsigned long *value, char *type, char *sym)
 316{
 317	struct kprobe_insn_page *kip;
 318	int ret = -ERANGE;
 319
 320	rcu_read_lock();
 321	list_for_each_entry_rcu(kip, &c->pages, list) {
 322		if ((*symnum)--)
 323			continue;
 324		strscpy(sym, c->sym, KSYM_NAME_LEN);
 325		*type = 't';
 326		*value = (unsigned long)kip->insns;
 327		ret = 0;
 328		break;
 329	}
 330	rcu_read_unlock();
 331
 332	return ret;
 333}
 334
 335#ifdef CONFIG_OPTPROBES
 336void __weak *alloc_optinsn_page(void)
 337{
 338	return alloc_insn_page();
 339}
 340
 341void __weak free_optinsn_page(void *page)
 342{
 343	free_insn_page(page);
 344}
 345
 346/* For optimized_kprobe buffer */
 347struct kprobe_insn_cache kprobe_optinsn_slots = {
 348	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 349	.alloc = alloc_optinsn_page,
 350	.free = free_optinsn_page,
 351	.sym = KPROBE_OPTINSN_PAGE_SYM,
 352	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 353	/* .insn_size is initialized later */
 354	.nr_garbage = 0,
 355};
 356#endif
 357#endif
 358
 359/* We have preemption disabled.. so it is safe to use __ versions */
 360static inline void set_kprobe_instance(struct kprobe *kp)
 361{
 362	__this_cpu_write(kprobe_instance, kp);
 363}
 364
 365static inline void reset_kprobe_instance(void)
 366{
 367	__this_cpu_write(kprobe_instance, NULL);
 368}
 369
 370/*
 371 * This routine is called either:
 372 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
 373 *				OR
 374 *	- with preemption disabled - from architecture specific code.
 375 */
 376struct kprobe *get_kprobe(void *addr)
 377{
 378	struct hlist_head *head;
 379	struct kprobe *p;
 380
 381	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 382	hlist_for_each_entry_rcu(p, head, hlist,
 383				 lockdep_is_held(&kprobe_mutex)) {
 384		if (p->addr == addr)
 385			return p;
 386	}
 387
 388	return NULL;
 389}
 390NOKPROBE_SYMBOL(get_kprobe);
 391
 392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 393
 394/* Return true if 'p' is an aggregator */
 395static inline bool kprobe_aggrprobe(struct kprobe *p)
 396{
 397	return p->pre_handler == aggr_pre_handler;
 398}
 399
 400/* Return true if 'p' is unused */
 401static inline bool kprobe_unused(struct kprobe *p)
 402{
 403	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 404	       list_empty(&p->list);
 405}
 406
 407/* Keep all fields in the kprobe consistent. */
 
 
 408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 409{
 410	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 411	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 412}
 413
 414#ifdef CONFIG_OPTPROBES
 415/* NOTE: This is protected by 'kprobe_mutex'. */
 416static bool kprobes_allow_optimization;
 417
 418/*
 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
 420 * This must be called from arch-dep optimized caller.
 421 */
 422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 423{
 424	struct kprobe *kp;
 425
 426	list_for_each_entry_rcu(kp, &p->list, list) {
 427		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 428			set_kprobe_instance(kp);
 429			kp->pre_handler(kp, regs);
 430		}
 431		reset_kprobe_instance();
 432	}
 433}
 434NOKPROBE_SYMBOL(opt_pre_handler);
 435
 436/* Free optimized instructions and optimized_kprobe */
 437static void free_aggr_kprobe(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	op = container_of(p, struct optimized_kprobe, kp);
 442	arch_remove_optimized_kprobe(op);
 443	arch_remove_kprobe(p);
 444	kfree(op);
 445}
 446
 447/* Return true if the kprobe is ready for optimization. */
 448static inline int kprobe_optready(struct kprobe *p)
 449{
 450	struct optimized_kprobe *op;
 451
 452	if (kprobe_aggrprobe(p)) {
 453		op = container_of(p, struct optimized_kprobe, kp);
 454		return arch_prepared_optinsn(&op->optinsn);
 455	}
 456
 457	return 0;
 458}
 459
 460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
 461static inline bool kprobe_disarmed(struct kprobe *p)
 462{
 463	struct optimized_kprobe *op;
 464
 465	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 466	if (!kprobe_aggrprobe(p))
 467		return kprobe_disabled(p);
 468
 469	op = container_of(p, struct optimized_kprobe, kp);
 470
 471	return kprobe_disabled(p) && list_empty(&op->list);
 472}
 473
 474/* Return true if the probe is queued on (un)optimizing lists */
 475static bool kprobe_queued(struct kprobe *p)
 476{
 477	struct optimized_kprobe *op;
 478
 479	if (kprobe_aggrprobe(p)) {
 480		op = container_of(p, struct optimized_kprobe, kp);
 481		if (!list_empty(&op->list))
 482			return true;
 483	}
 484	return false;
 485}
 486
 487/*
 488 * Return an optimized kprobe whose optimizing code replaces
 489 * instructions including 'addr' (exclude breakpoint).
 490 */
 491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
 492{
 493	int i;
 494	struct kprobe *p = NULL;
 495	struct optimized_kprobe *op;
 496
 497	/* Don't check i == 0, since that is a breakpoint case. */
 498	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
 499		p = get_kprobe(addr - i);
 500
 501	if (p && kprobe_optready(p)) {
 502		op = container_of(p, struct optimized_kprobe, kp);
 503		if (arch_within_optimized_kprobe(op, addr))
 504			return p;
 505	}
 506
 507	return NULL;
 508}
 509
 510/* Optimization staging list, protected by 'kprobe_mutex' */
 511static LIST_HEAD(optimizing_list);
 512static LIST_HEAD(unoptimizing_list);
 513static LIST_HEAD(freeing_list);
 514
 515static void kprobe_optimizer(struct work_struct *work);
 516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 517#define OPTIMIZE_DELAY 5
 518
 519/*
 520 * Optimize (replace a breakpoint with a jump) kprobes listed on
 521 * 'optimizing_list'.
 522 */
 523static void do_optimize_kprobes(void)
 524{
 525	lockdep_assert_held(&text_mutex);
 526	/*
 527	 * The optimization/unoptimization refers 'online_cpus' via
 528	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
 529	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
 530	 * This combination can cause a deadlock (cpu-hotplug tries to lock
 531	 * 'text_mutex' but stop_machine() can not be done because
 532	 * the 'online_cpus' has been changed)
 533	 * To avoid this deadlock, caller must have locked cpu-hotplug
 534	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
 535	 */
 536	lockdep_assert_cpus_held();
 537
 538	/* Optimization never be done when disarmed */
 539	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 540	    list_empty(&optimizing_list))
 541		return;
 542
 
 
 
 
 
 
 
 
 
 
 
 
 543	arch_optimize_kprobes(&optimizing_list);
 
 
 544}
 545
 546/*
 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 548 * if need) kprobes listed on 'unoptimizing_list'.
 549 */
 550static void do_unoptimize_kprobes(void)
 551{
 552	struct optimized_kprobe *op, *tmp;
 553
 554	lockdep_assert_held(&text_mutex);
 555	/* See comment in do_optimize_kprobes() */
 556	lockdep_assert_cpus_held();
 557
 558	/* Unoptimization must be done anytime */
 559	if (list_empty(&unoptimizing_list))
 560		return;
 561
 
 
 
 562	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 563	/* Loop on 'freeing_list' for disarming */
 564	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 565		/* Switching from detour code to origin */
 566		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 567		/* Disarm probes if marked disabled */
 568		if (kprobe_disabled(&op->kp))
 569			arch_disarm_kprobe(&op->kp);
 570		if (kprobe_unused(&op->kp)) {
 571			/*
 572			 * Remove unused probes from hash list. After waiting
 573			 * for synchronization, these probes are reclaimed.
 574			 * (reclaiming is done by do_free_cleaned_kprobes().)
 575			 */
 576			hlist_del_rcu(&op->kp.hlist);
 577		} else
 578			list_del_init(&op->list);
 579	}
 
 
 580}
 581
 582/* Reclaim all kprobes on the 'freeing_list' */
 583static void do_free_cleaned_kprobes(void)
 584{
 585	struct optimized_kprobe *op, *tmp;
 586
 587	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 588		list_del_init(&op->list);
 589		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 590			/*
 591			 * This must not happen, but if there is a kprobe
 592			 * still in use, keep it on kprobes hash list.
 593			 */
 594			continue;
 595		}
 596		free_aggr_kprobe(&op->kp);
 597	}
 598}
 599
 600/* Start optimizer after OPTIMIZE_DELAY passed */
 601static void kick_kprobe_optimizer(void)
 602{
 603	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 604}
 605
 606/* Kprobe jump optimizer */
 607static void kprobe_optimizer(struct work_struct *work)
 608{
 609	mutex_lock(&kprobe_mutex);
 610	cpus_read_lock();
 611	mutex_lock(&text_mutex);
 612
 613	/*
 614	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 615	 * kprobes before waiting for quiesence period.
 616	 */
 617	do_unoptimize_kprobes();
 618
 619	/*
 620	 * Step 2: Wait for quiesence period to ensure all potentially
 621	 * preempted tasks to have normally scheduled. Because optprobe
 622	 * may modify multiple instructions, there is a chance that Nth
 623	 * instruction is preempted. In that case, such tasks can return
 624	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 625	 * Note that on non-preemptive kernel, this is transparently converted
 626	 * to synchronoze_sched() to wait for all interrupts to have completed.
 627	 */
 628	synchronize_rcu_tasks();
 629
 630	/* Step 3: Optimize kprobes after quiesence period */
 631	do_optimize_kprobes();
 632
 633	/* Step 4: Free cleaned kprobes after quiesence period */
 634	do_free_cleaned_kprobes();
 635
 636	mutex_unlock(&text_mutex);
 637	cpus_read_unlock();
 638
 639	/* Step 5: Kick optimizer again if needed */
 640	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 641		kick_kprobe_optimizer();
 642
 643	mutex_unlock(&kprobe_mutex);
 644}
 645
 646/* Wait for completing optimization and unoptimization */
 647void wait_for_kprobe_optimizer(void)
 648{
 649	mutex_lock(&kprobe_mutex);
 650
 651	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 652		mutex_unlock(&kprobe_mutex);
 653
 654		/* This will also make 'optimizing_work' execute immmediately */
 655		flush_delayed_work(&optimizing_work);
 656		/* 'optimizing_work' might not have been queued yet, relax */
 657		cpu_relax();
 658
 659		mutex_lock(&kprobe_mutex);
 660	}
 661
 662	mutex_unlock(&kprobe_mutex);
 663}
 664
 665static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 666{
 667	struct optimized_kprobe *_op;
 668
 669	list_for_each_entry(_op, &unoptimizing_list, list) {
 670		if (op == _op)
 671			return true;
 672	}
 673
 674	return false;
 675}
 676
 677/* Optimize kprobe if p is ready to be optimized */
 678static void optimize_kprobe(struct kprobe *p)
 679{
 680	struct optimized_kprobe *op;
 681
 682	/* Check if the kprobe is disabled or not ready for optimization. */
 683	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 684	    (kprobe_disabled(p) || kprobes_all_disarmed))
 685		return;
 686
 687	/* kprobes with 'post_handler' can not be optimized */
 688	if (p->post_handler)
 689		return;
 690
 691	op = container_of(p, struct optimized_kprobe, kp);
 692
 693	/* Check there is no other kprobes at the optimized instructions */
 694	if (arch_check_optimized_kprobe(op) < 0)
 695		return;
 696
 697	/* Check if it is already optimized. */
 698	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 699		if (optprobe_queued_unopt(op)) {
 700			/* This is under unoptimizing. Just dequeue the probe */
 701			list_del_init(&op->list);
 702		}
 703		return;
 704	}
 705	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 706
 707	/*
 708	 * On the 'unoptimizing_list' and 'optimizing_list',
 709	 * 'op' must have OPTIMIZED flag
 710	 */
 711	if (WARN_ON_ONCE(!list_empty(&op->list)))
 712		return;
 713
 714	list_add(&op->list, &optimizing_list);
 715	kick_kprobe_optimizer();
 716}
 717
 718/* Short cut to direct unoptimizing */
 719static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 720{
 721	lockdep_assert_cpus_held();
 722	arch_unoptimize_kprobe(op);
 723	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 
 724}
 725
 726/* Unoptimize a kprobe if p is optimized */
 727static void unoptimize_kprobe(struct kprobe *p, bool force)
 728{
 729	struct optimized_kprobe *op;
 730
 731	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 732		return; /* This is not an optprobe nor optimized */
 733
 734	op = container_of(p, struct optimized_kprobe, kp);
 735	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 736		return;
 
 737
 
 738	if (!list_empty(&op->list)) {
 739		if (optprobe_queued_unopt(op)) {
 740			/* Queued in unoptimizing queue */
 741			if (force) {
 742				/*
 743				 * Forcibly unoptimize the kprobe here, and queue it
 744				 * in the freeing list for release afterwards.
 745				 */
 746				force_unoptimize_kprobe(op);
 747				list_move(&op->list, &freeing_list);
 748			}
 749		} else {
 750			/* Dequeue from the optimizing queue */
 751			list_del_init(&op->list);
 752			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 753		}
 754		return;
 755	}
 756
 757	/* Optimized kprobe case */
 758	if (force) {
 759		/* Forcibly update the code: this is a special case */
 760		force_unoptimize_kprobe(op);
 761	} else {
 762		list_add(&op->list, &unoptimizing_list);
 763		kick_kprobe_optimizer();
 764	}
 765}
 766
 767/* Cancel unoptimizing for reusing */
 768static int reuse_unused_kprobe(struct kprobe *ap)
 769{
 770	struct optimized_kprobe *op;
 771
 
 772	/*
 773	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 774	 * there is still a relative jump) and disabled.
 775	 */
 776	op = container_of(ap, struct optimized_kprobe, kp);
 777	WARN_ON_ONCE(list_empty(&op->list));
 
 
 778	/* Enable the probe again */
 779	ap->flags &= ~KPROBE_FLAG_DISABLED;
 780	/* Optimize it again. (remove from 'op->list') */
 781	if (!kprobe_optready(ap))
 782		return -EINVAL;
 783
 784	optimize_kprobe(ap);
 785	return 0;
 786}
 787
 788/* Remove optimized instructions */
 789static void kill_optimized_kprobe(struct kprobe *p)
 790{
 791	struct optimized_kprobe *op;
 792
 793	op = container_of(p, struct optimized_kprobe, kp);
 794	if (!list_empty(&op->list))
 795		/* Dequeue from the (un)optimization queue */
 796		list_del_init(&op->list);
 797	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 798
 799	if (kprobe_unused(p)) {
 800		/* Enqueue if it is unused */
 801		list_add(&op->list, &freeing_list);
 802		/*
 803		 * Remove unused probes from the hash list. After waiting
 804		 * for synchronization, this probe is reclaimed.
 805		 * (reclaiming is done by do_free_cleaned_kprobes().)
 806		 */
 807		hlist_del_rcu(&op->kp.hlist);
 808	}
 809
 810	/* Don't touch the code, because it is already freed. */
 811	arch_remove_optimized_kprobe(op);
 812}
 813
 814static inline
 815void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 816{
 817	if (!kprobe_ftrace(p))
 818		arch_prepare_optimized_kprobe(op, p);
 819}
 820
 821/* Try to prepare optimized instructions */
 822static void prepare_optimized_kprobe(struct kprobe *p)
 823{
 824	struct optimized_kprobe *op;
 825
 826	op = container_of(p, struct optimized_kprobe, kp);
 827	__prepare_optimized_kprobe(op, p);
 828}
 829
 830/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
 831static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 832{
 833	struct optimized_kprobe *op;
 834
 835	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 836	if (!op)
 837		return NULL;
 838
 839	INIT_LIST_HEAD(&op->list);
 840	op->kp.addr = p->addr;
 841	__prepare_optimized_kprobe(op, p);
 842
 843	return &op->kp;
 844}
 845
 846static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 847
 848/*
 849 * Prepare an optimized_kprobe and optimize it.
 850 * NOTE: 'p' must be a normal registered kprobe.
 851 */
 852static void try_to_optimize_kprobe(struct kprobe *p)
 853{
 854	struct kprobe *ap;
 855	struct optimized_kprobe *op;
 856
 857	/* Impossible to optimize ftrace-based kprobe. */
 858	if (kprobe_ftrace(p))
 859		return;
 860
 861	/* For preparing optimization, jump_label_text_reserved() is called. */
 862	cpus_read_lock();
 863	jump_label_lock();
 864	mutex_lock(&text_mutex);
 865
 866	ap = alloc_aggr_kprobe(p);
 867	if (!ap)
 868		goto out;
 869
 870	op = container_of(ap, struct optimized_kprobe, kp);
 871	if (!arch_prepared_optinsn(&op->optinsn)) {
 872		/* If failed to setup optimizing, fallback to kprobe. */
 873		arch_remove_optimized_kprobe(op);
 874		kfree(op);
 875		goto out;
 876	}
 877
 878	init_aggr_kprobe(ap, p);
 879	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
 880
 881out:
 882	mutex_unlock(&text_mutex);
 883	jump_label_unlock();
 884	cpus_read_unlock();
 885}
 886
 887static void optimize_all_kprobes(void)
 
 888{
 889	struct hlist_head *head;
 890	struct kprobe *p;
 891	unsigned int i;
 892
 893	mutex_lock(&kprobe_mutex);
 894	/* If optimization is already allowed, just return. */
 895	if (kprobes_allow_optimization)
 896		goto out;
 897
 898	cpus_read_lock();
 899	kprobes_allow_optimization = true;
 900	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 901		head = &kprobe_table[i];
 902		hlist_for_each_entry(p, head, hlist)
 903			if (!kprobe_disabled(p))
 904				optimize_kprobe(p);
 905	}
 906	cpus_read_unlock();
 907	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
 908out:
 909	mutex_unlock(&kprobe_mutex);
 910}
 911
 912#ifdef CONFIG_SYSCTL
 913static void unoptimize_all_kprobes(void)
 914{
 915	struct hlist_head *head;
 916	struct kprobe *p;
 917	unsigned int i;
 918
 919	mutex_lock(&kprobe_mutex);
 920	/* If optimization is already prohibited, just return. */
 921	if (!kprobes_allow_optimization) {
 922		mutex_unlock(&kprobe_mutex);
 923		return;
 924	}
 925
 926	cpus_read_lock();
 927	kprobes_allow_optimization = false;
 928	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 929		head = &kprobe_table[i];
 930		hlist_for_each_entry(p, head, hlist) {
 931			if (!kprobe_disabled(p))
 932				unoptimize_kprobe(p, false);
 933		}
 934	}
 935	cpus_read_unlock();
 936	mutex_unlock(&kprobe_mutex);
 937
 938	/* Wait for unoptimizing completion. */
 939	wait_for_kprobe_optimizer();
 940	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
 941}
 942
 943static DEFINE_MUTEX(kprobe_sysctl_mutex);
 944static int sysctl_kprobes_optimization;
 945static int proc_kprobes_optimization_handler(struct ctl_table *table,
 946					     int write, void *buffer,
 947					     size_t *length, loff_t *ppos)
 948{
 949	int ret;
 950
 951	mutex_lock(&kprobe_sysctl_mutex);
 952	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 953	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 954
 955	if (sysctl_kprobes_optimization)
 956		optimize_all_kprobes();
 957	else
 958		unoptimize_all_kprobes();
 959	mutex_unlock(&kprobe_sysctl_mutex);
 960
 961	return ret;
 962}
 963
 964static struct ctl_table kprobe_sysctls[] = {
 965	{
 966		.procname	= "kprobes-optimization",
 967		.data		= &sysctl_kprobes_optimization,
 968		.maxlen		= sizeof(int),
 969		.mode		= 0644,
 970		.proc_handler	= proc_kprobes_optimization_handler,
 971		.extra1		= SYSCTL_ZERO,
 972		.extra2		= SYSCTL_ONE,
 973	},
 974	{}
 975};
 976
 977static void __init kprobe_sysctls_init(void)
 978{
 979	register_sysctl_init("debug", kprobe_sysctls);
 980}
 981#endif /* CONFIG_SYSCTL */
 982
 983/* Put a breakpoint for a probe. */
 984static void __arm_kprobe(struct kprobe *p)
 985{
 986	struct kprobe *_p;
 987
 988	lockdep_assert_held(&text_mutex);
 989
 990	/* Find the overlapping optimized kprobes. */
 991	_p = get_optimized_kprobe(p->addr);
 992	if (unlikely(_p))
 993		/* Fallback to unoptimized kprobe */
 994		unoptimize_kprobe(_p, true);
 995
 996	arch_arm_kprobe(p);
 997	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 998}
 999
1000/* Remove the breakpoint of a probe. */
1001static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002{
1003	struct kprobe *_p;
1004
1005	lockdep_assert_held(&text_mutex);
1006
1007	/* Try to unoptimize */
1008	unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010	if (!kprobe_queued(p)) {
1011		arch_disarm_kprobe(p);
1012		/* If another kprobe was blocked, re-optimize it. */
1013		_p = get_optimized_kprobe(p->addr);
1014		if (unlikely(_p) && reopt)
1015			optimize_kprobe(_p);
1016	}
1017	/*
1018	 * TODO: Since unoptimization and real disarming will be done by
1019	 * the worker thread, we can not check whether another probe are
1020	 * unoptimized because of this probe here. It should be re-optimized
1021	 * by the worker thread.
1022	 */
1023}
1024
1025#else /* !CONFIG_OPTPROBES */
1026
1027#define optimize_kprobe(p)			do {} while (0)
1028#define unoptimize_kprobe(p, f)			do {} while (0)
1029#define kill_optimized_kprobe(p)		do {} while (0)
1030#define prepare_optimized_kprobe(p)		do {} while (0)
1031#define try_to_optimize_kprobe(p)		do {} while (0)
1032#define __arm_kprobe(p)				arch_arm_kprobe(p)
1033#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1034#define kprobe_disarmed(p)			kprobe_disabled(p)
1035#define wait_for_kprobe_optimizer()		do {} while (0)
1036
1037static int reuse_unused_kprobe(struct kprobe *ap)
 
1038{
1039	/*
1040	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041	 * released at the same time that the last aggregated kprobe is
1042	 * unregistered.
1043	 * Thus there should be no chance to reuse unused kprobe.
1044	 */
1045	WARN_ON_ONCE(1);
1046	return -EINVAL;
1047}
1048
1049static void free_aggr_kprobe(struct kprobe *p)
1050{
1051	arch_remove_kprobe(p);
1052	kfree(p);
1053}
1054
1055static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056{
1057	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058}
1059#endif /* CONFIG_OPTPROBES */
1060
1061#ifdef CONFIG_KPROBES_ON_FTRACE
1062static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063	.func = kprobe_ftrace_handler,
1064	.flags = FTRACE_OPS_FL_SAVE_REGS,
1065};
1066
1067static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068	.func = kprobe_ftrace_handler,
1069	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070};
1071
1072static int kprobe_ipmodify_enabled;
1073static int kprobe_ftrace_enabled;
1074
1075static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076			       int *cnt)
1077{
1078	int ret = 0;
1079
1080	lockdep_assert_held(&kprobe_mutex);
1081
1082	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084		return ret;
1085
1086	if (*cnt == 0) {
1087		ret = register_ftrace_function(ops);
1088		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089			goto err_ftrace;
1090	}
1091
1092	(*cnt)++;
1093	return ret;
1094
1095err_ftrace:
1096	/*
1097	 * At this point, sinec ops is not registered, we should be sefe from
1098	 * registering empty filter.
1099	 */
1100	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101	return ret;
1102}
1103
1104static int arm_kprobe_ftrace(struct kprobe *p)
 
1105{
1106	bool ipmodify = (p->post_handler != NULL);
1107
1108	return __arm_kprobe_ftrace(p,
1109		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111}
1112
1113static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114				  int *cnt)
1115{
1116	int ret = 0;
1117
1118	lockdep_assert_held(&kprobe_mutex);
1119
1120	if (*cnt == 1) {
1121		ret = unregister_ftrace_function(ops);
1122		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123			return ret;
 
 
 
1124	}
1125
1126	(*cnt)--;
1127
1128	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130		  p->addr, ret);
1131	return ret;
1132}
1133
1134static int disarm_kprobe_ftrace(struct kprobe *p)
 
1135{
1136	bool ipmodify = (p->post_handler != NULL);
1137
1138	return __disarm_kprobe_ftrace(p,
1139		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
 
 
 
 
 
1141}
1142#else	/* !CONFIG_KPROBES_ON_FTRACE */
1143static inline int arm_kprobe_ftrace(struct kprobe *p)
1144{
1145	return -ENODEV;
1146}
1147
1148static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149{
1150	return -ENODEV;
1151}
1152#endif
1153
1154static int prepare_kprobe(struct kprobe *p)
 
1155{
1156	/* Must ensure p->addr is really on ftrace */
1157	if (kprobe_ftrace(p))
1158		return arch_prepare_kprobe_ftrace(p);
1159
1160	return arch_prepare_kprobe(p);
1161}
1162
1163static int arm_kprobe(struct kprobe *kp)
1164{
1165	if (unlikely(kprobe_ftrace(kp)))
1166		return arm_kprobe_ftrace(kp);
1167
1168	cpus_read_lock();
1169	mutex_lock(&text_mutex);
1170	__arm_kprobe(kp);
1171	mutex_unlock(&text_mutex);
1172	cpus_read_unlock();
1173
1174	return 0;
1175}
1176
1177static int disarm_kprobe(struct kprobe *kp, bool reopt)
 
1178{
1179	if (unlikely(kprobe_ftrace(kp)))
1180		return disarm_kprobe_ftrace(kp);
1181
1182	cpus_read_lock();
 
1183	mutex_lock(&text_mutex);
1184	__disarm_kprobe(kp, reopt);
1185	mutex_unlock(&text_mutex);
1186	cpus_read_unlock();
1187
1188	return 0;
1189}
1190
1191/*
1192 * Aggregate handlers for multiple kprobes support - these handlers
1193 * take care of invoking the individual kprobe handlers on p->list
1194 */
1195static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196{
1197	struct kprobe *kp;
1198
1199	list_for_each_entry_rcu(kp, &p->list, list) {
1200		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201			set_kprobe_instance(kp);
1202			if (kp->pre_handler(kp, regs))
1203				return 1;
1204		}
1205		reset_kprobe_instance();
1206	}
1207	return 0;
1208}
1209NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212			      unsigned long flags)
1213{
1214	struct kprobe *kp;
1215
1216	list_for_each_entry_rcu(kp, &p->list, list) {
1217		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218			set_kprobe_instance(kp);
1219			kp->post_handler(kp, regs, flags);
1220			reset_kprobe_instance();
1221		}
1222	}
1223}
1224NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227void kprobes_inc_nmissed_count(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228{
1229	struct kprobe *kp;
1230
1231	if (!kprobe_aggrprobe(p)) {
1232		p->nmissed++;
1233	} else {
1234		list_for_each_entry_rcu(kp, &p->list, list)
1235			kp->nmissed++;
1236	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237}
1238NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240static struct kprobe kprobe_busy = {
1241	.addr = (void *) get_kprobe,
1242};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
1244void kprobe_busy_begin(void)
1245{
1246	struct kprobe_ctlblk *kcb;
 
1247
1248	preempt_disable();
1249	__this_cpu_write(current_kprobe, &kprobe_busy);
1250	kcb = get_kprobe_ctlblk();
1251	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252}
1253
1254void kprobe_busy_end(void)
1255{
1256	__this_cpu_write(current_kprobe, NULL);
1257	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258}
1259
1260/* Add the new probe to 'ap->list'. */
1261static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
 
 
 
1262{
1263	if (p->post_handler)
 
 
1264		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1265
1266	list_add_rcu(&p->list, &ap->list);
 
 
 
 
 
 
1267	if (p->post_handler && !ap->post_handler)
1268		ap->post_handler = aggr_post_handler;
1269
1270	return 0;
1271}
1272
1273/*
1274 * Fill in the required fields of the aggregator kprobe. Replace the
1275 * earlier kprobe in the hlist with the aggregator kprobe.
1276 */
1277static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279	/* Copy the insn slot of 'p' to 'ap'. */
1280	copy_kprobe(p, ap);
1281	flush_insn_slot(ap);
1282	ap->addr = p->addr;
1283	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284	ap->pre_handler = aggr_pre_handler;
 
1285	/* We don't care the kprobe which has gone. */
1286	if (p->post_handler && !kprobe_gone(p))
1287		ap->post_handler = aggr_post_handler;
 
 
1288
1289	INIT_LIST_HEAD(&ap->list);
1290	INIT_HLIST_NODE(&ap->hlist);
1291
1292	list_add_rcu(&p->list, &ap->list);
1293	hlist_replace_rcu(&p->hlist, &ap->hlist);
1294}
1295
1296/*
1297 * This registers the second or subsequent kprobe at the same address.
 
1298 */
1299static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
 
1300{
1301	int ret = 0;
1302	struct kprobe *ap = orig_p;
1303
1304	cpus_read_lock();
1305
1306	/* For preparing optimization, jump_label_text_reserved() is called */
1307	jump_label_lock();
 
 
 
 
 
1308	mutex_lock(&text_mutex);
1309
1310	if (!kprobe_aggrprobe(orig_p)) {
1311		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312		ap = alloc_aggr_kprobe(orig_p);
1313		if (!ap) {
1314			ret = -ENOMEM;
1315			goto out;
1316		}
1317		init_aggr_kprobe(ap, orig_p);
1318	} else if (kprobe_unused(ap)) {
1319		/* This probe is going to die. Rescue it */
1320		ret = reuse_unused_kprobe(ap);
1321		if (ret)
1322			goto out;
1323	}
1324
1325	if (kprobe_gone(ap)) {
1326		/*
1327		 * Attempting to insert new probe at the same location that
1328		 * had a probe in the module vaddr area which already
1329		 * freed. So, the instruction slot has already been
1330		 * released. We need a new slot for the new probe.
1331		 */
1332		ret = arch_prepare_kprobe(ap);
1333		if (ret)
1334			/*
1335			 * Even if fail to allocate new slot, don't need to
1336			 * free the 'ap'. It will be used next time, or
1337			 * freed by unregister_kprobe().
1338			 */
1339			goto out;
1340
1341		/* Prepare optimized instructions if possible. */
1342		prepare_optimized_kprobe(ap);
1343
1344		/*
1345		 * Clear gone flag to prevent allocating new slot again, and
1346		 * set disabled flag because it is not armed yet.
1347		 */
1348		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349			    | KPROBE_FLAG_DISABLED;
1350	}
1351
1352	/* Copy the insn slot of 'p' to 'ap'. */
1353	copy_kprobe(ap, p);
1354	ret = add_new_kprobe(ap, p);
1355
1356out:
1357	mutex_unlock(&text_mutex);
 
1358	jump_label_unlock();
1359	cpus_read_unlock();
1360
1361	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363		if (!kprobes_all_disarmed) {
1364			/* Arm the breakpoint again. */
1365			ret = arm_kprobe(ap);
1366			if (ret) {
1367				ap->flags |= KPROBE_FLAG_DISABLED;
1368				list_del_rcu(&p->list);
1369				synchronize_rcu();
1370			}
1371		}
1372	}
1373	return ret;
1374}
1375
1376bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377{
1378	/* The '__kprobes' functions and entry code must not be probed. */
1379	return addr >= (unsigned long)__kprobes_text_start &&
1380	       addr < (unsigned long)__kprobes_text_end;
1381}
1382
1383static bool __within_kprobe_blacklist(unsigned long addr)
1384{
1385	struct kprobe_blacklist_entry *ent;
1386
1387	if (arch_within_kprobe_blacklist(addr))
1388		return true;
1389	/*
1390	 * If 'kprobe_blacklist' is defined, check the address and
1391	 * reject any probe registration in the prohibited area.
1392	 */
1393	list_for_each_entry(ent, &kprobe_blacklist, list) {
1394		if (addr >= ent->start_addr && addr < ent->end_addr)
1395			return true;
 
 
 
1396	}
1397	return false;
1398}
1399
1400bool within_kprobe_blacklist(unsigned long addr)
1401{
1402	char symname[KSYM_NAME_LEN], *p;
1403
1404	if (__within_kprobe_blacklist(addr))
1405		return true;
1406
1407	/* Check if the address is on a suffixed-symbol */
1408	if (!lookup_symbol_name(addr, symname)) {
1409		p = strchr(symname, '.');
1410		if (!p)
1411			return false;
1412		*p = '\0';
1413		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414		if (addr)
1415			return __within_kprobe_blacklist(addr);
1416	}
1417	return false;
1418}
1419
1420/*
1421 * arch_adjust_kprobe_addr - adjust the address
1422 * @addr: symbol base address
1423 * @offset: offset within the symbol
1424 * @on_func_entry: was this @addr+@offset on the function entry
1425 *
1426 * Typically returns @addr + @offset, except for special cases where the
1427 * function might be prefixed by a CFI landing pad, in that case any offset
1428 * inside the landing pad is mapped to the first 'real' instruction of the
1429 * symbol.
1430 *
1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432 * instruction at +0.
1433 */
1434kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435						unsigned long offset,
1436						bool *on_func_entry)
1437{
1438	*on_func_entry = !offset;
1439	return (kprobe_opcode_t *)(addr + offset);
1440}
1441
1442/*
1443 * If 'symbol_name' is specified, look it up and add the 'offset'
1444 * to it. This way, we can specify a relative address to a symbol.
1445 * This returns encoded errors if it fails to look up symbol or invalid
1446 * combination of parameters.
1447 */
1448static kprobe_opcode_t *
1449_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450	     unsigned long offset, bool *on_func_entry)
1451{
1452	if ((symbol_name && addr) || (!symbol_name && !addr))
 
 
 
1453		goto invalid;
1454
1455	if (symbol_name) {
1456		/*
1457		 * Input: @sym + @offset
1458		 * Output: @addr + @offset
1459		 *
1460		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461		 *       argument into it's output!
1462		 */
1463		addr = kprobe_lookup_name(symbol_name, offset);
1464		if (!addr)
1465			return ERR_PTR(-ENOENT);
1466	}
1467
1468	/*
1469	 * So here we have @addr + @offset, displace it into a new
1470	 * @addr' + @offset' where @addr' is the symbol start address.
1471	 */
1472	addr = (void *)addr + offset;
1473	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474		return ERR_PTR(-ENOENT);
1475	addr = (void *)addr - offset;
1476
1477	/*
1478	 * Then ask the architecture to re-combine them, taking care of
1479	 * magical function entry details while telling us if this was indeed
1480	 * at the start of the function.
1481	 */
1482	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483	if (addr)
1484		return addr;
1485
1486invalid:
1487	return ERR_PTR(-EINVAL);
1488}
1489
1490static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491{
1492	bool on_func_entry;
1493	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494}
1495
1496/*
1497 * Check the 'p' is valid and return the aggregator kprobe
1498 * at the same address.
1499 */
1500static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501{
1502	struct kprobe *ap, *list_p;
1503
1504	lockdep_assert_held(&kprobe_mutex);
1505
1506	ap = get_kprobe(p->addr);
1507	if (unlikely(!ap))
1508		return NULL;
1509
1510	if (p != ap) {
1511		list_for_each_entry(list_p, &ap->list, list)
1512			if (list_p == p)
1513			/* kprobe p is a valid probe */
1514				goto valid;
1515		return NULL;
1516	}
1517valid:
1518	return ap;
1519}
1520
1521/*
1522 * Warn and return error if the kprobe is being re-registered since
1523 * there must be a software bug.
1524 */
1525static inline int warn_kprobe_rereg(struct kprobe *p)
1526{
1527	int ret = 0;
1528
1529	mutex_lock(&kprobe_mutex);
1530	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531		ret = -EINVAL;
1532	mutex_unlock(&kprobe_mutex);
1533
1534	return ret;
1535}
1536
1537static int check_ftrace_location(struct kprobe *p)
 
1538{
1539	unsigned long addr = (unsigned long)p->addr;
 
1540
1541	if (ftrace_location(addr) == addr) {
 
 
 
 
 
1542#ifdef CONFIG_KPROBES_ON_FTRACE
 
 
 
1543		p->flags |= KPROBE_FLAG_FTRACE;
1544#else	/* !CONFIG_KPROBES_ON_FTRACE */
1545		return -EINVAL;
1546#endif
1547	}
1548	return 0;
1549}
1550
1551static int check_kprobe_address_safe(struct kprobe *p,
1552				     struct module **probed_mod)
1553{
1554	int ret;
1555
1556	ret = check_ftrace_location(p);
1557	if (ret)
1558		return ret;
1559	jump_label_lock();
1560	preempt_disable();
1561
1562	/* Ensure it is not in reserved area nor out of text */
1563	if (!(core_kernel_text((unsigned long) p->addr) ||
1564	    is_module_text_address((unsigned long) p->addr)) ||
1565	    in_gate_area_no_mm((unsigned long) p->addr) ||
1566	    within_kprobe_blacklist((unsigned long) p->addr) ||
1567	    jump_label_text_reserved(p->addr, p->addr) ||
1568	    static_call_text_reserved(p->addr, p->addr) ||
1569	    find_bug((unsigned long)p->addr)) {
1570		ret = -EINVAL;
1571		goto out;
1572	}
1573
1574	/* Check if 'p' is probing a module. */
1575	*probed_mod = __module_text_address((unsigned long) p->addr);
1576	if (*probed_mod) {
1577		/*
1578		 * We must hold a refcount of the probed module while updating
1579		 * its code to prohibit unexpected unloading.
1580		 */
1581		if (unlikely(!try_module_get(*probed_mod))) {
1582			ret = -ENOENT;
1583			goto out;
1584		}
1585
1586		/*
1587		 * If the module freed '.init.text', we couldn't insert
1588		 * kprobes in there.
1589		 */
1590		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591		    (*probed_mod)->state != MODULE_STATE_COMING) {
1592			module_put(*probed_mod);
1593			*probed_mod = NULL;
1594			ret = -ENOENT;
1595		}
1596	}
1597out:
1598	preempt_enable();
1599	jump_label_unlock();
1600
1601	return ret;
1602}
1603
1604int register_kprobe(struct kprobe *p)
1605{
1606	int ret;
1607	struct kprobe *old_p;
1608	struct module *probed_mod;
1609	kprobe_opcode_t *addr;
1610	bool on_func_entry;
1611
1612	/* Adjust probe address from symbol */
1613	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614	if (IS_ERR(addr))
1615		return PTR_ERR(addr);
1616	p->addr = addr;
1617
1618	ret = warn_kprobe_rereg(p);
1619	if (ret)
1620		return ret;
1621
1622	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623	p->flags &= KPROBE_FLAG_DISABLED;
1624	p->nmissed = 0;
1625	INIT_LIST_HEAD(&p->list);
1626
1627	ret = check_kprobe_address_safe(p, &probed_mod);
1628	if (ret)
1629		return ret;
1630
1631	mutex_lock(&kprobe_mutex);
1632
1633	if (on_func_entry)
1634		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636	old_p = get_kprobe(p->addr);
1637	if (old_p) {
1638		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639		ret = register_aggr_kprobe(old_p, p);
1640		goto out;
1641	}
1642
1643	cpus_read_lock();
1644	/* Prevent text modification */
1645	mutex_lock(&text_mutex);
1646	ret = prepare_kprobe(p);
1647	mutex_unlock(&text_mutex);
1648	cpus_read_unlock();
1649	if (ret)
1650		goto out;
1651
1652	INIT_HLIST_NODE(&p->hlist);
1653	hlist_add_head_rcu(&p->hlist,
1654		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657		ret = arm_kprobe(p);
1658		if (ret) {
1659			hlist_del_rcu(&p->hlist);
1660			synchronize_rcu();
1661			goto out;
1662		}
1663	}
1664
1665	/* Try to optimize kprobe */
1666	try_to_optimize_kprobe(p);
 
1667out:
1668	mutex_unlock(&kprobe_mutex);
1669
1670	if (probed_mod)
1671		module_put(probed_mod);
1672
1673	return ret;
1674}
1675EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677/* Check if all probes on the 'ap' are disabled. */
1678static bool aggr_kprobe_disabled(struct kprobe *ap)
1679{
1680	struct kprobe *kp;
1681
1682	lockdep_assert_held(&kprobe_mutex);
1683
1684	list_for_each_entry(kp, &ap->list, list)
1685		if (!kprobe_disabled(kp))
1686			/*
1687			 * Since there is an active probe on the list,
1688			 * we can't disable this 'ap'.
1689			 */
1690			return false;
1691
1692	return true;
1693}
1694
1695static struct kprobe *__disable_kprobe(struct kprobe *p)
 
1696{
1697	struct kprobe *orig_p;
1698	int ret;
1699
1700	lockdep_assert_held(&kprobe_mutex);
1701
1702	/* Get an original kprobe for return */
1703	orig_p = __get_valid_kprobe(p);
1704	if (unlikely(orig_p == NULL))
1705		return ERR_PTR(-EINVAL);
1706
1707	if (!kprobe_disabled(p)) {
1708		/* Disable probe if it is a child probe */
1709		if (p != orig_p)
1710			p->flags |= KPROBE_FLAG_DISABLED;
1711
1712		/* Try to disarm and disable this/parent probe */
1713		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714			/*
1715			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1716			 * is false, 'orig_p' might not have been armed yet.
1717			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718			 * on the best effort basis.
1719			 */
1720			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721				ret = disarm_kprobe(orig_p, true);
1722				if (ret) {
1723					p->flags &= ~KPROBE_FLAG_DISABLED;
1724					return ERR_PTR(ret);
1725				}
1726			}
1727			orig_p->flags |= KPROBE_FLAG_DISABLED;
1728		}
1729	}
1730
1731	return orig_p;
1732}
1733
1734/*
1735 * Unregister a kprobe without a scheduler synchronization.
1736 */
1737static int __unregister_kprobe_top(struct kprobe *p)
1738{
1739	struct kprobe *ap, *list_p;
1740
1741	/* Disable kprobe. This will disarm it if needed. */
1742	ap = __disable_kprobe(p);
1743	if (IS_ERR(ap))
1744		return PTR_ERR(ap);
1745
1746	if (ap == p)
1747		/*
1748		 * This probe is an independent(and non-optimized) kprobe
1749		 * (not an aggrprobe). Remove from the hash list.
1750		 */
1751		goto disarmed;
1752
1753	/* Following process expects this probe is an aggrprobe */
1754	WARN_ON(!kprobe_aggrprobe(ap));
1755
1756	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757		/*
1758		 * !disarmed could be happen if the probe is under delayed
1759		 * unoptimizing.
1760		 */
1761		goto disarmed;
1762	else {
1763		/* If disabling probe has special handlers, update aggrprobe */
 
 
1764		if (p->post_handler && !kprobe_gone(p)) {
1765			list_for_each_entry(list_p, &ap->list, list) {
1766				if ((list_p != p) && (list_p->post_handler))
1767					goto noclean;
1768			}
1769			/*
1770			 * For the kprobe-on-ftrace case, we keep the
1771			 * post_handler setting to identify this aggrprobe
1772			 * armed with kprobe_ipmodify_ops.
1773			 */
1774			if (!kprobe_ftrace(ap))
1775				ap->post_handler = NULL;
1776		}
1777noclean:
1778		/*
1779		 * Remove from the aggrprobe: this path will do nothing in
1780		 * __unregister_kprobe_bottom().
1781		 */
1782		list_del_rcu(&p->list);
1783		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1784			/*
1785			 * Try to optimize this probe again, because post
1786			 * handler may have been changed.
1787			 */
1788			optimize_kprobe(ap);
1789	}
1790	return 0;
1791
1792disarmed:
 
1793	hlist_del_rcu(&ap->hlist);
1794	return 0;
1795}
1796
1797static void __unregister_kprobe_bottom(struct kprobe *p)
1798{
1799	struct kprobe *ap;
1800
1801	if (list_empty(&p->list))
1802		/* This is an independent kprobe */
1803		arch_remove_kprobe(p);
1804	else if (list_is_singular(&p->list)) {
1805		/* This is the last child of an aggrprobe */
1806		ap = list_entry(p->list.next, struct kprobe, list);
1807		list_del(&p->list);
1808		free_aggr_kprobe(ap);
1809	}
1810	/* Otherwise, do nothing. */
1811}
1812
1813int register_kprobes(struct kprobe **kps, int num)
1814{
1815	int i, ret = 0;
1816
1817	if (num <= 0)
1818		return -EINVAL;
1819	for (i = 0; i < num; i++) {
1820		ret = register_kprobe(kps[i]);
1821		if (ret < 0) {
1822			if (i > 0)
1823				unregister_kprobes(kps, i);
1824			break;
1825		}
1826	}
1827	return ret;
1828}
1829EXPORT_SYMBOL_GPL(register_kprobes);
1830
1831void unregister_kprobe(struct kprobe *p)
1832{
1833	unregister_kprobes(&p, 1);
1834}
1835EXPORT_SYMBOL_GPL(unregister_kprobe);
1836
1837void unregister_kprobes(struct kprobe **kps, int num)
1838{
1839	int i;
1840
1841	if (num <= 0)
1842		return;
1843	mutex_lock(&kprobe_mutex);
1844	for (i = 0; i < num; i++)
1845		if (__unregister_kprobe_top(kps[i]) < 0)
1846			kps[i]->addr = NULL;
1847	mutex_unlock(&kprobe_mutex);
1848
1849	synchronize_rcu();
1850	for (i = 0; i < num; i++)
1851		if (kps[i]->addr)
1852			__unregister_kprobe_bottom(kps[i]);
1853}
1854EXPORT_SYMBOL_GPL(unregister_kprobes);
1855
1856int __weak kprobe_exceptions_notify(struct notifier_block *self,
1857					unsigned long val, void *data)
1858{
1859	return NOTIFY_DONE;
1860}
1861NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1862
1863static struct notifier_block kprobe_exceptions_nb = {
1864	.notifier_call = kprobe_exceptions_notify,
1865	.priority = 0x7fffffff /* we need to be notified first */
1866};
1867
1868#ifdef CONFIG_KRETPROBES
1869
1870#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1871static void free_rp_inst_rcu(struct rcu_head *head)
1872{
1873	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874
1875	if (refcount_dec_and_test(&ri->rph->ref))
1876		kfree(ri->rph);
1877	kfree(ri);
1878}
1879NOKPROBE_SYMBOL(free_rp_inst_rcu);
1880
1881static void recycle_rp_inst(struct kretprobe_instance *ri)
1882{
1883	struct kretprobe *rp = get_kretprobe(ri);
 
1884
1885	if (likely(rp))
1886		freelist_add(&ri->freelist, &rp->freelist);
1887	else
1888		call_rcu(&ri->rcu, free_rp_inst_rcu);
1889}
1890NOKPROBE_SYMBOL(recycle_rp_inst);
 
 
 
 
 
 
 
 
 
1891
1892/*
1893 * This function is called from delayed_put_task_struct() when a task is
1894 * dead and cleaned up to recycle any kretprobe instances associated with
1895 * this task. These left over instances represent probed functions that
1896 * have been called but will never return.
1897 */
1898void kprobe_flush_task(struct task_struct *tk)
1899{
1900	struct kretprobe_instance *ri;
1901	struct llist_node *node;
1902
1903	/* Early boot, not yet initialized. */
1904	if (unlikely(!kprobes_initialized))
1905		return;
1906
1907	kprobe_busy_begin();
1908
1909	node = __llist_del_all(&tk->kretprobe_instances);
1910	while (node) {
1911		ri = container_of(node, struct kretprobe_instance, llist);
1912		node = node->next;
1913
1914		recycle_rp_inst(ri);
1915	}
1916
1917	kprobe_busy_end();
1918}
1919NOKPROBE_SYMBOL(kprobe_flush_task);
1920
1921static inline void free_rp_inst(struct kretprobe *rp)
1922{
1923	struct kretprobe_instance *ri;
1924	struct freelist_node *node;
1925	int count = 0;
1926
1927	node = rp->freelist.head;
1928	while (node) {
1929		ri = container_of(node, struct kretprobe_instance, freelist);
1930		node = node->next;
1931
1932		kfree(ri);
1933		count++;
1934	}
1935
1936	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1937		kfree(rp->rph);
1938		rp->rph = NULL;
1939	}
1940}
1941
1942/* This assumes the 'tsk' is the current task or the is not running. */
1943static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1944						  struct llist_node **cur)
1945{
1946	struct kretprobe_instance *ri = NULL;
1947	struct llist_node *node = *cur;
1948
1949	if (!node)
1950		node = tsk->kretprobe_instances.first;
1951	else
1952		node = node->next;
1953
1954	while (node) {
1955		ri = container_of(node, struct kretprobe_instance, llist);
1956		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1957			*cur = node;
1958			return ri->ret_addr;
1959		}
1960		node = node->next;
1961	}
1962	return NULL;
1963}
1964NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1965
1966/**
1967 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1968 * @tsk: Target task
1969 * @fp: A frame pointer
1970 * @cur: a storage of the loop cursor llist_node pointer for next call
1971 *
1972 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1973 * long type. If it finds the return address, this returns that address value,
1974 * or this returns 0.
1975 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1976 * to get the currect return address - which is compared with the
1977 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1978 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1979 * first call, but '@cur' itself must NOT NULL.
1980 */
1981unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1982				      struct llist_node **cur)
1983{
1984	struct kretprobe_instance *ri = NULL;
1985	kprobe_opcode_t *ret;
1986
1987	if (WARN_ON_ONCE(!cur))
1988		return 0;
1989
1990	do {
1991		ret = __kretprobe_find_ret_addr(tsk, cur);
1992		if (!ret)
1993			break;
1994		ri = container_of(*cur, struct kretprobe_instance, llist);
1995	} while (ri->fp != fp);
1996
1997	return (unsigned long)ret;
1998}
1999NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2000
2001void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2002					kprobe_opcode_t *correct_ret_addr)
2003{
2004	/*
2005	 * Do nothing by default. Please fill this to update the fake return
2006	 * address on the stack with the correct one on each arch if possible.
2007	 */
2008}
 
2009
2010unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2011					     void *frame_pointer)
2012{
2013	kprobe_opcode_t *correct_ret_addr = NULL;
2014	struct kretprobe_instance *ri = NULL;
2015	struct llist_node *first, *node = NULL;
2016	struct kretprobe *rp;
2017
2018	/* Find correct address and all nodes for this frame. */
2019	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2020	if (!correct_ret_addr) {
2021		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2022		BUG_ON(1);
2023	}
2024
2025	/*
2026	 * Set the return address as the instruction pointer, because if the
2027	 * user handler calls stack_trace_save_regs() with this 'regs',
2028	 * the stack trace will start from the instruction pointer.
2029	 */
2030	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
 
2031
2032	/* Run the user handler of the nodes. */
2033	first = current->kretprobe_instances.first;
2034	while (first) {
2035		ri = container_of(first, struct kretprobe_instance, llist);
2036
2037		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2038			break;
2039
2040		rp = get_kretprobe(ri);
2041		if (rp && rp->handler) {
2042			struct kprobe *prev = kprobe_running();
2043
2044			__this_cpu_write(current_kprobe, &rp->kp);
2045			ri->ret_addr = correct_ret_addr;
2046			rp->handler(ri, regs);
2047			__this_cpu_write(current_kprobe, prev);
2048		}
2049		if (first == node)
2050			break;
2051
2052		first = first->next;
2053	}
2054
2055	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2056
2057	/* Unlink all nodes for this frame. */
2058	first = current->kretprobe_instances.first;
2059	current->kretprobe_instances.first = node->next;
2060	node->next = NULL;
2061
2062	/* Recycle free instances. */
2063	while (first) {
2064		ri = container_of(first, struct kretprobe_instance, llist);
2065		first = first->next;
2066
2067		recycle_rp_inst(ri);
2068	}
2069
2070	return (unsigned long)correct_ret_addr;
2071}
2072NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2073
 
2074/*
2075 * This kprobe pre_handler is registered with every kretprobe. When probe
2076 * hits it will set up the return probe.
2077 */
2078static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2079{
2080	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
 
2081	struct kretprobe_instance *ri;
2082	struct freelist_node *fn;
2083
2084	fn = freelist_try_get(&rp->freelist);
2085	if (!fn) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086		rp->nmissed++;
2087		return 0;
2088	}
2089
2090	ri = container_of(fn, struct kretprobe_instance, freelist);
2091
2092	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2093		freelist_add(&ri->freelist, &rp->freelist);
2094		return 0;
2095	}
2096
2097	arch_prepare_kretprobe(ri, regs);
2098
2099	__llist_add(&ri->llist, &current->kretprobe_instances);
2100
2101	return 0;
2102}
2103NOKPROBE_SYMBOL(pre_handler_kretprobe);
2104#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2105/*
2106 * This kprobe pre_handler is registered with every kretprobe. When probe
2107 * hits it will set up the return probe.
2108 */
2109static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2110{
2111	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2112	struct kretprobe_instance *ri;
2113	struct rethook_node *rhn;
2114
2115	rhn = rethook_try_get(rp->rh);
2116	if (!rhn) {
2117		rp->nmissed++;
2118		return 0;
2119	}
2120
2121	ri = container_of(rhn, struct kretprobe_instance, node);
2122
2123	if (rp->entry_handler && rp->entry_handler(ri, regs))
2124		rethook_recycle(rhn);
2125	else
2126		rethook_hook(rhn, regs, kprobe_ftrace(p));
2127
2128	return 0;
2129}
2130NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131
2132static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2133				      struct pt_regs *regs)
2134{
2135	struct kretprobe *rp = (struct kretprobe *)data;
2136	struct kretprobe_instance *ri;
2137	struct kprobe_ctlblk *kcb;
2138
2139	/* The data must NOT be null. This means rethook data structure is broken. */
2140	if (WARN_ON_ONCE(!data) || !rp->handler)
2141		return;
2142
2143	__this_cpu_write(current_kprobe, &rp->kp);
2144	kcb = get_kprobe_ctlblk();
2145	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2146
2147	ri = container_of(rh, struct kretprobe_instance, node);
2148	rp->handler(ri, regs);
2149
2150	__this_cpu_write(current_kprobe, NULL);
2151}
2152NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2153
2154#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2155
2156/**
2157 * kprobe_on_func_entry() -- check whether given address is function entry
2158 * @addr: Target address
2159 * @sym:  Target symbol name
2160 * @offset: The offset from the symbol or the address
2161 *
2162 * This checks whether the given @addr+@offset or @sym+@offset is on the
2163 * function entry address or not.
2164 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2165 * And also it returns -ENOENT if it fails the symbol or address lookup.
2166 * Caller must pass @addr or @sym (either one must be NULL), or this
2167 * returns -EINVAL.
2168 */
2169int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2170{
2171	bool on_func_entry;
2172	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2173
2174	if (IS_ERR(kp_addr))
2175		return PTR_ERR(kp_addr);
2176
2177	if (!on_func_entry)
2178		return -EINVAL;
2179
2180	return 0;
2181}
2182
2183int register_kretprobe(struct kretprobe *rp)
2184{
2185	int ret;
2186	struct kretprobe_instance *inst;
2187	int i;
2188	void *addr;
2189
2190	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2191	if (ret)
2192		return ret;
2193
2194	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2195	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2196		return -EINVAL;
2197
2198	if (kretprobe_blacklist_size) {
2199		addr = kprobe_addr(&rp->kp);
2200		if (IS_ERR(addr))
2201			return PTR_ERR(addr);
2202
2203		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204			if (kretprobe_blacklist[i].addr == addr)
2205				return -EINVAL;
2206		}
2207	}
2208
2209	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2210		return -E2BIG;
2211
2212	rp->kp.pre_handler = pre_handler_kretprobe;
2213	rp->kp.post_handler = NULL;
 
 
2214
2215	/* Pre-allocate memory for max kretprobe instances */
2216	if (rp->maxactive <= 0)
 
2217		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2218
2219#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2220	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2221	if (!rp->rh)
2222		return -ENOMEM;
2223
2224	for (i = 0; i < rp->maxactive; i++) {
2225		inst = kzalloc(sizeof(struct kretprobe_instance) +
2226			       rp->data_size, GFP_KERNEL);
2227		if (inst == NULL) {
2228			rethook_free(rp->rh);
2229			rp->rh = NULL;
2230			return -ENOMEM;
2231		}
2232		rethook_add_node(rp->rh, &inst->node);
2233	}
2234	rp->nmissed = 0;
2235	/* Establish function entry probe point */
2236	ret = register_kprobe(&rp->kp);
2237	if (ret != 0) {
2238		rethook_free(rp->rh);
2239		rp->rh = NULL;
2240	}
2241#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2242	rp->freelist.head = NULL;
2243	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2244	if (!rp->rph)
2245		return -ENOMEM;
2246
2247	rp->rph->rp = rp;
2248	for (i = 0; i < rp->maxactive; i++) {
2249		inst = kzalloc(sizeof(struct kretprobe_instance) +
2250			       rp->data_size, GFP_KERNEL);
2251		if (inst == NULL) {
2252			refcount_set(&rp->rph->ref, i);
2253			free_rp_inst(rp);
2254			return -ENOMEM;
2255		}
2256		inst->rph = rp->rph;
2257		freelist_add(&inst->freelist, &rp->freelist);
2258	}
2259	refcount_set(&rp->rph->ref, i);
2260
2261	rp->nmissed = 0;
2262	/* Establish function entry probe point */
2263	ret = register_kprobe(&rp->kp);
2264	if (ret != 0)
2265		free_rp_inst(rp);
2266#endif
2267	return ret;
2268}
2269EXPORT_SYMBOL_GPL(register_kretprobe);
2270
2271int register_kretprobes(struct kretprobe **rps, int num)
2272{
2273	int ret = 0, i;
2274
2275	if (num <= 0)
2276		return -EINVAL;
2277	for (i = 0; i < num; i++) {
2278		ret = register_kretprobe(rps[i]);
2279		if (ret < 0) {
2280			if (i > 0)
2281				unregister_kretprobes(rps, i);
2282			break;
2283		}
2284	}
2285	return ret;
2286}
2287EXPORT_SYMBOL_GPL(register_kretprobes);
2288
2289void unregister_kretprobe(struct kretprobe *rp)
2290{
2291	unregister_kretprobes(&rp, 1);
2292}
2293EXPORT_SYMBOL_GPL(unregister_kretprobe);
2294
2295void unregister_kretprobes(struct kretprobe **rps, int num)
2296{
2297	int i;
2298
2299	if (num <= 0)
2300		return;
2301	mutex_lock(&kprobe_mutex);
2302	for (i = 0; i < num; i++) {
2303		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2304			rps[i]->kp.addr = NULL;
2305#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2306		rethook_free(rps[i]->rh);
2307#else
2308		rps[i]->rph->rp = NULL;
2309#endif
2310	}
2311	mutex_unlock(&kprobe_mutex);
2312
2313	synchronize_rcu();
2314	for (i = 0; i < num; i++) {
2315		if (rps[i]->kp.addr) {
2316			__unregister_kprobe_bottom(&rps[i]->kp);
2317#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2318			free_rp_inst(rps[i]);
2319#endif
2320		}
2321	}
2322}
2323EXPORT_SYMBOL_GPL(unregister_kretprobes);
2324
2325#else /* CONFIG_KRETPROBES */
2326int register_kretprobe(struct kretprobe *rp)
2327{
2328	return -EOPNOTSUPP;
2329}
2330EXPORT_SYMBOL_GPL(register_kretprobe);
2331
2332int register_kretprobes(struct kretprobe **rps, int num)
2333{
2334	return -EOPNOTSUPP;
2335}
2336EXPORT_SYMBOL_GPL(register_kretprobes);
2337
2338void unregister_kretprobe(struct kretprobe *rp)
2339{
2340}
2341EXPORT_SYMBOL_GPL(unregister_kretprobe);
2342
2343void unregister_kretprobes(struct kretprobe **rps, int num)
2344{
2345}
2346EXPORT_SYMBOL_GPL(unregister_kretprobes);
2347
2348static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2349{
2350	return 0;
2351}
2352NOKPROBE_SYMBOL(pre_handler_kretprobe);
2353
2354#endif /* CONFIG_KRETPROBES */
2355
2356/* Set the kprobe gone and remove its instruction buffer. */
2357static void kill_kprobe(struct kprobe *p)
2358{
2359	struct kprobe *kp;
2360
2361	lockdep_assert_held(&kprobe_mutex);
2362
2363	/*
2364	 * The module is going away. We should disarm the kprobe which
2365	 * is using ftrace, because ftrace framework is still available at
2366	 * 'MODULE_STATE_GOING' notification.
2367	 */
2368	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2369		disarm_kprobe_ftrace(p);
2370
2371	p->flags |= KPROBE_FLAG_GONE;
2372	if (kprobe_aggrprobe(p)) {
2373		/*
2374		 * If this is an aggr_kprobe, we have to list all the
2375		 * chained probes and mark them GONE.
2376		 */
2377		list_for_each_entry(kp, &p->list, list)
2378			kp->flags |= KPROBE_FLAG_GONE;
2379		p->post_handler = NULL;
 
2380		kill_optimized_kprobe(p);
2381	}
2382	/*
2383	 * Here, we can remove insn_slot safely, because no thread calls
2384	 * the original probed function (which will be freed soon) any more.
2385	 */
2386	arch_remove_kprobe(p);
2387}
2388
2389/* Disable one kprobe */
2390int disable_kprobe(struct kprobe *kp)
2391{
2392	int ret = 0;
2393	struct kprobe *p;
2394
2395	mutex_lock(&kprobe_mutex);
2396
2397	/* Disable this kprobe */
2398	p = __disable_kprobe(kp);
2399	if (IS_ERR(p))
2400		ret = PTR_ERR(p);
2401
2402	mutex_unlock(&kprobe_mutex);
2403	return ret;
2404}
2405EXPORT_SYMBOL_GPL(disable_kprobe);
2406
2407/* Enable one kprobe */
2408int enable_kprobe(struct kprobe *kp)
2409{
2410	int ret = 0;
2411	struct kprobe *p;
2412
2413	mutex_lock(&kprobe_mutex);
2414
2415	/* Check whether specified probe is valid. */
2416	p = __get_valid_kprobe(kp);
2417	if (unlikely(p == NULL)) {
2418		ret = -EINVAL;
2419		goto out;
2420	}
2421
2422	if (kprobe_gone(kp)) {
2423		/* This kprobe has gone, we couldn't enable it. */
2424		ret = -EINVAL;
2425		goto out;
2426	}
2427
2428	if (p != kp)
2429		kp->flags &= ~KPROBE_FLAG_DISABLED;
2430
2431	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2432		p->flags &= ~KPROBE_FLAG_DISABLED;
2433		ret = arm_kprobe(p);
2434		if (ret) {
2435			p->flags |= KPROBE_FLAG_DISABLED;
2436			if (p != kp)
2437				kp->flags |= KPROBE_FLAG_DISABLED;
2438		}
2439	}
2440out:
2441	mutex_unlock(&kprobe_mutex);
2442	return ret;
2443}
2444EXPORT_SYMBOL_GPL(enable_kprobe);
2445
2446/* Caller must NOT call this in usual path. This is only for critical case */
2447void dump_kprobe(struct kprobe *kp)
2448{
2449	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2450	       kp->symbol_name, kp->offset, kp->addr);
2451}
2452NOKPROBE_SYMBOL(dump_kprobe);
2453
2454int kprobe_add_ksym_blacklist(unsigned long entry)
2455{
2456	struct kprobe_blacklist_entry *ent;
2457	unsigned long offset = 0, size = 0;
2458
2459	if (!kernel_text_address(entry) ||
2460	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2461		return -EINVAL;
2462
2463	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464	if (!ent)
2465		return -ENOMEM;
2466	ent->start_addr = entry;
2467	ent->end_addr = entry + size;
2468	INIT_LIST_HEAD(&ent->list);
2469	list_add_tail(&ent->list, &kprobe_blacklist);
2470
2471	return (int)size;
2472}
2473
2474/* Add all symbols in given area into kprobe blacklist */
2475int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2476{
2477	unsigned long entry;
2478	int ret = 0;
2479
2480	for (entry = start; entry < end; entry += ret) {
2481		ret = kprobe_add_ksym_blacklist(entry);
2482		if (ret < 0)
2483			return ret;
2484		if (ret == 0)	/* In case of alias symbol */
2485			ret = 1;
2486	}
2487	return 0;
2488}
2489
2490/* Remove all symbols in given area from kprobe blacklist */
2491static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2492{
2493	struct kprobe_blacklist_entry *ent, *n;
2494
2495	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2496		if (ent->start_addr < start || ent->start_addr >= end)
2497			continue;
2498		list_del(&ent->list);
2499		kfree(ent);
2500	}
2501}
2502
2503static void kprobe_remove_ksym_blacklist(unsigned long entry)
2504{
2505	kprobe_remove_area_blacklist(entry, entry + 1);
2506}
2507
2508int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2509				   char *type, char *sym)
2510{
2511	return -ERANGE;
2512}
2513
2514int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515		       char *sym)
2516{
2517#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2518	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2519		return 0;
2520#ifdef CONFIG_OPTPROBES
2521	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2522		return 0;
2523#endif
2524#endif
2525	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2526		return 0;
2527	return -ERANGE;
2528}
2529
2530int __init __weak arch_populate_kprobe_blacklist(void)
2531{
2532	return 0;
2533}
2534
2535/*
2536 * Lookup and populate the kprobe_blacklist.
2537 *
2538 * Unlike the kretprobe blacklist, we'll need to determine
2539 * the range of addresses that belong to the said functions,
2540 * since a kprobe need not necessarily be at the beginning
2541 * of a function.
2542 */
2543static int __init populate_kprobe_blacklist(unsigned long *start,
2544					     unsigned long *end)
2545{
2546	unsigned long entry;
2547	unsigned long *iter;
2548	int ret;
2549
2550	for (iter = start; iter < end; iter++) {
2551		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2552		ret = kprobe_add_ksym_blacklist(entry);
2553		if (ret == -EINVAL)
2554			continue;
2555		if (ret < 0)
2556			return ret;
2557	}
2558
2559	/* Symbols in '__kprobes_text' are blacklisted */
2560	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2561					(unsigned long)__kprobes_text_end);
2562	if (ret)
2563		return ret;
2564
2565	/* Symbols in 'noinstr' section are blacklisted */
2566	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2567					(unsigned long)__noinstr_text_end);
2568
2569	return ret ? : arch_populate_kprobe_blacklist();
2570}
2571
2572static void add_module_kprobe_blacklist(struct module *mod)
2573{
2574	unsigned long start, end;
2575	int i;
2576
2577	if (mod->kprobe_blacklist) {
2578		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2579			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580	}
2581
2582	start = (unsigned long)mod->kprobes_text_start;
2583	if (start) {
2584		end = start + mod->kprobes_text_size;
2585		kprobe_add_area_blacklist(start, end);
2586	}
2587
2588	start = (unsigned long)mod->noinstr_text_start;
2589	if (start) {
2590		end = start + mod->noinstr_text_size;
2591		kprobe_add_area_blacklist(start, end);
2592	}
2593}
2594
2595static void remove_module_kprobe_blacklist(struct module *mod)
2596{
2597	unsigned long start, end;
2598	int i;
2599
2600	if (mod->kprobe_blacklist) {
2601		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2602			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603	}
2604
2605	start = (unsigned long)mod->kprobes_text_start;
2606	if (start) {
2607		end = start + mod->kprobes_text_size;
2608		kprobe_remove_area_blacklist(start, end);
2609	}
2610
2611	start = (unsigned long)mod->noinstr_text_start;
2612	if (start) {
2613		end = start + mod->noinstr_text_size;
2614		kprobe_remove_area_blacklist(start, end);
2615	}
2616}
2617
2618/* Module notifier call back, checking kprobes on the module */
2619static int kprobes_module_callback(struct notifier_block *nb,
2620				   unsigned long val, void *data)
2621{
2622	struct module *mod = data;
2623	struct hlist_head *head;
2624	struct kprobe *p;
2625	unsigned int i;
2626	int checkcore = (val == MODULE_STATE_GOING);
2627
2628	if (val == MODULE_STATE_COMING) {
2629		mutex_lock(&kprobe_mutex);
2630		add_module_kprobe_blacklist(mod);
2631		mutex_unlock(&kprobe_mutex);
2632	}
2633	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2634		return NOTIFY_DONE;
2635
2636	/*
2637	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2638	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2639	 * notified, only '.init.text' section would be freed. We need to
2640	 * disable kprobes which have been inserted in the sections.
2641	 */
2642	mutex_lock(&kprobe_mutex);
2643	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2644		head = &kprobe_table[i];
2645		hlist_for_each_entry(p, head, hlist)
2646			if (within_module_init((unsigned long)p->addr, mod) ||
2647			    (checkcore &&
2648			     within_module_core((unsigned long)p->addr, mod))) {
2649				/*
2650				 * The vaddr this probe is installed will soon
2651				 * be vfreed buy not synced to disk. Hence,
2652				 * disarming the breakpoint isn't needed.
2653				 *
2654				 * Note, this will also move any optimized probes
2655				 * that are pending to be removed from their
2656				 * corresponding lists to the 'freeing_list' and
2657				 * will not be touched by the delayed
2658				 * kprobe_optimizer() work handler.
2659				 */
2660				kill_kprobe(p);
2661			}
2662	}
2663	if (val == MODULE_STATE_GOING)
2664		remove_module_kprobe_blacklist(mod);
2665	mutex_unlock(&kprobe_mutex);
2666	return NOTIFY_DONE;
2667}
2668
2669static struct notifier_block kprobe_module_nb = {
2670	.notifier_call = kprobes_module_callback,
2671	.priority = 0
2672};
2673
2674void kprobe_free_init_mem(void)
2675{
2676	void *start = (void *)(&__init_begin);
2677	void *end = (void *)(&__init_end);
2678	struct hlist_head *head;
2679	struct kprobe *p;
2680	int i;
2681
2682	mutex_lock(&kprobe_mutex);
2683
2684	/* Kill all kprobes on initmem because the target code has been freed. */
2685	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2686		head = &kprobe_table[i];
2687		hlist_for_each_entry(p, head, hlist) {
2688			if (start <= (void *)p->addr && (void *)p->addr < end)
2689				kill_kprobe(p);
2690		}
2691	}
2692
2693	mutex_unlock(&kprobe_mutex);
2694}
2695
2696static int __init init_kprobes(void)
2697{
2698	int i, err = 0;
 
 
 
 
 
2699
2700	/* FIXME allocate the probe table, currently defined statically */
2701	/* initialize all list heads */
2702	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2703		INIT_HLIST_HEAD(&kprobe_table[i]);
 
 
 
2704
2705	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2706					__stop_kprobe_blacklist);
2707	if (err)
2708		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710	if (kretprobe_blacklist_size) {
2711		/* lookup the function address from its name */
2712		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2713			kretprobe_blacklist[i].addr =
2714				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2715			if (!kretprobe_blacklist[i].addr)
2716				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2717				       kretprobe_blacklist[i].name);
2718		}
2719	}
2720
 
 
 
 
 
 
 
 
 
2721	/* By default, kprobes are armed */
2722	kprobes_all_disarmed = false;
2723
2724#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2725	/* Init 'kprobe_optinsn_slots' for allocation */
2726	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727#endif
2728
2729	err = arch_init_kprobes();
2730	if (!err)
2731		err = register_die_notifier(&kprobe_exceptions_nb);
2732	if (!err)
2733		err = register_module_notifier(&kprobe_module_nb);
2734
2735	kprobes_initialized = (err == 0);
2736	kprobe_sysctls_init();
 
 
2737	return err;
2738}
2739early_initcall(init_kprobes);
2740
2741#if defined(CONFIG_OPTPROBES)
2742static int __init init_optprobes(void)
2743{
2744	/*
2745	 * Enable kprobe optimization - this kicks the optimizer which
2746	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2747	 * not spawned in early initcall. So delay the optimization.
2748	 */
2749	optimize_all_kprobes();
2750
2751	return 0;
2752}
2753subsys_initcall(init_optprobes);
2754#endif
2755
2756#ifdef CONFIG_DEBUG_FS
2757static void report_probe(struct seq_file *pi, struct kprobe *p,
2758		const char *sym, int offset, char *modname, struct kprobe *pp)
2759{
2760	char *kprobe_type;
2761	void *addr = p->addr;
2762
2763	if (p->pre_handler == pre_handler_kretprobe)
2764		kprobe_type = "r";
 
 
2765	else
2766		kprobe_type = "k";
2767
2768	if (!kallsyms_show_value(pi->file->f_cred))
2769		addr = NULL;
2770
2771	if (sym)
2772		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2773			addr, kprobe_type, sym, offset,
2774			(modname ? modname : " "));
2775	else	/* try to use %pS */
2776		seq_printf(pi, "%px  %s  %pS ",
2777			addr, kprobe_type, p->addr);
2778
2779	if (!pp)
2780		pp = p;
2781	seq_printf(pi, "%s%s%s%s\n",
2782		(kprobe_gone(p) ? "[GONE]" : ""),
2783		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2784		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2785		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786}
2787
2788static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2789{
2790	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791}
2792
2793static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794{
2795	(*pos)++;
2796	if (*pos >= KPROBE_TABLE_SIZE)
2797		return NULL;
2798	return pos;
2799}
2800
2801static void kprobe_seq_stop(struct seq_file *f, void *v)
2802{
2803	/* Nothing to do */
2804}
2805
2806static int show_kprobe_addr(struct seq_file *pi, void *v)
2807{
2808	struct hlist_head *head;
2809	struct kprobe *p, *kp;
2810	const char *sym = NULL;
2811	unsigned int i = *(loff_t *) v;
2812	unsigned long offset = 0;
2813	char *modname, namebuf[KSYM_NAME_LEN];
2814
2815	head = &kprobe_table[i];
2816	preempt_disable();
2817	hlist_for_each_entry_rcu(p, head, hlist) {
2818		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2819					&offset, &modname, namebuf);
2820		if (kprobe_aggrprobe(p)) {
2821			list_for_each_entry_rcu(kp, &p->list, list)
2822				report_probe(pi, kp, sym, offset, modname, p);
2823		} else
2824			report_probe(pi, p, sym, offset, modname, NULL);
2825	}
2826	preempt_enable();
2827	return 0;
2828}
2829
2830static const struct seq_operations kprobes_sops = {
2831	.start = kprobe_seq_start,
2832	.next  = kprobe_seq_next,
2833	.stop  = kprobe_seq_stop,
2834	.show  = show_kprobe_addr
2835};
2836
2837DEFINE_SEQ_ATTRIBUTE(kprobes);
2838
2839/* kprobes/blacklist -- shows which functions can not be probed */
2840static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2841{
2842	mutex_lock(&kprobe_mutex);
2843	return seq_list_start(&kprobe_blacklist, *pos);
2844}
2845
2846static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2847{
2848	return seq_list_next(v, &kprobe_blacklist, pos);
2849}
2850
2851static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2852{
2853	struct kprobe_blacklist_entry *ent =
2854		list_entry(v, struct kprobe_blacklist_entry, list);
2855
2856	/*
2857	 * If '/proc/kallsyms' is not showing kernel address, we won't
2858	 * show them here either.
2859	 */
2860	if (!kallsyms_show_value(m->file->f_cred))
2861		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2862			   (void *)ent->start_addr);
2863	else
2864		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2865			   (void *)ent->end_addr, (void *)ent->start_addr);
2866	return 0;
2867}
2868
2869static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2870{
2871	mutex_unlock(&kprobe_mutex);
2872}
2873
2874static const struct seq_operations kprobe_blacklist_sops = {
2875	.start = kprobe_blacklist_seq_start,
2876	.next  = kprobe_blacklist_seq_next,
2877	.stop  = kprobe_blacklist_seq_stop,
2878	.show  = kprobe_blacklist_seq_show,
2879};
2880DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2881
2882static int arm_all_kprobes(void)
2883{
2884	struct hlist_head *head;
2885	struct kprobe *p;
2886	unsigned int i, total = 0, errors = 0;
2887	int err, ret = 0;
2888
2889	mutex_lock(&kprobe_mutex);
2890
2891	/* If kprobes are armed, just return */
2892	if (!kprobes_all_disarmed)
2893		goto already_enabled;
2894
2895	/*
2896	 * optimize_kprobe() called by arm_kprobe() checks
2897	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898	 * arm_kprobe.
2899	 */
2900	kprobes_all_disarmed = false;
2901	/* Arming kprobes doesn't optimize kprobe itself */
2902	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2903		head = &kprobe_table[i];
2904		/* Arm all kprobes on a best-effort basis */
2905		hlist_for_each_entry(p, head, hlist) {
2906			if (!kprobe_disabled(p)) {
2907				err = arm_kprobe(p);
2908				if (err)  {
2909					errors++;
2910					ret = err;
2911				}
2912				total++;
2913			}
2914		}
2915	}
2916
2917	if (errors)
2918		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919			errors, total);
2920	else
2921		pr_info("Kprobes globally enabled\n");
2922
2923already_enabled:
2924	mutex_unlock(&kprobe_mutex);
2925	return ret;
2926}
2927
2928static int disarm_all_kprobes(void)
2929{
2930	struct hlist_head *head;
2931	struct kprobe *p;
2932	unsigned int i, total = 0, errors = 0;
2933	int err, ret = 0;
2934
2935	mutex_lock(&kprobe_mutex);
2936
2937	/* If kprobes are already disarmed, just return */
2938	if (kprobes_all_disarmed) {
2939		mutex_unlock(&kprobe_mutex);
2940		return 0;
2941	}
2942
2943	kprobes_all_disarmed = true;
 
2944
2945	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2946		head = &kprobe_table[i];
2947		/* Disarm all kprobes on a best-effort basis */
2948		hlist_for_each_entry(p, head, hlist) {
2949			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2950				err = disarm_kprobe(p, false);
2951				if (err) {
2952					errors++;
2953					ret = err;
2954				}
2955				total++;
2956			}
2957		}
2958	}
2959
2960	if (errors)
2961		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962			errors, total);
2963	else
2964		pr_info("Kprobes globally disabled\n");
2965
2966	mutex_unlock(&kprobe_mutex);
2967
2968	/* Wait for disarming all kprobes by optimizer */
2969	wait_for_kprobe_optimizer();
2970
2971	return ret;
2972}
2973
2974/*
2975 * XXX: The debugfs bool file interface doesn't allow for callbacks
2976 * when the bool state is switched. We can reuse that facility when
2977 * available
2978 */
2979static ssize_t read_enabled_file_bool(struct file *file,
2980	       char __user *user_buf, size_t count, loff_t *ppos)
2981{
2982	char buf[3];
2983
2984	if (!kprobes_all_disarmed)
2985		buf[0] = '1';
2986	else
2987		buf[0] = '0';
2988	buf[1] = '\n';
2989	buf[2] = 0x00;
2990	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991}
2992
2993static ssize_t write_enabled_file_bool(struct file *file,
2994	       const char __user *user_buf, size_t count, loff_t *ppos)
2995{
2996	bool enable;
2997	int ret;
2998
2999	ret = kstrtobool_from_user(user_buf, count, &enable);
3000	if (ret)
3001		return ret;
3002
3003	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3004	if (ret)
3005		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3006
3007	return count;
3008}
3009
3010static const struct file_operations fops_kp = {
3011	.read =         read_enabled_file_bool,
3012	.write =        write_enabled_file_bool,
3013	.llseek =	default_llseek,
3014};
3015
3016static int __init debugfs_kprobe_init(void)
3017{
3018	struct dentry *dir;
 
3019
3020	dir = debugfs_create_dir("kprobes", NULL);
 
 
3021
3022	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
 
 
 
 
3023
3024	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3025
3026	debugfs_create_file("blacklist", 0400, dir, NULL,
3027			    &kprobe_blacklist_fops);
 
 
3028
3029	return 0;
3030}
3031
3032late_initcall(debugfs_kprobe_init);
3033#endif /* CONFIG_DEBUG_FS */