Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The NFSD open file cache.
   4 *
   5 * (c) 2015 - Jeff Layton <jeff.layton@primarydata.com>
   6 *
   7 * An nfsd_file object is a per-file collection of open state that binds
   8 * together:
   9 *   - a struct file *
  10 *   - a user credential
  11 *   - a network namespace
  12 *   - a read-ahead context
  13 *   - monitoring for writeback errors
  14 *
  15 * nfsd_file objects are reference-counted. Consumers acquire a new
  16 * object via the nfsd_file_acquire API. They manage their interest in
  17 * the acquired object, and hence the object's reference count, via
  18 * nfsd_file_get and nfsd_file_put. There are two varieties of nfsd_file
  19 * object:
  20 *
  21 *  * non-garbage-collected: When a consumer wants to precisely control
  22 *    the lifetime of a file's open state, it acquires a non-garbage-
  23 *    collected nfsd_file. The final nfsd_file_put releases the open
  24 *    state immediately.
  25 *
  26 *  * garbage-collected: When a consumer does not control the lifetime
  27 *    of open state, it acquires a garbage-collected nfsd_file. The
  28 *    final nfsd_file_put allows the open state to linger for a period
  29 *    during which it may be re-used.
  30 */
  31
  32#include <linux/hash.h>
  33#include <linux/slab.h>
  34#include <linux/file.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched.h>
  37#include <linux/list_lru.h>
  38#include <linux/fsnotify_backend.h>
  39#include <linux/fsnotify.h>
  40#include <linux/seq_file.h>
  41#include <linux/rhashtable.h>
  42
  43#include "vfs.h"
  44#include "nfsd.h"
  45#include "nfsfh.h"
  46#include "netns.h"
  47#include "filecache.h"
  48#include "trace.h"
  49
  50#define NFSD_LAUNDRETTE_DELAY		     (2 * HZ)
  51
  52#define NFSD_FILE_CACHE_UP		     (0)
  53
  54/* We only care about NFSD_MAY_READ/WRITE for this cache */
  55#define NFSD_FILE_MAY_MASK	(NFSD_MAY_READ|NFSD_MAY_WRITE)
  56
  57static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits);
  58static DEFINE_PER_CPU(unsigned long, nfsd_file_acquisitions);
  59static DEFINE_PER_CPU(unsigned long, nfsd_file_releases);
  60static DEFINE_PER_CPU(unsigned long, nfsd_file_total_age);
  61static DEFINE_PER_CPU(unsigned long, nfsd_file_evictions);
  62
  63struct nfsd_fcache_disposal {
  64	struct work_struct work;
  65	spinlock_t lock;
  66	struct list_head freeme;
  67};
  68
  69static struct workqueue_struct *nfsd_filecache_wq __read_mostly;
  70
  71static struct kmem_cache		*nfsd_file_slab;
  72static struct kmem_cache		*nfsd_file_mark_slab;
  73static struct list_lru			nfsd_file_lru;
  74static unsigned long			nfsd_file_flags;
  75static struct fsnotify_group		*nfsd_file_fsnotify_group;
  76static struct delayed_work		nfsd_filecache_laundrette;
  77static struct rhashtable		nfsd_file_rhash_tbl
  78						____cacheline_aligned_in_smp;
  79
  80enum nfsd_file_lookup_type {
  81	NFSD_FILE_KEY_INODE,
  82	NFSD_FILE_KEY_FULL,
  83};
  84
  85struct nfsd_file_lookup_key {
  86	struct inode			*inode;
  87	struct net			*net;
  88	const struct cred		*cred;
  89	unsigned char			need;
  90	bool				gc;
  91	enum nfsd_file_lookup_type	type;
  92};
  93
  94/*
  95 * The returned hash value is based solely on the address of an in-code
  96 * inode, a pointer to a slab-allocated object. The entropy in such a
  97 * pointer is concentrated in its middle bits.
  98 */
  99static u32 nfsd_file_inode_hash(const struct inode *inode, u32 seed)
 100{
 101	unsigned long ptr = (unsigned long)inode;
 102	u32 k;
 103
 104	k = ptr >> L1_CACHE_SHIFT;
 105	k &= 0x00ffffff;
 106	return jhash2(&k, 1, seed);
 107}
 108
 109/**
 110 * nfsd_file_key_hashfn - Compute the hash value of a lookup key
 111 * @data: key on which to compute the hash value
 112 * @len: rhash table's key_len parameter (unused)
 113 * @seed: rhash table's random seed of the day
 114 *
 115 * Return value:
 116 *   Computed 32-bit hash value
 117 */
 118static u32 nfsd_file_key_hashfn(const void *data, u32 len, u32 seed)
 119{
 120	const struct nfsd_file_lookup_key *key = data;
 121
 122	return nfsd_file_inode_hash(key->inode, seed);
 123}
 124
 125/**
 126 * nfsd_file_obj_hashfn - Compute the hash value of an nfsd_file
 127 * @data: object on which to compute the hash value
 128 * @len: rhash table's key_len parameter (unused)
 129 * @seed: rhash table's random seed of the day
 130 *
 131 * Return value:
 132 *   Computed 32-bit hash value
 133 */
 134static u32 nfsd_file_obj_hashfn(const void *data, u32 len, u32 seed)
 135{
 136	const struct nfsd_file *nf = data;
 137
 138	return nfsd_file_inode_hash(nf->nf_inode, seed);
 139}
 140
 141static bool
 142nfsd_match_cred(const struct cred *c1, const struct cred *c2)
 143{
 144	int i;
 145
 146	if (!uid_eq(c1->fsuid, c2->fsuid))
 147		return false;
 148	if (!gid_eq(c1->fsgid, c2->fsgid))
 149		return false;
 150	if (c1->group_info == NULL || c2->group_info == NULL)
 151		return c1->group_info == c2->group_info;
 152	if (c1->group_info->ngroups != c2->group_info->ngroups)
 153		return false;
 154	for (i = 0; i < c1->group_info->ngroups; i++) {
 155		if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i]))
 156			return false;
 157	}
 158	return true;
 159}
 160
 161/**
 162 * nfsd_file_obj_cmpfn - Match a cache item against search criteria
 163 * @arg: search criteria
 164 * @ptr: cache item to check
 165 *
 166 * Return values:
 167 *   %0 - Item matches search criteria
 168 *   %1 - Item does not match search criteria
 169 */
 170static int nfsd_file_obj_cmpfn(struct rhashtable_compare_arg *arg,
 171			       const void *ptr)
 172{
 173	const struct nfsd_file_lookup_key *key = arg->key;
 174	const struct nfsd_file *nf = ptr;
 175
 176	switch (key->type) {
 177	case NFSD_FILE_KEY_INODE:
 178		if (nf->nf_inode != key->inode)
 179			return 1;
 180		break;
 181	case NFSD_FILE_KEY_FULL:
 182		if (nf->nf_inode != key->inode)
 183			return 1;
 184		if (nf->nf_may != key->need)
 185			return 1;
 186		if (nf->nf_net != key->net)
 187			return 1;
 188		if (!nfsd_match_cred(nf->nf_cred, key->cred))
 189			return 1;
 190		if (!!test_bit(NFSD_FILE_GC, &nf->nf_flags) != key->gc)
 191			return 1;
 192		if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0)
 193			return 1;
 194		break;
 195	}
 196	return 0;
 197}
 198
 199static const struct rhashtable_params nfsd_file_rhash_params = {
 200	.key_len		= sizeof_field(struct nfsd_file, nf_inode),
 201	.key_offset		= offsetof(struct nfsd_file, nf_inode),
 202	.head_offset		= offsetof(struct nfsd_file, nf_rhash),
 203	.hashfn			= nfsd_file_key_hashfn,
 204	.obj_hashfn		= nfsd_file_obj_hashfn,
 205	.obj_cmpfn		= nfsd_file_obj_cmpfn,
 206	/* Reduce resizing churn on light workloads */
 207	.min_size		= 512,		/* buckets */
 208	.automatic_shrinking	= true,
 209};
 210
 211static void
 212nfsd_file_schedule_laundrette(void)
 213{
 214	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags))
 215		queue_delayed_work(system_wq, &nfsd_filecache_laundrette,
 216				   NFSD_LAUNDRETTE_DELAY);
 217}
 218
 219static void
 220nfsd_file_slab_free(struct rcu_head *rcu)
 221{
 222	struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu);
 223
 224	put_cred(nf->nf_cred);
 225	kmem_cache_free(nfsd_file_slab, nf);
 226}
 227
 228static void
 229nfsd_file_mark_free(struct fsnotify_mark *mark)
 230{
 231	struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark,
 232						  nfm_mark);
 233
 234	kmem_cache_free(nfsd_file_mark_slab, nfm);
 235}
 236
 237static struct nfsd_file_mark *
 238nfsd_file_mark_get(struct nfsd_file_mark *nfm)
 239{
 240	if (!refcount_inc_not_zero(&nfm->nfm_ref))
 241		return NULL;
 242	return nfm;
 243}
 244
 245static void
 246nfsd_file_mark_put(struct nfsd_file_mark *nfm)
 247{
 248	if (refcount_dec_and_test(&nfm->nfm_ref)) {
 249		fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group);
 250		fsnotify_put_mark(&nfm->nfm_mark);
 251	}
 252}
 253
 254static struct nfsd_file_mark *
 255nfsd_file_mark_find_or_create(struct nfsd_file *nf, struct inode *inode)
 256{
 257	int			err;
 258	struct fsnotify_mark	*mark;
 259	struct nfsd_file_mark	*nfm = NULL, *new;
 260
 261	do {
 262		fsnotify_group_lock(nfsd_file_fsnotify_group);
 263		mark = fsnotify_find_mark(&inode->i_fsnotify_marks,
 264					  nfsd_file_fsnotify_group);
 265		if (mark) {
 266			nfm = nfsd_file_mark_get(container_of(mark,
 267						 struct nfsd_file_mark,
 268						 nfm_mark));
 269			fsnotify_group_unlock(nfsd_file_fsnotify_group);
 270			if (nfm) {
 271				fsnotify_put_mark(mark);
 272				break;
 273			}
 274			/* Avoid soft lockup race with nfsd_file_mark_put() */
 275			fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group);
 276			fsnotify_put_mark(mark);
 277		} else {
 278			fsnotify_group_unlock(nfsd_file_fsnotify_group);
 279		}
 280
 281		/* allocate a new nfm */
 282		new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL);
 283		if (!new)
 284			return NULL;
 285		fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group);
 286		new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF;
 287		refcount_set(&new->nfm_ref, 1);
 288
 289		err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0);
 290
 291		/*
 292		 * If the add was successful, then return the object.
 293		 * Otherwise, we need to put the reference we hold on the
 294		 * nfm_mark. The fsnotify code will take a reference and put
 295		 * it on failure, so we can't just free it directly. It's also
 296		 * not safe to call fsnotify_destroy_mark on it as the
 297		 * mark->group will be NULL. Thus, we can't let the nfm_ref
 298		 * counter drive the destruction at this point.
 299		 */
 300		if (likely(!err))
 301			nfm = new;
 302		else
 303			fsnotify_put_mark(&new->nfm_mark);
 304	} while (unlikely(err == -EEXIST));
 305
 306	return nfm;
 307}
 308
 309static struct nfsd_file *
 310nfsd_file_alloc(struct nfsd_file_lookup_key *key, unsigned int may)
 311{
 312	struct nfsd_file *nf;
 313
 314	nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL);
 315	if (nf) {
 316		INIT_LIST_HEAD(&nf->nf_lru);
 317		nf->nf_birthtime = ktime_get();
 318		nf->nf_file = NULL;
 319		nf->nf_cred = get_current_cred();
 320		nf->nf_net = key->net;
 321		nf->nf_flags = 0;
 322		__set_bit(NFSD_FILE_HASHED, &nf->nf_flags);
 323		__set_bit(NFSD_FILE_PENDING, &nf->nf_flags);
 324		if (key->gc)
 325			__set_bit(NFSD_FILE_GC, &nf->nf_flags);
 326		nf->nf_inode = key->inode;
 327		refcount_set(&nf->nf_ref, 1);
 328		nf->nf_may = key->need;
 329		nf->nf_mark = NULL;
 330	}
 331	return nf;
 332}
 333
 334static void
 335nfsd_file_fsync(struct nfsd_file *nf)
 336{
 337	struct file *file = nf->nf_file;
 338	int ret;
 339
 340	if (!file || !(file->f_mode & FMODE_WRITE))
 341		return;
 342	ret = vfs_fsync(file, 1);
 343	trace_nfsd_file_fsync(nf, ret);
 344	if (ret)
 345		nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
 346}
 347
 348static int
 349nfsd_file_check_write_error(struct nfsd_file *nf)
 350{
 351	struct file *file = nf->nf_file;
 352
 353	if (!file || !(file->f_mode & FMODE_WRITE))
 354		return 0;
 355	return filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err));
 356}
 357
 358static void
 359nfsd_file_hash_remove(struct nfsd_file *nf)
 360{
 361	trace_nfsd_file_unhash(nf);
 362
 363	if (nfsd_file_check_write_error(nf))
 364		nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
 365	rhashtable_remove_fast(&nfsd_file_rhash_tbl, &nf->nf_rhash,
 366			       nfsd_file_rhash_params);
 367}
 368
 369static bool
 370nfsd_file_unhash(struct nfsd_file *nf)
 371{
 372	if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
 373		nfsd_file_hash_remove(nf);
 374		return true;
 375	}
 376	return false;
 377}
 378
 379static void
 380nfsd_file_free(struct nfsd_file *nf)
 381{
 382	s64 age = ktime_to_ms(ktime_sub(ktime_get(), nf->nf_birthtime));
 383
 384	trace_nfsd_file_free(nf);
 385
 386	this_cpu_inc(nfsd_file_releases);
 387	this_cpu_add(nfsd_file_total_age, age);
 388
 389	nfsd_file_unhash(nf);
 390
 391	/*
 392	 * We call fsync here in order to catch writeback errors. It's not
 393	 * strictly required by the protocol, but an nfsd_file could get
 394	 * evicted from the cache before a COMMIT comes in. If another
 395	 * task were to open that file in the interim and scrape the error,
 396	 * then the client may never see it. By calling fsync here, we ensure
 397	 * that writeback happens before the entry is freed, and that any
 398	 * errors reported result in the write verifier changing.
 399	 */
 400	nfsd_file_fsync(nf);
 401
 402	if (nf->nf_mark)
 403		nfsd_file_mark_put(nf->nf_mark);
 404	if (nf->nf_file) {
 405		get_file(nf->nf_file);
 406		filp_close(nf->nf_file, NULL);
 407		fput(nf->nf_file);
 408	}
 409
 410	/*
 411	 * If this item is still linked via nf_lru, that's a bug.
 412	 * WARN and leak it to preserve system stability.
 413	 */
 414	if (WARN_ON_ONCE(!list_empty(&nf->nf_lru)))
 415		return;
 416
 417	call_rcu(&nf->nf_rcu, nfsd_file_slab_free);
 418}
 419
 420static bool
 421nfsd_file_check_writeback(struct nfsd_file *nf)
 422{
 423	struct file *file = nf->nf_file;
 424	struct address_space *mapping;
 425
 426	if (!file || !(file->f_mode & FMODE_WRITE))
 427		return false;
 428	mapping = file->f_mapping;
 429	return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) ||
 430		mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
 431}
 432
 433static bool nfsd_file_lru_add(struct nfsd_file *nf)
 434{
 435	set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
 436	if (list_lru_add(&nfsd_file_lru, &nf->nf_lru)) {
 437		trace_nfsd_file_lru_add(nf);
 438		return true;
 439	}
 440	return false;
 441}
 442
 443static bool nfsd_file_lru_remove(struct nfsd_file *nf)
 444{
 445	if (list_lru_del(&nfsd_file_lru, &nf->nf_lru)) {
 446		trace_nfsd_file_lru_del(nf);
 447		return true;
 448	}
 449	return false;
 450}
 451
 452struct nfsd_file *
 453nfsd_file_get(struct nfsd_file *nf)
 454{
 455	if (likely(refcount_inc_not_zero(&nf->nf_ref)))
 456		return nf;
 457	return NULL;
 458}
 459
 460/**
 461 * nfsd_file_put - put the reference to a nfsd_file
 462 * @nf: nfsd_file of which to put the reference
 463 *
 464 * Put a reference to a nfsd_file. In the non-GC case, we just put the
 465 * reference immediately. In the GC case, if the reference would be
 466 * the last one, the put it on the LRU instead to be cleaned up later.
 467 */
 468void
 469nfsd_file_put(struct nfsd_file *nf)
 470{
 471	might_sleep();
 472	trace_nfsd_file_put(nf);
 473
 474	if (test_bit(NFSD_FILE_GC, &nf->nf_flags) &&
 475	    test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
 476		/*
 477		 * If this is the last reference (nf_ref == 1), then try to
 478		 * transfer it to the LRU.
 479		 */
 480		if (refcount_dec_not_one(&nf->nf_ref))
 481			return;
 482
 483		/* Try to add it to the LRU.  If that fails, decrement. */
 484		if (nfsd_file_lru_add(nf)) {
 485			/* If it's still hashed, we're done */
 486			if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
 487				nfsd_file_schedule_laundrette();
 488				return;
 489			}
 490
 491			/*
 492			 * We're racing with unhashing, so try to remove it from
 493			 * the LRU. If removal fails, then someone else already
 494			 * has our reference.
 495			 */
 496			if (!nfsd_file_lru_remove(nf))
 497				return;
 498		}
 499	}
 500	if (refcount_dec_and_test(&nf->nf_ref))
 501		nfsd_file_free(nf);
 502}
 503
 504static void
 505nfsd_file_dispose_list(struct list_head *dispose)
 506{
 507	struct nfsd_file *nf;
 508
 509	while (!list_empty(dispose)) {
 510		nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
 511		list_del_init(&nf->nf_lru);
 512		nfsd_file_free(nf);
 513	}
 514}
 515
 516static void
 517nfsd_file_list_remove_disposal(struct list_head *dst,
 518		struct nfsd_fcache_disposal *l)
 519{
 520	spin_lock(&l->lock);
 521	list_splice_init(&l->freeme, dst);
 522	spin_unlock(&l->lock);
 523}
 524
 525static void
 526nfsd_file_list_add_disposal(struct list_head *files, struct net *net)
 527{
 528	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
 529	struct nfsd_fcache_disposal *l = nn->fcache_disposal;
 530
 531	spin_lock(&l->lock);
 532	list_splice_tail_init(files, &l->freeme);
 533	spin_unlock(&l->lock);
 534	queue_work(nfsd_filecache_wq, &l->work);
 535}
 536
 537static void
 538nfsd_file_list_add_pernet(struct list_head *dst, struct list_head *src,
 539		struct net *net)
 540{
 541	struct nfsd_file *nf, *tmp;
 542
 543	list_for_each_entry_safe(nf, tmp, src, nf_lru) {
 544		if (nf->nf_net == net)
 545			list_move_tail(&nf->nf_lru, dst);
 546	}
 547}
 548
 549static void
 550nfsd_file_dispose_list_delayed(struct list_head *dispose)
 551{
 552	LIST_HEAD(list);
 553	struct nfsd_file *nf;
 554
 555	while(!list_empty(dispose)) {
 556		nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
 557		nfsd_file_list_add_pernet(&list, dispose, nf->nf_net);
 558		nfsd_file_list_add_disposal(&list, nf->nf_net);
 559	}
 560}
 561
 562/**
 563 * nfsd_file_lru_cb - Examine an entry on the LRU list
 564 * @item: LRU entry to examine
 565 * @lru: controlling LRU
 566 * @lock: LRU list lock (unused)
 567 * @arg: dispose list
 568 *
 569 * Return values:
 570 *   %LRU_REMOVED: @item was removed from the LRU
 571 *   %LRU_ROTATE: @item is to be moved to the LRU tail
 572 *   %LRU_SKIP: @item cannot be evicted
 573 */
 574static enum lru_status
 575nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru,
 576		 spinlock_t *lock, void *arg)
 577	__releases(lock)
 578	__acquires(lock)
 579{
 580	struct list_head *head = arg;
 581	struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
 582
 583	/* We should only be dealing with GC entries here */
 584	WARN_ON_ONCE(!test_bit(NFSD_FILE_GC, &nf->nf_flags));
 585
 586	/*
 587	 * Don't throw out files that are still undergoing I/O or
 588	 * that have uncleared errors pending.
 589	 */
 590	if (nfsd_file_check_writeback(nf)) {
 591		trace_nfsd_file_gc_writeback(nf);
 592		return LRU_SKIP;
 593	}
 594
 595	/* If it was recently added to the list, skip it */
 596	if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) {
 597		trace_nfsd_file_gc_referenced(nf);
 598		return LRU_ROTATE;
 599	}
 600
 601	/*
 602	 * Put the reference held on behalf of the LRU. If it wasn't the last
 603	 * one, then just remove it from the LRU and ignore it.
 604	 */
 605	if (!refcount_dec_and_test(&nf->nf_ref)) {
 606		trace_nfsd_file_gc_in_use(nf);
 607		list_lru_isolate(lru, &nf->nf_lru);
 608		return LRU_REMOVED;
 609	}
 610
 611	/* Refcount went to zero. Unhash it and queue it to the dispose list */
 612	nfsd_file_unhash(nf);
 613	list_lru_isolate_move(lru, &nf->nf_lru, head);
 614	this_cpu_inc(nfsd_file_evictions);
 615	trace_nfsd_file_gc_disposed(nf);
 616	return LRU_REMOVED;
 617}
 618
 619static void
 620nfsd_file_gc(void)
 621{
 622	LIST_HEAD(dispose);
 623	unsigned long ret;
 624
 625	ret = list_lru_walk(&nfsd_file_lru, nfsd_file_lru_cb,
 626			    &dispose, list_lru_count(&nfsd_file_lru));
 627	trace_nfsd_file_gc_removed(ret, list_lru_count(&nfsd_file_lru));
 628	nfsd_file_dispose_list_delayed(&dispose);
 629}
 630
 631static void
 632nfsd_file_gc_worker(struct work_struct *work)
 633{
 634	nfsd_file_gc();
 635	if (list_lru_count(&nfsd_file_lru))
 636		nfsd_file_schedule_laundrette();
 637}
 638
 639static unsigned long
 640nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc)
 641{
 642	return list_lru_count(&nfsd_file_lru);
 643}
 644
 645static unsigned long
 646nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc)
 647{
 648	LIST_HEAD(dispose);
 649	unsigned long ret;
 650
 651	ret = list_lru_shrink_walk(&nfsd_file_lru, sc,
 652				   nfsd_file_lru_cb, &dispose);
 653	trace_nfsd_file_shrinker_removed(ret, list_lru_count(&nfsd_file_lru));
 654	nfsd_file_dispose_list_delayed(&dispose);
 655	return ret;
 656}
 657
 658static struct shrinker	nfsd_file_shrinker = {
 659	.scan_objects = nfsd_file_lru_scan,
 660	.count_objects = nfsd_file_lru_count,
 661	.seeks = 1,
 662};
 663
 664/**
 665 * nfsd_file_cond_queue - conditionally unhash and queue a nfsd_file
 666 * @nf: nfsd_file to attempt to queue
 667 * @dispose: private list to queue successfully-put objects
 668 *
 669 * Unhash an nfsd_file, try to get a reference to it, and then put that
 670 * reference. If it's the last reference, queue it to the dispose list.
 671 */
 672static void
 673nfsd_file_cond_queue(struct nfsd_file *nf, struct list_head *dispose)
 674	__must_hold(RCU)
 675{
 676	int decrement = 1;
 677
 678	/* If we raced with someone else unhashing, ignore it */
 679	if (!nfsd_file_unhash(nf))
 680		return;
 681
 682	/* If we can't get a reference, ignore it */
 683	if (!nfsd_file_get(nf))
 684		return;
 685
 686	/* Extra decrement if we remove from the LRU */
 687	if (nfsd_file_lru_remove(nf))
 688		++decrement;
 689
 690	/* If refcount goes to 0, then put on the dispose list */
 691	if (refcount_sub_and_test(decrement, &nf->nf_ref)) {
 692		list_add(&nf->nf_lru, dispose);
 693		trace_nfsd_file_closing(nf);
 694	}
 695}
 696
 697/**
 698 * nfsd_file_queue_for_close: try to close out any open nfsd_files for an inode
 699 * @inode:   inode on which to close out nfsd_files
 700 * @dispose: list on which to gather nfsd_files to close out
 701 *
 702 * An nfsd_file represents a struct file being held open on behalf of nfsd. An
 703 * open file however can block other activity (such as leases), or cause
 704 * undesirable behavior (e.g. spurious silly-renames when reexporting NFS).
 705 *
 706 * This function is intended to find open nfsd_files when this sort of
 707 * conflicting access occurs and then attempt to close those files out.
 708 *
 709 * Populates the dispose list with entries that have already had their
 710 * refcounts go to zero. The actual free of an nfsd_file can be expensive,
 711 * so we leave it up to the caller whether it wants to wait or not.
 712 */
 713static void
 714nfsd_file_queue_for_close(struct inode *inode, struct list_head *dispose)
 715{
 716	struct nfsd_file_lookup_key key = {
 717		.type	= NFSD_FILE_KEY_INODE,
 718		.inode	= inode,
 719	};
 720	struct nfsd_file *nf;
 721
 722	rcu_read_lock();
 723	do {
 724		nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
 725				       nfsd_file_rhash_params);
 726		if (!nf)
 727			break;
 728		nfsd_file_cond_queue(nf, dispose);
 729	} while (1);
 730	rcu_read_unlock();
 731}
 732
 733/**
 734 * nfsd_file_close_inode - attempt a delayed close of a nfsd_file
 735 * @inode: inode of the file to attempt to remove
 736 *
 737 * Close out any open nfsd_files that can be reaped for @inode. The
 738 * actual freeing is deferred to the dispose_list_delayed infrastructure.
 739 *
 740 * This is used by the fsnotify callbacks and setlease notifier.
 741 */
 742static void
 743nfsd_file_close_inode(struct inode *inode)
 744{
 745	LIST_HEAD(dispose);
 746
 747	nfsd_file_queue_for_close(inode, &dispose);
 748	nfsd_file_dispose_list_delayed(&dispose);
 749}
 750
 751/**
 752 * nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file
 753 * @inode: inode of the file to attempt to remove
 754 *
 755 * Close out any open nfsd_files that can be reaped for @inode. The
 756 * nfsd_files are closed out synchronously.
 757 *
 758 * This is called from nfsd_rename and nfsd_unlink to avoid silly-renames
 759 * when reexporting NFS.
 760 */
 761void
 762nfsd_file_close_inode_sync(struct inode *inode)
 763{
 764	struct nfsd_file *nf;
 765	LIST_HEAD(dispose);
 766
 767	trace_nfsd_file_close(inode);
 768
 769	nfsd_file_queue_for_close(inode, &dispose);
 770	while (!list_empty(&dispose)) {
 771		nf = list_first_entry(&dispose, struct nfsd_file, nf_lru);
 772		list_del_init(&nf->nf_lru);
 773		nfsd_file_free(nf);
 774	}
 775	flush_delayed_fput();
 776}
 777
 778/**
 779 * nfsd_file_delayed_close - close unused nfsd_files
 780 * @work: dummy
 781 *
 782 * Walk the LRU list and destroy any entries that have not been used since
 783 * the last scan.
 784 */
 785static void
 786nfsd_file_delayed_close(struct work_struct *work)
 787{
 788	LIST_HEAD(head);
 789	struct nfsd_fcache_disposal *l = container_of(work,
 790			struct nfsd_fcache_disposal, work);
 791
 792	nfsd_file_list_remove_disposal(&head, l);
 793	nfsd_file_dispose_list(&head);
 794}
 795
 796static int
 797nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg,
 798			    void *data)
 799{
 800	struct file_lock *fl = data;
 801
 802	/* Only close files for F_SETLEASE leases */
 803	if (fl->fl_flags & FL_LEASE)
 804		nfsd_file_close_inode(file_inode(fl->fl_file));
 805	return 0;
 806}
 807
 808static struct notifier_block nfsd_file_lease_notifier = {
 809	.notifier_call = nfsd_file_lease_notifier_call,
 810};
 811
 812static int
 813nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask,
 814				struct inode *inode, struct inode *dir,
 815				const struct qstr *name, u32 cookie)
 816{
 817	if (WARN_ON_ONCE(!inode))
 818		return 0;
 819
 820	trace_nfsd_file_fsnotify_handle_event(inode, mask);
 821
 822	/* Should be no marks on non-regular files */
 823	if (!S_ISREG(inode->i_mode)) {
 824		WARN_ON_ONCE(1);
 825		return 0;
 826	}
 827
 828	/* don't close files if this was not the last link */
 829	if (mask & FS_ATTRIB) {
 830		if (inode->i_nlink)
 831			return 0;
 832	}
 833
 834	nfsd_file_close_inode(inode);
 835	return 0;
 836}
 837
 838
 839static const struct fsnotify_ops nfsd_file_fsnotify_ops = {
 840	.handle_inode_event = nfsd_file_fsnotify_handle_event,
 841	.free_mark = nfsd_file_mark_free,
 842};
 843
 844int
 845nfsd_file_cache_init(void)
 846{
 847	int ret;
 848
 849	lockdep_assert_held(&nfsd_mutex);
 850	if (test_and_set_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
 851		return 0;
 852
 853	ret = rhashtable_init(&nfsd_file_rhash_tbl, &nfsd_file_rhash_params);
 854	if (ret)
 855		return ret;
 856
 857	ret = -ENOMEM;
 858	nfsd_filecache_wq = alloc_workqueue("nfsd_filecache", 0, 0);
 859	if (!nfsd_filecache_wq)
 860		goto out;
 861
 862	nfsd_file_slab = kmem_cache_create("nfsd_file",
 863				sizeof(struct nfsd_file), 0, 0, NULL);
 864	if (!nfsd_file_slab) {
 865		pr_err("nfsd: unable to create nfsd_file_slab\n");
 866		goto out_err;
 867	}
 868
 869	nfsd_file_mark_slab = kmem_cache_create("nfsd_file_mark",
 870					sizeof(struct nfsd_file_mark), 0, 0, NULL);
 871	if (!nfsd_file_mark_slab) {
 872		pr_err("nfsd: unable to create nfsd_file_mark_slab\n");
 873		goto out_err;
 874	}
 875
 876
 877	ret = list_lru_init(&nfsd_file_lru);
 878	if (ret) {
 879		pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret);
 880		goto out_err;
 881	}
 882
 883	ret = register_shrinker(&nfsd_file_shrinker, "nfsd-filecache");
 884	if (ret) {
 885		pr_err("nfsd: failed to register nfsd_file_shrinker: %d\n", ret);
 886		goto out_lru;
 887	}
 888
 889	ret = lease_register_notifier(&nfsd_file_lease_notifier);
 890	if (ret) {
 891		pr_err("nfsd: unable to register lease notifier: %d\n", ret);
 892		goto out_shrinker;
 893	}
 894
 895	nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops,
 896							FSNOTIFY_GROUP_NOFS);
 897	if (IS_ERR(nfsd_file_fsnotify_group)) {
 898		pr_err("nfsd: unable to create fsnotify group: %ld\n",
 899			PTR_ERR(nfsd_file_fsnotify_group));
 900		ret = PTR_ERR(nfsd_file_fsnotify_group);
 901		nfsd_file_fsnotify_group = NULL;
 902		goto out_notifier;
 903	}
 904
 905	INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker);
 906out:
 907	return ret;
 908out_notifier:
 909	lease_unregister_notifier(&nfsd_file_lease_notifier);
 910out_shrinker:
 911	unregister_shrinker(&nfsd_file_shrinker);
 912out_lru:
 913	list_lru_destroy(&nfsd_file_lru);
 914out_err:
 915	kmem_cache_destroy(nfsd_file_slab);
 916	nfsd_file_slab = NULL;
 917	kmem_cache_destroy(nfsd_file_mark_slab);
 918	nfsd_file_mark_slab = NULL;
 919	destroy_workqueue(nfsd_filecache_wq);
 920	nfsd_filecache_wq = NULL;
 921	rhashtable_destroy(&nfsd_file_rhash_tbl);
 922	goto out;
 923}
 924
 925/**
 926 * __nfsd_file_cache_purge: clean out the cache for shutdown
 927 * @net: net-namespace to shut down the cache (may be NULL)
 928 *
 929 * Walk the nfsd_file cache and close out any that match @net. If @net is NULL,
 930 * then close out everything. Called when an nfsd instance is being shut down.
 931 */
 932static void
 933__nfsd_file_cache_purge(struct net *net)
 934{
 935	struct rhashtable_iter iter;
 936	struct nfsd_file *nf;
 937	LIST_HEAD(dispose);
 938
 939	rhashtable_walk_enter(&nfsd_file_rhash_tbl, &iter);
 940	do {
 941		rhashtable_walk_start(&iter);
 942
 943		nf = rhashtable_walk_next(&iter);
 944		while (!IS_ERR_OR_NULL(nf)) {
 945			if (!net || nf->nf_net == net)
 946				nfsd_file_cond_queue(nf, &dispose);
 947			nf = rhashtable_walk_next(&iter);
 948		}
 949
 950		rhashtable_walk_stop(&iter);
 951	} while (nf == ERR_PTR(-EAGAIN));
 952	rhashtable_walk_exit(&iter);
 953
 954	nfsd_file_dispose_list(&dispose);
 955}
 956
 957static struct nfsd_fcache_disposal *
 958nfsd_alloc_fcache_disposal(void)
 959{
 960	struct nfsd_fcache_disposal *l;
 961
 962	l = kmalloc(sizeof(*l), GFP_KERNEL);
 963	if (!l)
 964		return NULL;
 965	INIT_WORK(&l->work, nfsd_file_delayed_close);
 966	spin_lock_init(&l->lock);
 967	INIT_LIST_HEAD(&l->freeme);
 968	return l;
 969}
 970
 971static void
 972nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l)
 973{
 974	cancel_work_sync(&l->work);
 975	nfsd_file_dispose_list(&l->freeme);
 976	kfree(l);
 977}
 978
 979static void
 980nfsd_free_fcache_disposal_net(struct net *net)
 981{
 982	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
 983	struct nfsd_fcache_disposal *l = nn->fcache_disposal;
 984
 985	nfsd_free_fcache_disposal(l);
 986}
 987
 988int
 989nfsd_file_cache_start_net(struct net *net)
 990{
 991	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
 992
 993	nn->fcache_disposal = nfsd_alloc_fcache_disposal();
 994	return nn->fcache_disposal ? 0 : -ENOMEM;
 995}
 996
 997/**
 998 * nfsd_file_cache_purge - Remove all cache items associated with @net
 999 * @net: target net namespace
1000 *
1001 */
1002void
1003nfsd_file_cache_purge(struct net *net)
1004{
1005	lockdep_assert_held(&nfsd_mutex);
1006	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
1007		__nfsd_file_cache_purge(net);
1008}
1009
1010void
1011nfsd_file_cache_shutdown_net(struct net *net)
1012{
1013	nfsd_file_cache_purge(net);
1014	nfsd_free_fcache_disposal_net(net);
1015}
1016
1017void
1018nfsd_file_cache_shutdown(void)
1019{
1020	int i;
1021
1022	lockdep_assert_held(&nfsd_mutex);
1023	if (test_and_clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
1024		return;
1025
1026	lease_unregister_notifier(&nfsd_file_lease_notifier);
1027	unregister_shrinker(&nfsd_file_shrinker);
1028	/*
1029	 * make sure all callers of nfsd_file_lru_cb are done before
1030	 * calling nfsd_file_cache_purge
1031	 */
1032	cancel_delayed_work_sync(&nfsd_filecache_laundrette);
1033	__nfsd_file_cache_purge(NULL);
1034	list_lru_destroy(&nfsd_file_lru);
1035	rcu_barrier();
1036	fsnotify_put_group(nfsd_file_fsnotify_group);
1037	nfsd_file_fsnotify_group = NULL;
1038	kmem_cache_destroy(nfsd_file_slab);
1039	nfsd_file_slab = NULL;
1040	fsnotify_wait_marks_destroyed();
1041	kmem_cache_destroy(nfsd_file_mark_slab);
1042	nfsd_file_mark_slab = NULL;
1043	destroy_workqueue(nfsd_filecache_wq);
1044	nfsd_filecache_wq = NULL;
1045	rhashtable_destroy(&nfsd_file_rhash_tbl);
1046
1047	for_each_possible_cpu(i) {
1048		per_cpu(nfsd_file_cache_hits, i) = 0;
1049		per_cpu(nfsd_file_acquisitions, i) = 0;
1050		per_cpu(nfsd_file_releases, i) = 0;
1051		per_cpu(nfsd_file_total_age, i) = 0;
1052		per_cpu(nfsd_file_evictions, i) = 0;
1053	}
1054}
1055
1056/**
1057 * nfsd_file_is_cached - are there any cached open files for this inode?
1058 * @inode: inode to check
1059 *
1060 * The lookup matches inodes in all net namespaces and is atomic wrt
1061 * nfsd_file_acquire().
1062 *
1063 * Return values:
1064 *   %true: filecache contains at least one file matching this inode
1065 *   %false: filecache contains no files matching this inode
1066 */
1067bool
1068nfsd_file_is_cached(struct inode *inode)
1069{
1070	struct nfsd_file_lookup_key key = {
1071		.type	= NFSD_FILE_KEY_INODE,
1072		.inode	= inode,
1073	};
1074	bool ret = false;
1075
1076	if (rhashtable_lookup_fast(&nfsd_file_rhash_tbl, &key,
1077				   nfsd_file_rhash_params) != NULL)
1078		ret = true;
1079	trace_nfsd_file_is_cached(inode, (int)ret);
1080	return ret;
1081}
1082
1083static __be32
1084nfsd_file_do_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
1085		     unsigned int may_flags, struct file *file,
1086		     struct nfsd_file **pnf, bool want_gc)
1087{
1088	struct nfsd_file_lookup_key key = {
1089		.type	= NFSD_FILE_KEY_FULL,
1090		.need	= may_flags & NFSD_FILE_MAY_MASK,
1091		.net	= SVC_NET(rqstp),
1092		.gc	= want_gc,
1093	};
1094	bool open_retry = true;
1095	struct nfsd_file *nf;
1096	__be32 status;
1097	int ret;
1098
1099	status = fh_verify(rqstp, fhp, S_IFREG,
1100				may_flags|NFSD_MAY_OWNER_OVERRIDE);
1101	if (status != nfs_ok)
1102		return status;
1103	key.inode = d_inode(fhp->fh_dentry);
1104	key.cred = get_current_cred();
1105
1106retry:
1107	rcu_read_lock();
1108	nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
1109			       nfsd_file_rhash_params);
1110	if (nf)
1111		nf = nfsd_file_get(nf);
1112	rcu_read_unlock();
1113
1114	if (nf) {
1115		if (nfsd_file_lru_remove(nf))
1116			WARN_ON_ONCE(refcount_dec_and_test(&nf->nf_ref));
1117		goto wait_for_construction;
1118	}
1119
1120	nf = nfsd_file_alloc(&key, may_flags);
1121	if (!nf) {
1122		status = nfserr_jukebox;
1123		goto out_status;
1124	}
1125
1126	ret = rhashtable_lookup_insert_key(&nfsd_file_rhash_tbl,
1127					   &key, &nf->nf_rhash,
1128					   nfsd_file_rhash_params);
1129	if (likely(ret == 0))
1130		goto open_file;
1131
1132	nfsd_file_slab_free(&nf->nf_rcu);
1133	nf = NULL;
1134	if (ret == -EEXIST)
1135		goto retry;
1136	trace_nfsd_file_insert_err(rqstp, key.inode, may_flags, ret);
1137	status = nfserr_jukebox;
1138	goto out_status;
1139
1140wait_for_construction:
1141	wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE);
1142
1143	/* Did construction of this file fail? */
1144	if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
1145		trace_nfsd_file_cons_err(rqstp, key.inode, may_flags, nf);
1146		if (!open_retry) {
1147			status = nfserr_jukebox;
1148			goto out;
1149		}
1150		open_retry = false;
1151		if (refcount_dec_and_test(&nf->nf_ref))
1152			nfsd_file_free(nf);
1153		goto retry;
1154	}
1155
1156	this_cpu_inc(nfsd_file_cache_hits);
1157
1158	status = nfserrno(nfsd_open_break_lease(file_inode(nf->nf_file), may_flags));
1159out:
1160	if (status == nfs_ok) {
1161		this_cpu_inc(nfsd_file_acquisitions);
1162		*pnf = nf;
1163	} else {
1164		if (refcount_dec_and_test(&nf->nf_ref))
1165			nfsd_file_free(nf);
1166		nf = NULL;
1167	}
1168
1169out_status:
1170	put_cred(key.cred);
1171	trace_nfsd_file_acquire(rqstp, key.inode, may_flags, nf, status);
1172	return status;
1173
1174open_file:
1175	trace_nfsd_file_alloc(nf);
1176	nf->nf_mark = nfsd_file_mark_find_or_create(nf, key.inode);
1177	if (nf->nf_mark) {
1178		if (file) {
1179			get_file(file);
1180			nf->nf_file = file;
1181			status = nfs_ok;
1182			trace_nfsd_file_opened(nf, status);
1183		} else {
1184			status = nfsd_open_verified(rqstp, fhp, may_flags,
1185						    &nf->nf_file);
1186			trace_nfsd_file_open(nf, status);
1187		}
1188	} else
1189		status = nfserr_jukebox;
1190	/*
1191	 * If construction failed, or we raced with a call to unlink()
1192	 * then unhash.
1193	 */
1194	if (status == nfs_ok && key.inode->i_nlink == 0)
1195		status = nfserr_jukebox;
1196	if (status != nfs_ok)
1197		nfsd_file_unhash(nf);
1198	clear_bit_unlock(NFSD_FILE_PENDING, &nf->nf_flags);
1199	smp_mb__after_atomic();
1200	wake_up_bit(&nf->nf_flags, NFSD_FILE_PENDING);
1201	goto out;
1202}
1203
1204/**
1205 * nfsd_file_acquire_gc - Get a struct nfsd_file with an open file
1206 * @rqstp: the RPC transaction being executed
1207 * @fhp: the NFS filehandle of the file to be opened
1208 * @may_flags: NFSD_MAY_ settings for the file
1209 * @pnf: OUT: new or found "struct nfsd_file" object
1210 *
1211 * The nfsd_file object returned by this API is reference-counted
1212 * and garbage-collected. The object is retained for a few
1213 * seconds after the final nfsd_file_put() in case the caller
1214 * wants to re-use it.
1215 *
1216 * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1217 * network byte order is returned.
1218 */
1219__be32
1220nfsd_file_acquire_gc(struct svc_rqst *rqstp, struct svc_fh *fhp,
1221		     unsigned int may_flags, struct nfsd_file **pnf)
1222{
1223	return nfsd_file_do_acquire(rqstp, fhp, may_flags, NULL, pnf, true);
1224}
1225
1226/**
1227 * nfsd_file_acquire - Get a struct nfsd_file with an open file
1228 * @rqstp: the RPC transaction being executed
1229 * @fhp: the NFS filehandle of the file to be opened
1230 * @may_flags: NFSD_MAY_ settings for the file
1231 * @pnf: OUT: new or found "struct nfsd_file" object
1232 *
1233 * The nfsd_file_object returned by this API is reference-counted
1234 * but not garbage-collected. The object is unhashed after the
1235 * final nfsd_file_put().
1236 *
1237 * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1238 * network byte order is returned.
1239 */
1240__be32
1241nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
1242		  unsigned int may_flags, struct nfsd_file **pnf)
1243{
1244	return nfsd_file_do_acquire(rqstp, fhp, may_flags, NULL, pnf, false);
1245}
1246
1247/**
1248 * nfsd_file_acquire_opened - Get a struct nfsd_file using existing open file
1249 * @rqstp: the RPC transaction being executed
1250 * @fhp: the NFS filehandle of the file just created
1251 * @may_flags: NFSD_MAY_ settings for the file
1252 * @file: cached, already-open file (may be NULL)
1253 * @pnf: OUT: new or found "struct nfsd_file" object
1254 *
1255 * Acquire a nfsd_file object that is not GC'ed. If one doesn't already exist,
1256 * and @file is non-NULL, use it to instantiate a new nfsd_file instead of
1257 * opening a new one.
1258 *
1259 * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1260 * network byte order is returned.
1261 */
1262__be32
1263nfsd_file_acquire_opened(struct svc_rqst *rqstp, struct svc_fh *fhp,
1264			 unsigned int may_flags, struct file *file,
1265			 struct nfsd_file **pnf)
1266{
1267	return nfsd_file_do_acquire(rqstp, fhp, may_flags, file, pnf, false);
1268}
1269
1270/*
1271 * Note that fields may be added, removed or reordered in the future. Programs
1272 * scraping this file for info should test the labels to ensure they're
1273 * getting the correct field.
1274 */
1275int nfsd_file_cache_stats_show(struct seq_file *m, void *v)
1276{
1277	unsigned long releases = 0, evictions = 0;
1278	unsigned long hits = 0, acquisitions = 0;
1279	unsigned int i, count = 0, buckets = 0;
1280	unsigned long lru = 0, total_age = 0;
1281
1282	/* Serialize with server shutdown */
1283	mutex_lock(&nfsd_mutex);
1284	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1) {
1285		struct bucket_table *tbl;
1286		struct rhashtable *ht;
1287
1288		lru = list_lru_count(&nfsd_file_lru);
1289
1290		rcu_read_lock();
1291		ht = &nfsd_file_rhash_tbl;
1292		count = atomic_read(&ht->nelems);
1293		tbl = rht_dereference_rcu(ht->tbl, ht);
1294		buckets = tbl->size;
1295		rcu_read_unlock();
1296	}
1297	mutex_unlock(&nfsd_mutex);
1298
1299	for_each_possible_cpu(i) {
1300		hits += per_cpu(nfsd_file_cache_hits, i);
1301		acquisitions += per_cpu(nfsd_file_acquisitions, i);
1302		releases += per_cpu(nfsd_file_releases, i);
1303		total_age += per_cpu(nfsd_file_total_age, i);
1304		evictions += per_cpu(nfsd_file_evictions, i);
1305	}
1306
1307	seq_printf(m, "total entries: %u\n", count);
1308	seq_printf(m, "hash buckets:  %u\n", buckets);
1309	seq_printf(m, "lru entries:   %lu\n", lru);
1310	seq_printf(m, "cache hits:    %lu\n", hits);
1311	seq_printf(m, "acquisitions:  %lu\n", acquisitions);
1312	seq_printf(m, "releases:      %lu\n", releases);
1313	seq_printf(m, "evictions:     %lu\n", evictions);
1314	if (releases)
1315		seq_printf(m, "mean age (ms): %ld\n", total_age / releases);
1316	else
1317		seq_printf(m, "mean age (ms): -\n");
1318	return 0;
1319}