Linux Audio

Check our new training course

Loading...
v3.15
 
  1#include <linux/ceph/ceph_debug.h>
  2
 
  3#include <linux/sort.h>
  4#include <linux/slab.h>
  5
  6#include "super.h"
  7#include "mds_client.h"
  8
  9#include <linux/ceph/decode.h>
 10
 
 
 
 11/*
 12 * Snapshots in ceph are driven in large part by cooperation from the
 13 * client.  In contrast to local file systems or file servers that
 14 * implement snapshots at a single point in the system, ceph's
 15 * distributed access to storage requires clients to help decide
 16 * whether a write logically occurs before or after a recently created
 17 * snapshot.
 18 *
 19 * This provides a perfect instantanous client-wide snapshot.  Between
 20 * clients, however, snapshots may appear to be applied at slightly
 21 * different points in time, depending on delays in delivering the
 22 * snapshot notification.
 23 *
 24 * Snapshots are _not_ file system-wide.  Instead, each snapshot
 25 * applies to the subdirectory nested beneath some directory.  This
 26 * effectively divides the hierarchy into multiple "realms," where all
 27 * of the files contained by each realm share the same set of
 28 * snapshots.  An individual realm's snap set contains snapshots
 29 * explicitly created on that realm, as well as any snaps in its
 30 * parent's snap set _after_ the point at which the parent became it's
 31 * parent (due to, say, a rename).  Similarly, snaps from prior parents
 32 * during the time intervals during which they were the parent are included.
 33 *
 34 * The client is spared most of this detail, fortunately... it must only
 35 * maintains a hierarchy of realms reflecting the current parent/child
 36 * realm relationship, and for each realm has an explicit list of snaps
 37 * inherited from prior parents.
 38 *
 39 * A snap_realm struct is maintained for realms containing every inode
 40 * with an open cap in the system.  (The needed snap realm information is
 41 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
 42 * version number is used to ensure that as realm parameters change (new
 43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
 44 *
 45 * The realm hierarchy drives the generation of a 'snap context' for each
 46 * realm, which simply lists the resulting set of snaps for the realm.  This
 47 * is attached to any writes sent to OSDs.
 48 */
 49/*
 50 * Unfortunately error handling is a bit mixed here.  If we get a snap
 51 * update, but don't have enough memory to update our realm hierarchy,
 52 * it's not clear what we can do about it (besides complaining to the
 53 * console).
 54 */
 55
 56
 57/*
 58 * increase ref count for the realm
 59 *
 60 * caller must hold snap_rwsem for write.
 61 */
 62void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 63			 struct ceph_snap_realm *realm)
 64{
 65	dout("get_realm %p %d -> %d\n", realm,
 66	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
 67	/*
 68	 * since we _only_ increment realm refs or empty the empty
 69	 * list with snap_rwsem held, adjusting the empty list here is
 70	 * safe.  we do need to protect against concurrent empty list
 71	 * additions, however.
 72	 */
 73	if (atomic_read(&realm->nref) == 0) {
 74		spin_lock(&mdsc->snap_empty_lock);
 75		list_del_init(&realm->empty_item);
 76		spin_unlock(&mdsc->snap_empty_lock);
 77	}
 78
 79	atomic_inc(&realm->nref);
 
 
 
 80}
 81
 82static void __insert_snap_realm(struct rb_root *root,
 83				struct ceph_snap_realm *new)
 84{
 85	struct rb_node **p = &root->rb_node;
 86	struct rb_node *parent = NULL;
 87	struct ceph_snap_realm *r = NULL;
 88
 89	while (*p) {
 90		parent = *p;
 91		r = rb_entry(parent, struct ceph_snap_realm, node);
 92		if (new->ino < r->ino)
 93			p = &(*p)->rb_left;
 94		else if (new->ino > r->ino)
 95			p = &(*p)->rb_right;
 96		else
 97			BUG();
 98	}
 99
100	rb_link_node(&new->node, parent, p);
101	rb_insert_color(&new->node, root);
102}
103
104/*
105 * create and get the realm rooted at @ino and bump its ref count.
106 *
107 * caller must hold snap_rwsem for write.
108 */
109static struct ceph_snap_realm *ceph_create_snap_realm(
110	struct ceph_mds_client *mdsc,
111	u64 ino)
112{
113	struct ceph_snap_realm *realm;
114
 
 
115	realm = kzalloc(sizeof(*realm), GFP_NOFS);
116	if (!realm)
117		return ERR_PTR(-ENOMEM);
118
119	atomic_set(&realm->nref, 0);    /* tree does not take a ref */
 
 
 
 
120	realm->ino = ino;
121	INIT_LIST_HEAD(&realm->children);
122	INIT_LIST_HEAD(&realm->child_item);
123	INIT_LIST_HEAD(&realm->empty_item);
124	INIT_LIST_HEAD(&realm->dirty_item);
 
125	INIT_LIST_HEAD(&realm->inodes_with_caps);
126	spin_lock_init(&realm->inodes_with_caps_lock);
127	__insert_snap_realm(&mdsc->snap_realms, realm);
128	dout("create_snap_realm %llx %p\n", realm->ino, realm);
 
 
129	return realm;
130}
131
132/*
133 * lookup the realm rooted at @ino.
134 *
135 * caller must hold snap_rwsem for write.
136 */
137struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
138					       u64 ino)
139{
140	struct rb_node *n = mdsc->snap_realms.rb_node;
141	struct ceph_snap_realm *r;
142
 
 
143	while (n) {
144		r = rb_entry(n, struct ceph_snap_realm, node);
145		if (ino < r->ino)
146			n = n->rb_left;
147		else if (ino > r->ino)
148			n = n->rb_right;
149		else {
150			dout("lookup_snap_realm %llx %p\n", r->ino, r);
151			return r;
152		}
153	}
154	return NULL;
155}
156
 
 
 
 
 
 
 
 
 
 
157static void __put_snap_realm(struct ceph_mds_client *mdsc,
158			     struct ceph_snap_realm *realm);
159
160/*
161 * called with snap_rwsem (write)
162 */
163static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
164				 struct ceph_snap_realm *realm)
165{
166	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
 
 
167
168	rb_erase(&realm->node, &mdsc->snap_realms);
 
169
170	if (realm->parent) {
171		list_del_init(&realm->child_item);
172		__put_snap_realm(mdsc, realm->parent);
173	}
174
175	kfree(realm->prior_parent_snaps);
176	kfree(realm->snaps);
177	ceph_put_snap_context(realm->cached_context);
178	kfree(realm);
179}
180
181/*
182 * caller holds snap_rwsem (write)
183 */
184static void __put_snap_realm(struct ceph_mds_client *mdsc,
185			     struct ceph_snap_realm *realm)
186{
187	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
188	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
 
 
 
 
189	if (atomic_dec_and_test(&realm->nref))
190		__destroy_snap_realm(mdsc, realm);
191}
192
193/*
194 * caller needn't hold any locks
195 */
196void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
197			 struct ceph_snap_realm *realm)
198{
199	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
200	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
201	if (!atomic_dec_and_test(&realm->nref))
202		return;
203
204	if (down_write_trylock(&mdsc->snap_rwsem)) {
 
205		__destroy_snap_realm(mdsc, realm);
206		up_write(&mdsc->snap_rwsem);
207	} else {
208		spin_lock(&mdsc->snap_empty_lock);
209		list_add(&realm->empty_item, &mdsc->snap_empty);
210		spin_unlock(&mdsc->snap_empty_lock);
211	}
212}
213
214/*
215 * Clean up any realms whose ref counts have dropped to zero.  Note
216 * that this does not include realms who were created but not yet
217 * used.
218 *
219 * Called under snap_rwsem (write)
220 */
221static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
222{
223	struct ceph_snap_realm *realm;
224
 
 
225	spin_lock(&mdsc->snap_empty_lock);
226	while (!list_empty(&mdsc->snap_empty)) {
227		realm = list_first_entry(&mdsc->snap_empty,
228				   struct ceph_snap_realm, empty_item);
229		list_del(&realm->empty_item);
230		spin_unlock(&mdsc->snap_empty_lock);
231		__destroy_snap_realm(mdsc, realm);
232		spin_lock(&mdsc->snap_empty_lock);
233	}
234	spin_unlock(&mdsc->snap_empty_lock);
235}
236
237void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
238{
 
 
239	down_write(&mdsc->snap_rwsem);
 
 
 
240	__cleanup_empty_realms(mdsc);
241	up_write(&mdsc->snap_rwsem);
242}
243
244/*
245 * adjust the parent realm of a given @realm.  adjust child list, and parent
246 * pointers, and ref counts appropriately.
247 *
248 * return true if parent was changed, 0 if unchanged, <0 on error.
249 *
250 * caller must hold snap_rwsem for write.
251 */
252static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
253				    struct ceph_snap_realm *realm,
254				    u64 parentino)
255{
256	struct ceph_snap_realm *parent;
257
 
 
258	if (realm->parent_ino == parentino)
259		return 0;
260
261	parent = ceph_lookup_snap_realm(mdsc, parentino);
262	if (!parent) {
263		parent = ceph_create_snap_realm(mdsc, parentino);
264		if (IS_ERR(parent))
265			return PTR_ERR(parent);
266	}
267	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
268	     realm->ino, realm, realm->parent_ino, realm->parent,
269	     parentino, parent);
270	if (realm->parent) {
271		list_del_init(&realm->child_item);
272		ceph_put_snap_realm(mdsc, realm->parent);
273	}
274	realm->parent_ino = parentino;
275	realm->parent = parent;
276	ceph_get_snap_realm(mdsc, parent);
277	list_add(&realm->child_item, &parent->children);
278	return 1;
279}
280
281
282static int cmpu64_rev(const void *a, const void *b)
283{
284	if (*(u64 *)a < *(u64 *)b)
285		return 1;
286	if (*(u64 *)a > *(u64 *)b)
287		return -1;
288	return 0;
289}
290
 
291/*
292 * build the snap context for a given realm.
293 */
294static int build_snap_context(struct ceph_snap_realm *realm)
 
 
295{
296	struct ceph_snap_realm *parent = realm->parent;
297	struct ceph_snap_context *snapc;
298	int err = 0;
299	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
300
301	/*
302	 * build parent context, if it hasn't been built.
303	 * conservatively estimate that all parent snaps might be
304	 * included by us.
305	 */
306	if (parent) {
307		if (!parent->cached_context) {
308			err = build_snap_context(parent);
309			if (err)
310				goto fail;
311		}
312		num += parent->cached_context->num_snaps;
313	}
314
315	/* do i actually need to update?  not if my context seq
316	   matches realm seq, and my parents' does to.  (this works
317	   because we rebuild_snap_realms() works _downward_ in
318	   hierarchy after each update.) */
319	if (realm->cached_context &&
320	    realm->cached_context->seq == realm->seq &&
321	    (!parent ||
322	     realm->cached_context->seq >= parent->cached_context->seq)) {
323		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
324		     " (unchanged)\n",
325		     realm->ino, realm, realm->cached_context,
326		     realm->cached_context->seq,
327		     (unsigned int) realm->cached_context->num_snaps);
328		return 0;
329	}
330
331	/* alloc new snap context */
332	err = -ENOMEM;
333	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
334		goto fail;
335	snapc = ceph_create_snap_context(num, GFP_NOFS);
336	if (!snapc)
337		goto fail;
338
339	/* build (reverse sorted) snap vector */
340	num = 0;
341	snapc->seq = realm->seq;
342	if (parent) {
343		u32 i;
344
345		/* include any of parent's snaps occurring _after_ my
346		   parent became my parent */
347		for (i = 0; i < parent->cached_context->num_snaps; i++)
348			if (parent->cached_context->snaps[i] >=
349			    realm->parent_since)
350				snapc->snaps[num++] =
351					parent->cached_context->snaps[i];
352		if (parent->cached_context->seq > snapc->seq)
353			snapc->seq = parent->cached_context->seq;
354	}
355	memcpy(snapc->snaps + num, realm->snaps,
356	       sizeof(u64)*realm->num_snaps);
357	num += realm->num_snaps;
358	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
359	       sizeof(u64)*realm->num_prior_parent_snaps);
360	num += realm->num_prior_parent_snaps;
361
362	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
363	snapc->num_snaps = num;
364	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
365	     realm->ino, realm, snapc, snapc->seq,
366	     (unsigned int) snapc->num_snaps);
367
368	if (realm->cached_context)
369		ceph_put_snap_context(realm->cached_context);
370	realm->cached_context = snapc;
 
 
371	return 0;
372
373fail:
374	/*
375	 * if we fail, clear old (incorrect) cached_context... hopefully
376	 * we'll have better luck building it later
377	 */
378	if (realm->cached_context) {
379		ceph_put_snap_context(realm->cached_context);
380		realm->cached_context = NULL;
381	}
382	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
383	       realm, err);
384	return err;
385}
386
387/*
388 * rebuild snap context for the given realm and all of its children.
389 */
390static void rebuild_snap_realms(struct ceph_snap_realm *realm)
 
391{
392	struct ceph_snap_realm *child;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393
394	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
395	build_snap_context(realm);
 
 
396
397	list_for_each_entry(child, &realm->children, child_item)
398		rebuild_snap_realms(child);
 
 
399}
400
401
402/*
403 * helper to allocate and decode an array of snapids.  free prior
404 * instance, if any.
405 */
406static int dup_array(u64 **dst, __le64 *src, u32 num)
407{
408	u32 i;
409
410	kfree(*dst);
411	if (num) {
412		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
413		if (!*dst)
414			return -ENOMEM;
415		for (i = 0; i < num; i++)
416			(*dst)[i] = get_unaligned_le64(src + i);
417	} else {
418		*dst = NULL;
419	}
420	return 0;
421}
422
 
 
 
 
 
 
 
 
423
424/*
425 * When a snapshot is applied, the size/mtime inode metadata is queued
426 * in a ceph_cap_snap (one for each snapshot) until writeback
427 * completes and the metadata can be flushed back to the MDS.
428 *
429 * However, if a (sync) write is currently in-progress when we apply
430 * the snapshot, we have to wait until the write succeeds or fails
431 * (and a final size/mtime is known).  In this case the
432 * cap_snap->writing = 1, and is said to be "pending."  When the write
433 * finishes, we __ceph_finish_cap_snap().
434 *
435 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
436 * change).
437 */
438void ceph_queue_cap_snap(struct ceph_inode_info *ci)
 
439{
440	struct inode *inode = &ci->vfs_inode;
441	struct ceph_cap_snap *capsnap;
 
 
442	int used, dirty;
443
444	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
445	if (!capsnap) {
446		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
447		return;
448	}
449
450	spin_lock(&ci->i_ceph_lock);
451	used = __ceph_caps_used(ci);
452	dirty = __ceph_caps_dirty(ci);
453
 
 
 
454	/*
455	 * If there is a write in progress, treat that as a dirty Fw,
456	 * even though it hasn't completed yet; by the time we finish
457	 * up this capsnap it will be.
458	 */
459	if (used & CEPH_CAP_FILE_WR)
460		dirty |= CEPH_CAP_FILE_WR;
461
462	if (__ceph_have_pending_cap_snap(ci)) {
463		/* there is no point in queuing multiple "pending" cap_snaps,
464		   as no new writes are allowed to start when pending, so any
465		   writes in progress now were started before the previous
466		   cap_snap.  lucky us. */
467		dout("queue_cap_snap %p already pending\n", inode);
468		kfree(capsnap);
469	} else if (dirty & (CEPH_CAP_AUTH_EXCL|CEPH_CAP_XATTR_EXCL|
470			    CEPH_CAP_FILE_EXCL|CEPH_CAP_FILE_WR)) {
471		struct ceph_snap_context *snapc = ci->i_head_snapc;
 
 
 
 
 
472
473		/*
474		 * if we are a sync write, we may need to go to the snaprealm
475		 * to get the current snapc.
476		 */
477		if (!snapc)
478			snapc = ci->i_snap_realm->cached_context;
479
480		dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n",
481		     inode, capsnap, snapc, ceph_cap_string(dirty));
482		ihold(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483
484		atomic_set(&capsnap->nref, 1);
485		capsnap->ci = ci;
486		INIT_LIST_HEAD(&capsnap->ci_item);
487		INIT_LIST_HEAD(&capsnap->flushing_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488
489		capsnap->follows = snapc->seq;
490		capsnap->issued = __ceph_caps_issued(ci, NULL);
491		capsnap->dirty = dirty;
492
493		capsnap->mode = inode->i_mode;
494		capsnap->uid = inode->i_uid;
495		capsnap->gid = inode->i_gid;
496
497		if (dirty & CEPH_CAP_XATTR_EXCL) {
498			__ceph_build_xattrs_blob(ci);
499			capsnap->xattr_blob =
500				ceph_buffer_get(ci->i_xattrs.blob);
501			capsnap->xattr_version = ci->i_xattrs.version;
502		} else {
503			capsnap->xattr_blob = NULL;
504			capsnap->xattr_version = 0;
505		}
506
507		/* dirty page count moved from _head to this cap_snap;
508		   all subsequent writes page dirties occur _after_ this
509		   snapshot. */
510		capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
511		ci->i_wrbuffer_ref_head = 0;
512		capsnap->context = snapc;
513		ci->i_head_snapc =
514			ceph_get_snap_context(ci->i_snap_realm->cached_context);
515		dout(" new snapc is %p\n", ci->i_head_snapc);
516		list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
517
518		if (used & CEPH_CAP_FILE_WR) {
519			dout("queue_cap_snap %p cap_snap %p snapc %p"
520			     " seq %llu used WR, now pending\n", inode,
521			     capsnap, snapc, snapc->seq);
522			capsnap->writing = 1;
523		} else {
524			/* note mtime, size NOW. */
525			__ceph_finish_cap_snap(ci, capsnap);
526		}
527	} else {
528		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
529		kfree(capsnap);
530	}
 
 
531
 
 
 
 
 
 
 
 
 
 
532	spin_unlock(&ci->i_ceph_lock);
 
 
 
533}
534
535/*
536 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
537 * to be used for the snapshot, to be flushed back to the mds.
538 *
539 * If capsnap can now be flushed, add to snap_flush list, and return 1.
540 *
541 * Caller must hold i_ceph_lock.
542 */
543int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
544			    struct ceph_cap_snap *capsnap)
545{
546	struct inode *inode = &ci->vfs_inode;
547	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
548
549	BUG_ON(capsnap->writing);
550	capsnap->size = inode->i_size;
551	capsnap->mtime = inode->i_mtime;
552	capsnap->atime = inode->i_atime;
553	capsnap->ctime = inode->i_ctime;
 
 
554	capsnap->time_warp_seq = ci->i_time_warp_seq;
 
 
555	if (capsnap->dirty_pages) {
556		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
557		     "still has %d dirty pages\n", inode, capsnap,
558		     capsnap->context, capsnap->context->seq,
559		     ceph_cap_string(capsnap->dirty), capsnap->size,
560		     capsnap->dirty_pages);
 
 
 
 
 
 
 
 
 
 
 
561		return 0;
562	}
563	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
564	     inode, capsnap, capsnap->context,
 
 
565	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
566	     capsnap->size);
567
568	spin_lock(&mdsc->snap_flush_lock);
569	list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 
570	spin_unlock(&mdsc->snap_flush_lock);
571	return 1;  /* caller may want to ceph_flush_snaps */
572}
573
574/*
575 * Queue cap_snaps for snap writeback for this realm and its children.
576 * Called under snap_rwsem, so realm topology won't change.
577 */
578static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
579{
580	struct ceph_inode_info *ci;
581	struct inode *lastinode = NULL;
582	struct ceph_snap_realm *child;
583
584	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
585
586	spin_lock(&realm->inodes_with_caps_lock);
587	list_for_each_entry(ci, &realm->inodes_with_caps,
588			    i_snap_realm_item) {
589		struct inode *inode = igrab(&ci->vfs_inode);
590		if (!inode)
591			continue;
592		spin_unlock(&realm->inodes_with_caps_lock);
593		if (lastinode)
594			iput(lastinode);
595		lastinode = inode;
596		ceph_queue_cap_snap(ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597		spin_lock(&realm->inodes_with_caps_lock);
598	}
599	spin_unlock(&realm->inodes_with_caps_lock);
600	if (lastinode)
601		iput(lastinode);
602
603	list_for_each_entry(child, &realm->children, child_item) {
604		dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
605		     realm, realm->ino, child, child->ino);
606		list_del_init(&child->dirty_item);
607		list_add(&child->dirty_item, &realm->dirty_item);
608	}
609
610	list_del_init(&realm->dirty_item);
611	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
612}
613
614/*
615 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
616 * the snap realm parameters from a given realm and all of its ancestors,
617 * up to the root.
618 *
619 * Caller must hold snap_rwsem for write.
620 */
621int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
622			   void *p, void *e, bool deletion)
 
623{
624	struct ceph_mds_snap_realm *ri;    /* encoded */
625	__le64 *snaps;                     /* encoded */
626	__le64 *prior_parent_snaps;        /* encoded */
627	struct ceph_snap_realm *realm;
628	int invalidate = 0;
 
 
 
629	int err = -ENOMEM;
 
630	LIST_HEAD(dirty_realms);
631
632	dout("update_snap_trace deletion=%d\n", deletion);
 
 
633more:
 
 
634	ceph_decode_need(&p, e, sizeof(*ri), bad);
635	ri = p;
636	p += sizeof(*ri);
637	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
638			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
639	snaps = p;
640	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
641	prior_parent_snaps = p;
642	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
643
644	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
645	if (!realm) {
646		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
647		if (IS_ERR(realm)) {
648			err = PTR_ERR(realm);
649			goto fail;
650		}
651	}
652
653	/* ensure the parent is correct */
654	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
655	if (err < 0)
656		goto fail;
657	invalidate += err;
658
659	if (le64_to_cpu(ri->seq) > realm->seq) {
660		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
661		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
662		/* update realm parameters, snap lists */
663		realm->seq = le64_to_cpu(ri->seq);
664		realm->created = le64_to_cpu(ri->created);
665		realm->parent_since = le64_to_cpu(ri->parent_since);
666
667		realm->num_snaps = le32_to_cpu(ri->num_snaps);
668		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
669		if (err < 0)
670			goto fail;
671
672		realm->num_prior_parent_snaps =
673			le32_to_cpu(ri->num_prior_parent_snaps);
674		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
675				realm->num_prior_parent_snaps);
676		if (err < 0)
677			goto fail;
678
679		/* queue realm for cap_snap creation */
680		list_add(&realm->dirty_item, &dirty_realms);
681
682		invalidate = 1;
683	} else if (!realm->cached_context) {
684		dout("update_snap_trace %llx %p seq %lld new\n",
685		     realm->ino, realm, realm->seq);
686		invalidate = 1;
687	} else {
688		dout("update_snap_trace %llx %p seq %lld unchanged\n",
689		     realm->ino, realm, realm->seq);
690	}
691
692	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
693	     realm, invalidate, p, e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694
695	if (p < e)
696		goto more;
697
698	/* invalidate when we reach the _end_ (root) of the trace */
699	if (invalidate)
700		rebuild_snap_realms(realm);
701
702	/*
703	 * queue cap snaps _after_ we've built the new snap contexts,
704	 * so that i_head_snapc can be set appropriately.
705	 */
706	while (!list_empty(&dirty_realms)) {
707		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
708					 dirty_item);
 
709		queue_realm_cap_snaps(realm);
710	}
711
 
 
 
 
 
712	__cleanup_empty_realms(mdsc);
713	return 0;
714
715bad:
716	err = -EINVAL;
717fail:
718	pr_err("update_snap_trace error %d\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719	return err;
720}
721
722
723/*
724 * Send any cap_snaps that are queued for flush.  Try to carry
725 * s_mutex across multiple snap flushes to avoid locking overhead.
726 *
727 * Caller holds no locks.
728 */
729static void flush_snaps(struct ceph_mds_client *mdsc)
730{
731	struct ceph_inode_info *ci;
732	struct inode *inode;
733	struct ceph_mds_session *session = NULL;
734
735	dout("flush_snaps\n");
736	spin_lock(&mdsc->snap_flush_lock);
737	while (!list_empty(&mdsc->snap_flush_list)) {
738		ci = list_first_entry(&mdsc->snap_flush_list,
739				struct ceph_inode_info, i_snap_flush_item);
740		inode = &ci->vfs_inode;
741		ihold(inode);
742		spin_unlock(&mdsc->snap_flush_lock);
743		spin_lock(&ci->i_ceph_lock);
744		__ceph_flush_snaps(ci, &session, 0);
745		spin_unlock(&ci->i_ceph_lock);
746		iput(inode);
747		spin_lock(&mdsc->snap_flush_lock);
748	}
749	spin_unlock(&mdsc->snap_flush_lock);
750
751	if (session) {
752		mutex_unlock(&session->s_mutex);
753		ceph_put_mds_session(session);
754	}
755	dout("flush_snaps done\n");
756}
757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758
759/*
760 * Handle a snap notification from the MDS.
761 *
762 * This can take two basic forms: the simplest is just a snap creation
763 * or deletion notification on an existing realm.  This should update the
764 * realm and its children.
765 *
766 * The more difficult case is realm creation, due to snap creation at a
767 * new point in the file hierarchy, or due to a rename that moves a file or
768 * directory into another realm.
769 */
770void ceph_handle_snap(struct ceph_mds_client *mdsc,
771		      struct ceph_mds_session *session,
772		      struct ceph_msg *msg)
773{
774	struct super_block *sb = mdsc->fsc->sb;
775	int mds = session->s_mds;
776	u64 split;
777	int op;
778	int trace_len;
779	struct ceph_snap_realm *realm = NULL;
780	void *p = msg->front.iov_base;
781	void *e = p + msg->front.iov_len;
782	struct ceph_mds_snap_head *h;
783	int num_split_inos, num_split_realms;
784	__le64 *split_inos = NULL, *split_realms = NULL;
785	int i;
786	int locked_rwsem = 0;
 
787
788	/* decode */
789	if (msg->front.iov_len < sizeof(*h))
790		goto bad;
791	h = p;
792	op = le32_to_cpu(h->op);
793	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
794					  * existing realm */
795	num_split_inos = le32_to_cpu(h->num_split_inos);
796	num_split_realms = le32_to_cpu(h->num_split_realms);
797	trace_len = le32_to_cpu(h->trace_len);
798	p += sizeof(*h);
799
800	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
801	     ceph_snap_op_name(op), split, trace_len);
802
803	mutex_lock(&session->s_mutex);
804	session->s_seq++;
805	mutex_unlock(&session->s_mutex);
806
807	down_write(&mdsc->snap_rwsem);
808	locked_rwsem = 1;
809
810	if (op == CEPH_SNAP_OP_SPLIT) {
811		struct ceph_mds_snap_realm *ri;
812
813		/*
814		 * A "split" breaks part of an existing realm off into
815		 * a new realm.  The MDS provides a list of inodes
816		 * (with caps) and child realms that belong to the new
817		 * child.
818		 */
819		split_inos = p;
820		p += sizeof(u64) * num_split_inos;
821		split_realms = p;
822		p += sizeof(u64) * num_split_realms;
823		ceph_decode_need(&p, e, sizeof(*ri), bad);
824		/* we will peek at realm info here, but will _not_
825		 * advance p, as the realm update will occur below in
826		 * ceph_update_snap_trace. */
827		ri = p;
828
829		realm = ceph_lookup_snap_realm(mdsc, split);
830		if (!realm) {
831			realm = ceph_create_snap_realm(mdsc, split);
832			if (IS_ERR(realm))
833				goto out;
834		}
835		ceph_get_snap_realm(mdsc, realm);
836
837		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
838		for (i = 0; i < num_split_inos; i++) {
839			struct ceph_vino vino = {
840				.ino = le64_to_cpu(split_inos[i]),
841				.snap = CEPH_NOSNAP,
842			};
843			struct inode *inode = ceph_find_inode(sb, vino);
844			struct ceph_inode_info *ci;
845			struct ceph_snap_realm *oldrealm;
846
847			if (!inode)
848				continue;
849			ci = ceph_inode(inode);
850
851			spin_lock(&ci->i_ceph_lock);
852			if (!ci->i_snap_realm)
853				goto skip_inode;
854			/*
855			 * If this inode belongs to a realm that was
856			 * created after our new realm, we experienced
857			 * a race (due to another split notifications
858			 * arriving from a different MDS).  So skip
859			 * this inode.
860			 */
861			if (ci->i_snap_realm->created >
862			    le64_to_cpu(ri->created)) {
863				dout(" leaving %p in newer realm %llx %p\n",
864				     inode, ci->i_snap_realm->ino,
865				     ci->i_snap_realm);
866				goto skip_inode;
867			}
868			dout(" will move %p to split realm %llx %p\n",
869			     inode, realm->ino, realm);
870			/*
871			 * Move the inode to the new realm
872			 */
873			spin_lock(&realm->inodes_with_caps_lock);
874			list_del_init(&ci->i_snap_realm_item);
875			list_add(&ci->i_snap_realm_item,
876				 &realm->inodes_with_caps);
877			oldrealm = ci->i_snap_realm;
878			ci->i_snap_realm = realm;
879			spin_unlock(&realm->inodes_with_caps_lock);
880			spin_unlock(&ci->i_ceph_lock);
881
882			ceph_get_snap_realm(mdsc, realm);
883			ceph_put_snap_realm(mdsc, oldrealm);
884
885			iput(inode);
886			continue;
887
888skip_inode:
889			spin_unlock(&ci->i_ceph_lock);
890			iput(inode);
891		}
892
893		/* we may have taken some of the old realm's children. */
894		for (i = 0; i < num_split_realms; i++) {
895			struct ceph_snap_realm *child =
896				ceph_lookup_snap_realm(mdsc,
897					   le64_to_cpu(split_realms[i]));
898			if (!child)
899				continue;
900			adjust_snap_realm_parent(mdsc, child, realm->ino);
901		}
902	}
903
904	/*
905	 * update using the provided snap trace. if we are deleting a
906	 * snap, we can avoid queueing cap_snaps.
907	 */
908	ceph_update_snap_trace(mdsc, p, e,
909			       op == CEPH_SNAP_OP_DESTROY);
 
 
 
 
910
911	if (op == CEPH_SNAP_OP_SPLIT)
912		/* we took a reference when we created the realm, above */
913		ceph_put_snap_realm(mdsc, realm);
914
915	__cleanup_empty_realms(mdsc);
916
917	up_write(&mdsc->snap_rwsem);
918
919	flush_snaps(mdsc);
920	return;
921
922bad:
923	pr_err("corrupt snap message from mds%d\n", mds);
924	ceph_msg_dump(msg);
925out:
926	if (locked_rwsem)
927		up_write(&mdsc->snap_rwsem);
 
 
 
928	return;
929}
930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931
 
 
 
 
 
 
 
 
 
932
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/fs.h>
   5#include <linux/sort.h>
   6#include <linux/slab.h>
   7#include <linux/iversion.h>
   8#include "super.h"
   9#include "mds_client.h"
 
  10#include <linux/ceph/decode.h>
  11
  12/* unused map expires after 5 minutes */
  13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  14
  15/*
  16 * Snapshots in ceph are driven in large part by cooperation from the
  17 * client.  In contrast to local file systems or file servers that
  18 * implement snapshots at a single point in the system, ceph's
  19 * distributed access to storage requires clients to help decide
  20 * whether a write logically occurs before or after a recently created
  21 * snapshot.
  22 *
  23 * This provides a perfect instantanous client-wide snapshot.  Between
  24 * clients, however, snapshots may appear to be applied at slightly
  25 * different points in time, depending on delays in delivering the
  26 * snapshot notification.
  27 *
  28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  29 * applies to the subdirectory nested beneath some directory.  This
  30 * effectively divides the hierarchy into multiple "realms," where all
  31 * of the files contained by each realm share the same set of
  32 * snapshots.  An individual realm's snap set contains snapshots
  33 * explicitly created on that realm, as well as any snaps in its
  34 * parent's snap set _after_ the point at which the parent became it's
  35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  36 * during the time intervals during which they were the parent are included.
  37 *
  38 * The client is spared most of this detail, fortunately... it must only
  39 * maintains a hierarchy of realms reflecting the current parent/child
  40 * realm relationship, and for each realm has an explicit list of snaps
  41 * inherited from prior parents.
  42 *
  43 * A snap_realm struct is maintained for realms containing every inode
  44 * with an open cap in the system.  (The needed snap realm information is
  45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  46 * version number is used to ensure that as realm parameters change (new
  47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  48 *
  49 * The realm hierarchy drives the generation of a 'snap context' for each
  50 * realm, which simply lists the resulting set of snaps for the realm.  This
  51 * is attached to any writes sent to OSDs.
  52 */
  53/*
  54 * Unfortunately error handling is a bit mixed here.  If we get a snap
  55 * update, but don't have enough memory to update our realm hierarchy,
  56 * it's not clear what we can do about it (besides complaining to the
  57 * console).
  58 */
  59
  60
  61/*
  62 * increase ref count for the realm
  63 *
  64 * caller must hold snap_rwsem.
  65 */
  66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  67			 struct ceph_snap_realm *realm)
  68{
  69	lockdep_assert_held(&mdsc->snap_rwsem);
  70
  71	/*
  72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
  73	 * atomically with the refcount change. Go ahead and bump the
  74	 * nref here, unless it's 0, in which case we take the spinlock
  75	 * and then do the increment and remove it from the list.
  76	 */
  77	if (atomic_inc_not_zero(&realm->nref))
  78		return;
 
 
 
  79
  80	spin_lock(&mdsc->snap_empty_lock);
  81	if (atomic_inc_return(&realm->nref) == 1)
  82		list_del_init(&realm->empty_item);
  83	spin_unlock(&mdsc->snap_empty_lock);
  84}
  85
  86static void __insert_snap_realm(struct rb_root *root,
  87				struct ceph_snap_realm *new)
  88{
  89	struct rb_node **p = &root->rb_node;
  90	struct rb_node *parent = NULL;
  91	struct ceph_snap_realm *r = NULL;
  92
  93	while (*p) {
  94		parent = *p;
  95		r = rb_entry(parent, struct ceph_snap_realm, node);
  96		if (new->ino < r->ino)
  97			p = &(*p)->rb_left;
  98		else if (new->ino > r->ino)
  99			p = &(*p)->rb_right;
 100		else
 101			BUG();
 102	}
 103
 104	rb_link_node(&new->node, parent, p);
 105	rb_insert_color(&new->node, root);
 106}
 107
 108/*
 109 * create and get the realm rooted at @ino and bump its ref count.
 110 *
 111 * caller must hold snap_rwsem for write.
 112 */
 113static struct ceph_snap_realm *ceph_create_snap_realm(
 114	struct ceph_mds_client *mdsc,
 115	u64 ino)
 116{
 117	struct ceph_snap_realm *realm;
 118
 119	lockdep_assert_held_write(&mdsc->snap_rwsem);
 120
 121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 122	if (!realm)
 123		return ERR_PTR(-ENOMEM);
 124
 125	/* Do not release the global dummy snaprealm until unmouting */
 126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
 127		atomic_set(&realm->nref, 2);
 128	else
 129		atomic_set(&realm->nref, 1);
 130	realm->ino = ino;
 131	INIT_LIST_HEAD(&realm->children);
 132	INIT_LIST_HEAD(&realm->child_item);
 133	INIT_LIST_HEAD(&realm->empty_item);
 134	INIT_LIST_HEAD(&realm->dirty_item);
 135	INIT_LIST_HEAD(&realm->rebuild_item);
 136	INIT_LIST_HEAD(&realm->inodes_with_caps);
 137	spin_lock_init(&realm->inodes_with_caps_lock);
 138	__insert_snap_realm(&mdsc->snap_realms, realm);
 139	mdsc->num_snap_realms++;
 140
 141	dout("%s %llx %p\n", __func__, realm->ino, realm);
 142	return realm;
 143}
 144
 145/*
 146 * lookup the realm rooted at @ino.
 147 *
 148 * caller must hold snap_rwsem.
 149 */
 150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 151						   u64 ino)
 152{
 153	struct rb_node *n = mdsc->snap_realms.rb_node;
 154	struct ceph_snap_realm *r;
 155
 156	lockdep_assert_held(&mdsc->snap_rwsem);
 157
 158	while (n) {
 159		r = rb_entry(n, struct ceph_snap_realm, node);
 160		if (ino < r->ino)
 161			n = n->rb_left;
 162		else if (ino > r->ino)
 163			n = n->rb_right;
 164		else {
 165			dout("%s %llx %p\n", __func__, r->ino, r);
 166			return r;
 167		}
 168	}
 169	return NULL;
 170}
 171
 172struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 173					       u64 ino)
 174{
 175	struct ceph_snap_realm *r;
 176	r = __lookup_snap_realm(mdsc, ino);
 177	if (r)
 178		ceph_get_snap_realm(mdsc, r);
 179	return r;
 180}
 181
 182static void __put_snap_realm(struct ceph_mds_client *mdsc,
 183			     struct ceph_snap_realm *realm);
 184
 185/*
 186 * called with snap_rwsem (write)
 187 */
 188static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 189				 struct ceph_snap_realm *realm)
 190{
 191	lockdep_assert_held_write(&mdsc->snap_rwsem);
 192
 193	dout("%s %p %llx\n", __func__, realm, realm->ino);
 194
 195	rb_erase(&realm->node, &mdsc->snap_realms);
 196	mdsc->num_snap_realms--;
 197
 198	if (realm->parent) {
 199		list_del_init(&realm->child_item);
 200		__put_snap_realm(mdsc, realm->parent);
 201	}
 202
 203	kfree(realm->prior_parent_snaps);
 204	kfree(realm->snaps);
 205	ceph_put_snap_context(realm->cached_context);
 206	kfree(realm);
 207}
 208
 209/*
 210 * caller holds snap_rwsem (write)
 211 */
 212static void __put_snap_realm(struct ceph_mds_client *mdsc,
 213			     struct ceph_snap_realm *realm)
 214{
 215	lockdep_assert_held_write(&mdsc->snap_rwsem);
 216
 217	/*
 218	 * We do not require the snap_empty_lock here, as any caller that
 219	 * increments the value must hold the snap_rwsem.
 220	 */
 221	if (atomic_dec_and_test(&realm->nref))
 222		__destroy_snap_realm(mdsc, realm);
 223}
 224
 225/*
 226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
 227 */
 228void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 229			 struct ceph_snap_realm *realm)
 230{
 231	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
 
 
 232		return;
 233
 234	if (down_write_trylock(&mdsc->snap_rwsem)) {
 235		spin_unlock(&mdsc->snap_empty_lock);
 236		__destroy_snap_realm(mdsc, realm);
 237		up_write(&mdsc->snap_rwsem);
 238	} else {
 
 239		list_add(&realm->empty_item, &mdsc->snap_empty);
 240		spin_unlock(&mdsc->snap_empty_lock);
 241	}
 242}
 243
 244/*
 245 * Clean up any realms whose ref counts have dropped to zero.  Note
 246 * that this does not include realms who were created but not yet
 247 * used.
 248 *
 249 * Called under snap_rwsem (write)
 250 */
 251static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 252{
 253	struct ceph_snap_realm *realm;
 254
 255	lockdep_assert_held_write(&mdsc->snap_rwsem);
 256
 257	spin_lock(&mdsc->snap_empty_lock);
 258	while (!list_empty(&mdsc->snap_empty)) {
 259		realm = list_first_entry(&mdsc->snap_empty,
 260				   struct ceph_snap_realm, empty_item);
 261		list_del(&realm->empty_item);
 262		spin_unlock(&mdsc->snap_empty_lock);
 263		__destroy_snap_realm(mdsc, realm);
 264		spin_lock(&mdsc->snap_empty_lock);
 265	}
 266	spin_unlock(&mdsc->snap_empty_lock);
 267}
 268
 269void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
 270{
 271	struct ceph_snap_realm *global_realm;
 272
 273	down_write(&mdsc->snap_rwsem);
 274	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
 275	if (global_realm)
 276		ceph_put_snap_realm(mdsc, global_realm);
 277	__cleanup_empty_realms(mdsc);
 278	up_write(&mdsc->snap_rwsem);
 279}
 280
 281/*
 282 * adjust the parent realm of a given @realm.  adjust child list, and parent
 283 * pointers, and ref counts appropriately.
 284 *
 285 * return true if parent was changed, 0 if unchanged, <0 on error.
 286 *
 287 * caller must hold snap_rwsem for write.
 288 */
 289static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 290				    struct ceph_snap_realm *realm,
 291				    u64 parentino)
 292{
 293	struct ceph_snap_realm *parent;
 294
 295	lockdep_assert_held_write(&mdsc->snap_rwsem);
 296
 297	if (realm->parent_ino == parentino)
 298		return 0;
 299
 300	parent = ceph_lookup_snap_realm(mdsc, parentino);
 301	if (!parent) {
 302		parent = ceph_create_snap_realm(mdsc, parentino);
 303		if (IS_ERR(parent))
 304			return PTR_ERR(parent);
 305	}
 306	dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
 307	     realm, realm->parent_ino, realm->parent, parentino, parent);
 
 308	if (realm->parent) {
 309		list_del_init(&realm->child_item);
 310		ceph_put_snap_realm(mdsc, realm->parent);
 311	}
 312	realm->parent_ino = parentino;
 313	realm->parent = parent;
 
 314	list_add(&realm->child_item, &parent->children);
 315	return 1;
 316}
 317
 318
 319static int cmpu64_rev(const void *a, const void *b)
 320{
 321	if (*(u64 *)a < *(u64 *)b)
 322		return 1;
 323	if (*(u64 *)a > *(u64 *)b)
 324		return -1;
 325	return 0;
 326}
 327
 328
 329/*
 330 * build the snap context for a given realm.
 331 */
 332static int build_snap_context(struct ceph_snap_realm *realm,
 333			      struct list_head *realm_queue,
 334			      struct list_head *dirty_realms)
 335{
 336	struct ceph_snap_realm *parent = realm->parent;
 337	struct ceph_snap_context *snapc;
 338	int err = 0;
 339	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 340
 341	/*
 342	 * build parent context, if it hasn't been built.
 343	 * conservatively estimate that all parent snaps might be
 344	 * included by us.
 345	 */
 346	if (parent) {
 347		if (!parent->cached_context) {
 348			/* add to the queue head */
 349			list_add(&parent->rebuild_item, realm_queue);
 350			return 1;
 351		}
 352		num += parent->cached_context->num_snaps;
 353	}
 354
 355	/* do i actually need to update?  not if my context seq
 356	   matches realm seq, and my parents' does to.  (this works
 357	   because we rebuild_snap_realms() works _downward_ in
 358	   hierarchy after each update.) */
 359	if (realm->cached_context &&
 360	    realm->cached_context->seq == realm->seq &&
 361	    (!parent ||
 362	     realm->cached_context->seq >= parent->cached_context->seq)) {
 363		dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
 364		     __func__, realm->ino, realm, realm->cached_context,
 
 365		     realm->cached_context->seq,
 366		     (unsigned int)realm->cached_context->num_snaps);
 367		return 0;
 368	}
 369
 370	/* alloc new snap context */
 371	err = -ENOMEM;
 372	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 373		goto fail;
 374	snapc = ceph_create_snap_context(num, GFP_NOFS);
 375	if (!snapc)
 376		goto fail;
 377
 378	/* build (reverse sorted) snap vector */
 379	num = 0;
 380	snapc->seq = realm->seq;
 381	if (parent) {
 382		u32 i;
 383
 384		/* include any of parent's snaps occurring _after_ my
 385		   parent became my parent */
 386		for (i = 0; i < parent->cached_context->num_snaps; i++)
 387			if (parent->cached_context->snaps[i] >=
 388			    realm->parent_since)
 389				snapc->snaps[num++] =
 390					parent->cached_context->snaps[i];
 391		if (parent->cached_context->seq > snapc->seq)
 392			snapc->seq = parent->cached_context->seq;
 393	}
 394	memcpy(snapc->snaps + num, realm->snaps,
 395	       sizeof(u64)*realm->num_snaps);
 396	num += realm->num_snaps;
 397	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 398	       sizeof(u64)*realm->num_prior_parent_snaps);
 399	num += realm->num_prior_parent_snaps;
 400
 401	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 402	snapc->num_snaps = num;
 403	dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
 404	     realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
 
 405
 406	ceph_put_snap_context(realm->cached_context);
 
 407	realm->cached_context = snapc;
 408	/* queue realm for cap_snap creation */
 409	list_add_tail(&realm->dirty_item, dirty_realms);
 410	return 0;
 411
 412fail:
 413	/*
 414	 * if we fail, clear old (incorrect) cached_context... hopefully
 415	 * we'll have better luck building it later
 416	 */
 417	if (realm->cached_context) {
 418		ceph_put_snap_context(realm->cached_context);
 419		realm->cached_context = NULL;
 420	}
 421	pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
 
 422	return err;
 423}
 424
 425/*
 426 * rebuild snap context for the given realm and all of its children.
 427 */
 428static void rebuild_snap_realms(struct ceph_snap_realm *realm,
 429				struct list_head *dirty_realms)
 430{
 431	LIST_HEAD(realm_queue);
 432	int last = 0;
 433	bool skip = false;
 434
 435	list_add_tail(&realm->rebuild_item, &realm_queue);
 436
 437	while (!list_empty(&realm_queue)) {
 438		struct ceph_snap_realm *_realm, *child;
 439
 440		_realm = list_first_entry(&realm_queue,
 441					  struct ceph_snap_realm,
 442					  rebuild_item);
 443
 444		/*
 445		 * If the last building failed dues to memory
 446		 * issue, just empty the realm_queue and return
 447		 * to avoid infinite loop.
 448		 */
 449		if (last < 0) {
 450			list_del_init(&_realm->rebuild_item);
 451			continue;
 452		}
 453
 454		last = build_snap_context(_realm, &realm_queue, dirty_realms);
 455		dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
 456		     last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
 457
 458		/* is any child in the list ? */
 459		list_for_each_entry(child, &_realm->children, child_item) {
 460			if (!list_empty(&child->rebuild_item)) {
 461				skip = true;
 462				break;
 463			}
 464		}
 465
 466		if (!skip) {
 467			list_for_each_entry(child, &_realm->children, child_item)
 468				list_add_tail(&child->rebuild_item, &realm_queue);
 469		}
 470
 471		/* last == 1 means need to build parent first */
 472		if (last <= 0)
 473			list_del_init(&_realm->rebuild_item);
 474	}
 475}
 476
 477
 478/*
 479 * helper to allocate and decode an array of snapids.  free prior
 480 * instance, if any.
 481 */
 482static int dup_array(u64 **dst, __le64 *src, u32 num)
 483{
 484	u32 i;
 485
 486	kfree(*dst);
 487	if (num) {
 488		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 489		if (!*dst)
 490			return -ENOMEM;
 491		for (i = 0; i < num; i++)
 492			(*dst)[i] = get_unaligned_le64(src + i);
 493	} else {
 494		*dst = NULL;
 495	}
 496	return 0;
 497}
 498
 499static bool has_new_snaps(struct ceph_snap_context *o,
 500			  struct ceph_snap_context *n)
 501{
 502	if (n->num_snaps == 0)
 503		return false;
 504	/* snaps are in descending order */
 505	return n->snaps[0] > o->seq;
 506}
 507
 508/*
 509 * When a snapshot is applied, the size/mtime inode metadata is queued
 510 * in a ceph_cap_snap (one for each snapshot) until writeback
 511 * completes and the metadata can be flushed back to the MDS.
 512 *
 513 * However, if a (sync) write is currently in-progress when we apply
 514 * the snapshot, we have to wait until the write succeeds or fails
 515 * (and a final size/mtime is known).  In this case the
 516 * cap_snap->writing = 1, and is said to be "pending."  When the write
 517 * finishes, we __ceph_finish_cap_snap().
 518 *
 519 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 520 * change).
 521 */
 522static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
 523				struct ceph_cap_snap **pcapsnap)
 524{
 525	struct inode *inode = &ci->netfs.inode;
 526	struct ceph_snap_context *old_snapc, *new_snapc;
 527	struct ceph_cap_snap *capsnap = *pcapsnap;
 528	struct ceph_buffer *old_blob = NULL;
 529	int used, dirty;
 530
 
 
 
 
 
 
 531	spin_lock(&ci->i_ceph_lock);
 532	used = __ceph_caps_used(ci);
 533	dirty = __ceph_caps_dirty(ci);
 534
 535	old_snapc = ci->i_head_snapc;
 536	new_snapc = ci->i_snap_realm->cached_context;
 537
 538	/*
 539	 * If there is a write in progress, treat that as a dirty Fw,
 540	 * even though it hasn't completed yet; by the time we finish
 541	 * up this capsnap it will be.
 542	 */
 543	if (used & CEPH_CAP_FILE_WR)
 544		dirty |= CEPH_CAP_FILE_WR;
 545
 546	if (__ceph_have_pending_cap_snap(ci)) {
 547		/* there is no point in queuing multiple "pending" cap_snaps,
 548		   as no new writes are allowed to start when pending, so any
 549		   writes in progress now were started before the previous
 550		   cap_snap.  lucky us. */
 551		dout("%s %p %llx.%llx already pending\n",
 552		     __func__, inode, ceph_vinop(inode));
 553		goto update_snapc;
 554	}
 555	if (ci->i_wrbuffer_ref_head == 0 &&
 556	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 557		dout("%s %p %llx.%llx nothing dirty|writing\n",
 558		     __func__, inode, ceph_vinop(inode));
 559		goto update_snapc;
 560	}
 561
 562	BUG_ON(!old_snapc);
 
 
 
 
 
 563
 564	/*
 565	 * There is no need to send FLUSHSNAP message to MDS if there is
 566	 * no new snapshot. But when there is dirty pages or on-going
 567	 * writes, we still need to create cap_snap. cap_snap is needed
 568	 * by the write path and page writeback path.
 569	 *
 570	 * also see ceph_try_drop_cap_snap()
 571	 */
 572	if (has_new_snaps(old_snapc, new_snapc)) {
 573		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 574			capsnap->need_flush = true;
 575	} else {
 576		if (!(used & CEPH_CAP_FILE_WR) &&
 577		    ci->i_wrbuffer_ref_head == 0) {
 578			dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
 579			     __func__, inode, ceph_vinop(inode));
 580			goto update_snapc;
 581		}
 582	}
 583
 584	dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
 585	     __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
 586	     ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
 587	ihold(inode);
 588
 589	capsnap->follows = old_snapc->seq;
 590	capsnap->issued = __ceph_caps_issued(ci, NULL);
 591	capsnap->dirty = dirty;
 592
 593	capsnap->mode = inode->i_mode;
 594	capsnap->uid = inode->i_uid;
 595	capsnap->gid = inode->i_gid;
 596
 597	if (dirty & CEPH_CAP_XATTR_EXCL) {
 598		old_blob = __ceph_build_xattrs_blob(ci);
 599		capsnap->xattr_blob =
 600			ceph_buffer_get(ci->i_xattrs.blob);
 601		capsnap->xattr_version = ci->i_xattrs.version;
 602	} else {
 603		capsnap->xattr_blob = NULL;
 604		capsnap->xattr_version = 0;
 605	}
 606
 607	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608
 609	/* dirty page count moved from _head to this cap_snap;
 610	   all subsequent writes page dirties occur _after_ this
 611	   snapshot. */
 612	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 613	ci->i_wrbuffer_ref_head = 0;
 614	capsnap->context = old_snapc;
 615	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 616
 617	if (used & CEPH_CAP_FILE_WR) {
 618		dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
 619		     " now pending\n", __func__, inode, ceph_vinop(inode),
 620		     capsnap, old_snapc, old_snapc->seq);
 621		capsnap->writing = 1;
 
 
 
 
 
 
 
 622	} else {
 623		/* note mtime, size NOW. */
 624		__ceph_finish_cap_snap(ci, capsnap);
 625	}
 626	*pcapsnap = NULL;
 627	old_snapc = NULL;
 628
 629update_snapc:
 630	if (ci->i_wrbuffer_ref_head == 0 &&
 631	    ci->i_wr_ref == 0 &&
 632	    ci->i_dirty_caps == 0 &&
 633	    ci->i_flushing_caps == 0) {
 634		ci->i_head_snapc = NULL;
 635	} else {
 636		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 637		dout(" new snapc is %p\n", new_snapc);
 638	}
 639	spin_unlock(&ci->i_ceph_lock);
 640
 641	ceph_buffer_put(old_blob);
 642	ceph_put_snap_context(old_snapc);
 643}
 644
 645/*
 646 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 647 * to be used for the snapshot, to be flushed back to the mds.
 648 *
 649 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 650 *
 651 * Caller must hold i_ceph_lock.
 652 */
 653int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 654			    struct ceph_cap_snap *capsnap)
 655{
 656	struct inode *inode = &ci->netfs.inode;
 657	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
 658
 659	BUG_ON(capsnap->writing);
 660	capsnap->size = i_size_read(inode);
 661	capsnap->mtime = inode->i_mtime;
 662	capsnap->atime = inode->i_atime;
 663	capsnap->ctime = inode->i_ctime;
 664	capsnap->btime = ci->i_btime;
 665	capsnap->change_attr = inode_peek_iversion_raw(inode);
 666	capsnap->time_warp_seq = ci->i_time_warp_seq;
 667	capsnap->truncate_size = ci->i_truncate_size;
 668	capsnap->truncate_seq = ci->i_truncate_seq;
 669	if (capsnap->dirty_pages) {
 670		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
 671		     "still has %d dirty pages\n", __func__, inode,
 672		     ceph_vinop(inode), capsnap, capsnap->context,
 673		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 674		     capsnap->size, capsnap->dirty_pages);
 675		return 0;
 676	}
 677
 678	/* Fb cap still in use, delay it */
 679	if (ci->i_wb_ref) {
 680		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
 681		     "used WRBUFFER, delaying\n", __func__, inode,
 682		     ceph_vinop(inode), capsnap, capsnap->context,
 683		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 684		     capsnap->size);
 685		capsnap->writing = 1;
 686		return 0;
 687	}
 688
 689	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 690	dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
 691	     __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
 692	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 693	     capsnap->size);
 694
 695	spin_lock(&mdsc->snap_flush_lock);
 696	if (list_empty(&ci->i_snap_flush_item))
 697		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 698	spin_unlock(&mdsc->snap_flush_lock);
 699	return 1;  /* caller may want to ceph_flush_snaps */
 700}
 701
 702/*
 703 * Queue cap_snaps for snap writeback for this realm and its children.
 704 * Called under snap_rwsem, so realm topology won't change.
 705 */
 706static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
 707{
 708	struct ceph_inode_info *ci;
 709	struct inode *lastinode = NULL;
 710	struct ceph_cap_snap *capsnap = NULL;
 711
 712	dout("%s %p %llx inode\n", __func__, realm, realm->ino);
 713
 714	spin_lock(&realm->inodes_with_caps_lock);
 715	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 716		struct inode *inode = igrab(&ci->netfs.inode);
 
 717		if (!inode)
 718			continue;
 719		spin_unlock(&realm->inodes_with_caps_lock);
 720		iput(lastinode);
 
 721		lastinode = inode;
 722
 723		/*
 724		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
 725		 * to reduce very possible but unnecessary frequently memory
 726		 * allocate/free in this loop.
 727		 */
 728		if (!capsnap) {
 729			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
 730			if (!capsnap) {
 731				pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
 732				       inode);
 733				return;
 734			}
 735		}
 736		capsnap->cap_flush.is_capsnap = true;
 737		refcount_set(&capsnap->nref, 1);
 738		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
 739		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
 740		INIT_LIST_HEAD(&capsnap->ci_item);
 741
 742		ceph_queue_cap_snap(ci, &capsnap);
 743		spin_lock(&realm->inodes_with_caps_lock);
 744	}
 745	spin_unlock(&realm->inodes_with_caps_lock);
 746	iput(lastinode);
 
 747
 748	if (capsnap)
 749		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
 750	dout("%s %p %llx done\n", __func__, realm, realm->ino);
 
 
 
 
 
 
 751}
 752
 753/*
 754 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 755 * the snap realm parameters from a given realm and all of its ancestors,
 756 * up to the root.
 757 *
 758 * Caller must hold snap_rwsem for write.
 759 */
 760int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 761			   void *p, void *e, bool deletion,
 762			   struct ceph_snap_realm **realm_ret)
 763{
 764	struct ceph_mds_snap_realm *ri;    /* encoded */
 765	__le64 *snaps;                     /* encoded */
 766	__le64 *prior_parent_snaps;        /* encoded */
 767	struct ceph_snap_realm *realm;
 768	struct ceph_snap_realm *first_realm = NULL;
 769	struct ceph_snap_realm *realm_to_rebuild = NULL;
 770	struct ceph_client *client = mdsc->fsc->client;
 771	int rebuild_snapcs;
 772	int err = -ENOMEM;
 773	int ret;
 774	LIST_HEAD(dirty_realms);
 775
 776	lockdep_assert_held_write(&mdsc->snap_rwsem);
 777
 778	dout("%s deletion=%d\n", __func__, deletion);
 779more:
 780	realm = NULL;
 781	rebuild_snapcs = 0;
 782	ceph_decode_need(&p, e, sizeof(*ri), bad);
 783	ri = p;
 784	p += sizeof(*ri);
 785	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 786			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 787	snaps = p;
 788	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 789	prior_parent_snaps = p;
 790	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 791
 792	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 793	if (!realm) {
 794		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 795		if (IS_ERR(realm)) {
 796			err = PTR_ERR(realm);
 797			goto fail;
 798		}
 799	}
 800
 801	/* ensure the parent is correct */
 802	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 803	if (err < 0)
 804		goto fail;
 805	rebuild_snapcs += err;
 806
 807	if (le64_to_cpu(ri->seq) > realm->seq) {
 808		dout("%s updating %llx %p %lld -> %lld\n", __func__,
 809		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
 810		/* update realm parameters, snap lists */
 811		realm->seq = le64_to_cpu(ri->seq);
 812		realm->created = le64_to_cpu(ri->created);
 813		realm->parent_since = le64_to_cpu(ri->parent_since);
 814
 815		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 816		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 817		if (err < 0)
 818			goto fail;
 819
 820		realm->num_prior_parent_snaps =
 821			le32_to_cpu(ri->num_prior_parent_snaps);
 822		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 823				realm->num_prior_parent_snaps);
 824		if (err < 0)
 825			goto fail;
 826
 827		if (realm->seq > mdsc->last_snap_seq)
 828			mdsc->last_snap_seq = realm->seq;
 829
 830		rebuild_snapcs = 1;
 831	} else if (!realm->cached_context) {
 832		dout("%s %llx %p seq %lld new\n", __func__,
 833		     realm->ino, realm, realm->seq);
 834		rebuild_snapcs = 1;
 835	} else {
 836		dout("%s %llx %p seq %lld unchanged\n", __func__,
 837		     realm->ino, realm, realm->seq);
 838	}
 839
 840	dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
 841	     realm, rebuild_snapcs, p, e);
 842
 843	/*
 844	 * this will always track the uppest parent realm from which
 845	 * we need to rebuild the snapshot contexts _downward_ in
 846	 * hierarchy.
 847	 */
 848	if (rebuild_snapcs)
 849		realm_to_rebuild = realm;
 850
 851	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
 852	if (realm_to_rebuild && p >= e)
 853		rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
 854
 855	if (!first_realm)
 856		first_realm = realm;
 857	else
 858		ceph_put_snap_realm(mdsc, realm);
 859
 860	if (p < e)
 861		goto more;
 862
 
 
 
 
 863	/*
 864	 * queue cap snaps _after_ we've built the new snap contexts,
 865	 * so that i_head_snapc can be set appropriately.
 866	 */
 867	while (!list_empty(&dirty_realms)) {
 868		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 869					 dirty_item);
 870		list_del_init(&realm->dirty_item);
 871		queue_realm_cap_snaps(realm);
 872	}
 873
 874	if (realm_ret)
 875		*realm_ret = first_realm;
 876	else
 877		ceph_put_snap_realm(mdsc, first_realm);
 878
 879	__cleanup_empty_realms(mdsc);
 880	return 0;
 881
 882bad:
 883	err = -EIO;
 884fail:
 885	if (realm && !IS_ERR(realm))
 886		ceph_put_snap_realm(mdsc, realm);
 887	if (first_realm)
 888		ceph_put_snap_realm(mdsc, first_realm);
 889	pr_err("%s error %d\n", __func__, err);
 890
 891	/*
 892	 * When receiving a corrupted snap trace we don't know what
 893	 * exactly has happened in MDS side. And we shouldn't continue
 894	 * writing to OSD, which may corrupt the snapshot contents.
 895	 *
 896	 * Just try to blocklist this kclient and then this kclient
 897	 * must be remounted to continue after the corrupted metadata
 898	 * fixed in the MDS side.
 899	 */
 900	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
 901	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
 902	if (ret)
 903		pr_err("%s failed to blocklist %s: %d\n", __func__,
 904		       ceph_pr_addr(&client->msgr.inst.addr), ret);
 905
 906	WARN(1, "%s: %s%sdo remount to continue%s",
 907	     __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
 908	     ret ? "" : " was blocklisted, ",
 909	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
 910
 911	return err;
 912}
 913
 914
 915/*
 916 * Send any cap_snaps that are queued for flush.  Try to carry
 917 * s_mutex across multiple snap flushes to avoid locking overhead.
 918 *
 919 * Caller holds no locks.
 920 */
 921static void flush_snaps(struct ceph_mds_client *mdsc)
 922{
 923	struct ceph_inode_info *ci;
 924	struct inode *inode;
 925	struct ceph_mds_session *session = NULL;
 926
 927	dout("%s\n", __func__);
 928	spin_lock(&mdsc->snap_flush_lock);
 929	while (!list_empty(&mdsc->snap_flush_list)) {
 930		ci = list_first_entry(&mdsc->snap_flush_list,
 931				struct ceph_inode_info, i_snap_flush_item);
 932		inode = &ci->netfs.inode;
 933		ihold(inode);
 934		spin_unlock(&mdsc->snap_flush_lock);
 935		ceph_flush_snaps(ci, &session);
 
 
 936		iput(inode);
 937		spin_lock(&mdsc->snap_flush_lock);
 938	}
 939	spin_unlock(&mdsc->snap_flush_lock);
 940
 941	ceph_put_mds_session(session);
 942	dout("%s done\n", __func__);
 
 
 
 943}
 944
 945/**
 946 * ceph_change_snap_realm - change the snap_realm for an inode
 947 * @inode: inode to move to new snap realm
 948 * @realm: new realm to move inode into (may be NULL)
 949 *
 950 * Detach an inode from its old snaprealm (if any) and attach it to
 951 * the new snaprealm (if any). The old snap realm reference held by
 952 * the inode is put. If realm is non-NULL, then the caller's reference
 953 * to it is taken over by the inode.
 954 */
 955void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
 956{
 957	struct ceph_inode_info *ci = ceph_inode(inode);
 958	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
 959	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
 960
 961	lockdep_assert_held(&ci->i_ceph_lock);
 962
 963	if (oldrealm) {
 964		spin_lock(&oldrealm->inodes_with_caps_lock);
 965		list_del_init(&ci->i_snap_realm_item);
 966		if (oldrealm->ino == ci->i_vino.ino)
 967			oldrealm->inode = NULL;
 968		spin_unlock(&oldrealm->inodes_with_caps_lock);
 969		ceph_put_snap_realm(mdsc, oldrealm);
 970	}
 971
 972	ci->i_snap_realm = realm;
 973
 974	if (realm) {
 975		spin_lock(&realm->inodes_with_caps_lock);
 976		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
 977		if (realm->ino == ci->i_vino.ino)
 978			realm->inode = inode;
 979		spin_unlock(&realm->inodes_with_caps_lock);
 980	}
 981}
 982
 983/*
 984 * Handle a snap notification from the MDS.
 985 *
 986 * This can take two basic forms: the simplest is just a snap creation
 987 * or deletion notification on an existing realm.  This should update the
 988 * realm and its children.
 989 *
 990 * The more difficult case is realm creation, due to snap creation at a
 991 * new point in the file hierarchy, or due to a rename that moves a file or
 992 * directory into another realm.
 993 */
 994void ceph_handle_snap(struct ceph_mds_client *mdsc,
 995		      struct ceph_mds_session *session,
 996		      struct ceph_msg *msg)
 997{
 998	struct super_block *sb = mdsc->fsc->sb;
 999	int mds = session->s_mds;
1000	u64 split;
1001	int op;
1002	int trace_len;
1003	struct ceph_snap_realm *realm = NULL;
1004	void *p = msg->front.iov_base;
1005	void *e = p + msg->front.iov_len;
1006	struct ceph_mds_snap_head *h;
1007	int num_split_inos, num_split_realms;
1008	__le64 *split_inos = NULL, *split_realms = NULL;
1009	int i;
1010	int locked_rwsem = 0;
1011	bool close_sessions = false;
1012
1013	/* decode */
1014	if (msg->front.iov_len < sizeof(*h))
1015		goto bad;
1016	h = p;
1017	op = le32_to_cpu(h->op);
1018	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1019					  * existing realm */
1020	num_split_inos = le32_to_cpu(h->num_split_inos);
1021	num_split_realms = le32_to_cpu(h->num_split_realms);
1022	trace_len = le32_to_cpu(h->trace_len);
1023	p += sizeof(*h);
1024
1025	dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1026	     mds, ceph_snap_op_name(op), split, trace_len);
1027
1028	mutex_lock(&session->s_mutex);
1029	inc_session_sequence(session);
1030	mutex_unlock(&session->s_mutex);
1031
1032	down_write(&mdsc->snap_rwsem);
1033	locked_rwsem = 1;
1034
1035	if (op == CEPH_SNAP_OP_SPLIT) {
1036		struct ceph_mds_snap_realm *ri;
1037
1038		/*
1039		 * A "split" breaks part of an existing realm off into
1040		 * a new realm.  The MDS provides a list of inodes
1041		 * (with caps) and child realms that belong to the new
1042		 * child.
1043		 */
1044		split_inos = p;
1045		p += sizeof(u64) * num_split_inos;
1046		split_realms = p;
1047		p += sizeof(u64) * num_split_realms;
1048		ceph_decode_need(&p, e, sizeof(*ri), bad);
1049		/* we will peek at realm info here, but will _not_
1050		 * advance p, as the realm update will occur below in
1051		 * ceph_update_snap_trace. */
1052		ri = p;
1053
1054		realm = ceph_lookup_snap_realm(mdsc, split);
1055		if (!realm) {
1056			realm = ceph_create_snap_realm(mdsc, split);
1057			if (IS_ERR(realm))
1058				goto out;
1059		}
 
1060
1061		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1062		for (i = 0; i < num_split_inos; i++) {
1063			struct ceph_vino vino = {
1064				.ino = le64_to_cpu(split_inos[i]),
1065				.snap = CEPH_NOSNAP,
1066			};
1067			struct inode *inode = ceph_find_inode(sb, vino);
1068			struct ceph_inode_info *ci;
 
1069
1070			if (!inode)
1071				continue;
1072			ci = ceph_inode(inode);
1073
1074			spin_lock(&ci->i_ceph_lock);
1075			if (!ci->i_snap_realm)
1076				goto skip_inode;
1077			/*
1078			 * If this inode belongs to a realm that was
1079			 * created after our new realm, we experienced
1080			 * a race (due to another split notifications
1081			 * arriving from a different MDS).  So skip
1082			 * this inode.
1083			 */
1084			if (ci->i_snap_realm->created >
1085			    le64_to_cpu(ri->created)) {
1086				dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1087				     inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1088				     ci->i_snap_realm);
1089				goto skip_inode;
1090			}
1091			dout(" will move %p %llx.%llx to split realm %llx %p\n",
1092			     inode, ceph_vinop(inode), realm->ino, realm);
 
 
 
 
 
 
 
 
 
 
 
1093
1094			ceph_get_snap_realm(mdsc, realm);
1095			ceph_change_snap_realm(inode, realm);
1096			spin_unlock(&ci->i_ceph_lock);
1097			iput(inode);
1098			continue;
1099
1100skip_inode:
1101			spin_unlock(&ci->i_ceph_lock);
1102			iput(inode);
1103		}
1104
1105		/* we may have taken some of the old realm's children. */
1106		for (i = 0; i < num_split_realms; i++) {
1107			struct ceph_snap_realm *child =
1108				__lookup_snap_realm(mdsc,
1109					   le64_to_cpu(split_realms[i]));
1110			if (!child)
1111				continue;
1112			adjust_snap_realm_parent(mdsc, child, realm->ino);
1113		}
1114	}
1115
1116	/*
1117	 * update using the provided snap trace. if we are deleting a
1118	 * snap, we can avoid queueing cap_snaps.
1119	 */
1120	if (ceph_update_snap_trace(mdsc, p, e,
1121				   op == CEPH_SNAP_OP_DESTROY,
1122				   NULL)) {
1123		close_sessions = true;
1124		goto bad;
1125	}
1126
1127	if (op == CEPH_SNAP_OP_SPLIT)
1128		/* we took a reference when we created the realm, above */
1129		ceph_put_snap_realm(mdsc, realm);
1130
1131	__cleanup_empty_realms(mdsc);
1132
1133	up_write(&mdsc->snap_rwsem);
1134
1135	flush_snaps(mdsc);
1136	return;
1137
1138bad:
1139	pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1140	ceph_msg_dump(msg);
1141out:
1142	if (locked_rwsem)
1143		up_write(&mdsc->snap_rwsem);
1144
1145	if (close_sessions)
1146		ceph_mdsc_close_sessions(mdsc);
1147	return;
1148}
1149
1150struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1151					    u64 snap)
1152{
1153	struct ceph_snapid_map *sm, *exist;
1154	struct rb_node **p, *parent;
1155	int ret;
1156
1157	exist = NULL;
1158	spin_lock(&mdsc->snapid_map_lock);
1159	p = &mdsc->snapid_map_tree.rb_node;
1160	while (*p) {
1161		exist = rb_entry(*p, struct ceph_snapid_map, node);
1162		if (snap > exist->snap) {
1163			p = &(*p)->rb_left;
1164		} else if (snap < exist->snap) {
1165			p = &(*p)->rb_right;
1166		} else {
1167			if (atomic_inc_return(&exist->ref) == 1)
1168				list_del_init(&exist->lru);
1169			break;
1170		}
1171		exist = NULL;
1172	}
1173	spin_unlock(&mdsc->snapid_map_lock);
1174	if (exist) {
1175		dout("%s found snapid map %llx -> %x\n", __func__,
1176		     exist->snap, exist->dev);
1177		return exist;
1178	}
1179
1180	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1181	if (!sm)
1182		return NULL;
1183
1184	ret = get_anon_bdev(&sm->dev);
1185	if (ret < 0) {
1186		kfree(sm);
1187		return NULL;
1188	}
1189
1190	INIT_LIST_HEAD(&sm->lru);
1191	atomic_set(&sm->ref, 1);
1192	sm->snap = snap;
1193
1194	exist = NULL;
1195	parent = NULL;
1196	p = &mdsc->snapid_map_tree.rb_node;
1197	spin_lock(&mdsc->snapid_map_lock);
1198	while (*p) {
1199		parent = *p;
1200		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201		if (snap > exist->snap)
1202			p = &(*p)->rb_left;
1203		else if (snap < exist->snap)
1204			p = &(*p)->rb_right;
1205		else
1206			break;
1207		exist = NULL;
1208	}
1209	if (exist) {
1210		if (atomic_inc_return(&exist->ref) == 1)
1211			list_del_init(&exist->lru);
1212	} else {
1213		rb_link_node(&sm->node, parent, p);
1214		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1215	}
1216	spin_unlock(&mdsc->snapid_map_lock);
1217	if (exist) {
1218		free_anon_bdev(sm->dev);
1219		kfree(sm);
1220		dout("%s found snapid map %llx -> %x\n", __func__,
1221		     exist->snap, exist->dev);
1222		return exist;
1223	}
1224
1225	dout("%s create snapid map %llx -> %x\n", __func__,
1226	     sm->snap, sm->dev);
1227	return sm;
1228}
1229
1230void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1231			 struct ceph_snapid_map *sm)
1232{
1233	if (!sm)
1234		return;
1235	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1236		if (!RB_EMPTY_NODE(&sm->node)) {
1237			sm->last_used = jiffies;
1238			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1239			spin_unlock(&mdsc->snapid_map_lock);
1240		} else {
1241			/* already cleaned up by
1242			 * ceph_cleanup_snapid_map() */
1243			spin_unlock(&mdsc->snapid_map_lock);
1244			kfree(sm);
1245		}
1246	}
1247}
1248
1249void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1250{
1251	struct ceph_snapid_map *sm;
1252	unsigned long now;
1253	LIST_HEAD(to_free);
1254
1255	spin_lock(&mdsc->snapid_map_lock);
1256	now = jiffies;
1257
1258	while (!list_empty(&mdsc->snapid_map_lru)) {
1259		sm = list_first_entry(&mdsc->snapid_map_lru,
1260				      struct ceph_snapid_map, lru);
1261		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1262			break;
1263
1264		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1265		list_move(&sm->lru, &to_free);
1266	}
1267	spin_unlock(&mdsc->snapid_map_lock);
1268
1269	while (!list_empty(&to_free)) {
1270		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1271		list_del(&sm->lru);
1272		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1273		free_anon_bdev(sm->dev);
1274		kfree(sm);
1275	}
1276}
1277
1278void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1279{
1280	struct ceph_snapid_map *sm;
1281	struct rb_node *p;
1282	LIST_HEAD(to_free);
1283
1284	spin_lock(&mdsc->snapid_map_lock);
1285	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1286		sm = rb_entry(p, struct ceph_snapid_map, node);
1287		rb_erase(p, &mdsc->snapid_map_tree);
1288		RB_CLEAR_NODE(p);
1289		list_move(&sm->lru, &to_free);
1290	}
1291	spin_unlock(&mdsc->snapid_map_lock);
1292
1293	while (!list_empty(&to_free)) {
1294		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1295		list_del(&sm->lru);
1296		free_anon_bdev(sm->dev);
1297		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1298			pr_err("snapid map %llx -> %x still in use\n",
1299			       sm->snap, sm->dev);
1300		}
1301		kfree(sm);
1302	}
1303}