Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *	Adaptec AAC series RAID controller driver
   3 *	(c) Copyright 2001 Red Hat Inc.
   4 *
   5 * based on the old aacraid driver that is..
   6 * Adaptec aacraid device driver for Linux.
   7 *
   8 * Copyright (c) 2000-2010 Adaptec, Inc.
   9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; see the file COPYING.  If not, write to
  23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Module Name:
  26 *  commsup.c
  27 *
  28 * Abstract: Contain all routines that are required for FSA host/adapter
  29 *    communication.
  30 *
  31 */
  32
  33#include <linux/kernel.h>
  34#include <linux/init.h>
 
  35#include <linux/types.h>
  36#include <linux/sched.h>
  37#include <linux/pci.h>
  38#include <linux/spinlock.h>
  39#include <linux/slab.h>
  40#include <linux/completion.h>
  41#include <linux/blkdev.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/interrupt.h>
  45#include <linux/semaphore.h>
  46#include <scsi/scsi.h>
  47#include <scsi/scsi_host.h>
  48#include <scsi/scsi_device.h>
  49#include <scsi/scsi_cmnd.h>
  50
  51#include "aacraid.h"
  52
  53/**
  54 *	fib_map_alloc		-	allocate the fib objects
  55 *	@dev: Adapter to allocate for
  56 *
  57 *	Allocate and map the shared PCI space for the FIB blocks used to
  58 *	talk to the Adaptec firmware.
  59 */
  60
  61static int fib_map_alloc(struct aac_dev *dev)
  62{
 
 
 
 
 
 
 
 
 
 
  63	dprintk((KERN_INFO
  64	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
  65	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
  66	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
  67	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
  68		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
  69		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
  70		&dev->hw_fib_pa);
  71	if (dev->hw_fib_va == NULL)
  72		return -ENOMEM;
  73	return 0;
  74}
  75
  76/**
  77 *	aac_fib_map_free		-	free the fib objects
  78 *	@dev: Adapter to free
  79 *
  80 *	Free the PCI mappings and the memory allocated for FIB blocks
  81 *	on this adapter.
  82 */
  83
  84void aac_fib_map_free(struct aac_dev *dev)
  85{
  86	pci_free_consistent(dev->pdev,
  87	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
  88	  dev->hw_fib_va, dev->hw_fib_pa);
 
 
 
 
 
 
 
 
 
 
 
  89	dev->hw_fib_va = NULL;
  90	dev->hw_fib_pa = 0;
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93/**
  94 *	aac_fib_setup	-	setup the fibs
  95 *	@dev: Adapter to set up
  96 *
  97 *	Allocate the PCI space for the fibs, map it and then initialise the
  98 *	fib area, the unmapped fib data and also the free list
  99 */
 100
 101int aac_fib_setup(struct aac_dev * dev)
 102{
 103	struct fib *fibptr;
 104	struct hw_fib *hw_fib;
 105	dma_addr_t hw_fib_pa;
 106	int i;
 
 107
 108	while (((i = fib_map_alloc(dev)) == -ENOMEM)
 109	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 110		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
 111		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
 
 
 112	}
 113	if (i<0)
 114		return -ENOMEM;
 115
 116	/* 32 byte alignment for PMC */
 117	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
 118	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 119		(hw_fib_pa - dev->hw_fib_pa));
 120	dev->hw_fib_pa = hw_fib_pa;
 121	memset(dev->hw_fib_va, 0,
 122		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
 123		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 124
 
 
 
 
 
 125	/* add Xport header */
 126	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 127		sizeof(struct aac_fib_xporthdr));
 128	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
 129
 130	hw_fib = dev->hw_fib_va;
 131	hw_fib_pa = dev->hw_fib_pa;
 132	/*
 133	 *	Initialise the fibs
 134	 */
 135	for (i = 0, fibptr = &dev->fibs[i];
 136		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 137		i++, fibptr++)
 138	{
 139		fibptr->flags = 0;
 
 140		fibptr->dev = dev;
 141		fibptr->hw_fib_va = hw_fib;
 142		fibptr->data = (void *) fibptr->hw_fib_va->data;
 143		fibptr->next = fibptr+1;	/* Forward chain the fibs */
 144		sema_init(&fibptr->event_wait, 0);
 145		spin_lock_init(&fibptr->event_lock);
 146		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 147		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
 
 148		fibptr->hw_fib_pa = hw_fib_pa;
 
 
 
 
 
 
 
 
 
 149		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 150			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
 151		hw_fib_pa = hw_fib_pa +
 152			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
 153	}
 
 
 
 
 
 
 154	/*
 155	 *	Add the fib chain to the free list
 156	 */
 157	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 158	/*
 159	 *	Enable this to debug out of queue space
 160	 */
 161	dev->free_fib = &dev->fibs[0];
 162	return 0;
 163}
 164
 165/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166 *	aac_fib_alloc	-	allocate a fib
 167 *	@dev: Adapter to allocate the fib for
 168 *
 169 *	Allocate a fib from the adapter fib pool. If the pool is empty we
 170 *	return NULL.
 171 */
 172
 173struct fib *aac_fib_alloc(struct aac_dev *dev)
 174{
 175	struct fib * fibptr;
 176	unsigned long flags;
 177	spin_lock_irqsave(&dev->fib_lock, flags);
 178	fibptr = dev->free_fib;
 179	if(!fibptr){
 180		spin_unlock_irqrestore(&dev->fib_lock, flags);
 181		return fibptr;
 182	}
 183	dev->free_fib = fibptr->next;
 184	spin_unlock_irqrestore(&dev->fib_lock, flags);
 185	/*
 186	 *	Set the proper node type code and node byte size
 187	 */
 188	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 189	fibptr->size = sizeof(struct fib);
 190	/*
 191	 *	Null out fields that depend on being zero at the start of
 192	 *	each I/O
 193	 */
 194	fibptr->hw_fib_va->header.XferState = 0;
 195	fibptr->flags = 0;
 196	fibptr->callback = NULL;
 197	fibptr->callback_data = NULL;
 198
 199	return fibptr;
 200}
 201
 202/**
 203 *	aac_fib_free	-	free a fib
 204 *	@fibptr: fib to free up
 205 *
 206 *	Frees up a fib and places it on the appropriate queue
 207 */
 208
 209void aac_fib_free(struct fib *fibptr)
 210{
 211	unsigned long flags, flagsv;
 212
 213	spin_lock_irqsave(&fibptr->event_lock, flagsv);
 214	if (fibptr->done == 2) {
 215		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
 216		return;
 217	}
 218	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
 219
 220	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 221	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 222		aac_config.fib_timeouts++;
 223	if (fibptr->hw_fib_va->header.XferState != 0) {
 
 224		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 225			 (void*)fibptr,
 226			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 227	}
 228	fibptr->next = fibptr->dev->free_fib;
 229	fibptr->dev->free_fib = fibptr;
 230	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 231}
 232
 233/**
 234 *	aac_fib_init	-	initialise a fib
 235 *	@fibptr: The fib to initialize
 236 *
 237 *	Set up the generic fib fields ready for use
 238 */
 239
 240void aac_fib_init(struct fib *fibptr)
 241{
 242	struct hw_fib *hw_fib = fibptr->hw_fib_va;
 243
 244	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
 245	hw_fib->header.StructType = FIB_MAGIC;
 246	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 247	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 248	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 249	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 250}
 251
 252/**
 253 *	fib_deallocate		-	deallocate a fib
 254 *	@fibptr: fib to deallocate
 255 *
 256 *	Will deallocate and return to the free pool the FIB pointed to by the
 257 *	caller.
 258 */
 259
 260static void fib_dealloc(struct fib * fibptr)
 261{
 262	struct hw_fib *hw_fib = fibptr->hw_fib_va;
 263	hw_fib->header.XferState = 0;
 264}
 265
 266/*
 267 *	Commuication primitives define and support the queuing method we use to
 268 *	support host to adapter commuication. All queue accesses happen through
 269 *	these routines and are the only routines which have a knowledge of the
 270 *	 how these queues are implemented.
 271 */
 272
 273/**
 274 *	aac_get_entry		-	get a queue entry
 275 *	@dev: Adapter
 276 *	@qid: Queue Number
 277 *	@entry: Entry return
 278 *	@index: Index return
 279 *	@nonotify: notification control
 280 *
 281 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
 282 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 283 *	returned.
 284 */
 285
 286static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 287{
 288	struct aac_queue * q;
 289	unsigned long idx;
 290
 291	/*
 292	 *	All of the queues wrap when they reach the end, so we check
 293	 *	to see if they have reached the end and if they have we just
 294	 *	set the index back to zero. This is a wrap. You could or off
 295	 *	the high bits in all updates but this is a bit faster I think.
 296	 */
 297
 298	q = &dev->queues->queue[qid];
 299
 300	idx = *index = le32_to_cpu(*(q->headers.producer));
 301	/* Interrupt Moderation, only interrupt for first two entries */
 302	if (idx != le32_to_cpu(*(q->headers.consumer))) {
 303		if (--idx == 0) {
 304			if (qid == AdapNormCmdQueue)
 305				idx = ADAP_NORM_CMD_ENTRIES;
 306			else
 307				idx = ADAP_NORM_RESP_ENTRIES;
 308		}
 309		if (idx != le32_to_cpu(*(q->headers.consumer)))
 310			*nonotify = 1;
 311	}
 312
 313	if (qid == AdapNormCmdQueue) {
 314		if (*index >= ADAP_NORM_CMD_ENTRIES)
 315			*index = 0; /* Wrap to front of the Producer Queue. */
 316	} else {
 317		if (*index >= ADAP_NORM_RESP_ENTRIES)
 318			*index = 0; /* Wrap to front of the Producer Queue. */
 319	}
 320
 321	/* Queue is full */
 322	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 323		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 324				qid, q->numpending);
 325		return 0;
 326	} else {
 327		*entry = q->base + *index;
 328		return 1;
 329	}
 330}
 331
 332/**
 333 *	aac_queue_get		-	get the next free QE
 334 *	@dev: Adapter
 335 *	@index: Returned index
 336 *	@priority: Priority of fib
 337 *	@fib: Fib to associate with the queue entry
 338 *	@wait: Wait if queue full
 339 *	@fibptr: Driver fib object to go with fib
 340 *	@nonotify: Don't notify the adapter
 341 *
 342 *	Gets the next free QE off the requested priorty adapter command
 343 *	queue and associates the Fib with the QE. The QE represented by
 344 *	index is ready to insert on the queue when this routine returns
 345 *	success.
 346 */
 347
 348int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 349{
 350	struct aac_entry * entry = NULL;
 351	int map = 0;
 352
 353	if (qid == AdapNormCmdQueue) {
 354		/*  if no entries wait for some if caller wants to */
 355		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 356			printk(KERN_ERR "GetEntries failed\n");
 357		}
 358		/*
 359		 *	Setup queue entry with a command, status and fib mapped
 360		 */
 361		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 362		map = 1;
 363	} else {
 364		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 365			/* if no entries wait for some if caller wants to */
 366		}
 367		/*
 368		 *	Setup queue entry with command, status and fib mapped
 369		 */
 370		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 371		entry->addr = hw_fib->header.SenderFibAddress;
 372			/* Restore adapters pointer to the FIB */
 373		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
 374		map = 0;
 375	}
 376	/*
 377	 *	If MapFib is true than we need to map the Fib and put pointers
 378	 *	in the queue entry.
 379	 */
 380	if (map)
 381		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 382	return 0;
 383}
 384
 385/*
 386 *	Define the highest level of host to adapter communication routines.
 387 *	These routines will support host to adapter FS commuication. These
 388 *	routines have no knowledge of the commuication method used. This level
 389 *	sends and receives FIBs. This level has no knowledge of how these FIBs
 390 *	get passed back and forth.
 391 */
 392
 393/**
 394 *	aac_fib_send	-	send a fib to the adapter
 395 *	@command: Command to send
 396 *	@fibptr: The fib
 397 *	@size: Size of fib data area
 398 *	@priority: Priority of Fib
 399 *	@wait: Async/sync select
 400 *	@reply: True if a reply is wanted
 401 *	@callback: Called with reply
 402 *	@callback_data: Passed to callback
 403 *
 404 *	Sends the requested FIB to the adapter and optionally will wait for a
 405 *	response FIB. If the caller does not wish to wait for a response than
 406 *	an event to wait on must be supplied. This event will be set when a
 407 *	response FIB is received from the adapter.
 408 */
 409
 410int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 411		int priority, int wait, int reply, fib_callback callback,
 412		void *callback_data)
 413{
 414	struct aac_dev * dev = fibptr->dev;
 415	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 416	unsigned long flags = 0;
 417	unsigned long qflags;
 418	unsigned long mflags = 0;
 419	unsigned long sflags = 0;
 420
 421
 422	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 423		return -EBUSY;
 
 
 
 
 424	/*
 425	 *	There are 5 cases with the wait and response requested flags.
 426	 *	The only invalid cases are if the caller requests to wait and
 427	 *	does not request a response and if the caller does not want a
 428	 *	response and the Fib is not allocated from pool. If a response
 429	 *	is not requesed the Fib will just be deallocaed by the DPC
 430	 *	routine when the response comes back from the adapter. No
 431	 *	further processing will be done besides deleting the Fib. We
 432	 *	will have a debug mode where the adapter can notify the host
 433	 *	it had a problem and the host can log that fact.
 434	 */
 435	fibptr->flags = 0;
 436	if (wait && !reply) {
 437		return -EINVAL;
 438	} else if (!wait && reply) {
 439		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 440		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 441	} else if (!wait && !reply) {
 442		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 443		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 444	} else if (wait && reply) {
 445		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 446		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 447	}
 448	/*
 449	 *	Map the fib into 32bits by using the fib number
 450	 */
 451
 452	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 453	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
 
 
 
 
 
 
 
 454	/*
 455	 *	Set FIB state to indicate where it came from and if we want a
 456	 *	response from the adapter. Also load the command from the
 457	 *	caller.
 458	 *
 459	 *	Map the hw fib pointer as a 32bit value
 460	 */
 461	hw_fib->header.Command = cpu_to_le16(command);
 462	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 463	/*
 464	 *	Set the size of the Fib we want to send to the adapter
 465	 */
 466	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 467	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 468		return -EMSGSIZE;
 469	}
 470	/*
 471	 *	Get a queue entry connect the FIB to it and send an notify
 472	 *	the adapter a command is ready.
 473	 */
 474	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 475
 476	/*
 477	 *	Fill in the Callback and CallbackContext if we are not
 478	 *	going to wait.
 479	 */
 480	if (!wait) {
 481		fibptr->callback = callback;
 482		fibptr->callback_data = callback_data;
 483		fibptr->flags = FIB_CONTEXT_FLAG;
 484	}
 485
 486	fibptr->done = 0;
 487
 488	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 489
 490	dprintk((KERN_DEBUG "Fib contents:.\n"));
 491	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 492	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 493	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 494	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 495	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 496	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 497
 498	if (!dev->queues)
 499		return -EBUSY;
 500
 501	if (wait) {
 502
 503		spin_lock_irqsave(&dev->manage_lock, mflags);
 504		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 505			printk(KERN_INFO "No management Fibs Available:%d\n",
 506						dev->management_fib_count);
 507			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 508			return -EBUSY;
 509		}
 510		dev->management_fib_count++;
 511		spin_unlock_irqrestore(&dev->manage_lock, mflags);
 512		spin_lock_irqsave(&fibptr->event_lock, flags);
 513	}
 514
 515	if (dev->sync_mode) {
 516		if (wait)
 517			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 518		spin_lock_irqsave(&dev->sync_lock, sflags);
 519		if (dev->sync_fib) {
 520			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
 521			spin_unlock_irqrestore(&dev->sync_lock, sflags);
 522		} else {
 523			dev->sync_fib = fibptr;
 524			spin_unlock_irqrestore(&dev->sync_lock, sflags);
 525			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
 526				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
 527				NULL, NULL, NULL, NULL, NULL);
 528		}
 529		if (wait) {
 530			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 531			if (down_interruptible(&fibptr->event_wait)) {
 532				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
 533				return -EFAULT;
 534			}
 535			return 0;
 536		}
 537		return -EINPROGRESS;
 538	}
 539
 540	if (aac_adapter_deliver(fibptr) != 0) {
 541		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
 542		if (wait) {
 543			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 544			spin_lock_irqsave(&dev->manage_lock, mflags);
 545			dev->management_fib_count--;
 546			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 547		}
 548		return -EBUSY;
 549	}
 550
 551
 552	/*
 553	 *	If the caller wanted us to wait for response wait now.
 554	 */
 555
 556	if (wait) {
 557		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 558		/* Only set for first known interruptable command */
 559		if (wait < 0) {
 560			/*
 561			 * *VERY* Dangerous to time out a command, the
 562			 * assumption is made that we have no hope of
 563			 * functioning because an interrupt routing or other
 564			 * hardware failure has occurred.
 565			 */
 566			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
 567			while (down_trylock(&fibptr->event_wait)) {
 568				int blink;
 569				if (time_is_before_eq_jiffies(timeout)) {
 570					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 571					spin_lock_irqsave(q->lock, qflags);
 572					q->numpending--;
 573					spin_unlock_irqrestore(q->lock, qflags);
 574					if (wait == -1) {
 575	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 576						  "Usually a result of a PCI interrupt routing problem;\n"
 577						  "update mother board BIOS or consider utilizing one of\n"
 578						  "the SAFE mode kernel options (acpi, apic etc)\n");
 579					}
 580					return -ETIMEDOUT;
 581				}
 
 
 
 
 582				if ((blink = aac_adapter_check_health(dev)) > 0) {
 583					if (wait == -1) {
 584	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 585						  "Usually a result of a serious unrecoverable hardware problem\n",
 586						  blink);
 587					}
 588					return -EFAULT;
 589				}
 590				/* We used to udelay() here but that absorbed
 591				 * a CPU when a timeout occured. Not very
 592				 * useful. */
 593				cpu_relax();
 594			}
 595		} else if (down_interruptible(&fibptr->event_wait)) {
 596			/* Do nothing ... satisfy
 597			 * down_interruptible must_check */
 598		}
 599
 600		spin_lock_irqsave(&fibptr->event_lock, flags);
 601		if (fibptr->done == 0) {
 602			fibptr->done = 2; /* Tell interrupt we aborted */
 603			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 604			return -ERESTARTSYS;
 605		}
 606		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 607		BUG_ON(fibptr->done == 0);
 608
 609		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 610			return -ETIMEDOUT;
 611		return 0;
 612	}
 613	/*
 614	 *	If the user does not want a response than return success otherwise
 615	 *	return pending
 616	 */
 617	if (reply)
 618		return -EINPROGRESS;
 619	else
 620		return 0;
 621}
 622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623/**
 624 *	aac_consumer_get	-	get the top of the queue
 625 *	@dev: Adapter
 626 *	@q: Queue
 627 *	@entry: Return entry
 628 *
 629 *	Will return a pointer to the entry on the top of the queue requested that
 630 *	we are a consumer of, and return the address of the queue entry. It does
 631 *	not change the state of the queue.
 632 */
 633
 634int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 635{
 636	u32 index;
 637	int status;
 638	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 639		status = 0;
 640	} else {
 641		/*
 642		 *	The consumer index must be wrapped if we have reached
 643		 *	the end of the queue, else we just use the entry
 644		 *	pointed to by the header index
 645		 */
 646		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 647			index = 0;
 648		else
 649			index = le32_to_cpu(*q->headers.consumer);
 650		*entry = q->base + index;
 651		status = 1;
 652	}
 653	return(status);
 654}
 655
 656/**
 657 *	aac_consumer_free	-	free consumer entry
 658 *	@dev: Adapter
 659 *	@q: Queue
 660 *	@qid: Queue ident
 661 *
 662 *	Frees up the current top of the queue we are a consumer of. If the
 663 *	queue was full notify the producer that the queue is no longer full.
 664 */
 665
 666void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 667{
 668	int wasfull = 0;
 669	u32 notify;
 670
 671	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 672		wasfull = 1;
 673
 674	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 675		*q->headers.consumer = cpu_to_le32(1);
 676	else
 677		le32_add_cpu(q->headers.consumer, 1);
 678
 679	if (wasfull) {
 680		switch (qid) {
 681
 682		case HostNormCmdQueue:
 683			notify = HostNormCmdNotFull;
 684			break;
 685		case HostNormRespQueue:
 686			notify = HostNormRespNotFull;
 687			break;
 688		default:
 689			BUG();
 690			return;
 691		}
 692		aac_adapter_notify(dev, notify);
 693	}
 694}
 695
 696/**
 697 *	aac_fib_adapter_complete	-	complete adapter issued fib
 698 *	@fibptr: fib to complete
 699 *	@size: size of fib
 700 *
 701 *	Will do all necessary work to complete a FIB that was sent from
 702 *	the adapter.
 703 */
 704
 705int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 706{
 707	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 708	struct aac_dev * dev = fibptr->dev;
 709	struct aac_queue * q;
 710	unsigned long nointr = 0;
 711	unsigned long qflags;
 712
 713	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
 714	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
 
 715		kfree(hw_fib);
 716		return 0;
 717	}
 718
 719	if (hw_fib->header.XferState == 0) {
 720		if (dev->comm_interface == AAC_COMM_MESSAGE)
 721			kfree(hw_fib);
 722		return 0;
 723	}
 724	/*
 725	 *	If we plan to do anything check the structure type first.
 726	 */
 727	if (hw_fib->header.StructType != FIB_MAGIC &&
 728	    hw_fib->header.StructType != FIB_MAGIC2 &&
 729	    hw_fib->header.StructType != FIB_MAGIC2_64) {
 730		if (dev->comm_interface == AAC_COMM_MESSAGE)
 731			kfree(hw_fib);
 732		return -EINVAL;
 733	}
 734	/*
 735	 *	This block handles the case where the adapter had sent us a
 736	 *	command and we have finished processing the command. We
 737	 *	call completeFib when we are done processing the command
 738	 *	and want to send a response back to the adapter. This will
 739	 *	send the completed cdb to the adapter.
 740	 */
 741	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 742		if (dev->comm_interface == AAC_COMM_MESSAGE) {
 743			kfree (hw_fib);
 744		} else {
 745			u32 index;
 746			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 747			if (size) {
 748				size += sizeof(struct aac_fibhdr);
 749				if (size > le16_to_cpu(hw_fib->header.SenderSize))
 750					return -EMSGSIZE;
 751				hw_fib->header.Size = cpu_to_le16(size);
 752			}
 753			q = &dev->queues->queue[AdapNormRespQueue];
 754			spin_lock_irqsave(q->lock, qflags);
 755			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 756			*(q->headers.producer) = cpu_to_le32(index + 1);
 757			spin_unlock_irqrestore(q->lock, qflags);
 758			if (!(nointr & (int)aac_config.irq_mod))
 759				aac_adapter_notify(dev, AdapNormRespQueue);
 760		}
 761	} else {
 762		printk(KERN_WARNING "aac_fib_adapter_complete: "
 763			"Unknown xferstate detected.\n");
 764		BUG();
 765	}
 766	return 0;
 767}
 768
 769/**
 770 *	aac_fib_complete	-	fib completion handler
 771 *	@fib: FIB to complete
 772 *
 773 *	Will do all necessary work to complete a FIB.
 774 */
 775
 776int aac_fib_complete(struct fib *fibptr)
 777{
 778	unsigned long flags;
 779	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 780
 
 
 
 
 
 781	/*
 782	 *	Check for a fib which has already been completed
 
 783	 */
 784
 785	if (hw_fib->header.XferState == 0)
 786		return 0;
 787	/*
 788	 *	If we plan to do anything check the structure type first.
 789	 */
 790
 791	if (hw_fib->header.StructType != FIB_MAGIC &&
 792	    hw_fib->header.StructType != FIB_MAGIC2 &&
 793	    hw_fib->header.StructType != FIB_MAGIC2_64)
 794		return -EINVAL;
 795	/*
 796	 *	This block completes a cdb which orginated on the host and we
 797	 *	just need to deallocate the cdb or reinit it. At this point the
 798	 *	command is complete that we had sent to the adapter and this
 799	 *	cdb could be reused.
 800	 */
 801	spin_lock_irqsave(&fibptr->event_lock, flags);
 802	if (fibptr->done == 2) {
 803		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 804		return 0;
 805	}
 806	spin_unlock_irqrestore(&fibptr->event_lock, flags);
 807
 808	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 809		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 810	{
 811		fib_dealloc(fibptr);
 812	}
 813	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 814	{
 815		/*
 816		 *	This handles the case when the host has aborted the I/O
 817		 *	to the adapter because the adapter is not responding
 818		 */
 819		fib_dealloc(fibptr);
 820	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 821		fib_dealloc(fibptr);
 822	} else {
 823		BUG();
 824	}
 825	return 0;
 826}
 827
 828/**
 829 *	aac_printf	-	handle printf from firmware
 830 *	@dev: Adapter
 831 *	@val: Message info
 832 *
 833 *	Print a message passed to us by the controller firmware on the
 834 *	Adaptec board
 835 */
 836
 837void aac_printf(struct aac_dev *dev, u32 val)
 838{
 839	char *cp = dev->printfbuf;
 840	if (dev->printf_enabled)
 841	{
 842		int length = val & 0xffff;
 843		int level = (val >> 16) & 0xffff;
 844
 845		/*
 846		 *	The size of the printfbuf is set in port.c
 847		 *	There is no variable or define for it
 848		 */
 849		if (length > 255)
 850			length = 255;
 851		if (cp[length] != 0)
 852			cp[length] = 0;
 853		if (level == LOG_AAC_HIGH_ERROR)
 854			printk(KERN_WARNING "%s:%s", dev->name, cp);
 855		else
 856			printk(KERN_INFO "%s:%s", dev->name, cp);
 857	}
 858	memset(cp, 0, 256);
 859}
 860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 
 862/**
 863 *	aac_handle_aif		-	Handle a message from the firmware
 864 *	@dev: Which adapter this fib is from
 865 *	@fibptr: Pointer to fibptr from adapter
 866 *
 867 *	This routine handles a driver notify fib from the adapter and
 868 *	dispatches it to the appropriate routine for handling.
 869 */
 870
 871#define AIF_SNIFF_TIMEOUT	(30*HZ)
 872static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
 873{
 874	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 875	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
 876	u32 channel, id, lun, container;
 877	struct scsi_device *device;
 878	enum {
 879		NOTHING,
 880		DELETE,
 881		ADD,
 882		CHANGE
 883	} device_config_needed = NOTHING;
 884
 885	/* Sniff for container changes */
 886
 887	if (!dev || !dev->fsa_dev)
 888		return;
 889	container = channel = id = lun = (u32)-1;
 890
 891	/*
 892	 *	We have set this up to try and minimize the number of
 893	 * re-configures that take place. As a result of this when
 894	 * certain AIF's come in we will set a flag waiting for another
 895	 * type of AIF before setting the re-config flag.
 896	 */
 897	switch (le32_to_cpu(aifcmd->command)) {
 898	case AifCmdDriverNotify:
 899		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900		/*
 901		 *	Morph or Expand complete
 902		 */
 903		case AifDenMorphComplete:
 904		case AifDenVolumeExtendComplete:
 905			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 906			if (container >= dev->maximum_num_containers)
 907				break;
 908
 909			/*
 910			 *	Find the scsi_device associated with the SCSI
 911			 * address. Make sure we have the right array, and if
 912			 * so set the flag to initiate a new re-config once we
 913			 * see an AifEnConfigChange AIF come through.
 914			 */
 915
 916			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
 917				device = scsi_device_lookup(dev->scsi_host_ptr,
 918					CONTAINER_TO_CHANNEL(container),
 919					CONTAINER_TO_ID(container),
 920					CONTAINER_TO_LUN(container));
 921				if (device) {
 922					dev->fsa_dev[container].config_needed = CHANGE;
 923					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
 924					dev->fsa_dev[container].config_waiting_stamp = jiffies;
 925					scsi_device_put(device);
 926				}
 927			}
 928		}
 929
 930		/*
 931		 *	If we are waiting on something and this happens to be
 932		 * that thing then set the re-configure flag.
 933		 */
 934		if (container != (u32)-1) {
 935			if (container >= dev->maximum_num_containers)
 936				break;
 937			if ((dev->fsa_dev[container].config_waiting_on ==
 938			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 939			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 940				dev->fsa_dev[container].config_waiting_on = 0;
 941		} else for (container = 0;
 942		    container < dev->maximum_num_containers; ++container) {
 943			if ((dev->fsa_dev[container].config_waiting_on ==
 944			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 945			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 946				dev->fsa_dev[container].config_waiting_on = 0;
 947		}
 948		break;
 949
 950	case AifCmdEventNotify:
 951		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
 952		case AifEnBatteryEvent:
 953			dev->cache_protected =
 954				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
 955			break;
 956		/*
 957		 *	Add an Array.
 958		 */
 959		case AifEnAddContainer:
 960			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 961			if (container >= dev->maximum_num_containers)
 962				break;
 963			dev->fsa_dev[container].config_needed = ADD;
 964			dev->fsa_dev[container].config_waiting_on =
 965				AifEnConfigChange;
 966			dev->fsa_dev[container].config_waiting_stamp = jiffies;
 967			break;
 968
 969		/*
 970		 *	Delete an Array.
 971		 */
 972		case AifEnDeleteContainer:
 973			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 974			if (container >= dev->maximum_num_containers)
 975				break;
 976			dev->fsa_dev[container].config_needed = DELETE;
 977			dev->fsa_dev[container].config_waiting_on =
 978				AifEnConfigChange;
 979			dev->fsa_dev[container].config_waiting_stamp = jiffies;
 980			break;
 981
 982		/*
 983		 *	Container change detected. If we currently are not
 984		 * waiting on something else, setup to wait on a Config Change.
 985		 */
 986		case AifEnContainerChange:
 987			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 988			if (container >= dev->maximum_num_containers)
 989				break;
 990			if (dev->fsa_dev[container].config_waiting_on &&
 991			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 992				break;
 993			dev->fsa_dev[container].config_needed = CHANGE;
 994			dev->fsa_dev[container].config_waiting_on =
 995				AifEnConfigChange;
 996			dev->fsa_dev[container].config_waiting_stamp = jiffies;
 997			break;
 998
 999		case AifEnConfigChange:
1000			break;
1001
1002		case AifEnAddJBOD:
1003		case AifEnDeleteJBOD:
1004			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1005			if ((container >> 28)) {
1006				container = (u32)-1;
1007				break;
1008			}
1009			channel = (container >> 24) & 0xF;
1010			if (channel >= dev->maximum_num_channels) {
1011				container = (u32)-1;
1012				break;
1013			}
1014			id = container & 0xFFFF;
1015			if (id >= dev->maximum_num_physicals) {
1016				container = (u32)-1;
1017				break;
1018			}
1019			lun = (container >> 16) & 0xFF;
1020			container = (u32)-1;
1021			channel = aac_phys_to_logical(channel);
1022			device_config_needed =
1023			  (((__le32 *)aifcmd->data)[0] ==
1024			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1025			if (device_config_needed == ADD) {
1026				device = scsi_device_lookup(dev->scsi_host_ptr,
1027					channel,
1028					id,
1029					lun);
1030				if (device) {
1031					scsi_remove_device(device);
1032					scsi_device_put(device);
1033				}
1034			}
1035			break;
1036
1037		case AifEnEnclosureManagement:
1038			/*
1039			 * If in JBOD mode, automatic exposure of new
1040			 * physical target to be suppressed until configured.
1041			 */
1042			if (dev->jbod)
1043				break;
1044			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1045			case EM_DRIVE_INSERTION:
1046			case EM_DRIVE_REMOVAL:
 
 
1047				container = le32_to_cpu(
1048					((__le32 *)aifcmd->data)[2]);
1049				if ((container >> 28)) {
1050					container = (u32)-1;
1051					break;
1052				}
1053				channel = (container >> 24) & 0xF;
1054				if (channel >= dev->maximum_num_channels) {
1055					container = (u32)-1;
1056					break;
1057				}
1058				id = container & 0xFFFF;
1059				lun = (container >> 16) & 0xFF;
1060				container = (u32)-1;
1061				if (id >= dev->maximum_num_physicals) {
1062					/* legacy dev_t ? */
1063					if ((0x2000 <= id) || lun || channel ||
1064					  ((channel = (id >> 7) & 0x3F) >=
1065					  dev->maximum_num_channels))
1066						break;
1067					lun = (id >> 4) & 7;
1068					id &= 0xF;
1069				}
1070				channel = aac_phys_to_logical(channel);
1071				device_config_needed =
1072				  (((__le32 *)aifcmd->data)[3]
1073				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
 
 
1074				  ADD : DELETE;
1075				break;
1076			}
1077			break;
 
 
 
1078		}
1079
1080		/*
1081		 *	If we are waiting on something and this happens to be
1082		 * that thing then set the re-configure flag.
1083		 */
1084		if (container != (u32)-1) {
1085			if (container >= dev->maximum_num_containers)
1086				break;
1087			if ((dev->fsa_dev[container].config_waiting_on ==
1088			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1089			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1090				dev->fsa_dev[container].config_waiting_on = 0;
1091		} else for (container = 0;
1092		    container < dev->maximum_num_containers; ++container) {
1093			if ((dev->fsa_dev[container].config_waiting_on ==
1094			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1095			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1096				dev->fsa_dev[container].config_waiting_on = 0;
1097		}
1098		break;
1099
1100	case AifCmdJobProgress:
1101		/*
1102		 *	These are job progress AIF's. When a Clear is being
1103		 * done on a container it is initially created then hidden from
1104		 * the OS. When the clear completes we don't get a config
1105		 * change so we monitor the job status complete on a clear then
1106		 * wait for a container change.
1107		 */
1108
1109		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1110		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1111		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1112			for (container = 0;
1113			    container < dev->maximum_num_containers;
1114			    ++container) {
1115				/*
1116				 * Stomp on all config sequencing for all
1117				 * containers?
1118				 */
1119				dev->fsa_dev[container].config_waiting_on =
1120					AifEnContainerChange;
1121				dev->fsa_dev[container].config_needed = ADD;
1122				dev->fsa_dev[container].config_waiting_stamp =
1123					jiffies;
1124			}
1125		}
1126		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1127		    ((__le32 *)aifcmd->data)[6] == 0 &&
1128		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1129			for (container = 0;
1130			    container < dev->maximum_num_containers;
1131			    ++container) {
1132				/*
1133				 * Stomp on all config sequencing for all
1134				 * containers?
1135				 */
1136				dev->fsa_dev[container].config_waiting_on =
1137					AifEnContainerChange;
1138				dev->fsa_dev[container].config_needed = DELETE;
1139				dev->fsa_dev[container].config_waiting_stamp =
1140					jiffies;
1141			}
1142		}
1143		break;
1144	}
1145
1146	container = 0;
1147retry_next:
1148	if (device_config_needed == NOTHING)
1149	for (; container < dev->maximum_num_containers; ++container) {
1150		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1151			(dev->fsa_dev[container].config_needed != NOTHING) &&
1152			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1153			device_config_needed =
1154				dev->fsa_dev[container].config_needed;
1155			dev->fsa_dev[container].config_needed = NOTHING;
1156			channel = CONTAINER_TO_CHANNEL(container);
1157			id = CONTAINER_TO_ID(container);
1158			lun = CONTAINER_TO_LUN(container);
1159			break;
 
1160		}
1161	}
1162	if (device_config_needed == NOTHING)
1163		return;
1164
1165	/*
1166	 *	If we decided that a re-configuration needs to be done,
1167	 * schedule it here on the way out the door, please close the door
1168	 * behind you.
1169	 */
1170
1171	/*
1172	 *	Find the scsi_device associated with the SCSI address,
1173	 * and mark it as changed, invalidating the cache. This deals
1174	 * with changes to existing device IDs.
1175	 */
1176
1177	if (!dev || !dev->scsi_host_ptr)
1178		return;
1179	/*
1180	 * force reload of disk info via aac_probe_container
1181	 */
1182	if ((channel == CONTAINER_CHANNEL) &&
1183	  (device_config_needed != NOTHING)) {
1184		if (dev->fsa_dev[container].valid == 1)
1185			dev->fsa_dev[container].valid = 2;
1186		aac_probe_container(dev, container);
1187	}
1188	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1189	if (device) {
1190		switch (device_config_needed) {
1191		case DELETE:
1192#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193			scsi_remove_device(device);
1194#else
1195			if (scsi_device_online(device)) {
1196				scsi_device_set_state(device, SDEV_OFFLINE);
1197				sdev_printk(KERN_INFO, device,
1198					"Device offlined - %s\n",
1199					(channel == CONTAINER_CHANNEL) ?
1200						"array deleted" :
1201						"enclosure services event");
1202			}
1203#endif
1204			break;
1205		case ADD:
1206			if (!scsi_device_online(device)) {
1207				sdev_printk(KERN_INFO, device,
1208					"Device online - %s\n",
1209					(channel == CONTAINER_CHANNEL) ?
1210						"array created" :
1211						"enclosure services event");
1212				scsi_device_set_state(device, SDEV_RUNNING);
1213			}
1214			/* FALLTHRU */
1215		case CHANGE:
1216			if ((channel == CONTAINER_CHANNEL)
1217			 && (!dev->fsa_dev[container].valid)) {
1218#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219				scsi_remove_device(device);
1220#else
1221				if (!scsi_device_online(device))
1222					break;
1223				scsi_device_set_state(device, SDEV_OFFLINE);
1224				sdev_printk(KERN_INFO, device,
1225					"Device offlined - %s\n",
1226					"array failed");
1227#endif
1228				break;
1229			}
1230			scsi_rescan_device(&device->sdev_gendev);
 
1231
1232		default:
1233			break;
1234		}
1235		scsi_device_put(device);
1236		device_config_needed = NOTHING;
1237	}
1238	if (device_config_needed == ADD)
1239		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1240	if (channel == CONTAINER_CHANNEL) {
1241		container++;
1242		device_config_needed = NOTHING;
1243		goto retry_next;
1244	}
1245}
1246
1247static int _aac_reset_adapter(struct aac_dev *aac, int forced)
 
 
 
 
 
 
 
 
1248{
1249	int index, quirks;
1250	int retval;
1251	struct Scsi_Host *host;
1252	struct scsi_device *dev;
1253	struct scsi_cmnd *command;
1254	struct scsi_cmnd *command_list;
1255	int jafo = 0;
 
 
 
1256
1257	/*
1258	 * Assumptions:
1259	 *	- host is locked, unless called by the aacraid thread.
1260	 *	  (a matter of convenience, due to legacy issues surrounding
1261	 *	  eh_host_adapter_reset).
1262	 *	- in_reset is asserted, so no new i/o is getting to the
1263	 *	  card.
1264	 *	- The card is dead, or will be very shortly ;-/ so no new
1265	 *	  commands are completing in the interrupt service.
1266	 */
1267	host = aac->scsi_host_ptr;
1268	scsi_block_requests(host);
1269	aac_adapter_disable_int(aac);
1270	if (aac->thread->pid != current->pid) {
1271		spin_unlock_irq(host->host_lock);
1272		kthread_stop(aac->thread);
 
1273		jafo = 1;
1274	}
1275
1276	/*
1277	 *	If a positive health, means in a known DEAD PANIC
1278	 * state and the adapter could be reset to `try again'.
1279	 */
1280	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
 
1281
1282	if (retval)
1283		goto out;
1284
1285	/*
1286	 *	Loop through the fibs, close the synchronous FIBS
1287	 */
1288	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
 
 
 
1289		struct fib *fib = &aac->fibs[index];
1290		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1291		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
 
 
 
 
 
 
 
1292			unsigned long flagv;
1293			spin_lock_irqsave(&fib->event_lock, flagv);
1294			up(&fib->event_wait);
1295			spin_unlock_irqrestore(&fib->event_lock, flagv);
1296			schedule();
1297			retval = 0;
1298		}
1299	}
1300	/* Give some extra time for ioctls to complete. */
1301	if (retval == 0)
1302		ssleep(2);
1303	index = aac->cardtype;
1304
1305	/*
1306	 * Re-initialize the adapter, first free resources, then carefully
1307	 * apply the initialization sequence to come back again. Only risk
1308	 * is a change in Firmware dropping cache, it is assumed the caller
1309	 * will ensure that i/o is queisced and the card is flushed in that
1310	 * case.
1311	 */
 
1312	aac_fib_map_free(aac);
1313	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
 
 
1314	aac->comm_addr = NULL;
1315	aac->comm_phys = 0;
1316	kfree(aac->queues);
1317	aac->queues = NULL;
1318	free_irq(aac->pdev->irq, aac);
1319	if (aac->msi)
1320		pci_disable_msi(aac->pdev);
1321	kfree(aac->fsa_dev);
1322	aac->fsa_dev = NULL;
 
 
1323	quirks = aac_get_driver_ident(index)->quirks;
1324	if (quirks & AAC_QUIRK_31BIT) {
1325		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1326		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1327			goto out;
1328	} else {
1329		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1330		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1331			goto out;
 
 
1332	}
 
 
 
 
1333	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1334		goto out;
1335	if (quirks & AAC_QUIRK_31BIT)
1336		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1337			goto out;
1338	if (jafo) {
1339		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1340					  aac->name);
1341		if (IS_ERR(aac->thread)) {
1342			retval = PTR_ERR(aac->thread);
 
1343			goto out;
1344		}
1345	}
1346	(void)aac_get_adapter_info(aac);
1347	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1348		host->sg_tablesize = 34;
1349		host->max_sectors = (host->sg_tablesize * 8) + 112;
1350	}
1351	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1352		host->sg_tablesize = 17;
1353		host->max_sectors = (host->sg_tablesize * 8) + 112;
1354	}
1355	aac_get_config_status(aac, 1);
1356	aac_get_containers(aac);
1357	/*
1358	 * This is where the assumption that the Adapter is quiesced
1359	 * is important.
1360	 */
1361	command_list = NULL;
1362	__shost_for_each_device(dev, host) {
1363		unsigned long flags;
1364		spin_lock_irqsave(&dev->list_lock, flags);
1365		list_for_each_entry(command, &dev->cmd_list, list)
1366			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1367				command->SCp.buffer = (struct scatterlist *)command_list;
1368				command_list = command;
1369			}
1370		spin_unlock_irqrestore(&dev->list_lock, flags);
1371	}
1372	while ((command = command_list)) {
1373		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1374		command->SCp.buffer = NULL;
1375		command->result = DID_OK << 16
1376		  | COMMAND_COMPLETE << 8
1377		  | SAM_STAT_TASK_SET_FULL;
1378		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1379		command->scsi_done(command);
1380	}
1381	retval = 0;
1382
 
1383out:
1384	aac->in_reset = 0;
1385	scsi_unblock_requests(host);
 
 
 
 
 
 
 
 
 
1386	if (jafo) {
1387		spin_lock_irq(host->host_lock);
1388	}
1389	return retval;
1390}
1391
1392int aac_reset_adapter(struct aac_dev * aac, int forced)
1393{
1394	unsigned long flagv = 0;
1395	int retval;
1396	struct Scsi_Host * host;
 
1397
1398	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1399		return -EBUSY;
1400
1401	if (aac->in_reset) {
1402		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1403		return -EBUSY;
1404	}
1405	aac->in_reset = 1;
1406	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1407
1408	/*
1409	 * Wait for all commands to complete to this specific
1410	 * target (block maximum 60 seconds). Although not necessary,
1411	 * it does make us a good storage citizen.
1412	 */
1413	host = aac->scsi_host_ptr;
1414	scsi_block_requests(host);
1415	if (forced < 2) for (retval = 60; retval; --retval) {
1416		struct scsi_device * dev;
1417		struct scsi_cmnd * command;
1418		int active = 0;
1419
1420		__shost_for_each_device(dev, host) {
1421			spin_lock_irqsave(&dev->list_lock, flagv);
1422			list_for_each_entry(command, &dev->cmd_list, list) {
1423				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1424					active++;
1425					break;
1426				}
1427			}
1428			spin_unlock_irqrestore(&dev->list_lock, flagv);
1429			if (active)
1430				break;
1431
1432		}
1433		/*
1434		 * We can exit If all the commands are complete
1435		 */
1436		if (active == 0)
1437			break;
1438		ssleep(1);
1439	}
1440
1441	/* Quiesce build, flush cache, write through mode */
1442	if (forced < 2)
1443		aac_send_shutdown(aac);
1444	spin_lock_irqsave(host->host_lock, flagv);
1445	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
 
 
1446	spin_unlock_irqrestore(host->host_lock, flagv);
1447
 
 
 
1448	if ((forced < 2) && (retval == -ENODEV)) {
1449		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1450		struct fib * fibctx = aac_fib_alloc(aac);
1451		if (fibctx) {
1452			struct aac_pause *cmd;
1453			int status;
1454
1455			aac_fib_init(fibctx);
1456
1457			cmd = (struct aac_pause *) fib_data(fibctx);
1458
1459			cmd->command = cpu_to_le32(VM_ContainerConfig);
1460			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1461			cmd->timeout = cpu_to_le32(1);
1462			cmd->min = cpu_to_le32(1);
1463			cmd->noRescan = cpu_to_le32(1);
1464			cmd->count = cpu_to_le32(0);
1465
1466			status = aac_fib_send(ContainerCommand,
1467			  fibctx,
1468			  sizeof(struct aac_pause),
1469			  FsaNormal,
1470			  -2 /* Timeout silently */, 1,
1471			  NULL, NULL);
1472
1473			if (status >= 0)
1474				aac_fib_complete(fibctx);
1475			/* FIB should be freed only after getting
1476			 * the response from the F/W */
1477			if (status != -ERESTARTSYS)
1478				aac_fib_free(fibctx);
1479		}
1480	}
1481
1482	return retval;
1483}
1484
1485int aac_check_health(struct aac_dev * aac)
1486{
1487	int BlinkLED;
1488	unsigned long time_now, flagv = 0;
1489	struct list_head * entry;
1490	struct Scsi_Host * host;
1491
1492	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1493	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1494		return 0;
1495
1496	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1497		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1498		return 0; /* OK */
1499	}
1500
1501	aac->in_reset = 1;
1502
1503	/* Fake up an AIF:
1504	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1505	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1506	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1507	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1508	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1509	 *	aac.aifcmd.data[3] = BlinkLED
1510	 */
1511
1512	time_now = jiffies/HZ;
1513	entry = aac->fib_list.next;
1514
1515	/*
1516	 * For each Context that is on the
1517	 * fibctxList, make a copy of the
1518	 * fib, and then set the event to wake up the
1519	 * thread that is waiting for it.
1520	 */
1521	while (entry != &aac->fib_list) {
1522		/*
1523		 * Extract the fibctx
1524		 */
1525		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1526		struct hw_fib * hw_fib;
1527		struct fib * fib;
1528		/*
1529		 * Check if the queue is getting
1530		 * backlogged
1531		 */
1532		if (fibctx->count > 20) {
1533			/*
1534			 * It's *not* jiffies folks,
1535			 * but jiffies / HZ, so do not
1536			 * panic ...
1537			 */
1538			u32 time_last = fibctx->jiffies;
1539			/*
1540			 * Has it been > 2 minutes
1541			 * since the last read off
1542			 * the queue?
1543			 */
1544			if ((time_now - time_last) > aif_timeout) {
1545				entry = entry->next;
1546				aac_close_fib_context(aac, fibctx);
1547				continue;
1548			}
1549		}
1550		/*
1551		 * Warning: no sleep allowed while
1552		 * holding spinlock
1553		 */
1554		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1555		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1556		if (fib && hw_fib) {
1557			struct aac_aifcmd * aif;
1558
1559			fib->hw_fib_va = hw_fib;
1560			fib->dev = aac;
1561			aac_fib_init(fib);
1562			fib->type = FSAFS_NTC_FIB_CONTEXT;
1563			fib->size = sizeof (struct fib);
1564			fib->data = hw_fib->data;
1565			aif = (struct aac_aifcmd *)hw_fib->data;
1566			aif->command = cpu_to_le32(AifCmdEventNotify);
1567			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1568			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1569			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1570			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1571			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1572
1573			/*
1574			 * Put the FIB onto the
1575			 * fibctx's fibs
1576			 */
1577			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1578			fibctx->count++;
1579			/*
1580			 * Set the event to wake up the
1581			 * thread that will waiting.
1582			 */
1583			up(&fibctx->wait_sem);
1584		} else {
1585			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1586			kfree(fib);
1587			kfree(hw_fib);
1588		}
1589		entry = entry->next;
1590	}
1591
1592	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1593
1594	if (BlinkLED < 0) {
1595		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
 
1596		goto out;
1597	}
1598
1599	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1600
1601	if (!aac_check_reset || ((aac_check_reset == 1) &&
1602		(aac->supplement_adapter_info.SupportedOptions2 &
1603			AAC_OPTION_IGNORE_RESET)))
1604		goto out;
1605	host = aac->scsi_host_ptr;
1606	if (aac->thread->pid != current->pid)
1607		spin_lock_irqsave(host->host_lock, flagv);
1608	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1609	if (aac->thread->pid != current->pid)
1610		spin_unlock_irqrestore(host->host_lock, flagv);
1611	return BlinkLED;
1612
1613out:
1614	aac->in_reset = 0;
1615	return BlinkLED;
1616}
1617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618
1619/**
1620 *	aac_command_thread	-	command processing thread
1621 *	@dev: Adapter to monitor
1622 *
1623 *	Waits on the commandready event in it's queue. When the event gets set
1624 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1625 *	until the queue is empty. When the queue is empty it will wait for
1626 *	more FIBs.
1627 */
1628
1629int aac_command_thread(void *data)
1630{
1631	struct aac_dev *dev = data;
1632	struct hw_fib *hw_fib, *hw_newfib;
1633	struct fib *fib, *newfib;
1634	struct aac_fib_context *fibctx;
1635	unsigned long flags;
1636	DECLARE_WAITQUEUE(wait, current);
1637	unsigned long next_jiffies = jiffies + HZ;
1638	unsigned long next_check_jiffies = next_jiffies;
1639	long difference = HZ;
1640
1641	/*
1642	 *	We can only have one thread per adapter for AIF's.
1643	 */
1644	if (dev->aif_thread)
1645		return -EINVAL;
1646
1647	/*
1648	 *	Let the DPC know it has a place to send the AIF's to.
1649	 */
1650	dev->aif_thread = 1;
1651	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1652	set_current_state(TASK_INTERRUPTIBLE);
1653	dprintk ((KERN_INFO "aac_command_thread start\n"));
1654	while (1) {
1655		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1656		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1657			struct list_head *entry;
1658			struct aac_aifcmd * aifcmd;
1659
1660			set_current_state(TASK_RUNNING);
1661
1662			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1663			list_del(entry);
1664
1665			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1666			fib = list_entry(entry, struct fib, fiblink);
1667			/*
1668			 *	We will process the FIB here or pass it to a
1669			 *	worker thread that is TBD. We Really can't
1670			 *	do anything at this point since we don't have
1671			 *	anything defined for this thread to do.
1672			 */
1673			hw_fib = fib->hw_fib_va;
1674			memset(fib, 0, sizeof(struct fib));
1675			fib->type = FSAFS_NTC_FIB_CONTEXT;
1676			fib->size = sizeof(struct fib);
1677			fib->hw_fib_va = hw_fib;
1678			fib->data = hw_fib->data;
1679			fib->dev = dev;
1680			/*
1681			 *	We only handle AifRequest fibs from the adapter.
1682			 */
1683			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1684			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1685				/* Handle Driver Notify Events */
1686				aac_handle_aif(dev, fib);
1687				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1688				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1689			} else {
1690				/* The u32 here is important and intended. We are using
1691				   32bit wrapping time to fit the adapter field */
1692
1693				u32 time_now, time_last;
1694				unsigned long flagv;
1695				unsigned num;
1696				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1697				struct fib ** fib_pool, ** fib_p;
1698
1699				/* Sniff events */
1700				if ((aifcmd->command ==
1701				     cpu_to_le32(AifCmdEventNotify)) ||
1702				    (aifcmd->command ==
1703				     cpu_to_le32(AifCmdJobProgress))) {
1704					aac_handle_aif(dev, fib);
1705				}
1706
1707				time_now = jiffies/HZ;
1708
1709				/*
1710				 * Warning: no sleep allowed while
1711				 * holding spinlock. We take the estimate
1712				 * and pre-allocate a set of fibs outside the
1713				 * lock.
1714				 */
1715				num = le32_to_cpu(dev->init->AdapterFibsSize)
1716				    / sizeof(struct hw_fib); /* some extra */
1717				spin_lock_irqsave(&dev->fib_lock, flagv);
1718				entry = dev->fib_list.next;
1719				while (entry != &dev->fib_list) {
1720					entry = entry->next;
1721					++num;
1722				}
1723				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1724				hw_fib_pool = NULL;
1725				fib_pool = NULL;
1726				if (num
1727				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1728				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1729					hw_fib_p = hw_fib_pool;
1730					fib_p = fib_pool;
1731					while (hw_fib_p < &hw_fib_pool[num]) {
1732						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1733							--hw_fib_p;
1734							break;
1735						}
1736						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1737							kfree(*(--hw_fib_p));
1738							break;
1739						}
1740					}
1741					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1742						kfree(fib_pool);
1743						fib_pool = NULL;
1744						kfree(hw_fib_pool);
1745						hw_fib_pool = NULL;
1746					}
1747				} else {
1748					kfree(hw_fib_pool);
1749					hw_fib_pool = NULL;
1750				}
1751				spin_lock_irqsave(&dev->fib_lock, flagv);
1752				entry = dev->fib_list.next;
1753				/*
1754				 * For each Context that is on the
1755				 * fibctxList, make a copy of the
1756				 * fib, and then set the event to wake up the
1757				 * thread that is waiting for it.
1758				 */
1759				hw_fib_p = hw_fib_pool;
1760				fib_p = fib_pool;
1761				while (entry != &dev->fib_list) {
1762					/*
1763					 * Extract the fibctx
1764					 */
1765					fibctx = list_entry(entry, struct aac_fib_context, next);
1766					/*
1767					 * Check if the queue is getting
1768					 * backlogged
1769					 */
1770					if (fibctx->count > 20)
1771					{
1772						/*
1773						 * It's *not* jiffies folks,
1774						 * but jiffies / HZ so do not
1775						 * panic ...
1776						 */
1777						time_last = fibctx->jiffies;
1778						/*
1779						 * Has it been > 2 minutes
1780						 * since the last read off
1781						 * the queue?
1782						 */
1783						if ((time_now - time_last) > aif_timeout) {
1784							entry = entry->next;
1785							aac_close_fib_context(dev, fibctx);
1786							continue;
1787						}
1788					}
1789					/*
1790					 * Warning: no sleep allowed while
1791					 * holding spinlock
1792					 */
1793					if (hw_fib_p < &hw_fib_pool[num]) {
1794						hw_newfib = *hw_fib_p;
1795						*(hw_fib_p++) = NULL;
1796						newfib = *fib_p;
1797						*(fib_p++) = NULL;
1798						/*
1799						 * Make the copy of the FIB
1800						 */
1801						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1802						memcpy(newfib, fib, sizeof(struct fib));
1803						newfib->hw_fib_va = hw_newfib;
1804						/*
1805						 * Put the FIB onto the
1806						 * fibctx's fibs
1807						 */
1808						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1809						fibctx->count++;
1810						/*
1811						 * Set the event to wake up the
1812						 * thread that is waiting.
1813						 */
1814						up(&fibctx->wait_sem);
1815					} else {
1816						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1817					}
1818					entry = entry->next;
1819				}
1820				/*
1821				 *	Set the status of this FIB
1822				 */
1823				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1824				aac_fib_adapter_complete(fib, sizeof(u32));
1825				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1826				/* Free up the remaining resources */
1827				hw_fib_p = hw_fib_pool;
1828				fib_p = fib_pool;
1829				while (hw_fib_p < &hw_fib_pool[num]) {
1830					kfree(*hw_fib_p);
1831					kfree(*fib_p);
1832					++fib_p;
1833					++hw_fib_p;
1834				}
1835				kfree(hw_fib_pool);
1836				kfree(fib_pool);
1837			}
1838			kfree(fib);
1839			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1840		}
1841		/*
1842		 *	There are no more AIF's
1843		 */
1844		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1845
1846		/*
1847		 *	Background activity
1848		 */
1849		if ((time_before(next_check_jiffies,next_jiffies))
1850		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1851			next_check_jiffies = next_jiffies;
1852			if (aac_check_health(dev) == 0) {
1853				difference = ((long)(unsigned)check_interval)
1854					   * HZ;
1855				next_check_jiffies = jiffies + difference;
1856			} else if (!dev->queues)
1857				break;
1858		}
1859		if (!time_before(next_check_jiffies,next_jiffies)
1860		 && ((difference = next_jiffies - jiffies) <= 0)) {
1861			struct timeval now;
1862			int ret;
1863
1864			/* Don't even try to talk to adapter if its sick */
1865			ret = aac_check_health(dev);
1866			if (!ret && !dev->queues)
1867				break;
1868			next_check_jiffies = jiffies
1869					   + ((long)(unsigned)check_interval)
1870					   * HZ;
1871			do_gettimeofday(&now);
1872
1873			/* Synchronize our watches */
1874			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1875			 && (now.tv_usec > (1000000 / HZ)))
1876				difference = (((1000000 - now.tv_usec) * HZ)
1877				  + 500000) / 1000000;
1878			else if (ret == 0) {
1879				struct fib *fibptr;
1880
1881				if ((fibptr = aac_fib_alloc(dev))) {
1882					int status;
1883					__le32 *info;
1884
1885					aac_fib_init(fibptr);
1886
1887					info = (__le32 *) fib_data(fibptr);
1888					if (now.tv_usec > 500000)
1889						++now.tv_sec;
1890
1891					*info = cpu_to_le32(now.tv_sec);
1892
1893					status = aac_fib_send(SendHostTime,
1894						fibptr,
1895						sizeof(*info),
1896						FsaNormal,
1897						1, 1,
1898						NULL,
1899						NULL);
1900					/* Do not set XferState to zero unless
1901					 * receives a response from F/W */
1902					if (status >= 0)
1903						aac_fib_complete(fibptr);
1904					/* FIB should be freed only after
1905					 * getting the response from the F/W */
1906					if (status != -ERESTARTSYS)
1907						aac_fib_free(fibptr);
1908				}
1909				difference = (long)(unsigned)update_interval*HZ;
1910			} else {
1911				/* retry shortly */
1912				difference = 10 * HZ;
1913			}
1914			next_jiffies = jiffies + difference;
1915			if (time_before(next_check_jiffies,next_jiffies))
1916				difference = next_check_jiffies - jiffies;
1917		}
1918		if (difference <= 0)
1919			difference = 1;
1920		set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
1921		schedule_timeout(difference);
1922
1923		if (kthread_should_stop())
1924			break;
1925	}
1926	if (dev->queues)
1927		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1928	dev->aif_thread = 0;
1929	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Adaptec AAC series RAID controller driver
   4 *	(c) Copyright 2001 Red Hat Inc.
   5 *
   6 * based on the old aacraid driver that is..
   7 * Adaptec aacraid device driver for Linux.
   8 *
   9 * Copyright (c) 2000-2010 Adaptec, Inc.
  10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
  11 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 *
  13 * Module Name:
  14 *  commsup.c
  15 *
  16 * Abstract: Contain all routines that are required for FSA host/adapter
  17 *    communication.
 
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/crash_dump.h>
  23#include <linux/types.h>
  24#include <linux/sched.h>
  25#include <linux/pci.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/completion.h>
  29#include <linux/blkdev.h>
  30#include <linux/delay.h>
  31#include <linux/kthread.h>
  32#include <linux/interrupt.h>
  33#include <linux/bcd.h>
  34#include <scsi/scsi.h>
  35#include <scsi/scsi_host.h>
  36#include <scsi/scsi_device.h>
  37#include <scsi/scsi_cmnd.h>
  38
  39#include "aacraid.h"
  40
  41/**
  42 *	fib_map_alloc		-	allocate the fib objects
  43 *	@dev: Adapter to allocate for
  44 *
  45 *	Allocate and map the shared PCI space for the FIB blocks used to
  46 *	talk to the Adaptec firmware.
  47 */
  48
  49static int fib_map_alloc(struct aac_dev *dev)
  50{
  51	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
  52		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  53	else
  54		dev->max_cmd_size = dev->max_fib_size;
  55	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
  56		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  57	} else {
  58		dev->max_cmd_size = dev->max_fib_size;
  59	}
  60
  61	dprintk((KERN_INFO
  62	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
  63	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
  64	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
  65	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
  66		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
  67		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
  68		&dev->hw_fib_pa, GFP_KERNEL);
  69	if (dev->hw_fib_va == NULL)
  70		return -ENOMEM;
  71	return 0;
  72}
  73
  74/**
  75 *	aac_fib_map_free		-	free the fib objects
  76 *	@dev: Adapter to free
  77 *
  78 *	Free the PCI mappings and the memory allocated for FIB blocks
  79 *	on this adapter.
  80 */
  81
  82void aac_fib_map_free(struct aac_dev *dev)
  83{
  84	size_t alloc_size;
  85	size_t fib_size;
  86	int num_fibs;
  87
  88	if(!dev->hw_fib_va || !dev->max_cmd_size)
  89		return;
  90
  91	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
  92	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
  93	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
  94
  95	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
  96			  dev->hw_fib_pa);
  97
  98	dev->hw_fib_va = NULL;
  99	dev->hw_fib_pa = 0;
 100}
 101
 102void aac_fib_vector_assign(struct aac_dev *dev)
 103{
 104	u32 i = 0;
 105	u32 vector = 1;
 106	struct fib *fibptr = NULL;
 107
 108	for (i = 0, fibptr = &dev->fibs[i];
 109		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 110		i++, fibptr++) {
 111		if ((dev->max_msix == 1) ||
 112		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
 113			- dev->vector_cap))) {
 114			fibptr->vector_no = 0;
 115		} else {
 116			fibptr->vector_no = vector;
 117			vector++;
 118			if (vector == dev->max_msix)
 119				vector = 1;
 120		}
 121	}
 122}
 123
 124/**
 125 *	aac_fib_setup	-	setup the fibs
 126 *	@dev: Adapter to set up
 127 *
 128 *	Allocate the PCI space for the fibs, map it and then initialise the
 129 *	fib area, the unmapped fib data and also the free list
 130 */
 131
 132int aac_fib_setup(struct aac_dev * dev)
 133{
 134	struct fib *fibptr;
 135	struct hw_fib *hw_fib;
 136	dma_addr_t hw_fib_pa;
 137	int i;
 138	u32 max_cmds;
 139
 140	while (((i = fib_map_alloc(dev)) == -ENOMEM)
 141	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 142		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
 143		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
 144		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
 145			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
 146	}
 147	if (i<0)
 148		return -ENOMEM;
 149
 
 
 
 
 
 150	memset(dev->hw_fib_va, 0,
 151		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
 152		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 153
 154	/* 32 byte alignment for PMC */
 155	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
 156	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 157					(hw_fib_pa - dev->hw_fib_pa));
 158
 159	/* add Xport header */
 160	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 161		sizeof(struct aac_fib_xporthdr));
 162	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
 163
 
 
 164	/*
 165	 *	Initialise the fibs
 166	 */
 167	for (i = 0, fibptr = &dev->fibs[i];
 168		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 169		i++, fibptr++)
 170	{
 171		fibptr->flags = 0;
 172		fibptr->size = sizeof(struct fib);
 173		fibptr->dev = dev;
 174		fibptr->hw_fib_va = hw_fib;
 175		fibptr->data = (void *) fibptr->hw_fib_va->data;
 176		fibptr->next = fibptr+1;	/* Forward chain the fibs */
 177		init_completion(&fibptr->event_wait);
 178		spin_lock_init(&fibptr->event_lock);
 179		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 180		hw_fib->header.SenderSize =
 181			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
 182		fibptr->hw_fib_pa = hw_fib_pa;
 183		fibptr->hw_sgl_pa = hw_fib_pa +
 184			offsetof(struct aac_hba_cmd_req, sge[2]);
 185		/*
 186		 * one element is for the ptr to the separate sg list,
 187		 * second element for 32 byte alignment
 188		 */
 189		fibptr->hw_error_pa = hw_fib_pa +
 190			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
 191
 192		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 193			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
 194		hw_fib_pa = hw_fib_pa +
 195			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
 196	}
 197
 198	/*
 199	 *Assign vector numbers to fibs
 200	 */
 201	aac_fib_vector_assign(dev);
 202
 203	/*
 204	 *	Add the fib chain to the free list
 205	 */
 206	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 207	/*
 208	*	Set 8 fibs aside for management tools
 209	*/
 210	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
 211	return 0;
 212}
 213
 214/**
 215 *	aac_fib_alloc_tag-allocate a fib using tags
 216 *	@dev: Adapter to allocate the fib for
 217 *	@scmd: SCSI command
 218 *
 219 *	Allocate a fib from the adapter fib pool using tags
 220 *	from the blk layer.
 221 */
 222
 223struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
 224{
 225	struct fib *fibptr;
 226
 227	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
 228	/*
 229	 *	Null out fields that depend on being zero at the start of
 230	 *	each I/O
 231	 */
 232	fibptr->hw_fib_va->header.XferState = 0;
 233	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 234	fibptr->callback_data = NULL;
 235	fibptr->callback = NULL;
 236	fibptr->flags = 0;
 237
 238	return fibptr;
 239}
 240
 241/**
 242 *	aac_fib_alloc	-	allocate a fib
 243 *	@dev: Adapter to allocate the fib for
 244 *
 245 *	Allocate a fib from the adapter fib pool. If the pool is empty we
 246 *	return NULL.
 247 */
 248
 249struct fib *aac_fib_alloc(struct aac_dev *dev)
 250{
 251	struct fib * fibptr;
 252	unsigned long flags;
 253	spin_lock_irqsave(&dev->fib_lock, flags);
 254	fibptr = dev->free_fib;
 255	if(!fibptr){
 256		spin_unlock_irqrestore(&dev->fib_lock, flags);
 257		return fibptr;
 258	}
 259	dev->free_fib = fibptr->next;
 260	spin_unlock_irqrestore(&dev->fib_lock, flags);
 261	/*
 262	 *	Set the proper node type code and node byte size
 263	 */
 264	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 265	fibptr->size = sizeof(struct fib);
 266	/*
 267	 *	Null out fields that depend on being zero at the start of
 268	 *	each I/O
 269	 */
 270	fibptr->hw_fib_va->header.XferState = 0;
 271	fibptr->flags = 0;
 272	fibptr->callback = NULL;
 273	fibptr->callback_data = NULL;
 274
 275	return fibptr;
 276}
 277
 278/**
 279 *	aac_fib_free	-	free a fib
 280 *	@fibptr: fib to free up
 281 *
 282 *	Frees up a fib and places it on the appropriate queue
 283 */
 284
 285void aac_fib_free(struct fib *fibptr)
 286{
 287	unsigned long flags;
 288
 289	if (fibptr->done == 2)
 
 
 290		return;
 
 
 291
 292	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 293	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 294		aac_config.fib_timeouts++;
 295	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
 296		fibptr->hw_fib_va->header.XferState != 0) {
 297		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 298			 (void*)fibptr,
 299			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 300	}
 301	fibptr->next = fibptr->dev->free_fib;
 302	fibptr->dev->free_fib = fibptr;
 303	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 304}
 305
 306/**
 307 *	aac_fib_init	-	initialise a fib
 308 *	@fibptr: The fib to initialize
 309 *
 310 *	Set up the generic fib fields ready for use
 311 */
 312
 313void aac_fib_init(struct fib *fibptr)
 314{
 315	struct hw_fib *hw_fib = fibptr->hw_fib_va;
 316
 317	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
 318	hw_fib->header.StructType = FIB_MAGIC;
 319	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 320	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 321	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 322	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 323}
 324
 325/**
 326 *	fib_dealloc		-	deallocate a fib
 327 *	@fibptr: fib to deallocate
 328 *
 329 *	Will deallocate and return to the free pool the FIB pointed to by the
 330 *	caller.
 331 */
 332
 333static void fib_dealloc(struct fib * fibptr)
 334{
 335	struct hw_fib *hw_fib = fibptr->hw_fib_va;
 336	hw_fib->header.XferState = 0;
 337}
 338
 339/*
 340 *	Commuication primitives define and support the queuing method we use to
 341 *	support host to adapter commuication. All queue accesses happen through
 342 *	these routines and are the only routines which have a knowledge of the
 343 *	 how these queues are implemented.
 344 */
 345
 346/**
 347 *	aac_get_entry		-	get a queue entry
 348 *	@dev: Adapter
 349 *	@qid: Queue Number
 350 *	@entry: Entry return
 351 *	@index: Index return
 352 *	@nonotify: notification control
 353 *
 354 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
 355 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 356 *	returned.
 357 */
 358
 359static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 360{
 361	struct aac_queue * q;
 362	unsigned long idx;
 363
 364	/*
 365	 *	All of the queues wrap when they reach the end, so we check
 366	 *	to see if they have reached the end and if they have we just
 367	 *	set the index back to zero. This is a wrap. You could or off
 368	 *	the high bits in all updates but this is a bit faster I think.
 369	 */
 370
 371	q = &dev->queues->queue[qid];
 372
 373	idx = *index = le32_to_cpu(*(q->headers.producer));
 374	/* Interrupt Moderation, only interrupt for first two entries */
 375	if (idx != le32_to_cpu(*(q->headers.consumer))) {
 376		if (--idx == 0) {
 377			if (qid == AdapNormCmdQueue)
 378				idx = ADAP_NORM_CMD_ENTRIES;
 379			else
 380				idx = ADAP_NORM_RESP_ENTRIES;
 381		}
 382		if (idx != le32_to_cpu(*(q->headers.consumer)))
 383			*nonotify = 1;
 384	}
 385
 386	if (qid == AdapNormCmdQueue) {
 387		if (*index >= ADAP_NORM_CMD_ENTRIES)
 388			*index = 0; /* Wrap to front of the Producer Queue. */
 389	} else {
 390		if (*index >= ADAP_NORM_RESP_ENTRIES)
 391			*index = 0; /* Wrap to front of the Producer Queue. */
 392	}
 393
 394	/* Queue is full */
 395	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 396		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 397				qid, atomic_read(&q->numpending));
 398		return 0;
 399	} else {
 400		*entry = q->base + *index;
 401		return 1;
 402	}
 403}
 404
 405/**
 406 *	aac_queue_get		-	get the next free QE
 407 *	@dev: Adapter
 408 *	@index: Returned index
 409 *	@qid: Queue number
 410 *	@hw_fib: Fib to associate with the queue entry
 411 *	@wait: Wait if queue full
 412 *	@fibptr: Driver fib object to go with fib
 413 *	@nonotify: Don't notify the adapter
 414 *
 415 *	Gets the next free QE off the requested priorty adapter command
 416 *	queue and associates the Fib with the QE. The QE represented by
 417 *	index is ready to insert on the queue when this routine returns
 418 *	success.
 419 */
 420
 421int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 422{
 423	struct aac_entry * entry = NULL;
 424	int map = 0;
 425
 426	if (qid == AdapNormCmdQueue) {
 427		/*  if no entries wait for some if caller wants to */
 428		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 429			printk(KERN_ERR "GetEntries failed\n");
 430		}
 431		/*
 432		 *	Setup queue entry with a command, status and fib mapped
 433		 */
 434		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 435		map = 1;
 436	} else {
 437		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 438			/* if no entries wait for some if caller wants to */
 439		}
 440		/*
 441		 *	Setup queue entry with command, status and fib mapped
 442		 */
 443		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 444		entry->addr = hw_fib->header.SenderFibAddress;
 445			/* Restore adapters pointer to the FIB */
 446		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
 447		map = 0;
 448	}
 449	/*
 450	 *	If MapFib is true than we need to map the Fib and put pointers
 451	 *	in the queue entry.
 452	 */
 453	if (map)
 454		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 455	return 0;
 456}
 457
 458/*
 459 *	Define the highest level of host to adapter communication routines.
 460 *	These routines will support host to adapter FS commuication. These
 461 *	routines have no knowledge of the commuication method used. This level
 462 *	sends and receives FIBs. This level has no knowledge of how these FIBs
 463 *	get passed back and forth.
 464 */
 465
 466/**
 467 *	aac_fib_send	-	send a fib to the adapter
 468 *	@command: Command to send
 469 *	@fibptr: The fib
 470 *	@size: Size of fib data area
 471 *	@priority: Priority of Fib
 472 *	@wait: Async/sync select
 473 *	@reply: True if a reply is wanted
 474 *	@callback: Called with reply
 475 *	@callback_data: Passed to callback
 476 *
 477 *	Sends the requested FIB to the adapter and optionally will wait for a
 478 *	response FIB. If the caller does not wish to wait for a response than
 479 *	an event to wait on must be supplied. This event will be set when a
 480 *	response FIB is received from the adapter.
 481 */
 482
 483int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 484		int priority, int wait, int reply, fib_callback callback,
 485		void *callback_data)
 486{
 487	struct aac_dev * dev = fibptr->dev;
 488	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 489	unsigned long flags = 0;
 
 490	unsigned long mflags = 0;
 491	unsigned long sflags = 0;
 492
 
 493	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 494		return -EBUSY;
 495
 496	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
 497		return -EINVAL;
 498
 499	/*
 500	 *	There are 5 cases with the wait and response requested flags.
 501	 *	The only invalid cases are if the caller requests to wait and
 502	 *	does not request a response and if the caller does not want a
 503	 *	response and the Fib is not allocated from pool. If a response
 504	 *	is not requested the Fib will just be deallocaed by the DPC
 505	 *	routine when the response comes back from the adapter. No
 506	 *	further processing will be done besides deleting the Fib. We
 507	 *	will have a debug mode where the adapter can notify the host
 508	 *	it had a problem and the host can log that fact.
 509	 */
 510	fibptr->flags = 0;
 511	if (wait && !reply) {
 512		return -EINVAL;
 513	} else if (!wait && reply) {
 514		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 515		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 516	} else if (!wait && !reply) {
 517		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 518		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 519	} else if (wait && reply) {
 520		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 521		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 522	}
 523	/*
 524	 *	Map the fib into 32bits by using the fib number
 525	 */
 526
 527	hw_fib->header.SenderFibAddress =
 528		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 529
 530	/* use the same shifted value for handle to be compatible
 531	 * with the new native hba command handle
 532	 */
 533	hw_fib->header.Handle =
 534		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 535
 536	/*
 537	 *	Set FIB state to indicate where it came from and if we want a
 538	 *	response from the adapter. Also load the command from the
 539	 *	caller.
 540	 *
 541	 *	Map the hw fib pointer as a 32bit value
 542	 */
 543	hw_fib->header.Command = cpu_to_le16(command);
 544	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 545	/*
 546	 *	Set the size of the Fib we want to send to the adapter
 547	 */
 548	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 549	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 550		return -EMSGSIZE;
 551	}
 552	/*
 553	 *	Get a queue entry connect the FIB to it and send an notify
 554	 *	the adapter a command is ready.
 555	 */
 556	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 557
 558	/*
 559	 *	Fill in the Callback and CallbackContext if we are not
 560	 *	going to wait.
 561	 */
 562	if (!wait) {
 563		fibptr->callback = callback;
 564		fibptr->callback_data = callback_data;
 565		fibptr->flags = FIB_CONTEXT_FLAG;
 566	}
 567
 568	fibptr->done = 0;
 569
 570	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 571
 572	dprintk((KERN_DEBUG "Fib contents:.\n"));
 573	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 574	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 575	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 576	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 577	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 578	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 579
 580	if (!dev->queues)
 581		return -EBUSY;
 582
 583	if (wait) {
 584
 585		spin_lock_irqsave(&dev->manage_lock, mflags);
 586		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 587			printk(KERN_INFO "No management Fibs Available:%d\n",
 588						dev->management_fib_count);
 589			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 590			return -EBUSY;
 591		}
 592		dev->management_fib_count++;
 593		spin_unlock_irqrestore(&dev->manage_lock, mflags);
 594		spin_lock_irqsave(&fibptr->event_lock, flags);
 595	}
 596
 597	if (dev->sync_mode) {
 598		if (wait)
 599			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 600		spin_lock_irqsave(&dev->sync_lock, sflags);
 601		if (dev->sync_fib) {
 602			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
 603			spin_unlock_irqrestore(&dev->sync_lock, sflags);
 604		} else {
 605			dev->sync_fib = fibptr;
 606			spin_unlock_irqrestore(&dev->sync_lock, sflags);
 607			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
 608				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
 609				NULL, NULL, NULL, NULL, NULL);
 610		}
 611		if (wait) {
 612			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 613			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 614				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
 615				return -EFAULT;
 616			}
 617			return 0;
 618		}
 619		return -EINPROGRESS;
 620	}
 621
 622	if (aac_adapter_deliver(fibptr) != 0) {
 623		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
 624		if (wait) {
 625			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 626			spin_lock_irqsave(&dev->manage_lock, mflags);
 627			dev->management_fib_count--;
 628			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 629		}
 630		return -EBUSY;
 631	}
 632
 633
 634	/*
 635	 *	If the caller wanted us to wait for response wait now.
 636	 */
 637
 638	if (wait) {
 639		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 640		/* Only set for first known interruptable command */
 641		if (wait < 0) {
 642			/*
 643			 * *VERY* Dangerous to time out a command, the
 644			 * assumption is made that we have no hope of
 645			 * functioning because an interrupt routing or other
 646			 * hardware failure has occurred.
 647			 */
 648			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
 649			while (!try_wait_for_completion(&fibptr->event_wait)) {
 650				int blink;
 651				if (time_is_before_eq_jiffies(timeout)) {
 652					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 653					atomic_dec(&q->numpending);
 
 
 654					if (wait == -1) {
 655	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 656						  "Usually a result of a PCI interrupt routing problem;\n"
 657						  "update mother board BIOS or consider utilizing one of\n"
 658						  "the SAFE mode kernel options (acpi, apic etc)\n");
 659					}
 660					return -ETIMEDOUT;
 661				}
 662
 663				if (unlikely(aac_pci_offline(dev)))
 664					return -EFAULT;
 665
 666				if ((blink = aac_adapter_check_health(dev)) > 0) {
 667					if (wait == -1) {
 668	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 669						  "Usually a result of a serious unrecoverable hardware problem\n",
 670						  blink);
 671					}
 672					return -EFAULT;
 673				}
 674				/*
 675				 * Allow other processes / CPUS to use core
 676				 */
 677				schedule();
 678			}
 679		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 680			/* Do nothing ... satisfy
 681			 * wait_for_completion_interruptible must_check */
 682		}
 683
 684		spin_lock_irqsave(&fibptr->event_lock, flags);
 685		if (fibptr->done == 0) {
 686			fibptr->done = 2; /* Tell interrupt we aborted */
 687			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 688			return -ERESTARTSYS;
 689		}
 690		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 691		BUG_ON(fibptr->done == 0);
 692
 693		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 694			return -ETIMEDOUT;
 695		return 0;
 696	}
 697	/*
 698	 *	If the user does not want a response than return success otherwise
 699	 *	return pending
 700	 */
 701	if (reply)
 702		return -EINPROGRESS;
 703	else
 704		return 0;
 705}
 706
 707int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
 708		void *callback_data)
 709{
 710	struct aac_dev *dev = fibptr->dev;
 711	int wait;
 712	unsigned long flags = 0;
 713	unsigned long mflags = 0;
 714	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
 715			fibptr->hw_fib_va;
 716
 717	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
 718	if (callback) {
 719		wait = 0;
 720		fibptr->callback = callback;
 721		fibptr->callback_data = callback_data;
 722	} else
 723		wait = 1;
 724
 725
 726	hbacmd->iu_type = command;
 727
 728	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
 729		/* bit1 of request_id must be 0 */
 730		hbacmd->request_id =
 731			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 732		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
 733	} else
 734		return -EINVAL;
 735
 736
 737	if (wait) {
 738		spin_lock_irqsave(&dev->manage_lock, mflags);
 739		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 740			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 741			return -EBUSY;
 742		}
 743		dev->management_fib_count++;
 744		spin_unlock_irqrestore(&dev->manage_lock, mflags);
 745		spin_lock_irqsave(&fibptr->event_lock, flags);
 746	}
 747
 748	if (aac_adapter_deliver(fibptr) != 0) {
 749		if (wait) {
 750			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 751			spin_lock_irqsave(&dev->manage_lock, mflags);
 752			dev->management_fib_count--;
 753			spin_unlock_irqrestore(&dev->manage_lock, mflags);
 754		}
 755		return -EBUSY;
 756	}
 757	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
 758
 759	if (wait) {
 760
 761		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 762
 763		if (unlikely(aac_pci_offline(dev)))
 764			return -EFAULT;
 765
 766		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 767		if (wait_for_completion_interruptible(&fibptr->event_wait))
 768			fibptr->done = 2;
 769		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
 770
 771		spin_lock_irqsave(&fibptr->event_lock, flags);
 772		if ((fibptr->done == 0) || (fibptr->done == 2)) {
 773			fibptr->done = 2; /* Tell interrupt we aborted */
 774			spin_unlock_irqrestore(&fibptr->event_lock, flags);
 775			return -ERESTARTSYS;
 776		}
 777		spin_unlock_irqrestore(&fibptr->event_lock, flags);
 778		WARN_ON(fibptr->done == 0);
 779
 780		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 781			return -ETIMEDOUT;
 782
 783		return 0;
 784	}
 785
 786	return -EINPROGRESS;
 787}
 788
 789/**
 790 *	aac_consumer_get	-	get the top of the queue
 791 *	@dev: Adapter
 792 *	@q: Queue
 793 *	@entry: Return entry
 794 *
 795 *	Will return a pointer to the entry on the top of the queue requested that
 796 *	we are a consumer of, and return the address of the queue entry. It does
 797 *	not change the state of the queue.
 798 */
 799
 800int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 801{
 802	u32 index;
 803	int status;
 804	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 805		status = 0;
 806	} else {
 807		/*
 808		 *	The consumer index must be wrapped if we have reached
 809		 *	the end of the queue, else we just use the entry
 810		 *	pointed to by the header index
 811		 */
 812		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 813			index = 0;
 814		else
 815			index = le32_to_cpu(*q->headers.consumer);
 816		*entry = q->base + index;
 817		status = 1;
 818	}
 819	return(status);
 820}
 821
 822/**
 823 *	aac_consumer_free	-	free consumer entry
 824 *	@dev: Adapter
 825 *	@q: Queue
 826 *	@qid: Queue ident
 827 *
 828 *	Frees up the current top of the queue we are a consumer of. If the
 829 *	queue was full notify the producer that the queue is no longer full.
 830 */
 831
 832void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 833{
 834	int wasfull = 0;
 835	u32 notify;
 836
 837	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 838		wasfull = 1;
 839
 840	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 841		*q->headers.consumer = cpu_to_le32(1);
 842	else
 843		le32_add_cpu(q->headers.consumer, 1);
 844
 845	if (wasfull) {
 846		switch (qid) {
 847
 848		case HostNormCmdQueue:
 849			notify = HostNormCmdNotFull;
 850			break;
 851		case HostNormRespQueue:
 852			notify = HostNormRespNotFull;
 853			break;
 854		default:
 855			BUG();
 856			return;
 857		}
 858		aac_adapter_notify(dev, notify);
 859	}
 860}
 861
 862/**
 863 *	aac_fib_adapter_complete	-	complete adapter issued fib
 864 *	@fibptr: fib to complete
 865 *	@size: size of fib
 866 *
 867 *	Will do all necessary work to complete a FIB that was sent from
 868 *	the adapter.
 869 */
 870
 871int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 872{
 873	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 874	struct aac_dev * dev = fibptr->dev;
 875	struct aac_queue * q;
 876	unsigned long nointr = 0;
 877	unsigned long qflags;
 878
 879	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
 880		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
 881		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
 882		kfree(hw_fib);
 883		return 0;
 884	}
 885
 886	if (hw_fib->header.XferState == 0) {
 887		if (dev->comm_interface == AAC_COMM_MESSAGE)
 888			kfree(hw_fib);
 889		return 0;
 890	}
 891	/*
 892	 *	If we plan to do anything check the structure type first.
 893	 */
 894	if (hw_fib->header.StructType != FIB_MAGIC &&
 895	    hw_fib->header.StructType != FIB_MAGIC2 &&
 896	    hw_fib->header.StructType != FIB_MAGIC2_64) {
 897		if (dev->comm_interface == AAC_COMM_MESSAGE)
 898			kfree(hw_fib);
 899		return -EINVAL;
 900	}
 901	/*
 902	 *	This block handles the case where the adapter had sent us a
 903	 *	command and we have finished processing the command. We
 904	 *	call completeFib when we are done processing the command
 905	 *	and want to send a response back to the adapter. This will
 906	 *	send the completed cdb to the adapter.
 907	 */
 908	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 909		if (dev->comm_interface == AAC_COMM_MESSAGE) {
 910			kfree (hw_fib);
 911		} else {
 912			u32 index;
 913			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 914			if (size) {
 915				size += sizeof(struct aac_fibhdr);
 916				if (size > le16_to_cpu(hw_fib->header.SenderSize))
 917					return -EMSGSIZE;
 918				hw_fib->header.Size = cpu_to_le16(size);
 919			}
 920			q = &dev->queues->queue[AdapNormRespQueue];
 921			spin_lock_irqsave(q->lock, qflags);
 922			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 923			*(q->headers.producer) = cpu_to_le32(index + 1);
 924			spin_unlock_irqrestore(q->lock, qflags);
 925			if (!(nointr & (int)aac_config.irq_mod))
 926				aac_adapter_notify(dev, AdapNormRespQueue);
 927		}
 928	} else {
 929		printk(KERN_WARNING "aac_fib_adapter_complete: "
 930			"Unknown xferstate detected.\n");
 931		BUG();
 932	}
 933	return 0;
 934}
 935
 936/**
 937 *	aac_fib_complete	-	fib completion handler
 938 *	@fibptr: FIB to complete
 939 *
 940 *	Will do all necessary work to complete a FIB.
 941 */
 942
 943int aac_fib_complete(struct fib *fibptr)
 944{
 
 945	struct hw_fib * hw_fib = fibptr->hw_fib_va;
 946
 947	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
 948		fib_dealloc(fibptr);
 949		return 0;
 950	}
 951
 952	/*
 953	 *	Check for a fib which has already been completed or with a
 954	 *	status wait timeout
 955	 */
 956
 957	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
 958		return 0;
 959	/*
 960	 *	If we plan to do anything check the structure type first.
 961	 */
 962
 963	if (hw_fib->header.StructType != FIB_MAGIC &&
 964	    hw_fib->header.StructType != FIB_MAGIC2 &&
 965	    hw_fib->header.StructType != FIB_MAGIC2_64)
 966		return -EINVAL;
 967	/*
 968	 *	This block completes a cdb which orginated on the host and we
 969	 *	just need to deallocate the cdb or reinit it. At this point the
 970	 *	command is complete that we had sent to the adapter and this
 971	 *	cdb could be reused.
 972	 */
 
 
 
 
 
 
 973
 974	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 975		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 976	{
 977		fib_dealloc(fibptr);
 978	}
 979	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 980	{
 981		/*
 982		 *	This handles the case when the host has aborted the I/O
 983		 *	to the adapter because the adapter is not responding
 984		 */
 985		fib_dealloc(fibptr);
 986	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 987		fib_dealloc(fibptr);
 988	} else {
 989		BUG();
 990	}
 991	return 0;
 992}
 993
 994/**
 995 *	aac_printf	-	handle printf from firmware
 996 *	@dev: Adapter
 997 *	@val: Message info
 998 *
 999 *	Print a message passed to us by the controller firmware on the
1000 *	Adaptec board
1001 */
1002
1003void aac_printf(struct aac_dev *dev, u32 val)
1004{
1005	char *cp = dev->printfbuf;
1006	if (dev->printf_enabled)
1007	{
1008		int length = val & 0xffff;
1009		int level = (val >> 16) & 0xffff;
1010
1011		/*
1012		 *	The size of the printfbuf is set in port.c
1013		 *	There is no variable or define for it
1014		 */
1015		if (length > 255)
1016			length = 255;
1017		if (cp[length] != 0)
1018			cp[length] = 0;
1019		if (level == LOG_AAC_HIGH_ERROR)
1020			printk(KERN_WARNING "%s:%s", dev->name, cp);
1021		else
1022			printk(KERN_INFO "%s:%s", dev->name, cp);
1023	}
1024	memset(cp, 0, 256);
1025}
1026
1027static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028{
1029	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030}
1031
1032
1033static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034{
1035	switch (aac_aif_data(aifcmd, 1)) {
1036	case AifBuCacheDataLoss:
1037		if (aac_aif_data(aifcmd, 2))
1038			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039			aac_aif_data(aifcmd, 2));
1040		else
1041			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042		break;
1043	case AifBuCacheDataRecover:
1044		if (aac_aif_data(aifcmd, 2))
1045			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046			aac_aif_data(aifcmd, 2));
1047		else
1048			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049		break;
1050	}
1051}
1052
1053#define AIF_SNIFF_TIMEOUT	(500*HZ)
1054/**
1055 *	aac_handle_aif		-	Handle a message from the firmware
1056 *	@dev: Which adapter this fib is from
1057 *	@fibptr: Pointer to fibptr from adapter
1058 *
1059 *	This routine handles a driver notify fib from the adapter and
1060 *	dispatches it to the appropriate routine for handling.
1061 */
 
 
1062static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063{
1064	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066	u32 channel, id, lun, container;
1067	struct scsi_device *device;
1068	enum {
1069		NOTHING,
1070		DELETE,
1071		ADD,
1072		CHANGE
1073	} device_config_needed = NOTHING;
1074
1075	/* Sniff for container changes */
1076
1077	if (!dev || !dev->fsa_dev)
1078		return;
1079	container = channel = id = lun = (u32)-1;
1080
1081	/*
1082	 *	We have set this up to try and minimize the number of
1083	 * re-configures that take place. As a result of this when
1084	 * certain AIF's come in we will set a flag waiting for another
1085	 * type of AIF before setting the re-config flag.
1086	 */
1087	switch (le32_to_cpu(aifcmd->command)) {
1088	case AifCmdDriverNotify:
1089		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090		case AifRawDeviceRemove:
1091			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092			if ((container >> 28)) {
1093				container = (u32)-1;
1094				break;
1095			}
1096			channel = (container >> 24) & 0xF;
1097			if (channel >= dev->maximum_num_channels) {
1098				container = (u32)-1;
1099				break;
1100			}
1101			id = container & 0xFFFF;
1102			if (id >= dev->maximum_num_physicals) {
1103				container = (u32)-1;
1104				break;
1105			}
1106			lun = (container >> 16) & 0xFF;
1107			container = (u32)-1;
1108			channel = aac_phys_to_logical(channel);
1109			device_config_needed = DELETE;
1110			break;
1111
1112		/*
1113		 *	Morph or Expand complete
1114		 */
1115		case AifDenMorphComplete:
1116		case AifDenVolumeExtendComplete:
1117			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118			if (container >= dev->maximum_num_containers)
1119				break;
1120
1121			/*
1122			 *	Find the scsi_device associated with the SCSI
1123			 * address. Make sure we have the right array, and if
1124			 * so set the flag to initiate a new re-config once we
1125			 * see an AifEnConfigChange AIF come through.
1126			 */
1127
1128			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129				device = scsi_device_lookup(dev->scsi_host_ptr,
1130					CONTAINER_TO_CHANNEL(container),
1131					CONTAINER_TO_ID(container),
1132					CONTAINER_TO_LUN(container));
1133				if (device) {
1134					dev->fsa_dev[container].config_needed = CHANGE;
1135					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137					scsi_device_put(device);
1138				}
1139			}
1140		}
1141
1142		/*
1143		 *	If we are waiting on something and this happens to be
1144		 * that thing then set the re-configure flag.
1145		 */
1146		if (container != (u32)-1) {
1147			if (container >= dev->maximum_num_containers)
1148				break;
1149			if ((dev->fsa_dev[container].config_waiting_on ==
1150			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152				dev->fsa_dev[container].config_waiting_on = 0;
1153		} else for (container = 0;
1154		    container < dev->maximum_num_containers; ++container) {
1155			if ((dev->fsa_dev[container].config_waiting_on ==
1156			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158				dev->fsa_dev[container].config_waiting_on = 0;
1159		}
1160		break;
1161
1162	case AifCmdEventNotify:
1163		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164		case AifEnBatteryEvent:
1165			dev->cache_protected =
1166				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167			break;
1168		/*
1169		 *	Add an Array.
1170		 */
1171		case AifEnAddContainer:
1172			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173			if (container >= dev->maximum_num_containers)
1174				break;
1175			dev->fsa_dev[container].config_needed = ADD;
1176			dev->fsa_dev[container].config_waiting_on =
1177				AifEnConfigChange;
1178			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179			break;
1180
1181		/*
1182		 *	Delete an Array.
1183		 */
1184		case AifEnDeleteContainer:
1185			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186			if (container >= dev->maximum_num_containers)
1187				break;
1188			dev->fsa_dev[container].config_needed = DELETE;
1189			dev->fsa_dev[container].config_waiting_on =
1190				AifEnConfigChange;
1191			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192			break;
1193
1194		/*
1195		 *	Container change detected. If we currently are not
1196		 * waiting on something else, setup to wait on a Config Change.
1197		 */
1198		case AifEnContainerChange:
1199			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200			if (container >= dev->maximum_num_containers)
1201				break;
1202			if (dev->fsa_dev[container].config_waiting_on &&
1203			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204				break;
1205			dev->fsa_dev[container].config_needed = CHANGE;
1206			dev->fsa_dev[container].config_waiting_on =
1207				AifEnConfigChange;
1208			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209			break;
1210
1211		case AifEnConfigChange:
1212			break;
1213
1214		case AifEnAddJBOD:
1215		case AifEnDeleteJBOD:
1216			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217			if ((container >> 28)) {
1218				container = (u32)-1;
1219				break;
1220			}
1221			channel = (container >> 24) & 0xF;
1222			if (channel >= dev->maximum_num_channels) {
1223				container = (u32)-1;
1224				break;
1225			}
1226			id = container & 0xFFFF;
1227			if (id >= dev->maximum_num_physicals) {
1228				container = (u32)-1;
1229				break;
1230			}
1231			lun = (container >> 16) & 0xFF;
1232			container = (u32)-1;
1233			channel = aac_phys_to_logical(channel);
1234			device_config_needed =
1235			  (((__le32 *)aifcmd->data)[0] ==
1236			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237			if (device_config_needed == ADD) {
1238				device = scsi_device_lookup(dev->scsi_host_ptr,
1239					channel,
1240					id,
1241					lun);
1242				if (device) {
1243					scsi_remove_device(device);
1244					scsi_device_put(device);
1245				}
1246			}
1247			break;
1248
1249		case AifEnEnclosureManagement:
1250			/*
1251			 * If in JBOD mode, automatic exposure of new
1252			 * physical target to be suppressed until configured.
1253			 */
1254			if (dev->jbod)
1255				break;
1256			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257			case EM_DRIVE_INSERTION:
1258			case EM_DRIVE_REMOVAL:
1259			case EM_SES_DRIVE_INSERTION:
1260			case EM_SES_DRIVE_REMOVAL:
1261				container = le32_to_cpu(
1262					((__le32 *)aifcmd->data)[2]);
1263				if ((container >> 28)) {
1264					container = (u32)-1;
1265					break;
1266				}
1267				channel = (container >> 24) & 0xF;
1268				if (channel >= dev->maximum_num_channels) {
1269					container = (u32)-1;
1270					break;
1271				}
1272				id = container & 0xFFFF;
1273				lun = (container >> 16) & 0xFF;
1274				container = (u32)-1;
1275				if (id >= dev->maximum_num_physicals) {
1276					/* legacy dev_t ? */
1277					if ((0x2000 <= id) || lun || channel ||
1278					  ((channel = (id >> 7) & 0x3F) >=
1279					  dev->maximum_num_channels))
1280						break;
1281					lun = (id >> 4) & 7;
1282					id &= 0xF;
1283				}
1284				channel = aac_phys_to_logical(channel);
1285				device_config_needed =
1286				  ((((__le32 *)aifcmd->data)[3]
1287				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288				    (((__le32 *)aifcmd->data)[3]
1289				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290				  ADD : DELETE;
1291				break;
1292			}
1293			break;
1294		case AifBuManagerEvent:
1295			aac_handle_aif_bu(dev, aifcmd);
1296			break;
1297		}
1298
1299		/*
1300		 *	If we are waiting on something and this happens to be
1301		 * that thing then set the re-configure flag.
1302		 */
1303		if (container != (u32)-1) {
1304			if (container >= dev->maximum_num_containers)
1305				break;
1306			if ((dev->fsa_dev[container].config_waiting_on ==
1307			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309				dev->fsa_dev[container].config_waiting_on = 0;
1310		} else for (container = 0;
1311		    container < dev->maximum_num_containers; ++container) {
1312			if ((dev->fsa_dev[container].config_waiting_on ==
1313			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315				dev->fsa_dev[container].config_waiting_on = 0;
1316		}
1317		break;
1318
1319	case AifCmdJobProgress:
1320		/*
1321		 *	These are job progress AIF's. When a Clear is being
1322		 * done on a container it is initially created then hidden from
1323		 * the OS. When the clear completes we don't get a config
1324		 * change so we monitor the job status complete on a clear then
1325		 * wait for a container change.
1326		 */
1327
1328		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331			for (container = 0;
1332			    container < dev->maximum_num_containers;
1333			    ++container) {
1334				/*
1335				 * Stomp on all config sequencing for all
1336				 * containers?
1337				 */
1338				dev->fsa_dev[container].config_waiting_on =
1339					AifEnContainerChange;
1340				dev->fsa_dev[container].config_needed = ADD;
1341				dev->fsa_dev[container].config_waiting_stamp =
1342					jiffies;
1343			}
1344		}
1345		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346		    ((__le32 *)aifcmd->data)[6] == 0 &&
1347		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348			for (container = 0;
1349			    container < dev->maximum_num_containers;
1350			    ++container) {
1351				/*
1352				 * Stomp on all config sequencing for all
1353				 * containers?
1354				 */
1355				dev->fsa_dev[container].config_waiting_on =
1356					AifEnContainerChange;
1357				dev->fsa_dev[container].config_needed = DELETE;
1358				dev->fsa_dev[container].config_waiting_stamp =
1359					jiffies;
1360			}
1361		}
1362		break;
1363	}
1364
1365	container = 0;
1366retry_next:
1367	if (device_config_needed == NOTHING) {
1368		for (; container < dev->maximum_num_containers; ++container) {
1369			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1371			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372				device_config_needed =
1373					dev->fsa_dev[container].config_needed;
1374				dev->fsa_dev[container].config_needed = NOTHING;
1375				channel = CONTAINER_TO_CHANNEL(container);
1376				id = CONTAINER_TO_ID(container);
1377				lun = CONTAINER_TO_LUN(container);
1378				break;
1379			}
1380		}
1381	}
1382	if (device_config_needed == NOTHING)
1383		return;
1384
1385	/*
1386	 *	If we decided that a re-configuration needs to be done,
1387	 * schedule it here on the way out the door, please close the door
1388	 * behind you.
1389	 */
1390
1391	/*
1392	 *	Find the scsi_device associated with the SCSI address,
1393	 * and mark it as changed, invalidating the cache. This deals
1394	 * with changes to existing device IDs.
1395	 */
1396
1397	if (!dev || !dev->scsi_host_ptr)
1398		return;
1399	/*
1400	 * force reload of disk info via aac_probe_container
1401	 */
1402	if ((channel == CONTAINER_CHANNEL) &&
1403	  (device_config_needed != NOTHING)) {
1404		if (dev->fsa_dev[container].valid == 1)
1405			dev->fsa_dev[container].valid = 2;
1406		aac_probe_container(dev, container);
1407	}
1408	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409	if (device) {
1410		switch (device_config_needed) {
1411		case DELETE:
1412#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413			scsi_remove_device(device);
1414#else
1415			if (scsi_device_online(device)) {
1416				scsi_device_set_state(device, SDEV_OFFLINE);
1417				sdev_printk(KERN_INFO, device,
1418					"Device offlined - %s\n",
1419					(channel == CONTAINER_CHANNEL) ?
1420						"array deleted" :
1421						"enclosure services event");
1422			}
1423#endif
1424			break;
1425		case ADD:
1426			if (!scsi_device_online(device)) {
1427				sdev_printk(KERN_INFO, device,
1428					"Device online - %s\n",
1429					(channel == CONTAINER_CHANNEL) ?
1430						"array created" :
1431						"enclosure services event");
1432				scsi_device_set_state(device, SDEV_RUNNING);
1433			}
1434			fallthrough;
1435		case CHANGE:
1436			if ((channel == CONTAINER_CHANNEL)
1437			 && (!dev->fsa_dev[container].valid)) {
1438#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439				scsi_remove_device(device);
1440#else
1441				if (!scsi_device_online(device))
1442					break;
1443				scsi_device_set_state(device, SDEV_OFFLINE);
1444				sdev_printk(KERN_INFO, device,
1445					"Device offlined - %s\n",
1446					"array failed");
1447#endif
1448				break;
1449			}
1450			scsi_rescan_device(&device->sdev_gendev);
1451			break;
1452
1453		default:
1454			break;
1455		}
1456		scsi_device_put(device);
1457		device_config_needed = NOTHING;
1458	}
1459	if (device_config_needed == ADD)
1460		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1461	if (channel == CONTAINER_CHANNEL) {
1462		container++;
1463		device_config_needed = NOTHING;
1464		goto retry_next;
1465	}
1466}
1467
1468static void aac_schedule_bus_scan(struct aac_dev *aac)
1469{
1470	if (aac->sa_firmware)
1471		aac_schedule_safw_scan_worker(aac);
1472	else
1473		aac_schedule_src_reinit_aif_worker(aac);
1474}
1475
1476static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1477{
1478	int index, quirks;
1479	int retval;
1480	struct Scsi_Host *host = aac->scsi_host_ptr;
 
 
 
1481	int jafo = 0;
1482	int bled;
1483	u64 dmamask;
1484	int num_of_fibs = 0;
1485
1486	/*
1487	 * Assumptions:
1488	 *	- host is locked, unless called by the aacraid thread.
1489	 *	  (a matter of convenience, due to legacy issues surrounding
1490	 *	  eh_host_adapter_reset).
1491	 *	- in_reset is asserted, so no new i/o is getting to the
1492	 *	  card.
1493	 *	- The card is dead, or will be very shortly ;-/ so no new
1494	 *	  commands are completing in the interrupt service.
1495	 */
 
 
1496	aac_adapter_disable_int(aac);
1497	if (aac->thread && aac->thread->pid != current->pid) {
1498		spin_unlock_irq(host->host_lock);
1499		kthread_stop(aac->thread);
1500		aac->thread = NULL;
1501		jafo = 1;
1502	}
1503
1504	/*
1505	 *	If a positive health, means in a known DEAD PANIC
1506	 * state and the adapter could be reset to `try again'.
1507	 */
1508	bled = forced ? 0 : aac_adapter_check_health(aac);
1509	retval = aac_adapter_restart(aac, bled, reset_type);
1510
1511	if (retval)
1512		goto out;
1513
1514	/*
1515	 *	Loop through the fibs, close the synchronous FIBS
1516	 */
1517	retval = 1;
1518	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1519	for (index = 0; index <  num_of_fibs; index++) {
1520
1521		struct fib *fib = &aac->fibs[index];
1522		__le32 XferState = fib->hw_fib_va->header.XferState;
1523		bool is_response_expected = false;
1524
1525		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1526		   (XferState & cpu_to_le32(ResponseExpected)))
1527			is_response_expected = true;
1528
1529		if (is_response_expected
1530		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1531			unsigned long flagv;
1532			spin_lock_irqsave(&fib->event_lock, flagv);
1533			complete(&fib->event_wait);
1534			spin_unlock_irqrestore(&fib->event_lock, flagv);
1535			schedule();
1536			retval = 0;
1537		}
1538	}
1539	/* Give some extra time for ioctls to complete. */
1540	if (retval == 0)
1541		ssleep(2);
1542	index = aac->cardtype;
1543
1544	/*
1545	 * Re-initialize the adapter, first free resources, then carefully
1546	 * apply the initialization sequence to come back again. Only risk
1547	 * is a change in Firmware dropping cache, it is assumed the caller
1548	 * will ensure that i/o is queisced and the card is flushed in that
1549	 * case.
1550	 */
1551	aac_free_irq(aac);
1552	aac_fib_map_free(aac);
1553	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1554			  aac->comm_phys);
1555	aac_adapter_ioremap(aac, 0);
1556	aac->comm_addr = NULL;
1557	aac->comm_phys = 0;
1558	kfree(aac->queues);
1559	aac->queues = NULL;
 
 
 
1560	kfree(aac->fsa_dev);
1561	aac->fsa_dev = NULL;
1562
1563	dmamask = DMA_BIT_MASK(32);
1564	quirks = aac_get_driver_ident(index)->quirks;
1565	if (quirks & AAC_QUIRK_31BIT)
1566		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1567	else if (!(quirks & AAC_QUIRK_SRC))
1568		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1569	else
1570		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1571
1572	if (quirks & AAC_QUIRK_31BIT && !retval) {
1573		dmamask = DMA_BIT_MASK(31);
1574		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1575	}
1576
1577	if (retval)
1578		goto out;
1579
1580	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1581		goto out;
1582
 
 
1583	if (jafo) {
1584		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1585					  aac->name);
1586		if (IS_ERR(aac->thread)) {
1587			retval = PTR_ERR(aac->thread);
1588			aac->thread = NULL;
1589			goto out;
1590		}
1591	}
1592	(void)aac_get_adapter_info(aac);
1593	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1594		host->sg_tablesize = 34;
1595		host->max_sectors = (host->sg_tablesize * 8) + 112;
1596	}
1597	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1598		host->sg_tablesize = 17;
1599		host->max_sectors = (host->sg_tablesize * 8) + 112;
1600	}
1601	aac_get_config_status(aac, 1);
1602	aac_get_containers(aac);
1603	/*
1604	 * This is where the assumption that the Adapter is quiesced
1605	 * is important.
1606	 */
1607	scsi_host_complete_all_commands(host, DID_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1608
1609	retval = 0;
1610out:
1611	aac->in_reset = 0;
1612
1613	/*
1614	 * Issue bus rescan to catch any configuration that might have
1615	 * occurred
1616	 */
1617	if (!retval && !is_kdump_kernel()) {
1618		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1619		aac_schedule_bus_scan(aac);
1620	}
1621
1622	if (jafo) {
1623		spin_lock_irq(host->host_lock);
1624	}
1625	return retval;
1626}
1627
1628int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1629{
1630	unsigned long flagv = 0;
1631	int retval, unblock_retval;
1632	struct Scsi_Host *host = aac->scsi_host_ptr;
1633	int bled;
1634
1635	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1636		return -EBUSY;
1637
1638	if (aac->in_reset) {
1639		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1640		return -EBUSY;
1641	}
1642	aac->in_reset = 1;
1643	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644
1645	/*
1646	 * Wait for all commands to complete to this specific
1647	 * target (block maximum 60 seconds). Although not necessary,
1648	 * it does make us a good storage citizen.
1649	 */
1650	scsi_host_block(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651
1652	/* Quiesce build, flush cache, write through mode */
1653	if (forced < 2)
1654		aac_send_shutdown(aac);
1655	spin_lock_irqsave(host->host_lock, flagv);
1656	bled = forced ? forced :
1657			(aac_check_reset != 0 && aac_check_reset != 1);
1658	retval = _aac_reset_adapter(aac, bled, reset_type);
1659	spin_unlock_irqrestore(host->host_lock, flagv);
1660
1661	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1662	if (!retval)
1663		retval = unblock_retval;
1664	if ((forced < 2) && (retval == -ENODEV)) {
1665		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1666		struct fib * fibctx = aac_fib_alloc(aac);
1667		if (fibctx) {
1668			struct aac_pause *cmd;
1669			int status;
1670
1671			aac_fib_init(fibctx);
1672
1673			cmd = (struct aac_pause *) fib_data(fibctx);
1674
1675			cmd->command = cpu_to_le32(VM_ContainerConfig);
1676			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1677			cmd->timeout = cpu_to_le32(1);
1678			cmd->min = cpu_to_le32(1);
1679			cmd->noRescan = cpu_to_le32(1);
1680			cmd->count = cpu_to_le32(0);
1681
1682			status = aac_fib_send(ContainerCommand,
1683			  fibctx,
1684			  sizeof(struct aac_pause),
1685			  FsaNormal,
1686			  -2 /* Timeout silently */, 1,
1687			  NULL, NULL);
1688
1689			if (status >= 0)
1690				aac_fib_complete(fibctx);
1691			/* FIB should be freed only after getting
1692			 * the response from the F/W */
1693			if (status != -ERESTARTSYS)
1694				aac_fib_free(fibctx);
1695		}
1696	}
1697
1698	return retval;
1699}
1700
1701int aac_check_health(struct aac_dev * aac)
1702{
1703	int BlinkLED;
1704	unsigned long time_now, flagv = 0;
1705	struct list_head * entry;
 
1706
1707	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1708	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1709		return 0;
1710
1711	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1712		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1713		return 0; /* OK */
1714	}
1715
1716	aac->in_reset = 1;
1717
1718	/* Fake up an AIF:
1719	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1720	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1721	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1722	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1723	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1724	 *	aac.aifcmd.data[3] = BlinkLED
1725	 */
1726
1727	time_now = jiffies/HZ;
1728	entry = aac->fib_list.next;
1729
1730	/*
1731	 * For each Context that is on the
1732	 * fibctxList, make a copy of the
1733	 * fib, and then set the event to wake up the
1734	 * thread that is waiting for it.
1735	 */
1736	while (entry != &aac->fib_list) {
1737		/*
1738		 * Extract the fibctx
1739		 */
1740		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1741		struct hw_fib * hw_fib;
1742		struct fib * fib;
1743		/*
1744		 * Check if the queue is getting
1745		 * backlogged
1746		 */
1747		if (fibctx->count > 20) {
1748			/*
1749			 * It's *not* jiffies folks,
1750			 * but jiffies / HZ, so do not
1751			 * panic ...
1752			 */
1753			u32 time_last = fibctx->jiffies;
1754			/*
1755			 * Has it been > 2 minutes
1756			 * since the last read off
1757			 * the queue?
1758			 */
1759			if ((time_now - time_last) > aif_timeout) {
1760				entry = entry->next;
1761				aac_close_fib_context(aac, fibctx);
1762				continue;
1763			}
1764		}
1765		/*
1766		 * Warning: no sleep allowed while
1767		 * holding spinlock
1768		 */
1769		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1770		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1771		if (fib && hw_fib) {
1772			struct aac_aifcmd * aif;
1773
1774			fib->hw_fib_va = hw_fib;
1775			fib->dev = aac;
1776			aac_fib_init(fib);
1777			fib->type = FSAFS_NTC_FIB_CONTEXT;
1778			fib->size = sizeof (struct fib);
1779			fib->data = hw_fib->data;
1780			aif = (struct aac_aifcmd *)hw_fib->data;
1781			aif->command = cpu_to_le32(AifCmdEventNotify);
1782			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1783			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1784			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1785			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1786			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1787
1788			/*
1789			 * Put the FIB onto the
1790			 * fibctx's fibs
1791			 */
1792			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1793			fibctx->count++;
1794			/*
1795			 * Set the event to wake up the
1796			 * thread that will waiting.
1797			 */
1798			complete(&fibctx->completion);
1799		} else {
1800			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1801			kfree(fib);
1802			kfree(hw_fib);
1803		}
1804		entry = entry->next;
1805	}
1806
1807	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1808
1809	if (BlinkLED < 0) {
1810		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1811				aac->name, BlinkLED);
1812		goto out;
1813	}
1814
1815	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1816
 
 
 
 
 
 
 
 
 
 
 
 
1817out:
1818	aac->in_reset = 0;
1819	return BlinkLED;
1820}
1821
1822static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1823{
1824	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1825}
1826
1827static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1828								int bus,
1829								int target)
1830{
1831	if (bus != CONTAINER_CHANNEL)
1832		bus = aac_phys_to_logical(bus);
1833
1834	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1835}
1836
1837static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1838{
1839	if (bus != CONTAINER_CHANNEL)
1840		bus = aac_phys_to_logical(bus);
1841
1842	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1843}
1844
1845static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1846{
1847	if (sdev)
1848		scsi_device_put(sdev);
1849}
1850
1851static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1852{
1853	struct scsi_device *sdev;
1854
1855	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1856	scsi_remove_device(sdev);
1857	aac_put_safw_scsi_device(sdev);
1858}
1859
1860static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1861	int bus, int target)
1862{
1863	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1864}
1865
1866static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1867{
1868	if (is_safw_raid_volume(dev, bus, target))
1869		return dev->fsa_dev[target].valid;
1870	else
1871		return aac_is_safw_scan_count_equal(dev, bus, target);
1872}
1873
1874static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1875{
1876	int is_exposed = 0;
1877	struct scsi_device *sdev;
1878
1879	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1880	if (sdev)
1881		is_exposed = 1;
1882	aac_put_safw_scsi_device(sdev);
1883
1884	return is_exposed;
1885}
1886
1887static int aac_update_safw_host_devices(struct aac_dev *dev)
1888{
1889	int i;
1890	int bus;
1891	int target;
1892	int is_exposed = 0;
1893	int rcode = 0;
1894
1895	rcode = aac_setup_safw_adapter(dev);
1896	if (unlikely(rcode < 0)) {
1897		goto out;
1898	}
1899
1900	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1901
1902		bus = get_bus_number(i);
1903		target = get_target_number(i);
1904
1905		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1906
1907		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1908			aac_add_safw_device(dev, bus, target);
1909		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1910								is_exposed)
1911			aac_remove_safw_device(dev, bus, target);
1912	}
1913out:
1914	return rcode;
1915}
1916
1917static int aac_scan_safw_host(struct aac_dev *dev)
1918{
1919	int rcode = 0;
1920
1921	rcode = aac_update_safw_host_devices(dev);
1922	if (rcode)
1923		aac_schedule_safw_scan_worker(dev);
1924
1925	return rcode;
1926}
1927
1928int aac_scan_host(struct aac_dev *dev)
1929{
1930	int rcode = 0;
1931
1932	mutex_lock(&dev->scan_mutex);
1933	if (dev->sa_firmware)
1934		rcode = aac_scan_safw_host(dev);
1935	else
1936		scsi_scan_host(dev->scsi_host_ptr);
1937	mutex_unlock(&dev->scan_mutex);
1938
1939	return rcode;
1940}
1941
1942void aac_src_reinit_aif_worker(struct work_struct *work)
1943{
1944	struct aac_dev *dev = container_of(to_delayed_work(work),
1945				struct aac_dev, src_reinit_aif_worker);
1946
1947	wait_event(dev->scsi_host_ptr->host_wait,
1948			!scsi_host_in_recovery(dev->scsi_host_ptr));
1949	aac_reinit_aif(dev, dev->cardtype);
1950}
1951
1952/**
1953 *	aac_handle_sa_aif -	Handle a message from the firmware
1954 *	@dev: Which adapter this fib is from
1955 *	@fibptr: Pointer to fibptr from adapter
1956 *
1957 *	This routine handles a driver notify fib from the adapter and
1958 *	dispatches it to the appropriate routine for handling.
1959 */
1960static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1961{
1962	int i;
1963	u32 events = 0;
1964
1965	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1966		events = SA_AIF_HOTPLUG;
1967	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1968		events = SA_AIF_HARDWARE;
1969	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1970		events = SA_AIF_PDEV_CHANGE;
1971	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1972		events = SA_AIF_LDEV_CHANGE;
1973	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1974		events = SA_AIF_BPSTAT_CHANGE;
1975	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1976		events = SA_AIF_BPCFG_CHANGE;
1977
1978	switch (events) {
1979	case SA_AIF_HOTPLUG:
1980	case SA_AIF_HARDWARE:
1981	case SA_AIF_PDEV_CHANGE:
1982	case SA_AIF_LDEV_CHANGE:
1983	case SA_AIF_BPCFG_CHANGE:
1984
1985		aac_scan_host(dev);
1986
1987		break;
1988
1989	case SA_AIF_BPSTAT_CHANGE:
1990		/* currently do nothing */
1991		break;
1992	}
1993
1994	for (i = 1; i <= 10; ++i) {
1995		events = src_readl(dev, MUnit.IDR);
1996		if (events & (1<<23)) {
1997			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1998				i, 10);
1999			ssleep(1);
2000		}
2001	}
2002}
2003
2004static int get_fib_count(struct aac_dev *dev)
2005{
2006	unsigned int num = 0;
2007	struct list_head *entry;
2008	unsigned long flagv;
2009
2010	/*
2011	 * Warning: no sleep allowed while
2012	 * holding spinlock. We take the estimate
2013	 * and pre-allocate a set of fibs outside the
2014	 * lock.
2015	 */
2016	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2017			/ sizeof(struct hw_fib); /* some extra */
2018	spin_lock_irqsave(&dev->fib_lock, flagv);
2019	entry = dev->fib_list.next;
2020	while (entry != &dev->fib_list) {
2021		entry = entry->next;
2022		++num;
2023	}
2024	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2025
2026	return num;
2027}
2028
2029static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2030						struct fib **fib_pool,
2031						unsigned int num)
2032{
2033	struct hw_fib **hw_fib_p;
2034	struct fib **fib_p;
2035
2036	hw_fib_p = hw_fib_pool;
2037	fib_p = fib_pool;
2038	while (hw_fib_p < &hw_fib_pool[num]) {
2039		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2040		if (!(*(hw_fib_p++))) {
2041			--hw_fib_p;
2042			break;
2043		}
2044
2045		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2046		if (!(*(fib_p++))) {
2047			kfree(*(--hw_fib_p));
2048			break;
2049		}
2050	}
2051
2052	/*
2053	 * Get the actual number of allocated fibs
2054	 */
2055	num = hw_fib_p - hw_fib_pool;
2056	return num;
2057}
2058
2059static void wakeup_fibctx_threads(struct aac_dev *dev,
2060						struct hw_fib **hw_fib_pool,
2061						struct fib **fib_pool,
2062						struct fib *fib,
2063						struct hw_fib *hw_fib,
2064						unsigned int num)
2065{
2066	unsigned long flagv;
2067	struct list_head *entry;
2068	struct hw_fib **hw_fib_p;
2069	struct fib **fib_p;
2070	u32 time_now, time_last;
2071	struct hw_fib *hw_newfib;
2072	struct fib *newfib;
2073	struct aac_fib_context *fibctx;
2074
2075	time_now = jiffies/HZ;
2076	spin_lock_irqsave(&dev->fib_lock, flagv);
2077	entry = dev->fib_list.next;
2078	/*
2079	 * For each Context that is on the
2080	 * fibctxList, make a copy of the
2081	 * fib, and then set the event to wake up the
2082	 * thread that is waiting for it.
2083	 */
2084
2085	hw_fib_p = hw_fib_pool;
2086	fib_p = fib_pool;
2087	while (entry != &dev->fib_list) {
2088		/*
2089		 * Extract the fibctx
2090		 */
2091		fibctx = list_entry(entry, struct aac_fib_context,
2092				next);
2093		/*
2094		 * Check if the queue is getting
2095		 * backlogged
2096		 */
2097		if (fibctx->count > 20) {
2098			/*
2099			 * It's *not* jiffies folks,
2100			 * but jiffies / HZ so do not
2101			 * panic ...
2102			 */
2103			time_last = fibctx->jiffies;
2104			/*
2105			 * Has it been > 2 minutes
2106			 * since the last read off
2107			 * the queue?
2108			 */
2109			if ((time_now - time_last) > aif_timeout) {
2110				entry = entry->next;
2111				aac_close_fib_context(dev, fibctx);
2112				continue;
2113			}
2114		}
2115		/*
2116		 * Warning: no sleep allowed while
2117		 * holding spinlock
2118		 */
2119		if (hw_fib_p >= &hw_fib_pool[num]) {
2120			pr_warn("aifd: didn't allocate NewFib\n");
2121			entry = entry->next;
2122			continue;
2123		}
2124
2125		hw_newfib = *hw_fib_p;
2126		*(hw_fib_p++) = NULL;
2127		newfib = *fib_p;
2128		*(fib_p++) = NULL;
2129		/*
2130		 * Make the copy of the FIB
2131		 */
2132		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2133		memcpy(newfib, fib, sizeof(struct fib));
2134		newfib->hw_fib_va = hw_newfib;
2135		/*
2136		 * Put the FIB onto the
2137		 * fibctx's fibs
2138		 */
2139		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2140		fibctx->count++;
2141		/*
2142		 * Set the event to wake up the
2143		 * thread that is waiting.
2144		 */
2145		complete(&fibctx->completion);
2146
2147		entry = entry->next;
2148	}
2149	/*
2150	 *	Set the status of this FIB
2151	 */
2152	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2153	aac_fib_adapter_complete(fib, sizeof(u32));
2154	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2155
2156}
2157
2158static void aac_process_events(struct aac_dev *dev)
2159{
2160	struct hw_fib *hw_fib;
2161	struct fib *fib;
2162	unsigned long flags;
2163	spinlock_t *t_lock;
2164
2165	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2166	spin_lock_irqsave(t_lock, flags);
2167
2168	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2169		struct list_head *entry;
2170		struct aac_aifcmd *aifcmd;
2171		unsigned int  num;
2172		struct hw_fib **hw_fib_pool, **hw_fib_p;
2173		struct fib **fib_pool, **fib_p;
2174
2175		set_current_state(TASK_RUNNING);
2176
2177		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2178		list_del(entry);
2179
2180		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2181		spin_unlock_irqrestore(t_lock, flags);
2182
2183		fib = list_entry(entry, struct fib, fiblink);
2184		hw_fib = fib->hw_fib_va;
2185		if (dev->sa_firmware) {
2186			/* Thor AIF */
2187			aac_handle_sa_aif(dev, fib);
2188			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2189			goto free_fib;
2190		}
2191		/*
2192		 *	We will process the FIB here or pass it to a
2193		 *	worker thread that is TBD. We Really can't
2194		 *	do anything at this point since we don't have
2195		 *	anything defined for this thread to do.
2196		 */
2197		memset(fib, 0, sizeof(struct fib));
2198		fib->type = FSAFS_NTC_FIB_CONTEXT;
2199		fib->size = sizeof(struct fib);
2200		fib->hw_fib_va = hw_fib;
2201		fib->data = hw_fib->data;
2202		fib->dev = dev;
2203		/*
2204		 *	We only handle AifRequest fibs from the adapter.
2205		 */
2206
2207		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2208		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2209			/* Handle Driver Notify Events */
2210			aac_handle_aif(dev, fib);
2211			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2212			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213			goto free_fib;
2214		}
2215		/*
2216		 * The u32 here is important and intended. We are using
2217		 * 32bit wrapping time to fit the adapter field
2218		 */
2219
2220		/* Sniff events */
2221		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2222		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2223			aac_handle_aif(dev, fib);
2224		}
2225
2226		/*
2227		 * get number of fibs to process
2228		 */
2229		num = get_fib_count(dev);
2230		if (!num)
2231			goto free_fib;
2232
2233		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2234						GFP_KERNEL);
2235		if (!hw_fib_pool)
2236			goto free_fib;
2237
2238		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2239		if (!fib_pool)
2240			goto free_hw_fib_pool;
2241
2242		/*
2243		 * Fill up fib pointer pools with actual fibs
2244		 * and hw_fibs
2245		 */
2246		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2247		if (!num)
2248			goto free_mem;
2249
2250		/*
2251		 * wakeup the thread that is waiting for
2252		 * the response from fw (ioctl)
2253		 */
2254		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2255							    fib, hw_fib, num);
2256
2257free_mem:
2258		/* Free up the remaining resources */
2259		hw_fib_p = hw_fib_pool;
2260		fib_p = fib_pool;
2261		while (hw_fib_p < &hw_fib_pool[num]) {
2262			kfree(*hw_fib_p);
2263			kfree(*fib_p);
2264			++fib_p;
2265			++hw_fib_p;
2266		}
2267		kfree(fib_pool);
2268free_hw_fib_pool:
2269		kfree(hw_fib_pool);
2270free_fib:
2271		kfree(fib);
2272		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2273		spin_lock_irqsave(t_lock, flags);
2274	}
2275	/*
2276	 *	There are no more AIF's
2277	 */
2278	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2279	spin_unlock_irqrestore(t_lock, flags);
2280}
2281
2282static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2283							u32 datasize)
2284{
2285	struct aac_srb *srbcmd;
2286	struct sgmap64 *sg64;
2287	dma_addr_t addr;
2288	char *dma_buf;
2289	struct fib *fibptr;
2290	int ret = -ENOMEM;
2291	u32 vbus, vid;
2292
2293	fibptr = aac_fib_alloc(dev);
2294	if (!fibptr)
2295		goto out;
2296
2297	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2298				     GFP_KERNEL);
2299	if (!dma_buf)
2300		goto fib_free_out;
2301
2302	aac_fib_init(fibptr);
2303
2304	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2305	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2306
2307	srbcmd = (struct aac_srb *)fib_data(fibptr);
2308
2309	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2310	srbcmd->channel = cpu_to_le32(vbus);
2311	srbcmd->id = cpu_to_le32(vid);
2312	srbcmd->lun = 0;
2313	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2314	srbcmd->timeout = cpu_to_le32(10);
2315	srbcmd->retry_limit = 0;
2316	srbcmd->cdb_size = cpu_to_le32(12);
2317	srbcmd->count = cpu_to_le32(datasize);
2318
2319	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2320	srbcmd->cdb[0] = BMIC_OUT;
2321	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2322	memcpy(dma_buf, (char *)wellness_str, datasize);
2323
2324	sg64 = (struct sgmap64 *)&srbcmd->sg;
2325	sg64->count = cpu_to_le32(1);
2326	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2327	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2328	sg64->sg[0].count = cpu_to_le32(datasize);
2329
2330	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2331				FsaNormal, 1, 1, NULL, NULL);
2332
2333	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2334
2335	/*
2336	 * Do not set XferState to zero unless
2337	 * receives a response from F/W
2338	 */
2339	if (ret >= 0)
2340		aac_fib_complete(fibptr);
2341
2342	/*
2343	 * FIB should be freed only after
2344	 * getting the response from the F/W
2345	 */
2346	if (ret != -ERESTARTSYS)
2347		goto fib_free_out;
2348
2349out:
2350	return ret;
2351fib_free_out:
2352	aac_fib_free(fibptr);
2353	goto out;
2354}
2355
2356static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2357{
2358	struct tm cur_tm;
2359	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2360	u32 datasize = sizeof(wellness_str);
2361	time64_t local_time;
2362	int ret = -ENODEV;
2363
2364	if (!dev->sa_firmware)
2365		goto out;
2366
2367	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2368	time64_to_tm(local_time, 0, &cur_tm);
2369	cur_tm.tm_mon += 1;
2370	cur_tm.tm_year += 1900;
2371	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2372	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2373	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2374	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2375	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2376	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2377	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2378
2379	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2380
2381out:
2382	return ret;
2383}
2384
2385static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2386{
2387	int ret = -ENOMEM;
2388	struct fib *fibptr;
2389	__le32 *info;
2390
2391	fibptr = aac_fib_alloc(dev);
2392	if (!fibptr)
2393		goto out;
2394
2395	aac_fib_init(fibptr);
2396	info = (__le32 *)fib_data(fibptr);
2397	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2398	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2399					1, 1, NULL, NULL);
2400
2401	/*
2402	 * Do not set XferState to zero unless
2403	 * receives a response from F/W
2404	 */
2405	if (ret >= 0)
2406		aac_fib_complete(fibptr);
2407
2408	/*
2409	 * FIB should be freed only after
2410	 * getting the response from the F/W
2411	 */
2412	if (ret != -ERESTARTSYS)
2413		aac_fib_free(fibptr);
2414
2415out:
2416	return ret;
2417}
2418
2419/**
2420 *	aac_command_thread	-	command processing thread
2421 *	@data: Adapter to monitor
2422 *
2423 *	Waits on the commandready event in it's queue. When the event gets set
2424 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2425 *	until the queue is empty. When the queue is empty it will wait for
2426 *	more FIBs.
2427 */
2428
2429int aac_command_thread(void *data)
2430{
2431	struct aac_dev *dev = data;
 
 
 
 
2432	DECLARE_WAITQUEUE(wait, current);
2433	unsigned long next_jiffies = jiffies + HZ;
2434	unsigned long next_check_jiffies = next_jiffies;
2435	long difference = HZ;
2436
2437	/*
2438	 *	We can only have one thread per adapter for AIF's.
2439	 */
2440	if (dev->aif_thread)
2441		return -EINVAL;
2442
2443	/*
2444	 *	Let the DPC know it has a place to send the AIF's to.
2445	 */
2446	dev->aif_thread = 1;
2447	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2448	set_current_state(TASK_INTERRUPTIBLE);
2449	dprintk ((KERN_INFO "aac_command_thread start\n"));
2450	while (1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451
2452		aac_process_events(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2453
2454		/*
2455		 *	Background activity
2456		 */
2457		if ((time_before(next_check_jiffies,next_jiffies))
2458		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2459			next_check_jiffies = next_jiffies;
2460			if (aac_adapter_check_health(dev) == 0) {
2461				difference = ((long)(unsigned)check_interval)
2462					   * HZ;
2463				next_check_jiffies = jiffies + difference;
2464			} else if (!dev->queues)
2465				break;
2466		}
2467		if (!time_before(next_check_jiffies,next_jiffies)
2468		 && ((difference = next_jiffies - jiffies) <= 0)) {
2469			struct timespec64 now;
2470			int ret;
2471
2472			/* Don't even try to talk to adapter if its sick */
2473			ret = aac_adapter_check_health(dev);
2474			if (ret || !dev->queues)
2475				break;
2476			next_check_jiffies = jiffies
2477					   + ((long)(unsigned)check_interval)
2478					   * HZ;
2479			ktime_get_real_ts64(&now);
2480
2481			/* Synchronize our watches */
2482			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2483			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2484				difference = HZ + HZ / 2 -
2485					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2486			else {
2487				if (now.tv_nsec > NSEC_PER_SEC / 2)
2488					++now.tv_sec;
2489
2490				if (dev->sa_firmware)
2491					ret =
2492					aac_send_safw_hostttime(dev, &now);
2493				else
2494					ret = aac_send_hosttime(dev, &now);
2495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496				difference = (long)(unsigned)update_interval*HZ;
 
 
 
2497			}
2498			next_jiffies = jiffies + difference;
2499			if (time_before(next_check_jiffies,next_jiffies))
2500				difference = next_check_jiffies - jiffies;
2501		}
2502		if (difference <= 0)
2503			difference = 1;
2504		set_current_state(TASK_INTERRUPTIBLE);
2505
2506		if (kthread_should_stop())
2507			break;
2508
2509		/*
2510		 * we probably want usleep_range() here instead of the
2511		 * jiffies computation
2512		 */
2513		schedule_timeout(difference);
2514
2515		if (kthread_should_stop())
2516			break;
2517	}
2518	if (dev->queues)
2519		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2520	dev->aif_thread = 0;
2521	return 0;
2522}
2523
2524int aac_acquire_irq(struct aac_dev *dev)
2525{
2526	int i;
2527	int j;
2528	int ret = 0;
2529
2530	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2531		for (i = 0; i < dev->max_msix; i++) {
2532			dev->aac_msix[i].vector_no = i;
2533			dev->aac_msix[i].dev = dev;
2534			if (request_irq(pci_irq_vector(dev->pdev, i),
2535					dev->a_ops.adapter_intr,
2536					0, "aacraid", &(dev->aac_msix[i]))) {
2537				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2538						dev->name, dev->id, i);
2539				for (j = 0 ; j < i ; j++)
2540					free_irq(pci_irq_vector(dev->pdev, j),
2541						 &(dev->aac_msix[j]));
2542				pci_disable_msix(dev->pdev);
2543				ret = -1;
2544			}
2545		}
2546	} else {
2547		dev->aac_msix[0].vector_no = 0;
2548		dev->aac_msix[0].dev = dev;
2549
2550		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2551			IRQF_SHARED, "aacraid",
2552			&(dev->aac_msix[0])) < 0) {
2553			if (dev->msi)
2554				pci_disable_msi(dev->pdev);
2555			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2556					dev->name, dev->id);
2557			ret = -1;
2558		}
2559	}
2560	return ret;
2561}
2562
2563void aac_free_irq(struct aac_dev *dev)
2564{
2565	int i;
2566
2567	if (aac_is_src(dev)) {
2568		if (dev->max_msix > 1) {
2569			for (i = 0; i < dev->max_msix; i++)
2570				free_irq(pci_irq_vector(dev->pdev, i),
2571					 &(dev->aac_msix[i]));
2572		} else {
2573			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2574		}
2575	} else {
2576		free_irq(dev->pdev->irq, dev);
2577	}
2578	if (dev->msi)
2579		pci_disable_msi(dev->pdev);
2580	else if (dev->max_msix > 1)
2581		pci_disable_msix(dev->pdev);
2582}