Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_trace.h"
   7
   8#define E810_OUT_PROP_DELAY_NS 1
   9
  10#define UNKNOWN_INCVAL_E822 0x100000000ULL
  11
  12static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
  13	/* name    idx   func         chan */
  14	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
  15	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
  16	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
  17	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
  18	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
  19};
  20
  21/**
  22 * ice_get_sma_config_e810t
  23 * @hw: pointer to the hw struct
  24 * @ptp_pins: pointer to the ptp_pin_desc struture
  25 *
  26 * Read the configuration of the SMA control logic and put it into the
  27 * ptp_pin_desc structure
  28 */
  29static int
  30ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
  31{
  32	u8 data, i;
  33	int status;
  34
  35	/* Read initial pin state */
  36	status = ice_read_sma_ctrl_e810t(hw, &data);
  37	if (status)
  38		return status;
  39
  40	/* initialize with defaults */
  41	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
  42		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
  43			 "%s", ice_pin_desc_e810t[i].name);
  44		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
  45		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
  46		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
  47	}
  48
  49	/* Parse SMA1/UFL1 */
  50	switch (data & ICE_SMA1_MASK_E810T) {
  51	case ICE_SMA1_MASK_E810T:
  52	default:
  53		ptp_pins[SMA1].func = PTP_PF_NONE;
  54		ptp_pins[UFL1].func = PTP_PF_NONE;
  55		break;
  56	case ICE_SMA1_DIR_EN_E810T:
  57		ptp_pins[SMA1].func = PTP_PF_PEROUT;
  58		ptp_pins[UFL1].func = PTP_PF_NONE;
  59		break;
  60	case ICE_SMA1_TX_EN_E810T:
  61		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  62		ptp_pins[UFL1].func = PTP_PF_NONE;
  63		break;
  64	case 0:
  65		ptp_pins[SMA1].func = PTP_PF_EXTTS;
  66		ptp_pins[UFL1].func = PTP_PF_PEROUT;
  67		break;
  68	}
  69
  70	/* Parse SMA2/UFL2 */
  71	switch (data & ICE_SMA2_MASK_E810T) {
  72	case ICE_SMA2_MASK_E810T:
  73	default:
  74		ptp_pins[SMA2].func = PTP_PF_NONE;
  75		ptp_pins[UFL2].func = PTP_PF_NONE;
  76		break;
  77	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  78		ptp_pins[SMA2].func = PTP_PF_EXTTS;
  79		ptp_pins[UFL2].func = PTP_PF_NONE;
  80		break;
  81	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
  82		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  83		ptp_pins[UFL2].func = PTP_PF_NONE;
  84		break;
  85	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
  86		ptp_pins[SMA2].func = PTP_PF_NONE;
  87		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  88		break;
  89	case ICE_SMA2_DIR_EN_E810T:
  90		ptp_pins[SMA2].func = PTP_PF_PEROUT;
  91		ptp_pins[UFL2].func = PTP_PF_EXTTS;
  92		break;
  93	}
  94
  95	return 0;
  96}
  97
  98/**
  99 * ice_ptp_set_sma_config_e810t
 100 * @hw: pointer to the hw struct
 101 * @ptp_pins: pointer to the ptp_pin_desc struture
 102 *
 103 * Set the configuration of the SMA control logic based on the configuration in
 104 * num_pins parameter
 105 */
 106static int
 107ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
 108			     const struct ptp_pin_desc *ptp_pins)
 109{
 110	int status;
 111	u8 data;
 112
 113	/* SMA1 and UFL1 cannot be set to TX at the same time */
 114	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 115	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
 116		return -EINVAL;
 117
 118	/* SMA2 and UFL2 cannot be set to RX at the same time */
 119	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 120	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
 121		return -EINVAL;
 122
 123	/* Read initial pin state value */
 124	status = ice_read_sma_ctrl_e810t(hw, &data);
 125	if (status)
 126		return status;
 127
 128	/* Set the right sate based on the desired configuration */
 129	data &= ~ICE_SMA1_MASK_E810T;
 130	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 131	    ptp_pins[UFL1].func == PTP_PF_NONE) {
 132		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
 133		data |= ICE_SMA1_MASK_E810T;
 134	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 135		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 136		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
 137		data |= ICE_SMA1_TX_EN_E810T;
 138	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
 139		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 140		/* U.FL 1 TX will always enable SMA 1 RX */
 141		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 142	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
 143		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
 144		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
 145	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
 146		   ptp_pins[UFL1].func == PTP_PF_NONE) {
 147		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
 148		data |= ICE_SMA1_DIR_EN_E810T;
 149	}
 150
 151	data &= ~ICE_SMA2_MASK_E810T;
 152	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 153	    ptp_pins[UFL2].func == PTP_PF_NONE) {
 154		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
 155		data |= ICE_SMA2_MASK_E810T;
 156	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
 157			ptp_pins[UFL2].func == PTP_PF_NONE) {
 158		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
 159		data |= (ICE_SMA2_TX_EN_E810T |
 160			 ICE_SMA2_UFL2_RX_DIS_E810T);
 161	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
 162		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 163		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
 164		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
 165	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 166		   ptp_pins[UFL2].func == PTP_PF_NONE) {
 167		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
 168		data |= (ICE_SMA2_DIR_EN_E810T |
 169			 ICE_SMA2_UFL2_RX_DIS_E810T);
 170	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
 171		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
 172		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
 173		data |= ICE_SMA2_DIR_EN_E810T;
 174	}
 175
 176	return ice_write_sma_ctrl_e810t(hw, data);
 177}
 178
 179/**
 180 * ice_ptp_set_sma_e810t
 181 * @info: the driver's PTP info structure
 182 * @pin: pin index in kernel structure
 183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
 184 *
 185 * Set the configuration of a single SMA pin
 186 */
 187static int
 188ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
 189		      enum ptp_pin_function func)
 190{
 191	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
 192	struct ice_pf *pf = ptp_info_to_pf(info);
 193	struct ice_hw *hw = &pf->hw;
 194	int err;
 195
 196	if (pin < SMA1 || func > PTP_PF_PEROUT)
 197		return -EOPNOTSUPP;
 198
 199	err = ice_get_sma_config_e810t(hw, ptp_pins);
 200	if (err)
 201		return err;
 202
 203	/* Disable the same function on the other pin sharing the channel */
 204	if (pin == SMA1 && ptp_pins[UFL1].func == func)
 205		ptp_pins[UFL1].func = PTP_PF_NONE;
 206	if (pin == UFL1 && ptp_pins[SMA1].func == func)
 207		ptp_pins[SMA1].func = PTP_PF_NONE;
 208
 209	if (pin == SMA2 && ptp_pins[UFL2].func == func)
 210		ptp_pins[UFL2].func = PTP_PF_NONE;
 211	if (pin == UFL2 && ptp_pins[SMA2].func == func)
 212		ptp_pins[SMA2].func = PTP_PF_NONE;
 213
 214	/* Set up new pin function in the temp table */
 215	ptp_pins[pin].func = func;
 216
 217	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
 218}
 219
 220/**
 221 * ice_verify_pin_e810t
 222 * @info: the driver's PTP info structure
 223 * @pin: Pin index
 224 * @func: Assigned function
 225 * @chan: Assigned channel
 226 *
 227 * Verify if pin supports requested pin function. If the Check pins consistency.
 228 * Reconfigure the SMA logic attached to the given pin to enable its
 229 * desired functionality
 230 */
 231static int
 232ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
 233		     enum ptp_pin_function func, unsigned int chan)
 234{
 235	/* Don't allow channel reassignment */
 236	if (chan != ice_pin_desc_e810t[pin].chan)
 237		return -EOPNOTSUPP;
 238
 239	/* Check if functions are properly assigned */
 240	switch (func) {
 241	case PTP_PF_NONE:
 242		break;
 243	case PTP_PF_EXTTS:
 244		if (pin == UFL1)
 245			return -EOPNOTSUPP;
 246		break;
 247	case PTP_PF_PEROUT:
 248		if (pin == UFL2 || pin == GNSS)
 249			return -EOPNOTSUPP;
 250		break;
 251	case PTP_PF_PHYSYNC:
 252		return -EOPNOTSUPP;
 253	}
 254
 255	return ice_ptp_set_sma_e810t(info, pin, func);
 256}
 257
 258/**
 259 * ice_set_tx_tstamp - Enable or disable Tx timestamping
 260 * @pf: The PF pointer to search in
 261 * @on: bool value for whether timestamps are enabled or disabled
 262 */
 263static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
 264{
 265	struct ice_vsi *vsi;
 266	u32 val;
 267	u16 i;
 268
 269	vsi = ice_get_main_vsi(pf);
 270	if (!vsi)
 271		return;
 272
 273	/* Set the timestamp enable flag for all the Tx rings */
 274	ice_for_each_txq(vsi, i) {
 275		if (!vsi->tx_rings[i])
 276			continue;
 277		vsi->tx_rings[i]->ptp_tx = on;
 278	}
 279
 280	/* Configure the Tx timestamp interrupt */
 281	val = rd32(&pf->hw, PFINT_OICR_ENA);
 282	if (on)
 283		val |= PFINT_OICR_TSYN_TX_M;
 284	else
 285		val &= ~PFINT_OICR_TSYN_TX_M;
 286	wr32(&pf->hw, PFINT_OICR_ENA, val);
 287
 288	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 289}
 290
 291/**
 292 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 293 * @pf: The PF pointer to search in
 294 * @on: bool value for whether timestamps are enabled or disabled
 295 */
 296static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
 297{
 298	struct ice_vsi *vsi;
 299	u16 i;
 300
 301	vsi = ice_get_main_vsi(pf);
 302	if (!vsi)
 303		return;
 304
 305	/* Set the timestamp flag for all the Rx rings */
 306	ice_for_each_rxq(vsi, i) {
 307		if (!vsi->rx_rings[i])
 308			continue;
 309		vsi->rx_rings[i]->ptp_rx = on;
 310	}
 311
 312	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
 313					       HWTSTAMP_FILTER_NONE;
 314}
 315
 316/**
 317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
 318 * @pf: Board private structure
 319 * @ena: bool value to enable or disable time stamp
 320 *
 321 * This function will configure timestamping during PTP initialization
 322 * and deinitialization
 323 */
 324void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
 325{
 326	ice_set_tx_tstamp(pf, ena);
 327	ice_set_rx_tstamp(pf, ena);
 328}
 329
 330/**
 331 * ice_get_ptp_clock_index - Get the PTP clock index
 332 * @pf: the PF pointer
 333 *
 334 * Determine the clock index of the PTP clock associated with this device. If
 335 * this is the PF controlling the clock, just use the local access to the
 336 * clock device pointer.
 337 *
 338 * Otherwise, read from the driver shared parameters to determine the clock
 339 * index value.
 340 *
 341 * Returns: the index of the PTP clock associated with this device, or -1 if
 342 * there is no associated clock.
 343 */
 344int ice_get_ptp_clock_index(struct ice_pf *pf)
 345{
 346	struct device *dev = ice_pf_to_dev(pf);
 347	enum ice_aqc_driver_params param_idx;
 348	struct ice_hw *hw = &pf->hw;
 349	u8 tmr_idx;
 350	u32 value;
 351	int err;
 352
 353	/* Use the ptp_clock structure if we're the main PF */
 354	if (pf->ptp.clock)
 355		return ptp_clock_index(pf->ptp.clock);
 356
 357	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 358	if (!tmr_idx)
 359		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 360	else
 361		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 362
 363	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
 364	if (err) {
 365		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
 366			err, ice_aq_str(hw->adminq.sq_last_status));
 367		return -1;
 368	}
 369
 370	/* The PTP clock index is an integer, and will be between 0 and
 371	 * INT_MAX. The highest bit of the driver shared parameter is used to
 372	 * indicate whether or not the currently stored clock index is valid.
 373	 */
 374	if (!(value & PTP_SHARED_CLK_IDX_VALID))
 375		return -1;
 376
 377	return value & ~PTP_SHARED_CLK_IDX_VALID;
 378}
 379
 380/**
 381 * ice_set_ptp_clock_index - Set the PTP clock index
 382 * @pf: the PF pointer
 383 *
 384 * Set the PTP clock index for this device into the shared driver parameters,
 385 * so that other PFs associated with this device can read it.
 386 *
 387 * If the PF is unable to store the clock index, it will log an error, but
 388 * will continue operating PTP.
 389 */
 390static void ice_set_ptp_clock_index(struct ice_pf *pf)
 391{
 392	struct device *dev = ice_pf_to_dev(pf);
 393	enum ice_aqc_driver_params param_idx;
 394	struct ice_hw *hw = &pf->hw;
 395	u8 tmr_idx;
 396	u32 value;
 397	int err;
 398
 399	if (!pf->ptp.clock)
 400		return;
 401
 402	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 403	if (!tmr_idx)
 404		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 405	else
 406		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 407
 408	value = (u32)ptp_clock_index(pf->ptp.clock);
 409	if (value > INT_MAX) {
 410		dev_err(dev, "PTP Clock index is too large to store\n");
 411		return;
 412	}
 413	value |= PTP_SHARED_CLK_IDX_VALID;
 414
 415	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
 416	if (err) {
 417		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
 418			err, ice_aq_str(hw->adminq.sq_last_status));
 419	}
 420}
 421
 422/**
 423 * ice_clear_ptp_clock_index - Clear the PTP clock index
 424 * @pf: the PF pointer
 425 *
 426 * Clear the PTP clock index for this device. Must be called when
 427 * unregistering the PTP clock, in order to ensure other PFs stop reporting
 428 * a clock object that no longer exists.
 429 */
 430static void ice_clear_ptp_clock_index(struct ice_pf *pf)
 431{
 432	struct device *dev = ice_pf_to_dev(pf);
 433	enum ice_aqc_driver_params param_idx;
 434	struct ice_hw *hw = &pf->hw;
 435	u8 tmr_idx;
 436	int err;
 437
 438	/* Do not clear the index if we don't own the timer */
 439	if (!hw->func_caps.ts_func_info.src_tmr_owned)
 440		return;
 441
 442	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 443	if (!tmr_idx)
 444		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 445	else
 446		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 447
 448	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
 449	if (err) {
 450		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
 451			err, ice_aq_str(hw->adminq.sq_last_status));
 452	}
 453}
 454
 455/**
 456 * ice_ptp_read_src_clk_reg - Read the source clock register
 457 * @pf: Board private structure
 458 * @sts: Optional parameter for holding a pair of system timestamps from
 459 *       the system clock. Will be ignored if NULL is given.
 460 */
 461static u64
 462ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
 463{
 464	struct ice_hw *hw = &pf->hw;
 465	u32 hi, lo, lo2;
 466	u8 tmr_idx;
 467
 468	tmr_idx = ice_get_ptp_src_clock_index(hw);
 469	/* Read the system timestamp pre PHC read */
 470	ptp_read_system_prets(sts);
 471
 472	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 473
 474	/* Read the system timestamp post PHC read */
 475	ptp_read_system_postts(sts);
 476
 477	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 478	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 479
 480	if (lo2 < lo) {
 481		/* if TIME_L rolled over read TIME_L again and update
 482		 * system timestamps
 483		 */
 484		ptp_read_system_prets(sts);
 485		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 486		ptp_read_system_postts(sts);
 487		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 488	}
 489
 490	return ((u64)hi << 32) | lo;
 491}
 492
 493/**
 494 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 495 * @cached_phc_time: recently cached copy of PHC time
 496 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 497 *
 498 * Hardware captures timestamps which contain only 32 bits of nominal
 499 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 500 * Note that the captured timestamp values may be 40 bits, but the lower
 501 * 8 bits are sub-nanoseconds and generally discarded.
 502 *
 503 * Extend the 32bit nanosecond timestamp using the following algorithm and
 504 * assumptions:
 505 *
 506 * 1) have a recently cached copy of the PHC time
 507 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 508 *    seconds) before or after the PHC time was captured.
 509 * 3) calculate the delta between the cached time and the timestamp
 510 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 511 *    captured after the PHC time. In this case, the full timestamp is just
 512 *    the cached PHC time plus the delta.
 513 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 514 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 515 *    cache was updated after the timestamp was captured by hardware. In this
 516 *    case, the full timestamp is the cached time minus the inverse delta.
 517 *
 518 * This algorithm works even if the PHC time was updated after a Tx timestamp
 519 * was requested, but before the Tx timestamp event was reported from
 520 * hardware.
 521 *
 522 * This calculation primarily relies on keeping the cached PHC time up to
 523 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 524 * PHC time, it is possible that the lower 32bits of PHC time have
 525 * overflowed more than once, and we might generate an incorrect timestamp.
 526 *
 527 * This is prevented by (a) periodically updating the cached PHC time once
 528 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 529 * a timestamp for more than one second.
 530 */
 531static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
 532{
 533	u32 delta, phc_time_lo;
 534	u64 ns;
 535
 536	/* Extract the lower 32 bits of the PHC time */
 537	phc_time_lo = (u32)cached_phc_time;
 538
 539	/* Calculate the delta between the lower 32bits of the cached PHC
 540	 * time and the in_tstamp value
 541	 */
 542	delta = (in_tstamp - phc_time_lo);
 543
 544	/* Do not assume that the in_tstamp is always more recent than the
 545	 * cached PHC time. If the delta is large, it indicates that the
 546	 * in_tstamp was taken in the past, and should be converted
 547	 * forward.
 548	 */
 549	if (delta > (U32_MAX / 2)) {
 550		/* reverse the delta calculation here */
 551		delta = (phc_time_lo - in_tstamp);
 552		ns = cached_phc_time - delta;
 553	} else {
 554		ns = cached_phc_time + delta;
 555	}
 556
 557	return ns;
 558}
 559
 560/**
 561 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 562 * @pf: Board private structure
 563 * @in_tstamp: Ingress/egress 40b timestamp value
 564 *
 565 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 566 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 567 *
 568 *  *--------------------------------------------------------------*
 569 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 570 *  *--------------------------------------------------------------*
 571 *
 572 * The low bit is an indicator of whether the timestamp is valid. The next
 573 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 574 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 575 *
 576 * It is assumed that the caller verifies the timestamp is valid prior to
 577 * calling this function.
 578 *
 579 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 580 * time stored in the device private PTP structure as the basis for timestamp
 581 * extension.
 582 *
 583 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 584 * algorithm.
 585 */
 586static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
 587{
 588	const u64 mask = GENMASK_ULL(31, 0);
 589	unsigned long discard_time;
 590
 591	/* Discard the hardware timestamp if the cached PHC time is too old */
 592	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
 593	if (time_is_before_jiffies(discard_time)) {
 594		pf->ptp.tx_hwtstamp_discarded++;
 595		return 0;
 596	}
 597
 598	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
 599				     (in_tstamp >> 8) & mask);
 600}
 601
 602/**
 603 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
 604 * @tx: the PTP Tx timestamp tracker to check
 605 *
 606 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
 607 * to accept new timestamp requests.
 608 *
 609 * Assumes the tx->lock spinlock is already held.
 610 */
 611static bool
 612ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
 613{
 614	lockdep_assert_held(&tx->lock);
 615
 616	return tx->init && !tx->calibrating;
 617}
 618
 619/**
 620 * ice_ptp_tx_tstamp - Process Tx timestamps for a port
 621 * @tx: the PTP Tx timestamp tracker
 622 *
 623 * Process timestamps captured by the PHY associated with this port. To do
 624 * this, loop over each index with a waiting skb.
 625 *
 626 * If a given index has a valid timestamp, perform the following steps:
 627 *
 628 * 1) check that the timestamp request is not stale
 629 * 2) check that a timestamp is ready and available in the PHY memory bank
 630 * 3) read and copy the timestamp out of the PHY register
 631 * 4) unlock the index by clearing the associated in_use bit
 632 * 5) check if the timestamp is stale, and discard if so
 633 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
 634 * 7) send this 64 bit timestamp to the stack
 635 *
 636 * Returns true if all timestamps were handled, and false if any slots remain
 637 * without a timestamp.
 638 *
 639 * After looping, if we still have waiting SKBs, return false. This may cause
 640 * us effectively poll even when not strictly necessary. We do this because
 641 * it's possible a new timestamp was requested around the same time as the
 642 * interrupt. In some cases hardware might not interrupt us again when the
 643 * timestamp is captured.
 644 *
 645 * Note that we do not hold the tracking lock while reading the Tx timestamp.
 646 * This is because reading the timestamp requires taking a mutex that might
 647 * sleep.
 648 *
 649 * The only place where we set in_use is when a new timestamp is initiated
 650 * with a slot index. This is only called in the hard xmit routine where an
 651 * SKB has a request flag set. The only places where we clear this bit is this
 652 * function, or during teardown when the Tx timestamp tracker is being
 653 * removed. A timestamp index will never be re-used until the in_use bit for
 654 * that index is cleared.
 655 *
 656 * If a Tx thread starts a new timestamp, we might not begin processing it
 657 * right away but we will notice it at the end when we re-queue the task.
 658 *
 659 * If a Tx thread starts a new timestamp just after this function exits, the
 660 * interrupt for that timestamp should re-trigger this function once
 661 * a timestamp is ready.
 662 *
 663 * In cases where the PTP hardware clock was directly adjusted, some
 664 * timestamps may not be able to safely use the timestamp extension math. In
 665 * this case, software will set the stale bit for any outstanding Tx
 666 * timestamps when the clock is adjusted. Then this function will discard
 667 * those captured timestamps instead of sending them to the stack.
 668 *
 669 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
 670 * to correctly extend the timestamp using the cached PHC time. It is
 671 * extremely unlikely that a packet will ever take this long to timestamp. If
 672 * we detect a Tx timestamp request that has waited for this long we assume
 673 * the packet will never be sent by hardware and discard it without reading
 674 * the timestamp register.
 675 */
 676static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
 677{
 678	struct ice_ptp_port *ptp_port;
 679	bool more_timestamps;
 680	struct ice_pf *pf;
 681	struct ice_hw *hw;
 682	u64 tstamp_ready;
 683	int err;
 684	u8 idx;
 685
 686	if (!tx->init)
 687		return true;
 688
 689	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 690	pf = ptp_port_to_pf(ptp_port);
 691	hw = &pf->hw;
 692
 693	/* Read the Tx ready status first */
 694	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 695	if (err)
 696		return false;
 697
 698	for_each_set_bit(idx, tx->in_use, tx->len) {
 699		struct skb_shared_hwtstamps shhwtstamps = {};
 700		u8 phy_idx = idx + tx->offset;
 701		u64 raw_tstamp = 0, tstamp;
 702		bool drop_ts = false;
 703		struct sk_buff *skb;
 704
 705		/* Drop packets which have waited for more than 2 seconds */
 706		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 707			drop_ts = true;
 708
 709			/* Count the number of Tx timestamps that timed out */
 710			pf->ptp.tx_hwtstamp_timeouts++;
 711		}
 712
 713		/* Only read a timestamp from the PHY if its marked as ready
 714		 * by the tstamp_ready register. This avoids unnecessary
 715		 * reading of timestamps which are not yet valid. This is
 716		 * important as we must read all timestamps which are valid
 717		 * and only timestamps which are valid during each interrupt.
 718		 * If we do not, the hardware logic for generating a new
 719		 * interrupt can get stuck on some devices.
 720		 */
 721		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
 722			if (drop_ts)
 723				goto skip_ts_read;
 724
 725			continue;
 726		}
 727
 728		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 729
 730		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
 731		if (err)
 732			continue;
 733
 734		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 735
 736		/* For PHYs which don't implement a proper timestamp ready
 737		 * bitmap, verify that the timestamp value is different
 738		 * from the last cached timestamp. If it is not, skip this for
 739		 * now assuming it hasn't yet been captured by hardware.
 740		 */
 741		if (!drop_ts && tx->verify_cached &&
 742		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
 743			continue;
 744
 745		/* Discard any timestamp value without the valid bit set */
 746		if (!(raw_tstamp & ICE_PTP_TS_VALID))
 747			drop_ts = true;
 748
 749skip_ts_read:
 750		spin_lock(&tx->lock);
 751		if (tx->verify_cached && raw_tstamp)
 752			tx->tstamps[idx].cached_tstamp = raw_tstamp;
 753		clear_bit(idx, tx->in_use);
 754		skb = tx->tstamps[idx].skb;
 755		tx->tstamps[idx].skb = NULL;
 756		if (test_and_clear_bit(idx, tx->stale))
 757			drop_ts = true;
 758		spin_unlock(&tx->lock);
 759
 760		/* It is unlikely but possible that the SKB will have been
 761		 * flushed at this point due to link change or teardown.
 762		 */
 763		if (!skb)
 764			continue;
 765
 766		if (drop_ts) {
 767			dev_kfree_skb_any(skb);
 768			continue;
 769		}
 770
 771		/* Extend the timestamp using cached PHC time */
 772		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 773		if (tstamp) {
 774			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 775			ice_trace(tx_tstamp_complete, skb, idx);
 776		}
 777
 778		skb_tstamp_tx(skb, &shhwtstamps);
 779		dev_kfree_skb_any(skb);
 780	}
 781
 782	/* Check if we still have work to do. If so, re-queue this task to
 783	 * poll for remaining timestamps.
 784	 */
 785	spin_lock(&tx->lock);
 786	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
 787	spin_unlock(&tx->lock);
 788
 789	return !more_timestamps;
 790}
 791
 792/**
 793 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 794 * @tx: Tx tracking structure to initialize
 795 *
 796 * Assumes that the length has already been initialized. Do not call directly,
 797 * use the ice_ptp_init_tx_* instead.
 798 */
 799static int
 800ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
 801{
 802	unsigned long *in_use, *stale;
 803	struct ice_tx_tstamp *tstamps;
 804
 805	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
 806	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
 807	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
 808
 809	if (!tstamps || !in_use || !stale) {
 810		kfree(tstamps);
 811		bitmap_free(in_use);
 812		bitmap_free(stale);
 813
 814		return -ENOMEM;
 815	}
 816
 817	tx->tstamps = tstamps;
 818	tx->in_use = in_use;
 819	tx->stale = stale;
 820	tx->init = 1;
 821
 822	spin_lock_init(&tx->lock);
 823
 824	return 0;
 825}
 826
 827/**
 828 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 829 * @pf: Board private structure
 830 * @tx: the tracker to flush
 831 *
 832 * Called during teardown when a Tx tracker is being removed.
 833 */
 834static void
 835ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 836{
 837	struct ice_hw *hw = &pf->hw;
 838	u64 tstamp_ready;
 839	int err;
 840	u8 idx;
 841
 842	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 843	if (err) {
 844		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
 845			tx->block, err);
 846
 847		/* If we fail to read the Tx timestamp ready bitmap just
 848		 * skip clearing the PHY timestamps.
 849		 */
 850		tstamp_ready = 0;
 851	}
 852
 853	for_each_set_bit(idx, tx->in_use, tx->len) {
 854		u8 phy_idx = idx + tx->offset;
 855		struct sk_buff *skb;
 856
 857		/* In case this timestamp is ready, we need to clear it. */
 858		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
 859			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
 860
 861		spin_lock(&tx->lock);
 862		skb = tx->tstamps[idx].skb;
 863		tx->tstamps[idx].skb = NULL;
 864		clear_bit(idx, tx->in_use);
 865		clear_bit(idx, tx->stale);
 866		spin_unlock(&tx->lock);
 867
 868		/* Count the number of Tx timestamps flushed */
 869		pf->ptp.tx_hwtstamp_flushed++;
 870
 871		/* Free the SKB after we've cleared the bit */
 872		dev_kfree_skb_any(skb);
 873	}
 874}
 875
 876/**
 877 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
 878 * @tx: the tracker to mark
 879 *
 880 * Mark currently outstanding Tx timestamps as stale. This prevents sending
 881 * their timestamp value to the stack. This is required to prevent extending
 882 * the 40bit hardware timestamp incorrectly.
 883 *
 884 * This should be called when the PTP clock is modified such as after a set
 885 * time request.
 886 */
 887static void
 888ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
 889{
 890	spin_lock(&tx->lock);
 891	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
 892	spin_unlock(&tx->lock);
 893}
 894
 895/**
 896 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 897 * @pf: Board private structure
 898 * @tx: Tx tracking structure to release
 899 *
 900 * Free memory associated with the Tx timestamp tracker.
 901 */
 902static void
 903ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 904{
 905	spin_lock(&tx->lock);
 906	tx->init = 0;
 907	spin_unlock(&tx->lock);
 908
 909	/* wait for potentially outstanding interrupt to complete */
 910	synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
 911
 912	ice_ptp_flush_tx_tracker(pf, tx);
 913
 914	kfree(tx->tstamps);
 915	tx->tstamps = NULL;
 916
 917	bitmap_free(tx->in_use);
 918	tx->in_use = NULL;
 919
 920	bitmap_free(tx->stale);
 921	tx->stale = NULL;
 922
 923	tx->len = 0;
 924}
 925
 926/**
 927 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
 928 * @pf: Board private structure
 929 * @tx: the Tx tracking structure to initialize
 930 * @port: the port this structure tracks
 931 *
 932 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
 933 * the timestamp block is shared for all ports in the same quad. To avoid
 934 * ports using the same timestamp index, logically break the block of
 935 * registers into chunks based on the port number.
 936 */
 937static int
 938ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
 939{
 940	tx->block = port / ICE_PORTS_PER_QUAD;
 941	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
 942	tx->len = INDEX_PER_PORT_E822;
 943	tx->verify_cached = 0;
 944
 945	return ice_ptp_alloc_tx_tracker(tx);
 946}
 947
 948/**
 949 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
 950 * @pf: Board private structure
 951 * @tx: the Tx tracking structure to initialize
 952 *
 953 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
 954 * port has its own block of timestamps, independent of the other ports.
 955 */
 956static int
 957ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
 958{
 959	tx->block = pf->hw.port_info->lport;
 960	tx->offset = 0;
 961	tx->len = INDEX_PER_PORT_E810;
 962	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
 963	 * verify new timestamps against cached copy of the last read
 964	 * timestamp.
 965	 */
 966	tx->verify_cached = 1;
 967
 968	return ice_ptp_alloc_tx_tracker(tx);
 969}
 970
 971/**
 972 * ice_ptp_update_cached_phctime - Update the cached PHC time values
 973 * @pf: Board specific private structure
 974 *
 975 * This function updates the system time values which are cached in the PF
 976 * structure and the Rx rings.
 977 *
 978 * This function must be called periodically to ensure that the cached value
 979 * is never more than 2 seconds old.
 980 *
 981 * Note that the cached copy in the PF PTP structure is always updated, even
 982 * if we can't update the copy in the Rx rings.
 983 *
 984 * Return:
 985 * * 0 - OK, successfully updated
 986 * * -EAGAIN - PF was busy, need to reschedule the update
 987 */
 988static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
 989{
 990	struct device *dev = ice_pf_to_dev(pf);
 991	unsigned long update_before;
 992	u64 systime;
 993	int i;
 994
 995	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
 996	if (pf->ptp.cached_phc_time &&
 997	    time_is_before_jiffies(update_before)) {
 998		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
 999
1000		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1001			 jiffies_to_msecs(time_taken));
1002		pf->ptp.late_cached_phc_updates++;
1003	}
1004
1005	/* Read the current PHC time */
1006	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1007
1008	/* Update the cached PHC time stored in the PF structure */
1009	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1010	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1011
1012	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1013		return -EAGAIN;
1014
1015	ice_for_each_vsi(pf, i) {
1016		struct ice_vsi *vsi = pf->vsi[i];
1017		int j;
1018
1019		if (!vsi)
1020			continue;
1021
1022		if (vsi->type != ICE_VSI_PF)
1023			continue;
1024
1025		ice_for_each_rxq(vsi, j) {
1026			if (!vsi->rx_rings[j])
1027				continue;
1028			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1029		}
1030	}
1031	clear_bit(ICE_CFG_BUSY, pf->state);
1032
1033	return 0;
1034}
1035
1036/**
1037 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1038 * @pf: Board specific private structure
1039 *
1040 * This function must be called when the cached PHC time is no longer valid,
1041 * such as after a time adjustment. It marks any currently outstanding Tx
1042 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1043 * rings.
1044 *
1045 * If updating the PHC time cannot be done immediately, a warning message is
1046 * logged and the work item is scheduled immediately to minimize the window
1047 * with a wrong cached timestamp.
1048 */
1049static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1050{
1051	struct device *dev = ice_pf_to_dev(pf);
1052	int err;
1053
1054	/* Update the cached PHC time immediately if possible, otherwise
1055	 * schedule the work item to execute soon.
1056	 */
1057	err = ice_ptp_update_cached_phctime(pf);
1058	if (err) {
1059		/* If another thread is updating the Rx rings, we won't
1060		 * properly reset them here. This could lead to reporting of
1061		 * invalid timestamps, but there isn't much we can do.
1062		 */
1063		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1064			 __func__);
1065
1066		/* Queue the work item to update the Rx rings when possible */
1067		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1068					   msecs_to_jiffies(10));
1069	}
1070
1071	/* Mark any outstanding timestamps as stale, since they might have
1072	 * been captured in hardware before the time update. This could lead
1073	 * to us extending them with the wrong cached value resulting in
1074	 * incorrect timestamp values.
1075	 */
1076	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1077}
1078
1079/**
1080 * ice_ptp_read_time - Read the time from the device
1081 * @pf: Board private structure
1082 * @ts: timespec structure to hold the current time value
1083 * @sts: Optional parameter for holding a pair of system timestamps from
1084 *       the system clock. Will be ignored if NULL is given.
1085 *
1086 * This function reads the source clock registers and stores them in a timespec.
1087 * However, since the registers are 64 bits of nanoseconds, we must convert the
1088 * result to a timespec before we can return.
1089 */
1090static void
1091ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1092		  struct ptp_system_timestamp *sts)
1093{
1094	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1095
1096	*ts = ns_to_timespec64(time_ns);
1097}
1098
1099/**
1100 * ice_ptp_write_init - Set PHC time to provided value
1101 * @pf: Board private structure
1102 * @ts: timespec structure that holds the new time value
1103 *
1104 * Set the PHC time to the specified time provided in the timespec.
1105 */
1106static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1107{
1108	u64 ns = timespec64_to_ns(ts);
1109	struct ice_hw *hw = &pf->hw;
1110
1111	return ice_ptp_init_time(hw, ns);
1112}
1113
1114/**
1115 * ice_ptp_write_adj - Adjust PHC clock time atomically
1116 * @pf: Board private structure
1117 * @adj: Adjustment in nanoseconds
1118 *
1119 * Perform an atomic adjustment of the PHC time by the specified number of
1120 * nanoseconds.
1121 */
1122static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1123{
1124	struct ice_hw *hw = &pf->hw;
1125
1126	return ice_ptp_adj_clock(hw, adj);
1127}
1128
1129/**
1130 * ice_base_incval - Get base timer increment value
1131 * @pf: Board private structure
1132 *
1133 * Look up the base timer increment value for this device. The base increment
1134 * value is used to define the nominal clock tick rate. This increment value
1135 * is programmed during device initialization. It is also used as the basis
1136 * for calculating adjustments using scaled_ppm.
1137 */
1138static u64 ice_base_incval(struct ice_pf *pf)
1139{
1140	struct ice_hw *hw = &pf->hw;
1141	u64 incval;
1142
1143	if (ice_is_e810(hw))
1144		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1145	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1146		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1147	else
1148		incval = UNKNOWN_INCVAL_E822;
1149
1150	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1151		incval);
1152
1153	return incval;
1154}
1155
1156/**
1157 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1158 * @port: PTP port for which Tx FIFO is checked
1159 */
1160static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1161{
1162	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1163	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1164	struct ice_pf *pf;
1165	struct ice_hw *hw;
1166	u32 val, phy_sts;
1167	int err;
1168
1169	pf = ptp_port_to_pf(port);
1170	hw = &pf->hw;
1171
1172	if (port->tx_fifo_busy_cnt == FIFO_OK)
1173		return 0;
1174
1175	/* need to read FIFO state */
1176	if (offs == 0 || offs == 1)
1177		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1178					     &val);
1179	else
1180		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1181					     &val);
1182
1183	if (err) {
1184		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1185			port->port_num, err);
1186		return err;
1187	}
1188
1189	if (offs & 0x1)
1190		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1191	else
1192		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1193
1194	if (phy_sts & FIFO_EMPTY) {
1195		port->tx_fifo_busy_cnt = FIFO_OK;
1196		return 0;
1197	}
1198
1199	port->tx_fifo_busy_cnt++;
1200
1201	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1202		port->tx_fifo_busy_cnt, port->port_num);
1203
1204	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1205		dev_dbg(ice_pf_to_dev(pf),
1206			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1207			port->port_num, quad);
1208		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1209		port->tx_fifo_busy_cnt = FIFO_OK;
1210		return 0;
1211	}
1212
1213	return -EAGAIN;
1214}
1215
1216/**
1217 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1218 * @work: Pointer to the kthread_work structure for this task
1219 *
1220 * Check whether hardware has completed measuring the Tx and Rx offset values
1221 * used to configure and enable vernier timestamp calibration.
1222 *
1223 * Once the offset in either direction is measured, configure the associated
1224 * registers with the calibrated offset values and enable timestamping. The Tx
1225 * and Rx directions are configured independently as soon as their associated
1226 * offsets are known.
1227 *
1228 * This function reschedules itself until both Tx and Rx calibration have
1229 * completed.
1230 */
1231static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1232{
1233	struct ice_ptp_port *port;
1234	struct ice_pf *pf;
1235	struct ice_hw *hw;
1236	int tx_err;
1237	int rx_err;
1238
1239	port = container_of(work, struct ice_ptp_port, ov_work.work);
1240	pf = ptp_port_to_pf(port);
1241	hw = &pf->hw;
1242
1243	if (ice_is_reset_in_progress(pf->state)) {
1244		/* wait for device driver to complete reset */
1245		kthread_queue_delayed_work(pf->ptp.kworker,
1246					   &port->ov_work,
1247					   msecs_to_jiffies(100));
1248		return;
1249	}
1250
1251	tx_err = ice_ptp_check_tx_fifo(port);
1252	if (!tx_err)
1253		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1254	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1255	if (tx_err || rx_err) {
1256		/* Tx and/or Rx offset not yet configured, try again later */
1257		kthread_queue_delayed_work(pf->ptp.kworker,
1258					   &port->ov_work,
1259					   msecs_to_jiffies(100));
1260		return;
1261	}
1262}
1263
1264/**
1265 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1266 * @ptp_port: PTP port to stop
1267 */
1268static int
1269ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1270{
1271	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1272	u8 port = ptp_port->port_num;
1273	struct ice_hw *hw = &pf->hw;
1274	int err;
1275
1276	if (ice_is_e810(hw))
1277		return 0;
1278
1279	mutex_lock(&ptp_port->ps_lock);
1280
1281	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1282
1283	err = ice_stop_phy_timer_e822(hw, port, true);
1284	if (err)
1285		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1286			port, err);
1287
1288	mutex_unlock(&ptp_port->ps_lock);
1289
1290	return err;
1291}
1292
1293/**
1294 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1295 * @ptp_port: PTP port for which the PHY start is set
1296 *
1297 * Start the PHY timestamping block, and initiate Vernier timestamping
1298 * calibration. If timestamping cannot be calibrated (such as if link is down)
1299 * then disable the timestamping block instead.
1300 */
1301static int
1302ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1303{
1304	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1305	u8 port = ptp_port->port_num;
1306	struct ice_hw *hw = &pf->hw;
1307	int err;
1308
1309	if (ice_is_e810(hw))
1310		return 0;
1311
1312	if (!ptp_port->link_up)
1313		return ice_ptp_port_phy_stop(ptp_port);
1314
1315	mutex_lock(&ptp_port->ps_lock);
1316
1317	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1318
1319	/* temporarily disable Tx timestamps while calibrating PHY offset */
1320	spin_lock(&ptp_port->tx.lock);
1321	ptp_port->tx.calibrating = true;
1322	spin_unlock(&ptp_port->tx.lock);
1323	ptp_port->tx_fifo_busy_cnt = 0;
1324
1325	/* Start the PHY timer in Vernier mode */
1326	err = ice_start_phy_timer_e822(hw, port);
1327	if (err)
1328		goto out_unlock;
1329
1330	/* Enable Tx timestamps right away */
1331	spin_lock(&ptp_port->tx.lock);
1332	ptp_port->tx.calibrating = false;
1333	spin_unlock(&ptp_port->tx.lock);
1334
1335	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1336
1337out_unlock:
1338	if (err)
1339		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1340			port, err);
1341
1342	mutex_unlock(&ptp_port->ps_lock);
1343
1344	return err;
1345}
1346
1347/**
1348 * ice_ptp_link_change - Reconfigure PTP after link status change
1349 * @pf: Board private structure
1350 * @port: Port for which the PHY start is set
1351 * @linkup: Link is up or down
1352 */
1353void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1354{
1355	struct ice_ptp_port *ptp_port;
1356
1357	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1358		return;
1359
1360	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1361		return;
1362
1363	ptp_port = &pf->ptp.port;
1364	if (WARN_ON_ONCE(ptp_port->port_num != port))
1365		return;
1366
1367	/* Update cached link status for this port immediately */
1368	ptp_port->link_up = linkup;
1369
1370	/* E810 devices do not need to reconfigure the PHY */
1371	if (ice_is_e810(&pf->hw))
1372		return;
1373
1374	ice_ptp_port_phy_restart(ptp_port);
1375}
1376
1377/**
1378 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1379 * @pf: PF private structure
1380 * @ena: bool value to enable or disable interrupt
1381 * @threshold: Minimum number of packets at which intr is triggered
1382 *
1383 * Utility function to enable or disable Tx timestamp interrupt and threshold
1384 */
1385static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1386{
1387	struct ice_hw *hw = &pf->hw;
1388	int err = 0;
1389	int quad;
1390	u32 val;
1391
1392	ice_ptp_reset_ts_memory(hw);
1393
1394	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1395		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1396					     &val);
1397		if (err)
1398			break;
1399
1400		if (ena) {
1401			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1402			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1403			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1404				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1405		} else {
1406			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1407		}
1408
1409		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1410					      val);
1411		if (err)
1412			break;
1413	}
1414
1415	if (err)
1416		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1417			err);
1418	return err;
1419}
1420
1421/**
1422 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1423 * @pf: Board private structure
1424 */
1425static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1426{
1427	ice_ptp_port_phy_restart(&pf->ptp.port);
1428}
1429
1430/**
1431 * ice_ptp_adjfine - Adjust clock increment rate
1432 * @info: the driver's PTP info structure
1433 * @scaled_ppm: Parts per million with 16-bit fractional field
1434 *
1435 * Adjust the frequency of the clock by the indicated scaled ppm from the
1436 * base frequency.
1437 */
1438static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1439{
1440	struct ice_pf *pf = ptp_info_to_pf(info);
1441	struct ice_hw *hw = &pf->hw;
1442	u64 incval;
1443	int err;
1444
1445	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1446	err = ice_ptp_write_incval_locked(hw, incval);
1447	if (err) {
1448		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1449			err);
1450		return -EIO;
1451	}
1452
1453	return 0;
1454}
1455
1456/**
1457 * ice_ptp_extts_work - Workqueue task function
1458 * @work: external timestamp work structure
1459 *
1460 * Service for PTP external clock event
1461 */
1462static void ice_ptp_extts_work(struct kthread_work *work)
1463{
1464	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1465	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1466	struct ptp_clock_event event;
1467	struct ice_hw *hw = &pf->hw;
1468	u8 chan, tmr_idx;
1469	u32 hi, lo;
1470
1471	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1472	/* Event time is captured by one of the two matched registers
1473	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1474	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1475	 * Event is defined in GLTSYN_EVNT_0 register
1476	 */
1477	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1478		/* Check if channel is enabled */
1479		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1480			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1481			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1482			event.timestamp = (((u64)hi) << 32) | lo;
1483			event.type = PTP_CLOCK_EXTTS;
1484			event.index = chan;
1485
1486			/* Fire event */
1487			ptp_clock_event(pf->ptp.clock, &event);
1488			pf->ptp.ext_ts_irq &= ~(1 << chan);
1489		}
1490	}
1491}
1492
1493/**
1494 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1495 * @pf: Board private structure
1496 * @ena: true to enable; false to disable
1497 * @chan: GPIO channel (0-3)
1498 * @gpio_pin: GPIO pin
1499 * @extts_flags: request flags from the ptp_extts_request.flags
1500 */
1501static int
1502ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1503		  unsigned int extts_flags)
1504{
1505	u32 func, aux_reg, gpio_reg, irq_reg;
1506	struct ice_hw *hw = &pf->hw;
1507	u8 tmr_idx;
1508
1509	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1510		return -EINVAL;
1511
1512	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1513
1514	irq_reg = rd32(hw, PFINT_OICR_ENA);
1515
1516	if (ena) {
1517		/* Enable the interrupt */
1518		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1519		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1520
1521#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1522#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1523
1524		/* set event level to requested edge */
1525		if (extts_flags & PTP_FALLING_EDGE)
1526			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1527		if (extts_flags & PTP_RISING_EDGE)
1528			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1529
1530		/* Write GPIO CTL reg.
1531		 * 0x1 is input sampled by EVENT register(channel)
1532		 * + num_in_channels * tmr_idx
1533		 */
1534		func = 1 + chan + (tmr_idx * 3);
1535		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1536			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1537		pf->ptp.ext_ts_chan |= (1 << chan);
1538	} else {
1539		/* clear the values we set to reset defaults */
1540		aux_reg = 0;
1541		gpio_reg = 0;
1542		pf->ptp.ext_ts_chan &= ~(1 << chan);
1543		if (!pf->ptp.ext_ts_chan)
1544			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1545	}
1546
1547	wr32(hw, PFINT_OICR_ENA, irq_reg);
1548	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1549	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1550
1551	return 0;
1552}
1553
1554/**
1555 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1556 * @pf: Board private structure
1557 * @chan: GPIO channel (0-3)
1558 * @config: desired periodic clk configuration. NULL will disable channel
1559 * @store: If set to true the values will be stored
1560 *
1561 * Configure the internal clock generator modules to generate the clock wave of
1562 * specified period.
1563 */
1564static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1565			      struct ice_perout_channel *config, bool store)
1566{
1567	u64 current_time, period, start_time, phase;
1568	struct ice_hw *hw = &pf->hw;
1569	u32 func, val, gpio_pin;
1570	u8 tmr_idx;
1571
1572	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1573
1574	/* 0. Reset mode & out_en in AUX_OUT */
1575	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1576
1577	/* If we're disabling the output, clear out CLKO and TGT and keep
1578	 * output level low
1579	 */
1580	if (!config || !config->ena) {
1581		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1582		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1583		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1584
1585		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1586		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1587		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1588
1589		/* Store the value if requested */
1590		if (store)
1591			memset(&pf->ptp.perout_channels[chan], 0,
1592			       sizeof(struct ice_perout_channel));
1593
1594		return 0;
1595	}
1596	period = config->period;
1597	start_time = config->start_time;
1598	div64_u64_rem(start_time, period, &phase);
1599	gpio_pin = config->gpio_pin;
1600
1601	/* 1. Write clkout with half of required period value */
1602	if (period & 0x1) {
1603		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1604		goto err;
1605	}
1606
1607	period >>= 1;
1608
1609	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1610	 */
1611#define MIN_PULSE 3
1612	if (period <= MIN_PULSE || period > U32_MAX) {
1613		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1614			MIN_PULSE * 2);
1615		goto err;
1616	}
1617
1618	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1619
1620	/* Allow time for programming before start_time is hit */
1621	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1622
1623	/* if start time is in the past start the timer at the nearest second
1624	 * maintaining phase
1625	 */
1626	if (start_time < current_time)
1627		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1628				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1629
1630	if (ice_is_e810(hw))
1631		start_time -= E810_OUT_PROP_DELAY_NS;
1632	else
1633		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1634
1635	/* 2. Write TARGET time */
1636	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1637	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1638
1639	/* 3. Write AUX_OUT register */
1640	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1641	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1642
1643	/* 4. write GPIO CTL reg */
1644	func = 8 + chan + (tmr_idx * 4);
1645	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1646	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1647	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1648
1649	/* Store the value if requested */
1650	if (store) {
1651		memcpy(&pf->ptp.perout_channels[chan], config,
1652		       sizeof(struct ice_perout_channel));
1653		pf->ptp.perout_channels[chan].start_time = phase;
1654	}
1655
1656	return 0;
1657err:
1658	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1659	return -EFAULT;
1660}
1661
1662/**
1663 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1664 * @pf: pointer to the PF structure
1665 *
1666 * Disable all currently configured clock outputs. This is necessary before
1667 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1668 * re-enable the clocks again.
1669 */
1670static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1671{
1672	uint i;
1673
1674	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1675		if (pf->ptp.perout_channels[i].ena)
1676			ice_ptp_cfg_clkout(pf, i, NULL, false);
1677}
1678
1679/**
1680 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1681 * @pf: pointer to the PF structure
1682 *
1683 * Enable all currently configured clock outputs. Use this after
1684 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1685 * their configuration.
1686 */
1687static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1688{
1689	uint i;
1690
1691	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1692		if (pf->ptp.perout_channels[i].ena)
1693			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1694					   false);
1695}
1696
1697/**
1698 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1699 * @info: the driver's PTP info structure
1700 * @rq: The requested feature to change
1701 * @on: Enable/disable flag
1702 */
1703static int
1704ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1705			 struct ptp_clock_request *rq, int on)
1706{
1707	struct ice_pf *pf = ptp_info_to_pf(info);
1708	struct ice_perout_channel clk_cfg = {0};
1709	bool sma_pres = false;
1710	unsigned int chan;
1711	u32 gpio_pin;
1712	int err;
1713
1714	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1715		sma_pres = true;
1716
1717	switch (rq->type) {
1718	case PTP_CLK_REQ_PEROUT:
1719		chan = rq->perout.index;
1720		if (sma_pres) {
1721			if (chan == ice_pin_desc_e810t[SMA1].chan)
1722				clk_cfg.gpio_pin = GPIO_20;
1723			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1724				clk_cfg.gpio_pin = GPIO_22;
1725			else
1726				return -1;
1727		} else if (ice_is_e810t(&pf->hw)) {
1728			if (chan == 0)
1729				clk_cfg.gpio_pin = GPIO_20;
1730			else
1731				clk_cfg.gpio_pin = GPIO_22;
1732		} else if (chan == PPS_CLK_GEN_CHAN) {
1733			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1734		} else {
1735			clk_cfg.gpio_pin = chan;
1736		}
1737
1738		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1739				   rq->perout.period.nsec);
1740		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1741				       rq->perout.start.nsec);
1742		clk_cfg.ena = !!on;
1743
1744		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1745		break;
1746	case PTP_CLK_REQ_EXTTS:
1747		chan = rq->extts.index;
1748		if (sma_pres) {
1749			if (chan < ice_pin_desc_e810t[SMA2].chan)
1750				gpio_pin = GPIO_21;
1751			else
1752				gpio_pin = GPIO_23;
1753		} else if (ice_is_e810t(&pf->hw)) {
1754			if (chan == 0)
1755				gpio_pin = GPIO_21;
1756			else
1757				gpio_pin = GPIO_23;
1758		} else {
1759			gpio_pin = chan;
1760		}
1761
1762		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1763					rq->extts.flags);
1764		break;
1765	default:
1766		return -EOPNOTSUPP;
1767	}
1768
1769	return err;
1770}
1771
1772/**
1773 * ice_ptp_gettimex64 - Get the time of the clock
1774 * @info: the driver's PTP info structure
1775 * @ts: timespec64 structure to hold the current time value
1776 * @sts: Optional parameter for holding a pair of system timestamps from
1777 *       the system clock. Will be ignored if NULL is given.
1778 *
1779 * Read the device clock and return the correct value on ns, after converting it
1780 * into a timespec struct.
1781 */
1782static int
1783ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1784		   struct ptp_system_timestamp *sts)
1785{
1786	struct ice_pf *pf = ptp_info_to_pf(info);
1787	struct ice_hw *hw = &pf->hw;
1788
1789	if (!ice_ptp_lock(hw)) {
1790		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1791		return -EBUSY;
1792	}
1793
1794	ice_ptp_read_time(pf, ts, sts);
1795	ice_ptp_unlock(hw);
1796
1797	return 0;
1798}
1799
1800/**
1801 * ice_ptp_settime64 - Set the time of the clock
1802 * @info: the driver's PTP info structure
1803 * @ts: timespec64 structure that holds the new time value
1804 *
1805 * Set the device clock to the user input value. The conversion from timespec
1806 * to ns happens in the write function.
1807 */
1808static int
1809ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1810{
1811	struct ice_pf *pf = ptp_info_to_pf(info);
1812	struct timespec64 ts64 = *ts;
1813	struct ice_hw *hw = &pf->hw;
1814	int err;
1815
1816	/* For Vernier mode, we need to recalibrate after new settime
1817	 * Start with disabling timestamp block
1818	 */
1819	if (pf->ptp.port.link_up)
1820		ice_ptp_port_phy_stop(&pf->ptp.port);
1821
1822	if (!ice_ptp_lock(hw)) {
1823		err = -EBUSY;
1824		goto exit;
1825	}
1826
1827	/* Disable periodic outputs */
1828	ice_ptp_disable_all_clkout(pf);
1829
1830	err = ice_ptp_write_init(pf, &ts64);
1831	ice_ptp_unlock(hw);
1832
1833	if (!err)
1834		ice_ptp_reset_cached_phctime(pf);
1835
1836	/* Reenable periodic outputs */
1837	ice_ptp_enable_all_clkout(pf);
1838
1839	/* Recalibrate and re-enable timestamp block */
1840	if (pf->ptp.port.link_up)
1841		ice_ptp_port_phy_restart(&pf->ptp.port);
1842exit:
1843	if (err) {
1844		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1845		return err;
1846	}
1847
1848	return 0;
1849}
1850
1851/**
1852 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1853 * @info: the driver's PTP info structure
1854 * @delta: Offset in nanoseconds to adjust the time by
1855 */
1856static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1857{
1858	struct timespec64 now, then;
1859	int ret;
1860
1861	then = ns_to_timespec64(delta);
1862	ret = ice_ptp_gettimex64(info, &now, NULL);
1863	if (ret)
1864		return ret;
1865	now = timespec64_add(now, then);
1866
1867	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1868}
1869
1870/**
1871 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1872 * @info: the driver's PTP info structure
1873 * @delta: Offset in nanoseconds to adjust the time by
1874 */
1875static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1876{
1877	struct ice_pf *pf = ptp_info_to_pf(info);
1878	struct ice_hw *hw = &pf->hw;
1879	struct device *dev;
1880	int err;
1881
1882	dev = ice_pf_to_dev(pf);
1883
1884	/* Hardware only supports atomic adjustments using signed 32-bit
1885	 * integers. For any adjustment outside this range, perform
1886	 * a non-atomic get->adjust->set flow.
1887	 */
1888	if (delta > S32_MAX || delta < S32_MIN) {
1889		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1890		return ice_ptp_adjtime_nonatomic(info, delta);
1891	}
1892
1893	if (!ice_ptp_lock(hw)) {
1894		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1895		return -EBUSY;
1896	}
1897
1898	/* Disable periodic outputs */
1899	ice_ptp_disable_all_clkout(pf);
1900
1901	err = ice_ptp_write_adj(pf, delta);
1902
1903	/* Reenable periodic outputs */
1904	ice_ptp_enable_all_clkout(pf);
1905
1906	ice_ptp_unlock(hw);
1907
1908	if (err) {
1909		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1910		return err;
1911	}
1912
1913	ice_ptp_reset_cached_phctime(pf);
1914
1915	return 0;
1916}
1917
1918#ifdef CONFIG_ICE_HWTS
1919/**
1920 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1921 * @device: Current device time
1922 * @system: System counter value read synchronously with device time
1923 * @ctx: Context provided by timekeeping code
1924 *
1925 * Read device and system (ART) clock simultaneously and return the corrected
1926 * clock values in ns.
1927 */
1928static int
1929ice_ptp_get_syncdevicetime(ktime_t *device,
1930			   struct system_counterval_t *system,
1931			   void *ctx)
1932{
1933	struct ice_pf *pf = (struct ice_pf *)ctx;
1934	struct ice_hw *hw = &pf->hw;
1935	u32 hh_lock, hh_art_ctl;
1936	int i;
1937
1938	/* Get the HW lock */
1939	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1940	if (hh_lock & PFHH_SEM_BUSY_M) {
1941		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1942		return -EFAULT;
1943	}
1944
1945	/* Start the ART and device clock sync sequence */
1946	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1947	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1948	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1949
1950#define MAX_HH_LOCK_TRIES 100
1951
1952	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1953		/* Wait for sync to complete */
1954		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1955		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1956			udelay(1);
1957			continue;
1958		} else {
1959			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1960			u64 hh_ts;
1961
1962			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1963			/* Read ART time */
1964			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1965			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1966			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1967			*system = convert_art_ns_to_tsc(hh_ts);
1968			/* Read Device source clock time */
1969			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1970			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1971			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1972			*device = ns_to_ktime(hh_ts);
1973			break;
1974		}
1975	}
1976	/* Release HW lock */
1977	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1978	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1979	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1980
1981	if (i == MAX_HH_LOCK_TRIES)
1982		return -ETIMEDOUT;
1983
1984	return 0;
1985}
1986
1987/**
1988 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
1989 * @info: the driver's PTP info structure
1990 * @cts: The memory to fill the cross timestamp info
1991 *
1992 * Capture a cross timestamp between the ART and the device PTP hardware
1993 * clock. Fill the cross timestamp information and report it back to the
1994 * caller.
1995 *
1996 * This is only valid for E822 devices which have support for generating the
1997 * cross timestamp via PCIe PTM.
1998 *
1999 * In order to correctly correlate the ART timestamp back to the TSC time, the
2000 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2001 */
2002static int
2003ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2004			    struct system_device_crosststamp *cts)
2005{
2006	struct ice_pf *pf = ptp_info_to_pf(info);
2007
2008	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2009					     pf, NULL, cts);
2010}
2011#endif /* CONFIG_ICE_HWTS */
2012
2013/**
2014 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2015 * @pf: Board private structure
2016 * @ifr: ioctl data
2017 *
2018 * Copy the timestamping config to user buffer
2019 */
2020int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2021{
2022	struct hwtstamp_config *config;
2023
2024	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2025		return -EIO;
2026
2027	config = &pf->ptp.tstamp_config;
2028
2029	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2030		-EFAULT : 0;
2031}
2032
2033/**
2034 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2035 * @pf: Board private structure
2036 * @config: hwtstamp settings requested or saved
2037 */
2038static int
2039ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2040{
2041	switch (config->tx_type) {
2042	case HWTSTAMP_TX_OFF:
2043		ice_set_tx_tstamp(pf, false);
2044		break;
2045	case HWTSTAMP_TX_ON:
2046		ice_set_tx_tstamp(pf, true);
2047		break;
2048	default:
2049		return -ERANGE;
2050	}
2051
2052	switch (config->rx_filter) {
2053	case HWTSTAMP_FILTER_NONE:
2054		ice_set_rx_tstamp(pf, false);
2055		break;
2056	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2057	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2058	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2059	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2060	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2061	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2062	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2063	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2064	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2065	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2066	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2067	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2068	case HWTSTAMP_FILTER_NTP_ALL:
2069	case HWTSTAMP_FILTER_ALL:
2070		ice_set_rx_tstamp(pf, true);
2071		break;
2072	default:
2073		return -ERANGE;
2074	}
2075
2076	return 0;
2077}
2078
2079/**
2080 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2081 * @pf: Board private structure
2082 * @ifr: ioctl data
2083 *
2084 * Get the user config and store it
2085 */
2086int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2087{
2088	struct hwtstamp_config config;
2089	int err;
2090
2091	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2092		return -EAGAIN;
2093
2094	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2095		return -EFAULT;
2096
2097	err = ice_ptp_set_timestamp_mode(pf, &config);
2098	if (err)
2099		return err;
2100
2101	/* Return the actual configuration set */
2102	config = pf->ptp.tstamp_config;
2103
2104	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2105		-EFAULT : 0;
2106}
2107
2108/**
2109 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2110 * @rx_ring: Ring to get the VSI info
2111 * @rx_desc: Receive descriptor
2112 * @skb: Particular skb to send timestamp with
2113 *
2114 * The driver receives a notification in the receive descriptor with timestamp.
2115 * The timestamp is in ns, so we must convert the result first.
2116 */
2117void
2118ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2119		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2120{
2121	struct skb_shared_hwtstamps *hwtstamps;
2122	u64 ts_ns, cached_time;
2123	u32 ts_high;
2124
2125	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2126		return;
2127
2128	cached_time = READ_ONCE(rx_ring->cached_phctime);
2129
2130	/* Do not report a timestamp if we don't have a cached PHC time */
2131	if (!cached_time)
2132		return;
2133
2134	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2135	 * PHC value, rather than accessing the PF. This also allows us to
2136	 * simply pass the upper 32bits of nanoseconds directly. Calling
2137	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2138	 * bits itself.
2139	 */
2140	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2141	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2142
2143	hwtstamps = skb_hwtstamps(skb);
2144	memset(hwtstamps, 0, sizeof(*hwtstamps));
2145	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2146}
2147
2148/**
2149 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2150 * @pf: pointer to the PF structure
2151 * @info: PTP clock info structure
2152 *
2153 * Disable the OS access to the SMA pins. Called to clear out the OS
2154 * indications of pin support when we fail to setup the E810-T SMA control
2155 * register.
2156 */
2157static void
2158ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2159{
2160	struct device *dev = ice_pf_to_dev(pf);
2161
2162	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2163
2164	info->enable = NULL;
2165	info->verify = NULL;
2166	info->n_pins = 0;
2167	info->n_ext_ts = 0;
2168	info->n_per_out = 0;
2169}
2170
2171/**
2172 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2173 * @pf: pointer to the PF structure
2174 * @info: PTP clock info structure
2175 *
2176 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2177 * according to the current status of the SMA. On failure, disable all of the
2178 * extended SMA pin support.
2179 */
2180static void
2181ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2182{
2183	struct device *dev = ice_pf_to_dev(pf);
2184	int err;
2185
2186	/* Allocate memory for kernel pins interface */
2187	info->pin_config = devm_kcalloc(dev, info->n_pins,
2188					sizeof(*info->pin_config), GFP_KERNEL);
2189	if (!info->pin_config) {
2190		ice_ptp_disable_sma_pins_e810t(pf, info);
2191		return;
2192	}
2193
2194	/* Read current SMA status */
2195	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2196	if (err)
2197		ice_ptp_disable_sma_pins_e810t(pf, info);
2198}
2199
2200/**
2201 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2202 * @pf: pointer to the PF instance
2203 * @info: PTP clock capabilities
2204 */
2205static void
2206ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2207{
2208	info->n_per_out = N_PER_OUT_E810;
2209
2210	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
2211		info->n_ext_ts = N_EXT_TS_E810;
2212
2213	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2214		info->n_ext_ts = N_EXT_TS_E810;
2215		info->n_pins = NUM_PTP_PINS_E810T;
2216		info->verify = ice_verify_pin_e810t;
2217
2218		/* Complete setup of the SMA pins */
2219		ice_ptp_setup_sma_pins_e810t(pf, info);
2220	}
2221}
2222
2223/**
2224 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2225 * @pf: Board private structure
2226 * @info: PTP info to fill
2227 *
2228 * Assign functions to the PTP capabiltiies structure for E822 devices.
2229 * Functions which operate across all device families should be set directly
2230 * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2231 * devices.
2232 */
2233static void
2234ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2235{
2236#ifdef CONFIG_ICE_HWTS
2237	if (boot_cpu_has(X86_FEATURE_ART) &&
2238	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2239		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2240#endif /* CONFIG_ICE_HWTS */
2241}
2242
2243/**
2244 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2245 * @pf: Board private structure
2246 * @info: PTP info to fill
2247 *
2248 * Assign functions to the PTP capabiltiies structure for E810 devices.
2249 * Functions which operate across all device families should be set directly
2250 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2251 * devices.
2252 */
2253static void
2254ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2255{
2256	info->enable = ice_ptp_gpio_enable_e810;
2257	ice_ptp_setup_pins_e810(pf, info);
2258}
2259
2260/**
2261 * ice_ptp_set_caps - Set PTP capabilities
2262 * @pf: Board private structure
2263 */
2264static void ice_ptp_set_caps(struct ice_pf *pf)
2265{
2266	struct ptp_clock_info *info = &pf->ptp.info;
2267	struct device *dev = ice_pf_to_dev(pf);
2268
2269	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2270		 dev_driver_string(dev), dev_name(dev));
2271	info->owner = THIS_MODULE;
2272	info->max_adj = 999999999;
2273	info->adjtime = ice_ptp_adjtime;
2274	info->adjfine = ice_ptp_adjfine;
2275	info->gettimex64 = ice_ptp_gettimex64;
2276	info->settime64 = ice_ptp_settime64;
2277
2278	if (ice_is_e810(&pf->hw))
2279		ice_ptp_set_funcs_e810(pf, info);
2280	else
2281		ice_ptp_set_funcs_e822(pf, info);
2282}
2283
2284/**
2285 * ice_ptp_create_clock - Create PTP clock device for userspace
2286 * @pf: Board private structure
2287 *
2288 * This function creates a new PTP clock device. It only creates one if we
2289 * don't already have one. Will return error if it can't create one, but success
2290 * if we already have a device. Should be used by ice_ptp_init to create clock
2291 * initially, and prevent global resets from creating new clock devices.
2292 */
2293static long ice_ptp_create_clock(struct ice_pf *pf)
2294{
2295	struct ptp_clock_info *info;
2296	struct ptp_clock *clock;
2297	struct device *dev;
2298
2299	/* No need to create a clock device if we already have one */
2300	if (pf->ptp.clock)
2301		return 0;
2302
2303	ice_ptp_set_caps(pf);
2304
2305	info = &pf->ptp.info;
2306	dev = ice_pf_to_dev(pf);
2307
2308	/* Attempt to register the clock before enabling the hardware. */
2309	clock = ptp_clock_register(info, dev);
2310	if (IS_ERR(clock))
2311		return PTR_ERR(clock);
2312
2313	pf->ptp.clock = clock;
2314
2315	return 0;
2316}
2317
2318/**
2319 * ice_ptp_request_ts - Request an available Tx timestamp index
2320 * @tx: the PTP Tx timestamp tracker to request from
2321 * @skb: the SKB to associate with this timestamp request
2322 */
2323s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2324{
2325	u8 idx;
2326
2327	spin_lock(&tx->lock);
2328
2329	/* Check that this tracker is accepting new timestamp requests */
2330	if (!ice_ptp_is_tx_tracker_up(tx)) {
2331		spin_unlock(&tx->lock);
2332		return -1;
2333	}
2334
2335	/* Find and set the first available index */
2336	idx = find_first_zero_bit(tx->in_use, tx->len);
2337	if (idx < tx->len) {
2338		/* We got a valid index that no other thread could have set. Store
2339		 * a reference to the skb and the start time to allow discarding old
2340		 * requests.
2341		 */
2342		set_bit(idx, tx->in_use);
2343		clear_bit(idx, tx->stale);
2344		tx->tstamps[idx].start = jiffies;
2345		tx->tstamps[idx].skb = skb_get(skb);
2346		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2347		ice_trace(tx_tstamp_request, skb, idx);
2348	}
2349
2350	spin_unlock(&tx->lock);
2351
2352	/* return the appropriate PHY timestamp register index, -1 if no
2353	 * indexes were available.
2354	 */
2355	if (idx >= tx->len)
2356		return -1;
2357	else
2358		return idx + tx->offset;
2359}
2360
2361/**
2362 * ice_ptp_process_ts - Process the PTP Tx timestamps
2363 * @pf: Board private structure
2364 *
2365 * Returns true if timestamps are processed.
2366 */
2367bool ice_ptp_process_ts(struct ice_pf *pf)
2368{
2369	return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2370}
2371
2372static void ice_ptp_periodic_work(struct kthread_work *work)
2373{
2374	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2375	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2376	int err;
2377
2378	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2379		return;
2380
2381	err = ice_ptp_update_cached_phctime(pf);
2382
2383	/* Run twice a second or reschedule if phc update failed */
2384	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2385				   msecs_to_jiffies(err ? 10 : 500));
2386}
2387
2388/**
2389 * ice_ptp_reset - Initialize PTP hardware clock support after reset
2390 * @pf: Board private structure
2391 */
2392void ice_ptp_reset(struct ice_pf *pf)
2393{
2394	struct ice_ptp *ptp = &pf->ptp;
2395	struct ice_hw *hw = &pf->hw;
2396	struct timespec64 ts;
2397	int err, itr = 1;
2398	u64 time_diff;
2399
2400	if (test_bit(ICE_PFR_REQ, pf->state))
2401		goto pfr;
2402
2403	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2404		goto reset_ts;
2405
2406	err = ice_ptp_init_phc(hw);
2407	if (err)
2408		goto err;
2409
2410	/* Acquire the global hardware lock */
2411	if (!ice_ptp_lock(hw)) {
2412		err = -EBUSY;
2413		goto err;
2414	}
2415
2416	/* Write the increment time value to PHY and LAN */
2417	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2418	if (err) {
2419		ice_ptp_unlock(hw);
2420		goto err;
2421	}
2422
2423	/* Write the initial Time value to PHY and LAN using the cached PHC
2424	 * time before the reset and time difference between stopping and
2425	 * starting the clock.
2426	 */
2427	if (ptp->cached_phc_time) {
2428		time_diff = ktime_get_real_ns() - ptp->reset_time;
2429		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2430	} else {
2431		ts = ktime_to_timespec64(ktime_get_real());
2432	}
2433	err = ice_ptp_write_init(pf, &ts);
2434	if (err) {
2435		ice_ptp_unlock(hw);
2436		goto err;
2437	}
2438
2439	/* Release the global hardware lock */
2440	ice_ptp_unlock(hw);
2441
2442	if (!ice_is_e810(hw)) {
2443		/* Enable quad interrupts */
2444		err = ice_ptp_tx_ena_intr(pf, true, itr);
2445		if (err)
2446			goto err;
2447	}
2448
2449reset_ts:
2450	/* Restart the PHY timestamping block */
2451	ice_ptp_reset_phy_timestamping(pf);
2452
2453pfr:
2454	/* Init Tx structures */
2455	if (ice_is_e810(&pf->hw)) {
2456		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2457	} else {
2458		kthread_init_delayed_work(&ptp->port.ov_work,
2459					  ice_ptp_wait_for_offsets);
2460		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2461					   ptp->port.port_num);
2462	}
2463	if (err)
2464		goto err;
2465
2466	set_bit(ICE_FLAG_PTP, pf->flags);
2467
2468	/* Start periodic work going */
2469	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2470
2471	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2472	return;
2473
2474err:
2475	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2476}
2477
2478/**
2479 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2480 * @pf: Board private structure
2481 */
2482void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2483{
2484	struct ice_ptp *ptp = &pf->ptp;
2485	u8 src_tmr;
2486
2487	clear_bit(ICE_FLAG_PTP, pf->flags);
2488
2489	/* Disable timestamping for both Tx and Rx */
2490	ice_ptp_cfg_timestamp(pf, false);
2491
2492	kthread_cancel_delayed_work_sync(&ptp->work);
2493	kthread_cancel_work_sync(&ptp->extts_work);
2494
2495	if (test_bit(ICE_PFR_REQ, pf->state))
2496		return;
2497
2498	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2499
2500	/* Disable periodic outputs */
2501	ice_ptp_disable_all_clkout(pf);
2502
2503	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2504
2505	/* Disable source clock */
2506	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2507
2508	/* Acquire PHC and system timer to restore after reset */
2509	ptp->reset_time = ktime_get_real_ns();
2510}
2511
2512/**
2513 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2514 * @pf: Board private structure
2515 *
2516 * Setup and initialize a PTP clock device that represents the device hardware
2517 * clock. Save the clock index for other functions connected to the same
2518 * hardware resource.
2519 */
2520static int ice_ptp_init_owner(struct ice_pf *pf)
2521{
2522	struct ice_hw *hw = &pf->hw;
2523	struct timespec64 ts;
2524	int err, itr = 1;
2525
2526	err = ice_ptp_init_phc(hw);
2527	if (err) {
2528		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2529			err);
2530		return err;
2531	}
2532
2533	/* Acquire the global hardware lock */
2534	if (!ice_ptp_lock(hw)) {
2535		err = -EBUSY;
2536		goto err_exit;
2537	}
2538
2539	/* Write the increment time value to PHY and LAN */
2540	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2541	if (err) {
2542		ice_ptp_unlock(hw);
2543		goto err_exit;
2544	}
2545
2546	ts = ktime_to_timespec64(ktime_get_real());
2547	/* Write the initial Time value to PHY and LAN */
2548	err = ice_ptp_write_init(pf, &ts);
2549	if (err) {
2550		ice_ptp_unlock(hw);
2551		goto err_exit;
2552	}
2553
2554	/* Release the global hardware lock */
2555	ice_ptp_unlock(hw);
2556
2557	if (!ice_is_e810(hw)) {
2558		/* Enable quad interrupts */
2559		err = ice_ptp_tx_ena_intr(pf, true, itr);
2560		if (err)
2561			goto err_exit;
2562	}
2563
2564	/* Ensure we have a clock device */
2565	err = ice_ptp_create_clock(pf);
2566	if (err)
2567		goto err_clk;
2568
2569	/* Store the PTP clock index for other PFs */
2570	ice_set_ptp_clock_index(pf);
2571
2572	return 0;
2573
2574err_clk:
2575	pf->ptp.clock = NULL;
2576err_exit:
2577	return err;
2578}
2579
2580/**
2581 * ice_ptp_init_work - Initialize PTP work threads
2582 * @pf: Board private structure
2583 * @ptp: PF PTP structure
2584 */
2585static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2586{
2587	struct kthread_worker *kworker;
2588
2589	/* Initialize work functions */
2590	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2591	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2592
2593	/* Allocate a kworker for handling work required for the ports
2594	 * connected to the PTP hardware clock.
2595	 */
2596	kworker = kthread_create_worker(0, "ice-ptp-%s",
2597					dev_name(ice_pf_to_dev(pf)));
2598	if (IS_ERR(kworker))
2599		return PTR_ERR(kworker);
2600
2601	ptp->kworker = kworker;
2602
2603	/* Start periodic work going */
2604	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2605
2606	return 0;
2607}
2608
2609/**
2610 * ice_ptp_init_port - Initialize PTP port structure
2611 * @pf: Board private structure
2612 * @ptp_port: PTP port structure
2613 */
2614static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2615{
2616	mutex_init(&ptp_port->ps_lock);
2617
2618	if (ice_is_e810(&pf->hw))
2619		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2620
2621	kthread_init_delayed_work(&ptp_port->ov_work,
2622				  ice_ptp_wait_for_offsets);
2623	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2624}
2625
2626/**
2627 * ice_ptp_init - Initialize PTP hardware clock support
2628 * @pf: Board private structure
2629 *
2630 * Set up the device for interacting with the PTP hardware clock for all
2631 * functions, both the function that owns the clock hardware, and the
2632 * functions connected to the clock hardware.
2633 *
2634 * The clock owner will allocate and register a ptp_clock with the
2635 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2636 * items used for asynchronous work such as Tx timestamps and periodic work.
2637 */
2638void ice_ptp_init(struct ice_pf *pf)
2639{
2640	struct ice_ptp *ptp = &pf->ptp;
2641	struct ice_hw *hw = &pf->hw;
2642	int err;
2643
2644	/* If this function owns the clock hardware, it must allocate and
2645	 * configure the PTP clock device to represent it.
2646	 */
2647	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2648		err = ice_ptp_init_owner(pf);
2649		if (err)
2650			goto err;
2651	}
2652
2653	ptp->port.port_num = hw->pf_id;
2654	err = ice_ptp_init_port(pf, &ptp->port);
2655	if (err)
2656		goto err;
2657
2658	/* Start the PHY timestamping block */
2659	ice_ptp_reset_phy_timestamping(pf);
2660
2661	set_bit(ICE_FLAG_PTP, pf->flags);
2662	err = ice_ptp_init_work(pf, ptp);
2663	if (err)
2664		goto err;
2665
2666	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2667	return;
2668
2669err:
2670	/* If we registered a PTP clock, release it */
2671	if (pf->ptp.clock) {
2672		ptp_clock_unregister(ptp->clock);
2673		pf->ptp.clock = NULL;
2674	}
2675	clear_bit(ICE_FLAG_PTP, pf->flags);
2676	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2677}
2678
2679/**
2680 * ice_ptp_release - Disable the driver/HW support and unregister the clock
2681 * @pf: Board private structure
2682 *
2683 * This function handles the cleanup work required from the initialization by
2684 * clearing out the important information and unregistering the clock
2685 */
2686void ice_ptp_release(struct ice_pf *pf)
2687{
2688	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2689		return;
2690
2691	/* Disable timestamping for both Tx and Rx */
2692	ice_ptp_cfg_timestamp(pf, false);
2693
2694	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2695
2696	clear_bit(ICE_FLAG_PTP, pf->flags);
2697
2698	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2699
2700	ice_ptp_port_phy_stop(&pf->ptp.port);
2701	mutex_destroy(&pf->ptp.port.ps_lock);
2702	if (pf->ptp.kworker) {
2703		kthread_destroy_worker(pf->ptp.kworker);
2704		pf->ptp.kworker = NULL;
2705	}
2706
2707	if (!pf->ptp.clock)
2708		return;
2709
2710	/* Disable periodic outputs */
2711	ice_ptp_disable_all_clkout(pf);
2712
2713	ice_clear_ptp_clock_index(pf);
2714	ptp_clock_unregister(pf->ptp.clock);
2715	pf->ptp.clock = NULL;
2716
2717	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2718}