Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 *	Block OSM
   3 *
   4 * 	Copyright (C) 1999-2002	Red Hat Software
   5 *
   6 *	Written by Alan Cox, Building Number Three Ltd
   7 *
   8 *	This program is free software; you can redistribute it and/or modify it
   9 *	under the terms of the GNU General Public License as published by the
  10 *	Free Software Foundation; either version 2 of the License, or (at your
  11 *	option) any later version.
  12 *
  13 *	This program is distributed in the hope that it will be useful, but
  14 *	WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 *	General Public License for more details.
  17 *
  18 *	For the purpose of avoiding doubt the preferred form of the work
  19 *	for making modifications shall be a standards compliant form such
  20 *	gzipped tar and not one requiring a proprietary or patent encumbered
  21 *	tool to unpack.
  22 *
  23 *	Fixes/additions:
  24 *		Steve Ralston:
  25 *			Multiple device handling error fixes,
  26 *			Added a queue depth.
  27 *		Alan Cox:
  28 *			FC920 has an rmw bug. Dont or in the end marker.
  29 *			Removed queue walk, fixed for 64bitness.
  30 *			Rewrote much of the code over time
  31 *			Added indirect block lists
  32 *			Handle 64K limits on many controllers
  33 *			Don't use indirects on the Promise (breaks)
  34 *			Heavily chop down the queue depths
  35 *		Deepak Saxena:
  36 *			Independent queues per IOP
  37 *			Support for dynamic device creation/deletion
  38 *			Code cleanup
  39 *	    		Support for larger I/Os through merge* functions
  40 *			(taken from DAC960 driver)
  41 *		Boji T Kannanthanam:
  42 *			Set the I2O Block devices to be detected in increasing
  43 *			order of TIDs during boot.
  44 *			Search and set the I2O block device that we boot off
  45 *			from as the first device to be claimed (as /dev/i2o/hda)
  46 *			Properly attach/detach I2O gendisk structure from the
  47 *			system gendisk list. The I2O block devices now appear in
  48 *			/proc/partitions.
  49 *		Markus Lidel <Markus.Lidel@shadowconnect.com>:
  50 *			Minor bugfixes for 2.6.
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/slab.h>
  55#include <linux/i2o.h>
  56#include <linux/mutex.h>
  57
  58#include <linux/mempool.h>
  59
  60#include <linux/genhd.h>
  61#include <linux/blkdev.h>
  62#include <linux/hdreg.h>
  63
  64#include <scsi/scsi.h>
  65
  66#include "i2o_block.h"
  67
  68#define OSM_NAME	"block-osm"
  69#define OSM_VERSION	"1.325"
  70#define OSM_DESCRIPTION	"I2O Block Device OSM"
  71
  72static DEFINE_MUTEX(i2o_block_mutex);
  73static struct i2o_driver i2o_block_driver;
  74
  75/* global Block OSM request mempool */
  76static struct i2o_block_mempool i2o_blk_req_pool;
  77
  78/* Block OSM class handling definition */
  79static struct i2o_class_id i2o_block_class_id[] = {
  80	{I2O_CLASS_RANDOM_BLOCK_STORAGE},
  81	{I2O_CLASS_END}
  82};
  83
  84/**
  85 *	i2o_block_device_free - free the memory of the I2O Block device
  86 *	@dev: I2O Block device, which should be cleaned up
  87 *
  88 *	Frees the request queue, gendisk and the i2o_block_device structure.
  89 */
  90static void i2o_block_device_free(struct i2o_block_device *dev)
  91{
  92	blk_cleanup_queue(dev->gd->queue);
  93
  94	put_disk(dev->gd);
  95
  96	kfree(dev);
  97};
  98
  99/**
 100 *	i2o_block_remove - remove the I2O Block device from the system again
 101 *	@dev: I2O Block device which should be removed
 102 *
 103 *	Remove gendisk from system and free all allocated memory.
 104 *
 105 *	Always returns 0.
 106 */
 107static int i2o_block_remove(struct device *dev)
 108{
 109	struct i2o_device *i2o_dev = to_i2o_device(dev);
 110	struct i2o_block_device *i2o_blk_dev = dev_get_drvdata(dev);
 111
 112	osm_info("device removed (TID: %03x): %s\n", i2o_dev->lct_data.tid,
 113		 i2o_blk_dev->gd->disk_name);
 114
 115	i2o_event_register(i2o_dev, &i2o_block_driver, 0, 0);
 116
 117	del_gendisk(i2o_blk_dev->gd);
 118
 119	dev_set_drvdata(dev, NULL);
 120
 121	i2o_device_claim_release(i2o_dev);
 122
 123	i2o_block_device_free(i2o_blk_dev);
 124
 125	return 0;
 126};
 127
 128/**
 129 *	i2o_block_device flush - Flush all dirty data of I2O device dev
 130 *	@dev: I2O device which should be flushed
 131 *
 132 *	Flushes all dirty data on device dev.
 133 *
 134 *	Returns 0 on success or negative error code on failure.
 135 */
 136static int i2o_block_device_flush(struct i2o_device *dev)
 137{
 138	struct i2o_message *msg;
 139
 140	msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
 141	if (IS_ERR(msg))
 142		return PTR_ERR(msg);
 143
 144	msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
 145	msg->u.head[1] =
 146	    cpu_to_le32(I2O_CMD_BLOCK_CFLUSH << 24 | HOST_TID << 12 | dev->
 147			lct_data.tid);
 148	msg->body[0] = cpu_to_le32(60 << 16);
 149	osm_debug("Flushing...\n");
 150
 151	return i2o_msg_post_wait(dev->iop, msg, 60);
 152};
 153
 154/**
 155 *	i2o_block_device_mount - Mount (load) the media of device dev
 156 *	@dev: I2O device which should receive the mount request
 157 *	@media_id: Media Identifier
 158 *
 159 *	Load a media into drive. Identifier should be set to -1, because the
 160 *	spec does not support any other value.
 161 *
 162 *	Returns 0 on success or negative error code on failure.
 163 */
 164static int i2o_block_device_mount(struct i2o_device *dev, u32 media_id)
 165{
 166	struct i2o_message *msg;
 167
 168	msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
 169	if (IS_ERR(msg))
 170		return PTR_ERR(msg);
 171
 172	msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
 173	msg->u.head[1] =
 174	    cpu_to_le32(I2O_CMD_BLOCK_MMOUNT << 24 | HOST_TID << 12 | dev->
 175			lct_data.tid);
 176	msg->body[0] = cpu_to_le32(-1);
 177	msg->body[1] = cpu_to_le32(0x00000000);
 178	osm_debug("Mounting...\n");
 179
 180	return i2o_msg_post_wait(dev->iop, msg, 2);
 181};
 182
 183/**
 184 *	i2o_block_device_lock - Locks the media of device dev
 185 *	@dev: I2O device which should receive the lock request
 186 *	@media_id: Media Identifier
 187 *
 188 *	Lock media of device dev to prevent removal. The media identifier
 189 *	should be set to -1, because the spec does not support any other value.
 190 *
 191 *	Returns 0 on success or negative error code on failure.
 192 */
 193static int i2o_block_device_lock(struct i2o_device *dev, u32 media_id)
 194{
 195	struct i2o_message *msg;
 196
 197	msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
 198	if (IS_ERR(msg))
 199		return PTR_ERR(msg);
 200
 201	msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
 202	msg->u.head[1] =
 203	    cpu_to_le32(I2O_CMD_BLOCK_MLOCK << 24 | HOST_TID << 12 | dev->
 204			lct_data.tid);
 205	msg->body[0] = cpu_to_le32(-1);
 206	osm_debug("Locking...\n");
 207
 208	return i2o_msg_post_wait(dev->iop, msg, 2);
 209};
 210
 211/**
 212 *	i2o_block_device_unlock - Unlocks the media of device dev
 213 *	@dev: I2O device which should receive the unlocked request
 214 *	@media_id: Media Identifier
 215 *
 216 *	Unlocks the media in device dev. The media identifier should be set to
 217 *	-1, because the spec does not support any other value.
 218 *
 219 *	Returns 0 on success or negative error code on failure.
 220 */
 221static int i2o_block_device_unlock(struct i2o_device *dev, u32 media_id)
 222{
 223	struct i2o_message *msg;
 224
 225	msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
 226	if (IS_ERR(msg))
 227		return PTR_ERR(msg);
 228
 229	msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
 230	msg->u.head[1] =
 231	    cpu_to_le32(I2O_CMD_BLOCK_MUNLOCK << 24 | HOST_TID << 12 | dev->
 232			lct_data.tid);
 233	msg->body[0] = cpu_to_le32(media_id);
 234	osm_debug("Unlocking...\n");
 235
 236	return i2o_msg_post_wait(dev->iop, msg, 2);
 237};
 238
 239/**
 240 *	i2o_block_device_power - Power management for device dev
 241 *	@dev: I2O device which should receive the power management request
 242 *	@op: Operation to send
 243 *
 244 *	Send a power management request to the device dev.
 245 *
 246 *	Returns 0 on success or negative error code on failure.
 247 */
 248static int i2o_block_device_power(struct i2o_block_device *dev, u8 op)
 249{
 250	struct i2o_device *i2o_dev = dev->i2o_dev;
 251	struct i2o_controller *c = i2o_dev->iop;
 252	struct i2o_message *msg;
 253	int rc;
 254
 255	msg = i2o_msg_get_wait(c, I2O_TIMEOUT_MESSAGE_GET);
 256	if (IS_ERR(msg))
 257		return PTR_ERR(msg);
 258
 259	msg->u.head[0] = cpu_to_le32(FOUR_WORD_MSG_SIZE | SGL_OFFSET_0);
 260	msg->u.head[1] =
 261	    cpu_to_le32(I2O_CMD_BLOCK_POWER << 24 | HOST_TID << 12 | i2o_dev->
 262			lct_data.tid);
 263	msg->body[0] = cpu_to_le32(op << 24);
 264	osm_debug("Power...\n");
 265
 266	rc = i2o_msg_post_wait(c, msg, 60);
 267	if (!rc)
 268		dev->power = op;
 269
 270	return rc;
 271};
 272
 273/**
 274 *	i2o_block_request_alloc - Allocate an I2O block request struct
 275 *
 276 *	Allocates an I2O block request struct and initialize the list.
 277 *
 278 *	Returns a i2o_block_request pointer on success or negative error code
 279 *	on failure.
 280 */
 281static inline struct i2o_block_request *i2o_block_request_alloc(void)
 282{
 283	struct i2o_block_request *ireq;
 284
 285	ireq = mempool_alloc(i2o_blk_req_pool.pool, GFP_ATOMIC);
 286	if (!ireq)
 287		return ERR_PTR(-ENOMEM);
 288
 289	INIT_LIST_HEAD(&ireq->queue);
 290	sg_init_table(ireq->sg_table, I2O_MAX_PHYS_SEGMENTS);
 291
 292	return ireq;
 293};
 294
 295/**
 296 *	i2o_block_request_free - Frees a I2O block request
 297 *	@ireq: I2O block request which should be freed
 298 *
 299 *	Frees the allocated memory (give it back to the request mempool).
 300 */
 301static inline void i2o_block_request_free(struct i2o_block_request *ireq)
 302{
 303	mempool_free(ireq, i2o_blk_req_pool.pool);
 304};
 305
 306/**
 307 *	i2o_block_sglist_alloc - Allocate the SG list and map it
 308 *	@c: I2O controller to which the request belongs
 309 *	@ireq: I2O block request
 310 *	@mptr: message body pointer
 311 *
 312 *	Builds the SG list and map it to be accessible by the controller.
 313 *
 314 *	Returns 0 on failure or 1 on success.
 315 */
 316static inline int i2o_block_sglist_alloc(struct i2o_controller *c,
 317					 struct i2o_block_request *ireq,
 318					 u32 ** mptr)
 319{
 320	int nents;
 321	enum dma_data_direction direction;
 322
 323	ireq->dev = &c->pdev->dev;
 324	nents = blk_rq_map_sg(ireq->req->q, ireq->req, ireq->sg_table);
 325
 326	if (rq_data_dir(ireq->req) == READ)
 327		direction = PCI_DMA_FROMDEVICE;
 328	else
 329		direction = PCI_DMA_TODEVICE;
 330
 331	ireq->sg_nents = nents;
 332
 333	return i2o_dma_map_sg(c, ireq->sg_table, nents, direction, mptr);
 334};
 335
 336/**
 337 *	i2o_block_sglist_free - Frees the SG list
 338 *	@ireq: I2O block request from which the SG should be freed
 339 *
 340 *	Frees the SG list from the I2O block request.
 341 */
 342static inline void i2o_block_sglist_free(struct i2o_block_request *ireq)
 343{
 344	enum dma_data_direction direction;
 345
 346	if (rq_data_dir(ireq->req) == READ)
 347		direction = PCI_DMA_FROMDEVICE;
 348	else
 349		direction = PCI_DMA_TODEVICE;
 350
 351	dma_unmap_sg(ireq->dev, ireq->sg_table, ireq->sg_nents, direction);
 352};
 353
 354/**
 355 *	i2o_block_prep_req_fn - Allocates I2O block device specific struct
 356 *	@q: request queue for the request
 357 *	@req: the request to prepare
 358 *
 359 *	Allocate the necessary i2o_block_request struct and connect it to
 360 *	the request. This is needed that we not lose the SG list later on.
 361 *
 362 *	Returns BLKPREP_OK on success or BLKPREP_DEFER on failure.
 363 */
 364static int i2o_block_prep_req_fn(struct request_queue *q, struct request *req)
 365{
 366	struct i2o_block_device *i2o_blk_dev = q->queuedata;
 367	struct i2o_block_request *ireq;
 368
 369	if (unlikely(!i2o_blk_dev)) {
 370		osm_err("block device already removed\n");
 371		return BLKPREP_KILL;
 372	}
 373
 374	/* connect the i2o_block_request to the request */
 375	if (!req->special) {
 376		ireq = i2o_block_request_alloc();
 377		if (IS_ERR(ireq)) {
 378			osm_debug("unable to allocate i2o_block_request!\n");
 379			return BLKPREP_DEFER;
 380		}
 381
 382		ireq->i2o_blk_dev = i2o_blk_dev;
 383		req->special = ireq;
 384		ireq->req = req;
 385	}
 386	/* do not come back here */
 387	req->cmd_flags |= REQ_DONTPREP;
 388
 389	return BLKPREP_OK;
 390};
 391
 392/**
 393 *	i2o_block_delayed_request_fn - delayed request queue function
 394 *	@work: the delayed request with the queue to start
 395 *
 396 *	If the request queue is stopped for a disk, and there is no open
 397 *	request, a new event is created, which calls this function to start
 398 *	the queue after I2O_BLOCK_REQUEST_TIME. Otherwise the queue will never
 399 *	be started again.
 400 */
 401static void i2o_block_delayed_request_fn(struct work_struct *work)
 402{
 403	struct i2o_block_delayed_request *dreq =
 404		container_of(work, struct i2o_block_delayed_request,
 405			     work.work);
 406	struct request_queue *q = dreq->queue;
 407	unsigned long flags;
 408
 409	spin_lock_irqsave(q->queue_lock, flags);
 410	blk_start_queue(q);
 411	spin_unlock_irqrestore(q->queue_lock, flags);
 412	kfree(dreq);
 413};
 414
 415/**
 416 *	i2o_block_end_request - Post-processing of completed commands
 417 *	@req: request which should be completed
 418 *	@error: 0 for success, < 0 for error
 419 *	@nr_bytes: number of bytes to complete
 420 *
 421 *	Mark the request as complete. The lock must not be held when entering.
 422 *
 423 */
 424static void i2o_block_end_request(struct request *req, int error,
 425				  int nr_bytes)
 426{
 427	struct i2o_block_request *ireq = req->special;
 428	struct i2o_block_device *dev = ireq->i2o_blk_dev;
 429	struct request_queue *q = req->q;
 430	unsigned long flags;
 431
 432	if (blk_end_request(req, error, nr_bytes))
 433		if (error)
 434			blk_end_request_all(req, -EIO);
 435
 436	spin_lock_irqsave(q->queue_lock, flags);
 437
 438	if (likely(dev)) {
 439		dev->open_queue_depth--;
 440		list_del(&ireq->queue);
 441	}
 442
 443	blk_start_queue(q);
 444
 445	spin_unlock_irqrestore(q->queue_lock, flags);
 446
 447	i2o_block_sglist_free(ireq);
 448	i2o_block_request_free(ireq);
 449};
 450
 451/**
 452 *	i2o_block_reply - Block OSM reply handler.
 453 *	@c: I2O controller from which the message arrives
 454 *	@m: message id of reply
 455 *	@msg: the actual I2O message reply
 456 *
 457 *	This function gets all the message replies.
 458 *
 459 */
 460static int i2o_block_reply(struct i2o_controller *c, u32 m,
 461			   struct i2o_message *msg)
 462{
 463	struct request *req;
 464	int error = 0;
 465
 466	req = i2o_cntxt_list_get(c, le32_to_cpu(msg->u.s.tcntxt));
 467	if (unlikely(!req)) {
 468		osm_err("NULL reply received!\n");
 469		return -1;
 470	}
 471
 472	/*
 473	 *      Lets see what is cooking. We stuffed the
 474	 *      request in the context.
 475	 */
 476
 477	if ((le32_to_cpu(msg->body[0]) >> 24) != 0) {
 478		u32 status = le32_to_cpu(msg->body[0]);
 479		/*
 480		 *      Device not ready means two things. One is that the
 481		 *      the thing went offline (but not a removal media)
 482		 *
 483		 *      The second is that you have a SuperTrak 100 and the
 484		 *      firmware got constipated. Unlike standard i2o card
 485		 *      setups the supertrak returns an error rather than
 486		 *      blocking for the timeout in these cases.
 487		 *
 488		 *      Don't stick a supertrak100 into cache aggressive modes
 489		 */
 490
 491		osm_err("TID %03x error status: 0x%02x, detailed status: "
 492			"0x%04x\n", (le32_to_cpu(msg->u.head[1]) >> 12 & 0xfff),
 493			status >> 24, status & 0xffff);
 494
 495		req->errors++;
 496
 497		error = -EIO;
 498	}
 499
 500	i2o_block_end_request(req, error, le32_to_cpu(msg->body[1]));
 501
 502	return 1;
 503};
 504
 505static void i2o_block_event(struct work_struct *work)
 506{
 507	struct i2o_event *evt = container_of(work, struct i2o_event, work);
 508	osm_debug("event received\n");
 509	kfree(evt);
 510};
 511
 512/*
 513 *	SCSI-CAM for ioctl geometry mapping
 514 *	Duplicated with SCSI - this should be moved into somewhere common
 515 *	perhaps genhd ?
 516 *
 517 * LBA -> CHS mapping table taken from:
 518 *
 519 * "Incorporating the I2O Architecture into BIOS for Intel Architecture
 520 *  Platforms"
 521 *
 522 * This is an I2O document that is only available to I2O members,
 523 * not developers.
 524 *
 525 * From my understanding, this is how all the I2O cards do this
 526 *
 527 * Disk Size      | Sectors | Heads | Cylinders
 528 * ---------------+---------+-------+-------------------
 529 * 1 < X <= 528M  | 63      | 16    | X/(63 * 16 * 512)
 530 * 528M < X <= 1G | 63      | 32    | X/(63 * 32 * 512)
 531 * 1 < X <528M    | 63      | 16    | X/(63 * 16 * 512)
 532 * 1 < X <528M    | 63      | 16    | X/(63 * 16 * 512)
 533 *
 534 */
 535#define	BLOCK_SIZE_528M		1081344
 536#define	BLOCK_SIZE_1G		2097152
 537#define	BLOCK_SIZE_21G		4403200
 538#define	BLOCK_SIZE_42G		8806400
 539#define	BLOCK_SIZE_84G		17612800
 540
 541static void i2o_block_biosparam(unsigned long capacity, unsigned short *cyls,
 542				unsigned char *hds, unsigned char *secs)
 543{
 544	unsigned long heads, sectors, cylinders;
 545
 546	sectors = 63L;		/* Maximize sectors per track */
 547	if (capacity <= BLOCK_SIZE_528M)
 548		heads = 16;
 549	else if (capacity <= BLOCK_SIZE_1G)
 550		heads = 32;
 551	else if (capacity <= BLOCK_SIZE_21G)
 552		heads = 64;
 553	else if (capacity <= BLOCK_SIZE_42G)
 554		heads = 128;
 555	else
 556		heads = 255;
 557
 558	cylinders = (unsigned long)capacity / (heads * sectors);
 559
 560	*cyls = (unsigned short)cylinders;	/* Stuff return values */
 561	*secs = (unsigned char)sectors;
 562	*hds = (unsigned char)heads;
 563}
 564
 565/**
 566 *	i2o_block_open - Open the block device
 567 *	@bdev: block device being opened
 568 *	@mode: file open mode
 569 *
 570 *	Power up the device, mount and lock the media. This function is called,
 571 *	if the block device is opened for access.
 572 *
 573 *	Returns 0 on success or negative error code on failure.
 574 */
 575static int i2o_block_open(struct block_device *bdev, fmode_t mode)
 576{
 577	struct i2o_block_device *dev = bdev->bd_disk->private_data;
 578
 579	if (!dev->i2o_dev)
 580		return -ENODEV;
 581
 582	mutex_lock(&i2o_block_mutex);
 583	if (dev->power > 0x1f)
 584		i2o_block_device_power(dev, 0x02);
 585
 586	i2o_block_device_mount(dev->i2o_dev, -1);
 587
 588	i2o_block_device_lock(dev->i2o_dev, -1);
 589
 590	osm_debug("Ready.\n");
 591	mutex_unlock(&i2o_block_mutex);
 592
 593	return 0;
 594};
 595
 596/**
 597 *	i2o_block_release - Release the I2O block device
 598 *	@disk: gendisk device being released
 599 *	@mode: file open mode
 600 *
 601 *	Unlock and unmount the media, and power down the device. Gets called if
 602 *	the block device is closed.
 603 */
 604static void i2o_block_release(struct gendisk *disk, fmode_t mode)
 605{
 606	struct i2o_block_device *dev = disk->private_data;
 607	u8 operation;
 608
 609	/*
 610	 * This is to deal with the case of an application
 611	 * opening a device and then the device disappears while
 612	 * it's in use, and then the application tries to release
 613	 * it.  ex: Unmounting a deleted RAID volume at reboot.
 614	 * If we send messages, it will just cause FAILs since
 615	 * the TID no longer exists.
 616	 */
 617	if (!dev->i2o_dev)
 618		return;
 619
 620	mutex_lock(&i2o_block_mutex);
 621	i2o_block_device_flush(dev->i2o_dev);
 622
 623	i2o_block_device_unlock(dev->i2o_dev, -1);
 624
 625	if (dev->flags & (1 << 3 | 1 << 4))	/* Removable */
 626		operation = 0x21;
 627	else
 628		operation = 0x24;
 629
 630	i2o_block_device_power(dev, operation);
 631	mutex_unlock(&i2o_block_mutex);
 632}
 633
 634static int i2o_block_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 635{
 636	i2o_block_biosparam(get_capacity(bdev->bd_disk),
 637			    &geo->cylinders, &geo->heads, &geo->sectors);
 638	return 0;
 639}
 640
 641/**
 642 *	i2o_block_ioctl - Issue device specific ioctl calls.
 643 *	@bdev: block device being opened
 644 *	@mode: file open mode
 645 *	@cmd: ioctl command
 646 *	@arg: arg
 647 *
 648 *	Handles ioctl request for the block device.
 649 *
 650 *	Return 0 on success or negative error on failure.
 651 */
 652static int i2o_block_ioctl(struct block_device *bdev, fmode_t mode,
 653			   unsigned int cmd, unsigned long arg)
 654{
 655	struct gendisk *disk = bdev->bd_disk;
 656	struct i2o_block_device *dev = disk->private_data;
 657	int ret = -ENOTTY;
 658
 659	/* Anyone capable of this syscall can do *real bad* things */
 660
 661	if (!capable(CAP_SYS_ADMIN))
 662		return -EPERM;
 663
 664	mutex_lock(&i2o_block_mutex);
 665	switch (cmd) {
 666	case BLKI2OGRSTRAT:
 667		ret = put_user(dev->rcache, (int __user *)arg);
 668		break;
 669	case BLKI2OGWSTRAT:
 670		ret = put_user(dev->wcache, (int __user *)arg);
 671		break;
 672	case BLKI2OSRSTRAT:
 673		ret = -EINVAL;
 674		if (arg < 0 || arg > CACHE_SMARTFETCH)
 675			break;
 676		dev->rcache = arg;
 677		ret = 0;
 678		break;
 679	case BLKI2OSWSTRAT:
 680		ret = -EINVAL;
 681		if (arg != 0
 682		    && (arg < CACHE_WRITETHROUGH || arg > CACHE_SMARTBACK))
 683			break;
 684		dev->wcache = arg;
 685		ret = 0;
 686		break;
 687	}
 688	mutex_unlock(&i2o_block_mutex);
 689
 690	return ret;
 691};
 692
 693/**
 694 *	i2o_block_check_events - Have we seen a media change?
 695 *	@disk: gendisk which should be verified
 696 *	@clearing: events being cleared
 697 *
 698 *	Verifies if the media has changed.
 699 *
 700 *	Returns 1 if the media was changed or 0 otherwise.
 701 */
 702static unsigned int i2o_block_check_events(struct gendisk *disk,
 703					   unsigned int clearing)
 704{
 705	struct i2o_block_device *p = disk->private_data;
 706
 707	if (p->media_change_flag) {
 708		p->media_change_flag = 0;
 709		return DISK_EVENT_MEDIA_CHANGE;
 710	}
 711	return 0;
 712}
 713
 714/**
 715 *	i2o_block_transfer - Transfer a request to/from the I2O controller
 716 *	@req: the request which should be transferred
 717 *
 718 *	This function converts the request into a I2O message. The necessary
 719 *	DMA buffers are allocated and after everything is setup post the message
 720 *	to the I2O controller. No cleanup is done by this function. It is done
 721 *	on the interrupt side when the reply arrives.
 722 *
 723 *	Return 0 on success or negative error code on failure.
 724 */
 725static int i2o_block_transfer(struct request *req)
 726{
 727	struct i2o_block_device *dev = req->rq_disk->private_data;
 728	struct i2o_controller *c;
 729	u32 tid;
 730	struct i2o_message *msg;
 731	u32 *mptr;
 732	struct i2o_block_request *ireq = req->special;
 733	u32 tcntxt;
 734	u32 sgl_offset = SGL_OFFSET_8;
 735	u32 ctl_flags = 0x00000000;
 736	int rc;
 737	u32 cmd;
 738
 739	if (unlikely(!dev->i2o_dev)) {
 740		osm_err("transfer to removed drive\n");
 741		rc = -ENODEV;
 742		goto exit;
 743	}
 744
 745	tid = dev->i2o_dev->lct_data.tid;
 746	c = dev->i2o_dev->iop;
 747
 748	msg = i2o_msg_get(c);
 749	if (IS_ERR(msg)) {
 750		rc = PTR_ERR(msg);
 751		goto exit;
 752	}
 753
 754	tcntxt = i2o_cntxt_list_add(c, req);
 755	if (!tcntxt) {
 756		rc = -ENOMEM;
 757		goto nop_msg;
 758	}
 759
 760	msg->u.s.icntxt = cpu_to_le32(i2o_block_driver.context);
 761	msg->u.s.tcntxt = cpu_to_le32(tcntxt);
 762
 763	mptr = &msg->body[0];
 764
 765	if (rq_data_dir(req) == READ) {
 766		cmd = I2O_CMD_BLOCK_READ << 24;
 767
 768		switch (dev->rcache) {
 769		case CACHE_PREFETCH:
 770			ctl_flags = 0x201F0008;
 771			break;
 772
 773		case CACHE_SMARTFETCH:
 774			if (blk_rq_sectors(req) > 16)
 775				ctl_flags = 0x201F0008;
 776			else
 777				ctl_flags = 0x001F0000;
 778			break;
 779
 780		default:
 781			break;
 782		}
 783	} else {
 784		cmd = I2O_CMD_BLOCK_WRITE << 24;
 785
 786		switch (dev->wcache) {
 787		case CACHE_WRITETHROUGH:
 788			ctl_flags = 0x001F0008;
 789			break;
 790		case CACHE_WRITEBACK:
 791			ctl_flags = 0x001F0010;
 792			break;
 793		case CACHE_SMARTBACK:
 794			if (blk_rq_sectors(req) > 16)
 795				ctl_flags = 0x001F0004;
 796			else
 797				ctl_flags = 0x001F0010;
 798			break;
 799		case CACHE_SMARTTHROUGH:
 800			if (blk_rq_sectors(req) > 16)
 801				ctl_flags = 0x001F0004;
 802			else
 803				ctl_flags = 0x001F0010;
 804		default:
 805			break;
 806		}
 807	}
 808
 809#ifdef CONFIG_I2O_EXT_ADAPTEC
 810	if (c->adaptec) {
 811		u8 cmd[10];
 812		u32 scsi_flags;
 813		u16 hwsec;
 814
 815		hwsec = queue_logical_block_size(req->q) >> KERNEL_SECTOR_SHIFT;
 816		memset(cmd, 0, 10);
 817
 818		sgl_offset = SGL_OFFSET_12;
 819
 820		msg->u.head[1] =
 821		    cpu_to_le32(I2O_CMD_PRIVATE << 24 | HOST_TID << 12 | tid);
 822
 823		*mptr++ = cpu_to_le32(I2O_VENDOR_DPT << 16 | I2O_CMD_SCSI_EXEC);
 824		*mptr++ = cpu_to_le32(tid);
 825
 826		/*
 827		 * ENABLE_DISCONNECT
 828		 * SIMPLE_TAG
 829		 * RETURN_SENSE_DATA_IN_REPLY_MESSAGE_FRAME
 830		 */
 831		if (rq_data_dir(req) == READ) {
 832			cmd[0] = READ_10;
 833			scsi_flags = 0x60a0000a;
 834		} else {
 835			cmd[0] = WRITE_10;
 836			scsi_flags = 0xa0a0000a;
 837		}
 838
 839		*mptr++ = cpu_to_le32(scsi_flags);
 840
 841		*((u32 *) & cmd[2]) = cpu_to_be32(blk_rq_pos(req) * hwsec);
 842		*((u16 *) & cmd[7]) = cpu_to_be16(blk_rq_sectors(req) * hwsec);
 843
 844		memcpy(mptr, cmd, 10);
 845		mptr += 4;
 846		*mptr++ = cpu_to_le32(blk_rq_bytes(req));
 847	} else
 848#endif
 849	{
 850		msg->u.head[1] = cpu_to_le32(cmd | HOST_TID << 12 | tid);
 851		*mptr++ = cpu_to_le32(ctl_flags);
 852		*mptr++ = cpu_to_le32(blk_rq_bytes(req));
 853		*mptr++ =
 854		    cpu_to_le32((u32) (blk_rq_pos(req) << KERNEL_SECTOR_SHIFT));
 855		*mptr++ =
 856		    cpu_to_le32(blk_rq_pos(req) >> (32 - KERNEL_SECTOR_SHIFT));
 857	}
 858
 859	if (!i2o_block_sglist_alloc(c, ireq, &mptr)) {
 860		rc = -ENOMEM;
 861		goto context_remove;
 862	}
 863
 864	msg->u.head[0] =
 865	    cpu_to_le32(I2O_MESSAGE_SIZE(mptr - &msg->u.head[0]) | sgl_offset);
 866
 867	list_add_tail(&ireq->queue, &dev->open_queue);
 868	dev->open_queue_depth++;
 869
 870	i2o_msg_post(c, msg);
 871
 872	return 0;
 873
 874      context_remove:
 875	i2o_cntxt_list_remove(c, req);
 876
 877      nop_msg:
 878	i2o_msg_nop(c, msg);
 879
 880      exit:
 881	return rc;
 882};
 883
 884/**
 885 *	i2o_block_request_fn - request queue handling function
 886 *	@q: request queue from which the request could be fetched
 887 *
 888 *	Takes the next request from the queue, transfers it and if no error
 889 *	occurs dequeue it from the queue. On arrival of the reply the message
 890 *	will be processed further. If an error occurs requeue the request.
 891 */
 892static void i2o_block_request_fn(struct request_queue *q)
 893{
 894	struct request *req;
 895
 896	while ((req = blk_peek_request(q)) != NULL) {
 897		if (req->cmd_type == REQ_TYPE_FS) {
 898			struct i2o_block_delayed_request *dreq;
 899			struct i2o_block_request *ireq = req->special;
 900			unsigned int queue_depth;
 901
 902			queue_depth = ireq->i2o_blk_dev->open_queue_depth;
 903
 904			if (queue_depth < I2O_BLOCK_MAX_OPEN_REQUESTS) {
 905				if (!i2o_block_transfer(req)) {
 906					blk_start_request(req);
 907					continue;
 908				} else
 909					osm_info("transfer error\n");
 910			}
 911
 912			if (queue_depth)
 913				break;
 914
 915			/* stop the queue and retry later */
 916			dreq = kmalloc(sizeof(*dreq), GFP_ATOMIC);
 917			if (!dreq)
 918				continue;
 919
 920			dreq->queue = q;
 921			INIT_DELAYED_WORK(&dreq->work,
 922					  i2o_block_delayed_request_fn);
 923
 924			if (!queue_delayed_work(i2o_block_driver.event_queue,
 925						&dreq->work,
 926						I2O_BLOCK_RETRY_TIME))
 927				kfree(dreq);
 928			else {
 929				blk_stop_queue(q);
 930				break;
 931			}
 932		} else {
 933			blk_start_request(req);
 934			__blk_end_request_all(req, -EIO);
 935		}
 936	}
 937};
 938
 939/* I2O Block device operations definition */
 940static const struct block_device_operations i2o_block_fops = {
 941	.owner = THIS_MODULE,
 942	.open = i2o_block_open,
 943	.release = i2o_block_release,
 944	.ioctl = i2o_block_ioctl,
 945	.compat_ioctl = i2o_block_ioctl,
 946	.getgeo = i2o_block_getgeo,
 947	.check_events = i2o_block_check_events,
 948};
 949
 950/**
 951 *	i2o_block_device_alloc - Allocate memory for a I2O Block device
 952 *
 953 *	Allocate memory for the i2o_block_device struct, gendisk and request
 954 *	queue and initialize them as far as no additional information is needed.
 955 *
 956 *	Returns a pointer to the allocated I2O Block device on success or a
 957 *	negative error code on failure.
 958 */
 959static struct i2o_block_device *i2o_block_device_alloc(void)
 960{
 961	struct i2o_block_device *dev;
 962	struct gendisk *gd;
 963	struct request_queue *queue;
 964	int rc;
 965
 966	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 967	if (!dev) {
 968		osm_err("Insufficient memory to allocate I2O Block disk.\n");
 969		rc = -ENOMEM;
 970		goto exit;
 971	}
 972
 973	INIT_LIST_HEAD(&dev->open_queue);
 974	spin_lock_init(&dev->lock);
 975	dev->rcache = CACHE_PREFETCH;
 976	dev->wcache = CACHE_WRITEBACK;
 977
 978	/* allocate a gendisk with 16 partitions */
 979	gd = alloc_disk(16);
 980	if (!gd) {
 981		osm_err("Insufficient memory to allocate gendisk.\n");
 982		rc = -ENOMEM;
 983		goto cleanup_dev;
 984	}
 985
 986	/* initialize the request queue */
 987	queue = blk_init_queue(i2o_block_request_fn, &dev->lock);
 988	if (!queue) {
 989		osm_err("Insufficient memory to allocate request queue.\n");
 990		rc = -ENOMEM;
 991		goto cleanup_queue;
 992	}
 993
 994	blk_queue_prep_rq(queue, i2o_block_prep_req_fn);
 995
 996	gd->major = I2O_MAJOR;
 997	gd->queue = queue;
 998	gd->fops = &i2o_block_fops;
 999	gd->private_data = dev;
1000
1001	dev->gd = gd;
1002
1003	return dev;
1004
1005      cleanup_queue:
1006	put_disk(gd);
1007
1008      cleanup_dev:
1009	kfree(dev);
1010
1011      exit:
1012	return ERR_PTR(rc);
1013};
1014
1015/**
1016 *	i2o_block_probe - verify if dev is a I2O Block device and install it
1017 *	@dev: device to verify if it is a I2O Block device
1018 *
1019 *	We only verify if the user_tid of the device is 0xfff and then install
1020 *	the device. Otherwise it is used by some other device (e. g. RAID).
1021 *
1022 *	Returns 0 on success or negative error code on failure.
1023 */
1024static int i2o_block_probe(struct device *dev)
1025{
1026	struct i2o_device *i2o_dev = to_i2o_device(dev);
1027	struct i2o_controller *c = i2o_dev->iop;
1028	struct i2o_block_device *i2o_blk_dev;
1029	struct gendisk *gd;
1030	struct request_queue *queue;
1031	static int unit = 0;
1032	int rc;
1033	u64 size;
1034	u32 blocksize;
1035	u16 body_size = 4;
1036	u16 power;
1037	unsigned short max_sectors;
1038
1039#ifdef CONFIG_I2O_EXT_ADAPTEC
1040	if (c->adaptec)
1041		body_size = 8;
1042#endif
1043
1044	if (c->limit_sectors)
1045		max_sectors = I2O_MAX_SECTORS_LIMITED;
1046	else
1047		max_sectors = I2O_MAX_SECTORS;
1048
1049	/* skip devices which are used by IOP */
1050	if (i2o_dev->lct_data.user_tid != 0xfff) {
1051		osm_debug("skipping used device %03x\n", i2o_dev->lct_data.tid);
1052		return -ENODEV;
1053	}
1054
1055	if (i2o_device_claim(i2o_dev)) {
1056		osm_warn("Unable to claim device. Installation aborted\n");
1057		rc = -EFAULT;
1058		goto exit;
1059	}
1060
1061	i2o_blk_dev = i2o_block_device_alloc();
1062	if (IS_ERR(i2o_blk_dev)) {
1063		osm_err("could not alloc a new I2O block device");
1064		rc = PTR_ERR(i2o_blk_dev);
1065		goto claim_release;
1066	}
1067
1068	i2o_blk_dev->i2o_dev = i2o_dev;
1069	dev_set_drvdata(dev, i2o_blk_dev);
1070
1071	/* setup gendisk */
1072	gd = i2o_blk_dev->gd;
1073	gd->first_minor = unit << 4;
1074	sprintf(gd->disk_name, "i2o/hd%c", 'a' + unit);
1075	gd->driverfs_dev = &i2o_dev->device;
1076
1077	/* setup request queue */
1078	queue = gd->queue;
1079	queue->queuedata = i2o_blk_dev;
1080
1081	blk_queue_max_hw_sectors(queue, max_sectors);
1082	blk_queue_max_segments(queue, i2o_sg_tablesize(c, body_size));
1083
1084	osm_debug("max sectors = %d\n", queue->max_sectors);
1085	osm_debug("phys segments = %d\n", queue->max_phys_segments);
1086	osm_debug("max hw segments = %d\n", queue->max_hw_segments);
1087
1088	/*
1089	 *      Ask for the current media data. If that isn't supported
1090	 *      then we ask for the device capacity data
1091	 */
1092	if (!i2o_parm_field_get(i2o_dev, 0x0004, 1, &blocksize, 4) ||
1093	    !i2o_parm_field_get(i2o_dev, 0x0000, 3, &blocksize, 4)) {
1094		blk_queue_logical_block_size(queue, le32_to_cpu(blocksize));
1095	} else
1096		osm_warn("unable to get blocksize of %s\n", gd->disk_name);
1097
1098	if (!i2o_parm_field_get(i2o_dev, 0x0004, 0, &size, 8) ||
1099	    !i2o_parm_field_get(i2o_dev, 0x0000, 4, &size, 8)) {
1100		set_capacity(gd, le64_to_cpu(size) >> KERNEL_SECTOR_SHIFT);
1101	} else
1102		osm_warn("could not get size of %s\n", gd->disk_name);
1103
1104	if (!i2o_parm_field_get(i2o_dev, 0x0000, 2, &power, 2))
1105		i2o_blk_dev->power = power;
1106
1107	i2o_event_register(i2o_dev, &i2o_block_driver, 0, 0xffffffff);
1108
1109	add_disk(gd);
1110
1111	unit++;
1112
1113	osm_info("device added (TID: %03x): %s\n", i2o_dev->lct_data.tid,
1114		 i2o_blk_dev->gd->disk_name);
1115
1116	return 0;
1117
1118      claim_release:
1119	i2o_device_claim_release(i2o_dev);
1120
1121      exit:
1122	return rc;
1123};
1124
1125/* Block OSM driver struct */
1126static struct i2o_driver i2o_block_driver = {
1127	.name = OSM_NAME,
1128	.event = i2o_block_event,
1129	.reply = i2o_block_reply,
1130	.classes = i2o_block_class_id,
1131	.driver = {
1132		   .probe = i2o_block_probe,
1133		   .remove = i2o_block_remove,
1134		   },
1135};
1136
1137/**
1138 *	i2o_block_init - Block OSM initialization function
1139 *
1140 *	Allocate the slab and mempool for request structs, registers i2o_block
1141 *	block device and finally register the Block OSM in the I2O core.
1142 *
1143 *	Returns 0 on success or negative error code on failure.
1144 */
1145static int __init i2o_block_init(void)
1146{
1147	int rc;
1148	int size;
1149
1150	printk(KERN_INFO OSM_DESCRIPTION " v" OSM_VERSION "\n");
1151
1152	/* Allocate request mempool and slab */
1153	size = sizeof(struct i2o_block_request);
1154	i2o_blk_req_pool.slab = kmem_cache_create("i2o_block_req", size, 0,
1155						  SLAB_HWCACHE_ALIGN, NULL);
1156	if (!i2o_blk_req_pool.slab) {
1157		osm_err("can't init request slab\n");
1158		rc = -ENOMEM;
1159		goto exit;
1160	}
1161
1162	i2o_blk_req_pool.pool =
1163		mempool_create_slab_pool(I2O_BLOCK_REQ_MEMPOOL_SIZE,
1164					 i2o_blk_req_pool.slab);
1165	if (!i2o_blk_req_pool.pool) {
1166		osm_err("can't init request mempool\n");
1167		rc = -ENOMEM;
1168		goto free_slab;
1169	}
1170
1171	/* Register the block device interfaces */
1172	rc = register_blkdev(I2O_MAJOR, "i2o_block");
1173	if (rc) {
1174		osm_err("unable to register block device\n");
1175		goto free_mempool;
1176	}
1177#ifdef MODULE
1178	osm_info("registered device at major %d\n", I2O_MAJOR);
1179#endif
1180
1181	/* Register Block OSM into I2O core */
1182	rc = i2o_driver_register(&i2o_block_driver);
1183	if (rc) {
1184		osm_err("Could not register Block driver\n");
1185		goto unregister_blkdev;
1186	}
1187
1188	return 0;
1189
1190      unregister_blkdev:
1191	unregister_blkdev(I2O_MAJOR, "i2o_block");
1192
1193      free_mempool:
1194	mempool_destroy(i2o_blk_req_pool.pool);
1195
1196      free_slab:
1197	kmem_cache_destroy(i2o_blk_req_pool.slab);
1198
1199      exit:
1200	return rc;
1201};
1202
1203/**
1204 *	i2o_block_exit - Block OSM exit function
1205 *
1206 *	Unregisters Block OSM from I2O core, unregisters i2o_block block device
1207 *	and frees the mempool and slab.
1208 */
1209static void __exit i2o_block_exit(void)
1210{
1211	/* Unregister I2O Block OSM from I2O core */
1212	i2o_driver_unregister(&i2o_block_driver);
1213
1214	/* Unregister block device */
1215	unregister_blkdev(I2O_MAJOR, "i2o_block");
1216
1217	/* Free request mempool and slab */
1218	mempool_destroy(i2o_blk_req_pool.pool);
1219	kmem_cache_destroy(i2o_blk_req_pool.slab);
1220};
1221
1222MODULE_AUTHOR("Red Hat");
1223MODULE_LICENSE("GPL");
1224MODULE_DESCRIPTION(OSM_DESCRIPTION);
1225MODULE_VERSION(OSM_VERSION);
1226
1227module_init(i2o_block_init);
1228module_exit(i2o_block_exit);