Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/init.h>
25#include <linux/kernel_stat.h>
26#include <linux/module.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33/**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38static struct cpufreq_driver *cpufreq_driver;
39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41static DEFINE_RWLOCK(cpufreq_driver_lock);
42DEFINE_MUTEX(cpufreq_governor_lock);
43static LIST_HEAD(cpufreq_policy_list);
44
45/* This one keeps track of the previously set governor of a removed CPU */
46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48/* Flag to suspend/resume CPUFreq governors */
49static bool cpufreq_suspended;
50
51static inline bool has_target(void)
52{
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54}
55
56/*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60static DECLARE_RWSEM(cpufreq_rwsem);
61
62/* internal prototypes */
63static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65static unsigned int __cpufreq_get(unsigned int cpu);
66static void handle_update(struct work_struct *work);
67
68/**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78static bool init_cpufreq_transition_notifier_list_called;
79static int __init init_cpufreq_transition_notifier_list(void)
80{
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84}
85pure_initcall(init_cpufreq_transition_notifier_list);
86
87static int off __read_mostly;
88static int cpufreq_disabled(void)
89{
90 return off;
91}
92void disable_cpufreq(void)
93{
94 off = 1;
95}
96static LIST_HEAD(cpufreq_governor_list);
97static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99bool have_governor_per_policy(void)
100{
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102}
103EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106{
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111}
112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115{
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134}
135
136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137{
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146}
147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149/*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159{
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177}
178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180unsigned int cpufreq_generic_get(unsigned int cpu)
181{
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191}
192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194/* Only for cpufreq core internal use */
195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196{
197 return per_cpu(cpufreq_cpu_data, cpu);
198}
199
200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201{
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227}
228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230void cpufreq_cpu_put(struct cpufreq_policy *policy)
231{
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237}
238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240/*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244/**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252#ifndef CONFIG_SMP
253static unsigned long l_p_j_ref;
254static unsigned int l_p_j_ref_freq;
255
256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257{
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273}
274#else
275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276{
277 return;
278}
279#endif
280
281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283{
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324}
325
326/**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336{
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339}
340
341/* Do post notifications when there are chances that transition has failed */
342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344{
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352}
353
354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356{
357wait:
358 wait_event(policy->transition_wait, !policy->transition_ongoing);
359
360 spin_lock(&policy->transition_lock);
361
362 if (unlikely(policy->transition_ongoing)) {
363 spin_unlock(&policy->transition_lock);
364 goto wait;
365 }
366
367 policy->transition_ongoing = true;
368
369 spin_unlock(&policy->transition_lock);
370
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372}
373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374
375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 struct cpufreq_freqs *freqs, int transition_failed)
377{
378 if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 return;
380
381 cpufreq_notify_post_transition(policy, freqs, transition_failed);
382
383 policy->transition_ongoing = false;
384
385 wake_up(&policy->transition_wait);
386}
387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388
389
390/*********************************************************************
391 * SYSFS INTERFACE *
392 *********************************************************************/
393static ssize_t show_boost(struct kobject *kobj,
394 struct attribute *attr, char *buf)
395{
396 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397}
398
399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 const char *buf, size_t count)
401{
402 int ret, enable;
403
404 ret = sscanf(buf, "%d", &enable);
405 if (ret != 1 || enable < 0 || enable > 1)
406 return -EINVAL;
407
408 if (cpufreq_boost_trigger_state(enable)) {
409 pr_err("%s: Cannot %s BOOST!\n",
410 __func__, enable ? "enable" : "disable");
411 return -EINVAL;
412 }
413
414 pr_debug("%s: cpufreq BOOST %s\n",
415 __func__, enable ? "enabled" : "disabled");
416
417 return count;
418}
419define_one_global_rw(boost);
420
421static struct cpufreq_governor *__find_governor(const char *str_governor)
422{
423 struct cpufreq_governor *t;
424
425 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 return t;
428
429 return NULL;
430}
431
432/**
433 * cpufreq_parse_governor - parse a governor string
434 */
435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 struct cpufreq_governor **governor)
437{
438 int err = -EINVAL;
439
440 if (!cpufreq_driver)
441 goto out;
442
443 if (cpufreq_driver->setpolicy) {
444 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 *policy = CPUFREQ_POLICY_PERFORMANCE;
446 err = 0;
447 } else if (!strnicmp(str_governor, "powersave",
448 CPUFREQ_NAME_LEN)) {
449 *policy = CPUFREQ_POLICY_POWERSAVE;
450 err = 0;
451 }
452 } else if (has_target()) {
453 struct cpufreq_governor *t;
454
455 mutex_lock(&cpufreq_governor_mutex);
456
457 t = __find_governor(str_governor);
458
459 if (t == NULL) {
460 int ret;
461
462 mutex_unlock(&cpufreq_governor_mutex);
463 ret = request_module("cpufreq_%s", str_governor);
464 mutex_lock(&cpufreq_governor_mutex);
465
466 if (ret == 0)
467 t = __find_governor(str_governor);
468 }
469
470 if (t != NULL) {
471 *governor = t;
472 err = 0;
473 }
474
475 mutex_unlock(&cpufreq_governor_mutex);
476 }
477out:
478 return err;
479}
480
481/**
482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
483 * print out cpufreq information
484 *
485 * Write out information from cpufreq_driver->policy[cpu]; object must be
486 * "unsigned int".
487 */
488
489#define show_one(file_name, object) \
490static ssize_t show_##file_name \
491(struct cpufreq_policy *policy, char *buf) \
492{ \
493 return sprintf(buf, "%u\n", policy->object); \
494}
495
496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499show_one(scaling_min_freq, min);
500show_one(scaling_max_freq, max);
501show_one(scaling_cur_freq, cur);
502
503static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 struct cpufreq_policy *new_policy);
505
506/**
507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508 */
509#define store_one(file_name, object) \
510static ssize_t store_##file_name \
511(struct cpufreq_policy *policy, const char *buf, size_t count) \
512{ \
513 int ret; \
514 struct cpufreq_policy new_policy; \
515 \
516 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
517 if (ret) \
518 return -EINVAL; \
519 \
520 ret = sscanf(buf, "%u", &new_policy.object); \
521 if (ret != 1) \
522 return -EINVAL; \
523 \
524 ret = cpufreq_set_policy(policy, &new_policy); \
525 policy->user_policy.object = policy->object; \
526 \
527 return ret ? ret : count; \
528}
529
530store_one(scaling_min_freq, min);
531store_one(scaling_max_freq, max);
532
533/**
534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535 */
536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 char *buf)
538{
539 unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 if (!cur_freq)
541 return sprintf(buf, "<unknown>");
542 return sprintf(buf, "%u\n", cur_freq);
543}
544
545/**
546 * show_scaling_governor - show the current policy for the specified CPU
547 */
548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549{
550 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 return sprintf(buf, "powersave\n");
552 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 return sprintf(buf, "performance\n");
554 else if (policy->governor)
555 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 policy->governor->name);
557 return -EINVAL;
558}
559
560/**
561 * store_scaling_governor - store policy for the specified CPU
562 */
563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 const char *buf, size_t count)
565{
566 int ret;
567 char str_governor[16];
568 struct cpufreq_policy new_policy;
569
570 ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 if (ret)
572 return ret;
573
574 ret = sscanf(buf, "%15s", str_governor);
575 if (ret != 1)
576 return -EINVAL;
577
578 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 &new_policy.governor))
580 return -EINVAL;
581
582 ret = cpufreq_set_policy(policy, &new_policy);
583
584 policy->user_policy.policy = policy->policy;
585 policy->user_policy.governor = policy->governor;
586
587 if (ret)
588 return ret;
589 else
590 return count;
591}
592
593/**
594 * show_scaling_driver - show the cpufreq driver currently loaded
595 */
596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597{
598 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599}
600
601/**
602 * show_scaling_available_governors - show the available CPUfreq governors
603 */
604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 char *buf)
606{
607 ssize_t i = 0;
608 struct cpufreq_governor *t;
609
610 if (!has_target()) {
611 i += sprintf(buf, "performance powersave");
612 goto out;
613 }
614
615 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 - (CPUFREQ_NAME_LEN + 2)))
618 goto out;
619 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 }
621out:
622 i += sprintf(&buf[i], "\n");
623 return i;
624}
625
626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627{
628 ssize_t i = 0;
629 unsigned int cpu;
630
631 for_each_cpu(cpu, mask) {
632 if (i)
633 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 if (i >= (PAGE_SIZE - 5))
636 break;
637 }
638 i += sprintf(&buf[i], "\n");
639 return i;
640}
641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642
643/**
644 * show_related_cpus - show the CPUs affected by each transition even if
645 * hw coordination is in use
646 */
647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648{
649 return cpufreq_show_cpus(policy->related_cpus, buf);
650}
651
652/**
653 * show_affected_cpus - show the CPUs affected by each transition
654 */
655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656{
657 return cpufreq_show_cpus(policy->cpus, buf);
658}
659
660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 const char *buf, size_t count)
662{
663 unsigned int freq = 0;
664 unsigned int ret;
665
666 if (!policy->governor || !policy->governor->store_setspeed)
667 return -EINVAL;
668
669 ret = sscanf(buf, "%u", &freq);
670 if (ret != 1)
671 return -EINVAL;
672
673 policy->governor->store_setspeed(policy, freq);
674
675 return count;
676}
677
678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679{
680 if (!policy->governor || !policy->governor->show_setspeed)
681 return sprintf(buf, "<unsupported>\n");
682
683 return policy->governor->show_setspeed(policy, buf);
684}
685
686/**
687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
688 */
689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690{
691 unsigned int limit;
692 int ret;
693 if (cpufreq_driver->bios_limit) {
694 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 if (!ret)
696 return sprintf(buf, "%u\n", limit);
697 }
698 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699}
700
701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702cpufreq_freq_attr_ro(cpuinfo_min_freq);
703cpufreq_freq_attr_ro(cpuinfo_max_freq);
704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705cpufreq_freq_attr_ro(scaling_available_governors);
706cpufreq_freq_attr_ro(scaling_driver);
707cpufreq_freq_attr_ro(scaling_cur_freq);
708cpufreq_freq_attr_ro(bios_limit);
709cpufreq_freq_attr_ro(related_cpus);
710cpufreq_freq_attr_ro(affected_cpus);
711cpufreq_freq_attr_rw(scaling_min_freq);
712cpufreq_freq_attr_rw(scaling_max_freq);
713cpufreq_freq_attr_rw(scaling_governor);
714cpufreq_freq_attr_rw(scaling_setspeed);
715
716static struct attribute *default_attrs[] = {
717 &cpuinfo_min_freq.attr,
718 &cpuinfo_max_freq.attr,
719 &cpuinfo_transition_latency.attr,
720 &scaling_min_freq.attr,
721 &scaling_max_freq.attr,
722 &affected_cpus.attr,
723 &related_cpus.attr,
724 &scaling_governor.attr,
725 &scaling_driver.attr,
726 &scaling_available_governors.attr,
727 &scaling_setspeed.attr,
728 NULL
729};
730
731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732#define to_attr(a) container_of(a, struct freq_attr, attr)
733
734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735{
736 struct cpufreq_policy *policy = to_policy(kobj);
737 struct freq_attr *fattr = to_attr(attr);
738 ssize_t ret;
739
740 if (!down_read_trylock(&cpufreq_rwsem))
741 return -EINVAL;
742
743 down_read(&policy->rwsem);
744
745 if (fattr->show)
746 ret = fattr->show(policy, buf);
747 else
748 ret = -EIO;
749
750 up_read(&policy->rwsem);
751 up_read(&cpufreq_rwsem);
752
753 return ret;
754}
755
756static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 const char *buf, size_t count)
758{
759 struct cpufreq_policy *policy = to_policy(kobj);
760 struct freq_attr *fattr = to_attr(attr);
761 ssize_t ret = -EINVAL;
762
763 get_online_cpus();
764
765 if (!cpu_online(policy->cpu))
766 goto unlock;
767
768 if (!down_read_trylock(&cpufreq_rwsem))
769 goto unlock;
770
771 down_write(&policy->rwsem);
772
773 if (fattr->store)
774 ret = fattr->store(policy, buf, count);
775 else
776 ret = -EIO;
777
778 up_write(&policy->rwsem);
779
780 up_read(&cpufreq_rwsem);
781unlock:
782 put_online_cpus();
783
784 return ret;
785}
786
787static void cpufreq_sysfs_release(struct kobject *kobj)
788{
789 struct cpufreq_policy *policy = to_policy(kobj);
790 pr_debug("last reference is dropped\n");
791 complete(&policy->kobj_unregister);
792}
793
794static const struct sysfs_ops sysfs_ops = {
795 .show = show,
796 .store = store,
797};
798
799static struct kobj_type ktype_cpufreq = {
800 .sysfs_ops = &sysfs_ops,
801 .default_attrs = default_attrs,
802 .release = cpufreq_sysfs_release,
803};
804
805struct kobject *cpufreq_global_kobject;
806EXPORT_SYMBOL(cpufreq_global_kobject);
807
808static int cpufreq_global_kobject_usage;
809
810int cpufreq_get_global_kobject(void)
811{
812 if (!cpufreq_global_kobject_usage++)
813 return kobject_add(cpufreq_global_kobject,
814 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815
816 return 0;
817}
818EXPORT_SYMBOL(cpufreq_get_global_kobject);
819
820void cpufreq_put_global_kobject(void)
821{
822 if (!--cpufreq_global_kobject_usage)
823 kobject_del(cpufreq_global_kobject);
824}
825EXPORT_SYMBOL(cpufreq_put_global_kobject);
826
827int cpufreq_sysfs_create_file(const struct attribute *attr)
828{
829 int ret = cpufreq_get_global_kobject();
830
831 if (!ret) {
832 ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 if (ret)
834 cpufreq_put_global_kobject();
835 }
836
837 return ret;
838}
839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840
841void cpufreq_sysfs_remove_file(const struct attribute *attr)
842{
843 sysfs_remove_file(cpufreq_global_kobject, attr);
844 cpufreq_put_global_kobject();
845}
846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847
848/* symlink affected CPUs */
849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850{
851 unsigned int j;
852 int ret = 0;
853
854 for_each_cpu(j, policy->cpus) {
855 struct device *cpu_dev;
856
857 if (j == policy->cpu)
858 continue;
859
860 pr_debug("Adding link for CPU: %u\n", j);
861 cpu_dev = get_cpu_device(j);
862 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 "cpufreq");
864 if (ret)
865 break;
866 }
867 return ret;
868}
869
870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 struct device *dev)
872{
873 struct freq_attr **drv_attr;
874 int ret = 0;
875
876 /* prepare interface data */
877 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 &dev->kobj, "cpufreq");
879 if (ret)
880 return ret;
881
882 /* set up files for this cpu device */
883 drv_attr = cpufreq_driver->attr;
884 while ((drv_attr) && (*drv_attr)) {
885 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 if (ret)
887 goto err_out_kobj_put;
888 drv_attr++;
889 }
890 if (cpufreq_driver->get) {
891 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 if (ret)
893 goto err_out_kobj_put;
894 }
895 if (has_target()) {
896 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 if (ret)
898 goto err_out_kobj_put;
899 }
900 if (cpufreq_driver->bios_limit) {
901 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 if (ret)
903 goto err_out_kobj_put;
904 }
905
906 ret = cpufreq_add_dev_symlink(policy);
907 if (ret)
908 goto err_out_kobj_put;
909
910 return ret;
911
912err_out_kobj_put:
913 kobject_put(&policy->kobj);
914 wait_for_completion(&policy->kobj_unregister);
915 return ret;
916}
917
918static void cpufreq_init_policy(struct cpufreq_policy *policy)
919{
920 struct cpufreq_governor *gov = NULL;
921 struct cpufreq_policy new_policy;
922 int ret = 0;
923
924 memcpy(&new_policy, policy, sizeof(*policy));
925
926 /* Update governor of new_policy to the governor used before hotplug */
927 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 if (gov)
929 pr_debug("Restoring governor %s for cpu %d\n",
930 policy->governor->name, policy->cpu);
931 else
932 gov = CPUFREQ_DEFAULT_GOVERNOR;
933
934 new_policy.governor = gov;
935
936 /* Use the default policy if its valid. */
937 if (cpufreq_driver->setpolicy)
938 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939
940 /* set default policy */
941 ret = cpufreq_set_policy(policy, &new_policy);
942 if (ret) {
943 pr_debug("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947}
948
949#ifdef CONFIG_HOTPLUG_CPU
950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 unsigned int cpu, struct device *dev)
952{
953 int ret = 0;
954 unsigned long flags;
955
956 if (has_target()) {
957 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 if (ret) {
959 pr_err("%s: Failed to stop governor\n", __func__);
960 return ret;
961 }
962 }
963
964 down_write(&policy->rwsem);
965
966 write_lock_irqsave(&cpufreq_driver_lock, flags);
967
968 cpumask_set_cpu(cpu, policy->cpus);
969 per_cpu(cpufreq_cpu_data, cpu) = policy;
970 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971
972 up_write(&policy->rwsem);
973
974 if (has_target()) {
975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 if (!ret)
977 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978
979 if (ret) {
980 pr_err("%s: Failed to start governor\n", __func__);
981 return ret;
982 }
983 }
984
985 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986}
987#endif
988
989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990{
991 struct cpufreq_policy *policy;
992 unsigned long flags;
993
994 read_lock_irqsave(&cpufreq_driver_lock, flags);
995
996 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997
998 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999
1000 policy->governor = NULL;
1001
1002 return policy;
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007 struct cpufreq_policy *policy;
1008
1009 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 if (!policy)
1011 return NULL;
1012
1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 goto err_free_policy;
1015
1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 goto err_free_cpumask;
1018
1019 INIT_LIST_HEAD(&policy->policy_list);
1020 init_rwsem(&policy->rwsem);
1021 spin_lock_init(&policy->transition_lock);
1022 init_waitqueue_head(&policy->transition_wait);
1023
1024 return policy;
1025
1026err_free_cpumask:
1027 free_cpumask_var(policy->cpus);
1028err_free_policy:
1029 kfree(policy);
1030
1031 return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036 struct kobject *kobj;
1037 struct completion *cmp;
1038
1039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 CPUFREQ_REMOVE_POLICY, policy);
1041
1042 down_read(&policy->rwsem);
1043 kobj = &policy->kobj;
1044 cmp = &policy->kobj_unregister;
1045 up_read(&policy->rwsem);
1046 kobject_put(kobj);
1047
1048 /*
1049 * We need to make sure that the underlying kobj is
1050 * actually not referenced anymore by anybody before we
1051 * proceed with unloading.
1052 */
1053 pr_debug("waiting for dropping of refcount\n");
1054 wait_for_completion(cmp);
1055 pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060 free_cpumask_var(policy->related_cpus);
1061 free_cpumask_var(policy->cpus);
1062 kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067 if (WARN_ON(cpu == policy->cpu))
1068 return;
1069
1070 down_write(&policy->rwsem);
1071
1072 policy->last_cpu = policy->cpu;
1073 policy->cpu = cpu;
1074
1075 up_write(&policy->rwsem);
1076
1077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 CPUFREQ_UPDATE_POLICY_CPU, policy);
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083 unsigned int j, cpu = dev->id;
1084 int ret = -ENOMEM;
1085 struct cpufreq_policy *policy;
1086 unsigned long flags;
1087 bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089 struct cpufreq_policy *tpolicy;
1090#endif
1091
1092 if (cpu_is_offline(cpu))
1093 return 0;
1094
1095 pr_debug("adding CPU %u\n", cpu);
1096
1097#ifdef CONFIG_SMP
1098 /* check whether a different CPU already registered this
1099 * CPU because it is in the same boat. */
1100 policy = cpufreq_cpu_get(cpu);
1101 if (unlikely(policy)) {
1102 cpufreq_cpu_put(policy);
1103 return 0;
1104 }
1105#endif
1106
1107 if (!down_read_trylock(&cpufreq_rwsem))
1108 return 0;
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111 /* Check if this cpu was hot-unplugged earlier and has siblings */
1112 read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 up_read(&cpufreq_rwsem);
1118 return ret;
1119 }
1120 }
1121 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124 /*
1125 * Restore the saved policy when doing light-weight init and fall back
1126 * to the full init if that fails.
1127 */
1128 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 if (!policy) {
1130 recover_policy = false;
1131 policy = cpufreq_policy_alloc();
1132 if (!policy)
1133 goto nomem_out;
1134 }
1135
1136 /*
1137 * In the resume path, since we restore a saved policy, the assignment
1138 * to policy->cpu is like an update of the existing policy, rather than
1139 * the creation of a brand new one. So we need to perform this update
1140 * by invoking update_policy_cpu().
1141 */
1142 if (recover_policy && cpu != policy->cpu)
1143 update_policy_cpu(policy, cpu);
1144 else
1145 policy->cpu = cpu;
1146
1147 cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149 init_completion(&policy->kobj_unregister);
1150 INIT_WORK(&policy->update, handle_update);
1151
1152 /* call driver. From then on the cpufreq must be able
1153 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 */
1155 ret = cpufreq_driver->init(policy);
1156 if (ret) {
1157 pr_debug("initialization failed\n");
1158 goto err_set_policy_cpu;
1159 }
1160
1161 /* related cpus should atleast have policy->cpus */
1162 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164 /*
1165 * affected cpus must always be the one, which are online. We aren't
1166 * managing offline cpus here.
1167 */
1168 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170 if (!recover_policy) {
1171 policy->user_policy.min = policy->min;
1172 policy->user_policy.max = policy->max;
1173 }
1174
1175 down_write(&policy->rwsem);
1176 write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 for_each_cpu(j, policy->cpus)
1178 per_cpu(cpufreq_cpu_data, j) = policy;
1179 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 policy->cur = cpufreq_driver->get(policy->cpu);
1183 if (!policy->cur) {
1184 pr_err("%s: ->get() failed\n", __func__);
1185 goto err_get_freq;
1186 }
1187 }
1188
1189 /*
1190 * Sometimes boot loaders set CPU frequency to a value outside of
1191 * frequency table present with cpufreq core. In such cases CPU might be
1192 * unstable if it has to run on that frequency for long duration of time
1193 * and so its better to set it to a frequency which is specified in
1194 * freq-table. This also makes cpufreq stats inconsistent as
1195 * cpufreq-stats would fail to register because current frequency of CPU
1196 * isn't found in freq-table.
1197 *
1198 * Because we don't want this change to effect boot process badly, we go
1199 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 * is initialized to zero).
1202 *
1203 * We are passing target-freq as "policy->cur - 1" otherwise
1204 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 * equal to target-freq.
1206 */
1207 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 && has_target()) {
1209 /* Are we running at unknown frequency ? */
1210 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 if (ret == -EINVAL) {
1212 /* Warn user and fix it */
1213 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 __func__, policy->cpu, policy->cur);
1215 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 CPUFREQ_RELATION_L);
1217
1218 /*
1219 * Reaching here after boot in a few seconds may not
1220 * mean that system will remain stable at "unknown"
1221 * frequency for longer duration. Hence, a BUG_ON().
1222 */
1223 BUG_ON(ret);
1224 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 __func__, policy->cpu, policy->cur);
1226 }
1227 }
1228
1229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 CPUFREQ_START, policy);
1231
1232 if (!recover_policy) {
1233 ret = cpufreq_add_dev_interface(policy, dev);
1234 if (ret)
1235 goto err_out_unregister;
1236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 CPUFREQ_CREATE_POLICY, policy);
1238 }
1239
1240 write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 list_add(&policy->policy_list, &cpufreq_policy_list);
1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244 cpufreq_init_policy(policy);
1245
1246 if (!recover_policy) {
1247 policy->user_policy.policy = policy->policy;
1248 policy->user_policy.governor = policy->governor;
1249 }
1250 up_write(&policy->rwsem);
1251
1252 kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 up_read(&cpufreq_rwsem);
1254
1255 pr_debug("initialization complete\n");
1256
1257 return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261 write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 for_each_cpu(j, policy->cpus)
1263 per_cpu(cpufreq_cpu_data, j) = NULL;
1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266 if (cpufreq_driver->exit)
1267 cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269 if (recover_policy) {
1270 /* Do not leave stale fallback data behind. */
1271 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 cpufreq_policy_put_kobj(policy);
1273 }
1274 cpufreq_policy_free(policy);
1275
1276nomem_out:
1277 up_read(&cpufreq_rwsem);
1278
1279 return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293 return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 unsigned int old_cpu)
1298{
1299 struct device *cpu_dev;
1300 int ret;
1301
1302 /* first sibling now owns the new sysfs dir */
1303 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 if (ret) {
1308 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310 down_write(&policy->rwsem);
1311 cpumask_set_cpu(old_cpu, policy->cpus);
1312 up_write(&policy->rwsem);
1313
1314 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 "cpufreq");
1316
1317 return -EINVAL;
1318 }
1319
1320 return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 struct subsys_interface *sif)
1325{
1326 unsigned int cpu = dev->id, cpus;
1327 int new_cpu, ret;
1328 unsigned long flags;
1329 struct cpufreq_policy *policy;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335 policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337 /* Save the policy somewhere when doing a light-weight tear-down */
1338 if (cpufreq_suspended)
1339 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343 if (!policy) {
1344 pr_debug("%s: No cpu_data found\n", __func__);
1345 return -EINVAL;
1346 }
1347
1348 if (has_target()) {
1349 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 if (ret) {
1351 pr_err("%s: Failed to stop governor\n", __func__);
1352 return ret;
1353 }
1354 }
1355
1356 if (!cpufreq_driver->setpolicy)
1357 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360 down_read(&policy->rwsem);
1361 cpus = cpumask_weight(policy->cpus);
1362 up_read(&policy->rwsem);
1363
1364 if (cpu != policy->cpu) {
1365 sysfs_remove_link(&dev->kobj, "cpufreq");
1366 } else if (cpus > 1) {
1367 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 if (new_cpu >= 0) {
1369 update_policy_cpu(policy, new_cpu);
1370
1371 if (!cpufreq_suspended)
1372 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 __func__, new_cpu, cpu);
1374 }
1375 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 cpufreq_driver->stop_cpu(policy);
1377 }
1378
1379 return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383 struct subsys_interface *sif)
1384{
1385 unsigned int cpu = dev->id, cpus;
1386 int ret;
1387 unsigned long flags;
1388 struct cpufreq_policy *policy;
1389
1390 read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 policy = per_cpu(cpufreq_cpu_data, cpu);
1392 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
1394 if (!policy) {
1395 pr_debug("%s: No cpu_data found\n", __func__);
1396 return -EINVAL;
1397 }
1398
1399 down_write(&policy->rwsem);
1400 cpus = cpumask_weight(policy->cpus);
1401
1402 if (cpus > 1)
1403 cpumask_clear_cpu(cpu, policy->cpus);
1404 up_write(&policy->rwsem);
1405
1406 /* If cpu is last user of policy, free policy */
1407 if (cpus == 1) {
1408 if (has_target()) {
1409 ret = __cpufreq_governor(policy,
1410 CPUFREQ_GOV_POLICY_EXIT);
1411 if (ret) {
1412 pr_err("%s: Failed to exit governor\n",
1413 __func__);
1414 return ret;
1415 }
1416 }
1417
1418 if (!cpufreq_suspended)
1419 cpufreq_policy_put_kobj(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit)
1427 cpufreq_driver->exit(policy);
1428
1429 /* Remove policy from list of active policies */
1430 write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 list_del(&policy->policy_list);
1432 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434 if (!cpufreq_suspended)
1435 cpufreq_policy_free(policy);
1436 } else if (has_target()) {
1437 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 if (!ret)
1439 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441 if (ret) {
1442 pr_err("%s: Failed to start governor\n", __func__);
1443 return ret;
1444 }
1445 }
1446
1447 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458 unsigned int cpu = dev->id;
1459 int ret;
1460
1461 if (cpu_is_offline(cpu))
1462 return 0;
1463
1464 ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466 if (!ret)
1467 ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469 return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474 struct cpufreq_policy *policy =
1475 container_of(work, struct cpufreq_policy, update);
1476 unsigned int cpu = policy->cpu;
1477 pr_debug("handle_update for cpu %u called\n", cpu);
1478 cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 * in deep trouble.
1484 * @cpu: cpu number
1485 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1486 * @new_freq: CPU frequency the CPU actually runs at
1487 *
1488 * We adjust to current frequency first, and need to clean up later.
1489 * So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 unsigned int new_freq)
1493{
1494 struct cpufreq_policy *policy;
1495 struct cpufreq_freqs freqs;
1496 unsigned long flags;
1497
1498 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 old_freq, new_freq);
1500
1501 freqs.old = old_freq;
1502 freqs.new = new_freq;
1503
1504 read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 policy = per_cpu(cpufreq_cpu_data, cpu);
1506 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508 cpufreq_freq_transition_begin(policy, &freqs);
1509 cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521 struct cpufreq_policy *policy;
1522 unsigned int ret_freq = 0;
1523
1524 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 return cpufreq_driver->get(cpu);
1526
1527 policy = cpufreq_cpu_get(cpu);
1528 if (policy) {
1529 ret_freq = policy->cur;
1530 cpufreq_cpu_put(policy);
1531 }
1532
1533 return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 unsigned int ret_freq = 0;
1547
1548 if (policy) {
1549 ret_freq = policy->max;
1550 cpufreq_cpu_put(policy);
1551 }
1552
1553 return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
1558{
1559 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (!cpufreq_driver->get)
1563 return ret_freq;
1564
1565 ret_freq = cpufreq_driver->get(cpu);
1566
1567 if (ret_freq && policy->cur &&
1568 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 /* verify no discrepancy between actual and
1570 saved value exists */
1571 if (unlikely(ret_freq != policy->cur)) {
1572 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 schedule_work(&policy->update);
1574 }
1575 }
1576
1577 return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 unsigned int ret_freq = 0;
1590
1591 if (policy) {
1592 down_read(&policy->rwsem);
1593 ret_freq = __cpufreq_get(cpu);
1594 up_read(&policy->rwsem);
1595
1596 cpufreq_cpu_put(policy);
1597 }
1598
1599 return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 return -EINVAL;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target())
1652 return;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 pr_err("%s: Failed to stop governor for policy: %p\n",
1659 __func__, policy);
1660 else if (cpufreq_driver->suspend
1661 && cpufreq_driver->suspend(policy))
1662 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 policy);
1664 }
1665
1666 cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677 struct cpufreq_policy *policy;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 if (!has_target())
1683 return;
1684
1685 pr_debug("%s: Resuming Governors\n", __func__);
1686
1687 cpufreq_suspended = false;
1688
1689 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 pr_err("%s: Failed to start governor for policy: %p\n",
1696 __func__, policy);
1697
1698 /*
1699 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 * policy in list. It will verify that the current freq is in
1701 * sync with what we believe it to be.
1702 */
1703 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 schedule_work(&policy->update);
1705 }
1706}
1707
1708/**
1709 * cpufreq_get_current_driver - return current driver's name
1710 *
1711 * Return the name string of the currently loaded cpufreq driver
1712 * or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716 if (cpufreq_driver)
1717 return cpufreq_driver->name;
1718
1719 return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723/*********************************************************************
1724 * NOTIFIER LISTS INTERFACE *
1725 *********************************************************************/
1726
1727/**
1728 * cpufreq_register_notifier - register a driver with cpufreq
1729 * @nb: notifier function to register
1730 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 * Add a driver to one of two lists: either a list of drivers that
1733 * are notified about clock rate changes (once before and once after
1734 * the transition), or a list of drivers that are notified about
1735 * changes in cpufreq policy.
1736 *
1737 * This function may sleep, and has the same return conditions as
1738 * blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742 int ret;
1743
1744 if (cpufreq_disabled())
1745 return -EINVAL;
1746
1747 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749 switch (list) {
1750 case CPUFREQ_TRANSITION_NOTIFIER:
1751 ret = srcu_notifier_chain_register(
1752 &cpufreq_transition_notifier_list, nb);
1753 break;
1754 case CPUFREQ_POLICY_NOTIFIER:
1755 ret = blocking_notifier_chain_register(
1756 &cpufreq_policy_notifier_list, nb);
1757 break;
1758 default:
1759 ret = -EINVAL;
1760 }
1761
1762 return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 * @nb: notifier block to be unregistered
1769 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 * Remove a driver from the CPU frequency notifier list.
1772 *
1773 * This function may sleep, and has the same return conditions as
1774 * blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778 int ret;
1779
1780 if (cpufreq_disabled())
1781 return -EINVAL;
1782
1783 switch (list) {
1784 case CPUFREQ_TRANSITION_NOTIFIER:
1785 ret = srcu_notifier_chain_unregister(
1786 &cpufreq_transition_notifier_list, nb);
1787 break;
1788 case CPUFREQ_POLICY_NOTIFIER:
1789 ret = blocking_notifier_chain_unregister(
1790 &cpufreq_policy_notifier_list, nb);
1791 break;
1792 default:
1793 ret = -EINVAL;
1794 }
1795
1796 return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 * GOVERNORS *
1803 *********************************************************************/
1804
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 unsigned int target_freq,
1807 unsigned int relation)
1808{
1809 int retval = -EINVAL;
1810 unsigned int old_target_freq = target_freq;
1811
1812 if (cpufreq_disabled())
1813 return -ENODEV;
1814
1815 /* Make sure that target_freq is within supported range */
1816 if (target_freq > policy->max)
1817 target_freq = policy->max;
1818 if (target_freq < policy->min)
1819 target_freq = policy->min;
1820
1821 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 policy->cpu, target_freq, relation, old_target_freq);
1823
1824 /*
1825 * This might look like a redundant call as we are checking it again
1826 * after finding index. But it is left intentionally for cases where
1827 * exactly same freq is called again and so we can save on few function
1828 * calls.
1829 */
1830 if (target_freq == policy->cur)
1831 return 0;
1832
1833 if (cpufreq_driver->target)
1834 retval = cpufreq_driver->target(policy, target_freq, relation);
1835 else if (cpufreq_driver->target_index) {
1836 struct cpufreq_frequency_table *freq_table;
1837 struct cpufreq_freqs freqs;
1838 bool notify;
1839 int index;
1840
1841 freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 if (unlikely(!freq_table)) {
1843 pr_err("%s: Unable to find freq_table\n", __func__);
1844 goto out;
1845 }
1846
1847 retval = cpufreq_frequency_table_target(policy, freq_table,
1848 target_freq, relation, &index);
1849 if (unlikely(retval)) {
1850 pr_err("%s: Unable to find matching freq\n", __func__);
1851 goto out;
1852 }
1853
1854 if (freq_table[index].frequency == policy->cur) {
1855 retval = 0;
1856 goto out;
1857 }
1858
1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861 if (notify) {
1862 freqs.old = policy->cur;
1863 freqs.new = freq_table[index].frequency;
1864 freqs.flags = 0;
1865
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n",
1875 __func__, retval);
1876
1877 if (notify)
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879 }
1880
1881out:
1882 return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 unsigned int target_freq,
1888 unsigned int relation)
1889{
1890 int ret = -EINVAL;
1891
1892 down_write(&policy->rwsem);
1893
1894 ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896 up_write(&policy->rwsem);
1897
1898 return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 unsigned int event)
1908{
1909 int ret;
1910
1911 /* Only must be defined when default governor is known to have latency
1912 restrictions, like e.g. conservative or ondemand.
1913 That this is the case is already ensured in Kconfig
1914 */
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918 struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921 /* Don't start any governor operations if we are entering suspend */
1922 if (cpufreq_suspended)
1923 return 0;
1924
1925 if (policy->governor->max_transition_latency &&
1926 policy->cpuinfo.transition_latency >
1927 policy->governor->max_transition_latency) {
1928 if (!gov)
1929 return -EINVAL;
1930 else {
1931 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 policy->governor->name, gov->name);
1933 policy->governor = gov;
1934 }
1935 }
1936
1937 if (event == CPUFREQ_GOV_POLICY_INIT)
1938 if (!try_module_get(policy->governor->owner))
1939 return -EINVAL;
1940
1941 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 policy->cpu, event);
1943
1944 mutex_lock(&cpufreq_governor_lock);
1945 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 || (!policy->governor_enabled
1947 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 mutex_unlock(&cpufreq_governor_lock);
1949 return -EBUSY;
1950 }
1951
1952 if (event == CPUFREQ_GOV_STOP)
1953 policy->governor_enabled = false;
1954 else if (event == CPUFREQ_GOV_START)
1955 policy->governor_enabled = true;
1956
1957 mutex_unlock(&cpufreq_governor_lock);
1958
1959 ret = policy->governor->governor(policy, event);
1960
1961 if (!ret) {
1962 if (event == CPUFREQ_GOV_POLICY_INIT)
1963 policy->governor->initialized++;
1964 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 policy->governor->initialized--;
1966 } else {
1967 /* Restore original values */
1968 mutex_lock(&cpufreq_governor_lock);
1969 if (event == CPUFREQ_GOV_STOP)
1970 policy->governor_enabled = true;
1971 else if (event == CPUFREQ_GOV_START)
1972 policy->governor_enabled = false;
1973 mutex_unlock(&cpufreq_governor_lock);
1974 }
1975
1976 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 module_put(policy->governor->owner);
1979
1980 return ret;
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985 int err;
1986
1987 if (!governor)
1988 return -EINVAL;
1989
1990 if (cpufreq_disabled())
1991 return -ENODEV;
1992
1993 mutex_lock(&cpufreq_governor_mutex);
1994
1995 governor->initialized = 0;
1996 err = -EBUSY;
1997 if (__find_governor(governor->name) == NULL) {
1998 err = 0;
1999 list_add(&governor->governor_list, &cpufreq_governor_list);
2000 }
2001
2002 mutex_unlock(&cpufreq_governor_mutex);
2003 return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009 int cpu;
2010
2011 if (!governor)
2012 return;
2013
2014 if (cpufreq_disabled())
2015 return;
2016
2017 for_each_present_cpu(cpu) {
2018 if (cpu_online(cpu))
2019 continue;
2020 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 }
2023
2024 mutex_lock(&cpufreq_governor_mutex);
2025 list_del(&governor->governor_list);
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 * POLICY INTERFACE *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 * is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045 struct cpufreq_policy *cpu_policy;
2046 if (!policy)
2047 return -EINVAL;
2048
2049 cpu_policy = cpufreq_cpu_get(cpu);
2050 if (!cpu_policy)
2051 return -EINVAL;
2052
2053 memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055 cpufreq_cpu_put(cpu_policy);
2056 return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 struct cpufreq_policy *new_policy)
2066{
2067 struct cpufreq_governor *old_gov;
2068 int ret;
2069
2070 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075 if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 return -EINVAL;
2077
2078 /* verify the cpu speed can be set within this limit */
2079 ret = cpufreq_driver->verify(new_policy);
2080 if (ret)
2081 return ret;
2082
2083 /* adjust if necessary - all reasons */
2084 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 CPUFREQ_ADJUST, new_policy);
2086
2087 /* adjust if necessary - hardware incompatibility*/
2088 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091 /*
2092 * verify the cpu speed can be set within this limit, which might be
2093 * different to the first one
2094 */
2095 ret = cpufreq_driver->verify(new_policy);
2096 if (ret)
2097 return ret;
2098
2099 /* notification of the new policy */
2100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 CPUFREQ_NOTIFY, new_policy);
2102
2103 policy->min = new_policy->min;
2104 policy->max = new_policy->max;
2105
2106 pr_debug("new min and max freqs are %u - %u kHz\n",
2107 policy->min, policy->max);
2108
2109 if (cpufreq_driver->setpolicy) {
2110 policy->policy = new_policy->policy;
2111 pr_debug("setting range\n");
2112 return cpufreq_driver->setpolicy(new_policy);
2113 }
2114
2115 if (new_policy->governor == policy->governor)
2116 goto out;
2117
2118 pr_debug("governor switch\n");
2119
2120 /* save old, working values */
2121 old_gov = policy->governor;
2122 /* end old governor */
2123 if (old_gov) {
2124 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 up_write(&policy->rwsem);
2126 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 down_write(&policy->rwsem);
2128 }
2129
2130 /* start new governor */
2131 policy->governor = new_policy->governor;
2132 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 goto out;
2135
2136 up_write(&policy->rwsem);
2137 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 down_write(&policy->rwsem);
2139 }
2140
2141 /* new governor failed, so re-start old one */
2142 pr_debug("starting governor %s failed\n", policy->governor->name);
2143 if (old_gov) {
2144 policy->governor = old_gov;
2145 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 }
2148
2149 return -EINVAL;
2150
2151 out:
2152 pr_debug("governor: change or update limits\n");
2153 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 * @cpu: CPU which shall be re-evaluated
2159 *
2160 * Useful for policy notifiers which have different necessities
2161 * at different times.
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 struct cpufreq_policy new_policy;
2167 int ret;
2168
2169 if (!policy) {
2170 ret = -ENODEV;
2171 goto no_policy;
2172 }
2173
2174 down_write(&policy->rwsem);
2175
2176 pr_debug("updating policy for CPU %u\n", cpu);
2177 memcpy(&new_policy, policy, sizeof(*policy));
2178 new_policy.min = policy->user_policy.min;
2179 new_policy.max = policy->user_policy.max;
2180 new_policy.policy = policy->user_policy.policy;
2181 new_policy.governor = policy->user_policy.governor;
2182
2183 /*
2184 * BIOS might change freq behind our back
2185 * -> ask driver for current freq and notify governors about a change
2186 */
2187 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 new_policy.cur = cpufreq_driver->get(cpu);
2189 if (WARN_ON(!new_policy.cur)) {
2190 ret = -EIO;
2191 goto no_policy;
2192 }
2193
2194 if (!policy->cur) {
2195 pr_debug("Driver did not initialize current freq\n");
2196 policy->cur = new_policy.cur;
2197 } else {
2198 if (policy->cur != new_policy.cur && has_target())
2199 cpufreq_out_of_sync(cpu, policy->cur,
2200 new_policy.cur);
2201 }
2202 }
2203
2204 ret = cpufreq_set_policy(policy, &new_policy);
2205
2206 up_write(&policy->rwsem);
2207
2208 cpufreq_cpu_put(policy);
2209no_policy:
2210 return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 unsigned long action, void *hcpu)
2216{
2217 unsigned int cpu = (unsigned long)hcpu;
2218 struct device *dev;
2219
2220 dev = get_cpu_device(cpu);
2221 if (dev) {
2222 switch (action & ~CPU_TASKS_FROZEN) {
2223 case CPU_ONLINE:
2224 __cpufreq_add_dev(dev, NULL);
2225 break;
2226
2227 case CPU_DOWN_PREPARE:
2228 __cpufreq_remove_dev_prepare(dev, NULL);
2229 break;
2230
2231 case CPU_POST_DEAD:
2232 __cpufreq_remove_dev_finish(dev, NULL);
2233 break;
2234
2235 case CPU_DOWN_FAILED:
2236 __cpufreq_add_dev(dev, NULL);
2237 break;
2238 }
2239 }
2240 return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 .notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 * BOOST *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252 struct cpufreq_frequency_table *freq_table;
2253 struct cpufreq_policy *policy;
2254 int ret = -EINVAL;
2255
2256 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 if (freq_table) {
2259 ret = cpufreq_frequency_table_cpuinfo(policy,
2260 freq_table);
2261 if (ret) {
2262 pr_err("%s: Policy frequency update failed\n",
2263 __func__);
2264 break;
2265 }
2266 policy->user_policy.max = policy->max;
2267 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 }
2269 }
2270
2271 return ret;
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
2276 unsigned long flags;
2277 int ret = 0;
2278
2279 if (cpufreq_driver->boost_enabled == state)
2280 return 0;
2281
2282 write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 cpufreq_driver->boost_enabled = state;
2284 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286 ret = cpufreq_driver->set_boost(state);
2287 if (ret) {
2288 write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 cpufreq_driver->boost_enabled = !state;
2290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292 pr_err("%s: Cannot %s BOOST\n",
2293 __func__, state ? "enable" : "disable");
2294 }
2295
2296 return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301 if (likely(cpufreq_driver))
2302 return cpufreq_driver->boost_supported;
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310 return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2316 *********************************************************************/
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330 unsigned long flags;
2331 int ret;
2332
2333 if (cpufreq_disabled())
2334 return -ENODEV;
2335
2336 if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 !(driver_data->setpolicy || driver_data->target_index ||
2338 driver_data->target) ||
2339 (driver_data->setpolicy && (driver_data->target_index ||
2340 driver_data->target)))
2341 return -EINVAL;
2342
2343 pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345 if (driver_data->setpolicy)
2346 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348 write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 if (cpufreq_driver) {
2350 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 return -EEXIST;
2352 }
2353 cpufreq_driver = driver_data;
2354 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356 if (cpufreq_boost_supported()) {
2357 /*
2358 * Check if driver provides function to enable boost -
2359 * if not, use cpufreq_boost_set_sw as default
2360 */
2361 if (!cpufreq_driver->set_boost)
2362 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364 ret = cpufreq_sysfs_create_file(&boost.attr);
2365 if (ret) {
2366 pr_err("%s: cannot register global BOOST sysfs file\n",
2367 __func__);
2368 goto err_null_driver;
2369 }
2370 }
2371
2372 ret = subsys_interface_register(&cpufreq_interface);
2373 if (ret)
2374 goto err_boost_unreg;
2375
2376 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 int i;
2378 ret = -ENODEV;
2379
2380 /* check for at least one working CPU */
2381 for (i = 0; i < nr_cpu_ids; i++)
2382 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 ret = 0;
2384 break;
2385 }
2386
2387 /* if all ->init() calls failed, unregister */
2388 if (ret) {
2389 pr_debug("no CPU initialized for driver %s\n",
2390 driver_data->name);
2391 goto err_if_unreg;
2392 }
2393 }
2394
2395 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 pr_debug("driver %s up and running\n", driver_data->name);
2397
2398 return 0;
2399err_if_unreg:
2400 subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402 if (cpufreq_boost_supported())
2403 cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405 write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 cpufreq_driver = NULL;
2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422 unsigned long flags;
2423
2424 if (!cpufreq_driver || (driver != cpufreq_driver))
2425 return -EINVAL;
2426
2427 pr_debug("unregistering driver %s\n", driver->name);
2428
2429 subsys_interface_unregister(&cpufreq_interface);
2430 if (cpufreq_boost_supported())
2431 cpufreq_sysfs_remove_file(&boost.attr);
2432
2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435 down_write(&cpufreq_rwsem);
2436 write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438 cpufreq_driver = NULL;
2439
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 up_write(&cpufreq_rwsem);
2442
2443 return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
2449 if (cpufreq_disabled())
2450 return -ENODEV;
2451
2452 cpufreq_global_kobject = kobject_create();
2453 BUG_ON(!cpufreq_global_kobject);
2454
2455 return 0;
2456}
2457core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65 return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76/* internal prototypes */
77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78static int cpufreq_init_governor(struct cpufreq_policy *policy);
79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80static void cpufreq_governor_limits(struct cpufreq_policy *policy);
81static int cpufreq_set_policy(struct cpufreq_policy *policy,
82 struct cpufreq_governor *new_gov,
83 unsigned int new_pol);
84
85/*
86 * Two notifier lists: the "policy" list is involved in the
87 * validation process for a new CPU frequency policy; the
88 * "transition" list for kernel code that needs to handle
89 * changes to devices when the CPU clock speed changes.
90 * The mutex locks both lists.
91 */
92static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94
95static int off __read_mostly;
96static int cpufreq_disabled(void)
97{
98 return off;
99}
100void disable_cpufreq(void)
101{
102 off = 1;
103}
104static DEFINE_MUTEX(cpufreq_governor_mutex);
105
106bool have_governor_per_policy(void)
107{
108 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109}
110EXPORT_SYMBOL_GPL(have_governor_per_policy);
111
112static struct kobject *cpufreq_global_kobject;
113
114struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
115{
116 if (have_governor_per_policy())
117 return &policy->kobj;
118 else
119 return cpufreq_global_kobject;
120}
121EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
122
123static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124{
125 struct kernel_cpustat kcpustat;
126 u64 cur_wall_time;
127 u64 idle_time;
128 u64 busy_time;
129
130 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
131
132 kcpustat_cpu_fetch(&kcpustat, cpu);
133
134 busy_time = kcpustat.cpustat[CPUTIME_USER];
135 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
136 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
137 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
138 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
139 busy_time += kcpustat.cpustat[CPUTIME_NICE];
140
141 idle_time = cur_wall_time - busy_time;
142 if (wall)
143 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
144
145 return div_u64(idle_time, NSEC_PER_USEC);
146}
147
148u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
149{
150 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
151
152 if (idle_time == -1ULL)
153 return get_cpu_idle_time_jiffy(cpu, wall);
154 else if (!io_busy)
155 idle_time += get_cpu_iowait_time_us(cpu, wall);
156
157 return idle_time;
158}
159EXPORT_SYMBOL_GPL(get_cpu_idle_time);
160
161/*
162 * This is a generic cpufreq init() routine which can be used by cpufreq
163 * drivers of SMP systems. It will do following:
164 * - validate & show freq table passed
165 * - set policies transition latency
166 * - policy->cpus with all possible CPUs
167 */
168void cpufreq_generic_init(struct cpufreq_policy *policy,
169 struct cpufreq_frequency_table *table,
170 unsigned int transition_latency)
171{
172 policy->freq_table = table;
173 policy->cpuinfo.transition_latency = transition_latency;
174
175 /*
176 * The driver only supports the SMP configuration where all processors
177 * share the clock and voltage and clock.
178 */
179 cpumask_setall(policy->cpus);
180}
181EXPORT_SYMBOL_GPL(cpufreq_generic_init);
182
183struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
184{
185 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
186
187 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
188}
189EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
190
191unsigned int cpufreq_generic_get(unsigned int cpu)
192{
193 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
194
195 if (!policy || IS_ERR(policy->clk)) {
196 pr_err("%s: No %s associated to cpu: %d\n",
197 __func__, policy ? "clk" : "policy", cpu);
198 return 0;
199 }
200
201 return clk_get_rate(policy->clk) / 1000;
202}
203EXPORT_SYMBOL_GPL(cpufreq_generic_get);
204
205/**
206 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
207 * @cpu: CPU to find the policy for.
208 *
209 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
210 * the kobject reference counter of that policy. Return a valid policy on
211 * success or NULL on failure.
212 *
213 * The policy returned by this function has to be released with the help of
214 * cpufreq_cpu_put() to balance its kobject reference counter properly.
215 */
216struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
217{
218 struct cpufreq_policy *policy = NULL;
219 unsigned long flags;
220
221 if (WARN_ON(cpu >= nr_cpu_ids))
222 return NULL;
223
224 /* get the cpufreq driver */
225 read_lock_irqsave(&cpufreq_driver_lock, flags);
226
227 if (cpufreq_driver) {
228 /* get the CPU */
229 policy = cpufreq_cpu_get_raw(cpu);
230 if (policy)
231 kobject_get(&policy->kobj);
232 }
233
234 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
235
236 return policy;
237}
238EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
239
240/**
241 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
242 * @policy: cpufreq policy returned by cpufreq_cpu_get().
243 */
244void cpufreq_cpu_put(struct cpufreq_policy *policy)
245{
246 kobject_put(&policy->kobj);
247}
248EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
249
250/**
251 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
252 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
253 */
254void cpufreq_cpu_release(struct cpufreq_policy *policy)
255{
256 if (WARN_ON(!policy))
257 return;
258
259 lockdep_assert_held(&policy->rwsem);
260
261 up_write(&policy->rwsem);
262
263 cpufreq_cpu_put(policy);
264}
265
266/**
267 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
268 * @cpu: CPU to find the policy for.
269 *
270 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
271 * if the policy returned by it is not NULL, acquire its rwsem for writing.
272 * Return the policy if it is active or release it and return NULL otherwise.
273 *
274 * The policy returned by this function has to be released with the help of
275 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
276 * counter properly.
277 */
278struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
279{
280 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
281
282 if (!policy)
283 return NULL;
284
285 down_write(&policy->rwsem);
286
287 if (policy_is_inactive(policy)) {
288 cpufreq_cpu_release(policy);
289 return NULL;
290 }
291
292 return policy;
293}
294
295/*********************************************************************
296 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
297 *********************************************************************/
298
299/**
300 * adjust_jiffies - Adjust the system "loops_per_jiffy".
301 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
302 * @ci: Frequency change information.
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310{
311#ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330#endif
331}
332
333/**
334 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and adjust_jiffies().
340 *
341 * It is called twice on all CPU frequency changes that have external effects.
342 */
343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346{
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392}
393
394/* Do post notifications when there are chances that transition has failed */
395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397{
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405}
406
407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409{
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438}
439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443{
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 arch_set_freq_scale(policy->related_cpus,
450 policy->cur,
451 policy->cpuinfo.max_freq);
452
453 policy->transition_ongoing = false;
454 policy->transition_task = NULL;
455
456 wake_up(&policy->transition_wait);
457}
458EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459
460/*
461 * Fast frequency switching status count. Positive means "enabled", negative
462 * means "disabled" and 0 means "not decided yet".
463 */
464static int cpufreq_fast_switch_count;
465static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466
467static void cpufreq_list_transition_notifiers(void)
468{
469 struct notifier_block *nb;
470
471 pr_info("Registered transition notifiers:\n");
472
473 mutex_lock(&cpufreq_transition_notifier_list.mutex);
474
475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476 pr_info("%pS\n", nb->notifier_call);
477
478 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479}
480
481/**
482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483 * @policy: cpufreq policy to enable fast frequency switching for.
484 *
485 * Try to enable fast frequency switching for @policy.
486 *
487 * The attempt will fail if there is at least one transition notifier registered
488 * at this point, as fast frequency switching is quite fundamentally at odds
489 * with transition notifiers. Thus if successful, it will make registration of
490 * transition notifiers fail going forward.
491 */
492void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493{
494 lockdep_assert_held(&policy->rwsem);
495
496 if (!policy->fast_switch_possible)
497 return;
498
499 mutex_lock(&cpufreq_fast_switch_lock);
500 if (cpufreq_fast_switch_count >= 0) {
501 cpufreq_fast_switch_count++;
502 policy->fast_switch_enabled = true;
503 } else {
504 pr_warn("CPU%u: Fast frequency switching not enabled\n",
505 policy->cpu);
506 cpufreq_list_transition_notifiers();
507 }
508 mutex_unlock(&cpufreq_fast_switch_lock);
509}
510EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511
512/**
513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514 * @policy: cpufreq policy to disable fast frequency switching for.
515 */
516void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517{
518 mutex_lock(&cpufreq_fast_switch_lock);
519 if (policy->fast_switch_enabled) {
520 policy->fast_switch_enabled = false;
521 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522 cpufreq_fast_switch_count--;
523 }
524 mutex_unlock(&cpufreq_fast_switch_lock);
525}
526EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527
528static unsigned int __resolve_freq(struct cpufreq_policy *policy,
529 unsigned int target_freq, unsigned int relation)
530{
531 unsigned int idx;
532
533 target_freq = clamp_val(target_freq, policy->min, policy->max);
534
535 if (!policy->freq_table)
536 return target_freq;
537
538 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
539 policy->cached_resolved_idx = idx;
540 policy->cached_target_freq = target_freq;
541 return policy->freq_table[idx].frequency;
542}
543
544/**
545 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
546 * one.
547 * @policy: associated policy to interrogate
548 * @target_freq: target frequency to resolve.
549 *
550 * The target to driver frequency mapping is cached in the policy.
551 *
552 * Return: Lowest driver-supported frequency greater than or equal to the
553 * given target_freq, subject to policy (min/max) and driver limitations.
554 */
555unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
556 unsigned int target_freq)
557{
558 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
559}
560EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
561
562unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
563{
564 unsigned int latency;
565
566 if (policy->transition_delay_us)
567 return policy->transition_delay_us;
568
569 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
570 if (latency) {
571 /*
572 * For platforms that can change the frequency very fast (< 10
573 * us), the above formula gives a decent transition delay. But
574 * for platforms where transition_latency is in milliseconds, it
575 * ends up giving unrealistic values.
576 *
577 * Cap the default transition delay to 10 ms, which seems to be
578 * a reasonable amount of time after which we should reevaluate
579 * the frequency.
580 */
581 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
582 }
583
584 return LATENCY_MULTIPLIER;
585}
586EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
587
588/*********************************************************************
589 * SYSFS INTERFACE *
590 *********************************************************************/
591static ssize_t show_boost(struct kobject *kobj,
592 struct kobj_attribute *attr, char *buf)
593{
594 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
595}
596
597static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
598 const char *buf, size_t count)
599{
600 int ret, enable;
601
602 ret = sscanf(buf, "%d", &enable);
603 if (ret != 1 || enable < 0 || enable > 1)
604 return -EINVAL;
605
606 if (cpufreq_boost_trigger_state(enable)) {
607 pr_err("%s: Cannot %s BOOST!\n",
608 __func__, enable ? "enable" : "disable");
609 return -EINVAL;
610 }
611
612 pr_debug("%s: cpufreq BOOST %s\n",
613 __func__, enable ? "enabled" : "disabled");
614
615 return count;
616}
617define_one_global_rw(boost);
618
619static struct cpufreq_governor *find_governor(const char *str_governor)
620{
621 struct cpufreq_governor *t;
622
623 for_each_governor(t)
624 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
625 return t;
626
627 return NULL;
628}
629
630static struct cpufreq_governor *get_governor(const char *str_governor)
631{
632 struct cpufreq_governor *t;
633
634 mutex_lock(&cpufreq_governor_mutex);
635 t = find_governor(str_governor);
636 if (!t)
637 goto unlock;
638
639 if (!try_module_get(t->owner))
640 t = NULL;
641
642unlock:
643 mutex_unlock(&cpufreq_governor_mutex);
644
645 return t;
646}
647
648static unsigned int cpufreq_parse_policy(char *str_governor)
649{
650 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
651 return CPUFREQ_POLICY_PERFORMANCE;
652
653 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
654 return CPUFREQ_POLICY_POWERSAVE;
655
656 return CPUFREQ_POLICY_UNKNOWN;
657}
658
659/**
660 * cpufreq_parse_governor - parse a governor string only for has_target()
661 * @str_governor: Governor name.
662 */
663static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
664{
665 struct cpufreq_governor *t;
666
667 t = get_governor(str_governor);
668 if (t)
669 return t;
670
671 if (request_module("cpufreq_%s", str_governor))
672 return NULL;
673
674 return get_governor(str_governor);
675}
676
677/*
678 * cpufreq_per_cpu_attr_read() / show_##file_name() -
679 * print out cpufreq information
680 *
681 * Write out information from cpufreq_driver->policy[cpu]; object must be
682 * "unsigned int".
683 */
684
685#define show_one(file_name, object) \
686static ssize_t show_##file_name \
687(struct cpufreq_policy *policy, char *buf) \
688{ \
689 return sprintf(buf, "%u\n", policy->object); \
690}
691
692show_one(cpuinfo_min_freq, cpuinfo.min_freq);
693show_one(cpuinfo_max_freq, cpuinfo.max_freq);
694show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
695show_one(scaling_min_freq, min);
696show_one(scaling_max_freq, max);
697
698__weak unsigned int arch_freq_get_on_cpu(int cpu)
699{
700 return 0;
701}
702
703static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
704{
705 ssize_t ret;
706 unsigned int freq;
707
708 freq = arch_freq_get_on_cpu(policy->cpu);
709 if (freq)
710 ret = sprintf(buf, "%u\n", freq);
711 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
712 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
713 else
714 ret = sprintf(buf, "%u\n", policy->cur);
715 return ret;
716}
717
718/*
719 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
720 */
721#define store_one(file_name, object) \
722static ssize_t store_##file_name \
723(struct cpufreq_policy *policy, const char *buf, size_t count) \
724{ \
725 unsigned long val; \
726 int ret; \
727 \
728 ret = sscanf(buf, "%lu", &val); \
729 if (ret != 1) \
730 return -EINVAL; \
731 \
732 ret = freq_qos_update_request(policy->object##_freq_req, val);\
733 return ret >= 0 ? count : ret; \
734}
735
736store_one(scaling_min_freq, min);
737store_one(scaling_max_freq, max);
738
739/*
740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
741 */
742static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
743 char *buf)
744{
745 unsigned int cur_freq = __cpufreq_get(policy);
746
747 if (cur_freq)
748 return sprintf(buf, "%u\n", cur_freq);
749
750 return sprintf(buf, "<unknown>\n");
751}
752
753/*
754 * show_scaling_governor - show the current policy for the specified CPU
755 */
756static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
757{
758 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
759 return sprintf(buf, "powersave\n");
760 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
761 return sprintf(buf, "performance\n");
762 else if (policy->governor)
763 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
764 policy->governor->name);
765 return -EINVAL;
766}
767
768/*
769 * store_scaling_governor - store policy for the specified CPU
770 */
771static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
772 const char *buf, size_t count)
773{
774 char str_governor[16];
775 int ret;
776
777 ret = sscanf(buf, "%15s", str_governor);
778 if (ret != 1)
779 return -EINVAL;
780
781 if (cpufreq_driver->setpolicy) {
782 unsigned int new_pol;
783
784 new_pol = cpufreq_parse_policy(str_governor);
785 if (!new_pol)
786 return -EINVAL;
787
788 ret = cpufreq_set_policy(policy, NULL, new_pol);
789 } else {
790 struct cpufreq_governor *new_gov;
791
792 new_gov = cpufreq_parse_governor(str_governor);
793 if (!new_gov)
794 return -EINVAL;
795
796 ret = cpufreq_set_policy(policy, new_gov,
797 CPUFREQ_POLICY_UNKNOWN);
798
799 module_put(new_gov->owner);
800 }
801
802 return ret ? ret : count;
803}
804
805/*
806 * show_scaling_driver - show the cpufreq driver currently loaded
807 */
808static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809{
810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811}
812
813/*
814 * show_scaling_available_governors - show the available CPUfreq governors
815 */
816static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817 char *buf)
818{
819 ssize_t i = 0;
820 struct cpufreq_governor *t;
821
822 if (!has_target()) {
823 i += sprintf(buf, "performance powersave");
824 goto out;
825 }
826
827 mutex_lock(&cpufreq_governor_mutex);
828 for_each_governor(t) {
829 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
830 - (CPUFREQ_NAME_LEN + 2)))
831 break;
832 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
833 }
834 mutex_unlock(&cpufreq_governor_mutex);
835out:
836 i += sprintf(&buf[i], "\n");
837 return i;
838}
839
840ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
841{
842 ssize_t i = 0;
843 unsigned int cpu;
844
845 for_each_cpu(cpu, mask) {
846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
847 if (i >= (PAGE_SIZE - 5))
848 break;
849 }
850
851 /* Remove the extra space at the end */
852 i--;
853
854 i += sprintf(&buf[i], "\n");
855 return i;
856}
857EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
858
859/*
860 * show_related_cpus - show the CPUs affected by each transition even if
861 * hw coordination is in use
862 */
863static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
864{
865 return cpufreq_show_cpus(policy->related_cpus, buf);
866}
867
868/*
869 * show_affected_cpus - show the CPUs affected by each transition
870 */
871static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
872{
873 return cpufreq_show_cpus(policy->cpus, buf);
874}
875
876static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
877 const char *buf, size_t count)
878{
879 unsigned int freq = 0;
880 unsigned int ret;
881
882 if (!policy->governor || !policy->governor->store_setspeed)
883 return -EINVAL;
884
885 ret = sscanf(buf, "%u", &freq);
886 if (ret != 1)
887 return -EINVAL;
888
889 policy->governor->store_setspeed(policy, freq);
890
891 return count;
892}
893
894static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
895{
896 if (!policy->governor || !policy->governor->show_setspeed)
897 return sprintf(buf, "<unsupported>\n");
898
899 return policy->governor->show_setspeed(policy, buf);
900}
901
902/*
903 * show_bios_limit - show the current cpufreq HW/BIOS limitation
904 */
905static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
906{
907 unsigned int limit;
908 int ret;
909 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
910 if (!ret)
911 return sprintf(buf, "%u\n", limit);
912 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
913}
914
915cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
916cpufreq_freq_attr_ro(cpuinfo_min_freq);
917cpufreq_freq_attr_ro(cpuinfo_max_freq);
918cpufreq_freq_attr_ro(cpuinfo_transition_latency);
919cpufreq_freq_attr_ro(scaling_available_governors);
920cpufreq_freq_attr_ro(scaling_driver);
921cpufreq_freq_attr_ro(scaling_cur_freq);
922cpufreq_freq_attr_ro(bios_limit);
923cpufreq_freq_attr_ro(related_cpus);
924cpufreq_freq_attr_ro(affected_cpus);
925cpufreq_freq_attr_rw(scaling_min_freq);
926cpufreq_freq_attr_rw(scaling_max_freq);
927cpufreq_freq_attr_rw(scaling_governor);
928cpufreq_freq_attr_rw(scaling_setspeed);
929
930static struct attribute *cpufreq_attrs[] = {
931 &cpuinfo_min_freq.attr,
932 &cpuinfo_max_freq.attr,
933 &cpuinfo_transition_latency.attr,
934 &scaling_min_freq.attr,
935 &scaling_max_freq.attr,
936 &affected_cpus.attr,
937 &related_cpus.attr,
938 &scaling_governor.attr,
939 &scaling_driver.attr,
940 &scaling_available_governors.attr,
941 &scaling_setspeed.attr,
942 NULL
943};
944ATTRIBUTE_GROUPS(cpufreq);
945
946#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
947#define to_attr(a) container_of(a, struct freq_attr, attr)
948
949static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
950{
951 struct cpufreq_policy *policy = to_policy(kobj);
952 struct freq_attr *fattr = to_attr(attr);
953 ssize_t ret = -EBUSY;
954
955 if (!fattr->show)
956 return -EIO;
957
958 down_read(&policy->rwsem);
959 if (likely(!policy_is_inactive(policy)))
960 ret = fattr->show(policy, buf);
961 up_read(&policy->rwsem);
962
963 return ret;
964}
965
966static ssize_t store(struct kobject *kobj, struct attribute *attr,
967 const char *buf, size_t count)
968{
969 struct cpufreq_policy *policy = to_policy(kobj);
970 struct freq_attr *fattr = to_attr(attr);
971 ssize_t ret = -EBUSY;
972
973 if (!fattr->store)
974 return -EIO;
975
976 down_write(&policy->rwsem);
977 if (likely(!policy_is_inactive(policy)))
978 ret = fattr->store(policy, buf, count);
979 up_write(&policy->rwsem);
980
981 return ret;
982}
983
984static void cpufreq_sysfs_release(struct kobject *kobj)
985{
986 struct cpufreq_policy *policy = to_policy(kobj);
987 pr_debug("last reference is dropped\n");
988 complete(&policy->kobj_unregister);
989}
990
991static const struct sysfs_ops sysfs_ops = {
992 .show = show,
993 .store = store,
994};
995
996static struct kobj_type ktype_cpufreq = {
997 .sysfs_ops = &sysfs_ops,
998 .default_groups = cpufreq_groups,
999 .release = cpufreq_sysfs_release,
1000};
1001
1002static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1003 struct device *dev)
1004{
1005 if (unlikely(!dev))
1006 return;
1007
1008 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1009 return;
1010
1011 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1012 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1013 dev_err(dev, "cpufreq symlink creation failed\n");
1014}
1015
1016static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1017 struct device *dev)
1018{
1019 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1020 sysfs_remove_link(&dev->kobj, "cpufreq");
1021 cpumask_clear_cpu(cpu, policy->real_cpus);
1022}
1023
1024static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1025{
1026 struct freq_attr **drv_attr;
1027 int ret = 0;
1028
1029 /* set up files for this cpu device */
1030 drv_attr = cpufreq_driver->attr;
1031 while (drv_attr && *drv_attr) {
1032 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1033 if (ret)
1034 return ret;
1035 drv_attr++;
1036 }
1037 if (cpufreq_driver->get) {
1038 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1044 if (ret)
1045 return ret;
1046
1047 if (cpufreq_driver->bios_limit) {
1048 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1049 if (ret)
1050 return ret;
1051 }
1052
1053 return 0;
1054}
1055
1056static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057{
1058 struct cpufreq_governor *gov = NULL;
1059 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1060 int ret;
1061
1062 if (has_target()) {
1063 /* Update policy governor to the one used before hotplug. */
1064 gov = get_governor(policy->last_governor);
1065 if (gov) {
1066 pr_debug("Restoring governor %s for cpu %d\n",
1067 gov->name, policy->cpu);
1068 } else {
1069 gov = get_governor(default_governor);
1070 }
1071
1072 if (!gov) {
1073 gov = cpufreq_default_governor();
1074 __module_get(gov->owner);
1075 }
1076
1077 } else {
1078
1079 /* Use the default policy if there is no last_policy. */
1080 if (policy->last_policy) {
1081 pol = policy->last_policy;
1082 } else {
1083 pol = cpufreq_parse_policy(default_governor);
1084 /*
1085 * In case the default governor is neither "performance"
1086 * nor "powersave", fall back to the initial policy
1087 * value set by the driver.
1088 */
1089 if (pol == CPUFREQ_POLICY_UNKNOWN)
1090 pol = policy->policy;
1091 }
1092 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1093 pol != CPUFREQ_POLICY_POWERSAVE)
1094 return -ENODATA;
1095 }
1096
1097 ret = cpufreq_set_policy(policy, gov, pol);
1098 if (gov)
1099 module_put(gov->owner);
1100
1101 return ret;
1102}
1103
1104static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1105{
1106 int ret = 0;
1107
1108 /* Has this CPU been taken care of already? */
1109 if (cpumask_test_cpu(cpu, policy->cpus))
1110 return 0;
1111
1112 down_write(&policy->rwsem);
1113 if (has_target())
1114 cpufreq_stop_governor(policy);
1115
1116 cpumask_set_cpu(cpu, policy->cpus);
1117
1118 if (has_target()) {
1119 ret = cpufreq_start_governor(policy);
1120 if (ret)
1121 pr_err("%s: Failed to start governor\n", __func__);
1122 }
1123 up_write(&policy->rwsem);
1124 return ret;
1125}
1126
1127void refresh_frequency_limits(struct cpufreq_policy *policy)
1128{
1129 if (!policy_is_inactive(policy)) {
1130 pr_debug("updating policy for CPU %u\n", policy->cpu);
1131
1132 cpufreq_set_policy(policy, policy->governor, policy->policy);
1133 }
1134}
1135EXPORT_SYMBOL(refresh_frequency_limits);
1136
1137static void handle_update(struct work_struct *work)
1138{
1139 struct cpufreq_policy *policy =
1140 container_of(work, struct cpufreq_policy, update);
1141
1142 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1143 down_write(&policy->rwsem);
1144 refresh_frequency_limits(policy);
1145 up_write(&policy->rwsem);
1146}
1147
1148static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1149 void *data)
1150{
1151 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1152
1153 schedule_work(&policy->update);
1154 return 0;
1155}
1156
1157static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1158 void *data)
1159{
1160 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1161
1162 schedule_work(&policy->update);
1163 return 0;
1164}
1165
1166static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1167{
1168 struct kobject *kobj;
1169 struct completion *cmp;
1170
1171 down_write(&policy->rwsem);
1172 cpufreq_stats_free_table(policy);
1173 kobj = &policy->kobj;
1174 cmp = &policy->kobj_unregister;
1175 up_write(&policy->rwsem);
1176 kobject_put(kobj);
1177
1178 /*
1179 * We need to make sure that the underlying kobj is
1180 * actually not referenced anymore by anybody before we
1181 * proceed with unloading.
1182 */
1183 pr_debug("waiting for dropping of refcount\n");
1184 wait_for_completion(cmp);
1185 pr_debug("wait complete\n");
1186}
1187
1188static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1189{
1190 struct cpufreq_policy *policy;
1191 struct device *dev = get_cpu_device(cpu);
1192 int ret;
1193
1194 if (!dev)
1195 return NULL;
1196
1197 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1198 if (!policy)
1199 return NULL;
1200
1201 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1202 goto err_free_policy;
1203
1204 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1205 goto err_free_cpumask;
1206
1207 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1208 goto err_free_rcpumask;
1209
1210 init_completion(&policy->kobj_unregister);
1211 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212 cpufreq_global_kobject, "policy%u", cpu);
1213 if (ret) {
1214 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215 /*
1216 * The entire policy object will be freed below, but the extra
1217 * memory allocated for the kobject name needs to be freed by
1218 * releasing the kobject.
1219 */
1220 kobject_put(&policy->kobj);
1221 goto err_free_real_cpus;
1222 }
1223
1224 freq_constraints_init(&policy->constraints);
1225
1226 policy->nb_min.notifier_call = cpufreq_notifier_min;
1227 policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230 &policy->nb_min);
1231 if (ret) {
1232 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233 ret, cpumask_pr_args(policy->cpus));
1234 goto err_kobj_remove;
1235 }
1236
1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238 &policy->nb_max);
1239 if (ret) {
1240 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241 ret, cpumask_pr_args(policy->cpus));
1242 goto err_min_qos_notifier;
1243 }
1244
1245 INIT_LIST_HEAD(&policy->policy_list);
1246 init_rwsem(&policy->rwsem);
1247 spin_lock_init(&policy->transition_lock);
1248 init_waitqueue_head(&policy->transition_wait);
1249 INIT_WORK(&policy->update, handle_update);
1250
1251 policy->cpu = cpu;
1252 return policy;
1253
1254err_min_qos_notifier:
1255 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1256 &policy->nb_min);
1257err_kobj_remove:
1258 cpufreq_policy_put_kobj(policy);
1259err_free_real_cpus:
1260 free_cpumask_var(policy->real_cpus);
1261err_free_rcpumask:
1262 free_cpumask_var(policy->related_cpus);
1263err_free_cpumask:
1264 free_cpumask_var(policy->cpus);
1265err_free_policy:
1266 kfree(policy);
1267
1268 return NULL;
1269}
1270
1271static void cpufreq_policy_free(struct cpufreq_policy *policy)
1272{
1273 unsigned long flags;
1274 int cpu;
1275
1276 /*
1277 * The callers must ensure the policy is inactive by now, to avoid any
1278 * races with show()/store() callbacks.
1279 */
1280 if (unlikely(!policy_is_inactive(policy)))
1281 pr_warn("%s: Freeing active policy\n", __func__);
1282
1283 /* Remove policy from list */
1284 write_lock_irqsave(&cpufreq_driver_lock, flags);
1285 list_del(&policy->policy_list);
1286
1287 for_each_cpu(cpu, policy->related_cpus)
1288 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290
1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292 &policy->nb_max);
1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 &policy->nb_min);
1295
1296 /* Cancel any pending policy->update work before freeing the policy. */
1297 cancel_work_sync(&policy->update);
1298
1299 if (policy->max_freq_req) {
1300 /*
1301 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1302 * notification, since CPUFREQ_CREATE_POLICY notification was
1303 * sent after adding max_freq_req earlier.
1304 */
1305 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1306 CPUFREQ_REMOVE_POLICY, policy);
1307 freq_qos_remove_request(policy->max_freq_req);
1308 }
1309
1310 freq_qos_remove_request(policy->min_freq_req);
1311 kfree(policy->min_freq_req);
1312
1313 cpufreq_policy_put_kobj(policy);
1314 free_cpumask_var(policy->real_cpus);
1315 free_cpumask_var(policy->related_cpus);
1316 free_cpumask_var(policy->cpus);
1317 kfree(policy);
1318}
1319
1320static int cpufreq_online(unsigned int cpu)
1321{
1322 struct cpufreq_policy *policy;
1323 bool new_policy;
1324 unsigned long flags;
1325 unsigned int j;
1326 int ret;
1327
1328 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1329
1330 /* Check if this CPU already has a policy to manage it */
1331 policy = per_cpu(cpufreq_cpu_data, cpu);
1332 if (policy) {
1333 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1334 if (!policy_is_inactive(policy))
1335 return cpufreq_add_policy_cpu(policy, cpu);
1336
1337 /* This is the only online CPU for the policy. Start over. */
1338 new_policy = false;
1339 down_write(&policy->rwsem);
1340 policy->cpu = cpu;
1341 policy->governor = NULL;
1342 } else {
1343 new_policy = true;
1344 policy = cpufreq_policy_alloc(cpu);
1345 if (!policy)
1346 return -ENOMEM;
1347 down_write(&policy->rwsem);
1348 }
1349
1350 if (!new_policy && cpufreq_driver->online) {
1351 /* Recover policy->cpus using related_cpus */
1352 cpumask_copy(policy->cpus, policy->related_cpus);
1353
1354 ret = cpufreq_driver->online(policy);
1355 if (ret) {
1356 pr_debug("%s: %d: initialization failed\n", __func__,
1357 __LINE__);
1358 goto out_exit_policy;
1359 }
1360 } else {
1361 cpumask_copy(policy->cpus, cpumask_of(cpu));
1362
1363 /*
1364 * Call driver. From then on the cpufreq must be able
1365 * to accept all calls to ->verify and ->setpolicy for this CPU.
1366 */
1367 ret = cpufreq_driver->init(policy);
1368 if (ret) {
1369 pr_debug("%s: %d: initialization failed\n", __func__,
1370 __LINE__);
1371 goto out_free_policy;
1372 }
1373
1374 /*
1375 * The initialization has succeeded and the policy is online.
1376 * If there is a problem with its frequency table, take it
1377 * offline and drop it.
1378 */
1379 ret = cpufreq_table_validate_and_sort(policy);
1380 if (ret)
1381 goto out_offline_policy;
1382
1383 /* related_cpus should at least include policy->cpus. */
1384 cpumask_copy(policy->related_cpus, policy->cpus);
1385 }
1386
1387 /*
1388 * affected cpus must always be the one, which are online. We aren't
1389 * managing offline cpus here.
1390 */
1391 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1392
1393 if (new_policy) {
1394 for_each_cpu(j, policy->related_cpus) {
1395 per_cpu(cpufreq_cpu_data, j) = policy;
1396 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1397 }
1398
1399 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1400 GFP_KERNEL);
1401 if (!policy->min_freq_req) {
1402 ret = -ENOMEM;
1403 goto out_destroy_policy;
1404 }
1405
1406 ret = freq_qos_add_request(&policy->constraints,
1407 policy->min_freq_req, FREQ_QOS_MIN,
1408 FREQ_QOS_MIN_DEFAULT_VALUE);
1409 if (ret < 0) {
1410 /*
1411 * So we don't call freq_qos_remove_request() for an
1412 * uninitialized request.
1413 */
1414 kfree(policy->min_freq_req);
1415 policy->min_freq_req = NULL;
1416 goto out_destroy_policy;
1417 }
1418
1419 /*
1420 * This must be initialized right here to avoid calling
1421 * freq_qos_remove_request() on uninitialized request in case
1422 * of errors.
1423 */
1424 policy->max_freq_req = policy->min_freq_req + 1;
1425
1426 ret = freq_qos_add_request(&policy->constraints,
1427 policy->max_freq_req, FREQ_QOS_MAX,
1428 FREQ_QOS_MAX_DEFAULT_VALUE);
1429 if (ret < 0) {
1430 policy->max_freq_req = NULL;
1431 goto out_destroy_policy;
1432 }
1433
1434 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1435 CPUFREQ_CREATE_POLICY, policy);
1436 }
1437
1438 if (cpufreq_driver->get && has_target()) {
1439 policy->cur = cpufreq_driver->get(policy->cpu);
1440 if (!policy->cur) {
1441 ret = -EIO;
1442 pr_err("%s: ->get() failed\n", __func__);
1443 goto out_destroy_policy;
1444 }
1445 }
1446
1447 /*
1448 * Sometimes boot loaders set CPU frequency to a value outside of
1449 * frequency table present with cpufreq core. In such cases CPU might be
1450 * unstable if it has to run on that frequency for long duration of time
1451 * and so its better to set it to a frequency which is specified in
1452 * freq-table. This also makes cpufreq stats inconsistent as
1453 * cpufreq-stats would fail to register because current frequency of CPU
1454 * isn't found in freq-table.
1455 *
1456 * Because we don't want this change to effect boot process badly, we go
1457 * for the next freq which is >= policy->cur ('cur' must be set by now,
1458 * otherwise we will end up setting freq to lowest of the table as 'cur'
1459 * is initialized to zero).
1460 *
1461 * We are passing target-freq as "policy->cur - 1" otherwise
1462 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1463 * equal to target-freq.
1464 */
1465 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1466 && has_target()) {
1467 unsigned int old_freq = policy->cur;
1468
1469 /* Are we running at unknown frequency ? */
1470 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1471 if (ret == -EINVAL) {
1472 ret = __cpufreq_driver_target(policy, old_freq - 1,
1473 CPUFREQ_RELATION_L);
1474
1475 /*
1476 * Reaching here after boot in a few seconds may not
1477 * mean that system will remain stable at "unknown"
1478 * frequency for longer duration. Hence, a BUG_ON().
1479 */
1480 BUG_ON(ret);
1481 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1482 __func__, policy->cpu, old_freq, policy->cur);
1483 }
1484 }
1485
1486 if (new_policy) {
1487 ret = cpufreq_add_dev_interface(policy);
1488 if (ret)
1489 goto out_destroy_policy;
1490
1491 cpufreq_stats_create_table(policy);
1492
1493 write_lock_irqsave(&cpufreq_driver_lock, flags);
1494 list_add(&policy->policy_list, &cpufreq_policy_list);
1495 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1496
1497 /*
1498 * Register with the energy model before
1499 * sched_cpufreq_governor_change() is called, which will result
1500 * in rebuilding of the sched domains, which should only be done
1501 * once the energy model is properly initialized for the policy
1502 * first.
1503 *
1504 * Also, this should be called before the policy is registered
1505 * with cooling framework.
1506 */
1507 if (cpufreq_driver->register_em)
1508 cpufreq_driver->register_em(policy);
1509 }
1510
1511 ret = cpufreq_init_policy(policy);
1512 if (ret) {
1513 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1514 __func__, cpu, ret);
1515 goto out_destroy_policy;
1516 }
1517
1518 up_write(&policy->rwsem);
1519
1520 kobject_uevent(&policy->kobj, KOBJ_ADD);
1521
1522 /* Callback for handling stuff after policy is ready */
1523 if (cpufreq_driver->ready)
1524 cpufreq_driver->ready(policy);
1525
1526 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1527 policy->cdev = of_cpufreq_cooling_register(policy);
1528
1529 pr_debug("initialization complete\n");
1530
1531 return 0;
1532
1533out_destroy_policy:
1534 for_each_cpu(j, policy->real_cpus)
1535 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1536
1537out_offline_policy:
1538 if (cpufreq_driver->offline)
1539 cpufreq_driver->offline(policy);
1540
1541out_exit_policy:
1542 if (cpufreq_driver->exit)
1543 cpufreq_driver->exit(policy);
1544
1545out_free_policy:
1546 cpumask_clear(policy->cpus);
1547 up_write(&policy->rwsem);
1548
1549 cpufreq_policy_free(policy);
1550 return ret;
1551}
1552
1553/**
1554 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1555 * @dev: CPU device.
1556 * @sif: Subsystem interface structure pointer (not used)
1557 */
1558static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1559{
1560 struct cpufreq_policy *policy;
1561 unsigned cpu = dev->id;
1562 int ret;
1563
1564 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1565
1566 if (cpu_online(cpu)) {
1567 ret = cpufreq_online(cpu);
1568 if (ret)
1569 return ret;
1570 }
1571
1572 /* Create sysfs link on CPU registration */
1573 policy = per_cpu(cpufreq_cpu_data, cpu);
1574 if (policy)
1575 add_cpu_dev_symlink(policy, cpu, dev);
1576
1577 return 0;
1578}
1579
1580static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1581{
1582 int ret;
1583
1584 if (has_target())
1585 cpufreq_stop_governor(policy);
1586
1587 cpumask_clear_cpu(cpu, policy->cpus);
1588
1589 if (!policy_is_inactive(policy)) {
1590 /* Nominate a new CPU if necessary. */
1591 if (cpu == policy->cpu)
1592 policy->cpu = cpumask_any(policy->cpus);
1593
1594 /* Start the governor again for the active policy. */
1595 if (has_target()) {
1596 ret = cpufreq_start_governor(policy);
1597 if (ret)
1598 pr_err("%s: Failed to start governor\n", __func__);
1599 }
1600
1601 return;
1602 }
1603
1604 if (has_target())
1605 strncpy(policy->last_governor, policy->governor->name,
1606 CPUFREQ_NAME_LEN);
1607 else
1608 policy->last_policy = policy->policy;
1609
1610 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1611 cpufreq_cooling_unregister(policy->cdev);
1612 policy->cdev = NULL;
1613 }
1614
1615 if (has_target())
1616 cpufreq_exit_governor(policy);
1617
1618 /*
1619 * Perform the ->offline() during light-weight tear-down, as
1620 * that allows fast recovery when the CPU comes back.
1621 */
1622 if (cpufreq_driver->offline) {
1623 cpufreq_driver->offline(policy);
1624 } else if (cpufreq_driver->exit) {
1625 cpufreq_driver->exit(policy);
1626 policy->freq_table = NULL;
1627 }
1628}
1629
1630static int cpufreq_offline(unsigned int cpu)
1631{
1632 struct cpufreq_policy *policy;
1633
1634 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1635
1636 policy = cpufreq_cpu_get_raw(cpu);
1637 if (!policy) {
1638 pr_debug("%s: No cpu_data found\n", __func__);
1639 return 0;
1640 }
1641
1642 down_write(&policy->rwsem);
1643
1644 __cpufreq_offline(cpu, policy);
1645
1646 up_write(&policy->rwsem);
1647 return 0;
1648}
1649
1650/*
1651 * cpufreq_remove_dev - remove a CPU device
1652 *
1653 * Removes the cpufreq interface for a CPU device.
1654 */
1655static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1656{
1657 unsigned int cpu = dev->id;
1658 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1659
1660 if (!policy)
1661 return;
1662
1663 down_write(&policy->rwsem);
1664
1665 if (cpu_online(cpu))
1666 __cpufreq_offline(cpu, policy);
1667
1668 remove_cpu_dev_symlink(policy, cpu, dev);
1669
1670 if (!cpumask_empty(policy->real_cpus)) {
1671 up_write(&policy->rwsem);
1672 return;
1673 }
1674
1675 /* We did light-weight exit earlier, do full tear down now */
1676 if (cpufreq_driver->offline)
1677 cpufreq_driver->exit(policy);
1678
1679 up_write(&policy->rwsem);
1680
1681 cpufreq_policy_free(policy);
1682}
1683
1684/**
1685 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1686 * @policy: Policy managing CPUs.
1687 * @new_freq: New CPU frequency.
1688 *
1689 * Adjust to the current frequency first and clean up later by either calling
1690 * cpufreq_update_policy(), or scheduling handle_update().
1691 */
1692static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1693 unsigned int new_freq)
1694{
1695 struct cpufreq_freqs freqs;
1696
1697 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1698 policy->cur, new_freq);
1699
1700 freqs.old = policy->cur;
1701 freqs.new = new_freq;
1702
1703 cpufreq_freq_transition_begin(policy, &freqs);
1704 cpufreq_freq_transition_end(policy, &freqs, 0);
1705}
1706
1707static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1708{
1709 unsigned int new_freq;
1710
1711 new_freq = cpufreq_driver->get(policy->cpu);
1712 if (!new_freq)
1713 return 0;
1714
1715 /*
1716 * If fast frequency switching is used with the given policy, the check
1717 * against policy->cur is pointless, so skip it in that case.
1718 */
1719 if (policy->fast_switch_enabled || !has_target())
1720 return new_freq;
1721
1722 if (policy->cur != new_freq) {
1723 /*
1724 * For some platforms, the frequency returned by hardware may be
1725 * slightly different from what is provided in the frequency
1726 * table, for example hardware may return 499 MHz instead of 500
1727 * MHz. In such cases it is better to avoid getting into
1728 * unnecessary frequency updates.
1729 */
1730 if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1731 return policy->cur;
1732
1733 cpufreq_out_of_sync(policy, new_freq);
1734 if (update)
1735 schedule_work(&policy->update);
1736 }
1737
1738 return new_freq;
1739}
1740
1741/**
1742 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1743 * @cpu: CPU number
1744 *
1745 * This is the last known freq, without actually getting it from the driver.
1746 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1747 */
1748unsigned int cpufreq_quick_get(unsigned int cpu)
1749{
1750 struct cpufreq_policy *policy;
1751 unsigned int ret_freq = 0;
1752 unsigned long flags;
1753
1754 read_lock_irqsave(&cpufreq_driver_lock, flags);
1755
1756 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1757 ret_freq = cpufreq_driver->get(cpu);
1758 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1759 return ret_freq;
1760 }
1761
1762 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1763
1764 policy = cpufreq_cpu_get(cpu);
1765 if (policy) {
1766 ret_freq = policy->cur;
1767 cpufreq_cpu_put(policy);
1768 }
1769
1770 return ret_freq;
1771}
1772EXPORT_SYMBOL(cpufreq_quick_get);
1773
1774/**
1775 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1776 * @cpu: CPU number
1777 *
1778 * Just return the max possible frequency for a given CPU.
1779 */
1780unsigned int cpufreq_quick_get_max(unsigned int cpu)
1781{
1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 unsigned int ret_freq = 0;
1784
1785 if (policy) {
1786 ret_freq = policy->max;
1787 cpufreq_cpu_put(policy);
1788 }
1789
1790 return ret_freq;
1791}
1792EXPORT_SYMBOL(cpufreq_quick_get_max);
1793
1794/**
1795 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1796 * @cpu: CPU number
1797 *
1798 * The default return value is the max_freq field of cpuinfo.
1799 */
1800__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1801{
1802 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803 unsigned int ret_freq = 0;
1804
1805 if (policy) {
1806 ret_freq = policy->cpuinfo.max_freq;
1807 cpufreq_cpu_put(policy);
1808 }
1809
1810 return ret_freq;
1811}
1812EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1813
1814static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1815{
1816 if (unlikely(policy_is_inactive(policy)))
1817 return 0;
1818
1819 return cpufreq_verify_current_freq(policy, true);
1820}
1821
1822/**
1823 * cpufreq_get - get the current CPU frequency (in kHz)
1824 * @cpu: CPU number
1825 *
1826 * Get the CPU current (static) CPU frequency
1827 */
1828unsigned int cpufreq_get(unsigned int cpu)
1829{
1830 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831 unsigned int ret_freq = 0;
1832
1833 if (policy) {
1834 down_read(&policy->rwsem);
1835 if (cpufreq_driver->get)
1836 ret_freq = __cpufreq_get(policy);
1837 up_read(&policy->rwsem);
1838
1839 cpufreq_cpu_put(policy);
1840 }
1841
1842 return ret_freq;
1843}
1844EXPORT_SYMBOL(cpufreq_get);
1845
1846static struct subsys_interface cpufreq_interface = {
1847 .name = "cpufreq",
1848 .subsys = &cpu_subsys,
1849 .add_dev = cpufreq_add_dev,
1850 .remove_dev = cpufreq_remove_dev,
1851};
1852
1853/*
1854 * In case platform wants some specific frequency to be configured
1855 * during suspend..
1856 */
1857int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1858{
1859 int ret;
1860
1861 if (!policy->suspend_freq) {
1862 pr_debug("%s: suspend_freq not defined\n", __func__);
1863 return 0;
1864 }
1865
1866 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1867 policy->suspend_freq);
1868
1869 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1870 CPUFREQ_RELATION_H);
1871 if (ret)
1872 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1873 __func__, policy->suspend_freq, ret);
1874
1875 return ret;
1876}
1877EXPORT_SYMBOL(cpufreq_generic_suspend);
1878
1879/**
1880 * cpufreq_suspend() - Suspend CPUFreq governors.
1881 *
1882 * Called during system wide Suspend/Hibernate cycles for suspending governors
1883 * as some platforms can't change frequency after this point in suspend cycle.
1884 * Because some of the devices (like: i2c, regulators, etc) they use for
1885 * changing frequency are suspended quickly after this point.
1886 */
1887void cpufreq_suspend(void)
1888{
1889 struct cpufreq_policy *policy;
1890
1891 if (!cpufreq_driver)
1892 return;
1893
1894 if (!has_target() && !cpufreq_driver->suspend)
1895 goto suspend;
1896
1897 pr_debug("%s: Suspending Governors\n", __func__);
1898
1899 for_each_active_policy(policy) {
1900 if (has_target()) {
1901 down_write(&policy->rwsem);
1902 cpufreq_stop_governor(policy);
1903 up_write(&policy->rwsem);
1904 }
1905
1906 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1907 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1908 cpufreq_driver->name);
1909 }
1910
1911suspend:
1912 cpufreq_suspended = true;
1913}
1914
1915/**
1916 * cpufreq_resume() - Resume CPUFreq governors.
1917 *
1918 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1919 * are suspended with cpufreq_suspend().
1920 */
1921void cpufreq_resume(void)
1922{
1923 struct cpufreq_policy *policy;
1924 int ret;
1925
1926 if (!cpufreq_driver)
1927 return;
1928
1929 if (unlikely(!cpufreq_suspended))
1930 return;
1931
1932 cpufreq_suspended = false;
1933
1934 if (!has_target() && !cpufreq_driver->resume)
1935 return;
1936
1937 pr_debug("%s: Resuming Governors\n", __func__);
1938
1939 for_each_active_policy(policy) {
1940 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1941 pr_err("%s: Failed to resume driver: %p\n", __func__,
1942 policy);
1943 } else if (has_target()) {
1944 down_write(&policy->rwsem);
1945 ret = cpufreq_start_governor(policy);
1946 up_write(&policy->rwsem);
1947
1948 if (ret)
1949 pr_err("%s: Failed to start governor for policy: %p\n",
1950 __func__, policy);
1951 }
1952 }
1953}
1954
1955/**
1956 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1957 * @flags: Flags to test against the current cpufreq driver's flags.
1958 *
1959 * Assumes that the driver is there, so callers must ensure that this is the
1960 * case.
1961 */
1962bool cpufreq_driver_test_flags(u16 flags)
1963{
1964 return !!(cpufreq_driver->flags & flags);
1965}
1966
1967/**
1968 * cpufreq_get_current_driver - Return the current driver's name.
1969 *
1970 * Return the name string of the currently registered cpufreq driver or NULL if
1971 * none.
1972 */
1973const char *cpufreq_get_current_driver(void)
1974{
1975 if (cpufreq_driver)
1976 return cpufreq_driver->name;
1977
1978 return NULL;
1979}
1980EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1981
1982/**
1983 * cpufreq_get_driver_data - Return current driver data.
1984 *
1985 * Return the private data of the currently registered cpufreq driver, or NULL
1986 * if no cpufreq driver has been registered.
1987 */
1988void *cpufreq_get_driver_data(void)
1989{
1990 if (cpufreq_driver)
1991 return cpufreq_driver->driver_data;
1992
1993 return NULL;
1994}
1995EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1996
1997/*********************************************************************
1998 * NOTIFIER LISTS INTERFACE *
1999 *********************************************************************/
2000
2001/**
2002 * cpufreq_register_notifier - Register a notifier with cpufreq.
2003 * @nb: notifier function to register.
2004 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2005 *
2006 * Add a notifier to one of two lists: either a list of notifiers that run on
2007 * clock rate changes (once before and once after every transition), or a list
2008 * of notifiers that ron on cpufreq policy changes.
2009 *
2010 * This function may sleep and it has the same return values as
2011 * blocking_notifier_chain_register().
2012 */
2013int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2014{
2015 int ret;
2016
2017 if (cpufreq_disabled())
2018 return -EINVAL;
2019
2020 switch (list) {
2021 case CPUFREQ_TRANSITION_NOTIFIER:
2022 mutex_lock(&cpufreq_fast_switch_lock);
2023
2024 if (cpufreq_fast_switch_count > 0) {
2025 mutex_unlock(&cpufreq_fast_switch_lock);
2026 return -EBUSY;
2027 }
2028 ret = srcu_notifier_chain_register(
2029 &cpufreq_transition_notifier_list, nb);
2030 if (!ret)
2031 cpufreq_fast_switch_count--;
2032
2033 mutex_unlock(&cpufreq_fast_switch_lock);
2034 break;
2035 case CPUFREQ_POLICY_NOTIFIER:
2036 ret = blocking_notifier_chain_register(
2037 &cpufreq_policy_notifier_list, nb);
2038 break;
2039 default:
2040 ret = -EINVAL;
2041 }
2042
2043 return ret;
2044}
2045EXPORT_SYMBOL(cpufreq_register_notifier);
2046
2047/**
2048 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2049 * @nb: notifier block to be unregistered.
2050 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2051 *
2052 * Remove a notifier from one of the cpufreq notifier lists.
2053 *
2054 * This function may sleep and it has the same return values as
2055 * blocking_notifier_chain_unregister().
2056 */
2057int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2058{
2059 int ret;
2060
2061 if (cpufreq_disabled())
2062 return -EINVAL;
2063
2064 switch (list) {
2065 case CPUFREQ_TRANSITION_NOTIFIER:
2066 mutex_lock(&cpufreq_fast_switch_lock);
2067
2068 ret = srcu_notifier_chain_unregister(
2069 &cpufreq_transition_notifier_list, nb);
2070 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2071 cpufreq_fast_switch_count++;
2072
2073 mutex_unlock(&cpufreq_fast_switch_lock);
2074 break;
2075 case CPUFREQ_POLICY_NOTIFIER:
2076 ret = blocking_notifier_chain_unregister(
2077 &cpufreq_policy_notifier_list, nb);
2078 break;
2079 default:
2080 ret = -EINVAL;
2081 }
2082
2083 return ret;
2084}
2085EXPORT_SYMBOL(cpufreq_unregister_notifier);
2086
2087
2088/*********************************************************************
2089 * GOVERNORS *
2090 *********************************************************************/
2091
2092/**
2093 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2094 * @policy: cpufreq policy to switch the frequency for.
2095 * @target_freq: New frequency to set (may be approximate).
2096 *
2097 * Carry out a fast frequency switch without sleeping.
2098 *
2099 * The driver's ->fast_switch() callback invoked by this function must be
2100 * suitable for being called from within RCU-sched read-side critical sections
2101 * and it is expected to select the minimum available frequency greater than or
2102 * equal to @target_freq (CPUFREQ_RELATION_L).
2103 *
2104 * This function must not be called if policy->fast_switch_enabled is unset.
2105 *
2106 * Governors calling this function must guarantee that it will never be invoked
2107 * twice in parallel for the same policy and that it will never be called in
2108 * parallel with either ->target() or ->target_index() for the same policy.
2109 *
2110 * Returns the actual frequency set for the CPU.
2111 *
2112 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2113 * error condition, the hardware configuration must be preserved.
2114 */
2115unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2116 unsigned int target_freq)
2117{
2118 unsigned int freq;
2119 int cpu;
2120
2121 target_freq = clamp_val(target_freq, policy->min, policy->max);
2122 freq = cpufreq_driver->fast_switch(policy, target_freq);
2123
2124 if (!freq)
2125 return 0;
2126
2127 policy->cur = freq;
2128 arch_set_freq_scale(policy->related_cpus, freq,
2129 policy->cpuinfo.max_freq);
2130 cpufreq_stats_record_transition(policy, freq);
2131
2132 if (trace_cpu_frequency_enabled()) {
2133 for_each_cpu(cpu, policy->cpus)
2134 trace_cpu_frequency(freq, cpu);
2135 }
2136
2137 return freq;
2138}
2139EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2140
2141/**
2142 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2143 * @cpu: Target CPU.
2144 * @min_perf: Minimum (required) performance level (units of @capacity).
2145 * @target_perf: Target (desired) performance level (units of @capacity).
2146 * @capacity: Capacity of the target CPU.
2147 *
2148 * Carry out a fast performance level switch of @cpu without sleeping.
2149 *
2150 * The driver's ->adjust_perf() callback invoked by this function must be
2151 * suitable for being called from within RCU-sched read-side critical sections
2152 * and it is expected to select a suitable performance level equal to or above
2153 * @min_perf and preferably equal to or below @target_perf.
2154 *
2155 * This function must not be called if policy->fast_switch_enabled is unset.
2156 *
2157 * Governors calling this function must guarantee that it will never be invoked
2158 * twice in parallel for the same CPU and that it will never be called in
2159 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2160 * the same CPU.
2161 */
2162void cpufreq_driver_adjust_perf(unsigned int cpu,
2163 unsigned long min_perf,
2164 unsigned long target_perf,
2165 unsigned long capacity)
2166{
2167 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2168}
2169
2170/**
2171 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2172 *
2173 * Return 'true' if the ->adjust_perf callback is present for the
2174 * current driver or 'false' otherwise.
2175 */
2176bool cpufreq_driver_has_adjust_perf(void)
2177{
2178 return !!cpufreq_driver->adjust_perf;
2179}
2180
2181/* Must set freqs->new to intermediate frequency */
2182static int __target_intermediate(struct cpufreq_policy *policy,
2183 struct cpufreq_freqs *freqs, int index)
2184{
2185 int ret;
2186
2187 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2188
2189 /* We don't need to switch to intermediate freq */
2190 if (!freqs->new)
2191 return 0;
2192
2193 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2194 __func__, policy->cpu, freqs->old, freqs->new);
2195
2196 cpufreq_freq_transition_begin(policy, freqs);
2197 ret = cpufreq_driver->target_intermediate(policy, index);
2198 cpufreq_freq_transition_end(policy, freqs, ret);
2199
2200 if (ret)
2201 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2202 __func__, ret);
2203
2204 return ret;
2205}
2206
2207static int __target_index(struct cpufreq_policy *policy, int index)
2208{
2209 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2210 unsigned int restore_freq, intermediate_freq = 0;
2211 unsigned int newfreq = policy->freq_table[index].frequency;
2212 int retval = -EINVAL;
2213 bool notify;
2214
2215 if (newfreq == policy->cur)
2216 return 0;
2217
2218 /* Save last value to restore later on errors */
2219 restore_freq = policy->cur;
2220
2221 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2222 if (notify) {
2223 /* Handle switching to intermediate frequency */
2224 if (cpufreq_driver->get_intermediate) {
2225 retval = __target_intermediate(policy, &freqs, index);
2226 if (retval)
2227 return retval;
2228
2229 intermediate_freq = freqs.new;
2230 /* Set old freq to intermediate */
2231 if (intermediate_freq)
2232 freqs.old = freqs.new;
2233 }
2234
2235 freqs.new = newfreq;
2236 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2237 __func__, policy->cpu, freqs.old, freqs.new);
2238
2239 cpufreq_freq_transition_begin(policy, &freqs);
2240 }
2241
2242 retval = cpufreq_driver->target_index(policy, index);
2243 if (retval)
2244 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2245 retval);
2246
2247 if (notify) {
2248 cpufreq_freq_transition_end(policy, &freqs, retval);
2249
2250 /*
2251 * Failed after setting to intermediate freq? Driver should have
2252 * reverted back to initial frequency and so should we. Check
2253 * here for intermediate_freq instead of get_intermediate, in
2254 * case we haven't switched to intermediate freq at all.
2255 */
2256 if (unlikely(retval && intermediate_freq)) {
2257 freqs.old = intermediate_freq;
2258 freqs.new = restore_freq;
2259 cpufreq_freq_transition_begin(policy, &freqs);
2260 cpufreq_freq_transition_end(policy, &freqs, 0);
2261 }
2262 }
2263
2264 return retval;
2265}
2266
2267int __cpufreq_driver_target(struct cpufreq_policy *policy,
2268 unsigned int target_freq,
2269 unsigned int relation)
2270{
2271 unsigned int old_target_freq = target_freq;
2272
2273 if (cpufreq_disabled())
2274 return -ENODEV;
2275
2276 target_freq = __resolve_freq(policy, target_freq, relation);
2277
2278 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2279 policy->cpu, target_freq, relation, old_target_freq);
2280
2281 /*
2282 * This might look like a redundant call as we are checking it again
2283 * after finding index. But it is left intentionally for cases where
2284 * exactly same freq is called again and so we can save on few function
2285 * calls.
2286 */
2287 if (target_freq == policy->cur &&
2288 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2289 return 0;
2290
2291 if (cpufreq_driver->target) {
2292 /*
2293 * If the driver hasn't setup a single inefficient frequency,
2294 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2295 */
2296 if (!policy->efficiencies_available)
2297 relation &= ~CPUFREQ_RELATION_E;
2298
2299 return cpufreq_driver->target(policy, target_freq, relation);
2300 }
2301
2302 if (!cpufreq_driver->target_index)
2303 return -EINVAL;
2304
2305 return __target_index(policy, policy->cached_resolved_idx);
2306}
2307EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2308
2309int cpufreq_driver_target(struct cpufreq_policy *policy,
2310 unsigned int target_freq,
2311 unsigned int relation)
2312{
2313 int ret;
2314
2315 down_write(&policy->rwsem);
2316
2317 ret = __cpufreq_driver_target(policy, target_freq, relation);
2318
2319 up_write(&policy->rwsem);
2320
2321 return ret;
2322}
2323EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2324
2325__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2326{
2327 return NULL;
2328}
2329
2330static int cpufreq_init_governor(struct cpufreq_policy *policy)
2331{
2332 int ret;
2333
2334 /* Don't start any governor operations if we are entering suspend */
2335 if (cpufreq_suspended)
2336 return 0;
2337 /*
2338 * Governor might not be initiated here if ACPI _PPC changed
2339 * notification happened, so check it.
2340 */
2341 if (!policy->governor)
2342 return -EINVAL;
2343
2344 /* Platform doesn't want dynamic frequency switching ? */
2345 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2346 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2347 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2348
2349 if (gov) {
2350 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2351 policy->governor->name, gov->name);
2352 policy->governor = gov;
2353 } else {
2354 return -EINVAL;
2355 }
2356 }
2357
2358 if (!try_module_get(policy->governor->owner))
2359 return -EINVAL;
2360
2361 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2362
2363 if (policy->governor->init) {
2364 ret = policy->governor->init(policy);
2365 if (ret) {
2366 module_put(policy->governor->owner);
2367 return ret;
2368 }
2369 }
2370
2371 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2372
2373 return 0;
2374}
2375
2376static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2377{
2378 if (cpufreq_suspended || !policy->governor)
2379 return;
2380
2381 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2382
2383 if (policy->governor->exit)
2384 policy->governor->exit(policy);
2385
2386 module_put(policy->governor->owner);
2387}
2388
2389int cpufreq_start_governor(struct cpufreq_policy *policy)
2390{
2391 int ret;
2392
2393 if (cpufreq_suspended)
2394 return 0;
2395
2396 if (!policy->governor)
2397 return -EINVAL;
2398
2399 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2400
2401 if (cpufreq_driver->get)
2402 cpufreq_verify_current_freq(policy, false);
2403
2404 if (policy->governor->start) {
2405 ret = policy->governor->start(policy);
2406 if (ret)
2407 return ret;
2408 }
2409
2410 if (policy->governor->limits)
2411 policy->governor->limits(policy);
2412
2413 return 0;
2414}
2415
2416void cpufreq_stop_governor(struct cpufreq_policy *policy)
2417{
2418 if (cpufreq_suspended || !policy->governor)
2419 return;
2420
2421 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2422
2423 if (policy->governor->stop)
2424 policy->governor->stop(policy);
2425}
2426
2427static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2428{
2429 if (cpufreq_suspended || !policy->governor)
2430 return;
2431
2432 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2433
2434 if (policy->governor->limits)
2435 policy->governor->limits(policy);
2436}
2437
2438int cpufreq_register_governor(struct cpufreq_governor *governor)
2439{
2440 int err;
2441
2442 if (!governor)
2443 return -EINVAL;
2444
2445 if (cpufreq_disabled())
2446 return -ENODEV;
2447
2448 mutex_lock(&cpufreq_governor_mutex);
2449
2450 err = -EBUSY;
2451 if (!find_governor(governor->name)) {
2452 err = 0;
2453 list_add(&governor->governor_list, &cpufreq_governor_list);
2454 }
2455
2456 mutex_unlock(&cpufreq_governor_mutex);
2457 return err;
2458}
2459EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2460
2461void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2462{
2463 struct cpufreq_policy *policy;
2464 unsigned long flags;
2465
2466 if (!governor)
2467 return;
2468
2469 if (cpufreq_disabled())
2470 return;
2471
2472 /* clear last_governor for all inactive policies */
2473 read_lock_irqsave(&cpufreq_driver_lock, flags);
2474 for_each_inactive_policy(policy) {
2475 if (!strcmp(policy->last_governor, governor->name)) {
2476 policy->governor = NULL;
2477 strcpy(policy->last_governor, "\0");
2478 }
2479 }
2480 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2481
2482 mutex_lock(&cpufreq_governor_mutex);
2483 list_del(&governor->governor_list);
2484 mutex_unlock(&cpufreq_governor_mutex);
2485}
2486EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2487
2488
2489/*********************************************************************
2490 * POLICY INTERFACE *
2491 *********************************************************************/
2492
2493/**
2494 * cpufreq_get_policy - get the current cpufreq_policy
2495 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2496 * is written
2497 * @cpu: CPU to find the policy for
2498 *
2499 * Reads the current cpufreq policy.
2500 */
2501int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2502{
2503 struct cpufreq_policy *cpu_policy;
2504 if (!policy)
2505 return -EINVAL;
2506
2507 cpu_policy = cpufreq_cpu_get(cpu);
2508 if (!cpu_policy)
2509 return -EINVAL;
2510
2511 memcpy(policy, cpu_policy, sizeof(*policy));
2512
2513 cpufreq_cpu_put(cpu_policy);
2514 return 0;
2515}
2516EXPORT_SYMBOL(cpufreq_get_policy);
2517
2518/**
2519 * cpufreq_set_policy - Modify cpufreq policy parameters.
2520 * @policy: Policy object to modify.
2521 * @new_gov: Policy governor pointer.
2522 * @new_pol: Policy value (for drivers with built-in governors).
2523 *
2524 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2525 * limits to be set for the policy, update @policy with the verified limits
2526 * values and either invoke the driver's ->setpolicy() callback (if present) or
2527 * carry out a governor update for @policy. That is, run the current governor's
2528 * ->limits() callback (if @new_gov points to the same object as the one in
2529 * @policy) or replace the governor for @policy with @new_gov.
2530 *
2531 * The cpuinfo part of @policy is not updated by this function.
2532 */
2533static int cpufreq_set_policy(struct cpufreq_policy *policy,
2534 struct cpufreq_governor *new_gov,
2535 unsigned int new_pol)
2536{
2537 struct cpufreq_policy_data new_data;
2538 struct cpufreq_governor *old_gov;
2539 int ret;
2540
2541 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2542 new_data.freq_table = policy->freq_table;
2543 new_data.cpu = policy->cpu;
2544 /*
2545 * PM QoS framework collects all the requests from users and provide us
2546 * the final aggregated value here.
2547 */
2548 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2549 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2550
2551 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2552 new_data.cpu, new_data.min, new_data.max);
2553
2554 /*
2555 * Verify that the CPU speed can be set within these limits and make sure
2556 * that min <= max.
2557 */
2558 ret = cpufreq_driver->verify(&new_data);
2559 if (ret)
2560 return ret;
2561
2562 /*
2563 * Resolve policy min/max to available frequencies. It ensures
2564 * no frequency resolution will neither overshoot the requested maximum
2565 * nor undershoot the requested minimum.
2566 */
2567 policy->min = new_data.min;
2568 policy->max = new_data.max;
2569 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2570 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2571 trace_cpu_frequency_limits(policy);
2572
2573 policy->cached_target_freq = UINT_MAX;
2574
2575 pr_debug("new min and max freqs are %u - %u kHz\n",
2576 policy->min, policy->max);
2577
2578 if (cpufreq_driver->setpolicy) {
2579 policy->policy = new_pol;
2580 pr_debug("setting range\n");
2581 return cpufreq_driver->setpolicy(policy);
2582 }
2583
2584 if (new_gov == policy->governor) {
2585 pr_debug("governor limits update\n");
2586 cpufreq_governor_limits(policy);
2587 return 0;
2588 }
2589
2590 pr_debug("governor switch\n");
2591
2592 /* save old, working values */
2593 old_gov = policy->governor;
2594 /* end old governor */
2595 if (old_gov) {
2596 cpufreq_stop_governor(policy);
2597 cpufreq_exit_governor(policy);
2598 }
2599
2600 /* start new governor */
2601 policy->governor = new_gov;
2602 ret = cpufreq_init_governor(policy);
2603 if (!ret) {
2604 ret = cpufreq_start_governor(policy);
2605 if (!ret) {
2606 pr_debug("governor change\n");
2607 sched_cpufreq_governor_change(policy, old_gov);
2608 return 0;
2609 }
2610 cpufreq_exit_governor(policy);
2611 }
2612
2613 /* new governor failed, so re-start old one */
2614 pr_debug("starting governor %s failed\n", policy->governor->name);
2615 if (old_gov) {
2616 policy->governor = old_gov;
2617 if (cpufreq_init_governor(policy))
2618 policy->governor = NULL;
2619 else
2620 cpufreq_start_governor(policy);
2621 }
2622
2623 return ret;
2624}
2625
2626/**
2627 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2628 * @cpu: CPU to re-evaluate the policy for.
2629 *
2630 * Update the current frequency for the cpufreq policy of @cpu and use
2631 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2632 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2633 * for the policy in question, among other things.
2634 */
2635void cpufreq_update_policy(unsigned int cpu)
2636{
2637 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2638
2639 if (!policy)
2640 return;
2641
2642 /*
2643 * BIOS might change freq behind our back
2644 * -> ask driver for current freq and notify governors about a change
2645 */
2646 if (cpufreq_driver->get && has_target() &&
2647 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2648 goto unlock;
2649
2650 refresh_frequency_limits(policy);
2651
2652unlock:
2653 cpufreq_cpu_release(policy);
2654}
2655EXPORT_SYMBOL(cpufreq_update_policy);
2656
2657/**
2658 * cpufreq_update_limits - Update policy limits for a given CPU.
2659 * @cpu: CPU to update the policy limits for.
2660 *
2661 * Invoke the driver's ->update_limits callback if present or call
2662 * cpufreq_update_policy() for @cpu.
2663 */
2664void cpufreq_update_limits(unsigned int cpu)
2665{
2666 if (cpufreq_driver->update_limits)
2667 cpufreq_driver->update_limits(cpu);
2668 else
2669 cpufreq_update_policy(cpu);
2670}
2671EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2672
2673/*********************************************************************
2674 * BOOST *
2675 *********************************************************************/
2676static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2677{
2678 int ret;
2679
2680 if (!policy->freq_table)
2681 return -ENXIO;
2682
2683 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2684 if (ret) {
2685 pr_err("%s: Policy frequency update failed\n", __func__);
2686 return ret;
2687 }
2688
2689 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2690 if (ret < 0)
2691 return ret;
2692
2693 return 0;
2694}
2695
2696int cpufreq_boost_trigger_state(int state)
2697{
2698 struct cpufreq_policy *policy;
2699 unsigned long flags;
2700 int ret = 0;
2701
2702 if (cpufreq_driver->boost_enabled == state)
2703 return 0;
2704
2705 write_lock_irqsave(&cpufreq_driver_lock, flags);
2706 cpufreq_driver->boost_enabled = state;
2707 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708
2709 cpus_read_lock();
2710 for_each_active_policy(policy) {
2711 ret = cpufreq_driver->set_boost(policy, state);
2712 if (ret)
2713 goto err_reset_state;
2714 }
2715 cpus_read_unlock();
2716
2717 return 0;
2718
2719err_reset_state:
2720 cpus_read_unlock();
2721
2722 write_lock_irqsave(&cpufreq_driver_lock, flags);
2723 cpufreq_driver->boost_enabled = !state;
2724 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2725
2726 pr_err("%s: Cannot %s BOOST\n",
2727 __func__, state ? "enable" : "disable");
2728
2729 return ret;
2730}
2731
2732static bool cpufreq_boost_supported(void)
2733{
2734 return cpufreq_driver->set_boost;
2735}
2736
2737static int create_boost_sysfs_file(void)
2738{
2739 int ret;
2740
2741 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2742 if (ret)
2743 pr_err("%s: cannot register global BOOST sysfs file\n",
2744 __func__);
2745
2746 return ret;
2747}
2748
2749static void remove_boost_sysfs_file(void)
2750{
2751 if (cpufreq_boost_supported())
2752 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2753}
2754
2755int cpufreq_enable_boost_support(void)
2756{
2757 if (!cpufreq_driver)
2758 return -EINVAL;
2759
2760 if (cpufreq_boost_supported())
2761 return 0;
2762
2763 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2764
2765 /* This will get removed on driver unregister */
2766 return create_boost_sysfs_file();
2767}
2768EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2769
2770int cpufreq_boost_enabled(void)
2771{
2772 return cpufreq_driver->boost_enabled;
2773}
2774EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2775
2776/*********************************************************************
2777 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2778 *********************************************************************/
2779static enum cpuhp_state hp_online;
2780
2781static int cpuhp_cpufreq_online(unsigned int cpu)
2782{
2783 cpufreq_online(cpu);
2784
2785 return 0;
2786}
2787
2788static int cpuhp_cpufreq_offline(unsigned int cpu)
2789{
2790 cpufreq_offline(cpu);
2791
2792 return 0;
2793}
2794
2795/**
2796 * cpufreq_register_driver - register a CPU Frequency driver
2797 * @driver_data: A struct cpufreq_driver containing the values#
2798 * submitted by the CPU Frequency driver.
2799 *
2800 * Registers a CPU Frequency driver to this core code. This code
2801 * returns zero on success, -EEXIST when another driver got here first
2802 * (and isn't unregistered in the meantime).
2803 *
2804 */
2805int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2806{
2807 unsigned long flags;
2808 int ret;
2809
2810 if (cpufreq_disabled())
2811 return -ENODEV;
2812
2813 /*
2814 * The cpufreq core depends heavily on the availability of device
2815 * structure, make sure they are available before proceeding further.
2816 */
2817 if (!get_cpu_device(0))
2818 return -EPROBE_DEFER;
2819
2820 if (!driver_data || !driver_data->verify || !driver_data->init ||
2821 !(driver_data->setpolicy || driver_data->target_index ||
2822 driver_data->target) ||
2823 (driver_data->setpolicy && (driver_data->target_index ||
2824 driver_data->target)) ||
2825 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2826 (!driver_data->online != !driver_data->offline))
2827 return -EINVAL;
2828
2829 pr_debug("trying to register driver %s\n", driver_data->name);
2830
2831 /* Protect against concurrent CPU online/offline. */
2832 cpus_read_lock();
2833
2834 write_lock_irqsave(&cpufreq_driver_lock, flags);
2835 if (cpufreq_driver) {
2836 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2837 ret = -EEXIST;
2838 goto out;
2839 }
2840 cpufreq_driver = driver_data;
2841 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842
2843 /*
2844 * Mark support for the scheduler's frequency invariance engine for
2845 * drivers that implement target(), target_index() or fast_switch().
2846 */
2847 if (!cpufreq_driver->setpolicy) {
2848 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2849 pr_debug("supports frequency invariance");
2850 }
2851
2852 if (driver_data->setpolicy)
2853 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2854
2855 if (cpufreq_boost_supported()) {
2856 ret = create_boost_sysfs_file();
2857 if (ret)
2858 goto err_null_driver;
2859 }
2860
2861 ret = subsys_interface_register(&cpufreq_interface);
2862 if (ret)
2863 goto err_boost_unreg;
2864
2865 if (unlikely(list_empty(&cpufreq_policy_list))) {
2866 /* if all ->init() calls failed, unregister */
2867 ret = -ENODEV;
2868 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2869 driver_data->name);
2870 goto err_if_unreg;
2871 }
2872
2873 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2874 "cpufreq:online",
2875 cpuhp_cpufreq_online,
2876 cpuhp_cpufreq_offline);
2877 if (ret < 0)
2878 goto err_if_unreg;
2879 hp_online = ret;
2880 ret = 0;
2881
2882 pr_debug("driver %s up and running\n", driver_data->name);
2883 goto out;
2884
2885err_if_unreg:
2886 subsys_interface_unregister(&cpufreq_interface);
2887err_boost_unreg:
2888 remove_boost_sysfs_file();
2889err_null_driver:
2890 write_lock_irqsave(&cpufreq_driver_lock, flags);
2891 cpufreq_driver = NULL;
2892 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2893out:
2894 cpus_read_unlock();
2895 return ret;
2896}
2897EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2898
2899/*
2900 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2901 *
2902 * Unregister the current CPUFreq driver. Only call this if you have
2903 * the right to do so, i.e. if you have succeeded in initialising before!
2904 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2905 * currently not initialised.
2906 */
2907int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2908{
2909 unsigned long flags;
2910
2911 if (!cpufreq_driver || (driver != cpufreq_driver))
2912 return -EINVAL;
2913
2914 pr_debug("unregistering driver %s\n", driver->name);
2915
2916 /* Protect against concurrent cpu hotplug */
2917 cpus_read_lock();
2918 subsys_interface_unregister(&cpufreq_interface);
2919 remove_boost_sysfs_file();
2920 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2921 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2922
2923 write_lock_irqsave(&cpufreq_driver_lock, flags);
2924
2925 cpufreq_driver = NULL;
2926
2927 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2928 cpus_read_unlock();
2929
2930 return 0;
2931}
2932EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2933
2934static int __init cpufreq_core_init(void)
2935{
2936 struct cpufreq_governor *gov = cpufreq_default_governor();
2937
2938 if (cpufreq_disabled())
2939 return -ENODEV;
2940
2941 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2942 BUG_ON(!cpufreq_global_kobject);
2943
2944 if (!strlen(default_governor))
2945 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2946
2947 return 0;
2948}
2949module_param(off, int, 0444);
2950module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2951core_initcall(cpufreq_core_init);