Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.15
 
  1/*
  2 * transport_class.c - implementation of generic transport classes
  3 *                     using attribute_containers
  4 *
  5 * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
  6 *
  7 * This file is licensed under GPLv2
  8 *
  9 * The basic idea here is to allow any "device controller" (which
 10 * would most often be a Host Bus Adapter to use the services of one
 11 * or more tranport classes for performing transport specific
 12 * services.  Transport specific services are things that the generic
 13 * command layer doesn't want to know about (speed settings, line
 14 * condidtioning, etc), but which the user might be interested in.
 15 * Thus, the HBA's use the routines exported by the transport classes
 16 * to perform these functions.  The transport classes export certain
 17 * values to the user via sysfs using attribute containers.
 18 *
 19 * Note: because not every HBA will care about every transport
 20 * attribute, there's a many to one relationship that goes like this:
 21 *
 22 * transport class<-----attribute container<----class device
 23 *
 24 * Usually the attribute container is per-HBA, but the design doesn't
 25 * mandate that.  Although most of the services will be specific to
 26 * the actual external storage connection used by the HBA, the generic
 27 * transport class is framed entirely in terms of generic devices to
 28 * allow it to be used by any physical HBA in the system.
 29 */
 30#include <linux/export.h>
 31#include <linux/attribute_container.h>
 32#include <linux/transport_class.h>
 33
 
 
 
 
 34/**
 35 * transport_class_register - register an initial transport class
 36 *
 37 * @tclass:	a pointer to the transport class structure to be initialised
 38 *
 39 * The transport class contains an embedded class which is used to
 40 * identify it.  The caller should initialise this structure with
 41 * zeros and then generic class must have been initialised with the
 42 * actual transport class unique name.  There's a macro
 43 * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
 44 * be registered).
 45 *
 46 * Returns 0 on success or error on failure.
 47 */
 48int transport_class_register(struct transport_class *tclass)
 49{
 50	return class_register(&tclass->class);
 51}
 52EXPORT_SYMBOL_GPL(transport_class_register);
 53
 54/**
 55 * transport_class_unregister - unregister a previously registered class
 56 *
 57 * @tclass: The transport class to unregister
 58 *
 59 * Must be called prior to deallocating the memory for the transport
 60 * class.
 61 */
 62void transport_class_unregister(struct transport_class *tclass)
 63{
 64	class_unregister(&tclass->class);
 65}
 66EXPORT_SYMBOL_GPL(transport_class_unregister);
 67
 68static int anon_transport_dummy_function(struct transport_container *tc,
 69					 struct device *dev,
 70					 struct device *cdev)
 71{
 72	/* do nothing */
 73	return 0;
 74}
 75
 76/**
 77 * anon_transport_class_register - register an anonymous class
 78 *
 79 * @atc: The anon transport class to register
 80 *
 81 * The anonymous transport class contains both a transport class and a
 82 * container.  The idea of an anonymous class is that it never
 83 * actually has any device attributes associated with it (and thus
 84 * saves on container storage).  So it can only be used for triggering
 85 * events.  Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
 86 * initialise the anon transport class storage.
 87 */
 88int anon_transport_class_register(struct anon_transport_class *atc)
 89{
 90	int error;
 91	atc->container.class = &atc->tclass.class;
 92	attribute_container_set_no_classdevs(&atc->container);
 93	error = attribute_container_register(&atc->container);
 94	if (error)
 95		return error;
 96	atc->tclass.setup = anon_transport_dummy_function;
 97	atc->tclass.remove = anon_transport_dummy_function;
 98	return 0;
 99}
100EXPORT_SYMBOL_GPL(anon_transport_class_register);
101
102/**
103 * anon_transport_class_unregister - unregister an anon class
104 *
105 * @atc: Pointer to the anon transport class to unregister
106 *
107 * Must be called prior to deallocating the memory for the anon
108 * transport class.
109 */
110void anon_transport_class_unregister(struct anon_transport_class *atc)
111{
112	if (unlikely(attribute_container_unregister(&atc->container)))
113		BUG();
114}
115EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
116
117static int transport_setup_classdev(struct attribute_container *cont,
118				    struct device *dev,
119				    struct device *classdev)
120{
121	struct transport_class *tclass = class_to_transport_class(cont->class);
122	struct transport_container *tcont = attribute_container_to_transport_container(cont);
123
124	if (tclass->setup)
125		tclass->setup(tcont, dev, classdev);
126
127	return 0;
128}
129
130/**
131 * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
132 * @dev: the generic device representing the entity being added
133 *
134 * Usually, dev represents some component in the HBA system (either
135 * the HBA itself or a device remote across the HBA bus).  This
136 * routine is simply a trigger point to see if any set of transport
137 * classes wishes to associate with the added device.  This allocates
138 * storage for the class device and initialises it, but does not yet
139 * add it to the system or add attributes to it (you do this with
140 * transport_add_device).  If you have no need for a separate setup
141 * and add operations, use transport_register_device (see
142 * transport_class.h).
143 */
144
145void transport_setup_device(struct device *dev)
146{
147	attribute_container_add_device(dev, transport_setup_classdev);
148}
149EXPORT_SYMBOL_GPL(transport_setup_device);
150
151static int transport_add_class_device(struct attribute_container *cont,
152				      struct device *dev,
153				      struct device *classdev)
154{
155	int error = attribute_container_add_class_device(classdev);
156	struct transport_container *tcont = 
157		attribute_container_to_transport_container(cont);
158
159	if (!error && tcont->statistics)
160		error = sysfs_create_group(&classdev->kobj, tcont->statistics);
161
162	return error;
163}
164
165
166/**
167 * transport_add_device - declare a new dev for transport class association
168 *
169 * @dev: the generic device representing the entity being added
170 *
171 * Usually, dev represents some component in the HBA system (either
172 * the HBA itself or a device remote across the HBA bus).  This
173 * routine is simply a trigger point used to add the device to the
174 * system and register attributes for it.
175 */
176
177void transport_add_device(struct device *dev)
178{
179	attribute_container_device_trigger(dev, transport_add_class_device);
 
 
180}
181EXPORT_SYMBOL_GPL(transport_add_device);
182
183static int transport_configure(struct attribute_container *cont,
184			       struct device *dev,
185			       struct device *cdev)
186{
187	struct transport_class *tclass = class_to_transport_class(cont->class);
188	struct transport_container *tcont = attribute_container_to_transport_container(cont);
189
190	if (tclass->configure)
191		tclass->configure(tcont, dev, cdev);
192
193	return 0;
194}
195
196/**
197 * transport_configure_device - configure an already set up device
198 *
199 * @dev: generic device representing device to be configured
200 *
201 * The idea of configure is simply to provide a point within the setup
202 * process to allow the transport class to extract information from a
203 * device after it has been setup.  This is used in SCSI because we
204 * have to have a setup device to begin using the HBA, but after we
205 * send the initial inquiry, we use configure to extract the device
206 * parameters.  The device need not have been added to be configured.
207 */
208void transport_configure_device(struct device *dev)
209{
210	attribute_container_device_trigger(dev, transport_configure);
211}
212EXPORT_SYMBOL_GPL(transport_configure_device);
213
214static int transport_remove_classdev(struct attribute_container *cont,
215				     struct device *dev,
216				     struct device *classdev)
217{
218	struct transport_container *tcont = 
219		attribute_container_to_transport_container(cont);
220	struct transport_class *tclass = class_to_transport_class(cont->class);
221
222	if (tclass->remove)
223		tclass->remove(tcont, dev, classdev);
224
225	if (tclass->remove != anon_transport_dummy_function) {
226		if (tcont->statistics)
227			sysfs_remove_group(&classdev->kobj, tcont->statistics);
228		attribute_container_class_device_del(classdev);
229	}
230
231	return 0;
232}
233
234
235/**
236 * transport_remove_device - remove the visibility of a device
237 *
238 * @dev: generic device to remove
239 *
240 * This call removes the visibility of the device (to the user from
241 * sysfs), but does not destroy it.  To eliminate a device entirely
242 * you must also call transport_destroy_device.  If you don't need to
243 * do remove and destroy as separate operations, use
244 * transport_unregister_device() (see transport_class.h) which will
245 * perform both calls for you.
246 */
247void transport_remove_device(struct device *dev)
248{
249	attribute_container_device_trigger(dev, transport_remove_classdev);
250}
251EXPORT_SYMBOL_GPL(transport_remove_device);
252
253static void transport_destroy_classdev(struct attribute_container *cont,
254				      struct device *dev,
255				      struct device *classdev)
256{
257	struct transport_class *tclass = class_to_transport_class(cont->class);
258
259	if (tclass->remove != anon_transport_dummy_function)
260		put_device(classdev);
261}
262
263
264/**
265 * transport_destroy_device - destroy a removed device
266 *
267 * @dev: device to eliminate from the transport class.
268 *
269 * This call triggers the elimination of storage associated with the
270 * transport classdev.  Note: all it really does is relinquish a
271 * reference to the classdev.  The memory will not be freed until the
272 * last reference goes to zero.  Note also that the classdev retains a
273 * reference count on dev, so dev too will remain for as long as the
274 * transport class device remains around.
275 */
276void transport_destroy_device(struct device *dev)
277{
278	attribute_container_remove_device(dev, transport_destroy_classdev);
279}
280EXPORT_SYMBOL_GPL(transport_destroy_device);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * transport_class.c - implementation of generic transport classes
  4 *                     using attribute_containers
  5 *
  6 * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
  7 *
 
 
  8 * The basic idea here is to allow any "device controller" (which
  9 * would most often be a Host Bus Adapter to use the services of one
 10 * or more tranport classes for performing transport specific
 11 * services.  Transport specific services are things that the generic
 12 * command layer doesn't want to know about (speed settings, line
 13 * condidtioning, etc), but which the user might be interested in.
 14 * Thus, the HBA's use the routines exported by the transport classes
 15 * to perform these functions.  The transport classes export certain
 16 * values to the user via sysfs using attribute containers.
 17 *
 18 * Note: because not every HBA will care about every transport
 19 * attribute, there's a many to one relationship that goes like this:
 20 *
 21 * transport class<-----attribute container<----class device
 22 *
 23 * Usually the attribute container is per-HBA, but the design doesn't
 24 * mandate that.  Although most of the services will be specific to
 25 * the actual external storage connection used by the HBA, the generic
 26 * transport class is framed entirely in terms of generic devices to
 27 * allow it to be used by any physical HBA in the system.
 28 */
 29#include <linux/export.h>
 30#include <linux/attribute_container.h>
 31#include <linux/transport_class.h>
 32
 33static int transport_remove_classdev(struct attribute_container *cont,
 34				     struct device *dev,
 35				     struct device *classdev);
 36
 37/**
 38 * transport_class_register - register an initial transport class
 39 *
 40 * @tclass:	a pointer to the transport class structure to be initialised
 41 *
 42 * The transport class contains an embedded class which is used to
 43 * identify it.  The caller should initialise this structure with
 44 * zeros and then generic class must have been initialised with the
 45 * actual transport class unique name.  There's a macro
 46 * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
 47 * be registered).
 48 *
 49 * Returns 0 on success or error on failure.
 50 */
 51int transport_class_register(struct transport_class *tclass)
 52{
 53	return class_register(&tclass->class);
 54}
 55EXPORT_SYMBOL_GPL(transport_class_register);
 56
 57/**
 58 * transport_class_unregister - unregister a previously registered class
 59 *
 60 * @tclass: The transport class to unregister
 61 *
 62 * Must be called prior to deallocating the memory for the transport
 63 * class.
 64 */
 65void transport_class_unregister(struct transport_class *tclass)
 66{
 67	class_unregister(&tclass->class);
 68}
 69EXPORT_SYMBOL_GPL(transport_class_unregister);
 70
 71static int anon_transport_dummy_function(struct transport_container *tc,
 72					 struct device *dev,
 73					 struct device *cdev)
 74{
 75	/* do nothing */
 76	return 0;
 77}
 78
 79/**
 80 * anon_transport_class_register - register an anonymous class
 81 *
 82 * @atc: The anon transport class to register
 83 *
 84 * The anonymous transport class contains both a transport class and a
 85 * container.  The idea of an anonymous class is that it never
 86 * actually has any device attributes associated with it (and thus
 87 * saves on container storage).  So it can only be used for triggering
 88 * events.  Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
 89 * initialise the anon transport class storage.
 90 */
 91int anon_transport_class_register(struct anon_transport_class *atc)
 92{
 93	int error;
 94	atc->container.class = &atc->tclass.class;
 95	attribute_container_set_no_classdevs(&atc->container);
 96	error = attribute_container_register(&atc->container);
 97	if (error)
 98		return error;
 99	atc->tclass.setup = anon_transport_dummy_function;
100	atc->tclass.remove = anon_transport_dummy_function;
101	return 0;
102}
103EXPORT_SYMBOL_GPL(anon_transport_class_register);
104
105/**
106 * anon_transport_class_unregister - unregister an anon class
107 *
108 * @atc: Pointer to the anon transport class to unregister
109 *
110 * Must be called prior to deallocating the memory for the anon
111 * transport class.
112 */
113void anon_transport_class_unregister(struct anon_transport_class *atc)
114{
115	if (unlikely(attribute_container_unregister(&atc->container)))
116		BUG();
117}
118EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
119
120static int transport_setup_classdev(struct attribute_container *cont,
121				    struct device *dev,
122				    struct device *classdev)
123{
124	struct transport_class *tclass = class_to_transport_class(cont->class);
125	struct transport_container *tcont = attribute_container_to_transport_container(cont);
126
127	if (tclass->setup)
128		tclass->setup(tcont, dev, classdev);
129
130	return 0;
131}
132
133/**
134 * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
135 * @dev: the generic device representing the entity being added
136 *
137 * Usually, dev represents some component in the HBA system (either
138 * the HBA itself or a device remote across the HBA bus).  This
139 * routine is simply a trigger point to see if any set of transport
140 * classes wishes to associate with the added device.  This allocates
141 * storage for the class device and initialises it, but does not yet
142 * add it to the system or add attributes to it (you do this with
143 * transport_add_device).  If you have no need for a separate setup
144 * and add operations, use transport_register_device (see
145 * transport_class.h).
146 */
147
148void transport_setup_device(struct device *dev)
149{
150	attribute_container_add_device(dev, transport_setup_classdev);
151}
152EXPORT_SYMBOL_GPL(transport_setup_device);
153
154static int transport_add_class_device(struct attribute_container *cont,
155				      struct device *dev,
156				      struct device *classdev)
157{
158	int error = attribute_container_add_class_device(classdev);
159	struct transport_container *tcont = 
160		attribute_container_to_transport_container(cont);
161
162	if (!error && tcont->statistics)
163		error = sysfs_create_group(&classdev->kobj, tcont->statistics);
164
165	return error;
166}
167
168
169/**
170 * transport_add_device - declare a new dev for transport class association
171 *
172 * @dev: the generic device representing the entity being added
173 *
174 * Usually, dev represents some component in the HBA system (either
175 * the HBA itself or a device remote across the HBA bus).  This
176 * routine is simply a trigger point used to add the device to the
177 * system and register attributes for it.
178 */
179int transport_add_device(struct device *dev)
 
180{
181	return attribute_container_device_trigger_safe(dev,
182					transport_add_class_device,
183					transport_remove_classdev);
184}
185EXPORT_SYMBOL_GPL(transport_add_device);
186
187static int transport_configure(struct attribute_container *cont,
188			       struct device *dev,
189			       struct device *cdev)
190{
191	struct transport_class *tclass = class_to_transport_class(cont->class);
192	struct transport_container *tcont = attribute_container_to_transport_container(cont);
193
194	if (tclass->configure)
195		tclass->configure(tcont, dev, cdev);
196
197	return 0;
198}
199
200/**
201 * transport_configure_device - configure an already set up device
202 *
203 * @dev: generic device representing device to be configured
204 *
205 * The idea of configure is simply to provide a point within the setup
206 * process to allow the transport class to extract information from a
207 * device after it has been setup.  This is used in SCSI because we
208 * have to have a setup device to begin using the HBA, but after we
209 * send the initial inquiry, we use configure to extract the device
210 * parameters.  The device need not have been added to be configured.
211 */
212void transport_configure_device(struct device *dev)
213{
214	attribute_container_device_trigger(dev, transport_configure);
215}
216EXPORT_SYMBOL_GPL(transport_configure_device);
217
218static int transport_remove_classdev(struct attribute_container *cont,
219				     struct device *dev,
220				     struct device *classdev)
221{
222	struct transport_container *tcont = 
223		attribute_container_to_transport_container(cont);
224	struct transport_class *tclass = class_to_transport_class(cont->class);
225
226	if (tclass->remove)
227		tclass->remove(tcont, dev, classdev);
228
229	if (tclass->remove != anon_transport_dummy_function) {
230		if (tcont->statistics)
231			sysfs_remove_group(&classdev->kobj, tcont->statistics);
232		attribute_container_class_device_del(classdev);
233	}
234
235	return 0;
236}
237
238
239/**
240 * transport_remove_device - remove the visibility of a device
241 *
242 * @dev: generic device to remove
243 *
244 * This call removes the visibility of the device (to the user from
245 * sysfs), but does not destroy it.  To eliminate a device entirely
246 * you must also call transport_destroy_device.  If you don't need to
247 * do remove and destroy as separate operations, use
248 * transport_unregister_device() (see transport_class.h) which will
249 * perform both calls for you.
250 */
251void transport_remove_device(struct device *dev)
252{
253	attribute_container_device_trigger(dev, transport_remove_classdev);
254}
255EXPORT_SYMBOL_GPL(transport_remove_device);
256
257static void transport_destroy_classdev(struct attribute_container *cont,
258				      struct device *dev,
259				      struct device *classdev)
260{
261	struct transport_class *tclass = class_to_transport_class(cont->class);
262
263	if (tclass->remove != anon_transport_dummy_function)
264		put_device(classdev);
265}
266
267
268/**
269 * transport_destroy_device - destroy a removed device
270 *
271 * @dev: device to eliminate from the transport class.
272 *
273 * This call triggers the elimination of storage associated with the
274 * transport classdev.  Note: all it really does is relinquish a
275 * reference to the classdev.  The memory will not be freed until the
276 * last reference goes to zero.  Note also that the classdev retains a
277 * reference count on dev, so dev too will remain for as long as the
278 * transport class device remains around.
279 */
280void transport_destroy_device(struct device *dev)
281{
282	attribute_container_remove_device(dev, transport_destroy_classdev);
283}
284EXPORT_SYMBOL_GPL(transport_destroy_device);