Linux Audio

Check our new training course

Loading...
v3.15
 
  1/* Instantiate a public key crypto key from an X.509 Certificate
  2 *
  3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public Licence
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the Licence, or (at your option) any later version.
 10 */
 11
 12#define pr_fmt(fmt) "X.509: "fmt
 13#include <linux/module.h>
 14#include <linux/kernel.h>
 15#include <linux/slab.h>
 16#include <linux/err.h>
 17#include <linux/mpi.h>
 18#include <linux/asn1_decoder.h>
 19#include <keys/asymmetric-subtype.h>
 20#include <keys/asymmetric-parser.h>
 
 21#include <crypto/hash.h>
 22#include "asymmetric_keys.h"
 23#include "public_key.h"
 24#include "x509_parser.h"
 25
 26/*
 27 * Set up the signature parameters in an X.509 certificate.  This involves
 28 * digesting the signed data and extracting the signature.
 29 */
 30int x509_get_sig_params(struct x509_certificate *cert)
 31{
 
 32	struct crypto_shash *tfm;
 33	struct shash_desc *desc;
 34	size_t digest_size, desc_size;
 35	void *digest;
 36	int ret;
 37
 38	pr_devel("==>%s()\n", __func__);
 39
 40	if (cert->sig.rsa.s)
 41		return 0;
 42
 43	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
 44	if (!cert->sig.rsa.s)
 45		return -ENOMEM;
 46	cert->sig.nr_mpi = 1;
 
 47
 48	/* Allocate the hashing algorithm we're going to need and find out how
 49	 * big the hash operational data will be.
 50	 */
 51	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
 52	if (IS_ERR(tfm))
 53		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
 
 
 
 
 
 54
 55	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 56	digest_size = crypto_shash_digestsize(tfm);
 57
 58	/* We allocate the hash operational data storage on the end of the
 59	 * digest storage space.
 60	 */
 61	ret = -ENOMEM;
 62	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
 63	if (!digest)
 64		goto error;
 65
 66	cert->sig.digest = digest;
 67	cert->sig.digest_size = digest_size;
 
 68
 69	desc = digest + digest_size;
 70	desc->tfm = tfm;
 71	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 72
 73	ret = crypto_shash_init(desc);
 74	if (ret < 0)
 75		goto error;
 76	might_sleep();
 77	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
 
 
 
 
 
 
 
 
 
 
 78error:
 79	crypto_free_shash(tfm);
 80	pr_devel("<==%s() = %d\n", __func__, ret);
 81	return ret;
 82}
 83EXPORT_SYMBOL_GPL(x509_get_sig_params);
 84
 85/*
 86 * Check the signature on a certificate using the provided public key
 
 87 */
 88int x509_check_signature(const struct public_key *pub,
 89			 struct x509_certificate *cert)
 90{
 91	int ret;
 92
 93	pr_devel("==>%s()\n", __func__);
 94
 95	ret = x509_get_sig_params(cert);
 96	if (ret < 0)
 97		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98
 99	ret = public_key_verify_signature(pub, &cert->sig);
100	pr_debug("Cert Verification: %d\n", ret);
101	return ret;
 
 
 
 
102}
103EXPORT_SYMBOL_GPL(x509_check_signature);
104
105/*
106 * Attempt to parse a data blob for a key as an X509 certificate.
107 */
108static int x509_key_preparse(struct key_preparsed_payload *prep)
109{
 
110	struct x509_certificate *cert;
 
111	size_t srlen, sulen;
112	char *desc = NULL;
113	int ret;
114
115	cert = x509_cert_parse(prep->data, prep->datalen);
116	if (IS_ERR(cert))
117		return PTR_ERR(cert);
118
119	pr_devel("Cert Issuer: %s\n", cert->issuer);
120	pr_devel("Cert Subject: %s\n", cert->subject);
 
 
121
122	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
123	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
124	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
125	    !pkey_algo[cert->pub->pkey_algo] ||
126	    !pkey_algo[cert->sig.pkey_algo] ||
127	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
128		ret = -ENOPKG;
129		goto error_free_cert;
130	}
131
132	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
133	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
134		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
135		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
136		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
137	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
138		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
139		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
140		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
141	pr_devel("Cert Signature: %s + %s\n",
142		 pkey_algo_name[cert->sig.pkey_algo],
143		 hash_algo_name[cert->sig.pkey_hash_algo]);
144
145	if (!cert->fingerprint) {
146		pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
147			cert->subject);
148		ret = -EKEYREJECTED;
149		goto error_free_cert;
150	}
151
152	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
153	cert->pub->id_type = PKEY_ID_X509;
154
155	/* Check the signature on the key if it appears to be self-signed */
156	if (!cert->authority ||
157	    strcmp(cert->fingerprint, cert->authority) == 0) {
158		ret = x509_check_signature(cert->pub, cert);
159		if (ret < 0)
160			goto error_free_cert;
161	}
162
163	/* Propose a description */
164	sulen = strlen(cert->subject);
165	srlen = strlen(cert->fingerprint);
 
 
 
 
 
 
 
166	ret = -ENOMEM;
167	desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
168	if (!desc)
169		goto error_free_cert;
170	memcpy(desc, cert->subject, sulen);
171	desc[sulen] = ':';
172	desc[sulen + 1] = ' ';
173	memcpy(desc + sulen + 2, cert->fingerprint, srlen);
174	desc[sulen + 2 + srlen] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
176	/* We're pinning the module by being linked against it */
177	__module_get(public_key_subtype.owner);
178	prep->type_data[0] = &public_key_subtype;
179	prep->type_data[1] = cert->fingerprint;
180	prep->payload = cert->pub;
 
181	prep->description = desc;
182	prep->quotalen = 100;
183
184	/* We've finished with the certificate */
185	cert->pub = NULL;
186	cert->fingerprint = NULL;
 
 
187	desc = NULL;
 
188	ret = 0;
189
 
 
 
 
190error_free_cert:
191	x509_free_certificate(cert);
192	return ret;
193}
194
195static struct asymmetric_key_parser x509_key_parser = {
196	.owner	= THIS_MODULE,
197	.name	= "x509",
198	.parse	= x509_key_preparse,
199};
200
201/*
202 * Module stuff
203 */
 
204static int __init x509_key_init(void)
205{
206	return register_asymmetric_key_parser(&x509_key_parser);
 
 
 
 
 
207}
208
209static void __exit x509_key_exit(void)
210{
211	unregister_asymmetric_key_parser(&x509_key_parser);
212}
213
214module_init(x509_key_init);
215module_exit(x509_key_exit);
216
217MODULE_DESCRIPTION("X.509 certificate parser");
 
218MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* Instantiate a public key crypto key from an X.509 Certificate
  3 *
  4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7
  8#define pr_fmt(fmt) "X.509: "fmt
  9#include <linux/module.h>
 10#include <linux/kernel.h>
 11#include <linux/slab.h>
 
 
 
 12#include <keys/asymmetric-subtype.h>
 13#include <keys/asymmetric-parser.h>
 14#include <keys/system_keyring.h>
 15#include <crypto/hash.h>
 16#include "asymmetric_keys.h"
 
 17#include "x509_parser.h"
 18
 19/*
 20 * Set up the signature parameters in an X.509 certificate.  This involves
 21 * digesting the signed data and extracting the signature.
 22 */
 23int x509_get_sig_params(struct x509_certificate *cert)
 24{
 25	struct public_key_signature *sig = cert->sig;
 26	struct crypto_shash *tfm;
 27	struct shash_desc *desc;
 28	size_t desc_size;
 
 29	int ret;
 30
 31	pr_devel("==>%s()\n", __func__);
 32
 33	sig->data = cert->tbs;
 34	sig->data_size = cert->tbs_size;
 35
 36	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
 37	if (!sig->s)
 38		return -ENOMEM;
 39
 40	sig->s_size = cert->raw_sig_size;
 41
 42	/* Allocate the hashing algorithm we're going to need and find out how
 43	 * big the hash operational data will be.
 44	 */
 45	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
 46	if (IS_ERR(tfm)) {
 47		if (PTR_ERR(tfm) == -ENOENT) {
 48			cert->unsupported_sig = true;
 49			return 0;
 50		}
 51		return PTR_ERR(tfm);
 52	}
 53
 54	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 55	sig->digest_size = crypto_shash_digestsize(tfm);
 56
 
 
 
 57	ret = -ENOMEM;
 58	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
 59	if (!sig->digest)
 60		goto error;
 61
 62	desc = kzalloc(desc_size, GFP_KERNEL);
 63	if (!desc)
 64		goto error;
 65
 
 66	desc->tfm = tfm;
 
 67
 68	ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
 69	if (ret < 0)
 70		goto error_2;
 71
 72	ret = is_hash_blacklisted(sig->digest, sig->digest_size,
 73				  BLACKLIST_HASH_X509_TBS);
 74	if (ret == -EKEYREJECTED) {
 75		pr_err("Cert %*phN is blacklisted\n",
 76		       sig->digest_size, sig->digest);
 77		cert->blacklisted = true;
 78		ret = 0;
 79	}
 80
 81error_2:
 82	kfree(desc);
 83error:
 84	crypto_free_shash(tfm);
 85	pr_devel("<==%s() = %d\n", __func__, ret);
 86	return ret;
 87}
 
 88
 89/*
 90 * Check for self-signedness in an X.509 cert and if found, check the signature
 91 * immediately if we can.
 92 */
 93int x509_check_for_self_signed(struct x509_certificate *cert)
 
 94{
 95	int ret = 0;
 96
 97	pr_devel("==>%s()\n", __func__);
 98
 99	if (cert->raw_subject_size != cert->raw_issuer_size ||
100	    memcmp(cert->raw_subject, cert->raw_issuer,
101		   cert->raw_issuer_size) != 0)
102		goto not_self_signed;
103
104	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
105		/* If the AKID is present it may have one or two parts.  If
106		 * both are supplied, both must match.
107		 */
108		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
109		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
110
111		if (!a && !b)
112			goto not_self_signed;
113
114		ret = -EKEYREJECTED;
115		if (((a && !b) || (b && !a)) &&
116		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
117			goto out;
118	}
119
120	ret = public_key_verify_signature(cert->pub, cert->sig);
121	if (ret < 0) {
122		if (ret == -ENOPKG) {
123			cert->unsupported_sig = true;
124			ret = 0;
125		}
126		goto out;
127	}
128
129	pr_devel("Cert Self-signature verified");
130	cert->self_signed = true;
131
132out:
133	pr_devel("<==%s() = %d\n", __func__, ret);
134	return ret;
135
136not_self_signed:
137	pr_devel("<==%s() = 0 [not]\n", __func__);
138	return 0;
139}
 
140
141/*
142 * Attempt to parse a data blob for a key as an X509 certificate.
143 */
144static int x509_key_preparse(struct key_preparsed_payload *prep)
145{
146	struct asymmetric_key_ids *kids;
147	struct x509_certificate *cert;
148	const char *q;
149	size_t srlen, sulen;
150	char *desc = NULL, *p;
151	int ret;
152
153	cert = x509_cert_parse(prep->data, prep->datalen);
154	if (IS_ERR(cert))
155		return PTR_ERR(cert);
156
157	pr_devel("Cert Issuer: %s\n", cert->issuer);
158	pr_devel("Cert Subject: %s\n", cert->subject);
159	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
160	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
161
162	cert->pub->id_type = "X509";
 
 
 
 
 
 
 
 
163
164	if (cert->unsupported_sig) {
165		public_key_signature_free(cert->sig);
166		cert->sig = NULL;
167	} else {
168		pr_devel("Cert Signature: %s + %s\n",
169			 cert->sig->pkey_algo, cert->sig->hash_algo);
 
 
 
 
 
 
 
 
 
 
 
 
170	}
171
172	/* Don't permit addition of blacklisted keys */
173	ret = -EKEYREJECTED;
174	if (cert->blacklisted)
175		goto error_free_cert;
 
 
 
 
 
 
176
177	/* Propose a description */
178	sulen = strlen(cert->subject);
179	if (cert->raw_skid) {
180		srlen = cert->raw_skid_size;
181		q = cert->raw_skid;
182	} else {
183		srlen = cert->raw_serial_size;
184		q = cert->raw_serial;
185	}
186
187	ret = -ENOMEM;
188	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
189	if (!desc)
190		goto error_free_cert;
191	p = memcpy(desc, cert->subject, sulen);
192	p += sulen;
193	*p++ = ':';
194	*p++ = ' ';
195	p = bin2hex(p, q, srlen);
196	*p = 0;
197
198	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
199	if (!kids)
200		goto error_free_desc;
201	kids->id[0] = cert->id;
202	kids->id[1] = cert->skid;
203	kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
204						 cert->raw_subject_size,
205						 "", 0);
206	if (IS_ERR(kids->id[2])) {
207		ret = PTR_ERR(kids->id[2]);
208		goto error_free_kids;
209	}
210
211	/* We're pinning the module by being linked against it */
212	__module_get(public_key_subtype.owner);
213	prep->payload.data[asym_subtype] = &public_key_subtype;
214	prep->payload.data[asym_key_ids] = kids;
215	prep->payload.data[asym_crypto] = cert->pub;
216	prep->payload.data[asym_auth] = cert->sig;
217	prep->description = desc;
218	prep->quotalen = 100;
219
220	/* We've finished with the certificate */
221	cert->pub = NULL;
222	cert->id = NULL;
223	cert->skid = NULL;
224	cert->sig = NULL;
225	desc = NULL;
226	kids = NULL;
227	ret = 0;
228
229error_free_kids:
230	kfree(kids);
231error_free_desc:
232	kfree(desc);
233error_free_cert:
234	x509_free_certificate(cert);
235	return ret;
236}
237
238static struct asymmetric_key_parser x509_key_parser = {
239	.owner	= THIS_MODULE,
240	.name	= "x509",
241	.parse	= x509_key_preparse,
242};
243
244/*
245 * Module stuff
246 */
247extern int __init certs_selftest(void);
248static int __init x509_key_init(void)
249{
250	int ret;
251
252	ret = register_asymmetric_key_parser(&x509_key_parser);
253	if (ret < 0)
254		return ret;
255	return fips_signature_selftest();
256}
257
258static void __exit x509_key_exit(void)
259{
260	unregister_asymmetric_key_parser(&x509_key_parser);
261}
262
263module_init(x509_key_init);
264module_exit(x509_key_exit);
265
266MODULE_DESCRIPTION("X.509 certificate parser");
267MODULE_AUTHOR("Red Hat, Inc.");
268MODULE_LICENSE("GPL");