Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/math64.h>
 16#include <linux/gfp.h>
 17#include <linux/slab.h>
 18#include <linux/pvclock_gtod.h>
 
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Xen may fire a timer up to this many ns early */
 32#define TIMER_SLOP	100000
 33#define NS_PER_TICK	(1000000000LL / HZ)
 34
 35/* runstate info updated by Xen */
 36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
 37
 38/* snapshots of runstate info */
 39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
 40
 41/* unused ns of stolen time */
 42static DEFINE_PER_CPU(u64, xen_residual_stolen);
 43
 44/* return an consistent snapshot of 64-bit time/counter value */
 45static u64 get64(const u64 *p)
 46{
 47	u64 ret;
 48
 49	if (BITS_PER_LONG < 64) {
 50		u32 *p32 = (u32 *)p;
 51		u32 h, l;
 52
 53		/*
 54		 * Read high then low, and then make sure high is
 55		 * still the same; this will only loop if low wraps
 56		 * and carries into high.
 57		 * XXX some clean way to make this endian-proof?
 58		 */
 59		do {
 60			h = p32[1];
 61			barrier();
 62			l = p32[0];
 63			barrier();
 64		} while (p32[1] != h);
 65
 66		ret = (((u64)h) << 32) | l;
 67	} else
 68		ret = *p;
 69
 70	return ret;
 71}
 72
 73/*
 74 * Runstate accounting
 75 */
 76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
 77{
 78	u64 state_time;
 79	struct vcpu_runstate_info *state;
 80
 81	BUG_ON(preemptible());
 82
 83	state = &__get_cpu_var(xen_runstate);
 84
 85	/*
 86	 * The runstate info is always updated by the hypervisor on
 87	 * the current CPU, so there's no need to use anything
 88	 * stronger than a compiler barrier when fetching it.
 89	 */
 90	do {
 91		state_time = get64(&state->state_entry_time);
 92		barrier();
 93		*res = *state;
 94		barrier();
 95	} while (get64(&state->state_entry_time) != state_time);
 96}
 97
 98/* return true when a vcpu could run but has no real cpu to run on */
 99bool xen_vcpu_stolen(int vcpu)
100{
101	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
102}
103
104void xen_setup_runstate_info(int cpu)
105{
106	struct vcpu_register_runstate_memory_area area;
107
108	area.addr.v = &per_cpu(xen_runstate, cpu);
109
110	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111			       cpu, &area))
112		BUG();
113}
114
115static void do_stolen_accounting(void)
116{
117	struct vcpu_runstate_info state;
118	struct vcpu_runstate_info *snap;
119	s64 runnable, offline, stolen;
120	cputime_t ticks;
121
122	get_runstate_snapshot(&state);
123
124	WARN_ON(state.state != RUNSTATE_running);
125
126	snap = &__get_cpu_var(xen_runstate_snapshot);
127
128	/* work out how much time the VCPU has not been runn*ing*  */
129	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132	*snap = state;
133
134	/* Add the appropriate number of ticks of stolen time,
135	   including any left-overs from last time. */
136	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137
138	if (stolen < 0)
139		stolen = 0;
140
141	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142	__this_cpu_write(xen_residual_stolen, stolen);
143	account_steal_ticks(ticks);
144}
145
146/* Get the TSC speed from Xen */
147static unsigned long xen_tsc_khz(void)
148{
149	struct pvclock_vcpu_time_info *info =
150		&HYPERVISOR_shared_info->vcpu_info[0].time;
151
 
152	return pvclock_tsc_khz(info);
153}
154
155cycle_t xen_clocksource_read(void)
156{
157        struct pvclock_vcpu_time_info *src;
158	cycle_t ret;
159
160	preempt_disable_notrace();
161	src = &__get_cpu_var(xen_vcpu)->time;
162	ret = pvclock_clocksource_read(src);
163	preempt_enable_notrace();
164	return ret;
165}
166
167static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168{
169	return xen_clocksource_read();
170}
171
172static void xen_read_wallclock(struct timespec *ts)
 
 
 
 
 
173{
174	struct shared_info *s = HYPERVISOR_shared_info;
175	struct pvclock_wall_clock *wall_clock = &(s->wc);
176        struct pvclock_vcpu_time_info *vcpu_time;
177
178	vcpu_time = &get_cpu_var(xen_vcpu)->time;
179	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180	put_cpu_var(xen_vcpu);
181}
182
183static void xen_get_wallclock(struct timespec *now)
184{
185	xen_read_wallclock(now);
186}
187
188static int xen_set_wallclock(const struct timespec *now)
189{
190	return -1;
191}
192
193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194				   unsigned long was_set, void *priv)
195{
196	/* Protected by the calling core code serialization */
197	static struct timespec next_sync;
198
199	struct xen_platform_op op;
200	struct timespec now;
 
 
 
201
202	now = __current_kernel_time();
 
203
204	/*
205	 * We only take the expensive HV call when the clock was set
206	 * or when the 11 minutes RTC synchronization time elapsed.
207	 */
208	if (!was_set && timespec_compare(&now, &next_sync) < 0)
209		return NOTIFY_OK;
210
211	op.cmd = XENPF_settime;
212	op.u.settime.secs = now.tv_sec;
213	op.u.settime.nsecs = now.tv_nsec;
214	op.u.settime.system_time = xen_clocksource_read();
 
 
 
 
 
 
 
 
 
 
 
215
216	(void)HYPERVISOR_dom0_op(&op);
 
 
 
 
 
217
218	/*
219	 * Move the next drift compensation time 11 minutes
220	 * ahead. That's emulating the sync_cmos_clock() update for
221	 * the hardware RTC.
222	 */
223	next_sync = now;
224	next_sync.tv_sec += 11 * 60;
225
226	return NOTIFY_OK;
227}
228
229static struct notifier_block xen_pvclock_gtod_notifier = {
230	.notifier_call = xen_pvclock_gtod_notify,
231};
232
 
 
 
 
 
 
233static struct clocksource xen_clocksource __read_mostly = {
234	.name = "xen",
235	.rating = 400,
236	.read = xen_clocksource_get_cycles,
237	.mask = ~0,
238	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
239};
240
241/*
242   Xen clockevent implementation
243
244   Xen has two clockevent implementations:
245
246   The old timer_op one works with all released versions of Xen prior
247   to version 3.0.4.  This version of the hypervisor provides a
248   single-shot timer with nanosecond resolution.  However, sharing the
249   same event channel is a 100Hz tick which is delivered while the
250   vcpu is running.  We don't care about or use this tick, but it will
251   cause the core time code to think the timer fired too soon, and
252   will end up resetting it each time.  It could be filtered, but
253   doing so has complications when the ktime clocksource is not yet
254   the xen clocksource (ie, at boot time).
255
256   The new vcpu_op-based timer interface allows the tick timer period
257   to be changed or turned off.  The tick timer is not useful as a
258   periodic timer because events are only delivered to running vcpus.
259   The one-shot timer can report when a timeout is in the past, so
260   set_next_event is capable of returning -ETIME when appropriate.
261   This interface is used when available.
262*/
263
264
265/*
266  Get a hypervisor absolute time.  In theory we could maintain an
267  offset between the kernel's time and the hypervisor's time, and
268  apply that to a kernel's absolute timeout.  Unfortunately the
269  hypervisor and kernel times can drift even if the kernel is using
270  the Xen clocksource, because ntp can warp the kernel's clocksource.
271*/
272static s64 get_abs_timeout(unsigned long delta)
273{
274	return xen_clocksource_read() + delta;
275}
276
277static void xen_timerop_set_mode(enum clock_event_mode mode,
278				 struct clock_event_device *evt)
279{
280	switch (mode) {
281	case CLOCK_EVT_MODE_PERIODIC:
282		/* unsupported */
283		WARN_ON(1);
284		break;
285
286	case CLOCK_EVT_MODE_ONESHOT:
287	case CLOCK_EVT_MODE_RESUME:
288		break;
289
290	case CLOCK_EVT_MODE_UNUSED:
291	case CLOCK_EVT_MODE_SHUTDOWN:
292		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
293		break;
294	}
295}
296
297static int xen_timerop_set_next_event(unsigned long delta,
298				      struct clock_event_device *evt)
299{
300	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
301
302	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
303		BUG();
304
305	/* We may have missed the deadline, but there's no real way of
306	   knowing for sure.  If the event was in the past, then we'll
307	   get an immediate interrupt. */
308
309	return 0;
310}
311
312static const struct clock_event_device xen_timerop_clockevent = {
313	.name = "xen",
314	.features = CLOCK_EVT_FEAT_ONESHOT,
315
316	.max_delta_ns = 0xffffffff,
317	.min_delta_ns = TIMER_SLOP,
318
319	.mult = 1,
320	.shift = 0,
321	.rating = 500,
 
 
322
323	.set_mode = xen_timerop_set_mode,
324	.set_next_event = xen_timerop_set_next_event,
325};
326
 
 
 
 
 
 
 
 
 
327
 
 
328
329static void xen_vcpuop_set_mode(enum clock_event_mode mode,
330				struct clock_event_device *evt)
331{
332	int cpu = smp_processor_id();
333
334	switch (mode) {
335	case CLOCK_EVT_MODE_PERIODIC:
336		WARN_ON(1);	/* unsupported */
337		break;
338
339	case CLOCK_EVT_MODE_ONESHOT:
340		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
341			BUG();
342		break;
343
344	case CLOCK_EVT_MODE_UNUSED:
345	case CLOCK_EVT_MODE_SHUTDOWN:
346		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
347		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
348			BUG();
349		break;
350	case CLOCK_EVT_MODE_RESUME:
351		break;
352	}
353}
354
355static int xen_vcpuop_set_next_event(unsigned long delta,
356				     struct clock_event_device *evt)
357{
358	int cpu = smp_processor_id();
359	struct vcpu_set_singleshot_timer single;
360	int ret;
361
362	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
363
364	single.timeout_abs_ns = get_abs_timeout(delta);
365	single.flags = VCPU_SSHOTTMR_future;
366
367	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
368
369	BUG_ON(ret != 0 && ret != -ETIME);
 
 
370
371	return ret;
372}
373
374static const struct clock_event_device xen_vcpuop_clockevent = {
375	.name = "xen",
376	.features = CLOCK_EVT_FEAT_ONESHOT,
377
378	.max_delta_ns = 0xffffffff,
 
379	.min_delta_ns = TIMER_SLOP,
 
380
381	.mult = 1,
382	.shift = 0,
383	.rating = 500,
384
385	.set_mode = xen_vcpuop_set_mode,
 
386	.set_next_event = xen_vcpuop_set_next_event,
387};
388
389static const struct clock_event_device *xen_clockevent =
390	&xen_timerop_clockevent;
391
392struct xen_clock_event_device {
393	struct clock_event_device evt;
394	char *name;
395};
396static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
397
398static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
399{
400	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events).evt;
401	irqreturn_t ret;
402
403	ret = IRQ_NONE;
404	if (evt->event_handler) {
405		evt->event_handler(evt);
406		ret = IRQ_HANDLED;
407	}
408
409	do_stolen_accounting();
410
411	return ret;
412}
413
414void xen_teardown_timer(int cpu)
415{
416	struct clock_event_device *evt;
417	BUG_ON(cpu == 0);
418	evt = &per_cpu(xen_clock_events, cpu).evt;
419
420	if (evt->irq >= 0) {
421		unbind_from_irqhandler(evt->irq, NULL);
422		evt->irq = -1;
423		kfree(per_cpu(xen_clock_events, cpu).name);
424		per_cpu(xen_clock_events, cpu).name = NULL;
425	}
426}
427
428void xen_setup_timer(int cpu)
429{
430	char *name;
431	struct clock_event_device *evt;
432	int irq;
433
434	evt = &per_cpu(xen_clock_events, cpu).evt;
435	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
436	if (evt->irq >= 0)
437		xen_teardown_timer(cpu);
438
439	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
440
441	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
442	if (!name)
443		name = "<timer kasprintf failed>";
444
445	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
446				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
447				      IRQF_FORCE_RESUME,
448				      name, NULL);
449	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
450
451	memcpy(evt, xen_clockevent, sizeof(*evt));
452
453	evt->cpumask = cpumask_of(cpu);
454	evt->irq = irq;
455	per_cpu(xen_clock_events, cpu).name = name;
456}
457
458
459void xen_setup_cpu_clockevents(void)
460{
461	BUG_ON(preemptible());
462
463	clockevents_register_device(&__get_cpu_var(xen_clock_events).evt);
464}
465
466void xen_timer_resume(void)
467{
468	int cpu;
469
470	pvclock_resume();
471
472	if (xen_clockevent != &xen_vcpuop_clockevent)
473		return;
474
475	for_each_online_cpu(cpu) {
476		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 
477			BUG();
478	}
479}
480
481static const struct pv_time_ops xen_time_ops __initconst = {
482	.sched_clock = xen_clocksource_read,
483};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484
485static void __init xen_time_init(void)
486{
 
487	int cpu = smp_processor_id();
488	struct timespec tp;
 
 
 
 
489
490	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
491
492	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
 
493		/* Successfully turned off 100Hz tick, so we have the
494		   vcpuop-based timer interface */
495		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
496		xen_clockevent = &xen_vcpuop_clockevent;
497	}
498
499	/* Set initial system time with full resolution */
500	xen_read_wallclock(&tp);
501	do_settimeofday(&tp);
502
503	setup_force_cpu_cap(X86_FEATURE_TSC);
504
 
 
 
 
 
 
 
 
 
 
505	xen_setup_runstate_info(cpu);
506	xen_setup_timer(cpu);
507	xen_setup_cpu_clockevents();
508
 
 
509	if (xen_initial_domain())
510		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
511}
512
 
 
 
 
 
 
 
 
 
 
513void __init xen_init_time_ops(void)
514{
515	pv_time_ops = xen_time_ops;
516
517	x86_init.timers.timer_init = xen_time_init;
518	x86_init.timers.setup_percpu_clockev = x86_init_noop;
519	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
520
521	x86_platform.calibrate_tsc = xen_tsc_khz;
522	x86_platform.get_wallclock = xen_get_wallclock;
523	/* Dom0 uses the native method to set the hardware RTC. */
524	if (!xen_initial_domain())
525		x86_platform.set_wallclock = xen_set_wallclock;
526}
527
528#ifdef CONFIG_XEN_PVHVM
529static void xen_hvm_setup_cpu_clockevents(void)
530{
531	int cpu = smp_processor_id();
532	xen_setup_runstate_info(cpu);
533	/*
534	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
535	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
536	 * early bootup and also during CPU hotplug events).
537	 */
538	xen_setup_cpu_clockevents();
539}
540
541void __init xen_hvm_init_time_ops(void)
542{
543	/* vector callback is needed otherwise we cannot receive interrupts
 
 
 
 
 
 
544	 * on cpu > 0 and at this point we don't know how many cpus are
545	 * available */
 
546	if (!xen_have_vector_callback)
547		return;
 
548	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
549		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
550				"disable pv timer\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551		return;
552	}
553
554	pv_time_ops = xen_time_ops;
 
555	x86_init.timers.setup_percpu_clockev = xen_time_init;
556	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
557
558	x86_platform.calibrate_tsc = xen_tsc_khz;
559	x86_platform.get_wallclock = xen_get_wallclock;
560	x86_platform.set_wallclock = xen_set_wallclock;
 
 
561}
562#endif
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 
 
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 43	return pvclock_tsc_khz(info);
 44}
 45
 46static u64 xen_clocksource_read(void)
 47{
 48        struct pvclock_vcpu_time_info *src;
 49	u64 ret;
 50
 51	preempt_disable_notrace();
 52	src = &__this_cpu_read(xen_vcpu)->time;
 53	ret = pvclock_clocksource_read(src);
 54	preempt_enable_notrace();
 55	return ret;
 56}
 57
 58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 59{
 60	return xen_clocksource_read();
 61}
 62
 63static u64 xen_sched_clock(void)
 64{
 65	return xen_clocksource_read() - xen_sched_clock_offset;
 66}
 67
 68static void xen_read_wallclock(struct timespec64 *ts)
 69{
 70	struct shared_info *s = HYPERVISOR_shared_info;
 71	struct pvclock_wall_clock *wall_clock = &(s->wc);
 72        struct pvclock_vcpu_time_info *vcpu_time;
 73
 74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 76	put_cpu_var(xen_vcpu);
 77}
 78
 79static void xen_get_wallclock(struct timespec64 *now)
 80{
 81	xen_read_wallclock(now);
 82}
 83
 84static int xen_set_wallclock(const struct timespec64 *now)
 85{
 86	return -ENODEV;
 87}
 88
 89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 90				   unsigned long was_set, void *priv)
 91{
 92	/* Protected by the calling core code serialization */
 93	static struct timespec64 next_sync;
 94
 95	struct xen_platform_op op;
 96	struct timespec64 now;
 97	struct timekeeper *tk = priv;
 98	static bool settime64_supported = true;
 99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
 
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
 
 
 
 
 
 
 
 
 
 
 
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
 
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
 
 
 
 
 
 
260
261	return 0;
 
 
 
 
 
 
 
 
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
 
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
 
 
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
 
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
 
 
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
 
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
 
 
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
 
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
 
 
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
 
 
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
382static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383static u64 xen_clock_value_saved;
384
385void xen_save_time_memory_area(void)
386{
387	struct vcpu_register_time_memory_area t;
388	int ret;
389
390	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391
392	if (!xen_clock)
393		return;
394
395	t.addr.v = NULL;
396
397	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398	if (ret != 0)
399		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400			  ret);
401	else
402		clear_page(xen_clock);
403}
404
405void xen_restore_time_memory_area(void)
406{
407	struct vcpu_register_time_memory_area t;
408	int ret;
409
410	if (!xen_clock)
411		goto out;
412
413	t.addr.v = &xen_clock->pvti;
414
415	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416
417	/*
418	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419	 * register the secondary time info with Xen or if we migrated to a
420	 * host without the necessary flags. On both of these cases what
421	 * happens is either process seeing a zeroed out pvti or seeing no
422	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423	 * if 0, it discards the data in pvti and fallbacks to a system
424	 * call for a reliable timestamp.
425	 */
426	if (ret != 0)
427		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428			  ret);
429
430out:
431	/* Need pvclock_resume() before using xen_clocksource_read(). */
432	pvclock_resume();
433	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434}
435
436static void xen_setup_vsyscall_time_info(void)
437{
438	struct vcpu_register_time_memory_area t;
439	struct pvclock_vsyscall_time_info *ti;
440	int ret;
441
442	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443	if (!ti)
444		return;
445
446	t.addr.v = &ti->pvti;
447
448	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449	if (ret) {
450		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451		free_page((unsigned long)ti);
452		return;
453	}
454
455	/*
456	 * If primary time info had this bit set, secondary should too since
457	 * it's the same data on both just different memory regions. But we
458	 * still check it in case hypervisor is buggy.
459	 */
460	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461		t.addr.v = NULL;
462		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463					 0, &t);
464		if (!ret)
465			free_page((unsigned long)ti);
466
467		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468		return;
469	}
470
471	xen_clock = ti;
472	pvclock_set_pvti_cpu0_va(xen_clock);
473
474	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475}
476
477static void __init xen_time_init(void)
478{
479	struct pvclock_vcpu_time_info *pvti;
480	int cpu = smp_processor_id();
481	struct timespec64 tp;
482
483	/* As Dom0 is never moved, no penalty on using TSC there */
484	if (xen_initial_domain())
485		xen_clocksource.rating = 275;
486
487	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488
489	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490			       NULL) == 0) {
491		/* Successfully turned off 100Hz tick, so we have the
492		   vcpuop-based timer interface */
493		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494		xen_clockevent = &xen_vcpuop_clockevent;
495	}
496
497	/* Set initial system time with full resolution */
498	xen_read_wallclock(&tp);
499	do_settimeofday64(&tp);
500
501	setup_force_cpu_cap(X86_FEATURE_TSC);
502
503	/*
504	 * We check ahead on the primary time info if this
505	 * bit is supported hence speeding up Xen clocksource.
506	 */
507	pvti = &__this_cpu_read(xen_vcpu)->time;
508	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510		xen_setup_vsyscall_time_info();
511	}
512
513	xen_setup_runstate_info(cpu);
514	xen_setup_timer(cpu);
515	xen_setup_cpu_clockevents();
516
517	xen_time_setup_guest();
518
519	if (xen_initial_domain())
520		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521}
522
523static void __init xen_init_time_common(void)
524{
525	xen_sched_clock_offset = xen_clocksource_read();
526	static_call_update(pv_steal_clock, xen_steal_clock);
527	paravirt_set_sched_clock(xen_sched_clock);
528
529	x86_platform.calibrate_tsc = xen_tsc_khz;
530	x86_platform.get_wallclock = xen_get_wallclock;
531}
532
533void __init xen_init_time_ops(void)
534{
535	xen_init_time_common();
536
537	x86_init.timers.timer_init = xen_time_init;
538	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540
 
 
541	/* Dom0 uses the native method to set the hardware RTC. */
542	if (!xen_initial_domain())
543		x86_platform.set_wallclock = xen_set_wallclock;
544}
545
546#ifdef CONFIG_XEN_PVHVM
547static void xen_hvm_setup_cpu_clockevents(void)
548{
549	int cpu = smp_processor_id();
550	xen_setup_runstate_info(cpu);
551	/*
552	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554	 * early bootup and also during CPU hotplug events).
555	 */
556	xen_setup_cpu_clockevents();
557}
558
559void __init xen_hvm_init_time_ops(void)
560{
561	static bool hvm_time_initialized;
562
563	if (hvm_time_initialized)
564		return;
565
566	/*
567	 * vector callback is needed otherwise we cannot receive interrupts
568	 * on cpu > 0 and at this point we don't know how many cpus are
569	 * available.
570	 */
571	if (!xen_have_vector_callback)
572		return;
573
574	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
575		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
576		return;
577	}
578
579	/*
580	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
581	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
582	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
583	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
584	 *
585	 * The xen_hvm_init_time_ops() should be called again later after
586	 * __this_cpu_read(xen_vcpu) is available.
587	 */
588	if (!__this_cpu_read(xen_vcpu)) {
589		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
590			xen_vcpu_nr(0));
591		return;
592	}
593
594	xen_init_time_common();
595
596	x86_init.timers.setup_percpu_clockev = xen_time_init;
597	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
598
 
 
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);