Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include "irq.h"
  22#include "mmu.h"
  23#include "x86.h"
  24#include "kvm_cache_regs.h"
  25
  26#include <linux/kvm_host.h>
  27#include <linux/types.h>
  28#include <linux/string.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/module.h>
  32#include <linux/swap.h>
  33#include <linux/hugetlb.h>
  34#include <linux/compiler.h>
  35#include <linux/srcu.h>
  36#include <linux/slab.h>
  37#include <linux/uaccess.h>
  38
  39#include <asm/page.h>
  40#include <asm/cmpxchg.h>
  41#include <asm/io.h>
  42#include <asm/vmx.h>
  43
  44/*
  45 * When setting this variable to true it enables Two-Dimensional-Paging
  46 * where the hardware walks 2 page tables:
  47 * 1. the guest-virtual to guest-physical
  48 * 2. while doing 1. it walks guest-physical to host-physical
  49 * If the hardware supports that we don't need to do shadow paging.
  50 */
  51bool tdp_enabled = false;
  52
  53enum {
  54	AUDIT_PRE_PAGE_FAULT,
  55	AUDIT_POST_PAGE_FAULT,
  56	AUDIT_PRE_PTE_WRITE,
  57	AUDIT_POST_PTE_WRITE,
  58	AUDIT_PRE_SYNC,
  59	AUDIT_POST_SYNC
  60};
  61
  62#undef MMU_DEBUG
  63
  64#ifdef MMU_DEBUG
  65
  66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  68
  69#else
  70
  71#define pgprintk(x...) do { } while (0)
  72#define rmap_printk(x...) do { } while (0)
  73
  74#endif
  75
  76#ifdef MMU_DEBUG
  77static bool dbg = 0;
  78module_param(dbg, bool, 0644);
  79#endif
  80
  81#ifndef MMU_DEBUG
  82#define ASSERT(x) do { } while (0)
  83#else
  84#define ASSERT(x)							\
  85	if (!(x)) {							\
  86		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
  87		       __FILE__, __LINE__, #x);				\
  88	}
  89#endif
  90
  91#define PTE_PREFETCH_NUM		8
  92
  93#define PT_FIRST_AVAIL_BITS_SHIFT 10
  94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
  95
  96#define PT64_LEVEL_BITS 9
  97
  98#define PT64_LEVEL_SHIFT(level) \
  99		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 100
 101#define PT64_INDEX(address, level)\
 102	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 103
 104
 105#define PT32_LEVEL_BITS 10
 106
 107#define PT32_LEVEL_SHIFT(level) \
 108		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 109
 110#define PT32_LVL_OFFSET_MASK(level) \
 111	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 112						* PT32_LEVEL_BITS))) - 1))
 113
 114#define PT32_INDEX(address, level)\
 115	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 116
 117
 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 119#define PT64_DIR_BASE_ADDR_MASK \
 120	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 121#define PT64_LVL_ADDR_MASK(level) \
 122	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 123						* PT64_LEVEL_BITS))) - 1))
 124#define PT64_LVL_OFFSET_MASK(level) \
 125	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 126						* PT64_LEVEL_BITS))) - 1))
 127
 128#define PT32_BASE_ADDR_MASK PAGE_MASK
 129#define PT32_DIR_BASE_ADDR_MASK \
 130	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 131#define PT32_LVL_ADDR_MASK(level) \
 132	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 133					    * PT32_LEVEL_BITS))) - 1))
 134
 135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 136			| shadow_x_mask | shadow_nx_mask)
 137
 138#define ACC_EXEC_MASK    1
 139#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 140#define ACC_USER_MASK    PT_USER_MASK
 141#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 142
 143#include <trace/events/kvm.h>
 144
 145#define CREATE_TRACE_POINTS
 146#include "mmutrace.h"
 147
 148#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 149#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 150
 151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 152
 153/* make pte_list_desc fit well in cache line */
 154#define PTE_LIST_EXT 3
 155
 156struct pte_list_desc {
 157	u64 *sptes[PTE_LIST_EXT];
 158	struct pte_list_desc *more;
 159};
 160
 161struct kvm_shadow_walk_iterator {
 162	u64 addr;
 163	hpa_t shadow_addr;
 164	u64 *sptep;
 165	int level;
 166	unsigned index;
 167};
 168
 169#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 170	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 171	     shadow_walk_okay(&(_walker));			\
 172	     shadow_walk_next(&(_walker)))
 173
 174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 175	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 176	     shadow_walk_okay(&(_walker)) &&				\
 177		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 178	     __shadow_walk_next(&(_walker), spte))
 179
 180static struct kmem_cache *pte_list_desc_cache;
 181static struct kmem_cache *mmu_page_header_cache;
 182static struct percpu_counter kvm_total_used_mmu_pages;
 183
 184static u64 __read_mostly shadow_nx_mask;
 185static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 186static u64 __read_mostly shadow_user_mask;
 187static u64 __read_mostly shadow_accessed_mask;
 188static u64 __read_mostly shadow_dirty_mask;
 189static u64 __read_mostly shadow_mmio_mask;
 190
 191static void mmu_spte_set(u64 *sptep, u64 spte);
 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
 193
 194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
 195{
 196	shadow_mmio_mask = mmio_mask;
 197}
 198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 199
 200/*
 201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 203 * number.
 204 */
 205#define MMIO_SPTE_GEN_LOW_SHIFT		3
 206#define MMIO_SPTE_GEN_HIGH_SHIFT	52
 207
 208#define MMIO_GEN_SHIFT			19
 209#define MMIO_GEN_LOW_SHIFT		9
 210#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
 211#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
 212#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
 213
 214static u64 generation_mmio_spte_mask(unsigned int gen)
 215{
 216	u64 mask;
 217
 218	WARN_ON(gen > MMIO_MAX_GEN);
 219
 220	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
 221	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
 222	return mask;
 223}
 224
 225static unsigned int get_mmio_spte_generation(u64 spte)
 226{
 227	unsigned int gen;
 228
 229	spte &= ~shadow_mmio_mask;
 230
 231	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
 232	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
 233	return gen;
 234}
 235
 236static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
 237{
 238	/*
 239	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
 240	 * code of handling generation number wrap-around.
 241	 */
 242	return (kvm_memslots(kvm)->generation +
 243		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
 244}
 245
 246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
 247			   unsigned access)
 248{
 249	unsigned int gen = kvm_current_mmio_generation(kvm);
 250	u64 mask = generation_mmio_spte_mask(gen);
 251
 252	access &= ACC_WRITE_MASK | ACC_USER_MASK;
 253	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
 254
 255	trace_mark_mmio_spte(sptep, gfn, access, gen);
 256	mmu_spte_set(sptep, mask);
 257}
 258
 259static bool is_mmio_spte(u64 spte)
 260{
 261	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
 262}
 263
 264static gfn_t get_mmio_spte_gfn(u64 spte)
 265{
 266	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
 267	return (spte & ~mask) >> PAGE_SHIFT;
 268}
 269
 270static unsigned get_mmio_spte_access(u64 spte)
 271{
 272	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
 273	return (spte & ~mask) & ~PAGE_MASK;
 274}
 275
 276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
 277			  pfn_t pfn, unsigned access)
 278{
 279	if (unlikely(is_noslot_pfn(pfn))) {
 280		mark_mmio_spte(kvm, sptep, gfn, access);
 281		return true;
 282	}
 283
 284	return false;
 285}
 286
 287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
 288{
 289	unsigned int kvm_gen, spte_gen;
 290
 291	kvm_gen = kvm_current_mmio_generation(kvm);
 292	spte_gen = get_mmio_spte_generation(spte);
 293
 294	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 295	return likely(kvm_gen == spte_gen);
 296}
 297
 298static inline u64 rsvd_bits(int s, int e)
 299{
 300	return ((1ULL << (e - s + 1)) - 1) << s;
 301}
 302
 303void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 304		u64 dirty_mask, u64 nx_mask, u64 x_mask)
 305{
 306	shadow_user_mask = user_mask;
 307	shadow_accessed_mask = accessed_mask;
 308	shadow_dirty_mask = dirty_mask;
 309	shadow_nx_mask = nx_mask;
 310	shadow_x_mask = x_mask;
 311}
 312EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 313
 314static int is_cpuid_PSE36(void)
 315{
 316	return 1;
 317}
 318
 319static int is_nx(struct kvm_vcpu *vcpu)
 320{
 321	return vcpu->arch.efer & EFER_NX;
 322}
 323
 324static int is_shadow_present_pte(u64 pte)
 325{
 326	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
 327}
 328
 329static int is_large_pte(u64 pte)
 330{
 331	return pte & PT_PAGE_SIZE_MASK;
 332}
 333
 334static int is_rmap_spte(u64 pte)
 335{
 336	return is_shadow_present_pte(pte);
 337}
 338
 339static int is_last_spte(u64 pte, int level)
 340{
 341	if (level == PT_PAGE_TABLE_LEVEL)
 342		return 1;
 343	if (is_large_pte(pte))
 344		return 1;
 345	return 0;
 346}
 347
 348static pfn_t spte_to_pfn(u64 pte)
 349{
 350	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 351}
 352
 353static gfn_t pse36_gfn_delta(u32 gpte)
 354{
 355	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 356
 357	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 358}
 359
 360#ifdef CONFIG_X86_64
 361static void __set_spte(u64 *sptep, u64 spte)
 362{
 363	*sptep = spte;
 364}
 365
 366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 367{
 368	*sptep = spte;
 369}
 370
 371static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 372{
 373	return xchg(sptep, spte);
 374}
 375
 376static u64 __get_spte_lockless(u64 *sptep)
 377{
 378	return ACCESS_ONCE(*sptep);
 379}
 380
 381static bool __check_direct_spte_mmio_pf(u64 spte)
 382{
 383	/* It is valid if the spte is zapped. */
 384	return spte == 0ull;
 385}
 386#else
 387union split_spte {
 388	struct {
 389		u32 spte_low;
 390		u32 spte_high;
 391	};
 392	u64 spte;
 393};
 394
 395static void count_spte_clear(u64 *sptep, u64 spte)
 396{
 397	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 398
 399	if (is_shadow_present_pte(spte))
 400		return;
 401
 402	/* Ensure the spte is completely set before we increase the count */
 403	smp_wmb();
 404	sp->clear_spte_count++;
 405}
 406
 407static void __set_spte(u64 *sptep, u64 spte)
 408{
 409	union split_spte *ssptep, sspte;
 410
 411	ssptep = (union split_spte *)sptep;
 412	sspte = (union split_spte)spte;
 413
 414	ssptep->spte_high = sspte.spte_high;
 415
 416	/*
 417	 * If we map the spte from nonpresent to present, We should store
 418	 * the high bits firstly, then set present bit, so cpu can not
 419	 * fetch this spte while we are setting the spte.
 420	 */
 421	smp_wmb();
 422
 423	ssptep->spte_low = sspte.spte_low;
 424}
 425
 426static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 427{
 428	union split_spte *ssptep, sspte;
 429
 430	ssptep = (union split_spte *)sptep;
 431	sspte = (union split_spte)spte;
 432
 433	ssptep->spte_low = sspte.spte_low;
 434
 435	/*
 436	 * If we map the spte from present to nonpresent, we should clear
 437	 * present bit firstly to avoid vcpu fetch the old high bits.
 438	 */
 439	smp_wmb();
 440
 441	ssptep->spte_high = sspte.spte_high;
 442	count_spte_clear(sptep, spte);
 443}
 444
 445static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 446{
 447	union split_spte *ssptep, sspte, orig;
 448
 449	ssptep = (union split_spte *)sptep;
 450	sspte = (union split_spte)spte;
 451
 452	/* xchg acts as a barrier before the setting of the high bits */
 453	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 454	orig.spte_high = ssptep->spte_high;
 455	ssptep->spte_high = sspte.spte_high;
 456	count_spte_clear(sptep, spte);
 457
 458	return orig.spte;
 459}
 460
 461/*
 462 * The idea using the light way get the spte on x86_32 guest is from
 463 * gup_get_pte(arch/x86/mm/gup.c).
 464 *
 465 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 466 * coalesces them and we are running out of the MMU lock.  Therefore
 467 * we need to protect against in-progress updates of the spte.
 468 *
 469 * Reading the spte while an update is in progress may get the old value
 470 * for the high part of the spte.  The race is fine for a present->non-present
 471 * change (because the high part of the spte is ignored for non-present spte),
 472 * but for a present->present change we must reread the spte.
 473 *
 474 * All such changes are done in two steps (present->non-present and
 475 * non-present->present), hence it is enough to count the number of
 476 * present->non-present updates: if it changed while reading the spte,
 477 * we might have hit the race.  This is done using clear_spte_count.
 478 */
 479static u64 __get_spte_lockless(u64 *sptep)
 480{
 481	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 482	union split_spte spte, *orig = (union split_spte *)sptep;
 483	int count;
 484
 485retry:
 486	count = sp->clear_spte_count;
 487	smp_rmb();
 488
 489	spte.spte_low = orig->spte_low;
 490	smp_rmb();
 491
 492	spte.spte_high = orig->spte_high;
 493	smp_rmb();
 494
 495	if (unlikely(spte.spte_low != orig->spte_low ||
 496	      count != sp->clear_spte_count))
 497		goto retry;
 498
 499	return spte.spte;
 500}
 501
 502static bool __check_direct_spte_mmio_pf(u64 spte)
 503{
 504	union split_spte sspte = (union split_spte)spte;
 505	u32 high_mmio_mask = shadow_mmio_mask >> 32;
 506
 507	/* It is valid if the spte is zapped. */
 508	if (spte == 0ull)
 509		return true;
 510
 511	/* It is valid if the spte is being zapped. */
 512	if (sspte.spte_low == 0ull &&
 513	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
 514		return true;
 515
 516	return false;
 517}
 518#endif
 519
 520static bool spte_is_locklessly_modifiable(u64 spte)
 521{
 522	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 523		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 524}
 525
 526static bool spte_has_volatile_bits(u64 spte)
 527{
 528	/*
 529	 * Always atomicly update spte if it can be updated
 530	 * out of mmu-lock, it can ensure dirty bit is not lost,
 531	 * also, it can help us to get a stable is_writable_pte()
 532	 * to ensure tlb flush is not missed.
 533	 */
 534	if (spte_is_locklessly_modifiable(spte))
 535		return true;
 536
 537	if (!shadow_accessed_mask)
 538		return false;
 539
 540	if (!is_shadow_present_pte(spte))
 541		return false;
 542
 543	if ((spte & shadow_accessed_mask) &&
 544	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
 545		return false;
 546
 547	return true;
 548}
 549
 550static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
 551{
 552	return (old_spte & bit_mask) && !(new_spte & bit_mask);
 553}
 554
 555/* Rules for using mmu_spte_set:
 556 * Set the sptep from nonpresent to present.
 557 * Note: the sptep being assigned *must* be either not present
 558 * or in a state where the hardware will not attempt to update
 559 * the spte.
 560 */
 561static void mmu_spte_set(u64 *sptep, u64 new_spte)
 562{
 563	WARN_ON(is_shadow_present_pte(*sptep));
 564	__set_spte(sptep, new_spte);
 565}
 566
 567/* Rules for using mmu_spte_update:
 568 * Update the state bits, it means the mapped pfn is not changged.
 569 *
 570 * Whenever we overwrite a writable spte with a read-only one we
 571 * should flush remote TLBs. Otherwise rmap_write_protect
 572 * will find a read-only spte, even though the writable spte
 573 * might be cached on a CPU's TLB, the return value indicates this
 574 * case.
 575 */
 576static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 577{
 578	u64 old_spte = *sptep;
 579	bool ret = false;
 580
 581	WARN_ON(!is_rmap_spte(new_spte));
 582
 583	if (!is_shadow_present_pte(old_spte)) {
 584		mmu_spte_set(sptep, new_spte);
 585		return ret;
 586	}
 587
 588	if (!spte_has_volatile_bits(old_spte))
 589		__update_clear_spte_fast(sptep, new_spte);
 590	else
 591		old_spte = __update_clear_spte_slow(sptep, new_spte);
 592
 593	/*
 594	 * For the spte updated out of mmu-lock is safe, since
 595	 * we always atomicly update it, see the comments in
 596	 * spte_has_volatile_bits().
 597	 */
 598	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
 599		ret = true;
 600
 601	if (!shadow_accessed_mask)
 602		return ret;
 603
 604	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
 605		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 606	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
 607		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 608
 609	return ret;
 610}
 611
 612/*
 613 * Rules for using mmu_spte_clear_track_bits:
 614 * It sets the sptep from present to nonpresent, and track the
 615 * state bits, it is used to clear the last level sptep.
 616 */
 617static int mmu_spte_clear_track_bits(u64 *sptep)
 618{
 619	pfn_t pfn;
 620	u64 old_spte = *sptep;
 621
 622	if (!spte_has_volatile_bits(old_spte))
 623		__update_clear_spte_fast(sptep, 0ull);
 624	else
 625		old_spte = __update_clear_spte_slow(sptep, 0ull);
 626
 627	if (!is_rmap_spte(old_spte))
 628		return 0;
 629
 630	pfn = spte_to_pfn(old_spte);
 631
 632	/*
 633	 * KVM does not hold the refcount of the page used by
 634	 * kvm mmu, before reclaiming the page, we should
 635	 * unmap it from mmu first.
 636	 */
 637	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 638
 639	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
 640		kvm_set_pfn_accessed(pfn);
 641	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
 642		kvm_set_pfn_dirty(pfn);
 643	return 1;
 644}
 645
 646/*
 647 * Rules for using mmu_spte_clear_no_track:
 648 * Directly clear spte without caring the state bits of sptep,
 649 * it is used to set the upper level spte.
 650 */
 651static void mmu_spte_clear_no_track(u64 *sptep)
 652{
 653	__update_clear_spte_fast(sptep, 0ull);
 654}
 655
 656static u64 mmu_spte_get_lockless(u64 *sptep)
 657{
 658	return __get_spte_lockless(sptep);
 659}
 660
 661static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 662{
 663	/*
 664	 * Prevent page table teardown by making any free-er wait during
 665	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 666	 */
 667	local_irq_disable();
 668	vcpu->mode = READING_SHADOW_PAGE_TABLES;
 669	/*
 670	 * Make sure a following spte read is not reordered ahead of the write
 671	 * to vcpu->mode.
 672	 */
 673	smp_mb();
 674}
 675
 676static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 677{
 678	/*
 679	 * Make sure the write to vcpu->mode is not reordered in front of
 680	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
 681	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 682	 */
 683	smp_mb();
 684	vcpu->mode = OUTSIDE_GUEST_MODE;
 685	local_irq_enable();
 686}
 687
 688static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 689				  struct kmem_cache *base_cache, int min)
 690{
 691	void *obj;
 692
 693	if (cache->nobjs >= min)
 694		return 0;
 695	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 696		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 697		if (!obj)
 698			return -ENOMEM;
 699		cache->objects[cache->nobjs++] = obj;
 700	}
 701	return 0;
 702}
 703
 704static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 705{
 706	return cache->nobjs;
 707}
 708
 709static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 710				  struct kmem_cache *cache)
 711{
 712	while (mc->nobjs)
 713		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 714}
 715
 716static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 717				       int min)
 718{
 719	void *page;
 720
 721	if (cache->nobjs >= min)
 722		return 0;
 723	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 724		page = (void *)__get_free_page(GFP_KERNEL);
 725		if (!page)
 726			return -ENOMEM;
 727		cache->objects[cache->nobjs++] = page;
 728	}
 729	return 0;
 730}
 731
 732static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 733{
 734	while (mc->nobjs)
 735		free_page((unsigned long)mc->objects[--mc->nobjs]);
 736}
 737
 738static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 739{
 740	int r;
 741
 742	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 743				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 744	if (r)
 745		goto out;
 746	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 747	if (r)
 748		goto out;
 749	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 750				   mmu_page_header_cache, 4);
 751out:
 752	return r;
 753}
 754
 755static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 756{
 757	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 758				pte_list_desc_cache);
 759	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 760	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 761				mmu_page_header_cache);
 762}
 763
 764static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 765{
 766	void *p;
 767
 768	BUG_ON(!mc->nobjs);
 769	p = mc->objects[--mc->nobjs];
 770	return p;
 771}
 772
 773static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 774{
 775	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 776}
 777
 778static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 779{
 780	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 781}
 782
 783static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 784{
 785	if (!sp->role.direct)
 786		return sp->gfns[index];
 787
 788	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 789}
 790
 791static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 792{
 793	if (sp->role.direct)
 794		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 795	else
 796		sp->gfns[index] = gfn;
 797}
 798
 799/*
 800 * Return the pointer to the large page information for a given gfn,
 801 * handling slots that are not large page aligned.
 802 */
 803static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 804					      struct kvm_memory_slot *slot,
 805					      int level)
 806{
 807	unsigned long idx;
 808
 809	idx = gfn_to_index(gfn, slot->base_gfn, level);
 810	return &slot->arch.lpage_info[level - 2][idx];
 811}
 812
 813static void account_shadowed(struct kvm *kvm, gfn_t gfn)
 814{
 815	struct kvm_memory_slot *slot;
 816	struct kvm_lpage_info *linfo;
 817	int i;
 818
 819	slot = gfn_to_memslot(kvm, gfn);
 820	for (i = PT_DIRECTORY_LEVEL;
 821	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 822		linfo = lpage_info_slot(gfn, slot, i);
 823		linfo->write_count += 1;
 824	}
 825	kvm->arch.indirect_shadow_pages++;
 826}
 827
 828static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
 829{
 830	struct kvm_memory_slot *slot;
 831	struct kvm_lpage_info *linfo;
 832	int i;
 833
 834	slot = gfn_to_memslot(kvm, gfn);
 835	for (i = PT_DIRECTORY_LEVEL;
 836	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 837		linfo = lpage_info_slot(gfn, slot, i);
 838		linfo->write_count -= 1;
 839		WARN_ON(linfo->write_count < 0);
 840	}
 841	kvm->arch.indirect_shadow_pages--;
 842}
 843
 844static int has_wrprotected_page(struct kvm *kvm,
 845				gfn_t gfn,
 846				int level)
 847{
 848	struct kvm_memory_slot *slot;
 849	struct kvm_lpage_info *linfo;
 850
 851	slot = gfn_to_memslot(kvm, gfn);
 852	if (slot) {
 853		linfo = lpage_info_slot(gfn, slot, level);
 854		return linfo->write_count;
 855	}
 856
 857	return 1;
 858}
 859
 860static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
 861{
 862	unsigned long page_size;
 863	int i, ret = 0;
 864
 865	page_size = kvm_host_page_size(kvm, gfn);
 866
 867	for (i = PT_PAGE_TABLE_LEVEL;
 868	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
 869		if (page_size >= KVM_HPAGE_SIZE(i))
 870			ret = i;
 871		else
 872			break;
 873	}
 874
 875	return ret;
 876}
 877
 878static struct kvm_memory_slot *
 879gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
 880			    bool no_dirty_log)
 881{
 882	struct kvm_memory_slot *slot;
 883
 884	slot = gfn_to_memslot(vcpu->kvm, gfn);
 885	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
 886	      (no_dirty_log && slot->dirty_bitmap))
 887		slot = NULL;
 888
 889	return slot;
 890}
 891
 892static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 893{
 894	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
 895}
 896
 897static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 898{
 899	int host_level, level, max_level;
 900
 901	host_level = host_mapping_level(vcpu->kvm, large_gfn);
 902
 903	if (host_level == PT_PAGE_TABLE_LEVEL)
 904		return host_level;
 905
 906	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
 907
 908	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
 909		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
 910			break;
 911
 912	return level - 1;
 913}
 914
 915/*
 916 * Pte mapping structures:
 917 *
 918 * If pte_list bit zero is zero, then pte_list point to the spte.
 919 *
 920 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 921 * pte_list_desc containing more mappings.
 922 *
 923 * Returns the number of pte entries before the spte was added or zero if
 924 * the spte was not added.
 925 *
 926 */
 927static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
 928			unsigned long *pte_list)
 929{
 930	struct pte_list_desc *desc;
 931	int i, count = 0;
 932
 933	if (!*pte_list) {
 934		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
 935		*pte_list = (unsigned long)spte;
 936	} else if (!(*pte_list & 1)) {
 937		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
 938		desc = mmu_alloc_pte_list_desc(vcpu);
 939		desc->sptes[0] = (u64 *)*pte_list;
 940		desc->sptes[1] = spte;
 941		*pte_list = (unsigned long)desc | 1;
 942		++count;
 943	} else {
 944		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
 945		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 946		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
 947			desc = desc->more;
 948			count += PTE_LIST_EXT;
 949		}
 950		if (desc->sptes[PTE_LIST_EXT-1]) {
 951			desc->more = mmu_alloc_pte_list_desc(vcpu);
 952			desc = desc->more;
 953		}
 954		for (i = 0; desc->sptes[i]; ++i)
 955			++count;
 956		desc->sptes[i] = spte;
 957	}
 958	return count;
 959}
 960
 961static void
 962pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
 963			   int i, struct pte_list_desc *prev_desc)
 964{
 965	int j;
 966
 967	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
 968		;
 969	desc->sptes[i] = desc->sptes[j];
 970	desc->sptes[j] = NULL;
 971	if (j != 0)
 972		return;
 973	if (!prev_desc && !desc->more)
 974		*pte_list = (unsigned long)desc->sptes[0];
 975	else
 976		if (prev_desc)
 977			prev_desc->more = desc->more;
 978		else
 979			*pte_list = (unsigned long)desc->more | 1;
 980	mmu_free_pte_list_desc(desc);
 981}
 982
 983static void pte_list_remove(u64 *spte, unsigned long *pte_list)
 984{
 985	struct pte_list_desc *desc;
 986	struct pte_list_desc *prev_desc;
 987	int i;
 988
 989	if (!*pte_list) {
 990		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
 991		BUG();
 992	} else if (!(*pte_list & 1)) {
 993		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
 994		if ((u64 *)*pte_list != spte) {
 995			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
 996			BUG();
 997		}
 998		*pte_list = 0;
 999	} else {
1000		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1001		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002		prev_desc = NULL;
1003		while (desc) {
1004			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005				if (desc->sptes[i] == spte) {
1006					pte_list_desc_remove_entry(pte_list,
1007							       desc, i,
1008							       prev_desc);
1009					return;
1010				}
1011			prev_desc = desc;
1012			desc = desc->more;
1013		}
1014		pr_err("pte_list_remove: %p many->many\n", spte);
1015		BUG();
1016	}
1017}
1018
1019typedef void (*pte_list_walk_fn) (u64 *spte);
1020static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1021{
1022	struct pte_list_desc *desc;
1023	int i;
1024
1025	if (!*pte_list)
1026		return;
1027
1028	if (!(*pte_list & 1))
1029		return fn((u64 *)*pte_list);
1030
1031	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1032	while (desc) {
1033		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1034			fn(desc->sptes[i]);
1035		desc = desc->more;
1036	}
1037}
1038
1039static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040				    struct kvm_memory_slot *slot)
1041{
1042	unsigned long idx;
1043
1044	idx = gfn_to_index(gfn, slot->base_gfn, level);
1045	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1046}
1047
1048/*
1049 * Take gfn and return the reverse mapping to it.
1050 */
1051static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1052{
1053	struct kvm_memory_slot *slot;
1054
1055	slot = gfn_to_memslot(kvm, gfn);
1056	return __gfn_to_rmap(gfn, level, slot);
1057}
1058
1059static bool rmap_can_add(struct kvm_vcpu *vcpu)
1060{
1061	struct kvm_mmu_memory_cache *cache;
1062
1063	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1064	return mmu_memory_cache_free_objects(cache);
1065}
1066
1067static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1068{
1069	struct kvm_mmu_page *sp;
1070	unsigned long *rmapp;
1071
1072	sp = page_header(__pa(spte));
1073	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1074	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1075	return pte_list_add(vcpu, spte, rmapp);
1076}
1077
1078static void rmap_remove(struct kvm *kvm, u64 *spte)
1079{
1080	struct kvm_mmu_page *sp;
1081	gfn_t gfn;
1082	unsigned long *rmapp;
1083
1084	sp = page_header(__pa(spte));
1085	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1086	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1087	pte_list_remove(spte, rmapp);
1088}
1089
1090/*
1091 * Used by the following functions to iterate through the sptes linked by a
1092 * rmap.  All fields are private and not assumed to be used outside.
1093 */
1094struct rmap_iterator {
1095	/* private fields */
1096	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1097	int pos;			/* index of the sptep */
1098};
1099
1100/*
1101 * Iteration must be started by this function.  This should also be used after
1102 * removing/dropping sptes from the rmap link because in such cases the
1103 * information in the itererator may not be valid.
1104 *
1105 * Returns sptep if found, NULL otherwise.
1106 */
1107static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1108{
1109	if (!rmap)
1110		return NULL;
1111
1112	if (!(rmap & 1)) {
1113		iter->desc = NULL;
1114		return (u64 *)rmap;
1115	}
1116
1117	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1118	iter->pos = 0;
1119	return iter->desc->sptes[iter->pos];
1120}
1121
1122/*
1123 * Must be used with a valid iterator: e.g. after rmap_get_first().
1124 *
1125 * Returns sptep if found, NULL otherwise.
1126 */
1127static u64 *rmap_get_next(struct rmap_iterator *iter)
1128{
1129	if (iter->desc) {
1130		if (iter->pos < PTE_LIST_EXT - 1) {
1131			u64 *sptep;
1132
1133			++iter->pos;
1134			sptep = iter->desc->sptes[iter->pos];
1135			if (sptep)
1136				return sptep;
1137		}
1138
1139		iter->desc = iter->desc->more;
1140
1141		if (iter->desc) {
1142			iter->pos = 0;
1143			/* desc->sptes[0] cannot be NULL */
1144			return iter->desc->sptes[iter->pos];
1145		}
1146	}
1147
1148	return NULL;
1149}
1150
1151static void drop_spte(struct kvm *kvm, u64 *sptep)
1152{
1153	if (mmu_spte_clear_track_bits(sptep))
1154		rmap_remove(kvm, sptep);
1155}
1156
1157
1158static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159{
1160	if (is_large_pte(*sptep)) {
1161		WARN_ON(page_header(__pa(sptep))->role.level ==
1162			PT_PAGE_TABLE_LEVEL);
1163		drop_spte(kvm, sptep);
1164		--kvm->stat.lpages;
1165		return true;
1166	}
1167
1168	return false;
1169}
1170
1171static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172{
1173	if (__drop_large_spte(vcpu->kvm, sptep))
1174		kvm_flush_remote_tlbs(vcpu->kvm);
1175}
1176
1177/*
1178 * Write-protect on the specified @sptep, @pt_protect indicates whether
1179 * spte writ-protection is caused by protecting shadow page table.
1180 * @flush indicates whether tlb need be flushed.
1181 *
1182 * Note: write protection is difference between drity logging and spte
1183 * protection:
1184 * - for dirty logging, the spte can be set to writable at anytime if
1185 *   its dirty bitmap is properly set.
1186 * - for spte protection, the spte can be writable only after unsync-ing
1187 *   shadow page.
1188 *
1189 * Return true if the spte is dropped.
1190 */
1191static bool
1192spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1193{
1194	u64 spte = *sptep;
1195
1196	if (!is_writable_pte(spte) &&
1197	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198		return false;
1199
1200	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
1202	if (__drop_large_spte(kvm, sptep)) {
1203		*flush |= true;
1204		return true;
1205	}
1206
1207	if (pt_protect)
1208		spte &= ~SPTE_MMU_WRITEABLE;
1209	spte = spte & ~PT_WRITABLE_MASK;
1210
1211	*flush |= mmu_spte_update(sptep, spte);
1212	return false;
1213}
1214
1215static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216				 bool pt_protect)
1217{
1218	u64 *sptep;
1219	struct rmap_iterator iter;
1220	bool flush = false;
1221
1222	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1223		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1225			sptep = rmap_get_first(*rmapp, &iter);
1226			continue;
1227		}
1228
1229		sptep = rmap_get_next(&iter);
1230	}
1231
1232	return flush;
1233}
1234
1235/**
1236 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237 * @kvm: kvm instance
1238 * @slot: slot to protect
1239 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240 * @mask: indicates which pages we should protect
1241 *
1242 * Used when we do not need to care about huge page mappings: e.g. during dirty
1243 * logging we do not have any such mappings.
1244 */
1245void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246				     struct kvm_memory_slot *slot,
1247				     gfn_t gfn_offset, unsigned long mask)
1248{
1249	unsigned long *rmapp;
1250
1251	while (mask) {
1252		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1253				      PT_PAGE_TABLE_LEVEL, slot);
1254		__rmap_write_protect(kvm, rmapp, false);
1255
1256		/* clear the first set bit */
1257		mask &= mask - 1;
1258	}
1259}
1260
1261static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262{
1263	struct kvm_memory_slot *slot;
1264	unsigned long *rmapp;
1265	int i;
1266	bool write_protected = false;
1267
1268	slot = gfn_to_memslot(kvm, gfn);
1269
1270	for (i = PT_PAGE_TABLE_LEVEL;
1271	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1272		rmapp = __gfn_to_rmap(gfn, i, slot);
1273		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274	}
1275
1276	return write_protected;
1277}
1278
1279static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280			   struct kvm_memory_slot *slot, unsigned long data)
1281{
1282	u64 *sptep;
1283	struct rmap_iterator iter;
1284	int need_tlb_flush = 0;
1285
1286	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1287		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1288		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1289
1290		drop_spte(kvm, sptep);
1291		need_tlb_flush = 1;
1292	}
1293
1294	return need_tlb_flush;
1295}
1296
1297static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298			     struct kvm_memory_slot *slot, unsigned long data)
1299{
1300	u64 *sptep;
1301	struct rmap_iterator iter;
1302	int need_flush = 0;
1303	u64 new_spte;
1304	pte_t *ptep = (pte_t *)data;
1305	pfn_t new_pfn;
1306
1307	WARN_ON(pte_huge(*ptep));
1308	new_pfn = pte_pfn(*ptep);
1309
1310	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1311		BUG_ON(!is_shadow_present_pte(*sptep));
1312		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1313
1314		need_flush = 1;
1315
1316		if (pte_write(*ptep)) {
1317			drop_spte(kvm, sptep);
1318			sptep = rmap_get_first(*rmapp, &iter);
1319		} else {
1320			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1322
1323			new_spte &= ~PT_WRITABLE_MASK;
1324			new_spte &= ~SPTE_HOST_WRITEABLE;
1325			new_spte &= ~shadow_accessed_mask;
1326
1327			mmu_spte_clear_track_bits(sptep);
1328			mmu_spte_set(sptep, new_spte);
1329			sptep = rmap_get_next(&iter);
1330		}
1331	}
1332
1333	if (need_flush)
1334		kvm_flush_remote_tlbs(kvm);
1335
1336	return 0;
1337}
1338
1339static int kvm_handle_hva_range(struct kvm *kvm,
1340				unsigned long start,
1341				unsigned long end,
1342				unsigned long data,
1343				int (*handler)(struct kvm *kvm,
1344					       unsigned long *rmapp,
1345					       struct kvm_memory_slot *slot,
1346					       unsigned long data))
1347{
1348	int j;
1349	int ret = 0;
1350	struct kvm_memslots *slots;
1351	struct kvm_memory_slot *memslot;
1352
1353	slots = kvm_memslots(kvm);
1354
1355	kvm_for_each_memslot(memslot, slots) {
1356		unsigned long hva_start, hva_end;
1357		gfn_t gfn_start, gfn_end;
1358
1359		hva_start = max(start, memslot->userspace_addr);
1360		hva_end = min(end, memslot->userspace_addr +
1361					(memslot->npages << PAGE_SHIFT));
1362		if (hva_start >= hva_end)
1363			continue;
1364		/*
1365		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1367		 */
1368		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1370
1371		for (j = PT_PAGE_TABLE_LEVEL;
1372		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1373			unsigned long idx, idx_end;
1374			unsigned long *rmapp;
1375
1376			/*
1377			 * {idx(page_j) | page_j intersects with
1378			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1379			 */
1380			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1381			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1382
1383			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1384
1385			for (; idx <= idx_end; ++idx)
1386				ret |= handler(kvm, rmapp++, memslot, data);
1387		}
1388	}
1389
1390	return ret;
1391}
1392
1393static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1394			  unsigned long data,
1395			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396					 struct kvm_memory_slot *slot,
1397					 unsigned long data))
1398{
1399	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1400}
1401
1402int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1403{
1404	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1405}
1406
1407int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1408{
1409	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1410}
1411
1412void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1413{
1414	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1415}
1416
1417static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418			 struct kvm_memory_slot *slot, unsigned long data)
1419{
1420	u64 *sptep;
1421	struct rmap_iterator uninitialized_var(iter);
1422	int young = 0;
1423
1424	/*
1425	 * In case of absence of EPT Access and Dirty Bits supports,
1426	 * emulate the accessed bit for EPT, by checking if this page has
1427	 * an EPT mapping, and clearing it if it does. On the next access,
1428	 * a new EPT mapping will be established.
1429	 * This has some overhead, but not as much as the cost of swapping
1430	 * out actively used pages or breaking up actively used hugepages.
1431	 */
1432	if (!shadow_accessed_mask) {
1433		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1434		goto out;
1435	}
1436
1437	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438	     sptep = rmap_get_next(&iter)) {
1439		BUG_ON(!is_shadow_present_pte(*sptep));
1440
1441		if (*sptep & shadow_accessed_mask) {
1442			young = 1;
1443			clear_bit((ffs(shadow_accessed_mask) - 1),
1444				 (unsigned long *)sptep);
1445		}
1446	}
1447out:
1448	/* @data has hva passed to kvm_age_hva(). */
1449	trace_kvm_age_page(data, slot, young);
1450	return young;
1451}
1452
1453static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454			      struct kvm_memory_slot *slot, unsigned long data)
1455{
1456	u64 *sptep;
1457	struct rmap_iterator iter;
1458	int young = 0;
1459
1460	/*
1461	 * If there's no access bit in the secondary pte set by the
1462	 * hardware it's up to gup-fast/gup to set the access bit in
1463	 * the primary pte or in the page structure.
1464	 */
1465	if (!shadow_accessed_mask)
1466		goto out;
1467
1468	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1469	     sptep = rmap_get_next(&iter)) {
1470		BUG_ON(!is_shadow_present_pte(*sptep));
1471
1472		if (*sptep & shadow_accessed_mask) {
1473			young = 1;
1474			break;
1475		}
1476	}
1477out:
1478	return young;
1479}
1480
1481#define RMAP_RECYCLE_THRESHOLD 1000
1482
1483static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1484{
1485	unsigned long *rmapp;
1486	struct kvm_mmu_page *sp;
1487
1488	sp = page_header(__pa(spte));
1489
1490	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1491
1492	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493	kvm_flush_remote_tlbs(vcpu->kvm);
1494}
1495
1496int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1497{
1498	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1499}
1500
1501int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1502{
1503	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1504}
1505
1506#ifdef MMU_DEBUG
1507static int is_empty_shadow_page(u64 *spt)
1508{
1509	u64 *pos;
1510	u64 *end;
1511
1512	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513		if (is_shadow_present_pte(*pos)) {
1514			printk(KERN_ERR "%s: %p %llx\n", __func__,
1515			       pos, *pos);
1516			return 0;
1517		}
1518	return 1;
1519}
1520#endif
1521
1522/*
1523 * This value is the sum of all of the kvm instances's
1524 * kvm->arch.n_used_mmu_pages values.  We need a global,
1525 * aggregate version in order to make the slab shrinker
1526 * faster
1527 */
1528static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1529{
1530	kvm->arch.n_used_mmu_pages += nr;
1531	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1532}
1533
1534static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1535{
1536	ASSERT(is_empty_shadow_page(sp->spt));
1537	hlist_del(&sp->hash_link);
1538	list_del(&sp->link);
1539	free_page((unsigned long)sp->spt);
1540	if (!sp->role.direct)
1541		free_page((unsigned long)sp->gfns);
1542	kmem_cache_free(mmu_page_header_cache, sp);
1543}
1544
1545static unsigned kvm_page_table_hashfn(gfn_t gfn)
1546{
1547	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1548}
1549
1550static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551				    struct kvm_mmu_page *sp, u64 *parent_pte)
1552{
1553	if (!parent_pte)
1554		return;
1555
1556	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1557}
1558
1559static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560				       u64 *parent_pte)
1561{
1562	pte_list_remove(parent_pte, &sp->parent_ptes);
1563}
1564
1565static void drop_parent_pte(struct kvm_mmu_page *sp,
1566			    u64 *parent_pte)
1567{
1568	mmu_page_remove_parent_pte(sp, parent_pte);
1569	mmu_spte_clear_no_track(parent_pte);
1570}
1571
1572static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1573					       u64 *parent_pte, int direct)
1574{
1575	struct kvm_mmu_page *sp;
1576
1577	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1578	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579	if (!direct)
1580		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1582
1583	/*
1584	 * The active_mmu_pages list is the FIFO list, do not move the
1585	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1586	 * this feature. See the comments in kvm_zap_obsolete_pages().
1587	 */
1588	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1589	sp->parent_ptes = 0;
1590	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1591	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1592	return sp;
1593}
1594
1595static void mark_unsync(u64 *spte);
1596static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1597{
1598	pte_list_walk(&sp->parent_ptes, mark_unsync);
1599}
1600
1601static void mark_unsync(u64 *spte)
1602{
1603	struct kvm_mmu_page *sp;
1604	unsigned int index;
1605
1606	sp = page_header(__pa(spte));
1607	index = spte - sp->spt;
1608	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609		return;
1610	if (sp->unsync_children++)
1611		return;
1612	kvm_mmu_mark_parents_unsync(sp);
1613}
1614
1615static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616			       struct kvm_mmu_page *sp)
1617{
1618	return 1;
1619}
1620
1621static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1622{
1623}
1624
1625static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1626				 struct kvm_mmu_page *sp, u64 *spte,
1627				 const void *pte)
1628{
1629	WARN_ON(1);
1630}
1631
1632#define KVM_PAGE_ARRAY_NR 16
1633
1634struct kvm_mmu_pages {
1635	struct mmu_page_and_offset {
1636		struct kvm_mmu_page *sp;
1637		unsigned int idx;
1638	} page[KVM_PAGE_ARRAY_NR];
1639	unsigned int nr;
1640};
1641
1642static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1643			 int idx)
1644{
1645	int i;
1646
1647	if (sp->unsync)
1648		for (i=0; i < pvec->nr; i++)
1649			if (pvec->page[i].sp == sp)
1650				return 0;
1651
1652	pvec->page[pvec->nr].sp = sp;
1653	pvec->page[pvec->nr].idx = idx;
1654	pvec->nr++;
1655	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1656}
1657
1658static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1659			   struct kvm_mmu_pages *pvec)
1660{
1661	int i, ret, nr_unsync_leaf = 0;
1662
1663	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664		struct kvm_mmu_page *child;
1665		u64 ent = sp->spt[i];
1666
1667		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1668			goto clear_child_bitmap;
1669
1670		child = page_header(ent & PT64_BASE_ADDR_MASK);
1671
1672		if (child->unsync_children) {
1673			if (mmu_pages_add(pvec, child, i))
1674				return -ENOSPC;
1675
1676			ret = __mmu_unsync_walk(child, pvec);
1677			if (!ret)
1678				goto clear_child_bitmap;
1679			else if (ret > 0)
1680				nr_unsync_leaf += ret;
1681			else
1682				return ret;
1683		} else if (child->unsync) {
1684			nr_unsync_leaf++;
1685			if (mmu_pages_add(pvec, child, i))
1686				return -ENOSPC;
1687		} else
1688			 goto clear_child_bitmap;
1689
1690		continue;
1691
1692clear_child_bitmap:
1693		__clear_bit(i, sp->unsync_child_bitmap);
1694		sp->unsync_children--;
1695		WARN_ON((int)sp->unsync_children < 0);
1696	}
1697
1698
1699	return nr_unsync_leaf;
1700}
1701
1702static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1703			   struct kvm_mmu_pages *pvec)
1704{
1705	if (!sp->unsync_children)
1706		return 0;
1707
1708	mmu_pages_add(pvec, sp, 0);
1709	return __mmu_unsync_walk(sp, pvec);
1710}
1711
1712static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1713{
1714	WARN_ON(!sp->unsync);
1715	trace_kvm_mmu_sync_page(sp);
1716	sp->unsync = 0;
1717	--kvm->stat.mmu_unsync;
1718}
1719
1720static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1721				    struct list_head *invalid_list);
1722static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1723				    struct list_head *invalid_list);
1724
1725/*
1726 * NOTE: we should pay more attention on the zapped-obsolete page
1727 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1728 * since it has been deleted from active_mmu_pages but still can be found
1729 * at hast list.
1730 *
1731 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1732 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1733 * all the obsolete pages.
1734 */
1735#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1736	hlist_for_each_entry(_sp,					\
1737	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1738		if ((_sp)->gfn != (_gfn)) {} else
1739
1740#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1741	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1742		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1743
1744/* @sp->gfn should be write-protected at the call site */
1745static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746			   struct list_head *invalid_list, bool clear_unsync)
1747{
1748	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750		return 1;
1751	}
1752
1753	if (clear_unsync)
1754		kvm_unlink_unsync_page(vcpu->kvm, sp);
1755
1756	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758		return 1;
1759	}
1760
1761	kvm_mmu_flush_tlb(vcpu);
1762	return 0;
1763}
1764
1765static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1766				   struct kvm_mmu_page *sp)
1767{
1768	LIST_HEAD(invalid_list);
1769	int ret;
1770
1771	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772	if (ret)
1773		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1774
1775	return ret;
1776}
1777
1778#ifdef CONFIG_KVM_MMU_AUDIT
1779#include "mmu_audit.c"
1780#else
1781static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1782static void mmu_audit_disable(void) { }
1783#endif
1784
1785static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1786			 struct list_head *invalid_list)
1787{
1788	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1789}
1790
1791/* @gfn should be write-protected at the call site */
1792static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1793{
1794	struct kvm_mmu_page *s;
1795	LIST_HEAD(invalid_list);
1796	bool flush = false;
1797
1798	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799		if (!s->unsync)
1800			continue;
1801
1802		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803		kvm_unlink_unsync_page(vcpu->kvm, s);
1804		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1806			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807			continue;
1808		}
1809		flush = true;
1810	}
1811
1812	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813	if (flush)
1814		kvm_mmu_flush_tlb(vcpu);
1815}
1816
1817struct mmu_page_path {
1818	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1819	unsigned int idx[PT64_ROOT_LEVEL-1];
1820};
1821
1822#define for_each_sp(pvec, sp, parents, i)			\
1823		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1824			sp = pvec.page[i].sp;			\
1825			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1826			i = mmu_pages_next(&pvec, &parents, i))
1827
1828static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1829			  struct mmu_page_path *parents,
1830			  int i)
1831{
1832	int n;
1833
1834	for (n = i+1; n < pvec->nr; n++) {
1835		struct kvm_mmu_page *sp = pvec->page[n].sp;
1836
1837		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1838			parents->idx[0] = pvec->page[n].idx;
1839			return n;
1840		}
1841
1842		parents->parent[sp->role.level-2] = sp;
1843		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1844	}
1845
1846	return n;
1847}
1848
1849static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1850{
1851	struct kvm_mmu_page *sp;
1852	unsigned int level = 0;
1853
1854	do {
1855		unsigned int idx = parents->idx[level];
1856
1857		sp = parents->parent[level];
1858		if (!sp)
1859			return;
1860
1861		--sp->unsync_children;
1862		WARN_ON((int)sp->unsync_children < 0);
1863		__clear_bit(idx, sp->unsync_child_bitmap);
1864		level++;
1865	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1866}
1867
1868static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1869			       struct mmu_page_path *parents,
1870			       struct kvm_mmu_pages *pvec)
1871{
1872	parents->parent[parent->role.level-1] = NULL;
1873	pvec->nr = 0;
1874}
1875
1876static void mmu_sync_children(struct kvm_vcpu *vcpu,
1877			      struct kvm_mmu_page *parent)
1878{
1879	int i;
1880	struct kvm_mmu_page *sp;
1881	struct mmu_page_path parents;
1882	struct kvm_mmu_pages pages;
1883	LIST_HEAD(invalid_list);
1884
1885	kvm_mmu_pages_init(parent, &parents, &pages);
1886	while (mmu_unsync_walk(parent, &pages)) {
1887		bool protected = false;
1888
1889		for_each_sp(pages, sp, parents, i)
1890			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1891
1892		if (protected)
1893			kvm_flush_remote_tlbs(vcpu->kvm);
1894
1895		for_each_sp(pages, sp, parents, i) {
1896			kvm_sync_page(vcpu, sp, &invalid_list);
1897			mmu_pages_clear_parents(&parents);
1898		}
1899		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900		cond_resched_lock(&vcpu->kvm->mmu_lock);
1901		kvm_mmu_pages_init(parent, &parents, &pages);
1902	}
1903}
1904
1905static void init_shadow_page_table(struct kvm_mmu_page *sp)
1906{
1907	int i;
1908
1909	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1910		sp->spt[i] = 0ull;
1911}
1912
1913static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1914{
1915	sp->write_flooding_count = 0;
1916}
1917
1918static void clear_sp_write_flooding_count(u64 *spte)
1919{
1920	struct kvm_mmu_page *sp =  page_header(__pa(spte));
1921
1922	__clear_sp_write_flooding_count(sp);
1923}
1924
1925static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1926{
1927	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1928}
1929
1930static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1931					     gfn_t gfn,
1932					     gva_t gaddr,
1933					     unsigned level,
1934					     int direct,
1935					     unsigned access,
1936					     u64 *parent_pte)
1937{
1938	union kvm_mmu_page_role role;
1939	unsigned quadrant;
1940	struct kvm_mmu_page *sp;
1941	bool need_sync = false;
1942
1943	role = vcpu->arch.mmu.base_role;
1944	role.level = level;
1945	role.direct = direct;
1946	if (role.direct)
1947		role.cr4_pae = 0;
1948	role.access = access;
1949	if (!vcpu->arch.mmu.direct_map
1950	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1952		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1953		role.quadrant = quadrant;
1954	}
1955	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956		if (is_obsolete_sp(vcpu->kvm, sp))
1957			continue;
1958
1959		if (!need_sync && sp->unsync)
1960			need_sync = true;
1961
1962		if (sp->role.word != role.word)
1963			continue;
1964
1965		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1966			break;
1967
1968		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1969		if (sp->unsync_children) {
1970			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971			kvm_mmu_mark_parents_unsync(sp);
1972		} else if (sp->unsync)
1973			kvm_mmu_mark_parents_unsync(sp);
1974
1975		__clear_sp_write_flooding_count(sp);
1976		trace_kvm_mmu_get_page(sp, false);
1977		return sp;
1978	}
1979	++vcpu->kvm->stat.mmu_cache_miss;
1980	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981	if (!sp)
1982		return sp;
1983	sp->gfn = gfn;
1984	sp->role = role;
1985	hlist_add_head(&sp->hash_link,
1986		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987	if (!direct) {
1988		if (rmap_write_protect(vcpu->kvm, gfn))
1989			kvm_flush_remote_tlbs(vcpu->kvm);
1990		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1991			kvm_sync_pages(vcpu, gfn);
1992
1993		account_shadowed(vcpu->kvm, gfn);
1994	}
1995	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996	init_shadow_page_table(sp);
1997	trace_kvm_mmu_get_page(sp, true);
1998	return sp;
1999}
2000
2001static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2002			     struct kvm_vcpu *vcpu, u64 addr)
2003{
2004	iterator->addr = addr;
2005	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2006	iterator->level = vcpu->arch.mmu.shadow_root_level;
2007
2008	if (iterator->level == PT64_ROOT_LEVEL &&
2009	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2010	    !vcpu->arch.mmu.direct_map)
2011		--iterator->level;
2012
2013	if (iterator->level == PT32E_ROOT_LEVEL) {
2014		iterator->shadow_addr
2015			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2016		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2017		--iterator->level;
2018		if (!iterator->shadow_addr)
2019			iterator->level = 0;
2020	}
2021}
2022
2023static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2024{
2025	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2026		return false;
2027
2028	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2029	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2030	return true;
2031}
2032
2033static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2034			       u64 spte)
2035{
2036	if (is_last_spte(spte, iterator->level)) {
2037		iterator->level = 0;
2038		return;
2039	}
2040
2041	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042	--iterator->level;
2043}
2044
2045static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2046{
2047	return __shadow_walk_next(iterator, *iterator->sptep);
2048}
2049
2050static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2051{
2052	u64 spte;
2053
2054	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2055			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2056
2057	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2058	       shadow_user_mask | shadow_x_mask;
2059
2060	if (accessed)
2061		spte |= shadow_accessed_mask;
2062
2063	mmu_spte_set(sptep, spte);
2064}
2065
2066static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2067				   unsigned direct_access)
2068{
2069	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2070		struct kvm_mmu_page *child;
2071
2072		/*
2073		 * For the direct sp, if the guest pte's dirty bit
2074		 * changed form clean to dirty, it will corrupt the
2075		 * sp's access: allow writable in the read-only sp,
2076		 * so we should update the spte at this point to get
2077		 * a new sp with the correct access.
2078		 */
2079		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2080		if (child->role.access == direct_access)
2081			return;
2082
2083		drop_parent_pte(child, sptep);
2084		kvm_flush_remote_tlbs(vcpu->kvm);
2085	}
2086}
2087
2088static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2089			     u64 *spte)
2090{
2091	u64 pte;
2092	struct kvm_mmu_page *child;
2093
2094	pte = *spte;
2095	if (is_shadow_present_pte(pte)) {
2096		if (is_last_spte(pte, sp->role.level)) {
2097			drop_spte(kvm, spte);
2098			if (is_large_pte(pte))
2099				--kvm->stat.lpages;
2100		} else {
2101			child = page_header(pte & PT64_BASE_ADDR_MASK);
2102			drop_parent_pte(child, spte);
2103		}
2104		return true;
2105	}
2106
2107	if (is_mmio_spte(pte))
2108		mmu_spte_clear_no_track(spte);
2109
2110	return false;
2111}
2112
2113static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2114					 struct kvm_mmu_page *sp)
2115{
2116	unsigned i;
2117
2118	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2119		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2120}
2121
2122static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2123{
2124	mmu_page_remove_parent_pte(sp, parent_pte);
2125}
2126
2127static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2128{
2129	u64 *sptep;
2130	struct rmap_iterator iter;
2131
2132	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2133		drop_parent_pte(sp, sptep);
2134}
2135
2136static int mmu_zap_unsync_children(struct kvm *kvm,
2137				   struct kvm_mmu_page *parent,
2138				   struct list_head *invalid_list)
2139{
2140	int i, zapped = 0;
2141	struct mmu_page_path parents;
2142	struct kvm_mmu_pages pages;
2143
2144	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2145		return 0;
2146
2147	kvm_mmu_pages_init(parent, &parents, &pages);
2148	while (mmu_unsync_walk(parent, &pages)) {
2149		struct kvm_mmu_page *sp;
2150
2151		for_each_sp(pages, sp, parents, i) {
2152			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2153			mmu_pages_clear_parents(&parents);
2154			zapped++;
2155		}
2156		kvm_mmu_pages_init(parent, &parents, &pages);
2157	}
2158
2159	return zapped;
2160}
2161
2162static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163				    struct list_head *invalid_list)
2164{
2165	int ret;
2166
2167	trace_kvm_mmu_prepare_zap_page(sp);
2168	++kvm->stat.mmu_shadow_zapped;
2169	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2170	kvm_mmu_page_unlink_children(kvm, sp);
2171	kvm_mmu_unlink_parents(kvm, sp);
2172
2173	if (!sp->role.invalid && !sp->role.direct)
2174		unaccount_shadowed(kvm, sp->gfn);
2175
2176	if (sp->unsync)
2177		kvm_unlink_unsync_page(kvm, sp);
2178	if (!sp->root_count) {
2179		/* Count self */
2180		ret++;
2181		list_move(&sp->link, invalid_list);
2182		kvm_mod_used_mmu_pages(kvm, -1);
2183	} else {
2184		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2185
2186		/*
2187		 * The obsolete pages can not be used on any vcpus.
2188		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2189		 */
2190		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2191			kvm_reload_remote_mmus(kvm);
2192	}
2193
2194	sp->role.invalid = 1;
2195	return ret;
2196}
2197
2198static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2199				    struct list_head *invalid_list)
2200{
2201	struct kvm_mmu_page *sp, *nsp;
2202
2203	if (list_empty(invalid_list))
2204		return;
2205
2206	/*
2207	 * wmb: make sure everyone sees our modifications to the page tables
2208	 * rmb: make sure we see changes to vcpu->mode
2209	 */
2210	smp_mb();
2211
2212	/*
2213	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2214	 * page table walks.
2215	 */
2216	kvm_flush_remote_tlbs(kvm);
2217
2218	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2219		WARN_ON(!sp->role.invalid || sp->root_count);
2220		kvm_mmu_free_page(sp);
2221	}
2222}
2223
2224static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2225					struct list_head *invalid_list)
2226{
2227	struct kvm_mmu_page *sp;
2228
2229	if (list_empty(&kvm->arch.active_mmu_pages))
2230		return false;
2231
2232	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2233			struct kvm_mmu_page, link);
2234	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2235
2236	return true;
2237}
2238
2239/*
2240 * Changing the number of mmu pages allocated to the vm
2241 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2242 */
2243void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2244{
2245	LIST_HEAD(invalid_list);
2246
2247	spin_lock(&kvm->mmu_lock);
2248
2249	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2250		/* Need to free some mmu pages to achieve the goal. */
2251		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2252			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2253				break;
2254
2255		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2256		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2257	}
2258
2259	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2260
2261	spin_unlock(&kvm->mmu_lock);
2262}
2263
2264int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2265{
2266	struct kvm_mmu_page *sp;
2267	LIST_HEAD(invalid_list);
2268	int r;
2269
2270	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2271	r = 0;
2272	spin_lock(&kvm->mmu_lock);
2273	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2274		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2275			 sp->role.word);
2276		r = 1;
2277		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2278	}
2279	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2280	spin_unlock(&kvm->mmu_lock);
2281
2282	return r;
2283}
2284EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2285
2286/*
2287 * The function is based on mtrr_type_lookup() in
2288 * arch/x86/kernel/cpu/mtrr/generic.c
2289 */
2290static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2291			 u64 start, u64 end)
2292{
2293	int i;
2294	u64 base, mask;
2295	u8 prev_match, curr_match;
2296	int num_var_ranges = KVM_NR_VAR_MTRR;
2297
2298	if (!mtrr_state->enabled)
2299		return 0xFF;
2300
2301	/* Make end inclusive end, instead of exclusive */
2302	end--;
2303
2304	/* Look in fixed ranges. Just return the type as per start */
2305	if (mtrr_state->have_fixed && (start < 0x100000)) {
2306		int idx;
2307
2308		if (start < 0x80000) {
2309			idx = 0;
2310			idx += (start >> 16);
2311			return mtrr_state->fixed_ranges[idx];
2312		} else if (start < 0xC0000) {
2313			idx = 1 * 8;
2314			idx += ((start - 0x80000) >> 14);
2315			return mtrr_state->fixed_ranges[idx];
2316		} else if (start < 0x1000000) {
2317			idx = 3 * 8;
2318			idx += ((start - 0xC0000) >> 12);
2319			return mtrr_state->fixed_ranges[idx];
2320		}
2321	}
2322
2323	/*
2324	 * Look in variable ranges
2325	 * Look of multiple ranges matching this address and pick type
2326	 * as per MTRR precedence
2327	 */
2328	if (!(mtrr_state->enabled & 2))
2329		return mtrr_state->def_type;
2330
2331	prev_match = 0xFF;
2332	for (i = 0; i < num_var_ranges; ++i) {
2333		unsigned short start_state, end_state;
2334
2335		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2336			continue;
2337
2338		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2339		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2340		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2341		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2342
2343		start_state = ((start & mask) == (base & mask));
2344		end_state = ((end & mask) == (base & mask));
2345		if (start_state != end_state)
2346			return 0xFE;
2347
2348		if ((start & mask) != (base & mask))
2349			continue;
2350
2351		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2352		if (prev_match == 0xFF) {
2353			prev_match = curr_match;
2354			continue;
2355		}
2356
2357		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2358		    curr_match == MTRR_TYPE_UNCACHABLE)
2359			return MTRR_TYPE_UNCACHABLE;
2360
2361		if ((prev_match == MTRR_TYPE_WRBACK &&
2362		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2363		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2364		     curr_match == MTRR_TYPE_WRBACK)) {
2365			prev_match = MTRR_TYPE_WRTHROUGH;
2366			curr_match = MTRR_TYPE_WRTHROUGH;
2367		}
2368
2369		if (prev_match != curr_match)
2370			return MTRR_TYPE_UNCACHABLE;
2371	}
2372
2373	if (prev_match != 0xFF)
2374		return prev_match;
2375
2376	return mtrr_state->def_type;
2377}
2378
2379u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2380{
2381	u8 mtrr;
2382
2383	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2384			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2385	if (mtrr == 0xfe || mtrr == 0xff)
2386		mtrr = MTRR_TYPE_WRBACK;
2387	return mtrr;
2388}
2389EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2390
2391static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2392{
2393	trace_kvm_mmu_unsync_page(sp);
2394	++vcpu->kvm->stat.mmu_unsync;
2395	sp->unsync = 1;
2396
2397	kvm_mmu_mark_parents_unsync(sp);
2398}
2399
2400static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2401{
2402	struct kvm_mmu_page *s;
2403
2404	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405		if (s->unsync)
2406			continue;
2407		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2408		__kvm_unsync_page(vcpu, s);
2409	}
2410}
2411
2412static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2413				  bool can_unsync)
2414{
2415	struct kvm_mmu_page *s;
2416	bool need_unsync = false;
2417
2418	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2419		if (!can_unsync)
2420			return 1;
2421
2422		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2423			return 1;
2424
2425		if (!s->unsync)
2426			need_unsync = true;
2427	}
2428	if (need_unsync)
2429		kvm_unsync_pages(vcpu, gfn);
2430	return 0;
2431}
2432
2433static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2434		    unsigned pte_access, int level,
2435		    gfn_t gfn, pfn_t pfn, bool speculative,
2436		    bool can_unsync, bool host_writable)
2437{
2438	u64 spte;
2439	int ret = 0;
2440
2441	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2442		return 0;
2443
2444	spte = PT_PRESENT_MASK;
2445	if (!speculative)
2446		spte |= shadow_accessed_mask;
2447
2448	if (pte_access & ACC_EXEC_MASK)
2449		spte |= shadow_x_mask;
2450	else
2451		spte |= shadow_nx_mask;
2452
2453	if (pte_access & ACC_USER_MASK)
2454		spte |= shadow_user_mask;
2455
2456	if (level > PT_PAGE_TABLE_LEVEL)
2457		spte |= PT_PAGE_SIZE_MASK;
2458	if (tdp_enabled)
2459		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2460			kvm_is_mmio_pfn(pfn));
2461
2462	if (host_writable)
2463		spte |= SPTE_HOST_WRITEABLE;
2464	else
2465		pte_access &= ~ACC_WRITE_MASK;
2466
2467	spte |= (u64)pfn << PAGE_SHIFT;
2468
2469	if (pte_access & ACC_WRITE_MASK) {
2470
2471		/*
2472		 * Other vcpu creates new sp in the window between
2473		 * mapping_level() and acquiring mmu-lock. We can
2474		 * allow guest to retry the access, the mapping can
2475		 * be fixed if guest refault.
2476		 */
2477		if (level > PT_PAGE_TABLE_LEVEL &&
2478		    has_wrprotected_page(vcpu->kvm, gfn, level))
2479			goto done;
2480
2481		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2482
2483		/*
2484		 * Optimization: for pte sync, if spte was writable the hash
2485		 * lookup is unnecessary (and expensive). Write protection
2486		 * is responsibility of mmu_get_page / kvm_sync_page.
2487		 * Same reasoning can be applied to dirty page accounting.
2488		 */
2489		if (!can_unsync && is_writable_pte(*sptep))
2490			goto set_pte;
2491
2492		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2493			pgprintk("%s: found shadow page for %llx, marking ro\n",
2494				 __func__, gfn);
2495			ret = 1;
2496			pte_access &= ~ACC_WRITE_MASK;
2497			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2498		}
2499	}
2500
2501	if (pte_access & ACC_WRITE_MASK)
2502		mark_page_dirty(vcpu->kvm, gfn);
2503
2504set_pte:
2505	if (mmu_spte_update(sptep, spte))
2506		kvm_flush_remote_tlbs(vcpu->kvm);
2507done:
2508	return ret;
2509}
2510
2511static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512			 unsigned pte_access, int write_fault, int *emulate,
2513			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2514			 bool host_writable)
2515{
2516	int was_rmapped = 0;
2517	int rmap_count;
2518
2519	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2520		 *sptep, write_fault, gfn);
2521
2522	if (is_rmap_spte(*sptep)) {
2523		/*
2524		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2525		 * the parent of the now unreachable PTE.
2526		 */
2527		if (level > PT_PAGE_TABLE_LEVEL &&
2528		    !is_large_pte(*sptep)) {
2529			struct kvm_mmu_page *child;
2530			u64 pte = *sptep;
2531
2532			child = page_header(pte & PT64_BASE_ADDR_MASK);
2533			drop_parent_pte(child, sptep);
2534			kvm_flush_remote_tlbs(vcpu->kvm);
2535		} else if (pfn != spte_to_pfn(*sptep)) {
2536			pgprintk("hfn old %llx new %llx\n",
2537				 spte_to_pfn(*sptep), pfn);
2538			drop_spte(vcpu->kvm, sptep);
2539			kvm_flush_remote_tlbs(vcpu->kvm);
2540		} else
2541			was_rmapped = 1;
2542	}
2543
2544	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2545	      true, host_writable)) {
2546		if (write_fault)
2547			*emulate = 1;
2548		kvm_mmu_flush_tlb(vcpu);
2549	}
2550
2551	if (unlikely(is_mmio_spte(*sptep) && emulate))
2552		*emulate = 1;
2553
2554	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2555	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2556		 is_large_pte(*sptep)? "2MB" : "4kB",
2557		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2558		 *sptep, sptep);
2559	if (!was_rmapped && is_large_pte(*sptep))
2560		++vcpu->kvm->stat.lpages;
2561
2562	if (is_shadow_present_pte(*sptep)) {
2563		if (!was_rmapped) {
2564			rmap_count = rmap_add(vcpu, sptep, gfn);
2565			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2566				rmap_recycle(vcpu, sptep, gfn);
2567		}
2568	}
2569
2570	kvm_release_pfn_clean(pfn);
2571}
2572
2573static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2574				     bool no_dirty_log)
2575{
2576	struct kvm_memory_slot *slot;
2577
2578	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2579	if (!slot)
2580		return KVM_PFN_ERR_FAULT;
2581
2582	return gfn_to_pfn_memslot_atomic(slot, gfn);
2583}
2584
2585static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2586				    struct kvm_mmu_page *sp,
2587				    u64 *start, u64 *end)
2588{
2589	struct page *pages[PTE_PREFETCH_NUM];
2590	unsigned access = sp->role.access;
2591	int i, ret;
2592	gfn_t gfn;
2593
2594	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2595	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2596		return -1;
2597
2598	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2599	if (ret <= 0)
2600		return -1;
2601
2602	for (i = 0; i < ret; i++, gfn++, start++)
2603		mmu_set_spte(vcpu, start, access, 0, NULL,
2604			     sp->role.level, gfn, page_to_pfn(pages[i]),
2605			     true, true);
2606
2607	return 0;
2608}
2609
2610static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2611				  struct kvm_mmu_page *sp, u64 *sptep)
2612{
2613	u64 *spte, *start = NULL;
2614	int i;
2615
2616	WARN_ON(!sp->role.direct);
2617
2618	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2619	spte = sp->spt + i;
2620
2621	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2622		if (is_shadow_present_pte(*spte) || spte == sptep) {
2623			if (!start)
2624				continue;
2625			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2626				break;
2627			start = NULL;
2628		} else if (!start)
2629			start = spte;
2630	}
2631}
2632
2633static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2634{
2635	struct kvm_mmu_page *sp;
2636
2637	/*
2638	 * Since it's no accessed bit on EPT, it's no way to
2639	 * distinguish between actually accessed translations
2640	 * and prefetched, so disable pte prefetch if EPT is
2641	 * enabled.
2642	 */
2643	if (!shadow_accessed_mask)
2644		return;
2645
2646	sp = page_header(__pa(sptep));
2647	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2648		return;
2649
2650	__direct_pte_prefetch(vcpu, sp, sptep);
2651}
2652
2653static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2654			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2655			bool prefault)
2656{
2657	struct kvm_shadow_walk_iterator iterator;
2658	struct kvm_mmu_page *sp;
2659	int emulate = 0;
2660	gfn_t pseudo_gfn;
2661
2662	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2663		return 0;
2664
2665	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2666		if (iterator.level == level) {
2667			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2668				     write, &emulate, level, gfn, pfn,
2669				     prefault, map_writable);
2670			direct_pte_prefetch(vcpu, iterator.sptep);
2671			++vcpu->stat.pf_fixed;
2672			break;
2673		}
2674
2675		drop_large_spte(vcpu, iterator.sptep);
2676		if (!is_shadow_present_pte(*iterator.sptep)) {
2677			u64 base_addr = iterator.addr;
2678
2679			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2680			pseudo_gfn = base_addr >> PAGE_SHIFT;
2681			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2682					      iterator.level - 1,
2683					      1, ACC_ALL, iterator.sptep);
2684
2685			link_shadow_page(iterator.sptep, sp, true);
2686		}
2687	}
2688	return emulate;
2689}
2690
2691static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2692{
2693	siginfo_t info;
2694
2695	info.si_signo	= SIGBUS;
2696	info.si_errno	= 0;
2697	info.si_code	= BUS_MCEERR_AR;
2698	info.si_addr	= (void __user *)address;
2699	info.si_addr_lsb = PAGE_SHIFT;
2700
2701	send_sig_info(SIGBUS, &info, tsk);
2702}
2703
2704static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2705{
2706	/*
2707	 * Do not cache the mmio info caused by writing the readonly gfn
2708	 * into the spte otherwise read access on readonly gfn also can
2709	 * caused mmio page fault and treat it as mmio access.
2710	 * Return 1 to tell kvm to emulate it.
2711	 */
2712	if (pfn == KVM_PFN_ERR_RO_FAULT)
2713		return 1;
2714
2715	if (pfn == KVM_PFN_ERR_HWPOISON) {
2716		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2717		return 0;
2718	}
2719
2720	return -EFAULT;
2721}
2722
2723static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2724					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2725{
2726	pfn_t pfn = *pfnp;
2727	gfn_t gfn = *gfnp;
2728	int level = *levelp;
2729
2730	/*
2731	 * Check if it's a transparent hugepage. If this would be an
2732	 * hugetlbfs page, level wouldn't be set to
2733	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2734	 * here.
2735	 */
2736	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2737	    level == PT_PAGE_TABLE_LEVEL &&
2738	    PageTransCompound(pfn_to_page(pfn)) &&
2739	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2740		unsigned long mask;
2741		/*
2742		 * mmu_notifier_retry was successful and we hold the
2743		 * mmu_lock here, so the pmd can't become splitting
2744		 * from under us, and in turn
2745		 * __split_huge_page_refcount() can't run from under
2746		 * us and we can safely transfer the refcount from
2747		 * PG_tail to PG_head as we switch the pfn to tail to
2748		 * head.
2749		 */
2750		*levelp = level = PT_DIRECTORY_LEVEL;
2751		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2752		VM_BUG_ON((gfn & mask) != (pfn & mask));
2753		if (pfn & mask) {
2754			gfn &= ~mask;
2755			*gfnp = gfn;
2756			kvm_release_pfn_clean(pfn);
2757			pfn &= ~mask;
2758			kvm_get_pfn(pfn);
2759			*pfnp = pfn;
2760		}
2761	}
2762}
2763
2764static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2765				pfn_t pfn, unsigned access, int *ret_val)
2766{
2767	bool ret = true;
2768
2769	/* The pfn is invalid, report the error! */
2770	if (unlikely(is_error_pfn(pfn))) {
2771		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2772		goto exit;
2773	}
2774
2775	if (unlikely(is_noslot_pfn(pfn)))
2776		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2777
2778	ret = false;
2779exit:
2780	return ret;
2781}
2782
2783static bool page_fault_can_be_fast(u32 error_code)
2784{
2785	/*
2786	 * Do not fix the mmio spte with invalid generation number which
2787	 * need to be updated by slow page fault path.
2788	 */
2789	if (unlikely(error_code & PFERR_RSVD_MASK))
2790		return false;
2791
2792	/*
2793	 * #PF can be fast only if the shadow page table is present and it
2794	 * is caused by write-protect, that means we just need change the
2795	 * W bit of the spte which can be done out of mmu-lock.
2796	 */
2797	if (!(error_code & PFERR_PRESENT_MASK) ||
2798	      !(error_code & PFERR_WRITE_MASK))
2799		return false;
2800
2801	return true;
2802}
2803
2804static bool
2805fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2806{
2807	struct kvm_mmu_page *sp = page_header(__pa(sptep));
2808	gfn_t gfn;
2809
2810	WARN_ON(!sp->role.direct);
2811
2812	/*
2813	 * The gfn of direct spte is stable since it is calculated
2814	 * by sp->gfn.
2815	 */
2816	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2817
2818	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2819		mark_page_dirty(vcpu->kvm, gfn);
2820
2821	return true;
2822}
2823
2824/*
2825 * Return value:
2826 * - true: let the vcpu to access on the same address again.
2827 * - false: let the real page fault path to fix it.
2828 */
2829static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2830			    u32 error_code)
2831{
2832	struct kvm_shadow_walk_iterator iterator;
2833	bool ret = false;
2834	u64 spte = 0ull;
2835
2836	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2837		return false;
2838
2839	if (!page_fault_can_be_fast(error_code))
2840		return false;
2841
2842	walk_shadow_page_lockless_begin(vcpu);
2843	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2844		if (!is_shadow_present_pte(spte) || iterator.level < level)
2845			break;
2846
2847	/*
2848	 * If the mapping has been changed, let the vcpu fault on the
2849	 * same address again.
2850	 */
2851	if (!is_rmap_spte(spte)) {
2852		ret = true;
2853		goto exit;
2854	}
2855
2856	if (!is_last_spte(spte, level))
2857		goto exit;
2858
2859	/*
2860	 * Check if it is a spurious fault caused by TLB lazily flushed.
2861	 *
2862	 * Need not check the access of upper level table entries since
2863	 * they are always ACC_ALL.
2864	 */
2865	 if (is_writable_pte(spte)) {
2866		ret = true;
2867		goto exit;
2868	}
2869
2870	/*
2871	 * Currently, to simplify the code, only the spte write-protected
2872	 * by dirty-log can be fast fixed.
2873	 */
2874	if (!spte_is_locklessly_modifiable(spte))
2875		goto exit;
2876
2877	/*
2878	 * Currently, fast page fault only works for direct mapping since
2879	 * the gfn is not stable for indirect shadow page.
2880	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2881	 */
2882	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2883exit:
2884	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2885			      spte, ret);
2886	walk_shadow_page_lockless_end(vcpu);
2887
2888	return ret;
2889}
2890
2891static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2892			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2893static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2894
2895static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2896			 gfn_t gfn, bool prefault)
2897{
2898	int r;
2899	int level;
2900	int force_pt_level;
2901	pfn_t pfn;
2902	unsigned long mmu_seq;
2903	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2904
2905	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2906	if (likely(!force_pt_level)) {
2907		level = mapping_level(vcpu, gfn);
2908		/*
2909		 * This path builds a PAE pagetable - so we can map
2910		 * 2mb pages at maximum. Therefore check if the level
2911		 * is larger than that.
2912		 */
2913		if (level > PT_DIRECTORY_LEVEL)
2914			level = PT_DIRECTORY_LEVEL;
2915
2916		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2917	} else
2918		level = PT_PAGE_TABLE_LEVEL;
2919
2920	if (fast_page_fault(vcpu, v, level, error_code))
2921		return 0;
2922
2923	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2924	smp_rmb();
2925
2926	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2927		return 0;
2928
2929	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2930		return r;
2931
2932	spin_lock(&vcpu->kvm->mmu_lock);
2933	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2934		goto out_unlock;
2935	make_mmu_pages_available(vcpu);
2936	if (likely(!force_pt_level))
2937		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2938	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2939			 prefault);
2940	spin_unlock(&vcpu->kvm->mmu_lock);
2941
2942
2943	return r;
2944
2945out_unlock:
2946	spin_unlock(&vcpu->kvm->mmu_lock);
2947	kvm_release_pfn_clean(pfn);
2948	return 0;
2949}
2950
2951
2952static void mmu_free_roots(struct kvm_vcpu *vcpu)
2953{
2954	int i;
2955	struct kvm_mmu_page *sp;
2956	LIST_HEAD(invalid_list);
2957
2958	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2959		return;
2960
2961	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2962	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2963	     vcpu->arch.mmu.direct_map)) {
2964		hpa_t root = vcpu->arch.mmu.root_hpa;
2965
2966		spin_lock(&vcpu->kvm->mmu_lock);
2967		sp = page_header(root);
2968		--sp->root_count;
2969		if (!sp->root_count && sp->role.invalid) {
2970			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2971			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2972		}
2973		spin_unlock(&vcpu->kvm->mmu_lock);
2974		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2975		return;
2976	}
2977
2978	spin_lock(&vcpu->kvm->mmu_lock);
2979	for (i = 0; i < 4; ++i) {
2980		hpa_t root = vcpu->arch.mmu.pae_root[i];
2981
2982		if (root) {
2983			root &= PT64_BASE_ADDR_MASK;
2984			sp = page_header(root);
2985			--sp->root_count;
2986			if (!sp->root_count && sp->role.invalid)
2987				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2988							 &invalid_list);
2989		}
2990		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2991	}
2992	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2993	spin_unlock(&vcpu->kvm->mmu_lock);
2994	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2995}
2996
2997static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2998{
2999	int ret = 0;
3000
3001	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3002		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3003		ret = 1;
3004	}
3005
3006	return ret;
3007}
3008
3009static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3010{
3011	struct kvm_mmu_page *sp;
3012	unsigned i;
3013
3014	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3015		spin_lock(&vcpu->kvm->mmu_lock);
3016		make_mmu_pages_available(vcpu);
3017		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3018				      1, ACC_ALL, NULL);
3019		++sp->root_count;
3020		spin_unlock(&vcpu->kvm->mmu_lock);
3021		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3022	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3023		for (i = 0; i < 4; ++i) {
3024			hpa_t root = vcpu->arch.mmu.pae_root[i];
3025
3026			ASSERT(!VALID_PAGE(root));
3027			spin_lock(&vcpu->kvm->mmu_lock);
3028			make_mmu_pages_available(vcpu);
3029			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3030					      i << 30,
3031					      PT32_ROOT_LEVEL, 1, ACC_ALL,
3032					      NULL);
3033			root = __pa(sp->spt);
3034			++sp->root_count;
3035			spin_unlock(&vcpu->kvm->mmu_lock);
3036			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3037		}
3038		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3039	} else
3040		BUG();
3041
3042	return 0;
3043}
3044
3045static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3046{
3047	struct kvm_mmu_page *sp;
3048	u64 pdptr, pm_mask;
3049	gfn_t root_gfn;
3050	int i;
3051
3052	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3053
3054	if (mmu_check_root(vcpu, root_gfn))
3055		return 1;
3056
3057	/*
3058	 * Do we shadow a long mode page table? If so we need to
3059	 * write-protect the guests page table root.
3060	 */
3061	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3062		hpa_t root = vcpu->arch.mmu.root_hpa;
3063
3064		ASSERT(!VALID_PAGE(root));
3065
3066		spin_lock(&vcpu->kvm->mmu_lock);
3067		make_mmu_pages_available(vcpu);
3068		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3069				      0, ACC_ALL, NULL);
3070		root = __pa(sp->spt);
3071		++sp->root_count;
3072		spin_unlock(&vcpu->kvm->mmu_lock);
3073		vcpu->arch.mmu.root_hpa = root;
3074		return 0;
3075	}
3076
3077	/*
3078	 * We shadow a 32 bit page table. This may be a legacy 2-level
3079	 * or a PAE 3-level page table. In either case we need to be aware that
3080	 * the shadow page table may be a PAE or a long mode page table.
3081	 */
3082	pm_mask = PT_PRESENT_MASK;
3083	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3084		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3085
3086	for (i = 0; i < 4; ++i) {
3087		hpa_t root = vcpu->arch.mmu.pae_root[i];
3088
3089		ASSERT(!VALID_PAGE(root));
3090		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3091			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3092			if (!is_present_gpte(pdptr)) {
3093				vcpu->arch.mmu.pae_root[i] = 0;
3094				continue;
3095			}
3096			root_gfn = pdptr >> PAGE_SHIFT;
3097			if (mmu_check_root(vcpu, root_gfn))
3098				return 1;
3099		}
3100		spin_lock(&vcpu->kvm->mmu_lock);
3101		make_mmu_pages_available(vcpu);
3102		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3103				      PT32_ROOT_LEVEL, 0,
3104				      ACC_ALL, NULL);
3105		root = __pa(sp->spt);
3106		++sp->root_count;
3107		spin_unlock(&vcpu->kvm->mmu_lock);
3108
3109		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3110	}
3111	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3112
3113	/*
3114	 * If we shadow a 32 bit page table with a long mode page
3115	 * table we enter this path.
3116	 */
3117	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118		if (vcpu->arch.mmu.lm_root == NULL) {
3119			/*
3120			 * The additional page necessary for this is only
3121			 * allocated on demand.
3122			 */
3123
3124			u64 *lm_root;
3125
3126			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3127			if (lm_root == NULL)
3128				return 1;
3129
3130			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3131
3132			vcpu->arch.mmu.lm_root = lm_root;
3133		}
3134
3135		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3136	}
3137
3138	return 0;
3139}
3140
3141static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3142{
3143	if (vcpu->arch.mmu.direct_map)
3144		return mmu_alloc_direct_roots(vcpu);
3145	else
3146		return mmu_alloc_shadow_roots(vcpu);
3147}
3148
3149static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3150{
3151	int i;
3152	struct kvm_mmu_page *sp;
3153
3154	if (vcpu->arch.mmu.direct_map)
3155		return;
3156
3157	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3158		return;
3159
3160	vcpu_clear_mmio_info(vcpu, ~0ul);
3161	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3162	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3163		hpa_t root = vcpu->arch.mmu.root_hpa;
3164		sp = page_header(root);
3165		mmu_sync_children(vcpu, sp);
3166		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3167		return;
3168	}
3169	for (i = 0; i < 4; ++i) {
3170		hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172		if (root && VALID_PAGE(root)) {
3173			root &= PT64_BASE_ADDR_MASK;
3174			sp = page_header(root);
3175			mmu_sync_children(vcpu, sp);
3176		}
3177	}
3178	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3179}
3180
3181void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3182{
3183	spin_lock(&vcpu->kvm->mmu_lock);
3184	mmu_sync_roots(vcpu);
3185	spin_unlock(&vcpu->kvm->mmu_lock);
3186}
3187EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3188
3189static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3190				  u32 access, struct x86_exception *exception)
3191{
3192	if (exception)
3193		exception->error_code = 0;
3194	return vaddr;
3195}
3196
3197static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3198					 u32 access,
3199					 struct x86_exception *exception)
3200{
3201	if (exception)
3202		exception->error_code = 0;
3203	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3204}
3205
3206static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3207{
3208	if (direct)
3209		return vcpu_match_mmio_gpa(vcpu, addr);
3210
3211	return vcpu_match_mmio_gva(vcpu, addr);
3212}
3213
3214
3215/*
3216 * On direct hosts, the last spte is only allows two states
3217 * for mmio page fault:
3218 *   - It is the mmio spte
3219 *   - It is zapped or it is being zapped.
3220 *
3221 * This function completely checks the spte when the last spte
3222 * is not the mmio spte.
3223 */
3224static bool check_direct_spte_mmio_pf(u64 spte)
3225{
3226	return __check_direct_spte_mmio_pf(spte);
3227}
3228
3229static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3230{
3231	struct kvm_shadow_walk_iterator iterator;
3232	u64 spte = 0ull;
3233
3234	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3235		return spte;
3236
3237	walk_shadow_page_lockless_begin(vcpu);
3238	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3239		if (!is_shadow_present_pte(spte))
3240			break;
3241	walk_shadow_page_lockless_end(vcpu);
3242
3243	return spte;
3244}
3245
3246int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3247{
3248	u64 spte;
3249
3250	if (quickly_check_mmio_pf(vcpu, addr, direct))
3251		return RET_MMIO_PF_EMULATE;
3252
3253	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3254
3255	if (is_mmio_spte(spte)) {
3256		gfn_t gfn = get_mmio_spte_gfn(spte);
3257		unsigned access = get_mmio_spte_access(spte);
3258
3259		if (!check_mmio_spte(vcpu->kvm, spte))
3260			return RET_MMIO_PF_INVALID;
3261
3262		if (direct)
3263			addr = 0;
3264
3265		trace_handle_mmio_page_fault(addr, gfn, access);
3266		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3267		return RET_MMIO_PF_EMULATE;
3268	}
3269
3270	/*
3271	 * It's ok if the gva is remapped by other cpus on shadow guest,
3272	 * it's a BUG if the gfn is not a mmio page.
3273	 */
3274	if (direct && !check_direct_spte_mmio_pf(spte))
3275		return RET_MMIO_PF_BUG;
3276
3277	/*
3278	 * If the page table is zapped by other cpus, let CPU fault again on
3279	 * the address.
3280	 */
3281	return RET_MMIO_PF_RETRY;
3282}
3283EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3284
3285static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3286				  u32 error_code, bool direct)
3287{
3288	int ret;
3289
3290	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3291	WARN_ON(ret == RET_MMIO_PF_BUG);
3292	return ret;
3293}
3294
3295static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3296				u32 error_code, bool prefault)
3297{
3298	gfn_t gfn;
3299	int r;
3300
3301	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3302
3303	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3304		r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3305
3306		if (likely(r != RET_MMIO_PF_INVALID))
3307			return r;
3308	}
3309
3310	r = mmu_topup_memory_caches(vcpu);
3311	if (r)
3312		return r;
3313
3314	ASSERT(vcpu);
3315	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3316
3317	gfn = gva >> PAGE_SHIFT;
3318
3319	return nonpaging_map(vcpu, gva & PAGE_MASK,
3320			     error_code, gfn, prefault);
3321}
3322
3323static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3324{
3325	struct kvm_arch_async_pf arch;
3326
3327	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3328	arch.gfn = gfn;
3329	arch.direct_map = vcpu->arch.mmu.direct_map;
3330	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3331
3332	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3333}
3334
3335static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3336{
3337	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3338		     kvm_event_needs_reinjection(vcpu)))
3339		return false;
3340
3341	return kvm_x86_ops->interrupt_allowed(vcpu);
3342}
3343
3344static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3345			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3346{
3347	bool async;
3348
3349	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3350
3351	if (!async)
3352		return false; /* *pfn has correct page already */
3353
3354	if (!prefault && can_do_async_pf(vcpu)) {
3355		trace_kvm_try_async_get_page(gva, gfn);
3356		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3357			trace_kvm_async_pf_doublefault(gva, gfn);
3358			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3359			return true;
3360		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3361			return true;
3362	}
3363
3364	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3365
3366	return false;
3367}
3368
3369static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3370			  bool prefault)
3371{
3372	pfn_t pfn;
3373	int r;
3374	int level;
3375	int force_pt_level;
3376	gfn_t gfn = gpa >> PAGE_SHIFT;
3377	unsigned long mmu_seq;
3378	int write = error_code & PFERR_WRITE_MASK;
3379	bool map_writable;
3380
3381	ASSERT(vcpu);
3382	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3383
3384	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3385		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3386
3387		if (likely(r != RET_MMIO_PF_INVALID))
3388			return r;
3389	}
3390
3391	r = mmu_topup_memory_caches(vcpu);
3392	if (r)
3393		return r;
3394
3395	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3396	if (likely(!force_pt_level)) {
3397		level = mapping_level(vcpu, gfn);
3398		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3399	} else
3400		level = PT_PAGE_TABLE_LEVEL;
3401
3402	if (fast_page_fault(vcpu, gpa, level, error_code))
3403		return 0;
3404
3405	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3406	smp_rmb();
3407
3408	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3409		return 0;
3410
3411	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3412		return r;
3413
3414	spin_lock(&vcpu->kvm->mmu_lock);
3415	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3416		goto out_unlock;
3417	make_mmu_pages_available(vcpu);
3418	if (likely(!force_pt_level))
3419		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3420	r = __direct_map(vcpu, gpa, write, map_writable,
3421			 level, gfn, pfn, prefault);
3422	spin_unlock(&vcpu->kvm->mmu_lock);
3423
3424	return r;
3425
3426out_unlock:
3427	spin_unlock(&vcpu->kvm->mmu_lock);
3428	kvm_release_pfn_clean(pfn);
3429	return 0;
3430}
3431
3432static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3433				   struct kvm_mmu *context)
3434{
3435	context->page_fault = nonpaging_page_fault;
3436	context->gva_to_gpa = nonpaging_gva_to_gpa;
3437	context->sync_page = nonpaging_sync_page;
3438	context->invlpg = nonpaging_invlpg;
3439	context->update_pte = nonpaging_update_pte;
3440	context->root_level = 0;
3441	context->shadow_root_level = PT32E_ROOT_LEVEL;
3442	context->root_hpa = INVALID_PAGE;
3443	context->direct_map = true;
3444	context->nx = false;
3445}
3446
3447void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3448{
3449	++vcpu->stat.tlb_flush;
3450	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3451}
3452EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3453
3454void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3455{
3456	mmu_free_roots(vcpu);
3457}
3458
3459static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3460{
3461	return kvm_read_cr3(vcpu);
3462}
3463
3464static void inject_page_fault(struct kvm_vcpu *vcpu,
3465			      struct x86_exception *fault)
3466{
3467	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3468}
3469
3470static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3471			   unsigned access, int *nr_present)
3472{
3473	if (unlikely(is_mmio_spte(*sptep))) {
3474		if (gfn != get_mmio_spte_gfn(*sptep)) {
3475			mmu_spte_clear_no_track(sptep);
3476			return true;
3477		}
3478
3479		(*nr_present)++;
3480		mark_mmio_spte(kvm, sptep, gfn, access);
3481		return true;
3482	}
3483
3484	return false;
3485}
3486
3487static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3488{
3489	unsigned index;
3490
3491	index = level - 1;
3492	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3493	return mmu->last_pte_bitmap & (1 << index);
3494}
3495
3496#define PTTYPE_EPT 18 /* arbitrary */
3497#define PTTYPE PTTYPE_EPT
3498#include "paging_tmpl.h"
3499#undef PTTYPE
3500
3501#define PTTYPE 64
3502#include "paging_tmpl.h"
3503#undef PTTYPE
3504
3505#define PTTYPE 32
3506#include "paging_tmpl.h"
3507#undef PTTYPE
3508
3509static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3510				  struct kvm_mmu *context)
3511{
3512	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3513	u64 exb_bit_rsvd = 0;
3514
3515	context->bad_mt_xwr = 0;
3516
3517	if (!context->nx)
3518		exb_bit_rsvd = rsvd_bits(63, 63);
3519	switch (context->root_level) {
3520	case PT32_ROOT_LEVEL:
3521		/* no rsvd bits for 2 level 4K page table entries */
3522		context->rsvd_bits_mask[0][1] = 0;
3523		context->rsvd_bits_mask[0][0] = 0;
3524		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3525
3526		if (!is_pse(vcpu)) {
3527			context->rsvd_bits_mask[1][1] = 0;
3528			break;
3529		}
3530
3531		if (is_cpuid_PSE36())
3532			/* 36bits PSE 4MB page */
3533			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3534		else
3535			/* 32 bits PSE 4MB page */
3536			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3537		break;
3538	case PT32E_ROOT_LEVEL:
3539		context->rsvd_bits_mask[0][2] =
3540			rsvd_bits(maxphyaddr, 63) |
3541			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3542		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3543			rsvd_bits(maxphyaddr, 62);	/* PDE */
3544		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3545			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3546		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3547			rsvd_bits(maxphyaddr, 62) |
3548			rsvd_bits(13, 20);		/* large page */
3549		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3550		break;
3551	case PT64_ROOT_LEVEL:
3552		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3553			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3554		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3555			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3556		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3557			rsvd_bits(maxphyaddr, 51);
3558		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3559			rsvd_bits(maxphyaddr, 51);
3560		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3561		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3562			rsvd_bits(maxphyaddr, 51) |
3563			rsvd_bits(13, 29);
3564		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3565			rsvd_bits(maxphyaddr, 51) |
3566			rsvd_bits(13, 20);		/* large page */
3567		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3568		break;
3569	}
3570}
3571
3572static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3573		struct kvm_mmu *context, bool execonly)
3574{
3575	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3576	int pte;
3577
3578	context->rsvd_bits_mask[0][3] =
3579		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3580	context->rsvd_bits_mask[0][2] =
3581		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3582	context->rsvd_bits_mask[0][1] =
3583		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3584	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3585
3586	/* large page */
3587	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3588	context->rsvd_bits_mask[1][2] =
3589		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3590	context->rsvd_bits_mask[1][1] =
3591		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3592	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3593
3594	for (pte = 0; pte < 64; pte++) {
3595		int rwx_bits = pte & 7;
3596		int mt = pte >> 3;
3597		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3598				rwx_bits == 0x2 || rwx_bits == 0x6 ||
3599				(rwx_bits == 0x4 && !execonly))
3600			context->bad_mt_xwr |= (1ull << pte);
3601	}
3602}
3603
3604void update_permission_bitmask(struct kvm_vcpu *vcpu,
3605		struct kvm_mmu *mmu, bool ept)
3606{
3607	unsigned bit, byte, pfec;
3608	u8 map;
3609	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3610
3611	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3612	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3613	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3614		pfec = byte << 1;
3615		map = 0;
3616		wf = pfec & PFERR_WRITE_MASK;
3617		uf = pfec & PFERR_USER_MASK;
3618		ff = pfec & PFERR_FETCH_MASK;
3619		/*
3620		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3621		 * subject to SMAP restrictions, and cleared otherwise. The
3622		 * bit is only meaningful if the SMAP bit is set in CR4.
3623		 */
3624		smapf = !(pfec & PFERR_RSVD_MASK);
3625		for (bit = 0; bit < 8; ++bit) {
3626			x = bit & ACC_EXEC_MASK;
3627			w = bit & ACC_WRITE_MASK;
3628			u = bit & ACC_USER_MASK;
3629
3630			if (!ept) {
3631				/* Not really needed: !nx will cause pte.nx to fault */
3632				x |= !mmu->nx;
3633				/* Allow supervisor writes if !cr0.wp */
3634				w |= !is_write_protection(vcpu) && !uf;
3635				/* Disallow supervisor fetches of user code if cr4.smep */
3636				x &= !(cr4_smep && u && !uf);
3637
3638				/*
3639				 * SMAP:kernel-mode data accesses from user-mode
3640				 * mappings should fault. A fault is considered
3641				 * as a SMAP violation if all of the following
3642				 * conditions are ture:
3643				 *   - X86_CR4_SMAP is set in CR4
3644				 *   - An user page is accessed
3645				 *   - Page fault in kernel mode
3646				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3647				 *
3648				 *   Here, we cover the first three conditions.
3649				 *   The fourth is computed dynamically in
3650				 *   permission_fault() and is in smapf.
3651				 *
3652				 *   Also, SMAP does not affect instruction
3653				 *   fetches, add the !ff check here to make it
3654				 *   clearer.
3655				 */
3656				smap = cr4_smap && u && !uf && !ff;
3657			} else
3658				/* Not really needed: no U/S accesses on ept  */
3659				u = 1;
3660
3661			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3662				(smapf && smap);
3663			map |= fault << bit;
3664		}
3665		mmu->permissions[byte] = map;
3666	}
3667}
3668
3669static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3670{
3671	u8 map;
3672	unsigned level, root_level = mmu->root_level;
3673	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3674
3675	if (root_level == PT32E_ROOT_LEVEL)
3676		--root_level;
3677	/* PT_PAGE_TABLE_LEVEL always terminates */
3678	map = 1 | (1 << ps_set_index);
3679	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3680		if (level <= PT_PDPE_LEVEL
3681		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3682			map |= 1 << (ps_set_index | (level - 1));
3683	}
3684	mmu->last_pte_bitmap = map;
3685}
3686
3687static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3688					 struct kvm_mmu *context,
3689					 int level)
3690{
3691	context->nx = is_nx(vcpu);
3692	context->root_level = level;
3693
3694	reset_rsvds_bits_mask(vcpu, context);
3695	update_permission_bitmask(vcpu, context, false);
3696	update_last_pte_bitmap(vcpu, context);
3697
3698	ASSERT(is_pae(vcpu));
3699	context->page_fault = paging64_page_fault;
3700	context->gva_to_gpa = paging64_gva_to_gpa;
3701	context->sync_page = paging64_sync_page;
3702	context->invlpg = paging64_invlpg;
3703	context->update_pte = paging64_update_pte;
3704	context->shadow_root_level = level;
3705	context->root_hpa = INVALID_PAGE;
3706	context->direct_map = false;
3707}
3708
3709static void paging64_init_context(struct kvm_vcpu *vcpu,
3710				  struct kvm_mmu *context)
3711{
3712	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3713}
3714
3715static void paging32_init_context(struct kvm_vcpu *vcpu,
3716				  struct kvm_mmu *context)
3717{
3718	context->nx = false;
3719	context->root_level = PT32_ROOT_LEVEL;
3720
3721	reset_rsvds_bits_mask(vcpu, context);
3722	update_permission_bitmask(vcpu, context, false);
3723	update_last_pte_bitmap(vcpu, context);
3724
3725	context->page_fault = paging32_page_fault;
3726	context->gva_to_gpa = paging32_gva_to_gpa;
3727	context->sync_page = paging32_sync_page;
3728	context->invlpg = paging32_invlpg;
3729	context->update_pte = paging32_update_pte;
3730	context->shadow_root_level = PT32E_ROOT_LEVEL;
3731	context->root_hpa = INVALID_PAGE;
3732	context->direct_map = false;
3733}
3734
3735static void paging32E_init_context(struct kvm_vcpu *vcpu,
3736				   struct kvm_mmu *context)
3737{
3738	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3739}
3740
3741static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3742{
3743	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3744
3745	context->base_role.word = 0;
3746	context->page_fault = tdp_page_fault;
3747	context->sync_page = nonpaging_sync_page;
3748	context->invlpg = nonpaging_invlpg;
3749	context->update_pte = nonpaging_update_pte;
3750	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3751	context->root_hpa = INVALID_PAGE;
3752	context->direct_map = true;
3753	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3754	context->get_cr3 = get_cr3;
3755	context->get_pdptr = kvm_pdptr_read;
3756	context->inject_page_fault = kvm_inject_page_fault;
3757
3758	if (!is_paging(vcpu)) {
3759		context->nx = false;
3760		context->gva_to_gpa = nonpaging_gva_to_gpa;
3761		context->root_level = 0;
3762	} else if (is_long_mode(vcpu)) {
3763		context->nx = is_nx(vcpu);
3764		context->root_level = PT64_ROOT_LEVEL;
3765		reset_rsvds_bits_mask(vcpu, context);
3766		context->gva_to_gpa = paging64_gva_to_gpa;
3767	} else if (is_pae(vcpu)) {
3768		context->nx = is_nx(vcpu);
3769		context->root_level = PT32E_ROOT_LEVEL;
3770		reset_rsvds_bits_mask(vcpu, context);
3771		context->gva_to_gpa = paging64_gva_to_gpa;
3772	} else {
3773		context->nx = false;
3774		context->root_level = PT32_ROOT_LEVEL;
3775		reset_rsvds_bits_mask(vcpu, context);
3776		context->gva_to_gpa = paging32_gva_to_gpa;
3777	}
3778
3779	update_permission_bitmask(vcpu, context, false);
3780	update_last_pte_bitmap(vcpu, context);
3781}
3782
3783void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3784{
3785	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3786	ASSERT(vcpu);
3787	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3788
3789	if (!is_paging(vcpu))
3790		nonpaging_init_context(vcpu, context);
3791	else if (is_long_mode(vcpu))
3792		paging64_init_context(vcpu, context);
3793	else if (is_pae(vcpu))
3794		paging32E_init_context(vcpu, context);
3795	else
3796		paging32_init_context(vcpu, context);
3797
3798	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3799	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3800	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3801	vcpu->arch.mmu.base_role.smep_andnot_wp
3802		= smep && !is_write_protection(vcpu);
3803}
3804EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3805
3806void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3807		bool execonly)
3808{
3809	ASSERT(vcpu);
3810	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3811
3812	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3813
3814	context->nx = true;
3815	context->page_fault = ept_page_fault;
3816	context->gva_to_gpa = ept_gva_to_gpa;
3817	context->sync_page = ept_sync_page;
3818	context->invlpg = ept_invlpg;
3819	context->update_pte = ept_update_pte;
3820	context->root_level = context->shadow_root_level;
3821	context->root_hpa = INVALID_PAGE;
3822	context->direct_map = false;
3823
3824	update_permission_bitmask(vcpu, context, true);
3825	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3826}
3827EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3828
3829static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3830{
3831	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3832	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3833	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3834	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3835	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3836}
3837
3838static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3839{
3840	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3841
3842	g_context->get_cr3           = get_cr3;
3843	g_context->get_pdptr         = kvm_pdptr_read;
3844	g_context->inject_page_fault = kvm_inject_page_fault;
3845
3846	/*
3847	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3848	 * translation of l2_gpa to l1_gpa addresses is done using the
3849	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3850	 * functions between mmu and nested_mmu are swapped.
3851	 */
3852	if (!is_paging(vcpu)) {
3853		g_context->nx = false;
3854		g_context->root_level = 0;
3855		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3856	} else if (is_long_mode(vcpu)) {
3857		g_context->nx = is_nx(vcpu);
3858		g_context->root_level = PT64_ROOT_LEVEL;
3859		reset_rsvds_bits_mask(vcpu, g_context);
3860		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3861	} else if (is_pae(vcpu)) {
3862		g_context->nx = is_nx(vcpu);
3863		g_context->root_level = PT32E_ROOT_LEVEL;
3864		reset_rsvds_bits_mask(vcpu, g_context);
3865		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3866	} else {
3867		g_context->nx = false;
3868		g_context->root_level = PT32_ROOT_LEVEL;
3869		reset_rsvds_bits_mask(vcpu, g_context);
3870		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3871	}
3872
3873	update_permission_bitmask(vcpu, g_context, false);
3874	update_last_pte_bitmap(vcpu, g_context);
3875}
3876
3877static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3878{
3879	if (mmu_is_nested(vcpu))
3880		return init_kvm_nested_mmu(vcpu);
3881	else if (tdp_enabled)
3882		return init_kvm_tdp_mmu(vcpu);
3883	else
3884		return init_kvm_softmmu(vcpu);
3885}
3886
3887void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3888{
3889	ASSERT(vcpu);
3890
3891	kvm_mmu_unload(vcpu);
3892	init_kvm_mmu(vcpu);
3893}
3894EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3895
3896int kvm_mmu_load(struct kvm_vcpu *vcpu)
3897{
3898	int r;
3899
3900	r = mmu_topup_memory_caches(vcpu);
3901	if (r)
3902		goto out;
3903	r = mmu_alloc_roots(vcpu);
3904	kvm_mmu_sync_roots(vcpu);
3905	if (r)
3906		goto out;
3907	/* set_cr3() should ensure TLB has been flushed */
3908	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3909out:
3910	return r;
3911}
3912EXPORT_SYMBOL_GPL(kvm_mmu_load);
3913
3914void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3915{
3916	mmu_free_roots(vcpu);
3917	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3918}
3919EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3920
3921static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3922				  struct kvm_mmu_page *sp, u64 *spte,
3923				  const void *new)
3924{
3925	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3926		++vcpu->kvm->stat.mmu_pde_zapped;
3927		return;
3928        }
3929
3930	++vcpu->kvm->stat.mmu_pte_updated;
3931	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3932}
3933
3934static bool need_remote_flush(u64 old, u64 new)
3935{
3936	if (!is_shadow_present_pte(old))
3937		return false;
3938	if (!is_shadow_present_pte(new))
3939		return true;
3940	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3941		return true;
3942	old ^= shadow_nx_mask;
3943	new ^= shadow_nx_mask;
3944	return (old & ~new & PT64_PERM_MASK) != 0;
3945}
3946
3947static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3948				    bool remote_flush, bool local_flush)
3949{
3950	if (zap_page)
3951		return;
3952
3953	if (remote_flush)
3954		kvm_flush_remote_tlbs(vcpu->kvm);
3955	else if (local_flush)
3956		kvm_mmu_flush_tlb(vcpu);
3957}
3958
3959static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3960				    const u8 *new, int *bytes)
3961{
3962	u64 gentry;
3963	int r;
3964
3965	/*
3966	 * Assume that the pte write on a page table of the same type
3967	 * as the current vcpu paging mode since we update the sptes only
3968	 * when they have the same mode.
3969	 */
3970	if (is_pae(vcpu) && *bytes == 4) {
3971		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3972		*gpa &= ~(gpa_t)7;
3973		*bytes = 8;
3974		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3975		if (r)
3976			gentry = 0;
3977		new = (const u8 *)&gentry;
3978	}
3979
3980	switch (*bytes) {
3981	case 4:
3982		gentry = *(const u32 *)new;
3983		break;
3984	case 8:
3985		gentry = *(const u64 *)new;
3986		break;
3987	default:
3988		gentry = 0;
3989		break;
3990	}
3991
3992	return gentry;
3993}
3994
3995/*
3996 * If we're seeing too many writes to a page, it may no longer be a page table,
3997 * or we may be forking, in which case it is better to unmap the page.
3998 */
3999static bool detect_write_flooding(struct kvm_mmu_page *sp)
4000{
4001	/*
4002	 * Skip write-flooding detected for the sp whose level is 1, because
4003	 * it can become unsync, then the guest page is not write-protected.
4004	 */
4005	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4006		return false;
4007
4008	return ++sp->write_flooding_count >= 3;
4009}
4010
4011/*
4012 * Misaligned accesses are too much trouble to fix up; also, they usually
4013 * indicate a page is not used as a page table.
4014 */
4015static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4016				    int bytes)
4017{
4018	unsigned offset, pte_size, misaligned;
4019
4020	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4021		 gpa, bytes, sp->role.word);
4022
4023	offset = offset_in_page(gpa);
4024	pte_size = sp->role.cr4_pae ? 8 : 4;
4025
4026	/*
4027	 * Sometimes, the OS only writes the last one bytes to update status
4028	 * bits, for example, in linux, andb instruction is used in clear_bit().
4029	 */
4030	if (!(offset & (pte_size - 1)) && bytes == 1)
4031		return false;
4032
4033	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4034	misaligned |= bytes < 4;
4035
4036	return misaligned;
4037}
4038
4039static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4040{
4041	unsigned page_offset, quadrant;
4042	u64 *spte;
4043	int level;
4044
4045	page_offset = offset_in_page(gpa);
4046	level = sp->role.level;
4047	*nspte = 1;
4048	if (!sp->role.cr4_pae) {
4049		page_offset <<= 1;	/* 32->64 */
4050		/*
4051		 * A 32-bit pde maps 4MB while the shadow pdes map
4052		 * only 2MB.  So we need to double the offset again
4053		 * and zap two pdes instead of one.
4054		 */
4055		if (level == PT32_ROOT_LEVEL) {
4056			page_offset &= ~7; /* kill rounding error */
4057			page_offset <<= 1;
4058			*nspte = 2;
4059		}
4060		quadrant = page_offset >> PAGE_SHIFT;
4061		page_offset &= ~PAGE_MASK;
4062		if (quadrant != sp->role.quadrant)
4063			return NULL;
4064	}
4065
4066	spte = &sp->spt[page_offset / sizeof(*spte)];
4067	return spte;
4068}
4069
4070void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4071		       const u8 *new, int bytes)
4072{
4073	gfn_t gfn = gpa >> PAGE_SHIFT;
4074	union kvm_mmu_page_role mask = { .word = 0 };
4075	struct kvm_mmu_page *sp;
4076	LIST_HEAD(invalid_list);
4077	u64 entry, gentry, *spte;
4078	int npte;
4079	bool remote_flush, local_flush, zap_page;
4080
4081	/*
4082	 * If we don't have indirect shadow pages, it means no page is
4083	 * write-protected, so we can exit simply.
4084	 */
4085	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4086		return;
4087
4088	zap_page = remote_flush = local_flush = false;
4089
4090	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4091
4092	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4093
4094	/*
4095	 * No need to care whether allocation memory is successful
4096	 * or not since pte prefetch is skiped if it does not have
4097	 * enough objects in the cache.
4098	 */
4099	mmu_topup_memory_caches(vcpu);
4100
4101	spin_lock(&vcpu->kvm->mmu_lock);
4102	++vcpu->kvm->stat.mmu_pte_write;
4103	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4104
4105	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4106	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4107		if (detect_write_misaligned(sp, gpa, bytes) ||
4108		      detect_write_flooding(sp)) {
4109			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4110						     &invalid_list);
4111			++vcpu->kvm->stat.mmu_flooded;
4112			continue;
4113		}
4114
4115		spte = get_written_sptes(sp, gpa, &npte);
4116		if (!spte)
4117			continue;
4118
4119		local_flush = true;
4120		while (npte--) {
4121			entry = *spte;
4122			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4123			if (gentry &&
4124			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4125			      & mask.word) && rmap_can_add(vcpu))
4126				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4127			if (need_remote_flush(entry, *spte))
4128				remote_flush = true;
4129			++spte;
4130		}
4131	}
4132	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4133	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4134	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4135	spin_unlock(&vcpu->kvm->mmu_lock);
4136}
4137
4138int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4139{
4140	gpa_t gpa;
4141	int r;
4142
4143	if (vcpu->arch.mmu.direct_map)
4144		return 0;
4145
4146	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4147
4148	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4149
4150	return r;
4151}
4152EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4153
4154static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4155{
4156	LIST_HEAD(invalid_list);
4157
4158	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4159		return;
4160
4161	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4162		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4163			break;
4164
4165		++vcpu->kvm->stat.mmu_recycled;
4166	}
4167	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4168}
4169
4170static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4171{
4172	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4173		return vcpu_match_mmio_gpa(vcpu, addr);
4174
4175	return vcpu_match_mmio_gva(vcpu, addr);
4176}
4177
4178int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4179		       void *insn, int insn_len)
4180{
4181	int r, emulation_type = EMULTYPE_RETRY;
4182	enum emulation_result er;
4183
4184	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4185	if (r < 0)
4186		goto out;
4187
4188	if (!r) {
4189		r = 1;
4190		goto out;
4191	}
4192
4193	if (is_mmio_page_fault(vcpu, cr2))
4194		emulation_type = 0;
4195
4196	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4197
4198	switch (er) {
4199	case EMULATE_DONE:
4200		return 1;
4201	case EMULATE_USER_EXIT:
4202		++vcpu->stat.mmio_exits;
4203		/* fall through */
4204	case EMULATE_FAIL:
4205		return 0;
4206	default:
4207		BUG();
4208	}
4209out:
4210	return r;
4211}
4212EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4213
4214void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4215{
4216	vcpu->arch.mmu.invlpg(vcpu, gva);
4217	kvm_mmu_flush_tlb(vcpu);
4218	++vcpu->stat.invlpg;
4219}
4220EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4221
4222void kvm_enable_tdp(void)
4223{
4224	tdp_enabled = true;
4225}
4226EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4227
4228void kvm_disable_tdp(void)
4229{
4230	tdp_enabled = false;
4231}
4232EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4233
4234static void free_mmu_pages(struct kvm_vcpu *vcpu)
4235{
4236	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4237	if (vcpu->arch.mmu.lm_root != NULL)
4238		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4239}
4240
4241static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4242{
4243	struct page *page;
4244	int i;
4245
4246	ASSERT(vcpu);
4247
4248	/*
4249	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4250	 * Therefore we need to allocate shadow page tables in the first
4251	 * 4GB of memory, which happens to fit the DMA32 zone.
4252	 */
4253	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4254	if (!page)
4255		return -ENOMEM;
4256
4257	vcpu->arch.mmu.pae_root = page_address(page);
4258	for (i = 0; i < 4; ++i)
4259		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4260
4261	return 0;
4262}
4263
4264int kvm_mmu_create(struct kvm_vcpu *vcpu)
4265{
4266	ASSERT(vcpu);
4267
4268	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4269	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4270	vcpu->arch.mmu.translate_gpa = translate_gpa;
4271	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4272
4273	return alloc_mmu_pages(vcpu);
4274}
4275
4276void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4277{
4278	ASSERT(vcpu);
4279	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4280
4281	init_kvm_mmu(vcpu);
4282}
4283
4284void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4285{
4286	struct kvm_memory_slot *memslot;
4287	gfn_t last_gfn;
4288	int i;
4289
4290	memslot = id_to_memslot(kvm->memslots, slot);
4291	last_gfn = memslot->base_gfn + memslot->npages - 1;
4292
4293	spin_lock(&kvm->mmu_lock);
4294
4295	for (i = PT_PAGE_TABLE_LEVEL;
4296	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4297		unsigned long *rmapp;
4298		unsigned long last_index, index;
4299
4300		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4301		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4302
4303		for (index = 0; index <= last_index; ++index, ++rmapp) {
4304			if (*rmapp)
4305				__rmap_write_protect(kvm, rmapp, false);
4306
4307			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4308				kvm_flush_remote_tlbs(kvm);
4309				cond_resched_lock(&kvm->mmu_lock);
4310			}
4311		}
4312	}
4313
4314	kvm_flush_remote_tlbs(kvm);
4315	spin_unlock(&kvm->mmu_lock);
4316}
4317
4318#define BATCH_ZAP_PAGES	10
4319static void kvm_zap_obsolete_pages(struct kvm *kvm)
4320{
4321	struct kvm_mmu_page *sp, *node;
4322	int batch = 0;
4323
4324restart:
4325	list_for_each_entry_safe_reverse(sp, node,
4326	      &kvm->arch.active_mmu_pages, link) {
4327		int ret;
4328
4329		/*
4330		 * No obsolete page exists before new created page since
4331		 * active_mmu_pages is the FIFO list.
4332		 */
4333		if (!is_obsolete_sp(kvm, sp))
4334			break;
4335
4336		/*
4337		 * Since we are reversely walking the list and the invalid
4338		 * list will be moved to the head, skip the invalid page
4339		 * can help us to avoid the infinity list walking.
4340		 */
4341		if (sp->role.invalid)
4342			continue;
4343
4344		/*
4345		 * Need not flush tlb since we only zap the sp with invalid
4346		 * generation number.
4347		 */
4348		if (batch >= BATCH_ZAP_PAGES &&
4349		      cond_resched_lock(&kvm->mmu_lock)) {
4350			batch = 0;
4351			goto restart;
4352		}
4353
4354		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4355				&kvm->arch.zapped_obsolete_pages);
4356		batch += ret;
4357
4358		if (ret)
4359			goto restart;
4360	}
4361
4362	/*
4363	 * Should flush tlb before free page tables since lockless-walking
4364	 * may use the pages.
4365	 */
4366	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4367}
4368
4369/*
4370 * Fast invalidate all shadow pages and use lock-break technique
4371 * to zap obsolete pages.
4372 *
4373 * It's required when memslot is being deleted or VM is being
4374 * destroyed, in these cases, we should ensure that KVM MMU does
4375 * not use any resource of the being-deleted slot or all slots
4376 * after calling the function.
4377 */
4378void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4379{
4380	spin_lock(&kvm->mmu_lock);
4381	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4382	kvm->arch.mmu_valid_gen++;
4383
4384	/*
4385	 * Notify all vcpus to reload its shadow page table
4386	 * and flush TLB. Then all vcpus will switch to new
4387	 * shadow page table with the new mmu_valid_gen.
4388	 *
4389	 * Note: we should do this under the protection of
4390	 * mmu-lock, otherwise, vcpu would purge shadow page
4391	 * but miss tlb flush.
4392	 */
4393	kvm_reload_remote_mmus(kvm);
4394
4395	kvm_zap_obsolete_pages(kvm);
4396	spin_unlock(&kvm->mmu_lock);
4397}
4398
4399static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4400{
4401	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4402}
4403
4404void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4405{
4406	/*
4407	 * The very rare case: if the generation-number is round,
4408	 * zap all shadow pages.
4409	 */
4410	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4411		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4412		kvm_mmu_invalidate_zap_all_pages(kvm);
4413	}
4414}
4415
4416static unsigned long
4417mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4418{
4419	struct kvm *kvm;
4420	int nr_to_scan = sc->nr_to_scan;
4421	unsigned long freed = 0;
4422
4423	spin_lock(&kvm_lock);
4424
4425	list_for_each_entry(kvm, &vm_list, vm_list) {
4426		int idx;
4427		LIST_HEAD(invalid_list);
4428
4429		/*
4430		 * Never scan more than sc->nr_to_scan VM instances.
4431		 * Will not hit this condition practically since we do not try
4432		 * to shrink more than one VM and it is very unlikely to see
4433		 * !n_used_mmu_pages so many times.
4434		 */
4435		if (!nr_to_scan--)
4436			break;
4437		/*
4438		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4439		 * here. We may skip a VM instance errorneosly, but we do not
4440		 * want to shrink a VM that only started to populate its MMU
4441		 * anyway.
4442		 */
4443		if (!kvm->arch.n_used_mmu_pages &&
4444		      !kvm_has_zapped_obsolete_pages(kvm))
4445			continue;
4446
4447		idx = srcu_read_lock(&kvm->srcu);
4448		spin_lock(&kvm->mmu_lock);
4449
4450		if (kvm_has_zapped_obsolete_pages(kvm)) {
4451			kvm_mmu_commit_zap_page(kvm,
4452			      &kvm->arch.zapped_obsolete_pages);
4453			goto unlock;
4454		}
4455
4456		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4457			freed++;
4458		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4459
4460unlock:
4461		spin_unlock(&kvm->mmu_lock);
4462		srcu_read_unlock(&kvm->srcu, idx);
4463
4464		/*
4465		 * unfair on small ones
4466		 * per-vm shrinkers cry out
4467		 * sadness comes quickly
4468		 */
4469		list_move_tail(&kvm->vm_list, &vm_list);
4470		break;
4471	}
4472
4473	spin_unlock(&kvm_lock);
4474	return freed;
4475}
4476
4477static unsigned long
4478mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4479{
4480	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4481}
4482
4483static struct shrinker mmu_shrinker = {
4484	.count_objects = mmu_shrink_count,
4485	.scan_objects = mmu_shrink_scan,
4486	.seeks = DEFAULT_SEEKS * 10,
4487};
4488
4489static void mmu_destroy_caches(void)
4490{
4491	if (pte_list_desc_cache)
4492		kmem_cache_destroy(pte_list_desc_cache);
4493	if (mmu_page_header_cache)
4494		kmem_cache_destroy(mmu_page_header_cache);
4495}
4496
4497int kvm_mmu_module_init(void)
4498{
4499	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4500					    sizeof(struct pte_list_desc),
4501					    0, 0, NULL);
4502	if (!pte_list_desc_cache)
4503		goto nomem;
4504
4505	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4506						  sizeof(struct kvm_mmu_page),
4507						  0, 0, NULL);
4508	if (!mmu_page_header_cache)
4509		goto nomem;
4510
4511	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4512		goto nomem;
4513
4514	register_shrinker(&mmu_shrinker);
4515
4516	return 0;
4517
4518nomem:
4519	mmu_destroy_caches();
4520	return -ENOMEM;
4521}
4522
4523/*
4524 * Caculate mmu pages needed for kvm.
4525 */
4526unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4527{
4528	unsigned int nr_mmu_pages;
4529	unsigned int  nr_pages = 0;
4530	struct kvm_memslots *slots;
4531	struct kvm_memory_slot *memslot;
4532
4533	slots = kvm_memslots(kvm);
4534
4535	kvm_for_each_memslot(memslot, slots)
4536		nr_pages += memslot->npages;
4537
4538	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4539	nr_mmu_pages = max(nr_mmu_pages,
4540			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4541
4542	return nr_mmu_pages;
4543}
4544
4545int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4546{
4547	struct kvm_shadow_walk_iterator iterator;
4548	u64 spte;
4549	int nr_sptes = 0;
4550
4551	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4552		return nr_sptes;
4553
4554	walk_shadow_page_lockless_begin(vcpu);
4555	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4556		sptes[iterator.level-1] = spte;
4557		nr_sptes++;
4558		if (!is_shadow_present_pte(spte))
4559			break;
4560	}
4561	walk_shadow_page_lockless_end(vcpu);
4562
4563	return nr_sptes;
4564}
4565EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4566
4567void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4568{
4569	ASSERT(vcpu);
4570
4571	kvm_mmu_unload(vcpu);
4572	free_mmu_pages(vcpu);
4573	mmu_free_memory_caches(vcpu);
4574}
4575
4576void kvm_mmu_module_exit(void)
4577{
4578	mmu_destroy_caches();
4579	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4580	unregister_shrinker(&mmu_shrinker);
4581	mmu_audit_disable();
4582}