Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
   7#include <linux/types.h>
   8#include <linux/slab.h>
   9#include <linux/export.h>
  10#include <linux/etherdevice.h>
  11#include <linux/pci.h>
  12#include <linux/firmware.h>
  13
  14#include "iwl-drv.h"
  15#include "iwl-modparams.h"
  16#include "iwl-nvm-parse.h"
  17#include "iwl-prph.h"
  18#include "iwl-io.h"
  19#include "iwl-csr.h"
  20#include "fw/acpi.h"
  21#include "fw/api/nvm-reg.h"
  22#include "fw/api/commands.h"
  23#include "fw/api/cmdhdr.h"
  24#include "fw/img.h"
  25#include "mei/iwl-mei.h"
  26
  27/* NVM offsets (in words) definitions */
  28enum nvm_offsets {
  29	/* NVM HW-Section offset (in words) definitions */
  30	SUBSYSTEM_ID = 0x0A,
  31	HW_ADDR = 0x15,
  32
  33	/* NVM SW-Section offset (in words) definitions */
  34	NVM_SW_SECTION = 0x1C0,
  35	NVM_VERSION = 0,
  36	RADIO_CFG = 1,
  37	SKU = 2,
  38	N_HW_ADDRS = 3,
  39	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
  40
  41	/* NVM calibration section offset (in words) definitions */
  42	NVM_CALIB_SECTION = 0x2B8,
  43	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
  44
  45	/* NVM REGULATORY -Section offset (in words) definitions */
  46	NVM_CHANNELS_SDP = 0,
  47};
  48
  49enum ext_nvm_offsets {
  50	/* NVM HW-Section offset (in words) definitions */
  51	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
  52
  53	/* NVM SW-Section offset (in words) definitions */
  54	NVM_VERSION_EXT_NVM = 0,
  55	N_HW_ADDRS_FAMILY_8000 = 3,
  56
  57	/* NVM PHY_SKU-Section offset (in words) definitions */
  58	RADIO_CFG_FAMILY_EXT_NVM = 0,
  59	SKU_FAMILY_8000 = 2,
  60
  61	/* NVM REGULATORY -Section offset (in words) definitions */
  62	NVM_CHANNELS_EXTENDED = 0,
  63	NVM_LAR_OFFSET_OLD = 0x4C7,
  64	NVM_LAR_OFFSET = 0x507,
  65	NVM_LAR_ENABLED = 0x7,
  66};
  67
  68/* SKU Capabilities (actual values from NVM definition) */
  69enum nvm_sku_bits {
  70	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
  71	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
  72	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
  73	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
  74	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
  75};
  76
  77/*
  78 * These are the channel numbers in the order that they are stored in the NVM
  79 */
  80static const u16 iwl_nvm_channels[] = {
  81	/* 2.4 GHz */
  82	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  83	/* 5 GHz */
  84	36, 40, 44 , 48, 52, 56, 60, 64,
  85	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  86	149, 153, 157, 161, 165
  87};
  88
  89static const u16 iwl_ext_nvm_channels[] = {
  90	/* 2.4 GHz */
  91	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  92	/* 5 GHz */
  93	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
  94	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
  95	149, 153, 157, 161, 165, 169, 173, 177, 181
  96};
  97
  98static const u16 iwl_uhb_nvm_channels[] = {
  99	/* 2.4 GHz */
 100	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 101	/* 5 GHz */
 102	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
 103	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
 104	149, 153, 157, 161, 165, 169, 173, 177, 181,
 105	/* 6-7 GHz */
 106	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
 107	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
 108	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
 109	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
 110};
 111
 112#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
 113#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
 114#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
 115#define NUM_2GHZ_CHANNELS		14
 116#define NUM_5GHZ_CHANNELS		37
 117#define FIRST_2GHZ_HT_MINUS		5
 118#define LAST_2GHZ_HT_PLUS		9
 119#define N_HW_ADDR_MASK			0xF
 120
 121/* rate data (static) */
 122static struct ieee80211_rate iwl_cfg80211_rates[] = {
 123	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
 124	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
 125	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 126	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
 127	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 128	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
 129	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 130	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
 131	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
 132	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
 133	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
 134	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
 135	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
 136	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
 137	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
 138};
 139#define RATES_24_OFFS	0
 140#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
 141#define RATES_52_OFFS	4
 142#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
 143
 144/**
 145 * enum iwl_nvm_channel_flags - channel flags in NVM
 146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 149 * @NVM_CHANNEL_RADAR: radar detection required
 150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 152 *	on same channel on 2.4 or same UNII band on 5.2
 153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
 159 */
 160enum iwl_nvm_channel_flags {
 161	NVM_CHANNEL_VALID		= BIT(0),
 162	NVM_CHANNEL_IBSS		= BIT(1),
 163	NVM_CHANNEL_ACTIVE		= BIT(3),
 164	NVM_CHANNEL_RADAR		= BIT(4),
 165	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
 166	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
 167	NVM_CHANNEL_UNIFORM		= BIT(7),
 168	NVM_CHANNEL_20MHZ		= BIT(8),
 169	NVM_CHANNEL_40MHZ		= BIT(9),
 170	NVM_CHANNEL_80MHZ		= BIT(10),
 171	NVM_CHANNEL_160MHZ		= BIT(11),
 172	NVM_CHANNEL_DC_HIGH		= BIT(12),
 173};
 174
 175/**
 176 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
 177 * domain.
 178 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 179 *	2.4Ghz band is allowed.
 180 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 181 *	5Ghz band is allowed.
 182 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 183 *	for this regulatory domain (valid only in 5Ghz).
 184 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 185 *	for this regulatory domain (valid only in 5Ghz).
 186 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 187 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 188 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 189 *	for this regulatory domain (valid only in 5Ghz).
 190 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
 191 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 192 */
 193enum iwl_reg_capa_flags {
 194	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
 195	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
 196	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
 197	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
 198	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
 199	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
 200	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
 201	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
 202	REG_CAPA_11AX_DISABLED		= BIT(10),
 203};
 204
 205/**
 206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
 207 * domain (version 2).
 208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
 209 *	disabled.
 210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 211 *	2.4Ghz band is allowed.
 212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 213 *	5Ghz band is allowed.
 214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 215 *	for this regulatory domain (valid only in 5Ghz).
 216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 217 *	for this regulatory domain (valid only in 5Ghz).
 218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
 221 *	126, 122) are disabled.
 222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
 223 *	for this regulatory domain (uvalid only in 5Ghz).
 224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
 225 */
 226enum iwl_reg_capa_flags_v2 {
 227	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
 228	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
 229	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
 230	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
 231	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
 232	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
 233	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
 234	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
 235	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
 236	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
 237};
 238
 239/*
 240* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
 241* MCC update command response.
 242*/
 243#define REG_CAPA_V2_RESP_VER	6
 244
 245/**
 246 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
 247 * handling the different APIs of reg_capa_flags.
 248 *
 249 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
 250 *	for this regulatory domain (valid only in 5Ghz).
 251 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
 252 *	for this regulatory domain (valid only in 5Ghz).
 253 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
 254 *	for this regulatory domain (valid only in 5Ghz).
 255 * @disable_11ax: 11ax is forbidden for this regulatory domain.
 256 */
 257struct iwl_reg_capa {
 258	u16 allow_40mhz;
 259	u16 allow_80mhz;
 260	u16 allow_160mhz;
 261	u16 disable_11ax;
 262};
 263
 264static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
 265					       int chan, u32 flags)
 266{
 267#define CHECK_AND_PRINT_I(x)	\
 268	((flags & NVM_CHANNEL_##x) ? " " #x : "")
 269
 270	if (!(flags & NVM_CHANNEL_VALID)) {
 271		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
 272			      chan, flags);
 273		return;
 274	}
 275
 276	/* Note: already can print up to 101 characters, 110 is the limit! */
 277	IWL_DEBUG_DEV(dev, level,
 278		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
 279		      chan, flags,
 280		      CHECK_AND_PRINT_I(VALID),
 281		      CHECK_AND_PRINT_I(IBSS),
 282		      CHECK_AND_PRINT_I(ACTIVE),
 283		      CHECK_AND_PRINT_I(RADAR),
 284		      CHECK_AND_PRINT_I(INDOOR_ONLY),
 285		      CHECK_AND_PRINT_I(GO_CONCURRENT),
 286		      CHECK_AND_PRINT_I(UNIFORM),
 287		      CHECK_AND_PRINT_I(20MHZ),
 288		      CHECK_AND_PRINT_I(40MHZ),
 289		      CHECK_AND_PRINT_I(80MHZ),
 290		      CHECK_AND_PRINT_I(160MHZ),
 291		      CHECK_AND_PRINT_I(DC_HIGH));
 292#undef CHECK_AND_PRINT_I
 293}
 294
 295static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
 296				 u32 nvm_flags, const struct iwl_cfg *cfg)
 297{
 298	u32 flags = IEEE80211_CHAN_NO_HT40;
 299
 300	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
 301		if (ch_num <= LAST_2GHZ_HT_PLUS)
 302			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 303		if (ch_num >= FIRST_2GHZ_HT_MINUS)
 304			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 305	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
 306		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
 307			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
 308		else
 309			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
 310	}
 311	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
 312		flags |= IEEE80211_CHAN_NO_80MHZ;
 313	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
 314		flags |= IEEE80211_CHAN_NO_160MHZ;
 315
 316	if (!(nvm_flags & NVM_CHANNEL_IBSS))
 317		flags |= IEEE80211_CHAN_NO_IR;
 318
 319	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
 320		flags |= IEEE80211_CHAN_NO_IR;
 321
 322	if (nvm_flags & NVM_CHANNEL_RADAR)
 323		flags |= IEEE80211_CHAN_RADAR;
 324
 325	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
 326		flags |= IEEE80211_CHAN_INDOOR_ONLY;
 327
 328	/* Set the GO concurrent flag only in case that NO_IR is set.
 329	 * Otherwise it is meaningless
 330	 */
 331	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
 332	    (flags & IEEE80211_CHAN_NO_IR))
 333		flags |= IEEE80211_CHAN_IR_CONCURRENT;
 334
 335	return flags;
 336}
 337
 338static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
 339{
 340	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
 341		return NL80211_BAND_6GHZ;
 342	}
 343
 344	if (ch_idx >= NUM_2GHZ_CHANNELS)
 345		return NL80211_BAND_5GHZ;
 346	return NL80211_BAND_2GHZ;
 347}
 348
 349static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
 350				struct iwl_nvm_data *data,
 351				const void * const nvm_ch_flags,
 352				u32 sbands_flags, bool v4)
 353{
 354	int ch_idx;
 355	int n_channels = 0;
 356	struct ieee80211_channel *channel;
 357	u32 ch_flags;
 358	int num_of_ch;
 359	const u16 *nvm_chan;
 360
 361	if (cfg->uhb_supported) {
 362		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
 363		nvm_chan = iwl_uhb_nvm_channels;
 364	} else if (cfg->nvm_type == IWL_NVM_EXT) {
 365		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
 366		nvm_chan = iwl_ext_nvm_channels;
 367	} else {
 368		num_of_ch = IWL_NVM_NUM_CHANNELS;
 369		nvm_chan = iwl_nvm_channels;
 370	}
 371
 372	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
 373		enum nl80211_band band =
 374			iwl_nl80211_band_from_channel_idx(ch_idx);
 375
 376		if (v4)
 377			ch_flags =
 378				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
 379		else
 380			ch_flags =
 381				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
 382
 383		if (band == NL80211_BAND_5GHZ &&
 384		    !data->sku_cap_band_52ghz_enable)
 385			continue;
 386
 387		/* workaround to disable wide channels in 5GHz */
 388		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
 389		    band == NL80211_BAND_5GHZ) {
 390			ch_flags &= ~(NVM_CHANNEL_40MHZ |
 391				     NVM_CHANNEL_80MHZ |
 392				     NVM_CHANNEL_160MHZ);
 393		}
 394
 395		if (ch_flags & NVM_CHANNEL_160MHZ)
 396			data->vht160_supported = true;
 397
 398		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
 399		    !(ch_flags & NVM_CHANNEL_VALID)) {
 400			/*
 401			 * Channels might become valid later if lar is
 402			 * supported, hence we still want to add them to
 403			 * the list of supported channels to cfg80211.
 404			 */
 405			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 406						    nvm_chan[ch_idx], ch_flags);
 407			continue;
 408		}
 409
 410		channel = &data->channels[n_channels];
 411		n_channels++;
 412
 413		channel->hw_value = nvm_chan[ch_idx];
 414		channel->band = band;
 415		channel->center_freq =
 416			ieee80211_channel_to_frequency(
 417				channel->hw_value, channel->band);
 418
 419		/* Initialize regulatory-based run-time data */
 420
 421		/*
 422		 * Default value - highest tx power value.  max_power
 423		 * is not used in mvm, and is used for backwards compatibility
 424		 */
 425		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
 426
 427		/* don't put limitations in case we're using LAR */
 428		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
 429			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
 430							       ch_idx, band,
 431							       ch_flags, cfg);
 432		else
 433			channel->flags = 0;
 434
 435		/* TODO: Don't put limitations on UHB devices as we still don't
 436		 * have NVM for them
 437		 */
 438		if (cfg->uhb_supported)
 439			channel->flags = 0;
 440		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
 441					    channel->hw_value, ch_flags);
 442		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
 443				 channel->hw_value, channel->max_power);
 444	}
 445
 446	return n_channels;
 447}
 448
 449static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
 450				  struct iwl_nvm_data *data,
 451				  struct ieee80211_sta_vht_cap *vht_cap,
 452				  u8 tx_chains, u8 rx_chains)
 453{
 454	const struct iwl_cfg *cfg = trans->cfg;
 455	int num_rx_ants = num_of_ant(rx_chains);
 456	int num_tx_ants = num_of_ant(tx_chains);
 457
 458	vht_cap->vht_supported = true;
 459
 460	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
 461		       IEEE80211_VHT_CAP_RXSTBC_1 |
 462		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
 463		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
 464		       IEEE80211_VHT_MAX_AMPDU_1024K <<
 465		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
 466
 467	if (data->vht160_supported)
 468		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
 469				IEEE80211_VHT_CAP_SHORT_GI_160;
 470
 471	if (cfg->vht_mu_mimo_supported)
 472		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
 473
 474	if (cfg->ht_params->ldpc)
 475		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
 476
 477	if (data->sku_cap_mimo_disabled) {
 478		num_rx_ants = 1;
 479		num_tx_ants = 1;
 480	}
 481
 482	if (num_tx_ants > 1)
 483		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
 484	else
 485		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
 486
 487	switch (iwlwifi_mod_params.amsdu_size) {
 488	case IWL_AMSDU_DEF:
 489		if (trans->trans_cfg->mq_rx_supported)
 490			vht_cap->cap |=
 491				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 492		else
 493			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 494		break;
 495	case IWL_AMSDU_2K:
 496		if (trans->trans_cfg->mq_rx_supported)
 497			vht_cap->cap |=
 498				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 499		else
 500			WARN(1, "RB size of 2K is not supported by this device\n");
 501		break;
 502	case IWL_AMSDU_4K:
 503		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
 504		break;
 505	case IWL_AMSDU_8K:
 506		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
 507		break;
 508	case IWL_AMSDU_12K:
 509		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
 510		break;
 511	default:
 512		break;
 513	}
 514
 515	vht_cap->vht_mcs.rx_mcs_map =
 516		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
 517			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
 518			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
 519			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
 520			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
 521			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
 522			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
 523			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
 524
 525	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
 526		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
 527		/* this works because NOT_SUPPORTED == 3 */
 528		vht_cap->vht_mcs.rx_mcs_map |=
 529			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
 530	}
 531
 532	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
 533
 534	vht_cap->vht_mcs.tx_highest |=
 535		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
 536}
 537
 538static const u8 iwl_vendor_caps[] = {
 539	0xdd,			/* vendor element */
 540	0x06,			/* length */
 541	0x00, 0x17, 0x35,	/* Intel OUI */
 542	0x08,			/* type (Intel Capabilities) */
 543	/* followed by 16 bits of capabilities */
 544#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
 545	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
 546	0x00
 547};
 548
 549static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
 550	{
 551		.types_mask = BIT(NL80211_IFTYPE_STATION),
 552		.he_cap = {
 553			.has_he = true,
 554			.he_cap_elem = {
 555				.mac_cap_info[0] =
 556					IEEE80211_HE_MAC_CAP0_HTC_HE,
 557				.mac_cap_info[1] =
 558					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 559					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 560				.mac_cap_info[2] =
 561					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
 562				.mac_cap_info[3] =
 563					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
 564					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
 565				.mac_cap_info[4] =
 566					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
 567					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
 568				.mac_cap_info[5] =
 569					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
 570					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
 571					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
 572					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
 573					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
 574				.phy_cap_info[1] =
 575					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
 576					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
 577					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 578				.phy_cap_info[2] =
 579					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
 580					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
 581				.phy_cap_info[3] =
 582					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
 583					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 584					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
 585					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 586				.phy_cap_info[4] =
 587					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
 588					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
 589					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
 590				.phy_cap_info[6] =
 591					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
 592					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
 593					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 594				.phy_cap_info[7] =
 595					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
 596					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 597				.phy_cap_info[8] =
 598					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 599					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
 600					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
 601					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
 602					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 603				.phy_cap_info[9] =
 604					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
 605					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
 606					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
 607					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
 608				.phy_cap_info[10] =
 609					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
 610			},
 611			/*
 612			 * Set default Tx/Rx HE MCS NSS Support field.
 613			 * Indicate support for up to 2 spatial streams and all
 614			 * MCS, without any special cases
 615			 */
 616			.he_mcs_nss_supp = {
 617				.rx_mcs_80 = cpu_to_le16(0xfffa),
 618				.tx_mcs_80 = cpu_to_le16(0xfffa),
 619				.rx_mcs_160 = cpu_to_le16(0xfffa),
 620				.tx_mcs_160 = cpu_to_le16(0xfffa),
 621				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 622				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 623			},
 624			/*
 625			 * Set default PPE thresholds, with PPET16 set to 0,
 626			 * PPET8 set to 7
 627			 */
 628			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 629		},
 630		.eht_cap = {
 631			.has_eht = true,
 632			.eht_cap_elem = {
 633				.mac_cap_info[0] =
 634					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
 635					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
 636					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
 637					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
 638				.phy_cap_info[0] =
 639					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
 640					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
 641					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
 642					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
 643					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
 644				.phy_cap_info[1] =
 645					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
 646					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
 647					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
 648				.phy_cap_info[3] =
 649					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
 650					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
 651					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
 652					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
 653					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
 654					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
 655					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
 656
 657				.phy_cap_info[4] =
 658					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
 659					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
 660					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
 661				.phy_cap_info[5] =
 662					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
 663					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
 664					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
 665					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
 666				.phy_cap_info[6] =
 667					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
 668					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
 669				.phy_cap_info[8] =
 670					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
 671					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
 672			},
 673
 674			/* For all MCS and bandwidth, set 2 NSS for both Tx and
 675			 * Rx - note we don't set the only_20mhz, but due to this
 676			 * being a union, it gets set correctly anyway.
 677			 */
 678			.eht_mcs_nss_supp = {
 679				.bw._80 = {
 680					.rx_tx_mcs9_max_nss = 0x22,
 681					.rx_tx_mcs11_max_nss = 0x22,
 682					.rx_tx_mcs13_max_nss = 0x22,
 683				},
 684				.bw._160 = {
 685					.rx_tx_mcs9_max_nss = 0x22,
 686					.rx_tx_mcs11_max_nss = 0x22,
 687					.rx_tx_mcs13_max_nss = 0x22,
 688				},
 689				.bw._320 = {
 690					.rx_tx_mcs9_max_nss = 0x22,
 691					.rx_tx_mcs11_max_nss = 0x22,
 692					.rx_tx_mcs13_max_nss = 0x22,
 693				},
 694			},
 695
 696			/*
 697			 * PPE thresholds for NSS = 2, and RU index bitmap set
 698			 * to 0xc.
 699			 */
 700			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
 701		},
 702	},
 703	{
 704		.types_mask = BIT(NL80211_IFTYPE_AP),
 705		.he_cap = {
 706			.has_he = true,
 707			.he_cap_elem = {
 708				.mac_cap_info[0] =
 709					IEEE80211_HE_MAC_CAP0_HTC_HE,
 710				.mac_cap_info[1] =
 711					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
 712					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
 713				.mac_cap_info[3] =
 714					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
 715				.phy_cap_info[1] =
 716					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
 717				.phy_cap_info[2] =
 718					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
 719					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
 720				.phy_cap_info[3] =
 721					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
 722					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
 723					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
 724					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
 725				.phy_cap_info[6] =
 726					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
 727				.phy_cap_info[7] =
 728					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
 729				.phy_cap_info[8] =
 730					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
 731					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
 732				.phy_cap_info[9] =
 733					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
 734					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
 735			},
 736			/*
 737			 * Set default Tx/Rx HE MCS NSS Support field.
 738			 * Indicate support for up to 2 spatial streams and all
 739			 * MCS, without any special cases
 740			 */
 741			.he_mcs_nss_supp = {
 742				.rx_mcs_80 = cpu_to_le16(0xfffa),
 743				.tx_mcs_80 = cpu_to_le16(0xfffa),
 744				.rx_mcs_160 = cpu_to_le16(0xfffa),
 745				.tx_mcs_160 = cpu_to_le16(0xfffa),
 746				.rx_mcs_80p80 = cpu_to_le16(0xffff),
 747				.tx_mcs_80p80 = cpu_to_le16(0xffff),
 748			},
 749			/*
 750			 * Set default PPE thresholds, with PPET16 set to 0,
 751			 * PPET8 set to 7
 752			 */
 753			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
 754		},
 755		.eht_cap = {
 756			.has_eht = true,
 757			.eht_cap_elem = {
 758				.mac_cap_info[0] =
 759					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
 760					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
 761					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
 762					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
 763				.phy_cap_info[0] =
 764					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
 765					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
 766				.phy_cap_info[5] =
 767					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
 768			},
 769
 770			/* For all MCS and bandwidth, set 2 NSS for both Tx and
 771			 * Rx - note we don't set the only_20mhz, but due to this
 772			 * being a union, it gets set correctly anyway.
 773			 */
 774			.eht_mcs_nss_supp = {
 775				.bw._80 = {
 776					.rx_tx_mcs9_max_nss = 0x22,
 777					.rx_tx_mcs11_max_nss = 0x22,
 778					.rx_tx_mcs13_max_nss = 0x22,
 779				},
 780				.bw._160 = {
 781					.rx_tx_mcs9_max_nss = 0x22,
 782					.rx_tx_mcs11_max_nss = 0x22,
 783					.rx_tx_mcs13_max_nss = 0x22,
 784				},
 785				.bw._320 = {
 786					.rx_tx_mcs9_max_nss = 0x22,
 787					.rx_tx_mcs11_max_nss = 0x22,
 788					.rx_tx_mcs13_max_nss = 0x22,
 789				},
 790			},
 791
 792			/*
 793			 * PPE thresholds for NSS = 2, and RU index bitmap set
 794			 * to 0xc.
 795			 */
 796			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
 797		},
 798	},
 799};
 800
 801static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
 802				  struct iwl_nvm_data *data,
 803				  struct ieee80211_supported_band *sband,
 804				  u8 tx_chains, u8 rx_chains)
 805{
 806	struct ieee80211_sta_ht_cap ht_cap;
 807	struct ieee80211_sta_vht_cap vht_cap = {};
 808	struct ieee80211_sband_iftype_data *iftype_data;
 809	u16 he_6ghz_capa = 0;
 810	u32 exp;
 811	int i;
 812
 813	if (sband->band != NL80211_BAND_6GHZ)
 814		return;
 815
 816	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
 817	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
 818			     tx_chains, rx_chains);
 819	WARN_ON(!ht_cap.ht_supported);
 820	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
 821	WARN_ON(!vht_cap.vht_supported);
 822
 823	he_6ghz_capa |=
 824		u16_encode_bits(ht_cap.ampdu_density,
 825				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
 826	exp = u32_get_bits(vht_cap.cap,
 827			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
 828	he_6ghz_capa |=
 829		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
 830	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
 831	he_6ghz_capa |=
 832		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
 833	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
 834	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
 835		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
 836	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
 837		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
 838
 839	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
 840
 841	/* we know it's writable - we set it before ourselves */
 842	iftype_data = (void *)(uintptr_t)sband->iftype_data;
 843	for (i = 0; i < sband->n_iftype_data; i++)
 844		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
 845}
 846
 847static void
 848iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
 849			 struct iwl_nvm_data *data,
 850			 struct ieee80211_supported_band *sband,
 851			 struct ieee80211_sband_iftype_data *iftype_data,
 852			 u8 tx_chains, u8 rx_chains,
 853			 const struct iwl_fw *fw)
 854{
 855	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
 856
 857	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
 858		iftype_data->eht_cap.has_eht = false;
 859
 860	/* Advertise an A-MPDU exponent extension based on
 861	 * operating band
 862	 */
 863	if (sband->band != NL80211_BAND_2GHZ)
 864		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 865			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
 866	else
 867		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
 868			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
 869
 870	switch (sband->band) {
 871	case NL80211_BAND_2GHZ:
 872		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 873			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
 874		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
 875			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
 876				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
 877		break;
 878	case NL80211_BAND_6GHZ:
 879		if (!is_ap || iwlwifi_mod_params.nvm_file)
 880			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
 881				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
 882		fallthrough;
 883	case NL80211_BAND_5GHZ:
 884		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 885			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G;
 886		if (!is_ap || iwlwifi_mod_params.nvm_file)
 887			iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
 888				IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
 889		break;
 890	default:
 891		WARN_ON(1);
 892		break;
 893	}
 894
 895	if ((tx_chains & rx_chains) == ANT_AB) {
 896		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
 897			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
 898		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
 899			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
 900			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
 901		if (!is_ap) {
 902			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 903				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
 904
 905			if (iftype_data->eht_cap.has_eht) {
 906				/*
 907				 * Set the number of sounding dimensions for each
 908				 * bandwidth to 1 to indicate the maximal supported
 909				 * value of TXVECTOR parameter NUM_STS of 2
 910				 */
 911				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
 912
 913				/*
 914				 * Set the MAX NC to 1 to indicate sounding feedback of
 915				 * 2 supported by the beamfomee.
 916				 */
 917				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
 918			}
 919		}
 920	} else {
 921		if (iftype_data->eht_cap.has_eht) {
 922			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
 923				&iftype_data->eht_cap.eht_mcs_nss_supp;
 924
 925			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
 926		}
 927
 928		if (!is_ap) {
 929			/* If not 2x2, we need to indicate 1x1 in the
 930			 * Midamble RX Max NSTS - but not for AP mode
 931			 */
 932			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
 933				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
 934			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
 935				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
 936			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
 937				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
 938		}
 939	}
 940
 941	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
 942	case IWL_CFG_RF_TYPE_GF:
 943	case IWL_CFG_RF_TYPE_MR:
 944	case IWL_CFG_RF_TYPE_MS:
 945		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
 946			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
 947		if (!is_ap)
 948			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
 949				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
 950		break;
 951	}
 952
 953	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
 954	    iftype_data->eht_cap.has_eht) {
 955		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
 956			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
 957			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
 958			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
 959		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
 960			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
 961			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
 962			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
 963			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
 964			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
 965			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
 966		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
 967			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
 968			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
 969		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
 970			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
 971		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
 972			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
 973			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
 974	}
 975
 976	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
 977		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
 978			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
 979
 980	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
 981	    !is_ap) {
 982		iftype_data->vendor_elems.data = iwl_vendor_caps;
 983		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
 984	}
 985}
 986
 987static void iwl_init_he_hw_capab(struct iwl_trans *trans,
 988				 struct iwl_nvm_data *data,
 989				 struct ieee80211_supported_band *sband,
 990				 u8 tx_chains, u8 rx_chains,
 991				 const struct iwl_fw *fw)
 992{
 993	struct ieee80211_sband_iftype_data *iftype_data;
 994	int i;
 995
 996	/* should only initialize once */
 997	if (WARN_ON(sband->iftype_data))
 998		return;
 999
1000	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1001	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1002
1003	switch (sband->band) {
1004	case NL80211_BAND_2GHZ:
1005		iftype_data = data->iftd.low;
1006		break;
1007	case NL80211_BAND_5GHZ:
1008	case NL80211_BAND_6GHZ:
1009		iftype_data = data->iftd.high;
1010		break;
1011	default:
1012		WARN_ON(1);
1013		return;
1014	}
1015
1016	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1017
1018	sband->iftype_data = iftype_data;
1019	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1020
1021	for (i = 0; i < sband->n_iftype_data; i++)
1022		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1023					 tx_chains, rx_chains, fw);
1024
1025	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1026}
1027
1028static void iwl_init_sbands(struct iwl_trans *trans,
1029			    struct iwl_nvm_data *data,
1030			    const void *nvm_ch_flags, u8 tx_chains,
1031			    u8 rx_chains, u32 sbands_flags, bool v4,
1032			    const struct iwl_fw *fw)
1033{
1034	struct device *dev = trans->dev;
1035	const struct iwl_cfg *cfg = trans->cfg;
1036	int n_channels;
1037	int n_used = 0;
1038	struct ieee80211_supported_band *sband;
1039
1040	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1041					  sbands_flags, v4);
1042	sband = &data->bands[NL80211_BAND_2GHZ];
1043	sband->band = NL80211_BAND_2GHZ;
1044	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1045	sband->n_bitrates = N_RATES_24;
1046	n_used += iwl_init_sband_channels(data, sband, n_channels,
1047					  NL80211_BAND_2GHZ);
1048	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1049			     tx_chains, rx_chains);
1050
1051	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1052		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1053				     fw);
1054
1055	sband = &data->bands[NL80211_BAND_5GHZ];
1056	sband->band = NL80211_BAND_5GHZ;
1057	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1058	sband->n_bitrates = N_RATES_52;
1059	n_used += iwl_init_sband_channels(data, sband, n_channels,
1060					  NL80211_BAND_5GHZ);
1061	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1062			     tx_chains, rx_chains);
1063	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1064		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1065				      tx_chains, rx_chains);
1066
1067	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1068		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1069				     fw);
1070
1071	/* 6GHz band. */
1072	sband = &data->bands[NL80211_BAND_6GHZ];
1073	sband->band = NL80211_BAND_6GHZ;
1074	/* use the same rates as 5GHz band */
1075	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1076	sband->n_bitrates = N_RATES_52;
1077	n_used += iwl_init_sband_channels(data, sband, n_channels,
1078					  NL80211_BAND_6GHZ);
1079
1080	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1081		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1082				     fw);
1083	else
1084		sband->n_channels = 0;
1085	if (n_channels != n_used)
1086		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1087			    n_used, n_channels);
1088}
1089
1090static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1091		       const __le16 *phy_sku)
1092{
1093	if (cfg->nvm_type != IWL_NVM_EXT)
1094		return le16_to_cpup(nvm_sw + SKU);
1095
1096	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1097}
1098
1099static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1100{
1101	if (cfg->nvm_type != IWL_NVM_EXT)
1102		return le16_to_cpup(nvm_sw + NVM_VERSION);
1103	else
1104		return le32_to_cpup((const __le32 *)(nvm_sw +
1105						     NVM_VERSION_EXT_NVM));
1106}
1107
1108static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1109			     const __le16 *phy_sku)
1110{
1111	if (cfg->nvm_type != IWL_NVM_EXT)
1112		return le16_to_cpup(nvm_sw + RADIO_CFG);
1113
1114	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1115
1116}
1117
1118static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1119{
1120	int n_hw_addr;
1121
1122	if (cfg->nvm_type != IWL_NVM_EXT)
1123		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1124
1125	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1126
1127	return n_hw_addr & N_HW_ADDR_MASK;
1128}
1129
1130static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1131			      struct iwl_nvm_data *data,
1132			      u32 radio_cfg)
1133{
1134	if (cfg->nvm_type != IWL_NVM_EXT) {
1135		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1136		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1137		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1138		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1139		return;
1140	}
1141
1142	/* set the radio configuration for family 8000 */
1143	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1144	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1145	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1146	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1147	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1148	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1149}
1150
1151static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1152{
1153	const u8 *hw_addr;
1154
1155	hw_addr = (const u8 *)&mac_addr0;
1156	dest[0] = hw_addr[3];
1157	dest[1] = hw_addr[2];
1158	dest[2] = hw_addr[1];
1159	dest[3] = hw_addr[0];
1160
1161	hw_addr = (const u8 *)&mac_addr1;
1162	dest[4] = hw_addr[1];
1163	dest[5] = hw_addr[0];
1164}
1165
1166static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1167					struct iwl_nvm_data *data)
1168{
1169	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1170						  CSR_MAC_ADDR0_STRAP(trans)));
1171	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1172						  CSR_MAC_ADDR1_STRAP(trans)));
1173
1174	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1175	/*
1176	 * If the OEM fused a valid address, use it instead of the one in the
1177	 * OTP
1178	 */
1179	if (is_valid_ether_addr(data->hw_addr))
1180		return;
1181
1182	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1183	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1184
1185	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1186}
1187
1188static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1189					   const struct iwl_cfg *cfg,
1190					   struct iwl_nvm_data *data,
1191					   const __le16 *mac_override,
1192					   const __be16 *nvm_hw)
1193{
1194	const u8 *hw_addr;
1195
1196	if (mac_override) {
1197		static const u8 reserved_mac[] = {
1198			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1199		};
1200
1201		hw_addr = (const u8 *)(mac_override +
1202				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1203
1204		/*
1205		 * Store the MAC address from MAO section.
1206		 * No byte swapping is required in MAO section
1207		 */
1208		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1209
1210		/*
1211		 * Force the use of the OTP MAC address in case of reserved MAC
1212		 * address in the NVM, or if address is given but invalid.
1213		 */
1214		if (is_valid_ether_addr(data->hw_addr) &&
1215		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1216			return;
1217
1218		IWL_ERR(trans,
1219			"mac address from nvm override section is not valid\n");
1220	}
1221
1222	if (nvm_hw) {
1223		/* read the mac address from WFMP registers */
1224		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1225						WFMP_MAC_ADDR_0));
1226		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1227						WFMP_MAC_ADDR_1));
1228
1229		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1230
1231		return;
1232	}
1233
1234	IWL_ERR(trans, "mac address is not found\n");
1235}
1236
1237static int iwl_set_hw_address(struct iwl_trans *trans,
1238			      const struct iwl_cfg *cfg,
1239			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1240			      const __le16 *mac_override)
1241{
1242	if (cfg->mac_addr_from_csr) {
1243		iwl_set_hw_address_from_csr(trans, data);
1244	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1245		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1246
1247		/* The byte order is little endian 16 bit, meaning 214365 */
1248		data->hw_addr[0] = hw_addr[1];
1249		data->hw_addr[1] = hw_addr[0];
1250		data->hw_addr[2] = hw_addr[3];
1251		data->hw_addr[3] = hw_addr[2];
1252		data->hw_addr[4] = hw_addr[5];
1253		data->hw_addr[5] = hw_addr[4];
1254	} else {
1255		iwl_set_hw_address_family_8000(trans, cfg, data,
1256					       mac_override, nvm_hw);
1257	}
1258
1259	if (!is_valid_ether_addr(data->hw_addr)) {
1260		IWL_ERR(trans, "no valid mac address was found\n");
1261		return -EINVAL;
1262	}
1263
1264	if (!trans->csme_own)
1265		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1266			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1267
1268	return 0;
1269}
1270
1271static bool
1272iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1273			const __be16 *nvm_hw)
1274{
1275	/*
1276	 * Workaround a bug in Indonesia SKUs where the regulatory in
1277	 * some 7000-family OTPs erroneously allow wide channels in
1278	 * 5GHz.  To check for Indonesia, we take the SKU value from
1279	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1280	 * 9.  In those cases, we need to force-disable wide channels
1281	 * in 5GHz otherwise the FW will throw a sysassert when we try
1282	 * to use them.
1283	 */
1284	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1285		/*
1286		 * Unlike the other sections in the NVM, the hw
1287		 * section uses big-endian.
1288		 */
1289		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1290		u8 sku = (subsystem_id & 0x1e) >> 1;
1291
1292		if (sku == 5 || sku == 9) {
1293			IWL_DEBUG_EEPROM(trans->dev,
1294					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1295					 subsystem_id, sku);
1296			return true;
1297		}
1298	}
1299
1300	return false;
1301}
1302
1303struct iwl_nvm_data *
1304iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1305		       const struct iwl_mei_nvm *mei_nvm,
1306		       const struct iwl_fw *fw)
1307{
1308	struct iwl_nvm_data *data;
1309	u32 sbands_flags = 0;
1310	u8 rx_chains = fw->valid_rx_ant;
1311	u8 tx_chains = fw->valid_rx_ant;
1312
1313	if (cfg->uhb_supported)
1314		data = kzalloc(struct_size(data, channels,
1315					   IWL_NVM_NUM_CHANNELS_UHB),
1316					   GFP_KERNEL);
1317	else
1318		data = kzalloc(struct_size(data, channels,
1319					   IWL_NVM_NUM_CHANNELS_EXT),
1320					   GFP_KERNEL);
1321	if (!data)
1322		return NULL;
1323
1324	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1325		     IWL_NVM_NUM_CHANNELS_UHB);
1326	data->nvm_version = mei_nvm->nvm_version;
1327
1328	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1329	if (data->valid_tx_ant)
1330		tx_chains &= data->valid_tx_ant;
1331	if (data->valid_rx_ant)
1332		rx_chains &= data->valid_rx_ant;
1333
1334	data->sku_cap_mimo_disabled = false;
1335	data->sku_cap_band_24ghz_enable = true;
1336	data->sku_cap_band_52ghz_enable = true;
1337	data->sku_cap_11n_enable =
1338		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1339	data->sku_cap_11ac_enable = true;
1340	data->sku_cap_11ax_enable =
1341		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1342
1343	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1344
1345	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1346	/* If no valid mac address was found - bail out */
1347	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1348		kfree(data);
1349		return NULL;
1350	}
1351
1352	if (data->lar_enabled &&
1353	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1354		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1355
1356	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1357			sbands_flags, true, fw);
1358
1359	return data;
1360}
1361IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1362
1363struct iwl_nvm_data *
1364iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1365		   const struct iwl_fw *fw,
1366		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1367		   const __le16 *nvm_calib, const __le16 *regulatory,
1368		   const __le16 *mac_override, const __le16 *phy_sku,
1369		   u8 tx_chains, u8 rx_chains)
1370{
1371	struct iwl_nvm_data *data;
1372	bool lar_enabled;
1373	u32 sku, radio_cfg;
1374	u32 sbands_flags = 0;
1375	u16 lar_config;
1376	const __le16 *ch_section;
1377
1378	if (cfg->uhb_supported)
1379		data = kzalloc(struct_size(data, channels,
1380					   IWL_NVM_NUM_CHANNELS_UHB),
1381					   GFP_KERNEL);
1382	else if (cfg->nvm_type != IWL_NVM_EXT)
1383		data = kzalloc(struct_size(data, channels,
1384					   IWL_NVM_NUM_CHANNELS),
1385					   GFP_KERNEL);
1386	else
1387		data = kzalloc(struct_size(data, channels,
1388					   IWL_NVM_NUM_CHANNELS_EXT),
1389					   GFP_KERNEL);
1390	if (!data)
1391		return NULL;
1392
1393	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1394
1395	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1396	iwl_set_radio_cfg(cfg, data, radio_cfg);
1397	if (data->valid_tx_ant)
1398		tx_chains &= data->valid_tx_ant;
1399	if (data->valid_rx_ant)
1400		rx_chains &= data->valid_rx_ant;
1401
1402	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1403	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1404	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1405	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1406	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1407		data->sku_cap_11n_enable = false;
1408	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1409				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1410	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1411
1412	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1413
1414	if (cfg->nvm_type != IWL_NVM_EXT) {
1415		/* Checking for required sections */
1416		if (!nvm_calib) {
1417			IWL_ERR(trans,
1418				"Can't parse empty Calib NVM sections\n");
1419			kfree(data);
1420			return NULL;
1421		}
1422
1423		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1424			     &regulatory[NVM_CHANNELS_SDP] :
1425			     &nvm_sw[NVM_CHANNELS];
1426
1427		/* in family 8000 Xtal calibration values moved to OTP */
1428		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1429		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1430		lar_enabled = true;
1431	} else {
1432		u16 lar_offset = data->nvm_version < 0xE39 ?
1433				 NVM_LAR_OFFSET_OLD :
1434				 NVM_LAR_OFFSET;
1435
1436		lar_config = le16_to_cpup(regulatory + lar_offset);
1437		data->lar_enabled = !!(lar_config &
1438				       NVM_LAR_ENABLED);
1439		lar_enabled = data->lar_enabled;
1440		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1441	}
1442
1443	/* If no valid mac address was found - bail out */
1444	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1445		kfree(data);
1446		return NULL;
1447	}
1448
1449	if (lar_enabled &&
1450	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1451		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1452
1453	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1454		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1455
1456	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1457			sbands_flags, false, fw);
1458	data->calib_version = 255;
1459
1460	return data;
1461}
1462IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1463
1464static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1465				       int ch_idx, u16 nvm_flags,
1466				       struct iwl_reg_capa reg_capa,
1467				       const struct iwl_cfg *cfg)
1468{
1469	u32 flags = NL80211_RRF_NO_HT40;
1470
1471	if (ch_idx < NUM_2GHZ_CHANNELS &&
1472	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1473		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1474			flags &= ~NL80211_RRF_NO_HT40PLUS;
1475		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1476			flags &= ~NL80211_RRF_NO_HT40MINUS;
1477	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1478		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1479			flags &= ~NL80211_RRF_NO_HT40PLUS;
1480		else
1481			flags &= ~NL80211_RRF_NO_HT40MINUS;
1482	}
1483
1484	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1485		flags |= NL80211_RRF_NO_80MHZ;
1486	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1487		flags |= NL80211_RRF_NO_160MHZ;
1488
1489	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1490		flags |= NL80211_RRF_NO_IR;
1491
1492	if (nvm_flags & NVM_CHANNEL_RADAR)
1493		flags |= NL80211_RRF_DFS;
1494
1495	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1496		flags |= NL80211_RRF_NO_OUTDOOR;
1497
1498	/* Set the GO concurrent flag only in case that NO_IR is set.
1499	 * Otherwise it is meaningless
1500	 */
1501	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1502	    (flags & NL80211_RRF_NO_IR))
1503		flags |= NL80211_RRF_GO_CONCURRENT;
1504
1505	/*
1506	 * reg_capa is per regulatory domain so apply it for every channel
1507	 */
1508	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1509		if (!reg_capa.allow_40mhz)
1510			flags |= NL80211_RRF_NO_HT40;
1511
1512		if (!reg_capa.allow_80mhz)
1513			flags |= NL80211_RRF_NO_80MHZ;
1514
1515		if (!reg_capa.allow_160mhz)
1516			flags |= NL80211_RRF_NO_160MHZ;
1517	}
1518	if (reg_capa.disable_11ax)
1519		flags |= NL80211_RRF_NO_HE;
1520
1521	return flags;
1522}
1523
1524static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1525{
1526	struct iwl_reg_capa reg_capa;
1527
1528	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1529		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1530		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1531		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1532		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1533	} else {
1534		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1535		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1536		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1537		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1538	}
1539	return reg_capa;
1540}
1541
1542struct ieee80211_regdomain *
1543iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1544		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1545		       u16 geo_info, u16 cap, u8 resp_ver)
1546{
1547	int ch_idx;
1548	u16 ch_flags;
1549	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1550	const u16 *nvm_chan;
1551	struct ieee80211_regdomain *regd, *copy_rd;
1552	struct ieee80211_reg_rule *rule;
1553	enum nl80211_band band;
1554	int center_freq, prev_center_freq = 0;
1555	int valid_rules = 0;
1556	bool new_rule;
1557	int max_num_ch;
1558	struct iwl_reg_capa reg_capa;
1559
1560	if (cfg->uhb_supported) {
1561		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1562		nvm_chan = iwl_uhb_nvm_channels;
1563	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1564		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1565		nvm_chan = iwl_ext_nvm_channels;
1566	} else {
1567		max_num_ch = IWL_NVM_NUM_CHANNELS;
1568		nvm_chan = iwl_nvm_channels;
1569	}
1570
1571	if (num_of_ch > max_num_ch) {
1572		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1573			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1574			      num_of_ch, max_num_ch);
1575		num_of_ch = max_num_ch;
1576	}
1577
1578	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1579		return ERR_PTR(-EINVAL);
1580
1581	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1582		      num_of_ch);
1583
1584	/* build a regdomain rule for every valid channel */
1585	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1586	if (!regd)
1587		return ERR_PTR(-ENOMEM);
1588
1589	/* set alpha2 from FW. */
1590	regd->alpha2[0] = fw_mcc >> 8;
1591	regd->alpha2[1] = fw_mcc & 0xff;
1592
1593	/* parse regulatory capability flags */
1594	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1595
1596	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1597		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1598		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1599		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1600							     band);
1601		new_rule = false;
1602
1603		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1604			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1605						    nvm_chan[ch_idx], ch_flags);
1606			continue;
1607		}
1608
1609		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1610							     ch_flags, reg_capa,
1611							     cfg);
1612
1613		/* we can't continue the same rule */
1614		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1615		    center_freq - prev_center_freq > 20) {
1616			valid_rules++;
1617			new_rule = true;
1618		}
1619
1620		rule = &regd->reg_rules[valid_rules - 1];
1621
1622		if (new_rule)
1623			rule->freq_range.start_freq_khz =
1624						MHZ_TO_KHZ(center_freq - 10);
1625
1626		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1627
1628		/* this doesn't matter - not used by FW */
1629		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1630		rule->power_rule.max_eirp =
1631			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1632
1633		rule->flags = reg_rule_flags;
1634
1635		/* rely on auto-calculation to merge BW of contiguous chans */
1636		rule->flags |= NL80211_RRF_AUTO_BW;
1637		rule->freq_range.max_bandwidth_khz = 0;
1638
1639		prev_center_freq = center_freq;
1640		prev_reg_rule_flags = reg_rule_flags;
1641
1642		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1643					    nvm_chan[ch_idx], ch_flags);
1644
1645		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1646		    band == NL80211_BAND_2GHZ)
1647			continue;
1648
1649		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1650	}
1651
1652	/*
1653	 * Certain firmware versions might report no valid channels
1654	 * if booted in RF-kill, i.e. not all calibrations etc. are
1655	 * running. We'll get out of this situation later when the
1656	 * rfkill is removed and we update the regdomain again, but
1657	 * since cfg80211 doesn't accept an empty regdomain, add a
1658	 * dummy (unusable) rule here in this case so we can init.
1659	 */
1660	if (!valid_rules) {
1661		valid_rules = 1;
1662		rule = &regd->reg_rules[valid_rules - 1];
1663		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1664		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1665		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1666		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1667		rule->power_rule.max_eirp =
1668			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1669	}
1670
1671	regd->n_reg_rules = valid_rules;
1672
1673	/*
1674	 * Narrow down regdom for unused regulatory rules to prevent hole
1675	 * between reg rules to wmm rules.
1676	 */
1677	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1678			  GFP_KERNEL);
1679	if (!copy_rd)
1680		copy_rd = ERR_PTR(-ENOMEM);
1681
1682	kfree(regd);
1683	return copy_rd;
1684}
1685IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1686
1687#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1688#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1689#define MAX_NVM_FILE_LEN	16384
1690
1691void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1692		    unsigned int len)
1693{
1694#define IWL_4165_DEVICE_ID	0x5501
1695#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1696
1697	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1698	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1699	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1700		/* OTP 0x52 bug work around: it's a 1x1 device */
1701		data[3] = ANT_B | (ANT_B << 4);
1702}
1703IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1704
1705/*
1706 * Reads external NVM from a file into mvm->nvm_sections
1707 *
1708 * HOW TO CREATE THE NVM FILE FORMAT:
1709 * ------------------------------
1710 * 1. create hex file, format:
1711 *      3800 -> header
1712 *      0000 -> header
1713 *      5a40 -> data
1714 *
1715 *   rev - 6 bit (word1)
1716 *   len - 10 bit (word1)
1717 *   id - 4 bit (word2)
1718 *   rsv - 12 bit (word2)
1719 *
1720 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1721 *
1722 * 3. create binary file from the hex file
1723 *
1724 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1725 */
1726int iwl_read_external_nvm(struct iwl_trans *trans,
1727			  const char *nvm_file_name,
1728			  struct iwl_nvm_section *nvm_sections)
1729{
1730	int ret, section_size;
1731	u16 section_id;
1732	const struct firmware *fw_entry;
1733	const struct {
1734		__le16 word1;
1735		__le16 word2;
1736		u8 data[];
1737	} *file_sec;
1738	const u8 *eof;
1739	u8 *temp;
1740	int max_section_size;
1741	const __le32 *dword_buff;
1742
1743#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1744#define NVM_WORD2_ID(x) (x >> 12)
1745#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1746#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1747#define NVM_HEADER_0	(0x2A504C54)
1748#define NVM_HEADER_1	(0x4E564D2A)
1749#define NVM_HEADER_SIZE	(4 * sizeof(u32))
1750
1751	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1752
1753	/* Maximal size depends on NVM version */
1754	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1755		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1756	else
1757		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1758
1759	/*
1760	 * Obtain NVM image via request_firmware. Since we already used
1761	 * request_firmware_nowait() for the firmware binary load and only
1762	 * get here after that we assume the NVM request can be satisfied
1763	 * synchronously.
1764	 */
1765	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1766	if (ret) {
1767		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1768			nvm_file_name, ret);
1769		return ret;
1770	}
1771
1772	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1773		 nvm_file_name, fw_entry->size);
1774
1775	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1776		IWL_ERR(trans, "NVM file too large\n");
1777		ret = -EINVAL;
1778		goto out;
1779	}
1780
1781	eof = fw_entry->data + fw_entry->size;
1782	dword_buff = (const __le32 *)fw_entry->data;
1783
1784	/* some NVM file will contain a header.
1785	 * The header is identified by 2 dwords header as follow:
1786	 * dword[0] = 0x2A504C54
1787	 * dword[1] = 0x4E564D2A
1788	 *
1789	 * This header must be skipped when providing the NVM data to the FW.
1790	 */
1791	if (fw_entry->size > NVM_HEADER_SIZE &&
1792	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1793	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1794		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1795		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1796		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1797			 le32_to_cpu(dword_buff[3]));
1798
1799		/* nvm file validation, dword_buff[2] holds the file version */
1800		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1801		    trans->hw_rev_step == SILICON_C_STEP &&
1802		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1803			ret = -EFAULT;
1804			goto out;
1805		}
1806	} else {
1807		file_sec = (const void *)fw_entry->data;
1808	}
1809
1810	while (true) {
1811		if (file_sec->data > eof) {
1812			IWL_ERR(trans,
1813				"ERROR - NVM file too short for section header\n");
1814			ret = -EINVAL;
1815			break;
1816		}
1817
1818		/* check for EOF marker */
1819		if (!file_sec->word1 && !file_sec->word2) {
1820			ret = 0;
1821			break;
1822		}
1823
1824		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1825			section_size =
1826				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1827			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1828		} else {
1829			section_size = 2 * EXT_NVM_WORD2_LEN(
1830						le16_to_cpu(file_sec->word2));
1831			section_id = EXT_NVM_WORD1_ID(
1832						le16_to_cpu(file_sec->word1));
1833		}
1834
1835		if (section_size > max_section_size) {
1836			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1837				section_size);
1838			ret = -EINVAL;
1839			break;
1840		}
1841
1842		if (!section_size) {
1843			IWL_ERR(trans, "ERROR - section empty\n");
1844			ret = -EINVAL;
1845			break;
1846		}
1847
1848		if (file_sec->data + section_size > eof) {
1849			IWL_ERR(trans,
1850				"ERROR - NVM file too short for section (%d bytes)\n",
1851				section_size);
1852			ret = -EINVAL;
1853			break;
1854		}
1855
1856		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1857			 "Invalid NVM section ID %d\n", section_id)) {
1858			ret = -EINVAL;
1859			break;
1860		}
1861
1862		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1863		if (!temp) {
1864			ret = -ENOMEM;
1865			break;
1866		}
1867
1868		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1869
1870		kfree(nvm_sections[section_id].data);
1871		nvm_sections[section_id].data = temp;
1872		nvm_sections[section_id].length = section_size;
1873
1874		/* advance to the next section */
1875		file_sec = (const void *)(file_sec->data + section_size);
1876	}
1877out:
1878	release_firmware(fw_entry);
1879	return ret;
1880}
1881IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1882
1883struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1884				 const struct iwl_fw *fw)
1885{
1886	struct iwl_nvm_get_info cmd = {};
1887	struct iwl_nvm_data *nvm;
1888	struct iwl_host_cmd hcmd = {
1889		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1890		.data = { &cmd, },
1891		.len = { sizeof(cmd) },
1892		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1893	};
1894	int  ret;
1895	bool empty_otp;
1896	u32 mac_flags;
1897	u32 sbands_flags = 0;
1898	/*
1899	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1900	 * in v3, except for the channel profile part of the
1901	 * regulatory.  So we can just access the new struct, with the
1902	 * exception of the latter.
1903	 */
1904	struct iwl_nvm_get_info_rsp *rsp;
1905	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1906	bool v4 = fw_has_api(&fw->ucode_capa,
1907			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1908	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1909	void *channel_profile;
1910
1911	ret = iwl_trans_send_cmd(trans, &hcmd);
1912	if (ret)
1913		return ERR_PTR(ret);
1914
1915	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1916		 "Invalid payload len in NVM response from FW %d",
1917		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1918		ret = -EINVAL;
1919		goto out;
1920	}
1921
1922	rsp = (void *)hcmd.resp_pkt->data;
1923	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1924		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1925	if (empty_otp)
1926		IWL_INFO(trans, "OTP is empty\n");
1927
1928	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1929	if (!nvm) {
1930		ret = -ENOMEM;
1931		goto out;
1932	}
1933
1934	iwl_set_hw_address_from_csr(trans, nvm);
1935	/* TODO: if platform NVM has MAC address - override it here */
1936
1937	if (!is_valid_ether_addr(nvm->hw_addr)) {
1938		IWL_ERR(trans, "no valid mac address was found\n");
1939		ret = -EINVAL;
1940		goto err_free;
1941	}
1942
1943	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1944
1945	/* Initialize general data */
1946	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1947	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1948	if (nvm->n_hw_addrs == 0)
1949		IWL_WARN(trans,
1950			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1951			 empty_otp);
1952
1953	/* Initialize MAC sku data */
1954	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1955	nvm->sku_cap_11ac_enable =
1956		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1957	nvm->sku_cap_11n_enable =
1958		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1959	nvm->sku_cap_11ax_enable =
1960		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1961	nvm->sku_cap_band_24ghz_enable =
1962		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1963	nvm->sku_cap_band_52ghz_enable =
1964		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1965	nvm->sku_cap_mimo_disabled =
1966		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1967	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
1968		nvm->sku_cap_11be_enable = true;
1969
1970	/* Initialize PHY sku data */
1971	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1972	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1973
1974	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1975	    fw_has_capa(&fw->ucode_capa,
1976			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1977		nvm->lar_enabled = true;
1978		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1979	}
1980
1981	rsp_v3 = (void *)rsp;
1982	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1983			  (void *)rsp_v3->regulatory.channel_profile;
1984
1985	iwl_init_sbands(trans, nvm,
1986			channel_profile,
1987			nvm->valid_tx_ant & fw->valid_tx_ant,
1988			nvm->valid_rx_ant & fw->valid_rx_ant,
1989			sbands_flags, v4, fw);
1990
1991	iwl_free_resp(&hcmd);
1992	return nvm;
1993
1994err_free:
1995	kfree(nvm);
1996out:
1997	iwl_free_resp(&hcmd);
1998	return ERR_PTR(ret);
1999}
2000IWL_EXPORT_SYMBOL(iwl_get_nvm);