Loading...
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME "starfire"
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
32
33#include <linux/interrupt.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
45#include <linux/mm.h>
46#include <linux/firmware.h>
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
67#define ZEROCOPY
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85static const int multicast_filter_limit = 512;
86/* Whether to do TCP/UDP checksums in hardware */
87static int enable_hw_cksum = 1;
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Operational parameters that are set at compile time. */
118
119/* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
121*/
122#define RX_RING_SIZE 256
123#define TX_RING_SIZE 32
124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125#define DONE_Q_SIZE 1024
126/* All queues must be aligned on a 256-byte boundary */
127#define QUEUE_ALIGN 256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135/* Operational parameters that usually are not changed. */
136/* Time in jiffies before concluding the transmitter is hung. */
137#define TX_TIMEOUT (2 * HZ)
138
139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140/* 64-bit dma_addr_t */
141#define ADDR_64BITS /* This chip uses 64 bit addresses. */
142#define netdrv_addr_t __le64
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else /* 32-bit dma_addr_t */
151#define netdrv_addr_t __le32
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
161#define skb_first_frag_len(skb) skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164/* Firmware names */
165#define FIRMWARE_RX "adaptec/starfire_rx.bin"
166#define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
168/* These identify the driver base version and may not be removed. */
169static const char version[] =
170KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195/*
196 Theory of Operation
197
198I. Board Compatibility
199
200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202II. Board-specific settings
203
204III. Driver operation
205
206IIIa. Ring buffers
207
208The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209ring sizes are set fixed by the hardware, but may optionally be wrapped
210earlier by the END bit in the descriptor.
211This driver uses that hardware queue size for the Rx ring, where a large
212number of entries has no ill effect beyond increases the potential backlog.
213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214disables the queue layer priority ordering and we have no mechanism to
215utilize the hardware two-level priority queue. When modifying the
216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217levels.
218
219IIIb/c. Transmit/Receive Structure
220
221See the Adaptec manual for the many possible structures, and options for
222each structure. There are far too many to document all of them here.
223
224For transmit this driver uses type 0/1 transmit descriptors (depending
225on the 32/64 bitness of the architecture), and relies on automatic
226minimum-length padding. It does not use the completion queue
227consumer index, but instead checks for non-zero status entries.
228
229For receive this driver uses type 2/3 receive descriptors. The driver
230allocates full frame size skbuffs for the Rx ring buffers, so all frames
231should fit in a single descriptor. The driver does not use the completion
232queue consumer index, but instead checks for non-zero status entries.
233
234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235is allocated and the frame is copied to the new skbuff. When the incoming
236frame is larger, the skbuff is passed directly up the protocol stack.
237Buffers consumed this way are replaced by newly allocated skbuffs in a later
238phase of receive.
239
240A notable aspect of operation is that unaligned buffers are not permitted by
241the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242isn't longword aligned, which may cause problems on some machine
243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244the frame into a new skbuff unconditionally. Copied frames are put into the
245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247IIId. Synchronization
248
249The driver runs as two independent, single-threaded flows of control. One
250is the send-packet routine, which enforces single-threaded use by the
251dev->tbusy flag. The other thread is the interrupt handler, which is single
252threaded by the hardware and interrupt handling software.
253
254The send packet thread has partial control over the Tx ring and the netif_queue
255status. If the number of free Tx slots in the ring falls below a certain number
256(currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258The interrupt handler has exclusive control over the Rx ring and records stats
259from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261number of free Tx slow is above the threshold, it signals the upper layer to
262restart the queue.
263
264IV. Notes
265
266IVb. References
267
268The Adaptec Starfire manuals, available only from Adaptec.
269http://www.scyld.com/expert/100mbps.html
270http://www.scyld.com/expert/NWay.html
271
272IVc. Errata
273
274- StopOnPerr is broken, don't enable
275- Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
277
278*/
279
280
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285 CH_6915 = 0,
286};
287
288static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295static const struct chip_info {
296 const char *name;
297 int drv_flags;
298} netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303/* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
310*/
311enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330/*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356/* Bits in the RxFilterMode register. */
357enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362};
363
364/* Bits in the TxMode register */
365enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371/* Bits in the TxDescCtrl register. */
372enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381};
382
383/* Bits in the RxDescQCtrl register. */
384enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394};
395
396/* Bits in the RxDMACtrl register. */
397enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410};
411
412/* Bits in the RxCompletionAddr register */
413enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419};
420
421/* Bits in the TxCompletionAddr register */
422enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428};
429
430/* Bits in the GenCtrl register */
431enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436/* Bits in the IntrTimerCtrl register */
437enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441};
442
443/* The Rx and Tx buffer descriptors. */
444struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
446};
447enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449};
450
451/* Completion queue entry. */
452struct short_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454};
455struct basic_rx_done_desc {
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
459};
460struct csum_rx_done_desc {
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
464};
465struct full_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
472};
473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else /* not VLAN_SUPPORT */
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif /* not VLAN_SUPPORT */
481
482enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486/* Type 1 Tx descriptor. */
487struct starfire_tx_desc_1 {
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
490};
491
492/* Type 2 Tx descriptor. */
493struct starfire_tx_desc_2 {
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else /* not ADDR_64BITS */
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif /* not ADDR_64BITS */
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
514 __le32 status; /* timestamp, index. */
515#if 0
516 __le32 intrstatus; /* interrupt status */
517#endif
518};
519
520struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523};
524struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528};
529
530#define PHY_CNT 2
531struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552#endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
572};
573
574
575static int mdio_read(struct net_device *dev, int phy_id, int location);
576static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int netdev_open(struct net_device *dev);
578static void check_duplex(struct net_device *dev);
579static void tx_timeout(struct net_device *dev);
580static void init_ring(struct net_device *dev);
581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582static irqreturn_t intr_handler(int irq, void *dev_instance);
583static void netdev_error(struct net_device *dev, int intr_status);
584static int __netdev_rx(struct net_device *dev, int *quota);
585static int netdev_poll(struct napi_struct *napi, int budget);
586static void refill_rx_ring(struct net_device *dev);
587static void netdev_error(struct net_device *dev, int intr_status);
588static void set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int netdev_close(struct net_device *dev);
592static void netdev_media_change(struct net_device *dev);
593static const struct ethtool_ops ethtool_ops;
594
595
596#ifdef VLAN_SUPPORT
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
599{
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 set_bit(vid, np->active_vlans);
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
608
609 return 0;
610}
611
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
614{
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 clear_bit(vid, np->active_vlans);
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
623
624 return 0;
625}
626#endif /* VLAN_SUPPORT */
627
628
629static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
635 .ndo_set_rx_mode = set_rx_mode,
636 .ndo_do_ioctl = netdev_ioctl,
637 .ndo_change_mtu = eth_change_mtu,
638 .ndo_set_mac_address = eth_mac_addr,
639 .ndo_validate_addr = eth_validate_addr,
640#ifdef VLAN_SUPPORT
641 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
642 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
643#endif
644};
645
646static int starfire_init_one(struct pci_dev *pdev,
647 const struct pci_device_id *ent)
648{
649 struct device *d = &pdev->dev;
650 struct netdev_private *np;
651 int i, irq, chip_idx = ent->driver_data;
652 struct net_device *dev;
653 long ioaddr;
654 void __iomem *base;
655 int drv_flags, io_size;
656 int boguscnt;
657
658/* when built into the kernel, we only print version if device is found */
659#ifndef MODULE
660 static int printed_version;
661 if (!printed_version++)
662 printk(version);
663#endif
664
665 if (pci_enable_device (pdev))
666 return -EIO;
667
668 ioaddr = pci_resource_start(pdev, 0);
669 io_size = pci_resource_len(pdev, 0);
670 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671 dev_err(d, "no PCI MEM resources, aborting\n");
672 return -ENODEV;
673 }
674
675 dev = alloc_etherdev(sizeof(*np));
676 if (!dev)
677 return -ENOMEM;
678
679 SET_NETDEV_DEV(dev, &pdev->dev);
680
681 irq = pdev->irq;
682
683 if (pci_request_regions (pdev, DRV_NAME)) {
684 dev_err(d, "cannot reserve PCI resources, aborting\n");
685 goto err_out_free_netdev;
686 }
687
688 base = ioremap(ioaddr, io_size);
689 if (!base) {
690 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 io_size, ioaddr);
692 goto err_out_free_res;
693 }
694
695 pci_set_master(pdev);
696
697 /* enable MWI -- it vastly improves Rx performance on sparc64 */
698 pci_try_set_mwi(pdev);
699
700#ifdef ZEROCOPY
701 /* Starfire can do TCP/UDP checksumming */
702 if (enable_hw_cksum)
703 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704#endif /* ZEROCOPY */
705
706#ifdef VLAN_SUPPORT
707 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708#endif /* VLAN_RX_KILL_VID */
709#ifdef ADDR_64BITS
710 dev->features |= NETIF_F_HIGHDMA;
711#endif /* ADDR_64BITS */
712
713 /* Serial EEPROM reads are hidden by the hardware. */
714 for (i = 0; i < 6; i++)
715 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716
717#if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 if (debug > 4)
719 for (i = 0; i < 0x20; i++)
720 printk("%2.2x%s",
721 (unsigned int)readb(base + EEPROMCtrl + i),
722 i % 16 != 15 ? " " : "\n");
723#endif
724
725 /* Issue soft reset */
726 writel(MiiSoftReset, base + TxMode);
727 udelay(1000);
728 writel(0, base + TxMode);
729
730 /* Reset the chip to erase previous misconfiguration. */
731 writel(1, base + PCIDeviceConfig);
732 boguscnt = 1000;
733 while (--boguscnt > 0) {
734 udelay(10);
735 if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 break;
737 }
738 if (boguscnt == 0)
739 printk("%s: chipset reset never completed!\n", dev->name);
740 /* wait a little longer */
741 udelay(1000);
742
743 np = netdev_priv(dev);
744 np->dev = dev;
745 np->base = base;
746 spin_lock_init(&np->lock);
747 pci_set_drvdata(pdev, dev);
748
749 np->pci_dev = pdev;
750
751 np->mii_if.dev = dev;
752 np->mii_if.mdio_read = mdio_read;
753 np->mii_if.mdio_write = mdio_write;
754 np->mii_if.phy_id_mask = 0x1f;
755 np->mii_if.reg_num_mask = 0x1f;
756
757 drv_flags = netdrv_tbl[chip_idx].drv_flags;
758
759 np->speed100 = 1;
760
761 /* timer resolution is 128 * 0.8us */
762 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 Timer10X | EnableIntrMasking;
764
765 if (small_frames > 0) {
766 np->intr_timer_ctrl |= SmallFrameBypass;
767 switch (small_frames) {
768 case 1 ... 64:
769 np->intr_timer_ctrl |= SmallFrame64;
770 break;
771 case 65 ... 128:
772 np->intr_timer_ctrl |= SmallFrame128;
773 break;
774 case 129 ... 256:
775 np->intr_timer_ctrl |= SmallFrame256;
776 break;
777 default:
778 np->intr_timer_ctrl |= SmallFrame512;
779 if (small_frames > 512)
780 printk("Adjusting small_frames down to 512\n");
781 break;
782 }
783 }
784
785 dev->netdev_ops = &netdev_ops;
786 dev->watchdog_timeo = TX_TIMEOUT;
787 SET_ETHTOOL_OPS(dev, ðtool_ops);
788
789 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790
791 if (mtu)
792 dev->mtu = mtu;
793
794 if (register_netdev(dev))
795 goto err_out_cleardev;
796
797 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798 dev->name, netdrv_tbl[chip_idx].name, base,
799 dev->dev_addr, irq);
800
801 if (drv_flags & CanHaveMII) {
802 int phy, phy_idx = 0;
803 int mii_status;
804 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 mdelay(100);
807 boguscnt = 1000;
808 while (--boguscnt > 0)
809 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 break;
811 if (boguscnt == 0) {
812 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813 continue;
814 }
815 mii_status = mdio_read(dev, phy, MII_BMSR);
816 if (mii_status != 0) {
817 np->phys[phy_idx++] = phy;
818 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 "%#4.4x advertising %#4.4x.\n",
821 dev->name, phy, mii_status, np->mii_if.advertising);
822 /* there can be only one PHY on-board */
823 break;
824 }
825 }
826 np->phy_cnt = phy_idx;
827 if (np->phy_cnt > 0)
828 np->mii_if.phy_id = np->phys[0];
829 else
830 memset(&np->mii_if, 0, sizeof(np->mii_if));
831 }
832
833 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 return 0;
836
837err_out_cleardev:
838 iounmap(base);
839err_out_free_res:
840 pci_release_regions (pdev);
841err_out_free_netdev:
842 free_netdev(dev);
843 return -ENODEV;
844}
845
846
847/* Read the MII Management Data I/O (MDIO) interfaces. */
848static int mdio_read(struct net_device *dev, int phy_id, int location)
849{
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
852 int result, boguscnt=1000;
853 /* ??? Should we add a busy-wait here? */
854 do {
855 result = readl(mdio_addr);
856 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
857 if (boguscnt == 0)
858 return 0;
859 if ((result & 0xffff) == 0xffff)
860 return 0;
861 return result & 0xffff;
862}
863
864
865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
866{
867 struct netdev_private *np = netdev_priv(dev);
868 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
869 writel(value, mdio_addr);
870 /* The busy-wait will occur before a read. */
871}
872
873
874static int netdev_open(struct net_device *dev)
875{
876 const struct firmware *fw_rx, *fw_tx;
877 const __be32 *fw_rx_data, *fw_tx_data;
878 struct netdev_private *np = netdev_priv(dev);
879 void __iomem *ioaddr = np->base;
880 const int irq = np->pci_dev->irq;
881 int i, retval;
882 size_t tx_size, rx_size;
883 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
884
885 /* Do we ever need to reset the chip??? */
886
887 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
888 if (retval)
889 return retval;
890
891 /* Disable the Rx and Tx, and reset the chip. */
892 writel(0, ioaddr + GenCtrl);
893 writel(1, ioaddr + PCIDeviceConfig);
894 if (debug > 1)
895 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
896 dev->name, irq);
897
898 /* Allocate the various queues. */
899 if (!np->queue_mem) {
900 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
904 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
905 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
906 if (np->queue_mem == NULL) {
907 free_irq(irq, dev);
908 return -ENOMEM;
909 }
910
911 np->tx_done_q = np->queue_mem;
912 np->tx_done_q_dma = np->queue_mem_dma;
913 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
914 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
915 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
916 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
917 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
918 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
919 }
920
921 /* Start with no carrier, it gets adjusted later */
922 netif_carrier_off(dev);
923 init_ring(dev);
924 /* Set the size of the Rx buffers. */
925 writel((np->rx_buf_sz << RxBufferLenShift) |
926 (0 << RxMinDescrThreshShift) |
927 RxPrefetchMode | RxVariableQ |
928 RX_Q_ENTRIES |
929 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
930 RxDescSpace4,
931 ioaddr + RxDescQCtrl);
932
933 /* Set up the Rx DMA controller. */
934 writel(RxChecksumIgnore |
935 (0 << RxEarlyIntThreshShift) |
936 (6 << RxHighPrioThreshShift) |
937 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
938 ioaddr + RxDMACtrl);
939
940 /* Set Tx descriptor */
941 writel((2 << TxHiPriFIFOThreshShift) |
942 (0 << TxPadLenShift) |
943 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
944 TX_DESC_Q_ADDR_SIZE |
945 TX_DESC_SPACING | TX_DESC_TYPE,
946 ioaddr + TxDescCtrl);
947
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
950 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
951 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
952 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
953
954 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
955 writel(np->rx_done_q_dma |
956 RxComplType |
957 (0 << RxComplThreshShift),
958 ioaddr + RxCompletionAddr);
959
960 if (debug > 1)
961 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
962
963 /* Fill both the Tx SA register and the Rx perfect filter. */
964 for (i = 0; i < 6; i++)
965 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
966 /* The first entry is special because it bypasses the VLAN filter.
967 Don't use it. */
968 writew(0, ioaddr + PerfFilterTable);
969 writew(0, ioaddr + PerfFilterTable + 4);
970 writew(0, ioaddr + PerfFilterTable + 8);
971 for (i = 1; i < 16; i++) {
972 __be16 *eaddrs = (__be16 *)dev->dev_addr;
973 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
974 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
976 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
977 }
978
979 /* Initialize other registers. */
980 /* Configure the PCI bus bursts and FIFO thresholds. */
981 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
982 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
983 udelay(1000);
984 writel(np->tx_mode, ioaddr + TxMode);
985 np->tx_threshold = 4;
986 writel(np->tx_threshold, ioaddr + TxThreshold);
987
988 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
989
990 napi_enable(&np->napi);
991
992 netif_start_queue(dev);
993
994 if (debug > 1)
995 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
996 set_rx_mode(dev);
997
998 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
999 check_duplex(dev);
1000
1001 /* Enable GPIO interrupts on link change */
1002 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004 /* Set the interrupt mask */
1005 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008 ioaddr + IntrEnable);
1009 /* Enable PCI interrupts. */
1010 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011 ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014 /* Set VLAN type to 802.1q */
1015 writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif /* VLAN_SUPPORT */
1017
1018 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_RX);
1022 goto out_init;
1023 }
1024 if (fw_rx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_rx->size, FIRMWARE_RX);
1027 retval = -EINVAL;
1028 goto out_rx;
1029 }
1030 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031 if (retval) {
1032 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033 FIRMWARE_TX);
1034 goto out_rx;
1035 }
1036 if (fw_tx->size % 4) {
1037 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038 fw_tx->size, FIRMWARE_TX);
1039 retval = -EINVAL;
1040 goto out_tx;
1041 }
1042 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044 rx_size = fw_rx->size / 4;
1045 tx_size = fw_tx->size / 4;
1046
1047 /* Load Rx/Tx firmware into the frame processors */
1048 for (i = 0; i < rx_size; i++)
1049 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050 for (i = 0; i < tx_size; i++)
1051 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052 if (enable_hw_cksum)
1053 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055 else
1056 /* Enable the Rx and Tx units only. */
1057 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059 if (debug > 1)
1060 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061 dev->name);
1062
1063out_tx:
1064 release_firmware(fw_tx);
1065out_rx:
1066 release_firmware(fw_rx);
1067out_init:
1068 if (retval)
1069 netdev_close(dev);
1070 return retval;
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076 struct netdev_private *np = netdev_priv(dev);
1077 u16 reg0;
1078 int silly_count = 1000;
1079
1080 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082 udelay(500);
1083 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084 /* do nothing */;
1085 if (!silly_count) {
1086 printk("%s: MII reset failed!\n", dev->name);
1087 return;
1088 }
1089
1090 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092 if (!np->mii_if.force_media) {
1093 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094 } else {
1095 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096 if (np->speed100)
1097 reg0 |= BMCR_SPEED100;
1098 if (np->mii_if.full_duplex)
1099 reg0 |= BMCR_FULLDPLX;
1100 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101 dev->name,
1102 np->speed100 ? "100" : "10",
1103 np->mii_if.full_duplex ? "full" : "half");
1104 }
1105 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111 struct netdev_private *np = netdev_priv(dev);
1112 void __iomem *ioaddr = np->base;
1113 int old_debug;
1114
1115 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118 /* Perhaps we should reinitialize the hardware here. */
1119
1120 /*
1121 * Stop and restart the interface.
1122 * Cheat and increase the debug level temporarily.
1123 */
1124 old_debug = debug;
1125 debug = 2;
1126 netdev_close(dev);
1127 netdev_open(dev);
1128 debug = old_debug;
1129
1130 /* Trigger an immediate transmit demand. */
1131
1132 dev->trans_start = jiffies; /* prevent tx timeout */
1133 dev->stats.tx_errors++;
1134 netif_wake_queue(dev);
1135}
1136
1137
1138/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139static void init_ring(struct net_device *dev)
1140{
1141 struct netdev_private *np = netdev_priv(dev);
1142 int i;
1143
1144 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1150 for (i = 0; i < RX_RING_SIZE; i++) {
1151 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152 np->rx_info[i].skb = skb;
1153 if (skb == NULL)
1154 break;
1155 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1156 /* Grrr, we cannot offset to correctly align the IP header. */
1157 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158 }
1159 writew(i - 1, np->base + RxDescQIdx);
1160 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162 /* Clear the remainder of the Rx buffer ring. */
1163 for ( ; i < RX_RING_SIZE; i++) {
1164 np->rx_ring[i].rxaddr = 0;
1165 np->rx_info[i].skb = NULL;
1166 np->rx_info[i].mapping = 0;
1167 }
1168 /* Mark the last entry as wrapping the ring. */
1169 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171 /* Clear the completion rings. */
1172 for (i = 0; i < DONE_Q_SIZE; i++) {
1173 np->rx_done_q[i].status = 0;
1174 np->tx_done_q[i].status = 0;
1175 }
1176
1177 for (i = 0; i < TX_RING_SIZE; i++)
1178 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179}
1180
1181
1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183{
1184 struct netdev_private *np = netdev_priv(dev);
1185 unsigned int entry;
1186 u32 status;
1187 int i;
1188
1189 /*
1190 * be cautious here, wrapping the queue has weird semantics
1191 * and we may not have enough slots even when it seems we do.
1192 */
1193 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194 netif_stop_queue(dev);
1195 return NETDEV_TX_BUSY;
1196 }
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201 return NETDEV_TX_OK;
1202 }
1203#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204
1205 entry = np->cur_tx % TX_RING_SIZE;
1206 for (i = 0; i < skb_num_frags(skb); i++) {
1207 int wrap_ring = 0;
1208 status = TxDescID;
1209
1210 if (i == 0) {
1211 np->tx_info[entry].skb = skb;
1212 status |= TxCRCEn;
1213 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214 status |= TxRingWrap;
1215 wrap_ring = 1;
1216 }
1217 if (np->reap_tx) {
1218 status |= TxDescIntr;
1219 np->reap_tx = 0;
1220 }
1221 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222 status |= TxCalTCP;
1223 dev->stats.tx_compressed++;
1224 }
1225 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227 np->tx_info[entry].mapping =
1228 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229 } else {
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1232 np->tx_info[entry].mapping =
1233 pci_map_single(np->pci_dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1236 PCI_DMA_TODEVICE);
1237 }
1238
1239 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240 np->tx_ring[entry].status = cpu_to_le32(status);
1241 if (debug > 3)
1242 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243 dev->name, np->cur_tx, np->dirty_tx,
1244 entry, status);
1245 if (wrap_ring) {
1246 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247 np->cur_tx += np->tx_info[entry].used_slots;
1248 entry = 0;
1249 } else {
1250 np->tx_info[entry].used_slots = 1;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry++;
1253 }
1254 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1255 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256 np->reap_tx = 1;
1257 }
1258
1259 /* Non-x86: explicitly flush descriptor cache lines here. */
1260 /* Ensure all descriptors are written back before the transmit is
1261 initiated. - Jes */
1262 wmb();
1263
1264 /* Update the producer index. */
1265 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267 /* 4 is arbitrary, but should be ok */
1268 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269 netif_stop_queue(dev);
1270
1271 return NETDEV_TX_OK;
1272}
1273
1274
1275/* The interrupt handler does all of the Rx thread work and cleans up
1276 after the Tx thread. */
1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1278{
1279 struct net_device *dev = dev_instance;
1280 struct netdev_private *np = netdev_priv(dev);
1281 void __iomem *ioaddr = np->base;
1282 int boguscnt = max_interrupt_work;
1283 int consumer;
1284 int tx_status;
1285 int handled = 0;
1286
1287 do {
1288 u32 intr_status = readl(ioaddr + IntrClear);
1289
1290 if (debug > 4)
1291 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292 dev->name, intr_status);
1293
1294 if (intr_status == 0 || intr_status == (u32) -1)
1295 break;
1296
1297 handled = 1;
1298
1299 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300 u32 enable;
1301
1302 if (likely(napi_schedule_prep(&np->napi))) {
1303 __napi_schedule(&np->napi);
1304 enable = readl(ioaddr + IntrEnable);
1305 enable &= ~(IntrRxDone | IntrRxEmpty);
1306 writel(enable, ioaddr + IntrEnable);
1307 /* flush PCI posting buffers */
1308 readl(ioaddr + IntrEnable);
1309 } else {
1310 /* Paranoia check */
1311 enable = readl(ioaddr + IntrEnable);
1312 if (enable & (IntrRxDone | IntrRxEmpty)) {
1313 printk(KERN_INFO
1314 "%s: interrupt while in poll!\n",
1315 dev->name);
1316 enable &= ~(IntrRxDone | IntrRxEmpty);
1317 writel(enable, ioaddr + IntrEnable);
1318 }
1319 }
1320 }
1321
1322 /* Scavenge the skbuff list based on the Tx-done queue.
1323 There are redundant checks here that may be cleaned up
1324 after the driver has proven to be reliable. */
1325 consumer = readl(ioaddr + TxConsumerIdx);
1326 if (debug > 3)
1327 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328 dev->name, consumer);
1329
1330 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331 if (debug > 3)
1332 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333 dev->name, np->dirty_tx, np->tx_done, tx_status);
1334 if ((tx_status & 0xe0000000) == 0xa0000000) {
1335 dev->stats.tx_packets++;
1336 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1337 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338 struct sk_buff *skb = np->tx_info[entry].skb;
1339 np->tx_info[entry].skb = NULL;
1340 pci_unmap_single(np->pci_dev,
1341 np->tx_info[entry].mapping,
1342 skb_first_frag_len(skb),
1343 PCI_DMA_TODEVICE);
1344 np->tx_info[entry].mapping = 0;
1345 np->dirty_tx += np->tx_info[entry].used_slots;
1346 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347 {
1348 int i;
1349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 pci_unmap_single(np->pci_dev,
1351 np->tx_info[entry].mapping,
1352 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353 PCI_DMA_TODEVICE);
1354 np->dirty_tx++;
1355 entry++;
1356 }
1357 }
1358
1359 dev_kfree_skb_irq(skb);
1360 }
1361 np->tx_done_q[np->tx_done].status = 0;
1362 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363 }
1364 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366 if (netif_queue_stopped(dev) &&
1367 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368 /* The ring is no longer full, wake the queue. */
1369 netif_wake_queue(dev);
1370 }
1371
1372 /* Stats overflow */
1373 if (intr_status & IntrStatsMax)
1374 get_stats(dev);
1375
1376 /* Media change interrupt. */
1377 if (intr_status & IntrLinkChange)
1378 netdev_media_change(dev);
1379
1380 /* Abnormal error summary/uncommon events handlers. */
1381 if (intr_status & IntrAbnormalSummary)
1382 netdev_error(dev, intr_status);
1383
1384 if (--boguscnt < 0) {
1385 if (debug > 1)
1386 printk(KERN_WARNING "%s: Too much work at interrupt, "
1387 "status=%#8.8x.\n",
1388 dev->name, intr_status);
1389 break;
1390 }
1391 } while (1);
1392
1393 if (debug > 4)
1394 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395 dev->name, (int) readl(ioaddr + IntrStatus));
1396 return IRQ_RETVAL(handled);
1397}
1398
1399
1400/*
1401 * This routine is logically part of the interrupt/poll handler, but separated
1402 * for clarity and better register allocation.
1403 */
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406 struct netdev_private *np = netdev_priv(dev);
1407 u32 desc_status;
1408 int retcode = 0;
1409
1410 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1411 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412 struct sk_buff *skb;
1413 u16 pkt_len;
1414 int entry;
1415 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419 if (!(desc_status & RxOK)) {
1420 /* There was an error. */
1421 if (debug > 2)
1422 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423 dev->stats.rx_errors++;
1424 if (desc_status & RxFIFOErr)
1425 dev->stats.rx_fifo_errors++;
1426 goto next_rx;
1427 }
1428
1429 if (*quota <= 0) { /* out of rx quota */
1430 retcode = 1;
1431 goto out;
1432 }
1433 (*quota)--;
1434
1435 pkt_len = desc_status; /* Implicitly Truncate */
1436 entry = (desc_status >> 16) & 0x7ff;
1437
1438 if (debug > 4)
1439 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440 /* Check if the packet is long enough to accept without copying
1441 to a minimally-sized skbuff. */
1442 if (pkt_len < rx_copybreak &&
1443 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444 skb_reserve(skb, 2); /* 16 byte align the IP header */
1445 pci_dma_sync_single_for_cpu(np->pci_dev,
1446 np->rx_info[entry].mapping,
1447 pkt_len, PCI_DMA_FROMDEVICE);
1448 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449 pci_dma_sync_single_for_device(np->pci_dev,
1450 np->rx_info[entry].mapping,
1451 pkt_len, PCI_DMA_FROMDEVICE);
1452 skb_put(skb, pkt_len);
1453 } else {
1454 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455 skb = np->rx_info[entry].skb;
1456 skb_put(skb, pkt_len);
1457 np->rx_info[entry].skb = NULL;
1458 np->rx_info[entry].mapping = 0;
1459 }
1460#ifndef final_version /* Remove after testing. */
1461 /* You will want this info for the initial debug. */
1462 if (debug > 5) {
1463 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1464 skb->data, skb->data + 6,
1465 skb->data[12], skb->data[13]);
1466 }
1467#endif
1468
1469 skb->protocol = eth_type_trans(skb, dev);
1470#ifdef VLAN_SUPPORT
1471 if (debug > 4)
1472 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1474 if (le16_to_cpu(desc->status2) & 0x0100) {
1475 skb->ip_summed = CHECKSUM_UNNECESSARY;
1476 dev->stats.rx_compressed++;
1477 }
1478 /*
1479 * This feature doesn't seem to be working, at least
1480 * with the two firmware versions I have. If the GFP sees
1481 * an IP fragment, it either ignores it completely, or reports
1482 * "bad checksum" on it.
1483 *
1484 * Maybe I missed something -- corrections are welcome.
1485 * Until then, the printk stays. :-) -Ion
1486 */
1487 else if (le16_to_cpu(desc->status2) & 0x0040) {
1488 skb->ip_summed = CHECKSUM_COMPLETE;
1489 skb->csum = le16_to_cpu(desc->csum);
1490 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491 }
1492#ifdef VLAN_SUPPORT
1493 if (le16_to_cpu(desc->status2) & 0x0200) {
1494 u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496 if (debug > 4) {
1497 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1498 vlid);
1499 }
1500 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501 }
1502#endif /* VLAN_SUPPORT */
1503 netif_receive_skb(skb);
1504 dev->stats.rx_packets++;
1505
1506 next_rx:
1507 np->cur_rx++;
1508 desc->status = 0;
1509 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510 }
1511
1512 if (*quota == 0) { /* out of rx quota */
1513 retcode = 1;
1514 goto out;
1515 }
1516 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519 refill_rx_ring(dev);
1520 if (debug > 5)
1521 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522 retcode, np->rx_done, desc_status);
1523 return retcode;
1524}
1525
1526static int netdev_poll(struct napi_struct *napi, int budget)
1527{
1528 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529 struct net_device *dev = np->dev;
1530 u32 intr_status;
1531 void __iomem *ioaddr = np->base;
1532 int quota = budget;
1533
1534 do {
1535 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
1537 if (__netdev_rx(dev, "a))
1538 goto out;
1539
1540 intr_status = readl(ioaddr + IntrStatus);
1541 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
1543 napi_complete(napi);
1544 intr_status = readl(ioaddr + IntrEnable);
1545 intr_status |= IntrRxDone | IntrRxEmpty;
1546 writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549 if (debug > 5)
1550 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1551 budget - quota);
1552
1553 /* Restart Rx engine if stopped. */
1554 return budget - quota;
1555}
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559 struct netdev_private *np = netdev_priv(dev);
1560 struct sk_buff *skb;
1561 int entry = -1;
1562
1563 /* Refill the Rx ring buffers. */
1564 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565 entry = np->dirty_rx % RX_RING_SIZE;
1566 if (np->rx_info[entry].skb == NULL) {
1567 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568 np->rx_info[entry].skb = skb;
1569 if (skb == NULL)
1570 break; /* Better luck next round. */
1571 np->rx_info[entry].mapping =
1572 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1573 np->rx_ring[entry].rxaddr =
1574 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575 }
1576 if (entry == RX_RING_SIZE - 1)
1577 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578 }
1579 if (entry >= 0)
1580 writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586 struct netdev_private *np = netdev_priv(dev);
1587 void __iomem *ioaddr = np->base;
1588 u16 reg0, reg1, reg4, reg5;
1589 u32 new_tx_mode;
1590 u32 new_intr_timer_ctrl;
1591
1592 /* reset status first */
1593 mdio_read(dev, np->phys[0], MII_BMCR);
1594 mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599 if (reg1 & BMSR_LSTATUS) {
1600 /* link is up */
1601 if (reg0 & BMCR_ANENABLE) {
1602 /* autonegotiation is enabled */
1603 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606 np->speed100 = 1;
1607 np->mii_if.full_duplex = 1;
1608 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609 np->speed100 = 1;
1610 np->mii_if.full_duplex = 0;
1611 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612 np->speed100 = 0;
1613 np->mii_if.full_duplex = 1;
1614 } else {
1615 np->speed100 = 0;
1616 np->mii_if.full_duplex = 0;
1617 }
1618 } else {
1619 /* autonegotiation is disabled */
1620 if (reg0 & BMCR_SPEED100)
1621 np->speed100 = 1;
1622 else
1623 np->speed100 = 0;
1624 if (reg0 & BMCR_FULLDPLX)
1625 np->mii_if.full_duplex = 1;
1626 else
1627 np->mii_if.full_duplex = 0;
1628 }
1629 netif_carrier_on(dev);
1630 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631 dev->name,
1632 np->speed100 ? "100" : "10",
1633 np->mii_if.full_duplex ? "full" : "half");
1634
1635 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1636 if (np->mii_if.full_duplex)
1637 new_tx_mode |= FullDuplex;
1638 if (np->tx_mode != new_tx_mode) {
1639 np->tx_mode = new_tx_mode;
1640 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641 udelay(1000);
1642 writel(np->tx_mode, ioaddr + TxMode);
1643 }
1644
1645 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646 if (np->speed100)
1647 new_intr_timer_ctrl |= Timer10X;
1648 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649 np->intr_timer_ctrl = new_intr_timer_ctrl;
1650 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651 }
1652 } else {
1653 netif_carrier_off(dev);
1654 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655 }
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661 struct netdev_private *np = netdev_priv(dev);
1662
1663 /* Came close to underrunning the Tx FIFO, increase threshold. */
1664 if (intr_status & IntrTxDataLow) {
1665 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666 writel(++np->tx_threshold, np->base + TxThreshold);
1667 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668 dev->name, np->tx_threshold * 16);
1669 } else
1670 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671 }
1672 if (intr_status & IntrRxGFPDead) {
1673 dev->stats.rx_fifo_errors++;
1674 dev->stats.rx_errors++;
1675 }
1676 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677 dev->stats.tx_fifo_errors++;
1678 dev->stats.tx_errors++;
1679 }
1680 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682 dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689 void __iomem *ioaddr = np->base;
1690
1691 /* This adapter architecture needs no SMP locks. */
1692 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695 dev->stats.tx_aborted_errors =
1696 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698 dev->stats.collisions =
1699 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701 /* The chip only need report frame silently dropped. */
1702 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703 writew(0, ioaddr + RxDMAStatus);
1704 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708
1709 return &dev->stats;
1710}
1711
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715 u32 ret = VlanMode;
1716 u16 vid;
1717 void __iomem *filter_addr = np->base + HashTable + 8;
1718 int vlan_count = 0;
1719
1720 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721 if (vlan_count == 32)
1722 break;
1723 writew(vid, filter_addr);
1724 filter_addr += 16;
1725 vlan_count++;
1726 }
1727 if (vlan_count == 32) {
1728 ret |= PerfectFilterVlan;
1729 while (vlan_count < 32) {
1730 writew(0, filter_addr);
1731 filter_addr += 16;
1732 vlan_count++;
1733 }
1734 }
1735 return ret;
1736}
1737#endif /* VLAN_SUPPORT */
1738
1739static void set_rx_mode(struct net_device *dev)
1740{
1741 struct netdev_private *np = netdev_priv(dev);
1742 void __iomem *ioaddr = np->base;
1743 u32 rx_mode = MinVLANPrio;
1744 struct netdev_hw_addr *ha;
1745 int i;
1746
1747#ifdef VLAN_SUPPORT
1748 rx_mode |= set_vlan_mode(np);
1749#endif /* VLAN_SUPPORT */
1750
1751 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1752 rx_mode |= AcceptAll;
1753 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754 (dev->flags & IFF_ALLMULTI)) {
1755 /* Too many to match, or accept all multicasts. */
1756 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757 } else if (netdev_mc_count(dev) <= 14) {
1758 /* Use the 16 element perfect filter, skip first two entries. */
1759 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760 __be16 *eaddrs;
1761 netdev_for_each_mc_addr(ha, dev) {
1762 eaddrs = (__be16 *) ha->addr;
1763 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766 }
1767 eaddrs = (__be16 *)dev->dev_addr;
1768 i = netdev_mc_count(dev) + 2;
1769 while (i++ < 16) {
1770 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773 }
1774 rx_mode |= AcceptBroadcast|PerfectFilter;
1775 } else {
1776 /* Must use a multicast hash table. */
1777 void __iomem *filter_addr;
1778 __be16 *eaddrs;
1779 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1780
1781 memset(mc_filter, 0, sizeof(mc_filter));
1782 netdev_for_each_mc_addr(ha, dev) {
1783 /* The chip uses the upper 9 CRC bits
1784 as index into the hash table */
1785 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787
1788 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789 }
1790 /* Clear the perfect filter list, skip first two entries. */
1791 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 eaddrs = (__be16 *)dev->dev_addr;
1793 for (i = 2; i < 16; i++) {
1794 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 }
1798 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799 writew(mc_filter[i], filter_addr);
1800 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801 }
1802 writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807 if (!netif_running(dev))
1808 return -EINVAL;
1809 return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814 struct netdev_private *np = netdev_priv(dev);
1815 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821{
1822 struct netdev_private *np = netdev_priv(dev);
1823 spin_lock_irq(&np->lock);
1824 mii_ethtool_gset(&np->mii_if, ecmd);
1825 spin_unlock_irq(&np->lock);
1826 return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830{
1831 struct netdev_private *np = netdev_priv(dev);
1832 int res;
1833 spin_lock_irq(&np->lock);
1834 res = mii_ethtool_sset(&np->mii_if, ecmd);
1835 spin_unlock_irq(&np->lock);
1836 check_duplex(dev);
1837 return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842 struct netdev_private *np = netdev_priv(dev);
1843 return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848 struct netdev_private *np = netdev_priv(dev);
1849 return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854 return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859 debug = val;
1860}
1861
1862static const struct ethtool_ops ethtool_ops = {
1863 .begin = check_if_running,
1864 .get_drvinfo = get_drvinfo,
1865 .get_settings = get_settings,
1866 .set_settings = set_settings,
1867 .nway_reset = nway_reset,
1868 .get_link = get_link,
1869 .get_msglevel = get_msglevel,
1870 .set_msglevel = set_msglevel,
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 struct mii_ioctl_data *data = if_mii(rq);
1877 int rc;
1878
1879 if (!netif_running(dev))
1880 return -EINVAL;
1881
1882 spin_lock_irq(&np->lock);
1883 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884 spin_unlock_irq(&np->lock);
1885
1886 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887 check_duplex(dev);
1888
1889 return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894 struct netdev_private *np = netdev_priv(dev);
1895 void __iomem *ioaddr = np->base;
1896 int i;
1897
1898 netif_stop_queue(dev);
1899
1900 napi_disable(&np->napi);
1901
1902 if (debug > 1) {
1903 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904 dev->name, (int) readl(ioaddr + IntrStatus));
1905 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906 dev->name, np->cur_tx, np->dirty_tx,
1907 np->cur_rx, np->dirty_rx);
1908 }
1909
1910 /* Disable interrupts by clearing the interrupt mask. */
1911 writel(0, ioaddr + IntrEnable);
1912
1913 /* Stop the chip's Tx and Rx processes. */
1914 writel(0, ioaddr + GenCtrl);
1915 readl(ioaddr + GenCtrl);
1916
1917 if (debug > 5) {
1918 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1919 (long long) np->tx_ring_dma);
1920 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922 i, le32_to_cpu(np->tx_ring[i].status),
1923 (long long) dma_to_cpu(np->tx_ring[i].addr),
1924 le32_to_cpu(np->tx_done_q[i].status));
1925 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1926 (long long) np->rx_ring_dma, np->rx_done_q);
1927 if (np->rx_done_q)
1928 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931 }
1932 }
1933
1934 free_irq(np->pci_dev->irq, dev);
1935
1936 /* Free all the skbuffs in the Rx queue. */
1937 for (i = 0; i < RX_RING_SIZE; i++) {
1938 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939 if (np->rx_info[i].skb != NULL) {
1940 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941 dev_kfree_skb(np->rx_info[i].skb);
1942 }
1943 np->rx_info[i].skb = NULL;
1944 np->rx_info[i].mapping = 0;
1945 }
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 struct sk_buff *skb = np->tx_info[i].skb;
1948 if (skb == NULL)
1949 continue;
1950 pci_unmap_single(np->pci_dev,
1951 np->tx_info[i].mapping,
1952 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953 np->tx_info[i].mapping = 0;
1954 dev_kfree_skb(skb);
1955 np->tx_info[i].skb = NULL;
1956 }
1957
1958 return 0;
1959}
1960
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964 struct net_device *dev = pci_get_drvdata(pdev);
1965
1966 if (netif_running(dev)) {
1967 netif_device_detach(dev);
1968 netdev_close(dev);
1969 }
1970
1971 pci_save_state(pdev);
1972 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974 return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979 struct net_device *dev = pci_get_drvdata(pdev);
1980
1981 pci_set_power_state(pdev, PCI_D0);
1982 pci_restore_state(pdev);
1983
1984 if (netif_running(dev)) {
1985 netdev_open(dev);
1986 netif_device_attach(dev);
1987 }
1988
1989 return 0;
1990}
1991#endif /* CONFIG_PM */
1992
1993
1994static void starfire_remove_one(struct pci_dev *pdev)
1995{
1996 struct net_device *dev = pci_get_drvdata(pdev);
1997 struct netdev_private *np = netdev_priv(dev);
1998
1999 BUG_ON(!dev);
2000
2001 unregister_netdev(dev);
2002
2003 if (np->queue_mem)
2004 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005
2006
2007 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2008 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2009 pci_disable_device(pdev);
2010
2011 iounmap(np->base);
2012 pci_release_regions(pdev);
2013
2014 free_netdev(dev); /* Will also free np!! */
2015}
2016
2017
2018static struct pci_driver starfire_driver = {
2019 .name = DRV_NAME,
2020 .probe = starfire_init_one,
2021 .remove = starfire_remove_one,
2022#ifdef CONFIG_PM
2023 .suspend = starfire_suspend,
2024 .resume = starfire_resume,
2025#endif /* CONFIG_PM */
2026 .id_table = starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034 printk(version);
2035
2036 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041 return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047 pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 * c-basic-offset: 8
2058 * tab-width: 8
2059 * End:
2060 */
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME "starfire"
30
31#include <linux/interrupt.h>
32#include <linux/module.h>
33#include <linux/kernel.h>
34#include <linux/pci.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if_vlan.h>
43#include <linux/mm.h>
44#include <linux/firmware.h>
45#include <asm/processor.h> /* Processor type for cache alignment. */
46#include <linux/uaccess.h>
47#include <asm/io.h>
48
49/*
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
52 */
53#define HAS_BROKEN_FIRMWARE
54
55/*
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
57 */
58#ifdef HAS_BROKEN_FIRMWARE
59#define PADDING_MASK 3
60#endif
61
62/*
63 * Define this if using the driver with the zero-copy patch
64 */
65#define ZEROCOPY
66
67#if IS_ENABLED(CONFIG_VLAN_8021Q)
68#define VLAN_SUPPORT
69#endif
70
71/* The user-configurable values.
72 These may be modified when a driver module is loaded.*/
73
74/* Used for tuning interrupt latency vs. overhead. */
75static int intr_latency;
76static int small_frames;
77
78static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
79static int max_interrupt_work = 20;
80static int mtu;
81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82 The Starfire has a 512 element hash table based on the Ethernet CRC. */
83static const int multicast_filter_limit = 512;
84/* Whether to do TCP/UDP checksums in hardware */
85static int enable_hw_cksum = 1;
86
87#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88/*
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
91 *
92 * NOTE:
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
96 * 23/10/2000 - Jes
97 *
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
100 * penalty. -Ion
101 */
102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103static int rx_copybreak = PKT_BUF_SZ;
104#else
105static int rx_copybreak /* = 0 */;
106#endif
107
108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109#ifdef __sparc__
110#define DMA_BURST_SIZE 64
111#else
112#define DMA_BURST_SIZE 128
113#endif
114
115/* Operational parameters that are set at compile time. */
116
117/* The "native" ring sizes are either 256 or 2048.
118 However in some modes a descriptor may be marked to wrap the ring earlier.
119*/
120#define RX_RING_SIZE 256
121#define TX_RING_SIZE 32
122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123#define DONE_Q_SIZE 1024
124/* All queues must be aligned on a 256-byte boundary */
125#define QUEUE_ALIGN 256
126
127#if RX_RING_SIZE > 256
128#define RX_Q_ENTRIES Rx2048QEntries
129#else
130#define RX_Q_ENTRIES Rx256QEntries
131#endif
132
133/* Operational parameters that usually are not changed. */
134/* Time in jiffies before concluding the transmitter is hung. */
135#define TX_TIMEOUT (2 * HZ)
136
137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138/* 64-bit dma_addr_t */
139#define ADDR_64BITS /* This chip uses 64 bit addresses. */
140#define netdrv_addr_t __le64
141#define cpu_to_dma(x) cpu_to_le64(x)
142#define dma_to_cpu(x) le64_to_cpu(x)
143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
148#else /* 32-bit dma_addr_t */
149#define netdrv_addr_t __le32
150#define cpu_to_dma(x) cpu_to_le32(x)
151#define dma_to_cpu(x) le32_to_cpu(x)
152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
157#endif
158
159#define skb_first_frag_len(skb) skb_headlen(skb)
160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161
162/* Firmware names */
163#define FIRMWARE_RX "adaptec/starfire_rx.bin"
164#define FIRMWARE_TX "adaptec/starfire_tx.bin"
165
166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168MODULE_LICENSE("GPL");
169MODULE_FIRMWARE(FIRMWARE_RX);
170MODULE_FIRMWARE(FIRMWARE_TX);
171
172module_param(max_interrupt_work, int, 0);
173module_param(mtu, int, 0);
174module_param(debug, int, 0);
175module_param(rx_copybreak, int, 0);
176module_param(intr_latency, int, 0);
177module_param(small_frames, int, 0);
178module_param(enable_hw_cksum, int, 0);
179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180MODULE_PARM_DESC(mtu, "MTU (all boards)");
181MODULE_PARM_DESC(debug, "Debug level (0-6)");
182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186
187/*
188 Theory of Operation
189
190I. Board Compatibility
191
192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193
194II. Board-specific settings
195
196III. Driver operation
197
198IIIa. Ring buffers
199
200The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
201ring sizes are set fixed by the hardware, but may optionally be wrapped
202earlier by the END bit in the descriptor.
203This driver uses that hardware queue size for the Rx ring, where a large
204number of entries has no ill effect beyond increases the potential backlog.
205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206disables the queue layer priority ordering and we have no mechanism to
207utilize the hardware two-level priority queue. When modifying the
208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209levels.
210
211IIIb/c. Transmit/Receive Structure
212
213See the Adaptec manual for the many possible structures, and options for
214each structure. There are far too many to document all of them here.
215
216For transmit this driver uses type 0/1 transmit descriptors (depending
217on the 32/64 bitness of the architecture), and relies on automatic
218minimum-length padding. It does not use the completion queue
219consumer index, but instead checks for non-zero status entries.
220
221For receive this driver uses type 2/3 receive descriptors. The driver
222allocates full frame size skbuffs for the Rx ring buffers, so all frames
223should fit in a single descriptor. The driver does not use the completion
224queue consumer index, but instead checks for non-zero status entries.
225
226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227is allocated and the frame is copied to the new skbuff. When the incoming
228frame is larger, the skbuff is passed directly up the protocol stack.
229Buffers consumed this way are replaced by newly allocated skbuffs in a later
230phase of receive.
231
232A notable aspect of operation is that unaligned buffers are not permitted by
233the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
234isn't longword aligned, which may cause problems on some machine
235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236the frame into a new skbuff unconditionally. Copied frames are put into the
237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238
239IIId. Synchronization
240
241The driver runs as two independent, single-threaded flows of control. One
242is the send-packet routine, which enforces single-threaded use by the
243dev->tbusy flag. The other thread is the interrupt handler, which is single
244threaded by the hardware and interrupt handling software.
245
246The send packet thread has partial control over the Tx ring and the netif_queue
247status. If the number of free Tx slots in the ring falls below a certain number
248(currently hardcoded to 4), it signals the upper layer to stop the queue.
249
250The interrupt handler has exclusive control over the Rx ring and records stats
251from the Tx ring. After reaping the stats, it marks the Tx queue entry as
252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253number of free Tx slow is above the threshold, it signals the upper layer to
254restart the queue.
255
256IV. Notes
257
258IVb. References
259
260The Adaptec Starfire manuals, available only from Adaptec.
261http://www.scyld.com/expert/100mbps.html
262http://www.scyld.com/expert/NWay.html
263
264IVc. Errata
265
266- StopOnPerr is broken, don't enable
267- Hardware ethernet padding exposes random data, perform software padding
268 instead (unverified -- works correctly for all the hardware I have)
269
270*/
271
272
273
274enum chip_capability_flags {CanHaveMII=1, };
275
276enum chipset {
277 CH_6915 = 0,
278};
279
280static const struct pci_device_id starfire_pci_tbl[] = {
281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 { 0, }
283};
284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285
286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287static const struct chip_info {
288 const char *name;
289 int drv_flags;
290} netdrv_tbl[] = {
291 { "Adaptec Starfire 6915", CanHaveMII },
292};
293
294
295/* Offsets to the device registers.
296 Unlike software-only systems, device drivers interact with complex hardware.
297 It's not useful to define symbolic names for every register bit in the
298 device. The name can only partially document the semantics and make
299 the driver longer and more difficult to read.
300 In general, only the important configuration values or bits changed
301 multiple times should be defined symbolically.
302*/
303enum register_offsets {
304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 TxThreshold=0x500B0,
312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 TxMode=0x55000, VlanType=0x55064,
318 PerfFilterTable=0x56000, HashTable=0x56100,
319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
320};
321
322/*
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
326 */
327enum intr_status_bits {
328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 IntrTxGfp=0x02, IntrPCIPad=0x01,
342 /* not quite bits */
343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346};
347
348/* Bits in the RxFilterMode register. */
349enum rx_mode_bits {
350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 WakeupOnGFP=0x0800,
354};
355
356/* Bits in the TxMode register */
357enum tx_mode_bits {
358 MiiSoftReset=0x8000, MIILoopback=0x4000,
359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361};
362
363/* Bits in the TxDescCtrl register. */
364enum tx_ctrl_bits {
365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 TxDescSpace128=0x30, TxDescSpace256=0x40,
367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 TxDescType3=0x03, TxDescType4=0x04,
369 TxNoDMACompletion=0x08,
370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 TxDMABurstSizeShift=8,
373};
374
375/* Bits in the RxDescQCtrl register. */
376enum rx_ctrl_bits {
377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 Rx2048QEntries=0x4000, Rx256QEntries=0,
380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 RxDescSpace4=0x000, RxDescSpace8=0x100,
383 RxDescSpace16=0x200, RxDescSpace32=0x300,
384 RxDescSpace64=0x400, RxDescSpace128=0x500,
385 RxConsumerWrEn=0x80,
386};
387
388/* Bits in the RxDMACtrl register. */
389enum rx_dmactrl_bits {
390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 RxChecksumRejectTCPOnly=0x01000000,
395 RxCompletionQ2Enable=0x800000,
396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 RxDMAQ2NonIP=0x400000,
399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 RxBurstSizeShift=0,
402};
403
404/* Bits in the RxCompletionAddr register */
405enum rx_compl_bits {
406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 RxComplProducerWrEn=0x40,
408 RxComplType0=0x00, RxComplType1=0x10,
409 RxComplType2=0x20, RxComplType3=0x30,
410 RxComplThreshShift=0,
411};
412
413/* Bits in the TxCompletionAddr register */
414enum tx_compl_bits {
415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 TxComplProducerWrEn=0x40,
417 TxComplIntrStatus=0x20,
418 CommonQueueMode=0x10,
419 TxComplThreshShift=0,
420};
421
422/* Bits in the GenCtrl register */
423enum gen_ctrl_bits {
424 RxEnable=0x05, TxEnable=0x0a,
425 RxGFPEnable=0x10, TxGFPEnable=0x20,
426};
427
428/* Bits in the IntrTimerCtrl register */
429enum intr_ctrl_bits {
430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 IntrLatencyMask=0x1f,
433};
434
435/* The Rx and Tx buffer descriptors. */
436struct starfire_rx_desc {
437 netdrv_addr_t rxaddr;
438};
439enum rx_desc_bits {
440 RxDescValid=1, RxDescEndRing=2,
441};
442
443/* Completion queue entry. */
444struct short_rx_done_desc {
445 __le32 status; /* Low 16 bits is length. */
446};
447struct basic_rx_done_desc {
448 __le32 status; /* Low 16 bits is length. */
449 __le16 vlanid;
450 __le16 status2;
451};
452struct csum_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454 __le16 csum; /* Partial checksum */
455 __le16 status2;
456};
457struct full_rx_done_desc {
458 __le32 status; /* Low 16 bits is length. */
459 __le16 status3;
460 __le16 status2;
461 __le16 vlanid;
462 __le16 csum; /* partial checksum */
463 __le32 timestamp;
464};
465/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
466#ifdef VLAN_SUPPORT
467typedef struct full_rx_done_desc rx_done_desc;
468#define RxComplType RxComplType3
469#else /* not VLAN_SUPPORT */
470typedef struct csum_rx_done_desc rx_done_desc;
471#define RxComplType RxComplType2
472#endif /* not VLAN_SUPPORT */
473
474enum rx_done_bits {
475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
476};
477
478/* Type 1 Tx descriptor. */
479struct starfire_tx_desc_1 {
480 __le32 status; /* Upper bits are status, lower 16 length. */
481 __le32 addr;
482};
483
484/* Type 2 Tx descriptor. */
485struct starfire_tx_desc_2 {
486 __le32 status; /* Upper bits are status, lower 16 length. */
487 __le32 reserved;
488 __le64 addr;
489};
490
491#ifdef ADDR_64BITS
492typedef struct starfire_tx_desc_2 starfire_tx_desc;
493#define TX_DESC_TYPE TxDescType2
494#else /* not ADDR_64BITS */
495typedef struct starfire_tx_desc_1 starfire_tx_desc;
496#define TX_DESC_TYPE TxDescType1
497#endif /* not ADDR_64BITS */
498#define TX_DESC_SPACING TxDescSpaceUnlim
499
500enum tx_desc_bits {
501 TxDescID=0xB0000000,
502 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
504};
505struct tx_done_desc {
506 __le32 status; /* timestamp, index. */
507#if 0
508 __le32 intrstatus; /* interrupt status */
509#endif
510};
511
512struct rx_ring_info {
513 struct sk_buff *skb;
514 dma_addr_t mapping;
515};
516struct tx_ring_info {
517 struct sk_buff *skb;
518 dma_addr_t mapping;
519 unsigned int used_slots;
520};
521
522#define PHY_CNT 2
523struct netdev_private {
524 /* Descriptor rings first for alignment. */
525 struct starfire_rx_desc *rx_ring;
526 starfire_tx_desc *tx_ring;
527 dma_addr_t rx_ring_dma;
528 dma_addr_t tx_ring_dma;
529 /* The addresses of rx/tx-in-place skbuffs. */
530 struct rx_ring_info rx_info[RX_RING_SIZE];
531 struct tx_ring_info tx_info[TX_RING_SIZE];
532 /* Pointers to completion queues (full pages). */
533 rx_done_desc *rx_done_q;
534 dma_addr_t rx_done_q_dma;
535 unsigned int rx_done;
536 struct tx_done_desc *tx_done_q;
537 dma_addr_t tx_done_q_dma;
538 unsigned int tx_done;
539 struct napi_struct napi;
540 struct net_device *dev;
541 struct pci_dev *pci_dev;
542#ifdef VLAN_SUPPORT
543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
544#endif
545 void *queue_mem;
546 dma_addr_t queue_mem_dma;
547 size_t queue_mem_size;
548
549 /* Frequently used values: keep some adjacent for cache effect. */
550 spinlock_t lock;
551 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
552 unsigned int cur_tx, dirty_tx, reap_tx;
553 unsigned int rx_buf_sz; /* Based on MTU+slack. */
554 /* These values keep track of the transceiver/media in use. */
555 int speed100; /* Set if speed == 100MBit. */
556 u32 tx_mode;
557 u32 intr_timer_ctrl;
558 u8 tx_threshold;
559 /* MII transceiver section. */
560 struct mii_if_info mii_if; /* MII lib hooks/info */
561 int phy_cnt; /* MII device addresses. */
562 unsigned char phys[PHY_CNT]; /* MII device addresses. */
563 void __iomem *base;
564};
565
566
567static int mdio_read(struct net_device *dev, int phy_id, int location);
568static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
569static int netdev_open(struct net_device *dev);
570static void check_duplex(struct net_device *dev);
571static void tx_timeout(struct net_device *dev, unsigned int txqueue);
572static void init_ring(struct net_device *dev);
573static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574static irqreturn_t intr_handler(int irq, void *dev_instance);
575static void netdev_error(struct net_device *dev, int intr_status);
576static int __netdev_rx(struct net_device *dev, int *quota);
577static int netdev_poll(struct napi_struct *napi, int budget);
578static void refill_rx_ring(struct net_device *dev);
579static void netdev_error(struct net_device *dev, int intr_status);
580static void set_rx_mode(struct net_device *dev);
581static struct net_device_stats *get_stats(struct net_device *dev);
582static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583static int netdev_close(struct net_device *dev);
584static void netdev_media_change(struct net_device *dev);
585static const struct ethtool_ops ethtool_ops;
586
587
588#ifdef VLAN_SUPPORT
589static int netdev_vlan_rx_add_vid(struct net_device *dev,
590 __be16 proto, u16 vid)
591{
592 struct netdev_private *np = netdev_priv(dev);
593
594 spin_lock(&np->lock);
595 if (debug > 1)
596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597 set_bit(vid, np->active_vlans);
598 set_rx_mode(dev);
599 spin_unlock(&np->lock);
600
601 return 0;
602}
603
604static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605 __be16 proto, u16 vid)
606{
607 struct netdev_private *np = netdev_priv(dev);
608
609 spin_lock(&np->lock);
610 if (debug > 1)
611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612 clear_bit(vid, np->active_vlans);
613 set_rx_mode(dev);
614 spin_unlock(&np->lock);
615
616 return 0;
617}
618#endif /* VLAN_SUPPORT */
619
620
621static const struct net_device_ops netdev_ops = {
622 .ndo_open = netdev_open,
623 .ndo_stop = netdev_close,
624 .ndo_start_xmit = start_tx,
625 .ndo_tx_timeout = tx_timeout,
626 .ndo_get_stats = get_stats,
627 .ndo_set_rx_mode = set_rx_mode,
628 .ndo_eth_ioctl = netdev_ioctl,
629 .ndo_set_mac_address = eth_mac_addr,
630 .ndo_validate_addr = eth_validate_addr,
631#ifdef VLAN_SUPPORT
632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
634#endif
635};
636
637static int starfire_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
639{
640 struct device *d = &pdev->dev;
641 struct netdev_private *np;
642 int i, irq, chip_idx = ent->driver_data;
643 struct net_device *dev;
644 u8 addr[ETH_ALEN];
645 long ioaddr;
646 void __iomem *base;
647 int drv_flags, io_size;
648 int boguscnt;
649
650 if (pci_enable_device (pdev))
651 return -EIO;
652
653 ioaddr = pci_resource_start(pdev, 0);
654 io_size = pci_resource_len(pdev, 0);
655 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
656 dev_err(d, "no PCI MEM resources, aborting\n");
657 return -ENODEV;
658 }
659
660 dev = alloc_etherdev(sizeof(*np));
661 if (!dev)
662 return -ENOMEM;
663
664 SET_NETDEV_DEV(dev, &pdev->dev);
665
666 irq = pdev->irq;
667
668 if (pci_request_regions (pdev, DRV_NAME)) {
669 dev_err(d, "cannot reserve PCI resources, aborting\n");
670 goto err_out_free_netdev;
671 }
672
673 base = ioremap(ioaddr, io_size);
674 if (!base) {
675 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
676 io_size, ioaddr);
677 goto err_out_free_res;
678 }
679
680 pci_set_master(pdev);
681
682 /* enable MWI -- it vastly improves Rx performance on sparc64 */
683 pci_try_set_mwi(pdev);
684
685#ifdef ZEROCOPY
686 /* Starfire can do TCP/UDP checksumming */
687 if (enable_hw_cksum)
688 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
689#endif /* ZEROCOPY */
690
691#ifdef VLAN_SUPPORT
692 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
693#endif /* VLAN_RX_KILL_VID */
694#ifdef ADDR_64BITS
695 dev->features |= NETIF_F_HIGHDMA;
696#endif /* ADDR_64BITS */
697
698 /* Serial EEPROM reads are hidden by the hardware. */
699 for (i = 0; i < 6; i++)
700 addr[i] = readb(base + EEPROMCtrl + 20 - i);
701 eth_hw_addr_set(dev, addr);
702
703#if ! defined(final_version) /* Dump the EEPROM contents during development. */
704 if (debug > 4)
705 for (i = 0; i < 0x20; i++)
706 printk("%2.2x%s",
707 (unsigned int)readb(base + EEPROMCtrl + i),
708 i % 16 != 15 ? " " : "\n");
709#endif
710
711 /* Issue soft reset */
712 writel(MiiSoftReset, base + TxMode);
713 udelay(1000);
714 writel(0, base + TxMode);
715
716 /* Reset the chip to erase previous misconfiguration. */
717 writel(1, base + PCIDeviceConfig);
718 boguscnt = 1000;
719 while (--boguscnt > 0) {
720 udelay(10);
721 if ((readl(base + PCIDeviceConfig) & 1) == 0)
722 break;
723 }
724 if (boguscnt == 0)
725 printk("%s: chipset reset never completed!\n", dev->name);
726 /* wait a little longer */
727 udelay(1000);
728
729 np = netdev_priv(dev);
730 np->dev = dev;
731 np->base = base;
732 spin_lock_init(&np->lock);
733 pci_set_drvdata(pdev, dev);
734
735 np->pci_dev = pdev;
736
737 np->mii_if.dev = dev;
738 np->mii_if.mdio_read = mdio_read;
739 np->mii_if.mdio_write = mdio_write;
740 np->mii_if.phy_id_mask = 0x1f;
741 np->mii_if.reg_num_mask = 0x1f;
742
743 drv_flags = netdrv_tbl[chip_idx].drv_flags;
744
745 np->speed100 = 1;
746
747 /* timer resolution is 128 * 0.8us */
748 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
749 Timer10X | EnableIntrMasking;
750
751 if (small_frames > 0) {
752 np->intr_timer_ctrl |= SmallFrameBypass;
753 switch (small_frames) {
754 case 1 ... 64:
755 np->intr_timer_ctrl |= SmallFrame64;
756 break;
757 case 65 ... 128:
758 np->intr_timer_ctrl |= SmallFrame128;
759 break;
760 case 129 ... 256:
761 np->intr_timer_ctrl |= SmallFrame256;
762 break;
763 default:
764 np->intr_timer_ctrl |= SmallFrame512;
765 if (small_frames > 512)
766 printk("Adjusting small_frames down to 512\n");
767 break;
768 }
769 }
770
771 dev->netdev_ops = &netdev_ops;
772 dev->watchdog_timeo = TX_TIMEOUT;
773 dev->ethtool_ops = ðtool_ops;
774
775 netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
776
777 if (mtu)
778 dev->mtu = mtu;
779
780 if (register_netdev(dev))
781 goto err_out_cleardev;
782
783 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
784 dev->name, netdrv_tbl[chip_idx].name, base,
785 dev->dev_addr, irq);
786
787 if (drv_flags & CanHaveMII) {
788 int phy, phy_idx = 0;
789 int mii_status;
790 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
791 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
792 msleep(100);
793 boguscnt = 1000;
794 while (--boguscnt > 0)
795 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
796 break;
797 if (boguscnt == 0) {
798 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
799 continue;
800 }
801 mii_status = mdio_read(dev, phy, MII_BMSR);
802 if (mii_status != 0) {
803 np->phys[phy_idx++] = phy;
804 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
805 printk(KERN_INFO "%s: MII PHY found at address %d, status "
806 "%#4.4x advertising %#4.4x.\n",
807 dev->name, phy, mii_status, np->mii_if.advertising);
808 /* there can be only one PHY on-board */
809 break;
810 }
811 }
812 np->phy_cnt = phy_idx;
813 if (np->phy_cnt > 0)
814 np->mii_if.phy_id = np->phys[0];
815 else
816 memset(&np->mii_if, 0, sizeof(np->mii_if));
817 }
818
819 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
820 dev->name, enable_hw_cksum ? "enabled" : "disabled");
821 return 0;
822
823err_out_cleardev:
824 iounmap(base);
825err_out_free_res:
826 pci_release_regions (pdev);
827err_out_free_netdev:
828 free_netdev(dev);
829 return -ENODEV;
830}
831
832
833/* Read the MII Management Data I/O (MDIO) interfaces. */
834static int mdio_read(struct net_device *dev, int phy_id, int location)
835{
836 struct netdev_private *np = netdev_priv(dev);
837 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
838 int result, boguscnt=1000;
839 /* ??? Should we add a busy-wait here? */
840 do {
841 result = readl(mdio_addr);
842 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
843 if (boguscnt == 0)
844 return 0;
845 if ((result & 0xffff) == 0xffff)
846 return 0;
847 return result & 0xffff;
848}
849
850
851static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
852{
853 struct netdev_private *np = netdev_priv(dev);
854 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
855 writel(value, mdio_addr);
856 /* The busy-wait will occur before a read. */
857}
858
859
860static int netdev_open(struct net_device *dev)
861{
862 const struct firmware *fw_rx, *fw_tx;
863 const __be32 *fw_rx_data, *fw_tx_data;
864 struct netdev_private *np = netdev_priv(dev);
865 void __iomem *ioaddr = np->base;
866 const int irq = np->pci_dev->irq;
867 int i, retval;
868 size_t tx_size, rx_size;
869 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
870
871 /* Do we ever need to reset the chip??? */
872
873 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
874 if (retval)
875 return retval;
876
877 /* Disable the Rx and Tx, and reset the chip. */
878 writel(0, ioaddr + GenCtrl);
879 writel(1, ioaddr + PCIDeviceConfig);
880 if (debug > 1)
881 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
882 dev->name, irq);
883
884 /* Allocate the various queues. */
885 if (!np->queue_mem) {
886 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
888 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
889 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
890 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
891 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
892 np->queue_mem_size,
893 &np->queue_mem_dma, GFP_ATOMIC);
894 if (np->queue_mem == NULL) {
895 free_irq(irq, dev);
896 return -ENOMEM;
897 }
898
899 np->tx_done_q = np->queue_mem;
900 np->tx_done_q_dma = np->queue_mem_dma;
901 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
902 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
903 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
904 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
905 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
906 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
907 }
908
909 /* Start with no carrier, it gets adjusted later */
910 netif_carrier_off(dev);
911 init_ring(dev);
912 /* Set the size of the Rx buffers. */
913 writel((np->rx_buf_sz << RxBufferLenShift) |
914 (0 << RxMinDescrThreshShift) |
915 RxPrefetchMode | RxVariableQ |
916 RX_Q_ENTRIES |
917 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
918 RxDescSpace4,
919 ioaddr + RxDescQCtrl);
920
921 /* Set up the Rx DMA controller. */
922 writel(RxChecksumIgnore |
923 (0 << RxEarlyIntThreshShift) |
924 (6 << RxHighPrioThreshShift) |
925 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
926 ioaddr + RxDMACtrl);
927
928 /* Set Tx descriptor */
929 writel((2 << TxHiPriFIFOThreshShift) |
930 (0 << TxPadLenShift) |
931 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
932 TX_DESC_Q_ADDR_SIZE |
933 TX_DESC_SPACING | TX_DESC_TYPE,
934 ioaddr + TxDescCtrl);
935
936 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
937 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
938 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
939 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
940 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
941
942 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
943 writel(np->rx_done_q_dma |
944 RxComplType |
945 (0 << RxComplThreshShift),
946 ioaddr + RxCompletionAddr);
947
948 if (debug > 1)
949 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
950
951 /* Fill both the Tx SA register and the Rx perfect filter. */
952 for (i = 0; i < 6; i++)
953 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
954 /* The first entry is special because it bypasses the VLAN filter.
955 Don't use it. */
956 writew(0, ioaddr + PerfFilterTable);
957 writew(0, ioaddr + PerfFilterTable + 4);
958 writew(0, ioaddr + PerfFilterTable + 8);
959 for (i = 1; i < 16; i++) {
960 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
961 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
962 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
963 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
964 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
965 }
966
967 /* Initialize other registers. */
968 /* Configure the PCI bus bursts and FIFO thresholds. */
969 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
970 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
971 udelay(1000);
972 writel(np->tx_mode, ioaddr + TxMode);
973 np->tx_threshold = 4;
974 writel(np->tx_threshold, ioaddr + TxThreshold);
975
976 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
977
978 napi_enable(&np->napi);
979
980 netif_start_queue(dev);
981
982 if (debug > 1)
983 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
984 set_rx_mode(dev);
985
986 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
987 check_duplex(dev);
988
989 /* Enable GPIO interrupts on link change */
990 writel(0x0f00ff00, ioaddr + GPIOCtrl);
991
992 /* Set the interrupt mask */
993 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
994 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
995 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
996 ioaddr + IntrEnable);
997 /* Enable PCI interrupts. */
998 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
999 ioaddr + PCIDeviceConfig);
1000
1001#ifdef VLAN_SUPPORT
1002 /* Set VLAN type to 802.1q */
1003 writel(ETH_P_8021Q, ioaddr + VlanType);
1004#endif /* VLAN_SUPPORT */
1005
1006 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1007 if (retval) {
1008 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1009 FIRMWARE_RX);
1010 goto out_init;
1011 }
1012 if (fw_rx->size % 4) {
1013 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014 fw_rx->size, FIRMWARE_RX);
1015 retval = -EINVAL;
1016 goto out_rx;
1017 }
1018 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_TX);
1022 goto out_rx;
1023 }
1024 if (fw_tx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_tx->size, FIRMWARE_TX);
1027 retval = -EINVAL;
1028 goto out_tx;
1029 }
1030 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032 rx_size = fw_rx->size / 4;
1033 tx_size = fw_tx->size / 4;
1034
1035 /* Load Rx/Tx firmware into the frame processors */
1036 for (i = 0; i < rx_size; i++)
1037 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1038 for (i = 0; i < tx_size; i++)
1039 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1040 if (enable_hw_cksum)
1041 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1042 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1043 else
1044 /* Enable the Rx and Tx units only. */
1045 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1046
1047 if (debug > 1)
1048 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1049 dev->name);
1050
1051out_tx:
1052 release_firmware(fw_tx);
1053out_rx:
1054 release_firmware(fw_rx);
1055out_init:
1056 if (retval)
1057 netdev_close(dev);
1058 return retval;
1059}
1060
1061
1062static void check_duplex(struct net_device *dev)
1063{
1064 struct netdev_private *np = netdev_priv(dev);
1065 u16 reg0;
1066 int silly_count = 1000;
1067
1068 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1069 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1070 udelay(500);
1071 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1072 /* do nothing */;
1073 if (!silly_count) {
1074 printk("%s: MII reset failed!\n", dev->name);
1075 return;
1076 }
1077
1078 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1079
1080 if (!np->mii_if.force_media) {
1081 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1082 } else {
1083 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1084 if (np->speed100)
1085 reg0 |= BMCR_SPEED100;
1086 if (np->mii_if.full_duplex)
1087 reg0 |= BMCR_FULLDPLX;
1088 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1089 dev->name,
1090 np->speed100 ? "100" : "10",
1091 np->mii_if.full_duplex ? "full" : "half");
1092 }
1093 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1094}
1095
1096
1097static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1098{
1099 struct netdev_private *np = netdev_priv(dev);
1100 void __iomem *ioaddr = np->base;
1101 int old_debug;
1102
1103 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1105
1106 /* Perhaps we should reinitialize the hardware here. */
1107
1108 /*
1109 * Stop and restart the interface.
1110 * Cheat and increase the debug level temporarily.
1111 */
1112 old_debug = debug;
1113 debug = 2;
1114 netdev_close(dev);
1115 netdev_open(dev);
1116 debug = old_debug;
1117
1118 /* Trigger an immediate transmit demand. */
1119
1120 netif_trans_update(dev); /* prevent tx timeout */
1121 dev->stats.tx_errors++;
1122 netif_wake_queue(dev);
1123}
1124
1125
1126/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1127static void init_ring(struct net_device *dev)
1128{
1129 struct netdev_private *np = netdev_priv(dev);
1130 int i;
1131
1132 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1134
1135 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1136
1137 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1138 for (i = 0; i < RX_RING_SIZE; i++) {
1139 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1140 np->rx_info[i].skb = skb;
1141 if (skb == NULL)
1142 break;
1143 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1144 skb->data,
1145 np->rx_buf_sz,
1146 DMA_FROM_DEVICE);
1147 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1148 dev_kfree_skb(skb);
1149 np->rx_info[i].skb = NULL;
1150 break;
1151 }
1152 /* Grrr, we cannot offset to correctly align the IP header. */
1153 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1154 }
1155 writew(i - 1, np->base + RxDescQIdx);
1156 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1157
1158 /* Clear the remainder of the Rx buffer ring. */
1159 for ( ; i < RX_RING_SIZE; i++) {
1160 np->rx_ring[i].rxaddr = 0;
1161 np->rx_info[i].skb = NULL;
1162 np->rx_info[i].mapping = 0;
1163 }
1164 /* Mark the last entry as wrapping the ring. */
1165 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1166
1167 /* Clear the completion rings. */
1168 for (i = 0; i < DONE_Q_SIZE; i++) {
1169 np->rx_done_q[i].status = 0;
1170 np->tx_done_q[i].status = 0;
1171 }
1172
1173 for (i = 0; i < TX_RING_SIZE; i++)
1174 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175}
1176
1177
1178static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1179{
1180 struct netdev_private *np = netdev_priv(dev);
1181 unsigned int entry;
1182 unsigned int prev_tx;
1183 u32 status;
1184 int i, j;
1185
1186 /*
1187 * be cautious here, wrapping the queue has weird semantics
1188 * and we may not have enough slots even when it seems we do.
1189 */
1190 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191 netif_stop_queue(dev);
1192 return NETDEV_TX_BUSY;
1193 }
1194
1195#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198 return NETDEV_TX_OK;
1199 }
1200#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1201
1202 prev_tx = np->cur_tx;
1203 entry = np->cur_tx % TX_RING_SIZE;
1204 for (i = 0; i < skb_num_frags(skb); i++) {
1205 int wrap_ring = 0;
1206 status = TxDescID;
1207
1208 if (i == 0) {
1209 np->tx_info[entry].skb = skb;
1210 status |= TxCRCEn;
1211 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212 status |= TxRingWrap;
1213 wrap_ring = 1;
1214 }
1215 if (np->reap_tx) {
1216 status |= TxDescIntr;
1217 np->reap_tx = 0;
1218 }
1219 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1220 status |= TxCalTCP;
1221 dev->stats.tx_compressed++;
1222 }
1223 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1224
1225 np->tx_info[entry].mapping =
1226 dma_map_single(&np->pci_dev->dev, skb->data,
1227 skb_first_frag_len(skb),
1228 DMA_TO_DEVICE);
1229 } else {
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1232 np->tx_info[entry].mapping =
1233 dma_map_single(&np->pci_dev->dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1236 DMA_TO_DEVICE);
1237 }
1238 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1239 dev->stats.tx_dropped++;
1240 goto err_out;
1241 }
1242
1243 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244 np->tx_ring[entry].status = cpu_to_le32(status);
1245 if (debug > 3)
1246 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247 dev->name, np->cur_tx, np->dirty_tx,
1248 entry, status);
1249 if (wrap_ring) {
1250 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry = 0;
1253 } else {
1254 np->tx_info[entry].used_slots = 1;
1255 np->cur_tx += np->tx_info[entry].used_slots;
1256 entry++;
1257 }
1258 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1259 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1260 np->reap_tx = 1;
1261 }
1262
1263 /* Non-x86: explicitly flush descriptor cache lines here. */
1264 /* Ensure all descriptors are written back before the transmit is
1265 initiated. - Jes */
1266 wmb();
1267
1268 /* Update the producer index. */
1269 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1270
1271 /* 4 is arbitrary, but should be ok */
1272 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273 netif_stop_queue(dev);
1274
1275 return NETDEV_TX_OK;
1276
1277err_out:
1278 entry = prev_tx % TX_RING_SIZE;
1279 np->tx_info[entry].skb = NULL;
1280 if (i > 0) {
1281 dma_unmap_single(&np->pci_dev->dev,
1282 np->tx_info[entry].mapping,
1283 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284 np->tx_info[entry].mapping = 0;
1285 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286 for (j = 1; j < i; j++) {
1287 dma_unmap_single(&np->pci_dev->dev,
1288 np->tx_info[entry].mapping,
1289 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1290 DMA_TO_DEVICE);
1291 entry++;
1292 }
1293 }
1294 dev_kfree_skb_any(skb);
1295 np->cur_tx = prev_tx;
1296 return NETDEV_TX_OK;
1297}
1298
1299/* The interrupt handler does all of the Rx thread work and cleans up
1300 after the Tx thread. */
1301static irqreturn_t intr_handler(int irq, void *dev_instance)
1302{
1303 struct net_device *dev = dev_instance;
1304 struct netdev_private *np = netdev_priv(dev);
1305 void __iomem *ioaddr = np->base;
1306 int boguscnt = max_interrupt_work;
1307 int consumer;
1308 int tx_status;
1309 int handled = 0;
1310
1311 do {
1312 u32 intr_status = readl(ioaddr + IntrClear);
1313
1314 if (debug > 4)
1315 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316 dev->name, intr_status);
1317
1318 if (intr_status == 0 || intr_status == (u32) -1)
1319 break;
1320
1321 handled = 1;
1322
1323 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1324 u32 enable;
1325
1326 if (likely(napi_schedule_prep(&np->napi))) {
1327 __napi_schedule(&np->napi);
1328 enable = readl(ioaddr + IntrEnable);
1329 enable &= ~(IntrRxDone | IntrRxEmpty);
1330 writel(enable, ioaddr + IntrEnable);
1331 /* flush PCI posting buffers */
1332 readl(ioaddr + IntrEnable);
1333 } else {
1334 /* Paranoia check */
1335 enable = readl(ioaddr + IntrEnable);
1336 if (enable & (IntrRxDone | IntrRxEmpty)) {
1337 printk(KERN_INFO
1338 "%s: interrupt while in poll!\n",
1339 dev->name);
1340 enable &= ~(IntrRxDone | IntrRxEmpty);
1341 writel(enable, ioaddr + IntrEnable);
1342 }
1343 }
1344 }
1345
1346 /* Scavenge the skbuff list based on the Tx-done queue.
1347 There are redundant checks here that may be cleaned up
1348 after the driver has proven to be reliable. */
1349 consumer = readl(ioaddr + TxConsumerIdx);
1350 if (debug > 3)
1351 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352 dev->name, consumer);
1353
1354 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1355 if (debug > 3)
1356 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357 dev->name, np->dirty_tx, np->tx_done, tx_status);
1358 if ((tx_status & 0xe0000000) == 0xa0000000) {
1359 dev->stats.tx_packets++;
1360 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1361 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362 struct sk_buff *skb = np->tx_info[entry].skb;
1363 np->tx_info[entry].skb = NULL;
1364 dma_unmap_single(&np->pci_dev->dev,
1365 np->tx_info[entry].mapping,
1366 skb_first_frag_len(skb),
1367 DMA_TO_DEVICE);
1368 np->tx_info[entry].mapping = 0;
1369 np->dirty_tx += np->tx_info[entry].used_slots;
1370 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1371 {
1372 int i;
1373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374 dma_unmap_single(&np->pci_dev->dev,
1375 np->tx_info[entry].mapping,
1376 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1377 DMA_TO_DEVICE);
1378 np->dirty_tx++;
1379 entry++;
1380 }
1381 }
1382
1383 dev_consume_skb_irq(skb);
1384 }
1385 np->tx_done_q[np->tx_done].status = 0;
1386 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1387 }
1388 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1389
1390 if (netif_queue_stopped(dev) &&
1391 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392 /* The ring is no longer full, wake the queue. */
1393 netif_wake_queue(dev);
1394 }
1395
1396 /* Stats overflow */
1397 if (intr_status & IntrStatsMax)
1398 get_stats(dev);
1399
1400 /* Media change interrupt. */
1401 if (intr_status & IntrLinkChange)
1402 netdev_media_change(dev);
1403
1404 /* Abnormal error summary/uncommon events handlers. */
1405 if (intr_status & IntrAbnormalSummary)
1406 netdev_error(dev, intr_status);
1407
1408 if (--boguscnt < 0) {
1409 if (debug > 1)
1410 printk(KERN_WARNING "%s: Too much work at interrupt, "
1411 "status=%#8.8x.\n",
1412 dev->name, intr_status);
1413 break;
1414 }
1415 } while (1);
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419 dev->name, (int) readl(ioaddr + IntrStatus));
1420 return IRQ_RETVAL(handled);
1421}
1422
1423
1424/*
1425 * This routine is logically part of the interrupt/poll handler, but separated
1426 * for clarity and better register allocation.
1427 */
1428static int __netdev_rx(struct net_device *dev, int *quota)
1429{
1430 struct netdev_private *np = netdev_priv(dev);
1431 u32 desc_status;
1432 int retcode = 0;
1433
1434 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1435 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436 struct sk_buff *skb;
1437 u16 pkt_len;
1438 int entry;
1439 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1440
1441 if (debug > 4)
1442 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443 if (!(desc_status & RxOK)) {
1444 /* There was an error. */
1445 if (debug > 2)
1446 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447 dev->stats.rx_errors++;
1448 if (desc_status & RxFIFOErr)
1449 dev->stats.rx_fifo_errors++;
1450 goto next_rx;
1451 }
1452
1453 if (*quota <= 0) { /* out of rx quota */
1454 retcode = 1;
1455 goto out;
1456 }
1457 (*quota)--;
1458
1459 pkt_len = desc_status; /* Implicitly Truncate */
1460 entry = (desc_status >> 16) & 0x7ff;
1461
1462 if (debug > 4)
1463 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464 /* Check if the packet is long enough to accept without copying
1465 to a minimally-sized skbuff. */
1466 if (pkt_len < rx_copybreak &&
1467 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1468 skb_reserve(skb, 2); /* 16 byte align the IP header */
1469 dma_sync_single_for_cpu(&np->pci_dev->dev,
1470 np->rx_info[entry].mapping,
1471 pkt_len, DMA_FROM_DEVICE);
1472 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1473 dma_sync_single_for_device(&np->pci_dev->dev,
1474 np->rx_info[entry].mapping,
1475 pkt_len, DMA_FROM_DEVICE);
1476 skb_put(skb, pkt_len);
1477 } else {
1478 dma_unmap_single(&np->pci_dev->dev,
1479 np->rx_info[entry].mapping,
1480 np->rx_buf_sz, DMA_FROM_DEVICE);
1481 skb = np->rx_info[entry].skb;
1482 skb_put(skb, pkt_len);
1483 np->rx_info[entry].skb = NULL;
1484 np->rx_info[entry].mapping = 0;
1485 }
1486#ifndef final_version /* Remove after testing. */
1487 /* You will want this info for the initial debug. */
1488 if (debug > 5) {
1489 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1490 skb->data, skb->data + 6,
1491 skb->data[12], skb->data[13]);
1492 }
1493#endif
1494
1495 skb->protocol = eth_type_trans(skb, dev);
1496#ifdef VLAN_SUPPORT
1497 if (debug > 4)
1498 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1499#endif
1500 if (le16_to_cpu(desc->status2) & 0x0100) {
1501 skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 dev->stats.rx_compressed++;
1503 }
1504 /*
1505 * This feature doesn't seem to be working, at least
1506 * with the two firmware versions I have. If the GFP sees
1507 * an IP fragment, it either ignores it completely, or reports
1508 * "bad checksum" on it.
1509 *
1510 * Maybe I missed something -- corrections are welcome.
1511 * Until then, the printk stays. :-) -Ion
1512 */
1513 else if (le16_to_cpu(desc->status2) & 0x0040) {
1514 skb->ip_summed = CHECKSUM_COMPLETE;
1515 skb->csum = le16_to_cpu(desc->csum);
1516 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1517 }
1518#ifdef VLAN_SUPPORT
1519 if (le16_to_cpu(desc->status2) & 0x0200) {
1520 u16 vlid = le16_to_cpu(desc->vlanid);
1521
1522 if (debug > 4) {
1523 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1524 vlid);
1525 }
1526 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1527 }
1528#endif /* VLAN_SUPPORT */
1529 netif_receive_skb(skb);
1530 dev->stats.rx_packets++;
1531
1532 next_rx:
1533 np->cur_rx++;
1534 desc->status = 0;
1535 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1536 }
1537
1538 if (*quota == 0) { /* out of rx quota */
1539 retcode = 1;
1540 goto out;
1541 }
1542 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1543
1544 out:
1545 refill_rx_ring(dev);
1546 if (debug > 5)
1547 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548 retcode, np->rx_done, desc_status);
1549 return retcode;
1550}
1551
1552static int netdev_poll(struct napi_struct *napi, int budget)
1553{
1554 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555 struct net_device *dev = np->dev;
1556 u32 intr_status;
1557 void __iomem *ioaddr = np->base;
1558 int quota = budget;
1559
1560 do {
1561 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1562
1563 if (__netdev_rx(dev, "a))
1564 goto out;
1565
1566 intr_status = readl(ioaddr + IntrStatus);
1567 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1568
1569 napi_complete(napi);
1570 intr_status = readl(ioaddr + IntrEnable);
1571 intr_status |= IntrRxDone | IntrRxEmpty;
1572 writel(intr_status, ioaddr + IntrEnable);
1573
1574 out:
1575 if (debug > 5)
1576 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1577 budget - quota);
1578
1579 /* Restart Rx engine if stopped. */
1580 return budget - quota;
1581}
1582
1583static void refill_rx_ring(struct net_device *dev)
1584{
1585 struct netdev_private *np = netdev_priv(dev);
1586 struct sk_buff *skb;
1587 int entry = -1;
1588
1589 /* Refill the Rx ring buffers. */
1590 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591 entry = np->dirty_rx % RX_RING_SIZE;
1592 if (np->rx_info[entry].skb == NULL) {
1593 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1594 np->rx_info[entry].skb = skb;
1595 if (skb == NULL)
1596 break; /* Better luck next round. */
1597 np->rx_info[entry].mapping =
1598 dma_map_single(&np->pci_dev->dev, skb->data,
1599 np->rx_buf_sz, DMA_FROM_DEVICE);
1600 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1601 dev_kfree_skb(skb);
1602 np->rx_info[entry].skb = NULL;
1603 break;
1604 }
1605 np->rx_ring[entry].rxaddr =
1606 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607 }
1608 if (entry == RX_RING_SIZE - 1)
1609 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610 }
1611 if (entry >= 0)
1612 writew(entry, np->base + RxDescQIdx);
1613}
1614
1615
1616static void netdev_media_change(struct net_device *dev)
1617{
1618 struct netdev_private *np = netdev_priv(dev);
1619 void __iomem *ioaddr = np->base;
1620 u16 reg0, reg1, reg4, reg5;
1621 u32 new_tx_mode;
1622 u32 new_intr_timer_ctrl;
1623
1624 /* reset status first */
1625 mdio_read(dev, np->phys[0], MII_BMCR);
1626 mdio_read(dev, np->phys[0], MII_BMSR);
1627
1628 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1629 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1630
1631 if (reg1 & BMSR_LSTATUS) {
1632 /* link is up */
1633 if (reg0 & BMCR_ANENABLE) {
1634 /* autonegotiation is enabled */
1635 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1636 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1637 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1638 np->speed100 = 1;
1639 np->mii_if.full_duplex = 1;
1640 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1641 np->speed100 = 1;
1642 np->mii_if.full_duplex = 0;
1643 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1644 np->speed100 = 0;
1645 np->mii_if.full_duplex = 1;
1646 } else {
1647 np->speed100 = 0;
1648 np->mii_if.full_duplex = 0;
1649 }
1650 } else {
1651 /* autonegotiation is disabled */
1652 if (reg0 & BMCR_SPEED100)
1653 np->speed100 = 1;
1654 else
1655 np->speed100 = 0;
1656 if (reg0 & BMCR_FULLDPLX)
1657 np->mii_if.full_duplex = 1;
1658 else
1659 np->mii_if.full_duplex = 0;
1660 }
1661 netif_carrier_on(dev);
1662 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1663 dev->name,
1664 np->speed100 ? "100" : "10",
1665 np->mii_if.full_duplex ? "full" : "half");
1666
1667 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1668 if (np->mii_if.full_duplex)
1669 new_tx_mode |= FullDuplex;
1670 if (np->tx_mode != new_tx_mode) {
1671 np->tx_mode = new_tx_mode;
1672 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1673 udelay(1000);
1674 writel(np->tx_mode, ioaddr + TxMode);
1675 }
1676
1677 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1678 if (np->speed100)
1679 new_intr_timer_ctrl |= Timer10X;
1680 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681 np->intr_timer_ctrl = new_intr_timer_ctrl;
1682 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1683 }
1684 } else {
1685 netif_carrier_off(dev);
1686 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1687 }
1688}
1689
1690
1691static void netdev_error(struct net_device *dev, int intr_status)
1692{
1693 struct netdev_private *np = netdev_priv(dev);
1694
1695 /* Came close to underrunning the Tx FIFO, increase threshold. */
1696 if (intr_status & IntrTxDataLow) {
1697 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698 writel(++np->tx_threshold, np->base + TxThreshold);
1699 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700 dev->name, np->tx_threshold * 16);
1701 } else
1702 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703 }
1704 if (intr_status & IntrRxGFPDead) {
1705 dev->stats.rx_fifo_errors++;
1706 dev->stats.rx_errors++;
1707 }
1708 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709 dev->stats.tx_fifo_errors++;
1710 dev->stats.tx_errors++;
1711 }
1712 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714 dev->name, intr_status);
1715}
1716
1717
1718static struct net_device_stats *get_stats(struct net_device *dev)
1719{
1720 struct netdev_private *np = netdev_priv(dev);
1721 void __iomem *ioaddr = np->base;
1722
1723 /* This adapter architecture needs no SMP locks. */
1724 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1725 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1726 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1727 dev->stats.tx_aborted_errors =
1728 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1729 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1730 dev->stats.collisions =
1731 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1732
1733 /* The chip only need report frame silently dropped. */
1734 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1735 writew(0, ioaddr + RxDMAStatus);
1736 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1737 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1738 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1739 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1740
1741 return &dev->stats;
1742}
1743
1744#ifdef VLAN_SUPPORT
1745static u32 set_vlan_mode(struct netdev_private *np)
1746{
1747 u32 ret = VlanMode;
1748 u16 vid;
1749 void __iomem *filter_addr = np->base + HashTable + 8;
1750 int vlan_count = 0;
1751
1752 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753 if (vlan_count == 32)
1754 break;
1755 writew(vid, filter_addr);
1756 filter_addr += 16;
1757 vlan_count++;
1758 }
1759 if (vlan_count == 32) {
1760 ret |= PerfectFilterVlan;
1761 while (vlan_count < 32) {
1762 writew(0, filter_addr);
1763 filter_addr += 16;
1764 vlan_count++;
1765 }
1766 }
1767 return ret;
1768}
1769#endif /* VLAN_SUPPORT */
1770
1771static void set_rx_mode(struct net_device *dev)
1772{
1773 struct netdev_private *np = netdev_priv(dev);
1774 void __iomem *ioaddr = np->base;
1775 u32 rx_mode = MinVLANPrio;
1776 struct netdev_hw_addr *ha;
1777 int i;
1778
1779#ifdef VLAN_SUPPORT
1780 rx_mode |= set_vlan_mode(np);
1781#endif /* VLAN_SUPPORT */
1782
1783 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1784 rx_mode |= AcceptAll;
1785 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786 (dev->flags & IFF_ALLMULTI)) {
1787 /* Too many to match, or accept all multicasts. */
1788 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789 } else if (netdev_mc_count(dev) <= 14) {
1790 /* Use the 16 element perfect filter, skip first two entries. */
1791 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 const __be16 *eaddrs;
1793 netdev_for_each_mc_addr(ha, dev) {
1794 eaddrs = (__be16 *) ha->addr;
1795 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1798 }
1799 eaddrs = (const __be16 *)dev->dev_addr;
1800 i = netdev_mc_count(dev) + 2;
1801 while (i++ < 16) {
1802 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1803 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1805 }
1806 rx_mode |= AcceptBroadcast|PerfectFilter;
1807 } else {
1808 /* Must use a multicast hash table. */
1809 void __iomem *filter_addr;
1810 const __be16 *eaddrs;
1811 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1812
1813 memset(mc_filter, 0, sizeof(mc_filter));
1814 netdev_for_each_mc_addr(ha, dev) {
1815 /* The chip uses the upper 9 CRC bits
1816 as index into the hash table */
1817 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819
1820 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821 }
1822 /* Clear the perfect filter list, skip first two entries. */
1823 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824 eaddrs = (const __be16 *)dev->dev_addr;
1825 for (i = 2; i < 16; i++) {
1826 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1827 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1829 }
1830 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831 writew(mc_filter[i], filter_addr);
1832 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833 }
1834 writel(rx_mode, ioaddr + RxFilterMode);
1835}
1836
1837static int check_if_running(struct net_device *dev)
1838{
1839 if (!netif_running(dev))
1840 return -EINVAL;
1841 return 0;
1842}
1843
1844static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845{
1846 struct netdev_private *np = netdev_priv(dev);
1847 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1848 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1849}
1850
1851static int get_link_ksettings(struct net_device *dev,
1852 struct ethtool_link_ksettings *cmd)
1853{
1854 struct netdev_private *np = netdev_priv(dev);
1855 spin_lock_irq(&np->lock);
1856 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1857 spin_unlock_irq(&np->lock);
1858 return 0;
1859}
1860
1861static int set_link_ksettings(struct net_device *dev,
1862 const struct ethtool_link_ksettings *cmd)
1863{
1864 struct netdev_private *np = netdev_priv(dev);
1865 int res;
1866 spin_lock_irq(&np->lock);
1867 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1868 spin_unlock_irq(&np->lock);
1869 check_duplex(dev);
1870 return res;
1871}
1872
1873static int nway_reset(struct net_device *dev)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(&np->mii_if);
1877}
1878
1879static u32 get_link(struct net_device *dev)
1880{
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(&np->mii_if);
1883}
1884
1885static u32 get_msglevel(struct net_device *dev)
1886{
1887 return debug;
1888}
1889
1890static void set_msglevel(struct net_device *dev, u32 val)
1891{
1892 debug = val;
1893}
1894
1895static const struct ethtool_ops ethtool_ops = {
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .nway_reset = nway_reset,
1899 .get_link = get_link,
1900 .get_msglevel = get_msglevel,
1901 .set_msglevel = set_msglevel,
1902 .get_link_ksettings = get_link_ksettings,
1903 .set_link_ksettings = set_link_ksettings,
1904};
1905
1906static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907{
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1910 int rc;
1911
1912 if (!netif_running(dev))
1913 return -EINVAL;
1914
1915 spin_lock_irq(&np->lock);
1916 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917 spin_unlock_irq(&np->lock);
1918
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920 check_duplex(dev);
1921
1922 return rc;
1923}
1924
1925static int netdev_close(struct net_device *dev)
1926{
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1929 int i;
1930
1931 netif_stop_queue(dev);
1932
1933 napi_disable(&np->napi);
1934
1935 if (debug > 1) {
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1941 }
1942
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 writel(0, ioaddr + IntrEnable);
1945
1946 /* Stop the chip's Tx and Rx processes. */
1947 writel(0, ioaddr + GenCtrl);
1948 readl(ioaddr + GenCtrl);
1949
1950 if (debug > 5) {
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1960 if (np->rx_done_q)
1961 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964 }
1965 }
1966
1967 free_irq(np->pci_dev->irq, dev);
1968
1969 /* Free all the skbuffs in the Rx queue. */
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972 if (np->rx_info[i].skb != NULL) {
1973 dma_unmap_single(&np->pci_dev->dev,
1974 np->rx_info[i].mapping,
1975 np->rx_buf_sz, DMA_FROM_DEVICE);
1976 dev_kfree_skb(np->rx_info[i].skb);
1977 }
1978 np->rx_info[i].skb = NULL;
1979 np->rx_info[i].mapping = 0;
1980 }
1981 for (i = 0; i < TX_RING_SIZE; i++) {
1982 struct sk_buff *skb = np->tx_info[i].skb;
1983 if (skb == NULL)
1984 continue;
1985 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), DMA_TO_DEVICE);
1987 np->tx_info[i].mapping = 0;
1988 dev_kfree_skb(skb);
1989 np->tx_info[i].skb = NULL;
1990 }
1991
1992 return 0;
1993}
1994
1995static int __maybe_unused starfire_suspend(struct device *dev_d)
1996{
1997 struct net_device *dev = dev_get_drvdata(dev_d);
1998
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2001 netdev_close(dev);
2002 }
2003
2004 return 0;
2005}
2006
2007static int __maybe_unused starfire_resume(struct device *dev_d)
2008{
2009 struct net_device *dev = dev_get_drvdata(dev_d);
2010
2011 if (netif_running(dev)) {
2012 netdev_open(dev);
2013 netif_device_attach(dev);
2014 }
2015
2016 return 0;
2017}
2018
2019static void starfire_remove_one(struct pci_dev *pdev)
2020{
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct netdev_private *np = netdev_priv(dev);
2023
2024 BUG_ON(!dev);
2025
2026 unregister_netdev(dev);
2027
2028 if (np->queue_mem)
2029 dma_free_coherent(&pdev->dev, np->queue_mem_size,
2030 np->queue_mem, np->queue_mem_dma);
2031
2032
2033 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2034 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2035 pci_disable_device(pdev);
2036
2037 iounmap(np->base);
2038 pci_release_regions(pdev);
2039
2040 free_netdev(dev); /* Will also free np!! */
2041}
2042
2043static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2044
2045static struct pci_driver starfire_driver = {
2046 .name = DRV_NAME,
2047 .probe = starfire_init_one,
2048 .remove = starfire_remove_one,
2049 .driver.pm = &starfire_pm_ops,
2050 .id_table = starfire_pci_tbl,
2051};
2052
2053
2054static int __init starfire_init (void)
2055{
2056/* when a module, this is printed whether or not devices are found in probe */
2057#ifdef MODULE
2058 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2059#endif
2060
2061 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2062
2063 return pci_register_driver(&starfire_driver);
2064}
2065
2066
2067static void __exit starfire_cleanup (void)
2068{
2069 pci_unregister_driver (&starfire_driver);
2070}
2071
2072
2073module_init(starfire_init);
2074module_exit(starfire_cleanup);