Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
 
 
 
 
 
 
 
 
 
  12#include <linux/reset.h>
  13
 
 
 
 
 
 
 
 
 
 
 
  14#include "dc.h"
  15#include "drm.h"
  16#include "gem.h"
 
 
  17
  18struct tegra_dc_soc_info {
  19	bool supports_interlacing;
  20};
  21
  22struct tegra_plane {
  23	struct drm_plane base;
  24	unsigned int index;
  25};
 
 
 
  26
  27static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
 
  28{
  29	return container_of(plane, struct tegra_plane, base);
 
 
 
 
 
 
  30}
  31
  32static int tegra_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
  33			      struct drm_framebuffer *fb, int crtc_x,
  34			      int crtc_y, unsigned int crtc_w,
  35			      unsigned int crtc_h, uint32_t src_x,
  36			      uint32_t src_y, uint32_t src_w, uint32_t src_h)
  37{
  38	struct tegra_plane *p = to_tegra_plane(plane);
  39	struct tegra_dc *dc = to_tegra_dc(crtc);
  40	struct tegra_dc_window window;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41	unsigned int i;
  42
  43	memset(&window, 0, sizeof(window));
  44	window.src.x = src_x >> 16;
  45	window.src.y = src_y >> 16;
  46	window.src.w = src_w >> 16;
  47	window.src.h = src_h >> 16;
  48	window.dst.x = crtc_x;
  49	window.dst.y = crtc_y;
  50	window.dst.w = crtc_w;
  51	window.dst.h = crtc_h;
  52	window.format = tegra_dc_format(fb->pixel_format);
  53	window.bits_per_pixel = fb->bits_per_pixel;
  54	window.bottom_up = tegra_fb_is_bottom_up(fb);
  55	window.tiled = tegra_fb_is_tiled(fb);
  56
  57	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
  58		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
  59
  60		window.base[i] = bo->paddr + fb->offsets[i];
  61
  62		/*
  63		 * Tegra doesn't support different strides for U and V planes
  64		 * so we display a warning if the user tries to display a
  65		 * framebuffer with such a configuration.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66		 */
  67		if (i >= 2) {
  68			if (fb->pitches[i] != window.stride[1])
  69				DRM_ERROR("unsupported UV-plane configuration\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70		} else {
  71			window.stride[i] = fb->pitches[i];
 
  72		}
 
 
 
 
 
 
 
 
 
 
 
  73	}
 
  74
  75	return tegra_dc_setup_window(dc, p->index, &window);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78static int tegra_plane_disable(struct drm_plane *plane)
 
 
  79{
  80	struct tegra_dc *dc = to_tegra_dc(plane->crtc);
  81	struct tegra_plane *p = to_tegra_plane(plane);
  82	unsigned long value;
  83
  84	if (!plane->crtc)
  85		return 0;
  86
  87	value = WINDOW_A_SELECT << p->index;
  88	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  89
  90	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
  91	value &= ~WIN_ENABLE;
  92	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
  93
  94	tegra_dc_writel(dc, WIN_A_UPDATE << p->index, DC_CMD_STATE_CONTROL);
  95	tegra_dc_writel(dc, WIN_A_ACT_REQ << p->index, DC_CMD_STATE_CONTROL);
  96
  97	return 0;
 
 
 
 
 
 
  98}
  99
 100static void tegra_plane_destroy(struct drm_plane *plane)
 
 101{
 102	struct tegra_plane *p = to_tegra_plane(plane);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104	tegra_plane_disable(plane);
 105	drm_plane_cleanup(plane);
 106	kfree(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107}
 108
 109static const struct drm_plane_funcs tegra_plane_funcs = {
 110	.update_plane = tegra_plane_update,
 111	.disable_plane = tegra_plane_disable,
 112	.destroy = tegra_plane_destroy,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113};
 114
 115static const uint32_t plane_formats[] = {
 116	DRM_FORMAT_XBGR8888,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117	DRM_FORMAT_XRGB8888,
 
 
 
 
 
 
 118	DRM_FORMAT_RGB565,
 119	DRM_FORMAT_UYVY,
 120	DRM_FORMAT_YUV420,
 121	DRM_FORMAT_YUV422,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122};
 123
 124static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 
 
 
 
 
 
 
 
 
 
 
 
 125{
 126	unsigned int i;
 127	int err = 0;
 
 
 
 
 
 
 
 
 
 128
 129	for (i = 0; i < 2; i++) {
 130		struct tegra_plane *plane;
 131
 132		plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 133		if (!plane)
 134			return -ENOMEM;
 135
 136		plane->index = 1 + i;
 137
 138		err = drm_plane_init(drm, &plane->base, 1 << dc->pipe,
 139				     &tegra_plane_funcs, plane_formats,
 140				     ARRAY_SIZE(plane_formats), false);
 141		if (err < 0) {
 142			kfree(plane);
 
 
 
 
 
 
 
 
 
 
 143			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144		}
 145	}
 146
 
 
 
 
 147	return 0;
 148}
 149
 150static int tegra_dc_set_base(struct tegra_dc *dc, int x, int y,
 151			     struct drm_framebuffer *fb)
 152{
 153	unsigned int format = tegra_dc_format(fb->pixel_format);
 154	struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
 155	unsigned int h_offset = 0, v_offset = 0;
 156	unsigned long value;
 157
 158	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 
 
 159
 160	value = fb->offsets[0] + y * fb->pitches[0] +
 161		x * fb->bits_per_pixel / 8;
 
 
 162
 163	tegra_dc_writel(dc, bo->paddr + value, DC_WINBUF_START_ADDR);
 164	tegra_dc_writel(dc, fb->pitches[0], DC_WIN_LINE_STRIDE);
 165	tegra_dc_writel(dc, format, DC_WIN_COLOR_DEPTH);
 166
 167	if (tegra_fb_is_tiled(fb)) {
 168		value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 169			DC_WIN_BUFFER_ADDR_MODE_TILE;
 170	} else {
 171		value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 172			DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173	}
 174
 175	tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 
 176
 177	/* make sure bottom-up buffers are properly displayed */
 178	if (tegra_fb_is_bottom_up(fb)) {
 179		value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 180		value |= INVERT_V;
 181		tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 182
 183		v_offset += fb->height - 1;
 184	} else {
 185		value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 186		value &= ~INVERT_V;
 187		tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	}
 189
 190	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 191	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 
 
 
 
 
 192
 193	value = GENERAL_UPDATE | WIN_A_UPDATE;
 194	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
 195
 196	value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
 197	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
 
 
 
 
 
 
 
 198
 199	return 0;
 200}
 201
 202void tegra_dc_enable_vblank(struct tegra_dc *dc)
 
 
 
 
 
 
 
 
 
 203{
 204	unsigned long value, flags;
 
 
 
 
 205
 206	spin_lock_irqsave(&dc->lock, flags);
 
 207
 208	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 209	value |= VBLANK_INT;
 210	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212	spin_unlock_irqrestore(&dc->lock, flags);
 
 
 
 
 213}
 214
 215void tegra_dc_disable_vblank(struct tegra_dc *dc)
 
 216{
 217	unsigned long value, flags;
 
 
 
 
 
 
 
 218
 219	spin_lock_irqsave(&dc->lock, flags);
 
 
 220
 221	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 222	value &= ~VBLANK_INT;
 223	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224
 225	spin_unlock_irqrestore(&dc->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226}
 227
 228static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 
 229{
 230	struct drm_device *drm = dc->base.dev;
 231	struct drm_crtc *crtc = &dc->base;
 232	unsigned long flags, base;
 233	struct tegra_bo *bo;
 234
 235	if (!dc->event)
 
 
 
 
 
 
 
 
 
 
 
 
 236		return;
 237
 238	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 239
 240	/* check if new start address has been latched */
 241	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 242	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 243	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 246		spin_lock_irqsave(&drm->event_lock, flags);
 247		drm_send_vblank_event(drm, dc->pipe, dc->event);
 248		drm_vblank_put(drm, dc->pipe);
 249		dc->event = NULL;
 250		spin_unlock_irqrestore(&drm->event_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251	}
 252}
 253
 254void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255{
 256	struct tegra_dc *dc = to_tegra_dc(crtc);
 257	struct drm_device *drm = crtc->dev;
 258	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	spin_lock_irqsave(&drm->event_lock, flags);
 
 
 
 
 
 
 
 
 261
 262	if (dc->event && dc->event->base.file_priv == file) {
 263		dc->event->base.destroy(&dc->event->base);
 264		drm_vblank_put(drm, dc->pipe);
 265		dc->event = NULL;
 
 
 
 266	}
 267
 268	spin_unlock_irqrestore(&drm->event_lock, flags);
 
 
 
 269}
 270
 271static int tegra_dc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
 272			      struct drm_pending_vblank_event *event, uint32_t page_flip_flags)
 273{
 274	struct tegra_dc *dc = to_tegra_dc(crtc);
 275	struct drm_device *drm = crtc->dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 276
 277	if (dc->event)
 278		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 280	if (event) {
 281		event->pipe = dc->pipe;
 282		dc->event = event;
 283		drm_vblank_get(drm, dc->pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	}
 285
 286	tegra_dc_set_base(dc, 0, 0, fb);
 287	crtc->primary->fb = fb;
 
 
 288
 289	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290}
 291
 292static void drm_crtc_clear(struct drm_crtc *crtc)
 
 293{
 294	memset(crtc, 0, sizeof(*crtc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295}
 296
 297static void tegra_dc_destroy(struct drm_crtc *crtc)
 298{
 299	drm_crtc_cleanup(crtc);
 300	drm_crtc_clear(crtc);
 301}
 302
 303static const struct drm_crtc_funcs tegra_crtc_funcs = {
 304	.page_flip = tegra_dc_page_flip,
 305	.set_config = drm_crtc_helper_set_config,
 306	.destroy = tegra_dc_destroy,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307};
 308
 309static void tegra_crtc_disable(struct drm_crtc *crtc)
 310{
 311	struct tegra_dc *dc = to_tegra_dc(crtc);
 312	struct drm_device *drm = crtc->dev;
 313	struct drm_plane *plane;
 
 314
 315	drm_for_each_legacy_plane(plane, &drm->mode_config.plane_list) {
 316		if (plane->crtc == crtc) {
 317			tegra_plane_disable(plane);
 318			plane->crtc = NULL;
 319
 320			if (plane->fb) {
 321				drm_framebuffer_unreference(plane->fb);
 322				plane->fb = NULL;
 323			}
 324		}
 
 
 325	}
 326
 327	drm_vblank_off(drm, dc->pipe);
 
 
 328}
 329
 330static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
 331				  const struct drm_display_mode *mode,
 332				  struct drm_display_mode *adjusted)
 333{
 334	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336
 337static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 338				  unsigned int bpp)
 339{
 340	fixed20_12 outf = dfixed_init(out);
 341	fixed20_12 inf = dfixed_init(in);
 342	u32 dda_inc;
 343	int max;
 344
 345	if (v)
 346		max = 15;
 347	else {
 348		switch (bpp) {
 349		case 2:
 350			max = 8;
 351			break;
 
 
 352
 353		default:
 354			WARN_ON_ONCE(1);
 355			/* fallthrough */
 356		case 4:
 357			max = 4;
 358			break;
 359		}
 360	}
 361
 362	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 363	inf.full -= dfixed_const(1);
 
 
 
 364
 365	dda_inc = dfixed_div(inf, outf);
 366	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 
 
 
 
 367
 368	return dda_inc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369}
 370
 371static inline u32 compute_initial_dda(unsigned int in)
 372{
 373	fixed20_12 inf = dfixed_init(in);
 374	return dfixed_frac(inf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377static int tegra_dc_set_timings(struct tegra_dc *dc,
 378				struct drm_display_mode *mode)
 379{
 380	/* TODO: For HDMI compliance, h & v ref_to_sync should be set to 1 */
 381	unsigned int h_ref_to_sync = 0;
 382	unsigned int v_ref_to_sync = 0;
 383	unsigned long value;
 384
 385	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
 
 386
 387	value = (v_ref_to_sync << 16) | h_ref_to_sync;
 388	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
 
 389
 390	value = ((mode->vsync_end - mode->vsync_start) << 16) |
 391		((mode->hsync_end - mode->hsync_start) <<  0);
 392	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
 393
 394	value = ((mode->vtotal - mode->vsync_end) << 16) |
 395		((mode->htotal - mode->hsync_end) <<  0);
 396	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
 397
 398	value = ((mode->vsync_start - mode->vdisplay) << 16) |
 399		((mode->hsync_start - mode->hdisplay) <<  0);
 400	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
 401
 402	value = (mode->vdisplay << 16) | mode->hdisplay;
 403	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
 404
 405	return 0;
 406}
 407
 408static int tegra_crtc_setup_clk(struct drm_crtc *crtc,
 409				struct drm_display_mode *mode,
 410				unsigned long *div)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411{
 412	unsigned long pclk = mode->clock * 1000, rate;
 413	struct tegra_dc *dc = to_tegra_dc(crtc);
 414	struct tegra_output *output = NULL;
 415	struct drm_encoder *encoder;
 416	long err;
 417
 418	list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list, head)
 419		if (encoder->crtc == crtc) {
 420			output = encoder_to_output(encoder);
 421			break;
 422		}
 423
 424	if (!output)
 425		return -ENODEV;
 
 
 
 
 
 
 426
 427	/*
 428	 * This assumes that the display controller will divide its parent
 429	 * clock by 2 to generate the pixel clock.
 
 430	 */
 431	err = tegra_output_setup_clock(output, dc->clk, pclk * 2);
 432	if (err < 0) {
 433		dev_err(dc->dev, "failed to setup clock: %ld\n", err);
 434		return err;
 435	}
 436
 437	rate = clk_get_rate(dc->clk);
 438	*div = (rate * 2 / pclk) - 2;
 
 
 
 439
 440	DRM_DEBUG_KMS("rate: %lu, div: %lu\n", rate, *div);
 
 441
 442	return 0;
 
 
 
 
 
 
 
 
 
 
 443}
 444
 445static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 
 446{
 447	switch (format) {
 448	case WIN_COLOR_DEPTH_YCbCr422:
 449	case WIN_COLOR_DEPTH_YUV422:
 450		if (planar)
 451			*planar = false;
 452
 453		return true;
 
 
 454
 455	case WIN_COLOR_DEPTH_YCbCr420P:
 456	case WIN_COLOR_DEPTH_YUV420P:
 457	case WIN_COLOR_DEPTH_YCbCr422P:
 458	case WIN_COLOR_DEPTH_YUV422P:
 459	case WIN_COLOR_DEPTH_YCbCr422R:
 460	case WIN_COLOR_DEPTH_YUV422R:
 461	case WIN_COLOR_DEPTH_YCbCr422RA:
 462	case WIN_COLOR_DEPTH_YUV422RA:
 463		if (planar)
 464			*planar = true;
 
 
 
 
 465
 466		return true;
 
 
 
 467	}
 468
 469	return false;
 
 
 
 
 470}
 471
 472int tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 473			  const struct tegra_dc_window *window)
 474{
 475	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 476	unsigned long value;
 477	bool yuv, planar;
 478
 479	/*
 480	 * For YUV planar modes, the number of bytes per pixel takes into
 481	 * account only the luma component and therefore is 1.
 482	 */
 483	yuv = tegra_dc_format_is_yuv(window->format, &planar);
 484	if (!yuv)
 485		bpp = window->bits_per_pixel / 8;
 486	else
 487		bpp = planar ? 1 : 2;
 488
 489	value = WINDOW_A_SELECT << index;
 490	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 491
 492	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 493	tegra_dc_writel(dc, 0, DC_WIN_BYTE_SWAP);
 
 494
 495	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 496	tegra_dc_writel(dc, value, DC_WIN_POSITION);
 497
 498	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 499	tegra_dc_writel(dc, value, DC_WIN_SIZE);
 500
 501	h_offset = window->src.x * bpp;
 502	v_offset = window->src.y;
 503	h_size = window->src.w * bpp;
 504	v_size = window->src.h;
 505
 506	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 507	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 
 508
 509	/*
 510	 * For DDA computations the number of bytes per pixel for YUV planar
 511	 * modes needs to take into account all Y, U and V components.
 512	 */
 513	if (yuv && planar)
 514		bpp = 2;
 515
 516	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 517	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 
 518
 519	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 520	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 
 
 
 
 
 
 
 
 
 
 
 521
 522	h_dda = compute_initial_dda(window->src.x);
 523	v_dda = compute_initial_dda(window->src.y);
 524
 525	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 526	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 527
 528	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 529	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 
 
 
 
 
 
 
 
 
 530
 531	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 
 
 532
 533	if (yuv && planar) {
 534		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 535		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 536		value = window->stride[1] << 16 | window->stride[0];
 537		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 538	} else {
 539		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 540	}
 541
 542	if (window->bottom_up)
 543		v_offset += window->src.h - 1;
 
 
 
 544
 545	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 546	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 
 
 
 
 
 547
 548	if (window->tiled) {
 549		value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 550			DC_WIN_BUFFER_ADDR_MODE_TILE;
 551	} else {
 552		value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 553			DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 554	}
 555
 556	tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 
 557
 558	value = WIN_ENABLE;
 
 
 
 
 
 
 
 559
 560	if (yuv) {
 561		/* setup default colorspace conversion coefficients */
 562		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 563		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 564		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 565		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 566		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 567		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 568		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 569		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 570
 571		value |= CSC_ENABLE;
 572	} else if (window->bits_per_pixel < 24) {
 573		value |= COLOR_EXPAND;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574	}
 
 
 
 
 
 
 
 
 575
 576	if (window->bottom_up)
 577		value |= INVERT_V;
 578
 579	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 580
 581	/*
 582	 * Disable blending and assume Window A is the bottom-most window,
 583	 * Window C is the top-most window and Window B is in the middle.
 
 
 
 
 
 
 
 
 
 
 
 
 584	 */
 585	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 586	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 
 
 
 
 587
 588	switch (index) {
 589	case 0:
 590		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 591		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 592		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 593		break;
 594
 595	case 1:
 596		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 597		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 598		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 599		break;
 600
 601	case 2:
 602		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 603		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 604		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 605		break;
 606	}
 607
 608	tegra_dc_writel(dc, WIN_A_UPDATE << index, DC_CMD_STATE_CONTROL);
 609	tegra_dc_writel(dc, WIN_A_ACT_REQ << index, DC_CMD_STATE_CONTROL);
 610
 611	return 0;
 
 
 
 
 
 
 
 
 
 612}
 613
 614unsigned int tegra_dc_format(uint32_t format)
 
 615{
 616	switch (format) {
 617	case DRM_FORMAT_XBGR8888:
 618		return WIN_COLOR_DEPTH_R8G8B8A8;
 
 
 619
 620	case DRM_FORMAT_XRGB8888:
 621		return WIN_COLOR_DEPTH_B8G8R8A8;
 622
 623	case DRM_FORMAT_RGB565:
 624		return WIN_COLOR_DEPTH_B5G6R5;
 
 
 
 625
 626	case DRM_FORMAT_UYVY:
 627		return WIN_COLOR_DEPTH_YCbCr422;
 
 628
 629	case DRM_FORMAT_YUV420:
 630		return WIN_COLOR_DEPTH_YCbCr420P;
 
 
 631
 632	case DRM_FORMAT_YUV422:
 633		return WIN_COLOR_DEPTH_YCbCr422P;
 634
 635	default:
 636		break;
 637	}
 638
 639	WARN(1, "unsupported pixel format %u, using default\n", format);
 640	return WIN_COLOR_DEPTH_B8G8R8A8;
 641}
 
 642
 643static int tegra_crtc_mode_set(struct drm_crtc *crtc,
 644			       struct drm_display_mode *mode,
 645			       struct drm_display_mode *adjusted,
 646			       int x, int y, struct drm_framebuffer *old_fb)
 647{
 648	struct tegra_bo *bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 649	struct tegra_dc *dc = to_tegra_dc(crtc);
 650	struct tegra_dc_window window;
 651	unsigned long div, value;
 652	int err;
 653
 654	drm_vblank_pre_modeset(crtc->dev, dc->pipe);
 
 
 655
 656	err = tegra_crtc_setup_clk(crtc, mode, &div);
 657	if (err) {
 658		dev_err(dc->dev, "failed to setup clock for CRTC: %d\n", err);
 659		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660	}
 661
 662	/* program display mode */
 663	tegra_dc_set_timings(dc, mode);
 664
 665	/* interlacing isn't supported yet, so disable it */
 666	if (dc->soc->supports_interlacing) {
 667		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
 668		value &= ~INTERLACE_ENABLE;
 669		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
 670	}
 671
 672	value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
 673	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
 
 
 674
 675	/* setup window parameters */
 676	memset(&window, 0, sizeof(window));
 677	window.src.x = 0;
 678	window.src.y = 0;
 679	window.src.w = mode->hdisplay;
 680	window.src.h = mode->vdisplay;
 681	window.dst.x = 0;
 682	window.dst.y = 0;
 683	window.dst.w = mode->hdisplay;
 684	window.dst.h = mode->vdisplay;
 685	window.format = tegra_dc_format(crtc->primary->fb->pixel_format);
 686	window.bits_per_pixel = crtc->primary->fb->bits_per_pixel;
 687	window.stride[0] = crtc->primary->fb->pitches[0];
 688	window.base[0] = bo->paddr;
 689
 690	err = tegra_dc_setup_window(dc, 0, &window);
 691	if (err < 0)
 692		dev_err(dc->dev, "failed to enable root plane\n");
 
 
 693
 694	return 0;
 
 
 
 
 
 
 
 
 695}
 696
 697static int tegra_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
 698				    struct drm_framebuffer *old_fb)
 699{
 700	struct tegra_dc *dc = to_tegra_dc(crtc);
 
 
 701
 702	return tegra_dc_set_base(dc, x, y, crtc->primary->fb);
 
 
 
 
 
 
 
 
 
 
 
 703}
 704
 705static void tegra_crtc_prepare(struct drm_crtc *crtc)
 
 706{
 
 
 
 707	struct tegra_dc *dc = to_tegra_dc(crtc);
 708	unsigned int syncpt;
 709	unsigned long value;
 710
 711	/* hardware initialization */
 712	reset_control_deassert(dc->rst);
 713	usleep_range(10000, 20000);
 714
 715	if (dc->pipe)
 716		syncpt = SYNCPT_VBLANK1;
 717	else
 718		syncpt = SYNCPT_VBLANK0;
 719
 720	/* initialize display controller */
 721	tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
 722	tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
 725	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
 
 
 
 
 
 
 
 726
 727	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
 728		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
 729	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
 730
 731	value = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
 732		PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
 733	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
 
 
 
 734
 735	/* initialize timer */
 736	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
 737		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
 738	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
 739
 740	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
 741		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
 742	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
 743
 744	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
 745	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
 746
 747	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
 748	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 749}
 750
 751static void tegra_crtc_commit(struct drm_crtc *crtc)
 
 752{
 
 
 
 
 
 753	struct tegra_dc *dc = to_tegra_dc(crtc);
 754	unsigned long value;
 
 
 
 755
 756	value = GENERAL_UPDATE | WIN_A_UPDATE;
 757	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
 
 
 
 
 
 
 758
 759	value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
 760	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761
 762	drm_vblank_post_modeset(crtc->dev, dc->pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763}
 764
 765static void tegra_crtc_load_lut(struct drm_crtc *crtc)
 
 766{
 
 
 
 
 
 
 767}
 768
 769static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
 770	.disable = tegra_crtc_disable,
 771	.mode_fixup = tegra_crtc_mode_fixup,
 772	.mode_set = tegra_crtc_mode_set,
 773	.mode_set_base = tegra_crtc_mode_set_base,
 774	.prepare = tegra_crtc_prepare,
 775	.commit = tegra_crtc_commit,
 776	.load_lut = tegra_crtc_load_lut,
 777};
 778
 779static irqreturn_t tegra_dc_irq(int irq, void *data)
 780{
 781	struct tegra_dc *dc = data;
 782	unsigned long status;
 783
 784	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
 785	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
 786
 787	if (status & FRAME_END_INT) {
 788		/*
 789		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
 790		*/
 
 
 791	}
 792
 793	if (status & VBLANK_INT) {
 794		/*
 795		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
 796		*/
 797		drm_handle_vblank(dc->base.dev, dc->pipe);
 798		tegra_dc_finish_page_flip(dc);
 
 799	}
 800
 801	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
 802		/*
 803		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
 804		*/
 
 
 805	}
 806
 807	return IRQ_HANDLED;
 808}
 809
 810static int tegra_dc_show_regs(struct seq_file *s, void *data)
 811{
 812	struct drm_info_node *node = s->private;
 813	struct tegra_dc *dc = node->info_ent->data;
 814
 815#define DUMP_REG(name)						\
 816	seq_printf(s, "%-40s %#05x %08lx\n", #name, name,	\
 817		   tegra_dc_readl(dc, name))
 818
 819	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
 820	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
 821	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
 822	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
 823	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
 824	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
 825	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
 826	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
 827	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
 828	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
 829	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
 830	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
 831	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
 832	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
 833	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
 834	DUMP_REG(DC_CMD_SIGNAL_RAISE);
 835	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
 836	DUMP_REG(DC_CMD_INT_STATUS);
 837	DUMP_REG(DC_CMD_INT_MASK);
 838	DUMP_REG(DC_CMD_INT_ENABLE);
 839	DUMP_REG(DC_CMD_INT_TYPE);
 840	DUMP_REG(DC_CMD_INT_POLARITY);
 841	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
 842	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
 843	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
 844	DUMP_REG(DC_CMD_STATE_ACCESS);
 845	DUMP_REG(DC_CMD_STATE_CONTROL);
 846	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
 847	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
 848	DUMP_REG(DC_COM_CRC_CONTROL);
 849	DUMP_REG(DC_COM_CRC_CHECKSUM);
 850	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
 851	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
 852	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
 853	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
 854	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
 855	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
 856	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
 857	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
 858	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
 859	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
 860	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
 861	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
 862	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
 863	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
 864	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
 865	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
 866	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
 867	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
 868	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
 869	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
 870	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
 871	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
 872	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
 873	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
 874	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
 875	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
 876	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
 877	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
 878	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
 879	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
 880	DUMP_REG(DC_COM_SPI_CONTROL);
 881	DUMP_REG(DC_COM_SPI_START_BYTE);
 882	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
 883	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
 884	DUMP_REG(DC_COM_HSPI_CS_DC);
 885	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
 886	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
 887	DUMP_REG(DC_COM_GPIO_CTRL);
 888	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
 889	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
 890	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
 891	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
 892	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
 893	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
 894	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
 895	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
 896	DUMP_REG(DC_DISP_REF_TO_SYNC);
 897	DUMP_REG(DC_DISP_SYNC_WIDTH);
 898	DUMP_REG(DC_DISP_BACK_PORCH);
 899	DUMP_REG(DC_DISP_ACTIVE);
 900	DUMP_REG(DC_DISP_FRONT_PORCH);
 901	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
 902	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
 903	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
 904	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
 905	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
 906	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
 907	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
 908	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
 909	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
 910	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
 911	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
 912	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
 913	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
 914	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
 915	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
 916	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
 917	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
 918	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
 919	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
 920	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
 921	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
 922	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
 923	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
 924	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
 925	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
 926	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
 927	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
 928	DUMP_REG(DC_DISP_M0_CONTROL);
 929	DUMP_REG(DC_DISP_M1_CONTROL);
 930	DUMP_REG(DC_DISP_DI_CONTROL);
 931	DUMP_REG(DC_DISP_PP_CONTROL);
 932	DUMP_REG(DC_DISP_PP_SELECT_A);
 933	DUMP_REG(DC_DISP_PP_SELECT_B);
 934	DUMP_REG(DC_DISP_PP_SELECT_C);
 935	DUMP_REG(DC_DISP_PP_SELECT_D);
 936	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
 937	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
 938	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
 939	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
 940	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
 941	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
 942	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
 943	DUMP_REG(DC_DISP_BORDER_COLOR);
 944	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
 945	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
 946	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
 947	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
 948	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
 949	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
 950	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
 951	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
 952	DUMP_REG(DC_DISP_CURSOR_POSITION);
 953	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
 954	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
 955	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
 956	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
 957	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
 958	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
 959	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
 960	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
 961	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
 962	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
 963	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
 964	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
 965	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
 966	DUMP_REG(DC_DISP_SD_CONTROL);
 967	DUMP_REG(DC_DISP_SD_CSC_COEFF);
 968	DUMP_REG(DC_DISP_SD_LUT(0));
 969	DUMP_REG(DC_DISP_SD_LUT(1));
 970	DUMP_REG(DC_DISP_SD_LUT(2));
 971	DUMP_REG(DC_DISP_SD_LUT(3));
 972	DUMP_REG(DC_DISP_SD_LUT(4));
 973	DUMP_REG(DC_DISP_SD_LUT(5));
 974	DUMP_REG(DC_DISP_SD_LUT(6));
 975	DUMP_REG(DC_DISP_SD_LUT(7));
 976	DUMP_REG(DC_DISP_SD_LUT(8));
 977	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
 978	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
 979	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
 980	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
 981	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
 982	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
 983	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
 984	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
 985	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
 986	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
 987	DUMP_REG(DC_DISP_SD_BL_TF(0));
 988	DUMP_REG(DC_DISP_SD_BL_TF(1));
 989	DUMP_REG(DC_DISP_SD_BL_TF(2));
 990	DUMP_REG(DC_DISP_SD_BL_TF(3));
 991	DUMP_REG(DC_DISP_SD_BL_CONTROL);
 992	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
 993	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
 994	DUMP_REG(DC_WIN_WIN_OPTIONS);
 995	DUMP_REG(DC_WIN_BYTE_SWAP);
 996	DUMP_REG(DC_WIN_BUFFER_CONTROL);
 997	DUMP_REG(DC_WIN_COLOR_DEPTH);
 998	DUMP_REG(DC_WIN_POSITION);
 999	DUMP_REG(DC_WIN_SIZE);
1000	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1001	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1002	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1003	DUMP_REG(DC_WIN_DDA_INC);
1004	DUMP_REG(DC_WIN_LINE_STRIDE);
1005	DUMP_REG(DC_WIN_BUF_STRIDE);
1006	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1007	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1008	DUMP_REG(DC_WIN_DV_CONTROL);
1009	DUMP_REG(DC_WIN_BLEND_NOKEY);
1010	DUMP_REG(DC_WIN_BLEND_1WIN);
1011	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1012	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1013	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1014	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1015	DUMP_REG(DC_WINBUF_START_ADDR);
1016	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1017	DUMP_REG(DC_WINBUF_START_ADDR_U);
1018	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1019	DUMP_REG(DC_WINBUF_START_ADDR_V);
1020	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1021	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1022	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1023	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1024	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1025	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1026	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1027	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1028	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1029
1030#undef DUMP_REG
 
 
 
 
1031
1032	return 0;
1033}
1034
1035static struct drm_info_list debugfs_files[] = {
1036	{ "regs", tegra_dc_show_regs, 0, NULL },
1037};
1038
1039static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1040{
1041	unsigned int i;
1042	char *name;
1043	int err;
1044
1045	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1046	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1047	kfree(name);
1048
1049	if (!dc->debugfs)
1050		return -ENOMEM;
1051
1052	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1053				    GFP_KERNEL);
1054	if (!dc->debugfs_files) {
1055		err = -ENOMEM;
1056		goto remove;
1057	}
1058
1059	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1060		dc->debugfs_files[i].data = dc;
1061
1062	err = drm_debugfs_create_files(dc->debugfs_files,
1063				       ARRAY_SIZE(debugfs_files),
1064				       dc->debugfs, minor);
1065	if (err < 0)
1066		goto free;
1067
1068	dc->minor = minor;
1069
1070	return 0;
1071
1072free:
1073	kfree(dc->debugfs_files);
1074	dc->debugfs_files = NULL;
1075remove:
1076	debugfs_remove(dc->debugfs);
1077	dc->debugfs = NULL;
1078
1079	return err;
1080}
1081
1082static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1083{
1084	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1085				 dc->minor);
1086	dc->minor = NULL;
1087
1088	kfree(dc->debugfs_files);
1089	dc->debugfs_files = NULL;
1090
1091	debugfs_remove(dc->debugfs);
1092	dc->debugfs = NULL;
1093
1094	return 0;
1095}
1096
1097static int tegra_dc_init(struct host1x_client *client)
1098{
1099	struct tegra_drm *tegra = dev_get_drvdata(client->parent);
 
1100	struct tegra_dc *dc = host1x_client_to_dc(client);
 
 
 
1101	int err;
1102
1103	drm_crtc_init(tegra->drm, &dc->base, &tegra_crtc_funcs);
1104	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1105	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107	err = tegra_dc_rgb_init(tegra->drm, dc);
 
 
 
 
1108	if (err < 0 && err != -ENODEV) {
1109		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1110		return err;
1111	}
1112
1113	err = tegra_dc_add_planes(tegra->drm, dc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114	if (err < 0)
1115		return err;
1116
1117	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1118		err = tegra_dc_debugfs_init(dc, tegra->drm->primary);
1119		if (err < 0)
1120			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	}
1122
1123	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1124			       dev_name(dc->dev), dc);
1125	if (err < 0) {
1126		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1127			err);
1128		return err;
1129	}
1130
 
 
 
 
 
 
1131	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1132}
1133
1134static int tegra_dc_exit(struct host1x_client *client)
1135{
1136	struct tegra_dc *dc = host1x_client_to_dc(client);
1137	int err;
1138
1139	devm_free_irq(dc->dev, dc->irq, dc);
 
1140
1141	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1142		err = tegra_dc_debugfs_exit(dc);
1143		if (err < 0)
1144			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1145	}
1146
1147	err = tegra_dc_rgb_exit(dc);
1148	if (err) {
1149		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1150		return err;
1151	}
1152
 
 
 
 
 
 
 
 
 
 
 
 
 
1153	return 0;
1154}
1155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156static const struct host1x_client_ops dc_client_ops = {
 
1157	.init = tegra_dc_init,
1158	.exit = tegra_dc_exit,
 
 
 
1159};
1160
1161static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
 
1162	.supports_interlacing = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163};
1164
1165static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
 
1166	.supports_interlacing = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167};
1168
1169static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170	.supports_interlacing = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171};
1172
1173static const struct of_device_id tegra_dc_of_match[] = {
1174	{
 
 
 
 
 
 
 
 
 
1175		.compatible = "nvidia,tegra124-dc",
1176		.data = &tegra124_dc_soc_info,
1177	}, {
 
 
 
1178		.compatible = "nvidia,tegra30-dc",
1179		.data = &tegra30_dc_soc_info,
1180	}, {
1181		.compatible = "nvidia,tegra20-dc",
1182		.data = &tegra20_dc_soc_info,
1183	}, {
1184		/* sentinel */
1185	}
1186};
 
1187
1188static int tegra_dc_parse_dt(struct tegra_dc *dc)
1189{
1190	struct device_node *np;
1191	u32 value = 0;
1192	int err;
1193
1194	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1195	if (err < 0) {
1196		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1197
1198		/*
1199		 * If the nvidia,head property isn't present, try to find the
1200		 * correct head number by looking up the position of this
1201		 * display controller's node within the device tree. Assuming
1202		 * that the nodes are ordered properly in the DTS file and
1203		 * that the translation into a flattened device tree blob
1204		 * preserves that ordering this will actually yield the right
1205		 * head number.
1206		 *
1207		 * If those assumptions don't hold, this will still work for
1208		 * cases where only a single display controller is used.
1209		 */
1210		for_each_matching_node(np, tegra_dc_of_match) {
1211			if (np == dc->dev->of_node)
 
1212				break;
 
1213
1214			value++;
1215		}
1216	}
1217
1218	dc->pipe = value;
1219
1220	return 0;
1221}
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223static int tegra_dc_probe(struct platform_device *pdev)
1224{
1225	const struct of_device_id *id;
1226	struct resource *regs;
1227	struct tegra_dc *dc;
1228	int err;
1229
 
 
 
 
 
 
1230	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1231	if (!dc)
1232		return -ENOMEM;
1233
1234	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1235	if (!id)
1236		return -ENODEV;
1237
1238	spin_lock_init(&dc->lock);
1239	INIT_LIST_HEAD(&dc->list);
1240	dc->dev = &pdev->dev;
1241	dc->soc = id->data;
1242
1243	err = tegra_dc_parse_dt(dc);
1244	if (err < 0)
1245		return err;
1246
 
 
 
 
1247	dc->clk = devm_clk_get(&pdev->dev, NULL);
1248	if (IS_ERR(dc->clk)) {
1249		dev_err(&pdev->dev, "failed to get clock\n");
1250		return PTR_ERR(dc->clk);
1251	}
1252
1253	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1254	if (IS_ERR(dc->rst)) {
1255		dev_err(&pdev->dev, "failed to get reset\n");
1256		return PTR_ERR(dc->rst);
1257	}
1258
 
1259	err = clk_prepare_enable(dc->clk);
1260	if (err < 0)
1261		return err;
1262
1263	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1264	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265	if (IS_ERR(dc->regs))
1266		return PTR_ERR(dc->regs);
1267
1268	dc->irq = platform_get_irq(pdev, 0);
1269	if (dc->irq < 0) {
1270		dev_err(&pdev->dev, "failed to get IRQ\n");
1271		return -ENXIO;
1272	}
 
 
 
 
 
 
 
1273
1274	INIT_LIST_HEAD(&dc->client.list);
1275	dc->client.ops = &dc_client_ops;
1276	dc->client.dev = &pdev->dev;
1277
1278	err = tegra_dc_rgb_probe(dc);
1279	if (err < 0 && err != -ENODEV) {
1280		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1281		return err;
1282	}
1283
1284	err = host1x_client_register(&dc->client);
1285	if (err < 0) {
1286		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1287			err);
1288		return err;
1289	}
1290
1291	platform_set_drvdata(pdev, dc);
1292
1293	return 0;
 
 
 
 
 
 
1294}
1295
1296static int tegra_dc_remove(struct platform_device *pdev)
1297{
1298	struct tegra_dc *dc = platform_get_drvdata(pdev);
1299	int err;
1300
1301	err = host1x_client_unregister(&dc->client);
1302	if (err < 0) {
1303		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1304			err);
1305		return err;
1306	}
1307
1308	err = tegra_dc_rgb_remove(dc);
1309	if (err < 0) {
1310		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1311		return err;
1312	}
1313
1314	clk_disable_unprepare(dc->clk);
1315
1316	return 0;
1317}
1318
1319struct platform_driver tegra_dc_driver = {
1320	.driver = {
1321		.name = "tegra-dc",
1322		.owner = THIS_MODULE,
1323		.of_match_table = tegra_dc_of_match,
1324	},
1325	.probe = tegra_dc_probe,
1326	.remove = tegra_dc_remove,
1327};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iommu.h>
  12#include <linux/interconnect.h>
  13#include <linux/module.h>
  14#include <linux/of_device.h>
  15#include <linux/pm_domain.h>
  16#include <linux/pm_opp.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19
  20#include <soc/tegra/common.h>
  21#include <soc/tegra/pmc.h>
  22
  23#include <drm/drm_atomic.h>
  24#include <drm/drm_atomic_helper.h>
  25#include <drm/drm_blend.h>
  26#include <drm/drm_debugfs.h>
  27#include <drm/drm_fourcc.h>
  28#include <drm/drm_framebuffer.h>
  29#include <drm/drm_vblank.h>
  30
  31#include "dc.h"
  32#include "drm.h"
  33#include "gem.h"
  34#include "hub.h"
  35#include "plane.h"
  36
  37static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  38					    struct drm_crtc_state *state);
 
  39
  40static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  41{
  42	stats->frames = 0;
  43	stats->vblank = 0;
  44	stats->underflow = 0;
  45	stats->overflow = 0;
  46}
  47
  48/* Reads the active copy of a register. */
  49static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  50{
  51	u32 value;
  52
  53	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  54	value = tegra_dc_readl(dc, offset);
  55	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  56
  57	return value;
  58}
  59
  60static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  61					      unsigned int offset)
 
 
 
  62{
  63	if (offset >= 0x500 && offset <= 0x638) {
  64		offset = 0x000 + (offset - 0x500);
  65		return plane->offset + offset;
  66	}
  67
  68	if (offset >= 0x700 && offset <= 0x719) {
  69		offset = 0x180 + (offset - 0x700);
  70		return plane->offset + offset;
  71	}
  72
  73	if (offset >= 0x800 && offset <= 0x839) {
  74		offset = 0x1c0 + (offset - 0x800);
  75		return plane->offset + offset;
  76	}
  77
  78	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  79
  80	return plane->offset + offset;
  81}
  82
  83static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  84				    unsigned int offset)
  85{
  86	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  87}
  88
  89static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  90				      unsigned int offset)
  91{
  92	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  93}
  94
  95bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  96{
  97	struct device_node *np = dc->dev->of_node;
  98	struct of_phandle_iterator it;
  99	int err;
 100
 101	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
 102		if (it.node == dev->of_node)
 103			return true;
 104
 105	return false;
 106}
 107
 108/*
 109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 111 * Latching happens mmediately if the display controller is in STOP mode or
 112 * on the next frame boundary otherwise.
 113 *
 114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 117 * into the ACTIVE copy, either immediately if the display controller is in
 118 * STOP mode, or at the next frame boundary otherwise.
 119 */
 120void tegra_dc_commit(struct tegra_dc *dc)
 121{
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 123	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 124}
 125
 126static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 127				  unsigned int bpp)
 128{
 129	fixed20_12 outf = dfixed_init(out);
 130	fixed20_12 inf = dfixed_init(in);
 131	u32 dda_inc;
 132	int max;
 133
 134	if (v)
 135		max = 15;
 136	else {
 137		switch (bpp) {
 138		case 2:
 139			max = 8;
 140			break;
 141
 142		default:
 143			WARN_ON_ONCE(1);
 144			fallthrough;
 145		case 4:
 146			max = 4;
 147			break;
 148		}
 149	}
 150
 151	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 152	inf.full -= dfixed_const(1);
 153
 154	dda_inc = dfixed_div(inf, outf);
 155	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 156
 157	return dda_inc;
 158}
 159
 160static inline u32 compute_initial_dda(unsigned int in)
 161{
 162	fixed20_12 inf = dfixed_init(in);
 163	return dfixed_frac(inf);
 164}
 165
 166static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 167{
 168	u32 background[3] = {
 169		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 170		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 171		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 172	};
 173	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 174			 BLEND_COLOR_KEY_NONE;
 175	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 176	struct tegra_plane_state *state;
 177	u32 blending[2];
 178	unsigned int i;
 179
 180	/* disable blending for non-overlapping case */
 181	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 182	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 183
 184	state = to_tegra_plane_state(plane->base.state);
 185
 186	if (state->opaque) {
 187		/*
 188		 * Since custom fix-weight blending isn't utilized and weight
 189		 * of top window is set to max, we can enforce dependent
 190		 * blending which in this case results in transparent bottom
 191		 * window if top window is opaque and if top window enables
 192		 * alpha blending, then bottom window is getting alpha value
 193		 * of 1 minus the sum of alpha components of the overlapping
 194		 * plane.
 195		 */
 196		background[0] |= BLEND_CONTROL_DEPENDENT;
 197		background[1] |= BLEND_CONTROL_DEPENDENT;
 198
 199		/*
 200		 * The region where three windows overlap is the intersection
 201		 * of the two regions where two windows overlap. It contributes
 202		 * to the area if all of the windows on top of it have an alpha
 203		 * component.
 204		 */
 205		switch (state->base.normalized_zpos) {
 206		case 0:
 207			if (state->blending[0].alpha &&
 208			    state->blending[1].alpha)
 209				background[2] |= BLEND_CONTROL_DEPENDENT;
 210			break;
 211
 212		case 1:
 213			background[2] |= BLEND_CONTROL_DEPENDENT;
 214			break;
 215		}
 216	} else {
 217		/*
 218		 * Enable alpha blending if pixel format has an alpha
 219		 * component.
 220		 */
 221		foreground |= BLEND_CONTROL_ALPHA;
 222
 223		/*
 224		 * If any of the windows on top of this window is opaque, it
 225		 * will completely conceal this window within that area. If
 226		 * top window has an alpha component, it is blended over the
 227		 * bottom window.
 228		 */
 229		for (i = 0; i < 2; i++) {
 230			if (state->blending[i].alpha &&
 231			    state->blending[i].top)
 232				background[i] |= BLEND_CONTROL_DEPENDENT;
 233		}
 234
 235		switch (state->base.normalized_zpos) {
 236		case 0:
 237			if (state->blending[0].alpha &&
 238			    state->blending[1].alpha)
 239				background[2] |= BLEND_CONTROL_DEPENDENT;
 240			break;
 241
 242		case 1:
 243			/*
 244			 * When both middle and topmost windows have an alpha,
 245			 * these windows a mixed together and then the result
 246			 * is blended over the bottom window.
 247			 */
 248			if (state->blending[0].alpha &&
 249			    state->blending[0].top)
 250				background[2] |= BLEND_CONTROL_ALPHA;
 251
 252			if (state->blending[1].alpha &&
 253			    state->blending[1].top)
 254				background[2] |= BLEND_CONTROL_ALPHA;
 255			break;
 256		}
 257	}
 258
 259	switch (state->base.normalized_zpos) {
 260	case 0:
 261		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 262		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 263		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 264		break;
 265
 266	case 1:
 267		/*
 268		 * If window B / C is topmost, then X / Y registers are
 269		 * matching the order of blending[...] state indices,
 270		 * otherwise a swap is required.
 271		 */
 272		if (!state->blending[0].top && state->blending[1].top) {
 273			blending[0] = foreground;
 274			blending[1] = background[1];
 275		} else {
 276			blending[0] = background[0];
 277			blending[1] = foreground;
 278		}
 279
 280		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 281		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 282		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 283		break;
 284
 285	case 2:
 286		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 287		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 288		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 289		break;
 290	}
 291}
 292
 293static void tegra_plane_setup_blending(struct tegra_plane *plane,
 294				       const struct tegra_dc_window *window)
 295{
 296	u32 value;
 297
 298	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 299		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 300		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 301	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 302
 303	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 304		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 305		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 306	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 307
 308	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 309	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 310}
 311
 312static bool
 313tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 314				     const struct tegra_dc_window *window)
 315{
 316	struct tegra_dc *dc = plane->dc;
 
 
 317
 318	if (window->src.w == window->dst.w)
 319		return false;
 320
 321	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 322		return false;
 323
 324	return true;
 325}
 326
 327static bool
 328tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 329				   const struct tegra_dc_window *window)
 330{
 331	struct tegra_dc *dc = plane->dc;
 332
 333	if (window->src.h == window->dst.h)
 334		return false;
 335
 336	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 337		return false;
 338
 339	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 340		return false;
 341
 342	return true;
 343}
 344
 345static void tegra_dc_setup_window(struct tegra_plane *plane,
 346				  const struct tegra_dc_window *window)
 347{
 348	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 349	struct tegra_dc *dc = plane->dc;
 350	unsigned int planes;
 351	u32 value;
 352	bool yuv;
 353
 354	/*
 355	 * For YUV planar modes, the number of bytes per pixel takes into
 356	 * account only the luma component and therefore is 1.
 357	 */
 358	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
 359	if (!yuv)
 360		bpp = window->bits_per_pixel / 8;
 361	else
 362		bpp = (planes > 1) ? 1 : 2;
 363
 364	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 365	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 366
 367	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 368	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 369
 370	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 371	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 372
 373	h_offset = window->src.x * bpp;
 374	v_offset = window->src.y;
 375	h_size = window->src.w * bpp;
 376	v_size = window->src.h;
 377
 378	if (window->reflect_x)
 379		h_offset += (window->src.w - 1) * bpp;
 380
 381	if (window->reflect_y)
 382		v_offset += window->src.h - 1;
 383
 384	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 385	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 386
 387	/*
 388	 * For DDA computations the number of bytes per pixel for YUV planar
 389	 * modes needs to take into account all Y, U and V components.
 390	 */
 391	if (yuv && planes > 1)
 392		bpp = 2;
 393
 394	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 395	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 396
 397	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 398	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 399
 400	h_dda = compute_initial_dda(window->src.x);
 401	v_dda = compute_initial_dda(window->src.y);
 402
 403	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 404	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 405
 406	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 407	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 408
 409	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 410
 411	if (yuv && planes > 1) {
 412		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 413
 414		if (planes > 2)
 415			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 416
 417		value = window->stride[1] << 16 | window->stride[0];
 418		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 419	} else {
 420		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 421	}
 422
 423	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 424	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 425
 426	if (dc->soc->supports_block_linear) {
 427		unsigned long height = window->tiling.value;
 428
 429		switch (window->tiling.mode) {
 430		case TEGRA_BO_TILING_MODE_PITCH:
 431			value = DC_WINBUF_SURFACE_KIND_PITCH;
 432			break;
 433
 434		case TEGRA_BO_TILING_MODE_TILED:
 435			value = DC_WINBUF_SURFACE_KIND_TILED;
 436			break;
 437
 438		case TEGRA_BO_TILING_MODE_BLOCK:
 439			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 440				DC_WINBUF_SURFACE_KIND_BLOCK;
 441			break;
 442		}
 443
 444		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 445	} else {
 446		switch (window->tiling.mode) {
 447		case TEGRA_BO_TILING_MODE_PITCH:
 448			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 449				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 450			break;
 451
 452		case TEGRA_BO_TILING_MODE_TILED:
 453			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 454				DC_WIN_BUFFER_ADDR_MODE_TILE;
 455			break;
 456
 457		case TEGRA_BO_TILING_MODE_BLOCK:
 458			/*
 459			 * No need to handle this here because ->atomic_check
 460			 * will already have filtered it out.
 461			 */
 462			break;
 463		}
 464
 465		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 466	}
 467
 468	value = WIN_ENABLE;
 469
 470	if (yuv) {
 471		/* setup default colorspace conversion coefficients */
 472		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 473		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 474		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 475		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 476		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 477		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 478		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 479		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 480
 481		value |= CSC_ENABLE;
 482	} else if (window->bits_per_pixel < 24) {
 483		value |= COLOR_EXPAND;
 484	}
 485
 486	if (window->reflect_x)
 487		value |= H_DIRECTION;
 488
 489	if (window->reflect_y)
 490		value |= V_DIRECTION;
 491
 492	if (tegra_plane_use_horizontal_filtering(plane, window)) {
 493		/*
 494		 * Enable horizontal 6-tap filter and set filtering
 495		 * coefficients to the default values defined in TRM.
 496		 */
 497		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 498		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 499		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 500		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 501		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 502		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 503		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 504		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 505		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 506		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 507		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 508		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 509		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 510		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 511		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 512		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 513
 514		value |= H_FILTER;
 515	}
 516
 517	if (tegra_plane_use_vertical_filtering(plane, window)) {
 518		unsigned int i, k;
 519
 520		/*
 521		 * Enable vertical 2-tap filter and set filtering
 522		 * coefficients to the default values defined in TRM.
 523		 */
 524		for (i = 0, k = 128; i < 16; i++, k -= 8)
 525			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 526
 527		value |= V_FILTER;
 528	}
 529
 530	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 531
 532	if (dc->soc->has_legacy_blending)
 533		tegra_plane_setup_blending_legacy(plane);
 534	else
 535		tegra_plane_setup_blending(plane, window);
 536}
 537
 538static const u32 tegra20_primary_formats[] = {
 539	DRM_FORMAT_ARGB4444,
 540	DRM_FORMAT_ARGB1555,
 541	DRM_FORMAT_RGB565,
 542	DRM_FORMAT_RGBA5551,
 543	DRM_FORMAT_ABGR8888,
 544	DRM_FORMAT_ARGB8888,
 545	/* non-native formats */
 546	DRM_FORMAT_XRGB1555,
 547	DRM_FORMAT_RGBX5551,
 548	DRM_FORMAT_XBGR8888,
 549	DRM_FORMAT_XRGB8888,
 550};
 551
 552static const u64 tegra20_modifiers[] = {
 553	DRM_FORMAT_MOD_LINEAR,
 554	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 555	DRM_FORMAT_MOD_INVALID
 556};
 557
 558static const u32 tegra114_primary_formats[] = {
 559	DRM_FORMAT_ARGB4444,
 560	DRM_FORMAT_ARGB1555,
 561	DRM_FORMAT_RGB565,
 562	DRM_FORMAT_RGBA5551,
 563	DRM_FORMAT_ABGR8888,
 564	DRM_FORMAT_ARGB8888,
 565	/* new on Tegra114 */
 566	DRM_FORMAT_ABGR4444,
 567	DRM_FORMAT_ABGR1555,
 568	DRM_FORMAT_BGRA5551,
 569	DRM_FORMAT_XRGB1555,
 570	DRM_FORMAT_RGBX5551,
 571	DRM_FORMAT_XBGR1555,
 572	DRM_FORMAT_BGRX5551,
 573	DRM_FORMAT_BGR565,
 574	DRM_FORMAT_BGRA8888,
 575	DRM_FORMAT_RGBA8888,
 576	DRM_FORMAT_XRGB8888,
 577	DRM_FORMAT_XBGR8888,
 578};
 579
 580static const u32 tegra124_primary_formats[] = {
 581	DRM_FORMAT_ARGB4444,
 582	DRM_FORMAT_ARGB1555,
 583	DRM_FORMAT_RGB565,
 584	DRM_FORMAT_RGBA5551,
 585	DRM_FORMAT_ABGR8888,
 586	DRM_FORMAT_ARGB8888,
 587	/* new on Tegra114 */
 588	DRM_FORMAT_ABGR4444,
 589	DRM_FORMAT_ABGR1555,
 590	DRM_FORMAT_BGRA5551,
 591	DRM_FORMAT_XRGB1555,
 592	DRM_FORMAT_RGBX5551,
 593	DRM_FORMAT_XBGR1555,
 594	DRM_FORMAT_BGRX5551,
 595	DRM_FORMAT_BGR565,
 596	DRM_FORMAT_BGRA8888,
 597	DRM_FORMAT_RGBA8888,
 598	DRM_FORMAT_XRGB8888,
 599	DRM_FORMAT_XBGR8888,
 600	/* new on Tegra124 */
 601	DRM_FORMAT_RGBX8888,
 602	DRM_FORMAT_BGRX8888,
 603};
 604
 605static const u64 tegra124_modifiers[] = {
 606	DRM_FORMAT_MOD_LINEAR,
 607	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 608	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 609	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 610	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 611	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 612	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 613	DRM_FORMAT_MOD_INVALID
 614};
 615
 616static int tegra_plane_atomic_check(struct drm_plane *plane,
 617				    struct drm_atomic_state *state)
 618{
 619	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 620										 plane);
 621	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 622	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 623					  DRM_MODE_REFLECT_X |
 624					  DRM_MODE_REFLECT_Y;
 625	unsigned int rotation = new_plane_state->rotation;
 626	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 627	struct tegra_plane *tegra = to_tegra_plane(plane);
 628	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
 629	int err;
 630
 631	plane_state->peak_memory_bandwidth = 0;
 632	plane_state->avg_memory_bandwidth = 0;
 633
 634	/* no need for further checks if the plane is being disabled */
 635	if (!new_plane_state->crtc) {
 636		plane_state->total_peak_memory_bandwidth = 0;
 637		return 0;
 638	}
 639
 640	err = tegra_plane_format(new_plane_state->fb->format->format,
 641				 &plane_state->format,
 642				 &plane_state->swap);
 643	if (err < 0)
 644		return err;
 645
 646	/*
 647	 * Tegra20 and Tegra30 are special cases here because they support
 648	 * only variants of specific formats with an alpha component, but not
 649	 * the corresponding opaque formats. However, the opaque formats can
 650	 * be emulated by disabling alpha blending for the plane.
 651	 */
 652	if (dc->soc->has_legacy_blending) {
 653		err = tegra_plane_setup_legacy_state(tegra, plane_state);
 654		if (err < 0)
 655			return err;
 656	}
 657
 658	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
 659	if (err < 0)
 660		return err;
 661
 662	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 663	    !dc->soc->supports_block_linear) {
 664		DRM_ERROR("hardware doesn't support block linear mode\n");
 665		return -EINVAL;
 666	}
 667
 668	/*
 669	 * Older userspace used custom BO flag in order to specify the Y
 670	 * reflection, while modern userspace uses the generic DRM rotation
 671	 * property in order to achieve the same result.  The legacy BO flag
 672	 * duplicates the DRM rotation property when both are set.
 673	 */
 674	if (tegra_fb_is_bottom_up(new_plane_state->fb))
 675		rotation |= DRM_MODE_REFLECT_Y;
 676
 677	rotation = drm_rotation_simplify(rotation, supported_rotation);
 678
 679	if (rotation & DRM_MODE_REFLECT_X)
 680		plane_state->reflect_x = true;
 681	else
 682		plane_state->reflect_x = false;
 683
 684	if (rotation & DRM_MODE_REFLECT_Y)
 685		plane_state->reflect_y = true;
 686	else
 687		plane_state->reflect_y = false;
 688
 689	/*
 690	 * Tegra doesn't support different strides for U and V planes so we
 691	 * error out if the user tries to display a framebuffer with such a
 692	 * configuration.
 693	 */
 694	if (new_plane_state->fb->format->num_planes > 2) {
 695		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
 696			DRM_ERROR("unsupported UV-plane configuration\n");
 697			return -EINVAL;
 698		}
 699	}
 700
 701	err = tegra_plane_state_add(tegra, new_plane_state);
 702	if (err < 0)
 703		return err;
 704
 705	return 0;
 706}
 707
 708static void tegra_plane_atomic_disable(struct drm_plane *plane,
 709				       struct drm_atomic_state *state)
 710{
 711	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 712									   plane);
 713	struct tegra_plane *p = to_tegra_plane(plane);
 714	u32 value;
 715
 716	/* rien ne va plus */
 717	if (!old_state || !old_state->crtc)
 718		return;
 719
 720	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 721	value &= ~WIN_ENABLE;
 722	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 723}
 724
 725static void tegra_plane_atomic_update(struct drm_plane *plane,
 726				      struct drm_atomic_state *state)
 727{
 728	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 729									   plane);
 730	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 731	struct drm_framebuffer *fb = new_state->fb;
 732	struct tegra_plane *p = to_tegra_plane(plane);
 733	struct tegra_dc_window window;
 734	unsigned int i;
 735
 736	/* rien ne va plus */
 737	if (!new_state->crtc || !new_state->fb)
 738		return;
 739
 740	if (!new_state->visible)
 741		return tegra_plane_atomic_disable(plane, state);
 742
 743	memset(&window, 0, sizeof(window));
 744	window.src.x = new_state->src.x1 >> 16;
 745	window.src.y = new_state->src.y1 >> 16;
 746	window.src.w = drm_rect_width(&new_state->src) >> 16;
 747	window.src.h = drm_rect_height(&new_state->src) >> 16;
 748	window.dst.x = new_state->dst.x1;
 749	window.dst.y = new_state->dst.y1;
 750	window.dst.w = drm_rect_width(&new_state->dst);
 751	window.dst.h = drm_rect_height(&new_state->dst);
 752	window.bits_per_pixel = fb->format->cpp[0] * 8;
 753	window.reflect_x = tegra_plane_state->reflect_x;
 754	window.reflect_y = tegra_plane_state->reflect_y;
 755
 756	/* copy from state */
 757	window.zpos = new_state->normalized_zpos;
 758	window.tiling = tegra_plane_state->tiling;
 759	window.format = tegra_plane_state->format;
 760	window.swap = tegra_plane_state->swap;
 761
 762	for (i = 0; i < fb->format->num_planes; i++) {
 763		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
 764
 765		/*
 766		 * Tegra uses a shared stride for UV planes. Framebuffers are
 767		 * already checked for this in the tegra_plane_atomic_check()
 768		 * function, so it's safe to ignore the V-plane pitch here.
 769		 */
 770		if (i < 2)
 771			window.stride[i] = fb->pitches[i];
 772	}
 773
 774	tegra_dc_setup_window(p, &window);
 775}
 776
 777static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 778	.prepare_fb = tegra_plane_prepare_fb,
 779	.cleanup_fb = tegra_plane_cleanup_fb,
 780	.atomic_check = tegra_plane_atomic_check,
 781	.atomic_disable = tegra_plane_atomic_disable,
 782	.atomic_update = tegra_plane_atomic_update,
 783};
 784
 785static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 786{
 787	/*
 788	 * Ideally this would use drm_crtc_mask(), but that would require the
 789	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 790	 * will only be added to that list in the drm_crtc_init_with_planes()
 791	 * (in tegra_dc_init()), which in turn requires registration of these
 792	 * planes. So we have ourselves a nice little chicken and egg problem
 793	 * here.
 794	 *
 795	 * We work around this by manually creating the mask from the number
 796	 * of CRTCs that have been registered, and should therefore always be
 797	 * the same as drm_crtc_index() after registration.
 798	 */
 799	return 1 << drm->mode_config.num_crtc;
 800}
 801
 802static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 803						    struct tegra_dc *dc)
 804{
 805	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 806	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 807	struct tegra_plane *plane;
 808	unsigned int num_formats;
 809	const u64 *modifiers;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/* Always use window A as primary window */
 818	plane->offset = 0xa00;
 819	plane->index = 0;
 820	plane->dc = dc;
 821
 822	num_formats = dc->soc->num_primary_formats;
 823	formats = dc->soc->primary_formats;
 824	modifiers = dc->soc->modifiers;
 825
 826	err = tegra_plane_interconnect_init(plane);
 827	if (err) {
 828		kfree(plane);
 829		return ERR_PTR(err);
 830	}
 831
 832	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 833				       &tegra_plane_funcs, formats,
 834				       num_formats, modifiers, type, NULL);
 835	if (err < 0) {
 836		kfree(plane);
 837		return ERR_PTR(err);
 838	}
 839
 840	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 841	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 842
 843	err = drm_plane_create_rotation_property(&plane->base,
 844						 DRM_MODE_ROTATE_0,
 845						 DRM_MODE_ROTATE_0 |
 846						 DRM_MODE_ROTATE_180 |
 847						 DRM_MODE_REFLECT_X |
 848						 DRM_MODE_REFLECT_Y);
 849	if (err < 0)
 850		dev_err(dc->dev, "failed to create rotation property: %d\n",
 851			err);
 852
 853	return &plane->base;
 854}
 855
 856static const u32 tegra_legacy_cursor_plane_formats[] = {
 857	DRM_FORMAT_RGBA8888,
 858};
 859
 860static const u32 tegra_cursor_plane_formats[] = {
 861	DRM_FORMAT_ARGB8888,
 862};
 863
 864static int tegra_cursor_atomic_check(struct drm_plane *plane,
 865				     struct drm_atomic_state *state)
 866{
 867	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 868										 plane);
 869	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 870	struct tegra_plane *tegra = to_tegra_plane(plane);
 871	int err;
 872
 873	plane_state->peak_memory_bandwidth = 0;
 874	plane_state->avg_memory_bandwidth = 0;
 875
 876	/* no need for further checks if the plane is being disabled */
 877	if (!new_plane_state->crtc) {
 878		plane_state->total_peak_memory_bandwidth = 0;
 879		return 0;
 880	}
 881
 882	/* scaling not supported for cursor */
 883	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
 884	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
 885		return -EINVAL;
 886
 887	/* only square cursors supported */
 888	if (new_plane_state->src_w != new_plane_state->src_h)
 889		return -EINVAL;
 890
 891	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
 892	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
 893		return -EINVAL;
 894
 895	err = tegra_plane_state_add(tegra, new_plane_state);
 896	if (err < 0)
 897		return err;
 898
 899	return 0;
 900}
 901
 902static void __tegra_cursor_atomic_update(struct drm_plane *plane,
 903					 struct drm_plane_state *new_state)
 904{
 905	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 906	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
 907	struct tegra_drm *tegra = plane->dev->dev_private;
 908#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 909	u64 dma_mask = *dc->dev->dma_mask;
 910#endif
 911	unsigned int x, y;
 912	u32 value = 0;
 913
 914	/* rien ne va plus */
 915	if (!new_state->crtc || !new_state->fb)
 916		return;
 917
 918	/*
 919	 * Legacy display supports hardware clipping of the cursor, but
 920	 * nvdisplay relies on software to clip the cursor to the screen.
 921	 */
 922	if (!dc->soc->has_nvdisplay)
 923		value |= CURSOR_CLIP_DISPLAY;
 924
 925	switch (new_state->crtc_w) {
 926	case 32:
 927		value |= CURSOR_SIZE_32x32;
 928		break;
 929
 930	case 64:
 931		value |= CURSOR_SIZE_64x64;
 932		break;
 933
 934	case 128:
 935		value |= CURSOR_SIZE_128x128;
 936		break;
 937
 938	case 256:
 939		value |= CURSOR_SIZE_256x256;
 940		break;
 941
 942	default:
 943		WARN(1, "cursor size %ux%u not supported\n",
 944		     new_state->crtc_w, new_state->crtc_h);
 945		return;
 946	}
 947
 948	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
 949	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 950
 951#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 952	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
 953	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 954#endif
 955
 956	/* enable cursor and set blend mode */
 957	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 958	value |= CURSOR_ENABLE;
 959	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 960
 961	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 962	value &= ~CURSOR_DST_BLEND_MASK;
 963	value &= ~CURSOR_SRC_BLEND_MASK;
 964
 965	if (dc->soc->has_nvdisplay)
 966		value &= ~CURSOR_COMPOSITION_MODE_XOR;
 967	else
 968		value |= CURSOR_MODE_NORMAL;
 969
 970	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 971	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 972	value |= CURSOR_ALPHA;
 973	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 974
 975	/* nvdisplay relies on software for clipping */
 976	if (dc->soc->has_nvdisplay) {
 977		struct drm_rect src;
 978
 979		x = new_state->dst.x1;
 980		y = new_state->dst.y1;
 981
 982		drm_rect_fp_to_int(&src, &new_state->src);
 983
 984		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
 985		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
 986
 987		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
 988			(drm_rect_width(&src) & tegra->hmask);
 989		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
 990	} else {
 991		x = new_state->crtc_x;
 992		y = new_state->crtc_y;
 993	}
 994
 995	/* position the cursor */
 996	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
 997	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 998}
 999
1000static void tegra_cursor_atomic_update(struct drm_plane *plane,
1001				       struct drm_atomic_state *state)
1002{
1003	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
 
 
 
1004
1005	__tegra_cursor_atomic_update(plane, new_state);
1006}
1007
1008static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1009					struct drm_atomic_state *state)
1010{
1011	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1012									   plane);
1013	struct tegra_dc *dc;
1014	u32 value;
1015
1016	/* rien ne va plus */
1017	if (!old_state || !old_state->crtc)
1018		return;
1019
1020	dc = to_tegra_dc(old_state->crtc);
1021
1022	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1023	value &= ~CURSOR_ENABLE;
1024	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1025}
1026
1027static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1028{
1029	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1030	struct drm_crtc_state *crtc_state;
1031	int min_scale, max_scale;
1032	int err;
1033
1034	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1035	if (WARN_ON(!crtc_state))
1036		return -EINVAL;
1037
1038	if (!crtc_state->active)
1039		return -EINVAL;
1040
1041	if (plane->state->crtc != new_state->crtc ||
1042	    plane->state->src_w != new_state->src_w ||
1043	    plane->state->src_h != new_state->src_h ||
1044	    plane->state->crtc_w != new_state->crtc_w ||
1045	    plane->state->crtc_h != new_state->crtc_h ||
1046	    plane->state->fb != new_state->fb ||
1047	    plane->state->fb == NULL)
1048		return -EINVAL;
1049
1050	min_scale = (1 << 16) / 8;
1051	max_scale = (8 << 16) / 1;
1052
1053	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1054						  true, true);
1055	if (err < 0)
1056		return err;
1057
1058	if (new_state->visible != plane->state->visible)
1059		return -EINVAL;
1060
1061	return 0;
1062}
1063
1064static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1065					     struct drm_atomic_state *state)
1066{
1067	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1068	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1069
1070	plane->state->src_x = new_state->src_x;
1071	plane->state->src_y = new_state->src_y;
1072	plane->state->crtc_x = new_state->crtc_x;
1073	plane->state->crtc_y = new_state->crtc_y;
1074
1075	if (new_state->visible) {
1076		struct tegra_plane *p = to_tegra_plane(plane);
1077		u32 value;
1078
1079		__tegra_cursor_atomic_update(plane, new_state);
1080
1081		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1082		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1083		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1084
1085		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1086		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1087		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1088	}
1089}
1090
1091static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1092	.prepare_fb = tegra_plane_prepare_fb,
1093	.cleanup_fb = tegra_plane_cleanup_fb,
1094	.atomic_check = tegra_cursor_atomic_check,
1095	.atomic_update = tegra_cursor_atomic_update,
1096	.atomic_disable = tegra_cursor_atomic_disable,
1097	.atomic_async_check = tegra_cursor_atomic_async_check,
1098	.atomic_async_update = tegra_cursor_atomic_async_update,
1099};
1100
1101static const uint64_t linear_modifiers[] = {
1102	DRM_FORMAT_MOD_LINEAR,
1103	DRM_FORMAT_MOD_INVALID
1104};
1105
1106static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1107						      struct tegra_dc *dc)
1108{
1109	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1110	struct tegra_plane *plane;
1111	unsigned int num_formats;
1112	const u32 *formats;
1113	int err;
1114
1115	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1116	if (!plane)
1117		return ERR_PTR(-ENOMEM);
1118
1119	/*
1120	 * This index is kind of fake. The cursor isn't a regular plane, but
1121	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1122	 * use the same programming. Setting this fake index here allows the
1123	 * code in tegra_add_plane_state() to do the right thing without the
1124	 * need to special-casing the cursor plane.
1125	 */
1126	plane->index = 6;
1127	plane->dc = dc;
1128
1129	if (!dc->soc->has_nvdisplay) {
1130		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1131		formats = tegra_legacy_cursor_plane_formats;
1132
1133		err = tegra_plane_interconnect_init(plane);
1134		if (err) {
1135			kfree(plane);
1136			return ERR_PTR(err);
1137		}
1138	} else {
1139		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1140		formats = tegra_cursor_plane_formats;
1141	}
1142
1143	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1144				       &tegra_plane_funcs, formats,
1145				       num_formats, linear_modifiers,
1146				       DRM_PLANE_TYPE_CURSOR, NULL);
1147	if (err < 0) {
1148		kfree(plane);
1149		return ERR_PTR(err);
1150	}
1151
1152	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1153	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1154
1155	return &plane->base;
1156}
1157
1158static const u32 tegra20_overlay_formats[] = {
1159	DRM_FORMAT_ARGB4444,
1160	DRM_FORMAT_ARGB1555,
1161	DRM_FORMAT_RGB565,
1162	DRM_FORMAT_RGBA5551,
1163	DRM_FORMAT_ABGR8888,
1164	DRM_FORMAT_ARGB8888,
1165	/* non-native formats */
1166	DRM_FORMAT_XRGB1555,
1167	DRM_FORMAT_RGBX5551,
1168	DRM_FORMAT_XBGR8888,
1169	DRM_FORMAT_XRGB8888,
1170	/* planar formats */
1171	DRM_FORMAT_UYVY,
1172	DRM_FORMAT_YUYV,
1173	DRM_FORMAT_YUV420,
1174	DRM_FORMAT_YUV422,
1175};
1176
1177static const u32 tegra114_overlay_formats[] = {
1178	DRM_FORMAT_ARGB4444,
1179	DRM_FORMAT_ARGB1555,
1180	DRM_FORMAT_RGB565,
1181	DRM_FORMAT_RGBA5551,
1182	DRM_FORMAT_ABGR8888,
1183	DRM_FORMAT_ARGB8888,
1184	/* new on Tegra114 */
1185	DRM_FORMAT_ABGR4444,
1186	DRM_FORMAT_ABGR1555,
1187	DRM_FORMAT_BGRA5551,
1188	DRM_FORMAT_XRGB1555,
1189	DRM_FORMAT_RGBX5551,
1190	DRM_FORMAT_XBGR1555,
1191	DRM_FORMAT_BGRX5551,
1192	DRM_FORMAT_BGR565,
1193	DRM_FORMAT_BGRA8888,
1194	DRM_FORMAT_RGBA8888,
1195	DRM_FORMAT_XRGB8888,
1196	DRM_FORMAT_XBGR8888,
1197	/* planar formats */
1198	DRM_FORMAT_UYVY,
1199	DRM_FORMAT_YUYV,
1200	DRM_FORMAT_YUV420,
1201	DRM_FORMAT_YUV422,
1202	/* semi-planar formats */
1203	DRM_FORMAT_NV12,
1204	DRM_FORMAT_NV21,
1205	DRM_FORMAT_NV16,
1206	DRM_FORMAT_NV61,
1207	DRM_FORMAT_NV24,
1208	DRM_FORMAT_NV42,
1209};
1210
1211static const u32 tegra124_overlay_formats[] = {
1212	DRM_FORMAT_ARGB4444,
1213	DRM_FORMAT_ARGB1555,
1214	DRM_FORMAT_RGB565,
1215	DRM_FORMAT_RGBA5551,
1216	DRM_FORMAT_ABGR8888,
1217	DRM_FORMAT_ARGB8888,
1218	/* new on Tegra114 */
1219	DRM_FORMAT_ABGR4444,
1220	DRM_FORMAT_ABGR1555,
1221	DRM_FORMAT_BGRA5551,
1222	DRM_FORMAT_XRGB1555,
1223	DRM_FORMAT_RGBX5551,
1224	DRM_FORMAT_XBGR1555,
1225	DRM_FORMAT_BGRX5551,
1226	DRM_FORMAT_BGR565,
1227	DRM_FORMAT_BGRA8888,
1228	DRM_FORMAT_RGBA8888,
1229	DRM_FORMAT_XRGB8888,
1230	DRM_FORMAT_XBGR8888,
1231	/* new on Tegra124 */
1232	DRM_FORMAT_RGBX8888,
1233	DRM_FORMAT_BGRX8888,
1234	/* planar formats */
1235	DRM_FORMAT_UYVY,
1236	DRM_FORMAT_YUYV,
1237	DRM_FORMAT_YVYU,
1238	DRM_FORMAT_VYUY,
1239	DRM_FORMAT_YUV420, /* YU12 */
1240	DRM_FORMAT_YUV422, /* YU16 */
1241	DRM_FORMAT_YUV444, /* YU24 */
1242	/* semi-planar formats */
1243	DRM_FORMAT_NV12,
1244	DRM_FORMAT_NV21,
1245	DRM_FORMAT_NV16,
1246	DRM_FORMAT_NV61,
1247	DRM_FORMAT_NV24,
1248	DRM_FORMAT_NV42,
1249};
1250
1251static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1252						       struct tegra_dc *dc,
1253						       unsigned int index,
1254						       bool cursor)
1255{
1256	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1257	struct tegra_plane *plane;
1258	unsigned int num_formats;
1259	enum drm_plane_type type;
1260	const u32 *formats;
1261	int err;
1262
1263	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1264	if (!plane)
1265		return ERR_PTR(-ENOMEM);
1266
1267	plane->offset = 0xa00 + 0x200 * index;
1268	plane->index = index;
1269	plane->dc = dc;
1270
1271	num_formats = dc->soc->num_overlay_formats;
1272	formats = dc->soc->overlay_formats;
1273
1274	err = tegra_plane_interconnect_init(plane);
1275	if (err) {
1276		kfree(plane);
1277		return ERR_PTR(err);
1278	}
1279
1280	if (!cursor)
1281		type = DRM_PLANE_TYPE_OVERLAY;
1282	else
1283		type = DRM_PLANE_TYPE_CURSOR;
1284
1285	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1286				       &tegra_plane_funcs, formats,
1287				       num_formats, linear_modifiers,
1288				       type, NULL);
1289	if (err < 0) {
1290		kfree(plane);
1291		return ERR_PTR(err);
1292	}
1293
1294	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1295	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1296
1297	err = drm_plane_create_rotation_property(&plane->base,
1298						 DRM_MODE_ROTATE_0,
1299						 DRM_MODE_ROTATE_0 |
1300						 DRM_MODE_ROTATE_180 |
1301						 DRM_MODE_REFLECT_X |
1302						 DRM_MODE_REFLECT_Y);
1303	if (err < 0)
1304		dev_err(dc->dev, "failed to create rotation property: %d\n",
1305			err);
1306
1307	return &plane->base;
1308}
1309
1310static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1311						    struct tegra_dc *dc)
1312{
1313	struct drm_plane *plane, *primary = NULL;
1314	unsigned int i, j;
1315
1316	for (i = 0; i < dc->soc->num_wgrps; i++) {
1317		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1318
1319		if (wgrp->dc == dc->pipe) {
1320			for (j = 0; j < wgrp->num_windows; j++) {
1321				unsigned int index = wgrp->windows[j];
1322
1323				plane = tegra_shared_plane_create(drm, dc,
1324								  wgrp->index,
1325								  index);
1326				if (IS_ERR(plane))
1327					return plane;
1328
1329				/*
1330				 * Choose the first shared plane owned by this
1331				 * head as the primary plane.
1332				 */
1333				if (!primary) {
1334					plane->type = DRM_PLANE_TYPE_PRIMARY;
1335					primary = plane;
1336				}
1337			}
1338		}
1339	}
1340
1341	return primary;
1342}
1343
1344static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1345					     struct tegra_dc *dc)
1346{
1347	struct drm_plane *planes[2], *primary;
1348	unsigned int planes_num;
1349	unsigned int i;
1350	int err;
1351
1352	primary = tegra_primary_plane_create(drm, dc);
1353	if (IS_ERR(primary))
1354		return primary;
1355
1356	if (dc->soc->supports_cursor)
1357		planes_num = 2;
1358	else
1359		planes_num = 1;
1360
1361	for (i = 0; i < planes_num; i++) {
1362		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1363							  false);
1364		if (IS_ERR(planes[i])) {
1365			err = PTR_ERR(planes[i]);
1366
1367			while (i--)
1368				planes[i]->funcs->destroy(planes[i]);
1369
1370			primary->funcs->destroy(primary);
1371			return ERR_PTR(err);
1372		}
1373	}
1374
1375	return primary;
1376}
1377
1378static void tegra_dc_destroy(struct drm_crtc *crtc)
1379{
1380	drm_crtc_cleanup(crtc);
 
1381}
1382
1383static void tegra_crtc_reset(struct drm_crtc *crtc)
1384{
1385	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1386
1387	if (crtc->state)
1388		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1389
1390	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1391}
1392
1393static struct drm_crtc_state *
1394tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1395{
1396	struct tegra_dc_state *state = to_dc_state(crtc->state);
1397	struct tegra_dc_state *copy;
1398
1399	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1400	if (!copy)
1401		return NULL;
1402
1403	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1404	copy->clk = state->clk;
1405	copy->pclk = state->pclk;
1406	copy->div = state->div;
1407	copy->planes = state->planes;
1408
1409	return &copy->base;
1410}
1411
1412static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1413					    struct drm_crtc_state *state)
1414{
1415	__drm_atomic_helper_crtc_destroy_state(state);
1416	kfree(state);
1417}
1418
1419#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1420
1421static const struct debugfs_reg32 tegra_dc_regs[] = {
1422	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1423	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1424	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1425	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1426	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1427	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1428	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1429	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1430	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1431	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1432	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1433	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1434	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1435	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1436	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1437	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1438	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1439	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1440	DEBUGFS_REG32(DC_CMD_INT_MASK),
1441	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1442	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1443	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1444	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1445	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1446	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1447	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1448	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1449	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1450	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1451	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1452	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1453	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1454	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1455	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1456	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1457	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1458	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1459	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1460	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1461	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1462	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1463	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1464	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1465	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1466	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1467	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1468	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1469	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1470	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1471	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1472	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1473	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1474	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1475	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1476	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1477	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1478	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1479	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1480	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1481	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1482	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1483	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1484	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1485	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1486	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1487	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1488	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1489	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1490	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1491	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1492	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1493	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1494	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1495	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1496	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1497	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1498	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1499	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1500	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1501	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1502	DEBUGFS_REG32(DC_DISP_ACTIVE),
1503	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1504	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1505	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1506	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1507	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1508	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1509	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1510	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1511	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1512	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1513	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1514	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1515	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1516	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1517	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1518	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1519	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1520	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1521	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1522	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1523	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1524	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1525	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1526	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1527	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1528	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1529	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1530	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1531	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1532	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1533	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1534	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1535	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1536	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1537	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1538	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1539	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1540	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1541	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1542	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1543	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1544	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1545	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1546	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1547	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1548	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1549	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1550	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1551	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1552	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1553	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1554	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1555	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1556	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1557	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1558	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1559	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1560	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1561	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1562	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1563	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1564	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1565	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1566	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1567	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1568	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1569	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1570	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1571	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1572	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1573	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1574	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1575	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1576	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1577	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1578	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1579	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1580	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1581	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1582	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1583	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1584	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1585	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1586	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1587	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1588	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1589	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1590	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1591	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1592	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1593	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1594	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1595	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1596	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1597	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1598	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1599	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1600	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1601	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1602	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1603	DEBUGFS_REG32(DC_WIN_POSITION),
1604	DEBUGFS_REG32(DC_WIN_SIZE),
1605	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1606	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1607	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1608	DEBUGFS_REG32(DC_WIN_DDA_INC),
1609	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1610	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1611	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1612	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1613	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1614	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1615	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1616	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1617	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1618	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1619	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1620	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1621	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1622	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1623	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1624	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1625	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1626	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1627	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1628	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1629	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1630	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1631	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1632	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1633	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1634};
1635
1636static int tegra_dc_show_regs(struct seq_file *s, void *data)
1637{
1638	struct drm_info_node *node = s->private;
1639	struct tegra_dc *dc = node->info_ent->data;
1640	unsigned int i;
1641	int err = 0;
1642
1643	drm_modeset_lock(&dc->base.mutex, NULL);
1644
1645	if (!dc->base.state->active) {
1646		err = -EBUSY;
1647		goto unlock;
1648	}
1649
1650	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1651		unsigned int offset = tegra_dc_regs[i].offset;
1652
1653		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1654			   offset, tegra_dc_readl(dc, offset));
1655	}
1656
1657unlock:
1658	drm_modeset_unlock(&dc->base.mutex);
1659	return err;
1660}
1661
1662static int tegra_dc_show_crc(struct seq_file *s, void *data)
 
 
1663{
1664	struct drm_info_node *node = s->private;
1665	struct tegra_dc *dc = node->info_ent->data;
1666	int err = 0;
1667	u32 value;
1668
1669	drm_modeset_lock(&dc->base.mutex, NULL);
1670
1671	if (!dc->base.state->active) {
1672		err = -EBUSY;
1673		goto unlock;
1674	}
1675
1676	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1677	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1678	tegra_dc_commit(dc);
1679
1680	drm_crtc_wait_one_vblank(&dc->base);
1681	drm_crtc_wait_one_vblank(&dc->base);
1682
1683	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1684	seq_printf(s, "%08x\n", value);
1685
1686	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1687
1688unlock:
1689	drm_modeset_unlock(&dc->base.mutex);
1690	return err;
1691}
1692
1693static int tegra_dc_show_stats(struct seq_file *s, void *data)
 
1694{
1695	struct drm_info_node *node = s->private;
1696	struct tegra_dc *dc = node->info_ent->data;
 
 
1697
1698	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1699	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1700	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1701	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1702
1703	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1704	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1705	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1706	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1707
1708	return 0;
1709}
 
 
 
 
 
 
1710
1711static struct drm_info_list debugfs_files[] = {
1712	{ "regs", tegra_dc_show_regs, 0, NULL },
1713	{ "crc", tegra_dc_show_crc, 0, NULL },
1714	{ "stats", tegra_dc_show_stats, 0, NULL },
1715};
1716
1717static int tegra_dc_late_register(struct drm_crtc *crtc)
1718{
1719	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1720	struct drm_minor *minor = crtc->dev->primary;
1721	struct dentry *root;
1722	struct tegra_dc *dc = to_tegra_dc(crtc);
1723
1724#ifdef CONFIG_DEBUG_FS
1725	root = crtc->debugfs_entry;
1726#else
1727	root = NULL;
1728#endif
1729
1730	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1731				    GFP_KERNEL);
1732	if (!dc->debugfs_files)
1733		return -ENOMEM;
1734
1735	for (i = 0; i < count; i++)
1736		dc->debugfs_files[i].data = dc;
1737
1738	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1739
1740	return 0;
1741}
1742
1743static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1744{
1745	unsigned int count = ARRAY_SIZE(debugfs_files);
1746	struct drm_minor *minor = crtc->dev->primary;
1747	struct tegra_dc *dc = to_tegra_dc(crtc);
1748
1749	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1750	kfree(dc->debugfs_files);
1751	dc->debugfs_files = NULL;
1752}
1753
1754static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1755{
1756	struct tegra_dc *dc = to_tegra_dc(crtc);
1757
1758	/* XXX vblank syncpoints don't work with nvdisplay yet */
1759	if (dc->syncpt && !dc->soc->has_nvdisplay)
1760		return host1x_syncpt_read(dc->syncpt);
1761
1762	/* fallback to software emulated VBLANK counter */
1763	return (u32)drm_crtc_vblank_count(&dc->base);
1764}
1765
1766static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1767{
1768	struct tegra_dc *dc = to_tegra_dc(crtc);
1769	u32 value;
1770
1771	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1772	value |= VBLANK_INT;
1773	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1774
1775	return 0;
1776}
1777
1778static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1779{
1780	struct tegra_dc *dc = to_tegra_dc(crtc);
1781	u32 value;
1782
1783	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1784	value &= ~VBLANK_INT;
1785	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1786}
1787
1788static const struct drm_crtc_funcs tegra_crtc_funcs = {
1789	.page_flip = drm_atomic_helper_page_flip,
1790	.set_config = drm_atomic_helper_set_config,
1791	.destroy = tegra_dc_destroy,
1792	.reset = tegra_crtc_reset,
1793	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1794	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1795	.late_register = tegra_dc_late_register,
1796	.early_unregister = tegra_dc_early_unregister,
1797	.get_vblank_counter = tegra_dc_get_vblank_counter,
1798	.enable_vblank = tegra_dc_enable_vblank,
1799	.disable_vblank = tegra_dc_disable_vblank,
1800};
1801
1802static int tegra_dc_set_timings(struct tegra_dc *dc,
1803				struct drm_display_mode *mode)
1804{
1805	unsigned int h_ref_to_sync = 1;
1806	unsigned int v_ref_to_sync = 1;
 
1807	unsigned long value;
1808
1809	if (!dc->soc->has_nvdisplay) {
1810		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1811
1812		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1813		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1814	}
1815
1816	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1817		((mode->hsync_end - mode->hsync_start) <<  0);
1818	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1819
1820	value = ((mode->vtotal - mode->vsync_end) << 16) |
1821		((mode->htotal - mode->hsync_end) <<  0);
1822	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1823
1824	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1825		((mode->hsync_start - mode->hdisplay) <<  0);
1826	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1827
1828	value = (mode->vdisplay << 16) | mode->hdisplay;
1829	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1830
1831	return 0;
1832}
1833
1834/**
1835 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1836 *     state
1837 * @dc: display controller
1838 * @crtc_state: CRTC atomic state
1839 * @clk: parent clock for display controller
1840 * @pclk: pixel clock
1841 * @div: shift clock divider
1842 *
1843 * Returns:
1844 * 0 on success or a negative error-code on failure.
1845 */
1846int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1847			       struct drm_crtc_state *crtc_state,
1848			       struct clk *clk, unsigned long pclk,
1849			       unsigned int div)
1850{
1851	struct tegra_dc_state *state = to_dc_state(crtc_state);
1852
1853	if (!clk_has_parent(dc->clk, clk))
1854		return -EINVAL;
1855
1856	state->clk = clk;
1857	state->pclk = pclk;
1858	state->div = div;
1859
1860	return 0;
1861}
1862
1863static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1864					  struct tegra_dc_state *state)
1865{
1866	unsigned long rate, pstate;
1867	struct dev_pm_opp *opp;
1868	int err;
 
 
 
 
 
 
 
 
1869
1870	if (!dc->has_opp_table)
1871		return;
1872
1873	/* calculate actual pixel clock rate which depends on internal divider */
1874	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1875
1876	/* find suitable OPP for the rate */
1877	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1878
1879	/*
1880	 * Very high resolution modes may results in a clock rate that is
1881	 * above the characterized maximum. In this case it's okay to fall
1882	 * back to the characterized maximum.
1883	 */
1884	if (opp == ERR_PTR(-ERANGE))
1885		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
 
 
 
1886
1887	if (IS_ERR(opp)) {
1888		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1889			rate, opp);
1890		return;
1891	}
1892
1893	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1894	dev_pm_opp_put(opp);
1895
1896	/*
1897	 * The minimum core voltage depends on the pixel clock rate (which
1898	 * depends on internal clock divider of the CRTC) and not on the
1899	 * rate of the display controller clock. This is why we're not using
1900	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1901	 * directly.
1902	 */
1903	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1904	if (err)
1905		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1906			pstate, err);
1907}
1908
1909static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1910				    struct tegra_dc_state *state)
1911{
1912	int err;
 
 
 
 
1913
1914	err = clk_set_parent(dc->clk, state->clk);
1915	if (err < 0)
1916		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1917
1918	/*
1919	 * Outputs may not want to change the parent clock rate. This is only
1920	 * relevant to Tegra20 where only a single display PLL is available.
1921	 * Since that PLL would typically be used for HDMI, an internal LVDS
1922	 * panel would need to be driven by some other clock such as PLL_P
1923	 * which is shared with other peripherals. Changing the clock rate
1924	 * should therefore be avoided.
1925	 */
1926	if (state->pclk > 0) {
1927		err = clk_set_rate(state->clk, state->pclk);
1928		if (err < 0)
1929			dev_err(dc->dev,
1930				"failed to set clock rate to %lu Hz\n",
1931				state->pclk);
1932
1933		err = clk_set_rate(dc->clk, state->pclk);
1934		if (err < 0)
1935			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1936				dc->clk, state->pclk, err);
1937	}
1938
1939	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1940		      state->div);
1941	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1942
1943	tegra_dc_update_voltage_state(dc, state);
1944}
1945
1946static void tegra_dc_stop(struct tegra_dc *dc)
 
1947{
1948	u32 value;
 
 
1949
1950	/* stop the display controller */
1951	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1952	value &= ~DISP_CTRL_MODE_MASK;
1953	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
 
 
 
 
 
1954
1955	tegra_dc_commit(dc);
1956}
1957
1958static bool tegra_dc_idle(struct tegra_dc *dc)
1959{
1960	u32 value;
1961
1962	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
 
1963
1964	return (value & DISP_CTRL_MODE_MASK) == 0;
1965}
1966
1967static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1968{
1969	timeout = jiffies + msecs_to_jiffies(timeout);
 
1970
1971	while (time_before(jiffies, timeout)) {
1972		if (tegra_dc_idle(dc))
1973			return 0;
1974
1975		usleep_range(1000, 2000);
1976	}
 
 
 
 
1977
1978	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1979	return -ETIMEDOUT;
1980}
1981
1982static void
1983tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1984				   struct drm_atomic_state *state,
1985				   bool prepare_bandwidth_transition)
1986{
1987	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1988	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1989	const struct drm_plane_state *old_plane_state;
1990	const struct drm_crtc_state *old_crtc_state;
1991	struct tegra_dc_window window, old_window;
1992	struct tegra_dc *dc = to_tegra_dc(crtc);
1993	struct tegra_plane *tegra;
1994	struct drm_plane *plane;
1995
1996	if (dc->soc->has_nvdisplay)
1997		return;
1998
1999	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
 
2000
2001	if (!crtc->state->active) {
2002		if (!old_crtc_state->active)
2003			return;
2004
2005		/*
2006		 * When CRTC is disabled on DPMS, the state of attached planes
2007		 * is kept unchanged. Hence we need to enforce removal of the
2008		 * bandwidths from the ICC paths.
2009		 */
2010		drm_atomic_crtc_for_each_plane(plane, crtc) {
2011			tegra = to_tegra_plane(plane);
2012
2013			icc_set_bw(tegra->icc_mem, 0, 0);
2014			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2015		}
2016
2017		return;
 
 
 
 
 
 
2018	}
2019
2020	for_each_old_plane_in_state(old_crtc_state->state, plane,
2021				    old_plane_state, i) {
2022		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2023		new_tegra_state = to_const_tegra_plane_state(plane->state);
2024		tegra = to_tegra_plane(plane);
2025
2026		/*
2027		 * We're iterating over the global atomic state and it contains
2028		 * planes from another CRTC, hence we need to filter out the
2029		 * planes unrelated to this CRTC.
2030		 */
2031		if (tegra->dc != dc)
2032			continue;
2033
2034		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2035		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
 
 
 
 
 
2036
2037		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2038		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2039
2040		/*
2041		 * See the comment related to !crtc->state->active above,
2042		 * which explains why bandwidths need to be updated when
2043		 * CRTC is turning ON.
2044		 */
2045		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2046		    old_crtc_state->active)
2047			continue;
2048
2049		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2050		window.dst.h = drm_rect_height(&plane->state->dst);
 
 
 
 
 
 
 
 
2051
2052		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2053		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2054
2055		/*
2056		 * During the preparation phase (atomic_begin), the memory
2057		 * freq should go high before the DC changes are committed
2058		 * if bandwidth requirement goes up, otherwise memory freq
2059		 * should to stay high if BW requirement goes down.  The
2060		 * opposite applies to the completion phase (post_commit).
2061		 */
2062		if (prepare_bandwidth_transition) {
2063			new_avg_bw = max(old_avg_bw, new_avg_bw);
2064			new_peak_bw = max(old_peak_bw, new_peak_bw);
2065
2066			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2067				window = old_window;
2068		}
2069
2070		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2071
2072		if (tegra_plane_use_vertical_filtering(tegra, &window))
2073			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2074		else
2075			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2076	}
2077}
2078
2079static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2080				      struct drm_atomic_state *state)
2081{
2082	struct tegra_dc *dc = to_tegra_dc(crtc);
2083	u32 value;
2084	int err;
2085
2086	if (!tegra_dc_idle(dc)) {
2087		tegra_dc_stop(dc);
2088
2089		/*
2090		 * Ignore the return value, there isn't anything useful to do
2091		 * in case this fails.
2092		 */
2093		tegra_dc_wait_idle(dc, 100);
2094	}
2095
2096	/*
2097	 * This should really be part of the RGB encoder driver, but clearing
2098	 * these bits has the side-effect of stopping the display controller.
2099	 * When that happens no VBLANK interrupts will be raised. At the same
2100	 * time the encoder is disabled before the display controller, so the
2101	 * above code is always going to timeout waiting for the controller
2102	 * to go idle.
2103	 *
2104	 * Given the close coupling between the RGB encoder and the display
2105	 * controller doing it here is still kind of okay. None of the other
2106	 * encoder drivers require these bits to be cleared.
2107	 *
2108	 * XXX: Perhaps given that the display controller is switched off at
2109	 * this point anyway maybe clearing these bits isn't even useful for
2110	 * the RGB encoder?
2111	 */
2112	if (dc->rgb) {
2113		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2114		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2115			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2116		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2117	}
2118
2119	tegra_dc_stats_reset(&dc->stats);
2120	drm_crtc_vblank_off(crtc);
 
 
 
 
2121
2122	spin_lock_irq(&crtc->dev->event_lock);
 
 
 
 
2123
2124	if (crtc->state->event) {
2125		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2126		crtc->state->event = NULL;
 
 
2127	}
2128
2129	spin_unlock_irq(&crtc->dev->event_lock);
 
2130
2131	err = host1x_client_suspend(&dc->client);
2132	if (err < 0)
2133		dev_err(dc->dev, "failed to suspend: %d\n", err);
2134
2135	if (dc->has_opp_table) {
2136		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2137		if (err)
2138			dev_err(dc->dev,
2139				"failed to clear power domain state: %d\n", err);
2140	}
2141}
2142
2143static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2144				     struct drm_atomic_state *state)
2145{
2146	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2147	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2148	struct tegra_dc *dc = to_tegra_dc(crtc);
2149	u32 value;
2150	int err;
2151
2152	/* apply PLL changes */
2153	tegra_dc_set_clock_rate(dc, crtc_state);
2154
2155	err = host1x_client_resume(&dc->client);
2156	if (err < 0) {
2157		dev_err(dc->dev, "failed to resume: %d\n", err);
2158		return;
2159	}
2160
2161	/* initialize display controller */
2162	if (dc->syncpt) {
2163		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2164
2165		if (dc->soc->has_nvdisplay)
2166			enable = 1 << 31;
2167		else
2168			enable = 1 << 8;
2169
2170		value = SYNCPT_CNTRL_NO_STALL;
2171		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2172
2173		value = enable | syncpt;
2174		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2175	}
2176
2177	if (dc->soc->has_nvdisplay) {
2178		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2179			DSC_OBUF_UF_INT;
2180		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2181
2182		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2183			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2184			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2185			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2186			VBLANK_INT | FRAME_END_INT;
2187		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
 
 
 
 
2188
2189		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2190			FRAME_END_INT;
2191		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2192
2193		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2194		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2195
2196		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2197	} else {
2198		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2199			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2200		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2201
2202		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2203			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2204		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205
2206		/* initialize timer */
2207		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2208			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2209		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2210
2211		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2212			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2213		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2214
2215		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2218
2219		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2222	}
2223
2224	if (dc->soc->supports_background_color)
2225		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2226	else
2227		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2228
2229	/* apply pixel clock changes */
2230	if (!dc->soc->has_nvdisplay) {
2231		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2232		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2233	}
2234
2235	/* program display mode */
2236	tegra_dc_set_timings(dc, mode);
2237
2238	/* interlacing isn't supported yet, so disable it */
2239	if (dc->soc->supports_interlacing) {
2240		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2241		value &= ~INTERLACE_ENABLE;
2242		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2243	}
2244
2245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2246	value &= ~DISP_CTRL_MODE_MASK;
2247	value |= DISP_CTRL_MODE_C_DISPLAY;
2248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2249
2250	if (!dc->soc->has_nvdisplay) {
2251		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2252		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2253			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2254		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2255	}
 
 
 
 
 
 
 
 
2256
2257	/* enable underflow reporting and display red for missing pixels */
2258	if (dc->soc->has_nvdisplay) {
2259		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2260		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2261	}
2262
2263	if (dc->rgb) {
2264		/* XXX: parameterize? */
2265		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2266		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2267	}
2268
2269	tegra_dc_commit(dc);
2270
2271	drm_crtc_vblank_on(crtc);
2272}
2273
2274static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2275				    struct drm_atomic_state *state)
2276{
2277	unsigned long flags;
2278
2279	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2280
2281	if (crtc->state->event) {
2282		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2283
2284		if (drm_crtc_vblank_get(crtc) != 0)
2285			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2286		else
2287			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2288
2289		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2290
2291		crtc->state->event = NULL;
2292	}
2293}
2294
2295static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2296				    struct drm_atomic_state *state)
2297{
2298	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2299									  crtc);
2300	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2301	struct tegra_dc *dc = to_tegra_dc(crtc);
2302	u32 value;
 
2303
2304	value = dc_state->planes << 8 | GENERAL_UPDATE;
2305	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2306	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2307
2308	value = dc_state->planes | GENERAL_ACT_REQ;
2309	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2310	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2311}
2312
2313static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2314{
2315	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2316	const struct drm_format_info *fmt = state->fb->format;
2317	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2318	unsigned int dst_w = drm_rect_width(&state->dst);
2319
2320	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2321		return false;
2322
2323	if (soc->supports_cursor)
2324		return true;
2325
2326	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2327		return false;
2328
2329	return true;
2330}
2331
2332static unsigned long
2333tegra_plane_overlap_mask(struct drm_crtc_state *state,
2334			 const struct drm_plane_state *plane_state)
2335{
2336	const struct drm_plane_state *other_state;
2337	const struct tegra_plane *tegra;
2338	unsigned long overlap_mask = 0;
2339	struct drm_plane *plane;
2340	struct drm_rect rect;
2341
2342	if (!plane_state->visible || !plane_state->fb)
2343		return 0;
 
2344
2345	/*
2346	 * Data-prefetch FIFO will easily help to overcome temporal memory
2347	 * pressure if other plane overlaps with the cursor plane.
2348	 */
2349	if (tegra_plane_is_cursor(plane_state))
2350		return 0;
2351
2352	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2353		rect = plane_state->dst;
 
 
2354
2355		tegra = to_tegra_plane(other_state->plane);
 
 
2356
2357		if (!other_state->visible || !other_state->fb)
2358			continue;
2359
2360		/*
2361		 * Ignore cursor plane overlaps because it's not practical to
2362		 * assume that it contributes to the bandwidth in overlapping
2363		 * area if window width is small.
2364		 */
2365		if (tegra_plane_is_cursor(other_state))
2366			continue;
2367
2368		if (drm_rect_intersect(&rect, &other_state->dst))
2369			overlap_mask |= BIT(tegra->index);
2370	}
2371
2372	return overlap_mask;
2373}
2374
2375static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2376						 struct drm_atomic_state *state)
2377{
2378	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2379	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2380	bool all_planes_overlap_simultaneously = true;
2381	const struct tegra_plane_state *tegra_state;
2382	const struct drm_plane_state *plane_state;
2383	struct tegra_dc *dc = to_tegra_dc(crtc);
2384	const struct drm_crtc_state *old_state;
2385	struct drm_crtc_state *new_state;
2386	struct tegra_plane *tegra;
2387	struct drm_plane *plane;
2388
2389	/*
2390	 * The nv-display uses shared planes.  The algorithm below assumes
2391	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2392	 * the nv-display.  Note that T124 support has additional windows,
2393	 * but currently they aren't supported by the driver.
2394	 */
2395	if (dc->soc->has_nvdisplay)
2396		return 0;
2397
2398	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2399	old_state = drm_atomic_get_old_crtc_state(state, crtc);
2400
2401	/*
2402	 * For overlapping planes pixel's data is fetched for each plane at
2403	 * the same time, hence bandwidths are accumulated in this case.
2404	 * This needs to be taken into account for calculating total bandwidth
2405	 * consumed by all planes.
2406	 *
2407	 * Here we get the overlapping state of each plane, which is a
2408	 * bitmask of plane indices telling with what planes there is an
2409	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2410	 * to make further code nicer and simpler.
2411	 */
2412	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2413		tegra_state = to_const_tegra_plane_state(plane_state);
2414		tegra = to_tegra_plane(plane);
2415
2416		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2417			return -EINVAL;
2418
2419		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2420		mask = tegra_plane_overlap_mask(new_state, plane_state);
2421		overlap_mask[tegra->index] = mask;
2422
2423		if (hweight_long(mask) != 3)
2424			all_planes_overlap_simultaneously = false;
2425	}
2426
2427	/*
2428	 * Then we calculate maximum bandwidth of each plane state.
2429	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2430	 * overlapping planes, where "simultaneously" means areas where DC
2431	 * fetches from the planes simultaneously during of scan-out process.
2432	 *
2433	 * For example, if plane A overlaps with planes B and C, but B and C
2434	 * don't overlap, then the peak bandwidth will be either in area where
2435	 * A-and-B or A-and-C planes overlap.
2436	 *
2437	 * The plane_peak_bw[] contains peak memory bandwidth values of
2438	 * each plane, this information is needed by interconnect provider
2439	 * in order to set up latency allowance based on the peak BW, see
2440	 * tegra_crtc_update_memory_bandwidth().
2441	 */
2442	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2443		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2444
2445		/*
2446		 * Note that plane's atomic check doesn't touch the
2447		 * total_peak_memory_bandwidth of enabled plane, hence the
2448		 * current state contains the old bandwidth state from the
2449		 * previous CRTC commit.
2450		 */
2451		tegra_state = to_const_tegra_plane_state(plane_state);
2452		tegra = to_tegra_plane(plane);
2453
2454		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2455			if (i == tegra->index)
2456				continue;
2457
2458			if (all_planes_overlap_simultaneously)
2459				overlap_bw += plane_peak_bw[i];
2460			else
2461				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2462		}
2463
2464		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2465		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2466
2467		/*
2468		 * If plane's peak bandwidth changed (for example plane isn't
2469		 * overlapped anymore) and plane isn't in the atomic state,
2470		 * then add plane to the state in order to have the bandwidth
2471		 * updated.
2472		 */
2473		if (old_peak_bw != new_peak_bw) {
2474			struct tegra_plane_state *new_tegra_state;
2475			struct drm_plane_state *new_plane_state;
2476
2477			new_plane_state = drm_atomic_get_plane_state(state, plane);
2478			if (IS_ERR(new_plane_state))
2479				return PTR_ERR(new_plane_state);
2480
2481			new_tegra_state = to_tegra_plane_state(new_plane_state);
2482			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2483		}
2484	}
2485
2486	return 0;
2487}
2488
2489static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2490				   struct drm_atomic_state *state)
2491{
2492	int err;
2493
2494	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2495	if (err)
2496		return err;
2497
2498	return 0;
2499}
2500
2501void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2502				   struct drm_atomic_state *state)
2503{
2504	/*
2505	 * Display bandwidth is allowed to go down only once hardware state
2506	 * is known to be armed, i.e. state was committed and VBLANK event
2507	 * received.
2508	 */
2509	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2510}
2511
2512static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2513	.atomic_check = tegra_crtc_atomic_check,
2514	.atomic_begin = tegra_crtc_atomic_begin,
2515	.atomic_flush = tegra_crtc_atomic_flush,
2516	.atomic_enable = tegra_crtc_atomic_enable,
2517	.atomic_disable = tegra_crtc_atomic_disable,
 
 
2518};
2519
2520static irqreturn_t tegra_dc_irq(int irq, void *data)
2521{
2522	struct tegra_dc *dc = data;
2523	unsigned long status;
2524
2525	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2526	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2527
2528	if (status & FRAME_END_INT) {
2529		/*
2530		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2531		*/
2532		dc->stats.frames_total++;
2533		dc->stats.frames++;
2534	}
2535
2536	if (status & VBLANK_INT) {
2537		/*
2538		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2539		*/
2540		drm_crtc_handle_vblank(&dc->base);
2541		dc->stats.vblank_total++;
2542		dc->stats.vblank++;
2543	}
2544
2545	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2546		/*
2547		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2548		*/
2549		dc->stats.underflow_total++;
2550		dc->stats.underflow++;
2551	}
2552
2553	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2554		/*
2555		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2556		*/
2557		dc->stats.overflow_total++;
2558		dc->stats.overflow++;
2559	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560
2561	if (status & HEAD_UF_INT) {
2562		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2563		dc->stats.underflow_total++;
2564		dc->stats.underflow++;
2565	}
2566
2567	return IRQ_HANDLED;
2568}
2569
2570static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
 
 
 
 
2571{
2572	unsigned int i;
 
 
2573
2574	if (!dc->soc->wgrps)
2575		return true;
 
2576
2577	for (i = 0; i < dc->soc->num_wgrps; i++) {
2578		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2579
2580		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2581			return true;
 
 
 
2582	}
2583
2584	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585}
2586
2587static int tegra_dc_early_init(struct host1x_client *client)
2588{
2589	struct drm_device *drm = dev_get_drvdata(client->host);
2590	struct tegra_drm *tegra = drm->dev_private;
 
2591
2592	tegra->num_crtcs++;
 
 
 
 
2593
2594	return 0;
2595}
2596
2597static int tegra_dc_init(struct host1x_client *client)
2598{
2599	struct drm_device *drm = dev_get_drvdata(client->host);
2600	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2601	struct tegra_dc *dc = host1x_client_to_dc(client);
2602	struct tegra_drm *tegra = drm->dev_private;
2603	struct drm_plane *primary = NULL;
2604	struct drm_plane *cursor = NULL;
2605	int err;
2606
2607	/*
2608	 * DC has been reset by now, so VBLANK syncpoint can be released
2609	 * for general use.
2610	 */
2611	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2612
2613	/*
2614	 * XXX do not register DCs with no window groups because we cannot
2615	 * assign a primary plane to them, which in turn will cause KMS to
2616	 * crash.
2617	 */
2618	if (!tegra_dc_has_window_groups(dc))
2619		return 0;
2620
2621	/*
2622	 * Set the display hub as the host1x client parent for the display
2623	 * controller. This is needed for the runtime reference counting that
2624	 * ensures the display hub is always powered when any of the display
2625	 * controllers are.
2626	 */
2627	if (dc->soc->has_nvdisplay)
2628		client->parent = &tegra->hub->client;
2629
2630	dc->syncpt = host1x_syncpt_request(client, flags);
2631	if (!dc->syncpt)
2632		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2633
2634	err = host1x_client_iommu_attach(client);
2635	if (err < 0 && err != -ENODEV) {
2636		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2637		return err;
2638	}
2639
2640	if (dc->soc->wgrps)
2641		primary = tegra_dc_add_shared_planes(drm, dc);
2642	else
2643		primary = tegra_dc_add_planes(drm, dc);
2644
2645	if (IS_ERR(primary)) {
2646		err = PTR_ERR(primary);
2647		goto cleanup;
2648	}
2649
2650	if (dc->soc->supports_cursor) {
2651		cursor = tegra_dc_cursor_plane_create(drm, dc);
2652		if (IS_ERR(cursor)) {
2653			err = PTR_ERR(cursor);
2654			goto cleanup;
2655		}
2656	} else {
2657		/* dedicate one overlay to mouse cursor */
2658		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2659		if (IS_ERR(cursor)) {
2660			err = PTR_ERR(cursor);
2661			goto cleanup;
2662		}
2663	}
2664
2665	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2666					&tegra_crtc_funcs, NULL);
2667	if (err < 0)
2668		goto cleanup;
2669
2670	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2671
2672	/*
2673	 * Keep track of the minimum pitch alignment across all display
2674	 * controllers.
2675	 */
2676	if (dc->soc->pitch_align > tegra->pitch_align)
2677		tegra->pitch_align = dc->soc->pitch_align;
2678
2679	/* track maximum resolution */
2680	if (dc->soc->has_nvdisplay)
2681		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2682	else
2683		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2684
2685	err = tegra_dc_rgb_init(drm, dc);
2686	if (err < 0 && err != -ENODEV) {
2687		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2688		goto cleanup;
2689	}
2690
2691	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2692			       dev_name(dc->dev), dc);
2693	if (err < 0) {
2694		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2695			err);
2696		goto cleanup;
2697	}
2698
2699	/*
2700	 * Inherit the DMA parameters (such as maximum segment size) from the
2701	 * parent host1x device.
2702	 */
2703	client->dev->dma_parms = client->host->dma_parms;
2704
2705	return 0;
2706
2707cleanup:
2708	if (!IS_ERR_OR_NULL(cursor))
2709		drm_plane_cleanup(cursor);
2710
2711	if (!IS_ERR(primary))
2712		drm_plane_cleanup(primary);
2713
2714	host1x_client_iommu_detach(client);
2715	host1x_syncpt_put(dc->syncpt);
2716
2717	return err;
2718}
2719
2720static int tegra_dc_exit(struct host1x_client *client)
2721{
2722	struct tegra_dc *dc = host1x_client_to_dc(client);
2723	int err;
2724
2725	if (!tegra_dc_has_window_groups(dc))
2726		return 0;
2727
2728	/* avoid a dangling pointer just in case this disappears */
2729	client->dev->dma_parms = NULL;
2730
2731	devm_free_irq(dc->dev, dc->irq, dc);
 
2732
2733	err = tegra_dc_rgb_exit(dc);
2734	if (err) {
2735		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2736		return err;
2737	}
2738
2739	host1x_client_iommu_detach(client);
2740	host1x_syncpt_put(dc->syncpt);
2741
2742	return 0;
2743}
2744
2745static int tegra_dc_late_exit(struct host1x_client *client)
2746{
2747	struct drm_device *drm = dev_get_drvdata(client->host);
2748	struct tegra_drm *tegra = drm->dev_private;
2749
2750	tegra->num_crtcs--;
2751
2752	return 0;
2753}
2754
2755static int tegra_dc_runtime_suspend(struct host1x_client *client)
2756{
2757	struct tegra_dc *dc = host1x_client_to_dc(client);
2758	struct device *dev = client->dev;
2759	int err;
2760
2761	err = reset_control_assert(dc->rst);
2762	if (err < 0) {
2763		dev_err(dev, "failed to assert reset: %d\n", err);
2764		return err;
2765	}
2766
2767	if (dc->soc->has_powergate)
2768		tegra_powergate_power_off(dc->powergate);
2769
2770	clk_disable_unprepare(dc->clk);
2771	pm_runtime_put_sync(dev);
2772
2773	return 0;
2774}
2775
2776static int tegra_dc_runtime_resume(struct host1x_client *client)
2777{
2778	struct tegra_dc *dc = host1x_client_to_dc(client);
2779	struct device *dev = client->dev;
2780	int err;
2781
2782	err = pm_runtime_resume_and_get(dev);
2783	if (err < 0) {
2784		dev_err(dev, "failed to get runtime PM: %d\n", err);
2785		return err;
2786	}
2787
2788	if (dc->soc->has_powergate) {
2789		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2790							dc->rst);
2791		if (err < 0) {
2792			dev_err(dev, "failed to power partition: %d\n", err);
2793			goto put_rpm;
2794		}
2795	} else {
2796		err = clk_prepare_enable(dc->clk);
2797		if (err < 0) {
2798			dev_err(dev, "failed to enable clock: %d\n", err);
2799			goto put_rpm;
2800		}
2801
2802		err = reset_control_deassert(dc->rst);
2803		if (err < 0) {
2804			dev_err(dev, "failed to deassert reset: %d\n", err);
2805			goto disable_clk;
2806		}
2807	}
2808
2809	return 0;
2810
2811disable_clk:
2812	clk_disable_unprepare(dc->clk);
2813put_rpm:
2814	pm_runtime_put_sync(dev);
2815	return err;
2816}
2817
2818static const struct host1x_client_ops dc_client_ops = {
2819	.early_init = tegra_dc_early_init,
2820	.init = tegra_dc_init,
2821	.exit = tegra_dc_exit,
2822	.late_exit = tegra_dc_late_exit,
2823	.suspend = tegra_dc_runtime_suspend,
2824	.resume = tegra_dc_runtime_resume,
2825};
2826
2827static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2828	.supports_background_color = false,
2829	.supports_interlacing = false,
2830	.supports_cursor = false,
2831	.supports_block_linear = false,
2832	.supports_sector_layout = false,
2833	.has_legacy_blending = true,
2834	.pitch_align = 8,
2835	.has_powergate = false,
2836	.coupled_pm = true,
2837	.has_nvdisplay = false,
2838	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2839	.primary_formats = tegra20_primary_formats,
2840	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2841	.overlay_formats = tegra20_overlay_formats,
2842	.modifiers = tegra20_modifiers,
2843	.has_win_a_without_filters = true,
2844	.has_win_b_vfilter_mem_client = true,
2845	.has_win_c_without_vert_filter = true,
2846	.plane_tiled_memory_bandwidth_x2 = false,
2847	.has_pll_d2_out0 = false,
2848};
2849
2850static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2851	.supports_background_color = false,
2852	.supports_interlacing = false,
2853	.supports_cursor = false,
2854	.supports_block_linear = false,
2855	.supports_sector_layout = false,
2856	.has_legacy_blending = true,
2857	.pitch_align = 8,
2858	.has_powergate = false,
2859	.coupled_pm = false,
2860	.has_nvdisplay = false,
2861	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2862	.primary_formats = tegra20_primary_formats,
2863	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2864	.overlay_formats = tegra20_overlay_formats,
2865	.modifiers = tegra20_modifiers,
2866	.has_win_a_without_filters = false,
2867	.has_win_b_vfilter_mem_client = true,
2868	.has_win_c_without_vert_filter = false,
2869	.plane_tiled_memory_bandwidth_x2 = true,
2870	.has_pll_d2_out0 = true,
2871};
2872
2873static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2874	.supports_background_color = false,
2875	.supports_interlacing = false,
2876	.supports_cursor = false,
2877	.supports_block_linear = false,
2878	.supports_sector_layout = false,
2879	.has_legacy_blending = true,
2880	.pitch_align = 64,
2881	.has_powergate = true,
2882	.coupled_pm = false,
2883	.has_nvdisplay = false,
2884	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2885	.primary_formats = tegra114_primary_formats,
2886	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2887	.overlay_formats = tegra114_overlay_formats,
2888	.modifiers = tegra20_modifiers,
2889	.has_win_a_without_filters = false,
2890	.has_win_b_vfilter_mem_client = false,
2891	.has_win_c_without_vert_filter = false,
2892	.plane_tiled_memory_bandwidth_x2 = true,
2893	.has_pll_d2_out0 = true,
2894};
2895
2896static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2897	.supports_background_color = true,
2898	.supports_interlacing = true,
2899	.supports_cursor = true,
2900	.supports_block_linear = true,
2901	.supports_sector_layout = false,
2902	.has_legacy_blending = false,
2903	.pitch_align = 64,
2904	.has_powergate = true,
2905	.coupled_pm = false,
2906	.has_nvdisplay = false,
2907	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2908	.primary_formats = tegra124_primary_formats,
2909	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2910	.overlay_formats = tegra124_overlay_formats,
2911	.modifiers = tegra124_modifiers,
2912	.has_win_a_without_filters = false,
2913	.has_win_b_vfilter_mem_client = false,
2914	.has_win_c_without_vert_filter = false,
2915	.plane_tiled_memory_bandwidth_x2 = false,
2916	.has_pll_d2_out0 = true,
2917};
2918
2919static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2920	.supports_background_color = true,
2921	.supports_interlacing = true,
2922	.supports_cursor = true,
2923	.supports_block_linear = true,
2924	.supports_sector_layout = false,
2925	.has_legacy_blending = false,
2926	.pitch_align = 64,
2927	.has_powergate = true,
2928	.coupled_pm = false,
2929	.has_nvdisplay = false,
2930	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2931	.primary_formats = tegra114_primary_formats,
2932	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2933	.overlay_formats = tegra114_overlay_formats,
2934	.modifiers = tegra124_modifiers,
2935	.has_win_a_without_filters = false,
2936	.has_win_b_vfilter_mem_client = false,
2937	.has_win_c_without_vert_filter = false,
2938	.plane_tiled_memory_bandwidth_x2 = false,
2939	.has_pll_d2_out0 = true,
2940};
2941
2942static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2943	{
2944		.index = 0,
2945		.dc = 0,
2946		.windows = (const unsigned int[]) { 0 },
2947		.num_windows = 1,
2948	}, {
2949		.index = 1,
2950		.dc = 1,
2951		.windows = (const unsigned int[]) { 1 },
2952		.num_windows = 1,
2953	}, {
2954		.index = 2,
2955		.dc = 1,
2956		.windows = (const unsigned int[]) { 2 },
2957		.num_windows = 1,
2958	}, {
2959		.index = 3,
2960		.dc = 2,
2961		.windows = (const unsigned int[]) { 3 },
2962		.num_windows = 1,
2963	}, {
2964		.index = 4,
2965		.dc = 2,
2966		.windows = (const unsigned int[]) { 4 },
2967		.num_windows = 1,
2968	}, {
2969		.index = 5,
2970		.dc = 2,
2971		.windows = (const unsigned int[]) { 5 },
2972		.num_windows = 1,
2973	},
2974};
2975
2976static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2977	.supports_background_color = true,
2978	.supports_interlacing = true,
2979	.supports_cursor = true,
2980	.supports_block_linear = true,
2981	.supports_sector_layout = false,
2982	.has_legacy_blending = false,
2983	.pitch_align = 64,
2984	.has_powergate = false,
2985	.coupled_pm = false,
2986	.has_nvdisplay = true,
2987	.wgrps = tegra186_dc_wgrps,
2988	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2989	.plane_tiled_memory_bandwidth_x2 = false,
2990	.has_pll_d2_out0 = false,
2991};
2992
2993static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2994	{
2995		.index = 0,
2996		.dc = 0,
2997		.windows = (const unsigned int[]) { 0 },
2998		.num_windows = 1,
2999	}, {
3000		.index = 1,
3001		.dc = 1,
3002		.windows = (const unsigned int[]) { 1 },
3003		.num_windows = 1,
3004	}, {
3005		.index = 2,
3006		.dc = 1,
3007		.windows = (const unsigned int[]) { 2 },
3008		.num_windows = 1,
3009	}, {
3010		.index = 3,
3011		.dc = 2,
3012		.windows = (const unsigned int[]) { 3 },
3013		.num_windows = 1,
3014	}, {
3015		.index = 4,
3016		.dc = 2,
3017		.windows = (const unsigned int[]) { 4 },
3018		.num_windows = 1,
3019	}, {
3020		.index = 5,
3021		.dc = 2,
3022		.windows = (const unsigned int[]) { 5 },
3023		.num_windows = 1,
3024	},
3025};
3026
3027static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3028	.supports_background_color = true,
3029	.supports_interlacing = true,
3030	.supports_cursor = true,
3031	.supports_block_linear = true,
3032	.supports_sector_layout = true,
3033	.has_legacy_blending = false,
3034	.pitch_align = 64,
3035	.has_powergate = false,
3036	.coupled_pm = false,
3037	.has_nvdisplay = true,
3038	.wgrps = tegra194_dc_wgrps,
3039	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3040	.plane_tiled_memory_bandwidth_x2 = false,
3041	.has_pll_d2_out0 = false,
3042};
3043
3044static const struct of_device_id tegra_dc_of_match[] = {
3045	{
3046		.compatible = "nvidia,tegra194-dc",
3047		.data = &tegra194_dc_soc_info,
3048	}, {
3049		.compatible = "nvidia,tegra186-dc",
3050		.data = &tegra186_dc_soc_info,
3051	}, {
3052		.compatible = "nvidia,tegra210-dc",
3053		.data = &tegra210_dc_soc_info,
3054	}, {
3055		.compatible = "nvidia,tegra124-dc",
3056		.data = &tegra124_dc_soc_info,
3057	}, {
3058		.compatible = "nvidia,tegra114-dc",
3059		.data = &tegra114_dc_soc_info,
3060	}, {
3061		.compatible = "nvidia,tegra30-dc",
3062		.data = &tegra30_dc_soc_info,
3063	}, {
3064		.compatible = "nvidia,tegra20-dc",
3065		.data = &tegra20_dc_soc_info,
3066	}, {
3067		/* sentinel */
3068	}
3069};
3070MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3071
3072static int tegra_dc_parse_dt(struct tegra_dc *dc)
3073{
3074	struct device_node *np;
3075	u32 value = 0;
3076	int err;
3077
3078	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3079	if (err < 0) {
3080		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3081
3082		/*
3083		 * If the nvidia,head property isn't present, try to find the
3084		 * correct head number by looking up the position of this
3085		 * display controller's node within the device tree. Assuming
3086		 * that the nodes are ordered properly in the DTS file and
3087		 * that the translation into a flattened device tree blob
3088		 * preserves that ordering this will actually yield the right
3089		 * head number.
3090		 *
3091		 * If those assumptions don't hold, this will still work for
3092		 * cases where only a single display controller is used.
3093		 */
3094		for_each_matching_node(np, tegra_dc_of_match) {
3095			if (np == dc->dev->of_node) {
3096				of_node_put(np);
3097				break;
3098			}
3099
3100			value++;
3101		}
3102	}
3103
3104	dc->pipe = value;
3105
3106	return 0;
3107}
3108
3109static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3110{
3111	struct tegra_dc *dc = dev_get_drvdata(dev);
3112	unsigned int pipe = (unsigned long)(void *)data;
3113
3114	return dc->pipe == pipe;
3115}
3116
3117static int tegra_dc_couple(struct tegra_dc *dc)
3118{
3119	/*
3120	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3121	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3122	 * POWER_CONTROL registers during CRTC enabling.
3123	 */
3124	if (dc->soc->coupled_pm && dc->pipe == 1) {
3125		struct device *companion;
3126		struct tegra_dc *parent;
3127
3128		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3129					       tegra_dc_match_by_pipe);
3130		if (!companion)
3131			return -EPROBE_DEFER;
3132
3133		parent = dev_get_drvdata(companion);
3134		dc->client.parent = &parent->client;
3135
3136		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3137	}
3138
3139	return 0;
3140}
3141
3142static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3143{
3144	struct tegra_core_opp_params opp_params = {};
3145	int err;
3146
3147	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3148	if (err && err != -ENODEV)
3149		return err;
3150
3151	if (err)
3152		dc->has_opp_table = false;
3153	else
3154		dc->has_opp_table = true;
3155
3156	return 0;
3157}
3158
3159static int tegra_dc_probe(struct platform_device *pdev)
3160{
3161	u64 dma_mask = dma_get_mask(pdev->dev.parent);
 
3162	struct tegra_dc *dc;
3163	int err;
3164
3165	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3166	if (err < 0) {
3167		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3168		return err;
3169	}
3170
3171	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3172	if (!dc)
3173		return -ENOMEM;
3174
3175	dc->soc = of_device_get_match_data(&pdev->dev);
 
 
3176
 
3177	INIT_LIST_HEAD(&dc->list);
3178	dc->dev = &pdev->dev;
 
3179
3180	err = tegra_dc_parse_dt(dc);
3181	if (err < 0)
3182		return err;
3183
3184	err = tegra_dc_couple(dc);
3185	if (err < 0)
3186		return err;
3187
3188	dc->clk = devm_clk_get(&pdev->dev, NULL);
3189	if (IS_ERR(dc->clk)) {
3190		dev_err(&pdev->dev, "failed to get clock\n");
3191		return PTR_ERR(dc->clk);
3192	}
3193
3194	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3195	if (IS_ERR(dc->rst)) {
3196		dev_err(&pdev->dev, "failed to get reset\n");
3197		return PTR_ERR(dc->rst);
3198	}
3199
3200	/* assert reset and disable clock */
3201	err = clk_prepare_enable(dc->clk);
3202	if (err < 0)
3203		return err;
3204
3205	usleep_range(2000, 4000);
3206
3207	err = reset_control_assert(dc->rst);
3208	if (err < 0) {
3209		clk_disable_unprepare(dc->clk);
3210		return err;
3211	}
3212
3213	usleep_range(2000, 4000);
3214
3215	clk_disable_unprepare(dc->clk);
3216
3217	if (dc->soc->has_powergate) {
3218		if (dc->pipe == 0)
3219			dc->powergate = TEGRA_POWERGATE_DIS;
3220		else
3221			dc->powergate = TEGRA_POWERGATE_DISB;
3222
3223		tegra_powergate_power_off(dc->powergate);
3224	}
3225
3226	err = tegra_dc_init_opp_table(dc);
3227	if (err < 0)
3228		return err;
3229
3230	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3231	if (IS_ERR(dc->regs))
3232		return PTR_ERR(dc->regs);
3233
3234	dc->irq = platform_get_irq(pdev, 0);
3235	if (dc->irq < 0)
 
3236		return -ENXIO;
3237
3238	err = tegra_dc_rgb_probe(dc);
3239	if (err < 0 && err != -ENODEV)
3240		return dev_err_probe(&pdev->dev, err,
3241				     "failed to probe RGB output\n");
3242
3243	platform_set_drvdata(pdev, dc);
3244	pm_runtime_enable(&pdev->dev);
3245
3246	INIT_LIST_HEAD(&dc->client.list);
3247	dc->client.ops = &dc_client_ops;
3248	dc->client.dev = &pdev->dev;
3249
 
 
 
 
 
 
3250	err = host1x_client_register(&dc->client);
3251	if (err < 0) {
3252		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3253			err);
3254		goto disable_pm;
3255	}
3256
 
 
3257	return 0;
3258
3259disable_pm:
3260	pm_runtime_disable(&pdev->dev);
3261	tegra_dc_rgb_remove(dc);
3262
3263	return err;
3264}
3265
3266static int tegra_dc_remove(struct platform_device *pdev)
3267{
3268	struct tegra_dc *dc = platform_get_drvdata(pdev);
3269	int err;
3270
3271	err = host1x_client_unregister(&dc->client);
3272	if (err < 0) {
3273		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3274			err);
3275		return err;
3276	}
3277
3278	err = tegra_dc_rgb_remove(dc);
3279	if (err < 0) {
3280		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3281		return err;
3282	}
3283
3284	pm_runtime_disable(&pdev->dev);
3285
3286	return 0;
3287}
3288
3289struct platform_driver tegra_dc_driver = {
3290	.driver = {
3291		.name = "tegra-dc",
 
3292		.of_match_table = tegra_dc_of_match,
3293	},
3294	.probe = tegra_dc_probe,
3295	.remove = tegra_dc_remove,
3296};