Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <stddef.h>
  3#include <stdlib.h>
  4#include <string.h>
  5#include <errno.h>
  6#include <sys/types.h>
  7#include <sys/stat.h>
  8#include <unistd.h>
  9#include <api/fs/fs.h>
 10#include <linux/kernel.h>
 11#include "cpumap.h"
 12#include "map_symbol.h"
 13#include "mem-events.h"
 14#include "mem-info.h"
 15#include "debug.h"
 16#include "evsel.h"
 17#include "symbol.h"
 18#include "pmu.h"
 19#include "pmus.h"
 20
 21unsigned int perf_mem_events__loads_ldlat = 30;
 22
 23#define E(t, n, s, l, a) { .tag = t, .name = n, .event_name = s, .ldlat = l, .aux_event = a }
 24
 25struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
 26	E("ldlat-loads",	"%s/mem-loads,ldlat=%u/P",	"mem-loads",	true,	0),
 27	E("ldlat-stores",	"%s/mem-stores/P",		"mem-stores",	false,	0),
 28	E(NULL,			NULL,				NULL,		false,	0),
 29};
 30#undef E
 31
 32bool perf_mem_record[PERF_MEM_EVENTS__MAX] = { 0 };
 33
 34static char mem_loads_name[100];
 35static char mem_stores_name[100];
 36
 37struct perf_mem_event *perf_pmu__mem_events_ptr(struct perf_pmu *pmu, int i)
 38{
 39	if (i >= PERF_MEM_EVENTS__MAX || !pmu)
 40		return NULL;
 41
 42	return &pmu->mem_events[i];
 43}
 44
 45static struct perf_pmu *perf_pmus__scan_mem(struct perf_pmu *pmu)
 46{
 47	while ((pmu = perf_pmus__scan(pmu)) != NULL) {
 48		if (pmu->mem_events)
 49			return pmu;
 50	}
 51	return NULL;
 52}
 53
 54struct perf_pmu *perf_mem_events_find_pmu(void)
 55{
 56	/*
 57	 * The current perf mem doesn't support per-PMU configuration.
 58	 * The exact same configuration is applied to all the
 59	 * mem_events supported PMUs.
 60	 * Return the first mem_events supported PMU.
 61	 *
 62	 * Notes: The only case which may support multiple mem_events
 63	 * supported PMUs is Intel hybrid. The exact same mem_events
 64	 * is shared among the PMUs. Only configure the first PMU
 65	 * is good enough as well.
 66	 */
 67	return perf_pmus__scan_mem(NULL);
 68}
 69
 70/**
 71 * perf_pmu__mem_events_num_mem_pmus - Get the number of mem PMUs since the given pmu
 72 * @pmu: Start pmu. If it's NULL, search the entire PMU list.
 73 */
 74int perf_pmu__mem_events_num_mem_pmus(struct perf_pmu *pmu)
 75{
 76	int num = 0;
 77
 78	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL)
 79		num++;
 80
 81	return num;
 82}
 83
 84static const char *perf_pmu__mem_events_name(int i, struct perf_pmu *pmu)
 85{
 86	struct perf_mem_event *e;
 87
 88	if (i >= PERF_MEM_EVENTS__MAX || !pmu)
 89		return NULL;
 90
 91	e = &pmu->mem_events[i];
 92	if (!e || !e->name)
 93		return NULL;
 94
 95	if (i == PERF_MEM_EVENTS__LOAD || i == PERF_MEM_EVENTS__LOAD_STORE) {
 96		if (e->ldlat) {
 97			if (!e->aux_event) {
 98				/* ARM and Most of Intel */
 99				scnprintf(mem_loads_name, sizeof(mem_loads_name),
100					  e->name, pmu->name,
101					  perf_mem_events__loads_ldlat);
102			} else {
103				/* Intel with mem-loads-aux event */
104				scnprintf(mem_loads_name, sizeof(mem_loads_name),
105					  e->name, pmu->name, pmu->name,
106					  perf_mem_events__loads_ldlat);
107			}
108		} else {
109			if (!e->aux_event) {
110				/* AMD and POWER */
111				scnprintf(mem_loads_name, sizeof(mem_loads_name),
112					  e->name, pmu->name);
113			} else
114				return NULL;
115		}
116
117		return mem_loads_name;
118	}
119
120	if (i == PERF_MEM_EVENTS__STORE) {
121		scnprintf(mem_stores_name, sizeof(mem_stores_name),
122			  e->name, pmu->name);
123		return mem_stores_name;
124	}
125
126	return NULL;
127}
128
129bool is_mem_loads_aux_event(struct evsel *leader)
130{
131	struct perf_pmu *pmu = leader->pmu;
132	struct perf_mem_event *e;
133
134	if (!pmu || !pmu->mem_events)
135		return false;
136
137	e = &pmu->mem_events[PERF_MEM_EVENTS__LOAD];
138	if (!e->aux_event)
139		return false;
140
141	return leader->core.attr.config == e->aux_event;
142}
143
144int perf_pmu__mem_events_parse(struct perf_pmu *pmu, const char *str)
145{
146	char *tok, *saveptr = NULL;
147	bool found = false;
148	char *buf;
149	int j;
150
151	/* We need buffer that we know we can write to. */
152	buf = malloc(strlen(str) + 1);
153	if (!buf)
154		return -ENOMEM;
155
156	strcpy(buf, str);
157
158	tok = strtok_r((char *)buf, ",", &saveptr);
159
160	while (tok) {
161		for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
162			struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
163
164			if (!e->tag)
165				continue;
166
167			if (strstr(e->tag, tok))
168				perf_mem_record[j] = found = true;
169		}
170
171		tok = strtok_r(NULL, ",", &saveptr);
172	}
173
174	free(buf);
175
176	if (found)
177		return 0;
178
179	pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
180	return -1;
181}
182
183static bool perf_pmu__mem_events_supported(const char *mnt, struct perf_pmu *pmu,
184				      struct perf_mem_event *e)
185{
186	char path[PATH_MAX];
187	struct stat st;
188
189	if (!e->event_name)
190		return true;
191
192	scnprintf(path, PATH_MAX, "%s/devices/%s/events/%s", mnt, pmu->name, e->event_name);
193
194	return !stat(path, &st);
195}
196
197static int __perf_pmu__mem_events_init(struct perf_pmu *pmu)
198{
199	const char *mnt = sysfs__mount();
200	bool found = false;
201	int j;
202
203	if (!mnt)
204		return -ENOENT;
205
206	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
207		struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
208
209		/*
210		 * If the event entry isn't valid, skip initialization
211		 * and "e->supported" will keep false.
212		 */
213		if (!e->tag)
214			continue;
215
216		e->supported |= perf_pmu__mem_events_supported(mnt, pmu, e);
217		if (e->supported)
218			found = true;
219	}
220
221	return found ? 0 : -ENOENT;
222}
223
224int perf_pmu__mem_events_init(void)
225{
226	struct perf_pmu *pmu = NULL;
227
228	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
229		if (__perf_pmu__mem_events_init(pmu))
230			return -ENOENT;
231	}
232
233	return 0;
234}
235
236void perf_pmu__mem_events_list(struct perf_pmu *pmu)
237{
238	int j;
239
240	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
241		struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
242
243		fprintf(stderr, "%-*s%-*s%s",
244			e->tag ? 13 : 0,
245			e->tag ? : "",
246			e->tag && verbose > 0 ? 25 : 0,
247			e->tag && verbose > 0 ? perf_pmu__mem_events_name(j, pmu) : "",
248			e->supported ? ": available\n" : "");
249	}
250}
251
252int perf_mem_events__record_args(const char **rec_argv, int *argv_nr)
253{
254	const char *mnt = sysfs__mount();
255	struct perf_pmu *pmu = NULL;
256	struct perf_mem_event *e;
257	int i = *argv_nr;
258	const char *s;
259	char *copy;
260	struct perf_cpu_map *cpu_map = NULL;
261
262	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
263		for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
264			e = perf_pmu__mem_events_ptr(pmu, j);
265
266			if (!perf_mem_record[j])
267				continue;
268
269			if (!e->supported) {
270				pr_err("failed: event '%s' not supported\n",
271					perf_pmu__mem_events_name(j, pmu));
272				return -1;
273			}
274
275			s = perf_pmu__mem_events_name(j, pmu);
276			if (!s || !perf_pmu__mem_events_supported(mnt, pmu, e))
277				continue;
278
279			copy = strdup(s);
280			if (!copy)
281				return -1;
282
283			rec_argv[i++] = "-e";
284			rec_argv[i++] = copy;
285
286			cpu_map = perf_cpu_map__merge(cpu_map, pmu->cpus);
287		}
288	}
289
290	if (cpu_map) {
291		if (!perf_cpu_map__equal(cpu_map, cpu_map__online())) {
292			char buf[200];
293
294			cpu_map__snprint(cpu_map, buf, sizeof(buf));
295			pr_warning("Memory events are enabled on a subset of CPUs: %s\n", buf);
296		}
297		perf_cpu_map__put(cpu_map);
298	}
299
300	*argv_nr = i;
301	return 0;
302}
303
304static const char * const tlb_access[] = {
305	"N/A",
306	"HIT",
307	"MISS",
308	"L1",
309	"L2",
310	"Walker",
311	"Fault",
312};
313
314int perf_mem__tlb_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
315{
316	size_t l = 0, i;
317	u64 m = PERF_MEM_TLB_NA;
318	u64 hit, miss;
319
320	sz -= 1; /* -1 for null termination */
321	out[0] = '\0';
322
323	if (mem_info)
324		m = mem_info__const_data_src(mem_info)->mem_dtlb;
325
326	hit = m & PERF_MEM_TLB_HIT;
327	miss = m & PERF_MEM_TLB_MISS;
328
329	/* already taken care of */
330	m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
331
332	for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
333		if (!(m & 0x1))
334			continue;
335		if (l) {
336			strcat(out, " or ");
337			l += 4;
338		}
339		l += scnprintf(out + l, sz - l, tlb_access[i]);
340	}
341	if (*out == '\0')
342		l += scnprintf(out, sz - l, "N/A");
343	if (hit)
344		l += scnprintf(out + l, sz - l, " hit");
345	if (miss)
346		l += scnprintf(out + l, sz - l, " miss");
347
348	return l;
349}
350
351static const char * const mem_lvl[] = {
352	"N/A",
353	"HIT",
354	"MISS",
355	"L1",
356	"LFB/MAB",
357	"L2",
358	"L3",
359	"Local RAM",
360	"Remote RAM (1 hop)",
361	"Remote RAM (2 hops)",
362	"Remote Cache (1 hop)",
363	"Remote Cache (2 hops)",
364	"I/O",
365	"Uncached",
366};
367
368static const char * const mem_lvlnum[] = {
369	[PERF_MEM_LVLNUM_L1] = "L1",
370	[PERF_MEM_LVLNUM_L2] = "L2",
371	[PERF_MEM_LVLNUM_L3] = "L3",
372	[PERF_MEM_LVLNUM_L4] = "L4",
373	[PERF_MEM_LVLNUM_L2_MHB] = "L2 MHB",
374	[PERF_MEM_LVLNUM_MSC] = "Memory-side Cache",
375	[PERF_MEM_LVLNUM_UNC] = "Uncached",
376	[PERF_MEM_LVLNUM_CXL] = "CXL",
377	[PERF_MEM_LVLNUM_IO] = "I/O",
378	[PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
379	[PERF_MEM_LVLNUM_LFB] = "LFB/MAB",
380	[PERF_MEM_LVLNUM_RAM] = "RAM",
381	[PERF_MEM_LVLNUM_PMEM] = "PMEM",
382	[PERF_MEM_LVLNUM_NA] = "N/A",
383};
384
385static const char * const mem_hops[] = {
386	"N/A",
387	/*
388	 * While printing, 'Remote' will be added to represent
389	 * 'Remote core, same node' accesses as remote field need
390	 * to be set with mem_hops field.
391	 */
392	"core, same node",
393	"node, same socket",
394	"socket, same board",
395	"board",
396};
397
398static int perf_mem__op_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
399{
400	u64 op = PERF_MEM_LOCK_NA;
401	int l;
402
403	if (mem_info)
404		op = mem_info__const_data_src(mem_info)->mem_op;
405
406	if (op & PERF_MEM_OP_NA)
407		l = scnprintf(out, sz, "N/A");
408	else if (op & PERF_MEM_OP_LOAD)
409		l = scnprintf(out, sz, "LOAD");
410	else if (op & PERF_MEM_OP_STORE)
411		l = scnprintf(out, sz, "STORE");
412	else if (op & PERF_MEM_OP_PFETCH)
413		l = scnprintf(out, sz, "PFETCH");
414	else if (op & PERF_MEM_OP_EXEC)
415		l = scnprintf(out, sz, "EXEC");
416	else
417		l = scnprintf(out, sz, "No");
418
419	return l;
420}
421
422int perf_mem__lvl_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
423{
424	union perf_mem_data_src data_src;
425	int printed = 0;
426	size_t l = 0;
427	size_t i;
428	int lvl;
429	char hit_miss[5] = {0};
430
431	sz -= 1; /* -1 for null termination */
432	out[0] = '\0';
433
434	if (!mem_info)
435		goto na;
436
437	data_src = *mem_info__const_data_src(mem_info);
438
439	if (data_src.mem_lvl & PERF_MEM_LVL_HIT)
440		memcpy(hit_miss, "hit", 3);
441	else if (data_src.mem_lvl & PERF_MEM_LVL_MISS)
442		memcpy(hit_miss, "miss", 4);
443
444	lvl = data_src.mem_lvl_num;
445	if (lvl && lvl != PERF_MEM_LVLNUM_NA) {
446		if (data_src.mem_remote) {
447			strcat(out, "Remote ");
448			l += 7;
449		}
450
451		if (data_src.mem_hops)
452			l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]);
453
454		if (mem_lvlnum[lvl])
455			l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
456		else
457			l += scnprintf(out + l, sz - l, "Unknown level %d", lvl);
458
459		l += scnprintf(out + l, sz - l, " %s", hit_miss);
460		return l;
461	}
462
463	lvl = data_src.mem_lvl;
464	if (!lvl)
465		goto na;
466
467	lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS);
468	if (!lvl)
469		goto na;
470
471	for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) {
472		if (!(lvl & 0x1))
473			continue;
474		if (printed++) {
475			strcat(out, " or ");
476			l += 4;
477		}
478		l += scnprintf(out + l, sz - l, mem_lvl[i]);
479	}
480
481	if (printed) {
482		l += scnprintf(out + l, sz - l, " %s", hit_miss);
483		return l;
484	}
485
486na:
487	strcat(out, "N/A");
488	return 3;
489}
490
491static const char * const snoop_access[] = {
492	"N/A",
493	"None",
494	"Hit",
495	"Miss",
496	"HitM",
497};
498
499static const char * const snoopx_access[] = {
500	"Fwd",
501	"Peer",
502};
503
504int perf_mem__snp_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
505{
506	size_t i, l = 0;
507	u64 m = PERF_MEM_SNOOP_NA;
508
509	sz -= 1; /* -1 for null termination */
510	out[0] = '\0';
511
512	if (mem_info)
513		m = mem_info__const_data_src(mem_info)->mem_snoop;
514
515	for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
516		if (!(m & 0x1))
517			continue;
518		if (l) {
519			strcat(out, " or ");
520			l += 4;
521		}
522		l += scnprintf(out + l, sz - l, snoop_access[i]);
523	}
524
525	m = 0;
526	if (mem_info)
527		m = mem_info__const_data_src(mem_info)->mem_snoopx;
528
529	for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) {
530		if (!(m & 0x1))
531			continue;
532
533		if (l) {
534			strcat(out, " or ");
535			l += 4;
536		}
537		l += scnprintf(out + l, sz - l, snoopx_access[i]);
538	}
539
540	if (*out == '\0')
541		l += scnprintf(out, sz - l, "N/A");
542
543	return l;
544}
545
546int perf_mem__lck_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
547{
548	u64 mask = PERF_MEM_LOCK_NA;
549	int l;
550
551	if (mem_info)
552		mask = mem_info__const_data_src(mem_info)->mem_lock;
553
554	if (mask & PERF_MEM_LOCK_NA)
555		l = scnprintf(out, sz, "N/A");
556	else if (mask & PERF_MEM_LOCK_LOCKED)
557		l = scnprintf(out, sz, "Yes");
558	else
559		l = scnprintf(out, sz, "No");
560
561	return l;
562}
563
564int perf_mem__blk_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
565{
566	size_t l = 0;
567	u64 mask = PERF_MEM_BLK_NA;
568
569	sz -= 1; /* -1 for null termination */
570	out[0] = '\0';
571
572	if (mem_info)
573		mask = mem_info__const_data_src(mem_info)->mem_blk;
574
575	if (!mask || (mask & PERF_MEM_BLK_NA)) {
576		l += scnprintf(out + l, sz - l, " N/A");
577		return l;
578	}
579	if (mask & PERF_MEM_BLK_DATA)
580		l += scnprintf(out + l, sz - l, " Data");
581	if (mask & PERF_MEM_BLK_ADDR)
582		l += scnprintf(out + l, sz - l, " Addr");
583
584	return l;
585}
586
587int perf_script__meminfo_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
588{
589	int i = 0;
590
591	i += scnprintf(out, sz, "|OP ");
592	i += perf_mem__op_scnprintf(out + i, sz - i, mem_info);
593	i += scnprintf(out + i, sz - i, "|LVL ");
594	i += perf_mem__lvl_scnprintf(out + i, sz, mem_info);
595	i += scnprintf(out + i, sz - i, "|SNP ");
596	i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
597	i += scnprintf(out + i, sz - i, "|TLB ");
598	i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
599	i += scnprintf(out + i, sz - i, "|LCK ");
600	i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
601	i += scnprintf(out + i, sz - i, "|BLK ");
602	i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
603
604	return i;
605}
606
607int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
608{
609	union perf_mem_data_src *data_src = mem_info__data_src(mi);
610	u64 daddr  = mem_info__daddr(mi)->addr;
611	u64 op     = data_src->mem_op;
612	u64 lvl    = data_src->mem_lvl;
613	u64 snoop  = data_src->mem_snoop;
614	u64 snoopx = data_src->mem_snoopx;
615	u64 lock   = data_src->mem_lock;
616	u64 blk    = data_src->mem_blk;
617	/*
618	 * Skylake might report unknown remote level via this
619	 * bit, consider it when evaluating remote HITMs.
620	 *
621	 * Incase of power, remote field can also be used to denote cache
622	 * accesses from the another core of same node. Hence, setting
623	 * mrem only when HOPS is zero along with set remote field.
624	 */
625	bool mrem  = (data_src->mem_remote && !data_src->mem_hops);
626	int err = 0;
627
628#define HITM_INC(__f)		\
629do {				\
630	stats->__f++;		\
631	stats->tot_hitm++;	\
632} while (0)
633
634#define PEER_INC(__f)		\
635do {				\
636	stats->__f++;		\
637	stats->tot_peer++;	\
638} while (0)
639
640#define P(a, b) PERF_MEM_##a##_##b
641
642	stats->nr_entries++;
643
644	if (lock & P(LOCK, LOCKED)) stats->locks++;
645
646	if (blk & P(BLK, DATA)) stats->blk_data++;
647	if (blk & P(BLK, ADDR)) stats->blk_addr++;
648
649	if (op & P(OP, LOAD)) {
650		/* load */
651		stats->load++;
652
653		if (!daddr) {
654			stats->ld_noadrs++;
655			return -1;
656		}
657
658		if (lvl & P(LVL, HIT)) {
659			if (lvl & P(LVL, UNC)) stats->ld_uncache++;
660			if (lvl & P(LVL, IO))  stats->ld_io++;
661			if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
662			if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
663			if (lvl & P(LVL, L2)) {
664				stats->ld_l2hit++;
665
666				if (snoopx & P(SNOOPX, PEER))
667					PEER_INC(lcl_peer);
668			}
669			if (lvl & P(LVL, L3 )) {
670				if (snoop & P(SNOOP, HITM))
671					HITM_INC(lcl_hitm);
672				else
673					stats->ld_llchit++;
674
675				if (snoopx & P(SNOOPX, PEER))
676					PEER_INC(lcl_peer);
677			}
678
679			if (lvl & P(LVL, LOC_RAM)) {
680				stats->lcl_dram++;
681				if (snoop & P(SNOOP, HIT))
682					stats->ld_shared++;
683				else
684					stats->ld_excl++;
685			}
686
687			if ((lvl & P(LVL, REM_RAM1)) ||
688			    (lvl & P(LVL, REM_RAM2)) ||
689			     mrem) {
690				stats->rmt_dram++;
691				if (snoop & P(SNOOP, HIT))
692					stats->ld_shared++;
693				else
694					stats->ld_excl++;
695			}
696		}
697
698		if ((lvl & P(LVL, REM_CCE1)) ||
699		    (lvl & P(LVL, REM_CCE2)) ||
700		     mrem) {
701			if (snoop & P(SNOOP, HIT)) {
702				stats->rmt_hit++;
703			} else if (snoop & P(SNOOP, HITM)) {
704				HITM_INC(rmt_hitm);
705			} else if (snoopx & P(SNOOPX, PEER)) {
706				stats->rmt_hit++;
707				PEER_INC(rmt_peer);
708			}
709		}
710
711		if ((lvl & P(LVL, MISS)))
712			stats->ld_miss++;
713
714	} else if (op & P(OP, STORE)) {
715		/* store */
716		stats->store++;
717
718		if (!daddr) {
719			stats->st_noadrs++;
720			return -1;
721		}
722
723		if (lvl & P(LVL, HIT)) {
724			if (lvl & P(LVL, UNC)) stats->st_uncache++;
725			if (lvl & P(LVL, L1 )) stats->st_l1hit++;
726		}
727		if (lvl & P(LVL, MISS))
728			if (lvl & P(LVL, L1)) stats->st_l1miss++;
729		if (lvl & P(LVL, NA))
730			stats->st_na++;
731	} else {
732		/* unparsable data_src? */
733		stats->noparse++;
734		return -1;
735	}
736
737	if (!mem_info__daddr(mi)->ms.map || !mem_info__iaddr(mi)->ms.map) {
738		stats->nomap++;
739		return -1;
740	}
741
742#undef P
743#undef HITM_INC
744	return err;
745}
746
747void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
748{
749	stats->nr_entries	+= add->nr_entries;
750
751	stats->locks		+= add->locks;
752	stats->store		+= add->store;
753	stats->st_uncache	+= add->st_uncache;
754	stats->st_noadrs	+= add->st_noadrs;
755	stats->st_l1hit		+= add->st_l1hit;
756	stats->st_l1miss	+= add->st_l1miss;
757	stats->st_na		+= add->st_na;
758	stats->load		+= add->load;
759	stats->ld_excl		+= add->ld_excl;
760	stats->ld_shared	+= add->ld_shared;
761	stats->ld_uncache	+= add->ld_uncache;
762	stats->ld_io		+= add->ld_io;
763	stats->ld_miss		+= add->ld_miss;
764	stats->ld_noadrs	+= add->ld_noadrs;
765	stats->ld_fbhit		+= add->ld_fbhit;
766	stats->ld_l1hit		+= add->ld_l1hit;
767	stats->ld_l2hit		+= add->ld_l2hit;
768	stats->ld_llchit	+= add->ld_llchit;
769	stats->lcl_hitm		+= add->lcl_hitm;
770	stats->rmt_hitm		+= add->rmt_hitm;
771	stats->tot_hitm		+= add->tot_hitm;
772	stats->lcl_peer		+= add->lcl_peer;
773	stats->rmt_peer		+= add->rmt_peer;
774	stats->tot_peer		+= add->tot_peer;
775	stats->rmt_hit		+= add->rmt_hit;
776	stats->lcl_dram		+= add->lcl_dram;
777	stats->rmt_dram		+= add->rmt_dram;
778	stats->blk_data		+= add->blk_data;
779	stats->blk_addr		+= add->blk_addr;
780	stats->nomap		+= add->nomap;
781	stats->noparse		+= add->noparse;
782}