Linux Audio

Check our new training course

Loading...
v3.15
 
  1/* Request a key from userspace
  2 *
  3 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 *
 11 * See Documentation/security/keys-request-key.txt
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/kmod.h>
 17#include <linux/err.h>
 18#include <linux/keyctl.h>
 19#include <linux/slab.h>
 
 20#include "internal.h"
 
 21
 22#define key_negative_timeout	60	/* default timeout on a negative key's existence */
 23
 24/*
 25 * wait_on_bit() sleep function for uninterruptible waiting
 26 */
 27static int key_wait_bit(void *flags)
 28{
 29	schedule();
 30	return 0;
 
 
 
 
 
 
 
 
 31}
 32
 33/*
 34 * wait_on_bit() sleep function for interruptible waiting
 35 */
 36static int key_wait_bit_intr(void *flags)
 37{
 38	schedule();
 39	return signal_pending(current) ? -ERESTARTSYS : 0;
 
 
 
 
 
 
 
 
 40}
 41
 42/**
 43 * complete_request_key - Complete the construction of a key.
 44 * @cons: The key construction record.
 45 * @error: The success or failute of the construction.
 46 *
 47 * Complete the attempt to construct a key.  The key will be negated
 48 * if an error is indicated.  The authorisation key will be revoked
 49 * unconditionally.
 50 */
 51void complete_request_key(struct key_construction *cons, int error)
 52{
 53	kenter("{%d,%d},%d", cons->key->serial, cons->authkey->serial, error);
 
 
 
 54
 55	if (error < 0)
 56		key_negate_and_link(cons->key, key_negative_timeout, NULL,
 57				    cons->authkey);
 58	else
 59		key_revoke(cons->authkey);
 60
 61	key_put(cons->key);
 62	key_put(cons->authkey);
 63	kfree(cons);
 64}
 65EXPORT_SYMBOL(complete_request_key);
 66
 67/*
 68 * Initialise a usermode helper that is going to have a specific session
 69 * keyring.
 70 *
 71 * This is called in context of freshly forked kthread before kernel_execve(),
 72 * so we can simply install the desired session_keyring at this point.
 73 */
 74static int umh_keys_init(struct subprocess_info *info, struct cred *cred)
 75{
 76	struct key *keyring = info->data;
 77
 78	return install_session_keyring_to_cred(cred, keyring);
 79}
 80
 81/*
 82 * Clean up a usermode helper with session keyring.
 83 */
 84static void umh_keys_cleanup(struct subprocess_info *info)
 85{
 86	struct key *keyring = info->data;
 87	key_put(keyring);
 88}
 89
 90/*
 91 * Call a usermode helper with a specific session keyring.
 92 */
 93static int call_usermodehelper_keys(char *path, char **argv, char **envp,
 94					struct key *session_keyring, int wait)
 95{
 96	struct subprocess_info *info;
 97
 98	info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL,
 99					  umh_keys_init, umh_keys_cleanup,
100					  session_keyring);
101	if (!info)
102		return -ENOMEM;
103
104	key_get(session_keyring);
105	return call_usermodehelper_exec(info, wait);
106}
107
108/*
109 * Request userspace finish the construction of a key
110 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>"
111 */
112static int call_sbin_request_key(struct key_construction *cons,
113				 const char *op,
114				 void *aux)
115{
 
 
116	const struct cred *cred = current_cred();
117	key_serial_t prkey, sskey;
118	struct key *key = cons->key, *authkey = cons->authkey, *keyring,
119		*session;
120	char *argv[9], *envp[3], uid_str[12], gid_str[12];
121	char key_str[12], keyring_str[3][12];
122	char desc[20];
123	int ret, i;
124
125	kenter("{%d},{%d},%s", key->serial, authkey->serial, op);
126
127	ret = install_user_keyrings();
128	if (ret < 0)
129		goto error_alloc;
130
131	/* allocate a new session keyring */
132	sprintf(desc, "_req.%u", key->serial);
133
134	cred = get_current_cred();
135	keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred,
136				KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ,
137				KEY_ALLOC_QUOTA_OVERRUN, NULL);
138	put_cred(cred);
139	if (IS_ERR(keyring)) {
140		ret = PTR_ERR(keyring);
141		goto error_alloc;
142	}
143
144	/* attach the auth key to the session keyring */
145	ret = key_link(keyring, authkey);
146	if (ret < 0)
147		goto error_link;
148
149	/* record the UID and GID */
150	sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid));
151	sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid));
152
153	/* we say which key is under construction */
154	sprintf(key_str, "%d", key->serial);
155
156	/* we specify the process's default keyrings */
157	sprintf(keyring_str[0], "%d",
158		cred->thread_keyring ? cred->thread_keyring->serial : 0);
159
160	prkey = 0;
161	if (cred->process_keyring)
162		prkey = cred->process_keyring->serial;
163	sprintf(keyring_str[1], "%d", prkey);
164
165	rcu_read_lock();
166	session = rcu_dereference(cred->session_keyring);
167	if (!session)
168		session = cred->user->session_keyring;
169	sskey = session->serial;
170	rcu_read_unlock();
171
172	sprintf(keyring_str[2], "%d", sskey);
173
174	/* set up a minimal environment */
175	i = 0;
176	envp[i++] = "HOME=/";
177	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
178	envp[i] = NULL;
179
180	/* set up the argument list */
181	i = 0;
182	argv[i++] = "/sbin/request-key";
183	argv[i++] = (char *) op;
184	argv[i++] = key_str;
185	argv[i++] = uid_str;
186	argv[i++] = gid_str;
187	argv[i++] = keyring_str[0];
188	argv[i++] = keyring_str[1];
189	argv[i++] = keyring_str[2];
190	argv[i] = NULL;
191
192	/* do it */
193	ret = call_usermodehelper_keys(argv[0], argv, envp, keyring,
194				       UMH_WAIT_PROC);
195	kdebug("usermode -> 0x%x", ret);
196	if (ret >= 0) {
197		/* ret is the exit/wait code */
198		if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) ||
199		    key_validate(key) < 0)
200			ret = -ENOKEY;
201		else
202			/* ignore any errors from userspace if the key was
203			 * instantiated */
204			ret = 0;
205	}
206
207error_link:
208	key_put(keyring);
209
210error_alloc:
211	complete_request_key(cons, ret);
 
 
212	kleave(" = %d", ret);
213	return ret;
214}
215
216/*
217 * Call out to userspace for key construction.
218 *
219 * Program failure is ignored in favour of key status.
220 */
221static int construct_key(struct key *key, const void *callout_info,
222			 size_t callout_len, void *aux,
223			 struct key *dest_keyring)
224{
225	struct key_construction *cons;
226	request_key_actor_t actor;
227	struct key *authkey;
228	int ret;
229
230	kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);
231
232	cons = kmalloc(sizeof(*cons), GFP_KERNEL);
233	if (!cons)
234		return -ENOMEM;
235
236	/* allocate an authorisation key */
237	authkey = request_key_auth_new(key, callout_info, callout_len,
238				       dest_keyring);
239	if (IS_ERR(authkey)) {
240		kfree(cons);
241		ret = PTR_ERR(authkey);
242		authkey = NULL;
243	} else {
244		cons->authkey = key_get(authkey);
245		cons->key = key_get(key);
246
247		/* make the call */
248		actor = call_sbin_request_key;
249		if (key->type->request_key)
250			actor = key->type->request_key;
251
252		ret = actor(cons, "create", aux);
253
254		/* check that the actor called complete_request_key() prior to
255		 * returning an error */
256		WARN_ON(ret < 0 &&
257			!test_bit(KEY_FLAG_REVOKED, &authkey->flags));
258		key_put(authkey);
259	}
260
 
261	kleave(" = %d", ret);
262	return ret;
263}
264
265/*
266 * Get the appropriate destination keyring for the request.
267 *
268 * The keyring selected is returned with an extra reference upon it which the
269 * caller must release.
270 */
271static void construct_get_dest_keyring(struct key **_dest_keyring)
272{
273	struct request_key_auth *rka;
274	const struct cred *cred = current_cred();
275	struct key *dest_keyring = *_dest_keyring, *authkey;
 
276
277	kenter("%p", dest_keyring);
278
279	/* find the appropriate keyring */
280	if (dest_keyring) {
281		/* the caller supplied one */
282		key_get(dest_keyring);
283	} else {
 
 
284		/* use a default keyring; falling through the cases until we
285		 * find one that we actually have */
286		switch (cred->jit_keyring) {
287		case KEY_REQKEY_DEFL_DEFAULT:
288		case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
289			if (cred->request_key_auth) {
290				authkey = cred->request_key_auth;
291				down_read(&authkey->sem);
292				rka = authkey->payload.data;
293				if (!test_bit(KEY_FLAG_REVOKED,
294					      &authkey->flags))
295					dest_keyring =
296						key_get(rka->dest_keyring);
297				up_read(&authkey->sem);
298				if (dest_keyring)
 
299					break;
 
300			}
301
 
302		case KEY_REQKEY_DEFL_THREAD_KEYRING:
303			dest_keyring = key_get(cred->thread_keyring);
304			if (dest_keyring)
305				break;
306
 
307		case KEY_REQKEY_DEFL_PROCESS_KEYRING:
308			dest_keyring = key_get(cred->process_keyring);
309			if (dest_keyring)
310				break;
311
 
312		case KEY_REQKEY_DEFL_SESSION_KEYRING:
313			rcu_read_lock();
314			dest_keyring = key_get(
315				rcu_dereference(cred->session_keyring));
316			rcu_read_unlock();
317
318			if (dest_keyring)
319				break;
320
 
321		case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
322			dest_keyring =
323				key_get(cred->user->session_keyring);
 
324			break;
325
326		case KEY_REQKEY_DEFL_USER_KEYRING:
327			dest_keyring = key_get(cred->user->uid_keyring);
 
 
328			break;
329
330		case KEY_REQKEY_DEFL_GROUP_KEYRING:
331		default:
332			BUG();
333		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334	}
335
336	*_dest_keyring = dest_keyring;
337	kleave(" [dk %d]", key_serial(dest_keyring));
338	return;
339}
340
341/*
342 * Allocate a new key in under-construction state and attempt to link it in to
343 * the requested keyring.
344 *
345 * May return a key that's already under construction instead if there was a
346 * race between two thread calling request_key().
347 */
348static int construct_alloc_key(struct keyring_search_context *ctx,
349			       struct key *dest_keyring,
350			       unsigned long flags,
351			       struct key_user *user,
352			       struct key **_key)
353{
354	struct assoc_array_edit *edit;
355	struct key *key;
356	key_perm_t perm;
357	key_ref_t key_ref;
358	int ret;
359
360	kenter("%s,%s,,,",
361	       ctx->index_key.type->name, ctx->index_key.description);
362
363	*_key = NULL;
364	mutex_lock(&user->cons_lock);
365
366	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
367	perm |= KEY_USR_VIEW;
368	if (ctx->index_key.type->read)
369		perm |= KEY_POS_READ;
370	if (ctx->index_key.type == &key_type_keyring ||
371	    ctx->index_key.type->update)
372		perm |= KEY_POS_WRITE;
373
374	key = key_alloc(ctx->index_key.type, ctx->index_key.description,
375			ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred,
376			perm, flags);
377	if (IS_ERR(key))
378		goto alloc_failed;
379
380	set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags);
381
382	if (dest_keyring) {
383		ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit);
384		if (ret < 0)
385			goto link_prealloc_failed;
386	}
387
388	/* attach the key to the destination keyring under lock, but we do need
 
389	 * to do another check just in case someone beat us to it whilst we
390	 * waited for locks */
 
 
 
 
 
 
391	mutex_lock(&key_construction_mutex);
392
393	key_ref = search_process_keyrings(ctx);
 
 
394	if (!IS_ERR(key_ref))
395		goto key_already_present;
396
397	if (dest_keyring)
398		__key_link(key, &edit);
 
 
 
 
399
400	mutex_unlock(&key_construction_mutex);
401	if (dest_keyring)
402		__key_link_end(dest_keyring, &ctx->index_key, edit);
403	mutex_unlock(&user->cons_lock);
404	*_key = key;
405	kleave(" = 0 [%d]", key_serial(key));
406	return 0;
407
408	/* the key is now present - we tell the caller that we found it by
409	 * returning -EINPROGRESS  */
410key_already_present:
411	key_put(key);
412	mutex_unlock(&key_construction_mutex);
413	key = key_ref_to_ptr(key_ref);
414	if (dest_keyring) {
 
 
 
415		ret = __key_link_check_live_key(dest_keyring, key);
416		if (ret == 0)
417			__key_link(key, &edit);
418		__key_link_end(dest_keyring, &ctx->index_key, edit);
419		if (ret < 0)
420			goto link_check_failed;
421	}
422	mutex_unlock(&user->cons_lock);
423	*_key = key;
424	kleave(" = -EINPROGRESS [%d]", key_serial(key));
425	return -EINPROGRESS;
426
427link_check_failed:
428	mutex_unlock(&user->cons_lock);
429	key_put(key);
430	kleave(" = %d [linkcheck]", ret);
431	return ret;
432
433link_prealloc_failed:
 
 
 
 
434	mutex_unlock(&user->cons_lock);
 
435	kleave(" = %d [prelink]", ret);
436	return ret;
437
438alloc_failed:
439	mutex_unlock(&user->cons_lock);
440	kleave(" = %ld", PTR_ERR(key));
441	return PTR_ERR(key);
442}
443
444/*
445 * Commence key construction.
446 */
447static struct key *construct_key_and_link(struct keyring_search_context *ctx,
448					  const char *callout_info,
449					  size_t callout_len,
450					  void *aux,
451					  struct key *dest_keyring,
452					  unsigned long flags)
453{
454	struct key_user *user;
455	struct key *key;
456	int ret;
457
458	kenter("");
459
460	user = key_user_lookup(current_fsuid());
461	if (!user)
462		return ERR_PTR(-ENOMEM);
463
464	construct_get_dest_keyring(&dest_keyring);
 
 
 
 
 
 
 
 
465
466	ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key);
467	key_user_put(user);
468
469	if (ret == 0) {
470		ret = construct_key(key, callout_info, callout_len, aux,
471				    dest_keyring);
472		if (ret < 0) {
473			kdebug("cons failed");
474			goto construction_failed;
475		}
476	} else if (ret == -EINPROGRESS) {
477		ret = 0;
478	} else {
479		goto couldnt_alloc_key;
480	}
481
482	key_put(dest_keyring);
483	kleave(" = key %d", key_serial(key));
484	return key;
485
486construction_failed:
487	key_negate_and_link(key, key_negative_timeout, NULL, NULL);
488	key_put(key);
489couldnt_alloc_key:
490	key_put(dest_keyring);
 
491	kleave(" = %d", ret);
492	return ERR_PTR(ret);
493}
494
495/**
496 * request_key_and_link - Request a key and cache it in a keyring.
497 * @type: The type of key we want.
498 * @description: The searchable description of the key.
 
499 * @callout_info: The data to pass to the instantiation upcall (or NULL).
500 * @callout_len: The length of callout_info.
501 * @aux: Auxiliary data for the upcall.
502 * @dest_keyring: Where to cache the key.
503 * @flags: Flags to key_alloc().
504 *
505 * A key matching the specified criteria is searched for in the process's
506 * keyrings and returned with its usage count incremented if found.  Otherwise,
507 * if callout_info is not NULL, a key will be allocated and some service
508 * (probably in userspace) will be asked to instantiate it.
 
509 *
510 * If successfully found or created, the key will be linked to the destination
511 * keyring if one is provided.
512 *
513 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED
514 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was
515 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT
516 * if insufficient key quota was available to create a new key; or -ENOMEM if
517 * insufficient memory was available.
518 *
519 * If the returned key was created, then it may still be under construction,
520 * and wait_for_key_construction() should be used to wait for that to complete.
521 */
522struct key *request_key_and_link(struct key_type *type,
523				 const char *description,
 
524				 const void *callout_info,
525				 size_t callout_len,
526				 void *aux,
527				 struct key *dest_keyring,
528				 unsigned long flags)
529{
530	struct keyring_search_context ctx = {
531		.index_key.type		= type,
 
532		.index_key.description	= description,
 
533		.cred			= current_cred(),
534		.match			= type->match,
535		.match_data		= description,
536		.flags			= KEYRING_SEARCH_LOOKUP_DIRECT,
 
 
 
537	};
538	struct key *key;
539	key_ref_t key_ref;
540	int ret;
541
542	kenter("%s,%s,%p,%zu,%p,%p,%lx",
543	       ctx.index_key.type->name, ctx.index_key.description,
544	       callout_info, callout_len, aux, dest_keyring, flags);
545
 
 
 
 
 
 
 
 
 
 
 
 
546	/* search all the process keyrings for a key */
547	key_ref = search_process_keyrings(&ctx);
 
 
548
549	if (!IS_ERR(key_ref)) {
 
 
 
 
 
 
 
 
 
 
550		key = key_ref_to_ptr(key_ref);
551		if (dest_keyring) {
552			construct_get_dest_keyring(&dest_keyring);
553			ret = key_link(dest_keyring, key);
554			key_put(dest_keyring);
555			if (ret < 0) {
556				key_put(key);
557				key = ERR_PTR(ret);
558				goto error;
559			}
560		}
 
 
 
561	} else if (PTR_ERR(key_ref) != -EAGAIN) {
562		key = ERR_CAST(key_ref);
563	} else  {
564		/* the search failed, but the keyrings were searchable, so we
565		 * should consult userspace if we can */
566		key = ERR_PTR(-ENOKEY);
567		if (!callout_info)
568			goto error;
569
570		key = construct_key_and_link(&ctx, callout_info, callout_len,
571					     aux, dest_keyring, flags);
572	}
573
 
 
 
574error:
575	kleave(" = %p", key);
576	return key;
577}
578
579/**
580 * wait_for_key_construction - Wait for construction of a key to complete
581 * @key: The key being waited for.
582 * @intr: Whether to wait interruptibly.
583 *
584 * Wait for a key to finish being constructed.
585 *
586 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY
587 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was
588 * revoked or expired.
589 */
590int wait_for_key_construction(struct key *key, bool intr)
591{
592	int ret;
593
594	ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT,
595			  intr ? key_wait_bit_intr : key_wait_bit,
596			  intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
 
 
 
597	if (ret < 0)
598		return ret;
599	if (test_bit(KEY_FLAG_NEGATIVE, &key->flags)) {
600		smp_rmb();
601		return key->type_data.reject_error;
602	}
603	return key_validate(key);
604}
605EXPORT_SYMBOL(wait_for_key_construction);
606
607/**
608 * request_key - Request a key and wait for construction
609 * @type: Type of key.
610 * @description: The searchable description of the key.
 
611 * @callout_info: The data to pass to the instantiation upcall (or NULL).
612 *
613 * As for request_key_and_link() except that it does not add the returned key
614 * to a keyring if found, new keys are always allocated in the user's quota,
615 * the callout_info must be a NUL-terminated string and no auxiliary data can
616 * be passed.
617 *
618 * Furthermore, it then works as wait_for_key_construction() to wait for the
619 * completion of keys undergoing construction with a non-interruptible wait.
620 */
621struct key *request_key(struct key_type *type,
622			const char *description,
623			const char *callout_info)
 
624{
625	struct key *key;
626	size_t callout_len = 0;
627	int ret;
628
629	if (callout_info)
630		callout_len = strlen(callout_info);
631	key = request_key_and_link(type, description, callout_info, callout_len,
 
632				   NULL, NULL, KEY_ALLOC_IN_QUOTA);
633	if (!IS_ERR(key)) {
634		ret = wait_for_key_construction(key, false);
635		if (ret < 0) {
636			key_put(key);
637			return ERR_PTR(ret);
638		}
639	}
640	return key;
641}
642EXPORT_SYMBOL(request_key);
643
644/**
645 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller
646 * @type: The type of key we want.
647 * @description: The searchable description of the key.
 
648 * @callout_info: The data to pass to the instantiation upcall (or NULL).
649 * @callout_len: The length of callout_info.
650 * @aux: Auxiliary data for the upcall.
651 *
652 * As for request_key_and_link() except that it does not add the returned key
653 * to a keyring if found and new keys are always allocated in the user's quota.
654 *
655 * Furthermore, it then works as wait_for_key_construction() to wait for the
656 * completion of keys undergoing construction with a non-interruptible wait.
657 */
658struct key *request_key_with_auxdata(struct key_type *type,
659				     const char *description,
 
660				     const void *callout_info,
661				     size_t callout_len,
662				     void *aux)
663{
664	struct key *key;
665	int ret;
666
667	key = request_key_and_link(type, description, callout_info, callout_len,
 
668				   aux, NULL, KEY_ALLOC_IN_QUOTA);
669	if (!IS_ERR(key)) {
670		ret = wait_for_key_construction(key, false);
671		if (ret < 0) {
672			key_put(key);
673			return ERR_PTR(ret);
674		}
675	}
676	return key;
677}
678EXPORT_SYMBOL(request_key_with_auxdata);
679
680/*
681 * request_key_async - Request a key (allow async construction)
682 * @type: Type of key.
683 * @description: The searchable description of the key.
684 * @callout_info: The data to pass to the instantiation upcall (or NULL).
685 * @callout_len: The length of callout_info.
686 *
687 * As for request_key_and_link() except that it does not add the returned key
688 * to a keyring if found, new keys are always allocated in the user's quota and
689 * no auxiliary data can be passed.
690 *
691 * The caller should call wait_for_key_construction() to wait for the
692 * completion of the returned key if it is still undergoing construction.
693 */
694struct key *request_key_async(struct key_type *type,
695			      const char *description,
696			      const void *callout_info,
697			      size_t callout_len)
698{
699	return request_key_and_link(type, description, callout_info,
700				    callout_len, NULL, NULL,
701				    KEY_ALLOC_IN_QUOTA);
702}
703EXPORT_SYMBOL(request_key_async);
704
705/*
706 * request a key with auxiliary data for the upcaller (allow async construction)
707 * @type: Type of key.
708 * @description: The searchable description of the key.
709 * @callout_info: The data to pass to the instantiation upcall (or NULL).
710 * @callout_len: The length of callout_info.
711 * @aux: Auxiliary data for the upcall.
712 *
713 * As for request_key_and_link() except that it does not add the returned key
714 * to a keyring if found and new keys are always allocated in the user's quota.
715 *
716 * The caller should call wait_for_key_construction() to wait for the
717 * completion of the returned key if it is still undergoing construction.
718 */
719struct key *request_key_async_with_auxdata(struct key_type *type,
720					   const char *description,
721					   const void *callout_info,
722					   size_t callout_len,
723					   void *aux)
724{
725	return request_key_and_link(type, description, callout_info,
726				    callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727}
728EXPORT_SYMBOL(request_key_async_with_auxdata);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* Request a key from userspace
  3 *
  4 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 *
  7 * See Documentation/security/keys/request-key.rst
 
 
 
 
 
  8 */
  9
 10#include <linux/export.h>
 11#include <linux/sched.h>
 12#include <linux/kmod.h>
 13#include <linux/err.h>
 14#include <linux/keyctl.h>
 15#include <linux/slab.h>
 16#include <net/net_namespace.h>
 17#include "internal.h"
 18#include <keys/request_key_auth-type.h>
 19
 20#define key_negative_timeout	60	/* default timeout on a negative key's existence */
 21
 22static struct key *check_cached_key(struct keyring_search_context *ctx)
 
 
 
 23{
 24#ifdef CONFIG_KEYS_REQUEST_CACHE
 25	struct key *key = current->cached_requested_key;
 26
 27	if (key &&
 28	    ctx->match_data.cmp(key, &ctx->match_data) &&
 29	    !(key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 30			    (1 << KEY_FLAG_REVOKED))))
 31		return key_get(key);
 32#endif
 33	return NULL;
 34}
 35
 36static void cache_requested_key(struct key *key)
 
 
 
 37{
 38#ifdef CONFIG_KEYS_REQUEST_CACHE
 39	struct task_struct *t = current;
 40
 41	/* Do not cache key if it is a kernel thread */
 42	if (!(t->flags & PF_KTHREAD)) {
 43		key_put(t->cached_requested_key);
 44		t->cached_requested_key = key_get(key);
 45		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
 46	}
 47#endif
 48}
 49
 50/**
 51 * complete_request_key - Complete the construction of a key.
 52 * @authkey: The authorisation key.
 53 * @error: The success or failute of the construction.
 54 *
 55 * Complete the attempt to construct a key.  The key will be negated
 56 * if an error is indicated.  The authorisation key will be revoked
 57 * unconditionally.
 58 */
 59void complete_request_key(struct key *authkey, int error)
 60{
 61	struct request_key_auth *rka = get_request_key_auth(authkey);
 62	struct key *key = rka->target_key;
 63
 64	kenter("%d{%d},%d", authkey->serial, key->serial, error);
 65
 66	if (error < 0)
 67		key_negate_and_link(key, key_negative_timeout, NULL, authkey);
 
 68	else
 69		key_revoke(authkey);
 
 
 
 
 70}
 71EXPORT_SYMBOL(complete_request_key);
 72
 73/*
 74 * Initialise a usermode helper that is going to have a specific session
 75 * keyring.
 76 *
 77 * This is called in context of freshly forked kthread before kernel_execve(),
 78 * so we can simply install the desired session_keyring at this point.
 79 */
 80static int umh_keys_init(struct subprocess_info *info, struct cred *cred)
 81{
 82	struct key *keyring = info->data;
 83
 84	return install_session_keyring_to_cred(cred, keyring);
 85}
 86
 87/*
 88 * Clean up a usermode helper with session keyring.
 89 */
 90static void umh_keys_cleanup(struct subprocess_info *info)
 91{
 92	struct key *keyring = info->data;
 93	key_put(keyring);
 94}
 95
 96/*
 97 * Call a usermode helper with a specific session keyring.
 98 */
 99static int call_usermodehelper_keys(const char *path, char **argv, char **envp,
100					struct key *session_keyring, int wait)
101{
102	struct subprocess_info *info;
103
104	info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL,
105					  umh_keys_init, umh_keys_cleanup,
106					  session_keyring);
107	if (!info)
108		return -ENOMEM;
109
110	key_get(session_keyring);
111	return call_usermodehelper_exec(info, wait);
112}
113
114/*
115 * Request userspace finish the construction of a key
116 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>"
117 */
118static int call_sbin_request_key(struct key *authkey, void *aux)
 
 
119{
120	static char const request_key[] = "/sbin/request-key";
121	struct request_key_auth *rka = get_request_key_auth(authkey);
122	const struct cred *cred = current_cred();
123	key_serial_t prkey, sskey;
124	struct key *key = rka->target_key, *keyring, *session, *user_session;
 
125	char *argv[9], *envp[3], uid_str[12], gid_str[12];
126	char key_str[12], keyring_str[3][12];
127	char desc[20];
128	int ret, i;
129
130	kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op);
131
132	ret = look_up_user_keyrings(NULL, &user_session);
133	if (ret < 0)
134		goto error_us;
135
136	/* allocate a new session keyring */
137	sprintf(desc, "_req.%u", key->serial);
138
139	cred = get_current_cred();
140	keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred,
141				KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ,
142				KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL);
143	put_cred(cred);
144	if (IS_ERR(keyring)) {
145		ret = PTR_ERR(keyring);
146		goto error_alloc;
147	}
148
149	/* attach the auth key to the session keyring */
150	ret = key_link(keyring, authkey);
151	if (ret < 0)
152		goto error_link;
153
154	/* record the UID and GID */
155	sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid));
156	sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid));
157
158	/* we say which key is under construction */
159	sprintf(key_str, "%d", key->serial);
160
161	/* we specify the process's default keyrings */
162	sprintf(keyring_str[0], "%d",
163		cred->thread_keyring ? cred->thread_keyring->serial : 0);
164
165	prkey = 0;
166	if (cred->process_keyring)
167		prkey = cred->process_keyring->serial;
168	sprintf(keyring_str[1], "%d", prkey);
169
170	session = cred->session_keyring;
 
171	if (!session)
172		session = user_session;
173	sskey = session->serial;
 
174
175	sprintf(keyring_str[2], "%d", sskey);
176
177	/* set up a minimal environment */
178	i = 0;
179	envp[i++] = "HOME=/";
180	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
181	envp[i] = NULL;
182
183	/* set up the argument list */
184	i = 0;
185	argv[i++] = (char *)request_key;
186	argv[i++] = (char *)rka->op;
187	argv[i++] = key_str;
188	argv[i++] = uid_str;
189	argv[i++] = gid_str;
190	argv[i++] = keyring_str[0];
191	argv[i++] = keyring_str[1];
192	argv[i++] = keyring_str[2];
193	argv[i] = NULL;
194
195	/* do it */
196	ret = call_usermodehelper_keys(request_key, argv, envp, keyring,
197				       UMH_WAIT_PROC);
198	kdebug("usermode -> 0x%x", ret);
199	if (ret >= 0) {
200		/* ret is the exit/wait code */
201		if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) ||
202		    key_validate(key) < 0)
203			ret = -ENOKEY;
204		else
205			/* ignore any errors from userspace if the key was
206			 * instantiated */
207			ret = 0;
208	}
209
210error_link:
211	key_put(keyring);
212
213error_alloc:
214	key_put(user_session);
215error_us:
216	complete_request_key(authkey, ret);
217	kleave(" = %d", ret);
218	return ret;
219}
220
221/*
222 * Call out to userspace for key construction.
223 *
224 * Program failure is ignored in favour of key status.
225 */
226static int construct_key(struct key *key, const void *callout_info,
227			 size_t callout_len, void *aux,
228			 struct key *dest_keyring)
229{
 
230	request_key_actor_t actor;
231	struct key *authkey;
232	int ret;
233
234	kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);
235
 
 
 
 
236	/* allocate an authorisation key */
237	authkey = request_key_auth_new(key, "create", callout_info, callout_len,
238				       dest_keyring);
239	if (IS_ERR(authkey))
240		return PTR_ERR(authkey);
 
 
 
 
 
241
242	/* Make the call */
243	actor = call_sbin_request_key;
244	if (key->type->request_key)
245		actor = key->type->request_key;
246
247	ret = actor(authkey, aux);
248
249	/* check that the actor called complete_request_key() prior to
250	 * returning an error */
251	WARN_ON(ret < 0 &&
252		!test_bit(KEY_FLAG_INVALIDATED, &authkey->flags));
 
 
253
254	key_put(authkey);
255	kleave(" = %d", ret);
256	return ret;
257}
258
259/*
260 * Get the appropriate destination keyring for the request.
261 *
262 * The keyring selected is returned with an extra reference upon it which the
263 * caller must release.
264 */
265static int construct_get_dest_keyring(struct key **_dest_keyring)
266{
267	struct request_key_auth *rka;
268	const struct cred *cred = current_cred();
269	struct key *dest_keyring = *_dest_keyring, *authkey;
270	int ret;
271
272	kenter("%p", dest_keyring);
273
274	/* find the appropriate keyring */
275	if (dest_keyring) {
276		/* the caller supplied one */
277		key_get(dest_keyring);
278	} else {
279		bool do_perm_check = true;
280
281		/* use a default keyring; falling through the cases until we
282		 * find one that we actually have */
283		switch (cred->jit_keyring) {
284		case KEY_REQKEY_DEFL_DEFAULT:
285		case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
286			if (cred->request_key_auth) {
287				authkey = cred->request_key_auth;
288				down_read(&authkey->sem);
289				rka = get_request_key_auth(authkey);
290				if (!test_bit(KEY_FLAG_REVOKED,
291					      &authkey->flags))
292					dest_keyring =
293						key_get(rka->dest_keyring);
294				up_read(&authkey->sem);
295				if (dest_keyring) {
296					do_perm_check = false;
297					break;
298				}
299			}
300
301			fallthrough;
302		case KEY_REQKEY_DEFL_THREAD_KEYRING:
303			dest_keyring = key_get(cred->thread_keyring);
304			if (dest_keyring)
305				break;
306
307			fallthrough;
308		case KEY_REQKEY_DEFL_PROCESS_KEYRING:
309			dest_keyring = key_get(cred->process_keyring);
310			if (dest_keyring)
311				break;
312
313			fallthrough;
314		case KEY_REQKEY_DEFL_SESSION_KEYRING:
315			dest_keyring = key_get(cred->session_keyring);
 
 
 
316
317			if (dest_keyring)
318				break;
319
320			fallthrough;
321		case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
322			ret = look_up_user_keyrings(NULL, &dest_keyring);
323			if (ret < 0)
324				return ret;
325			break;
326
327		case KEY_REQKEY_DEFL_USER_KEYRING:
328			ret = look_up_user_keyrings(&dest_keyring, NULL);
329			if (ret < 0)
330				return ret;
331			break;
332
333		case KEY_REQKEY_DEFL_GROUP_KEYRING:
334		default:
335			BUG();
336		}
337
338		/*
339		 * Require Write permission on the keyring.  This is essential
340		 * because the default keyring may be the session keyring, and
341		 * joining a keyring only requires Search permission.
342		 *
343		 * However, this check is skipped for the "requestor keyring" so
344		 * that /sbin/request-key can itself use request_key() to add
345		 * keys to the original requestor's destination keyring.
346		 */
347		if (dest_keyring && do_perm_check) {
348			ret = key_permission(make_key_ref(dest_keyring, 1),
349					     KEY_NEED_WRITE);
350			if (ret) {
351				key_put(dest_keyring);
352				return ret;
353			}
354		}
355	}
356
357	*_dest_keyring = dest_keyring;
358	kleave(" [dk %d]", key_serial(dest_keyring));
359	return 0;
360}
361
362/*
363 * Allocate a new key in under-construction state and attempt to link it in to
364 * the requested keyring.
365 *
366 * May return a key that's already under construction instead if there was a
367 * race between two thread calling request_key().
368 */
369static int construct_alloc_key(struct keyring_search_context *ctx,
370			       struct key *dest_keyring,
371			       unsigned long flags,
372			       struct key_user *user,
373			       struct key **_key)
374{
375	struct assoc_array_edit *edit = NULL;
376	struct key *key;
377	key_perm_t perm;
378	key_ref_t key_ref;
379	int ret;
380
381	kenter("%s,%s,,,",
382	       ctx->index_key.type->name, ctx->index_key.description);
383
384	*_key = NULL;
385	mutex_lock(&user->cons_lock);
386
387	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
388	perm |= KEY_USR_VIEW;
389	if (ctx->index_key.type->read)
390		perm |= KEY_POS_READ;
391	if (ctx->index_key.type == &key_type_keyring ||
392	    ctx->index_key.type->update)
393		perm |= KEY_POS_WRITE;
394
395	key = key_alloc(ctx->index_key.type, ctx->index_key.description,
396			ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred,
397			perm, flags, NULL);
398	if (IS_ERR(key))
399		goto alloc_failed;
400
401	set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags);
402
403	if (dest_keyring) {
404		ret = __key_link_lock(dest_keyring, &key->index_key);
405		if (ret < 0)
406			goto link_lock_failed;
407	}
408
409	/*
410	 * Attach the key to the destination keyring under lock, but we do need
411	 * to do another check just in case someone beat us to it whilst we
412	 * waited for locks.
413	 *
414	 * The caller might specify a comparison function which looks for keys
415	 * that do not exactly match but are still equivalent from the caller's
416	 * perspective. The __key_link_begin() operation must be done only after
417	 * an actual key is determined.
418	 */
419	mutex_lock(&key_construction_mutex);
420
421	rcu_read_lock();
422	key_ref = search_process_keyrings_rcu(ctx);
423	rcu_read_unlock();
424	if (!IS_ERR(key_ref))
425		goto key_already_present;
426
427	if (dest_keyring) {
428		ret = __key_link_begin(dest_keyring, &key->index_key, &edit);
429		if (ret < 0)
430			goto link_alloc_failed;
431		__key_link(dest_keyring, key, &edit);
432	}
433
434	mutex_unlock(&key_construction_mutex);
435	if (dest_keyring)
436		__key_link_end(dest_keyring, &key->index_key, edit);
437	mutex_unlock(&user->cons_lock);
438	*_key = key;
439	kleave(" = 0 [%d]", key_serial(key));
440	return 0;
441
442	/* the key is now present - we tell the caller that we found it by
443	 * returning -EINPROGRESS  */
444key_already_present:
445	key_put(key);
446	mutex_unlock(&key_construction_mutex);
447	key = key_ref_to_ptr(key_ref);
448	if (dest_keyring) {
449		ret = __key_link_begin(dest_keyring, &key->index_key, &edit);
450		if (ret < 0)
451			goto link_alloc_failed_unlocked;
452		ret = __key_link_check_live_key(dest_keyring, key);
453		if (ret == 0)
454			__key_link(dest_keyring, key, &edit);
455		__key_link_end(dest_keyring, &key->index_key, edit);
456		if (ret < 0)
457			goto link_check_failed;
458	}
459	mutex_unlock(&user->cons_lock);
460	*_key = key;
461	kleave(" = -EINPROGRESS [%d]", key_serial(key));
462	return -EINPROGRESS;
463
464link_check_failed:
465	mutex_unlock(&user->cons_lock);
466	key_put(key);
467	kleave(" = %d [linkcheck]", ret);
468	return ret;
469
470link_alloc_failed:
471	mutex_unlock(&key_construction_mutex);
472link_alloc_failed_unlocked:
473	__key_link_end(dest_keyring, &key->index_key, edit);
474link_lock_failed:
475	mutex_unlock(&user->cons_lock);
476	key_put(key);
477	kleave(" = %d [prelink]", ret);
478	return ret;
479
480alloc_failed:
481	mutex_unlock(&user->cons_lock);
482	kleave(" = %ld", PTR_ERR(key));
483	return PTR_ERR(key);
484}
485
486/*
487 * Commence key construction.
488 */
489static struct key *construct_key_and_link(struct keyring_search_context *ctx,
490					  const char *callout_info,
491					  size_t callout_len,
492					  void *aux,
493					  struct key *dest_keyring,
494					  unsigned long flags)
495{
496	struct key_user *user;
497	struct key *key;
498	int ret;
499
500	kenter("");
501
502	if (ctx->index_key.type == &key_type_keyring)
503		return ERR_PTR(-EPERM);
 
504
505	ret = construct_get_dest_keyring(&dest_keyring);
506	if (ret)
507		goto error;
508
509	user = key_user_lookup(current_fsuid());
510	if (!user) {
511		ret = -ENOMEM;
512		goto error_put_dest_keyring;
513	}
514
515	ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key);
516	key_user_put(user);
517
518	if (ret == 0) {
519		ret = construct_key(key, callout_info, callout_len, aux,
520				    dest_keyring);
521		if (ret < 0) {
522			kdebug("cons failed");
523			goto construction_failed;
524		}
525	} else if (ret == -EINPROGRESS) {
526		ret = 0;
527	} else {
528		goto error_put_dest_keyring;
529	}
530
531	key_put(dest_keyring);
532	kleave(" = key %d", key_serial(key));
533	return key;
534
535construction_failed:
536	key_negate_and_link(key, key_negative_timeout, NULL, NULL);
537	key_put(key);
538error_put_dest_keyring:
539	key_put(dest_keyring);
540error:
541	kleave(" = %d", ret);
542	return ERR_PTR(ret);
543}
544
545/**
546 * request_key_and_link - Request a key and cache it in a keyring.
547 * @type: The type of key we want.
548 * @description: The searchable description of the key.
549 * @domain_tag: The domain in which the key operates.
550 * @callout_info: The data to pass to the instantiation upcall (or NULL).
551 * @callout_len: The length of callout_info.
552 * @aux: Auxiliary data for the upcall.
553 * @dest_keyring: Where to cache the key.
554 * @flags: Flags to key_alloc().
555 *
556 * A key matching the specified criteria (type, description, domain_tag) is
557 * searched for in the process's keyrings and returned with its usage count
558 * incremented if found.  Otherwise, if callout_info is not NULL, a key will be
559 * allocated and some service (probably in userspace) will be asked to
560 * instantiate it.
561 *
562 * If successfully found or created, the key will be linked to the destination
563 * keyring if one is provided.
564 *
565 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED
566 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was
567 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT
568 * if insufficient key quota was available to create a new key; or -ENOMEM if
569 * insufficient memory was available.
570 *
571 * If the returned key was created, then it may still be under construction,
572 * and wait_for_key_construction() should be used to wait for that to complete.
573 */
574struct key *request_key_and_link(struct key_type *type,
575				 const char *description,
576				 struct key_tag *domain_tag,
577				 const void *callout_info,
578				 size_t callout_len,
579				 void *aux,
580				 struct key *dest_keyring,
581				 unsigned long flags)
582{
583	struct keyring_search_context ctx = {
584		.index_key.type		= type,
585		.index_key.domain_tag	= domain_tag,
586		.index_key.description	= description,
587		.index_key.desc_len	= strlen(description),
588		.cred			= current_cred(),
589		.match_data.cmp		= key_default_cmp,
590		.match_data.raw_data	= description,
591		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
592		.flags			= (KEYRING_SEARCH_DO_STATE_CHECK |
593					   KEYRING_SEARCH_SKIP_EXPIRED |
594					   KEYRING_SEARCH_RECURSE),
595	};
596	struct key *key;
597	key_ref_t key_ref;
598	int ret;
599
600	kenter("%s,%s,%p,%zu,%p,%p,%lx",
601	       ctx.index_key.type->name, ctx.index_key.description,
602	       callout_info, callout_len, aux, dest_keyring, flags);
603
604	if (type->match_preparse) {
605		ret = type->match_preparse(&ctx.match_data);
606		if (ret < 0) {
607			key = ERR_PTR(ret);
608			goto error;
609		}
610	}
611
612	key = check_cached_key(&ctx);
613	if (key)
614		goto error_free;
615
616	/* search all the process keyrings for a key */
617	rcu_read_lock();
618	key_ref = search_process_keyrings_rcu(&ctx);
619	rcu_read_unlock();
620
621	if (!IS_ERR(key_ref)) {
622		if (dest_keyring) {
623			ret = key_task_permission(key_ref, current_cred(),
624						  KEY_NEED_LINK);
625			if (ret < 0) {
626				key_ref_put(key_ref);
627				key = ERR_PTR(ret);
628				goto error_free;
629			}
630		}
631
632		key = key_ref_to_ptr(key_ref);
633		if (dest_keyring) {
 
634			ret = key_link(dest_keyring, key);
 
635			if (ret < 0) {
636				key_put(key);
637				key = ERR_PTR(ret);
638				goto error_free;
639			}
640		}
641
642		/* Only cache the key on immediate success */
643		cache_requested_key(key);
644	} else if (PTR_ERR(key_ref) != -EAGAIN) {
645		key = ERR_CAST(key_ref);
646	} else  {
647		/* the search failed, but the keyrings were searchable, so we
648		 * should consult userspace if we can */
649		key = ERR_PTR(-ENOKEY);
650		if (!callout_info)
651			goto error_free;
652
653		key = construct_key_and_link(&ctx, callout_info, callout_len,
654					     aux, dest_keyring, flags);
655	}
656
657error_free:
658	if (type->match_free)
659		type->match_free(&ctx.match_data);
660error:
661	kleave(" = %p", key);
662	return key;
663}
664
665/**
666 * wait_for_key_construction - Wait for construction of a key to complete
667 * @key: The key being waited for.
668 * @intr: Whether to wait interruptibly.
669 *
670 * Wait for a key to finish being constructed.
671 *
672 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY
673 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was
674 * revoked or expired.
675 */
676int wait_for_key_construction(struct key *key, bool intr)
677{
678	int ret;
679
680	ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT,
 
681			  intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
682	if (ret)
683		return -ERESTARTSYS;
684	ret = key_read_state(key);
685	if (ret < 0)
686		return ret;
 
 
 
 
687	return key_validate(key);
688}
689EXPORT_SYMBOL(wait_for_key_construction);
690
691/**
692 * request_key_tag - Request a key and wait for construction
693 * @type: Type of key.
694 * @description: The searchable description of the key.
695 * @domain_tag: The domain in which the key operates.
696 * @callout_info: The data to pass to the instantiation upcall (or NULL).
697 *
698 * As for request_key_and_link() except that it does not add the returned key
699 * to a keyring if found, new keys are always allocated in the user's quota,
700 * the callout_info must be a NUL-terminated string and no auxiliary data can
701 * be passed.
702 *
703 * Furthermore, it then works as wait_for_key_construction() to wait for the
704 * completion of keys undergoing construction with a non-interruptible wait.
705 */
706struct key *request_key_tag(struct key_type *type,
707			    const char *description,
708			    struct key_tag *domain_tag,
709			    const char *callout_info)
710{
711	struct key *key;
712	size_t callout_len = 0;
713	int ret;
714
715	if (callout_info)
716		callout_len = strlen(callout_info);
717	key = request_key_and_link(type, description, domain_tag,
718				   callout_info, callout_len,
719				   NULL, NULL, KEY_ALLOC_IN_QUOTA);
720	if (!IS_ERR(key)) {
721		ret = wait_for_key_construction(key, false);
722		if (ret < 0) {
723			key_put(key);
724			return ERR_PTR(ret);
725		}
726	}
727	return key;
728}
729EXPORT_SYMBOL(request_key_tag);
730
731/**
732 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller
733 * @type: The type of key we want.
734 * @description: The searchable description of the key.
735 * @domain_tag: The domain in which the key operates.
736 * @callout_info: The data to pass to the instantiation upcall (or NULL).
737 * @callout_len: The length of callout_info.
738 * @aux: Auxiliary data for the upcall.
739 *
740 * As for request_key_and_link() except that it does not add the returned key
741 * to a keyring if found and new keys are always allocated in the user's quota.
742 *
743 * Furthermore, it then works as wait_for_key_construction() to wait for the
744 * completion of keys undergoing construction with a non-interruptible wait.
745 */
746struct key *request_key_with_auxdata(struct key_type *type,
747				     const char *description,
748				     struct key_tag *domain_tag,
749				     const void *callout_info,
750				     size_t callout_len,
751				     void *aux)
752{
753	struct key *key;
754	int ret;
755
756	key = request_key_and_link(type, description, domain_tag,
757				   callout_info, callout_len,
758				   aux, NULL, KEY_ALLOC_IN_QUOTA);
759	if (!IS_ERR(key)) {
760		ret = wait_for_key_construction(key, false);
761		if (ret < 0) {
762			key_put(key);
763			return ERR_PTR(ret);
764		}
765	}
766	return key;
767}
768EXPORT_SYMBOL(request_key_with_auxdata);
769
770/**
771 * request_key_rcu - Request key from RCU-read-locked context
772 * @type: The type of key we want.
773 * @description: The name of the key we want.
774 * @domain_tag: The domain in which the key operates.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
775 *
776 * Request a key from a context that we may not sleep in (such as RCU-mode
777 * pathwalk).  Keys under construction are ignored.
778 *
779 * Return a pointer to the found key if successful, -ENOKEY if we couldn't find
780 * a key or some other error if the key found was unsuitable or inaccessible.
781 */
782struct key *request_key_rcu(struct key_type *type,
783			    const char *description,
784			    struct key_tag *domain_tag)
 
 
785{
786	struct keyring_search_context ctx = {
787		.index_key.type		= type,
788		.index_key.domain_tag	= domain_tag,
789		.index_key.description	= description,
790		.index_key.desc_len	= strlen(description),
791		.cred			= current_cred(),
792		.match_data.cmp		= key_default_cmp,
793		.match_data.raw_data	= description,
794		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
795		.flags			= (KEYRING_SEARCH_DO_STATE_CHECK |
796					   KEYRING_SEARCH_SKIP_EXPIRED),
797	};
798	struct key *key;
799	key_ref_t key_ref;
800
801	kenter("%s,%s", type->name, description);
802
803	key = check_cached_key(&ctx);
804	if (key)
805		return key;
806
807	/* search all the process keyrings for a key */
808	key_ref = search_process_keyrings_rcu(&ctx);
809	if (IS_ERR(key_ref)) {
810		key = ERR_CAST(key_ref);
811		if (PTR_ERR(key_ref) == -EAGAIN)
812			key = ERR_PTR(-ENOKEY);
813	} else {
814		key = key_ref_to_ptr(key_ref);
815		cache_requested_key(key);
816	}
817
818	kleave(" = %p", key);
819	return key;
820}
821EXPORT_SYMBOL(request_key_rcu);