Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* Userspace key control operations
   2 *
   3 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
 
  15#include <linux/slab.h>
  16#include <linux/syscalls.h>
  17#include <linux/key.h>
  18#include <linux/keyctl.h>
  19#include <linux/fs.h>
  20#include <linux/capability.h>
 
  21#include <linux/string.h>
  22#include <linux/err.h>
  23#include <linux/vmalloc.h>
  24#include <linux/security.h>
  25#include <linux/uio.h>
  26#include <asm/uaccess.h>
 
  27#include "internal.h"
  28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29static int key_get_type_from_user(char *type,
  30				  const char __user *_type,
  31				  unsigned len)
  32{
  33	int ret;
  34
  35	ret = strncpy_from_user(type, _type, len);
  36	if (ret < 0)
  37		return ret;
  38	if (ret == 0 || ret >= len)
  39		return -EINVAL;
  40	if (type[0] == '.')
  41		return -EPERM;
  42	type[len - 1] = '\0';
  43	return 0;
  44}
  45
  46/*
  47 * Extract the description of a new key from userspace and either add it as a
  48 * new key to the specified keyring or update a matching key in that keyring.
  49 *
  50 * If the description is NULL or an empty string, the key type is asked to
  51 * generate one from the payload.
  52 *
  53 * The keyring must be writable so that we can attach the key to it.
  54 *
  55 * If successful, the new key's serial number is returned, otherwise an error
  56 * code is returned.
  57 */
  58SYSCALL_DEFINE5(add_key, const char __user *, _type,
  59		const char __user *, _description,
  60		const void __user *, _payload,
  61		size_t, plen,
  62		key_serial_t, ringid)
  63{
  64	key_ref_t keyring_ref, key_ref;
  65	char type[32], *description;
  66	void *payload;
  67	long ret;
  68	bool vm;
  69
  70	ret = -EINVAL;
  71	if (plen > 1024 * 1024 - 1)
  72		goto error;
  73
  74	/* draw all the data into kernel space */
  75	ret = key_get_type_from_user(type, _type, sizeof(type));
  76	if (ret < 0)
  77		goto error;
  78
  79	description = NULL;
  80	if (_description) {
  81		description = strndup_user(_description, PAGE_SIZE);
  82		if (IS_ERR(description)) {
  83			ret = PTR_ERR(description);
  84			goto error;
  85		}
  86		if (!*description) {
  87			kfree(description);
  88			description = NULL;
 
 
 
 
  89		}
  90	}
  91
  92	/* pull the payload in if one was supplied */
  93	payload = NULL;
  94
  95	vm = false;
  96	if (_payload) {
  97		ret = -ENOMEM;
  98		payload = kmalloc(plen, GFP_KERNEL | __GFP_NOWARN);
  99		if (!payload) {
 100			if (plen <= PAGE_SIZE)
 101				goto error2;
 102			vm = true;
 103			payload = vmalloc(plen);
 104			if (!payload)
 105				goto error2;
 106		}
 107
 108		ret = -EFAULT;
 109		if (copy_from_user(payload, _payload, plen) != 0)
 110			goto error3;
 111	}
 112
 113	/* find the target keyring (which must be writable) */
 114	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
 115	if (IS_ERR(keyring_ref)) {
 116		ret = PTR_ERR(keyring_ref);
 117		goto error3;
 118	}
 119
 120	/* create or update the requested key and add it to the target
 121	 * keyring */
 122	key_ref = key_create_or_update(keyring_ref, type, description,
 123				       payload, plen, KEY_PERM_UNDEF,
 124				       KEY_ALLOC_IN_QUOTA);
 125	if (!IS_ERR(key_ref)) {
 126		ret = key_ref_to_ptr(key_ref)->serial;
 127		key_ref_put(key_ref);
 128	}
 129	else {
 130		ret = PTR_ERR(key_ref);
 131	}
 132
 133	key_ref_put(keyring_ref);
 134 error3:
 135	if (!vm)
 136		kfree(payload);
 137	else
 138		vfree(payload);
 139 error2:
 140	kfree(description);
 141 error:
 142	return ret;
 143}
 144
 145/*
 146 * Search the process keyrings and keyring trees linked from those for a
 147 * matching key.  Keyrings must have appropriate Search permission to be
 148 * searched.
 149 *
 150 * If a key is found, it will be attached to the destination keyring if there's
 151 * one specified and the serial number of the key will be returned.
 152 *
 153 * If no key is found, /sbin/request-key will be invoked if _callout_info is
 154 * non-NULL in an attempt to create a key.  The _callout_info string will be
 155 * passed to /sbin/request-key to aid with completing the request.  If the
 156 * _callout_info string is "" then it will be changed to "-".
 157 */
 158SYSCALL_DEFINE4(request_key, const char __user *, _type,
 159		const char __user *, _description,
 160		const char __user *, _callout_info,
 161		key_serial_t, destringid)
 162{
 163	struct key_type *ktype;
 164	struct key *key;
 165	key_ref_t dest_ref;
 166	size_t callout_len;
 167	char type[32], *description, *callout_info;
 168	long ret;
 169
 170	/* pull the type into kernel space */
 171	ret = key_get_type_from_user(type, _type, sizeof(type));
 172	if (ret < 0)
 173		goto error;
 174
 175	/* pull the description into kernel space */
 176	description = strndup_user(_description, PAGE_SIZE);
 177	if (IS_ERR(description)) {
 178		ret = PTR_ERR(description);
 179		goto error;
 180	}
 181
 182	/* pull the callout info into kernel space */
 183	callout_info = NULL;
 184	callout_len = 0;
 185	if (_callout_info) {
 186		callout_info = strndup_user(_callout_info, PAGE_SIZE);
 187		if (IS_ERR(callout_info)) {
 188			ret = PTR_ERR(callout_info);
 189			goto error2;
 190		}
 191		callout_len = strlen(callout_info);
 192	}
 193
 194	/* get the destination keyring if specified */
 195	dest_ref = NULL;
 196	if (destringid) {
 197		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
 198					   KEY_WRITE);
 199		if (IS_ERR(dest_ref)) {
 200			ret = PTR_ERR(dest_ref);
 201			goto error3;
 202		}
 203	}
 204
 205	/* find the key type */
 206	ktype = key_type_lookup(type);
 207	if (IS_ERR(ktype)) {
 208		ret = PTR_ERR(ktype);
 209		goto error4;
 210	}
 211
 212	/* do the search */
 213	key = request_key_and_link(ktype, description, callout_info,
 214				   callout_len, NULL, key_ref_to_ptr(dest_ref),
 215				   KEY_ALLOC_IN_QUOTA);
 216	if (IS_ERR(key)) {
 217		ret = PTR_ERR(key);
 218		goto error5;
 219	}
 220
 221	/* wait for the key to finish being constructed */
 222	ret = wait_for_key_construction(key, 1);
 223	if (ret < 0)
 224		goto error6;
 225
 226	ret = key->serial;
 227
 228error6:
 229 	key_put(key);
 230error5:
 231	key_type_put(ktype);
 232error4:
 233	key_ref_put(dest_ref);
 234error3:
 235	kfree(callout_info);
 236error2:
 237	kfree(description);
 238error:
 239	return ret;
 240}
 241
 242/*
 243 * Get the ID of the specified process keyring.
 244 *
 245 * The requested keyring must have search permission to be found.
 246 *
 247 * If successful, the ID of the requested keyring will be returned.
 248 */
 249long keyctl_get_keyring_ID(key_serial_t id, int create)
 250{
 251	key_ref_t key_ref;
 252	unsigned long lflags;
 253	long ret;
 254
 255	lflags = create ? KEY_LOOKUP_CREATE : 0;
 256	key_ref = lookup_user_key(id, lflags, KEY_SEARCH);
 257	if (IS_ERR(key_ref)) {
 258		ret = PTR_ERR(key_ref);
 259		goto error;
 260	}
 261
 262	ret = key_ref_to_ptr(key_ref)->serial;
 263	key_ref_put(key_ref);
 264error:
 265	return ret;
 266}
 267
 268/*
 269 * Join a (named) session keyring.
 270 *
 271 * Create and join an anonymous session keyring or join a named session
 272 * keyring, creating it if necessary.  A named session keyring must have Search
 273 * permission for it to be joined.  Session keyrings without this permit will
 274 * be skipped over.
 
 275 *
 276 * If successful, the ID of the joined session keyring will be returned.
 277 */
 278long keyctl_join_session_keyring(const char __user *_name)
 279{
 280	char *name;
 281	long ret;
 282
 283	/* fetch the name from userspace */
 284	name = NULL;
 285	if (_name) {
 286		name = strndup_user(_name, PAGE_SIZE);
 287		if (IS_ERR(name)) {
 288			ret = PTR_ERR(name);
 289			goto error;
 290		}
 
 
 
 
 291	}
 292
 293	/* join the session */
 294	ret = join_session_keyring(name);
 
 295	kfree(name);
 296
 297error:
 298	return ret;
 299}
 300
 301/*
 302 * Update a key's data payload from the given data.
 303 *
 304 * The key must grant the caller Write permission and the key type must support
 305 * updating for this to work.  A negative key can be positively instantiated
 306 * with this call.
 307 *
 308 * If successful, 0 will be returned.  If the key type does not support
 309 * updating, then -EOPNOTSUPP will be returned.
 310 */
 311long keyctl_update_key(key_serial_t id,
 312		       const void __user *_payload,
 313		       size_t plen)
 314{
 315	key_ref_t key_ref;
 316	void *payload;
 317	long ret;
 318
 319	ret = -EINVAL;
 320	if (plen > PAGE_SIZE)
 321		goto error;
 322
 323	/* pull the payload in if one was supplied */
 324	payload = NULL;
 325	if (_payload) {
 326		ret = -ENOMEM;
 327		payload = kmalloc(plen, GFP_KERNEL);
 328		if (!payload)
 329			goto error;
 330
 331		ret = -EFAULT;
 332		if (copy_from_user(payload, _payload, plen) != 0)
 333			goto error2;
 334	}
 335
 336	/* find the target key (which must be writable) */
 337	key_ref = lookup_user_key(id, 0, KEY_WRITE);
 338	if (IS_ERR(key_ref)) {
 339		ret = PTR_ERR(key_ref);
 340		goto error2;
 341	}
 342
 343	/* update the key */
 344	ret = key_update(key_ref, payload, plen);
 345
 346	key_ref_put(key_ref);
 347error2:
 348	kfree(payload);
 349error:
 350	return ret;
 351}
 352
 353/*
 354 * Revoke a key.
 355 *
 356 * The key must be grant the caller Write or Setattr permission for this to
 357 * work.  The key type should give up its quota claim when revoked.  The key
 358 * and any links to the key will be automatically garbage collected after a
 359 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
 360 *
 
 
 361 * If successful, 0 is returned.
 362 */
 363long keyctl_revoke_key(key_serial_t id)
 364{
 365	key_ref_t key_ref;
 
 366	long ret;
 367
 368	key_ref = lookup_user_key(id, 0, KEY_WRITE);
 369	if (IS_ERR(key_ref)) {
 370		ret = PTR_ERR(key_ref);
 371		if (ret != -EACCES)
 372			goto error;
 373		key_ref = lookup_user_key(id, 0, KEY_SETATTR);
 374		if (IS_ERR(key_ref)) {
 375			ret = PTR_ERR(key_ref);
 376			goto error;
 377		}
 378	}
 379
 380	key_revoke(key_ref_to_ptr(key_ref));
 381	ret = 0;
 
 
 
 
 382
 383	key_ref_put(key_ref);
 384error:
 385	return ret;
 386}
 387
 388/*
 389 * Invalidate a key.
 390 *
 391 * The key must be grant the caller Invalidate permission for this to work.
 392 * The key and any links to the key will be automatically garbage collected
 393 * immediately.
 394 *
 
 
 395 * If successful, 0 is returned.
 396 */
 397long keyctl_invalidate_key(key_serial_t id)
 398{
 399	key_ref_t key_ref;
 
 400	long ret;
 401
 402	kenter("%d", id);
 403
 404	key_ref = lookup_user_key(id, 0, KEY_SEARCH);
 405	if (IS_ERR(key_ref)) {
 406		ret = PTR_ERR(key_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 407		goto error;
 408	}
 409
 410	key_invalidate(key_ref_to_ptr(key_ref));
 
 411	ret = 0;
 412
 
 
 
 
 413	key_ref_put(key_ref);
 414error:
 415	kleave(" = %ld", ret);
 416	return ret;
 417}
 418
 419/*
 420 * Clear the specified keyring, creating an empty process keyring if one of the
 421 * special keyring IDs is used.
 422 *
 423 * The keyring must grant the caller Write permission for this to work.  If
 424 * successful, 0 will be returned.
 425 */
 426long keyctl_keyring_clear(key_serial_t ringid)
 427{
 428	key_ref_t keyring_ref;
 
 429	long ret;
 430
 431	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
 432	if (IS_ERR(keyring_ref)) {
 433		ret = PTR_ERR(keyring_ref);
 434
 435		/* Root is permitted to invalidate certain special keyrings */
 436		if (capable(CAP_SYS_ADMIN)) {
 437			keyring_ref = lookup_user_key(ringid, 0, 0);
 
 438			if (IS_ERR(keyring_ref))
 439				goto error;
 440			if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
 441				     &key_ref_to_ptr(keyring_ref)->flags))
 442				goto clear;
 443			goto error_put;
 444		}
 445
 446		goto error;
 447	}
 448
 449clear:
 450	ret = keyring_clear(key_ref_to_ptr(keyring_ref));
 
 
 
 
 451error_put:
 452	key_ref_put(keyring_ref);
 453error:
 454	return ret;
 455}
 456
 457/*
 458 * Create a link from a keyring to a key if there's no matching key in the
 459 * keyring, otherwise replace the link to the matching key with a link to the
 460 * new key.
 461 *
 462 * The key must grant the caller Link permission and the the keyring must grant
 463 * the caller Write permission.  Furthermore, if an additional link is created,
 464 * the keyring's quota will be extended.
 465 *
 466 * If successful, 0 will be returned.
 467 */
 468long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
 469{
 470	key_ref_t keyring_ref, key_ref;
 471	long ret;
 472
 473	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
 474	if (IS_ERR(keyring_ref)) {
 475		ret = PTR_ERR(keyring_ref);
 476		goto error;
 477	}
 478
 479	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_LINK);
 480	if (IS_ERR(key_ref)) {
 481		ret = PTR_ERR(key_ref);
 482		goto error2;
 483	}
 484
 485	ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
 486
 487	key_ref_put(key_ref);
 488error2:
 489	key_ref_put(keyring_ref);
 490error:
 491	return ret;
 492}
 493
 494/*
 495 * Unlink a key from a keyring.
 496 *
 497 * The keyring must grant the caller Write permission for this to work; the key
 498 * itself need not grant the caller anything.  If the last link to a key is
 499 * removed then that key will be scheduled for destruction.
 500 *
 
 
 501 * If successful, 0 will be returned.
 502 */
 503long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
 504{
 505	key_ref_t keyring_ref, key_ref;
 
 506	long ret;
 507
 508	keyring_ref = lookup_user_key(ringid, 0, KEY_WRITE);
 509	if (IS_ERR(keyring_ref)) {
 510		ret = PTR_ERR(keyring_ref);
 511		goto error;
 512	}
 513
 514	key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
 515	if (IS_ERR(key_ref)) {
 516		ret = PTR_ERR(key_ref);
 517		goto error2;
 518	}
 519
 520	ret = key_unlink(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
 
 
 
 
 
 
 521
 522	key_ref_put(key_ref);
 523error2:
 524	key_ref_put(keyring_ref);
 525error:
 526	return ret;
 527}
 528
 529/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530 * Return a description of a key to userspace.
 531 *
 532 * The key must grant the caller View permission for this to work.
 533 *
 534 * If there's a buffer, we place up to buflen bytes of data into it formatted
 535 * in the following way:
 536 *
 537 *	type;uid;gid;perm;description<NUL>
 538 *
 539 * If successful, we return the amount of description available, irrespective
 540 * of how much we may have copied into the buffer.
 541 */
 542long keyctl_describe_key(key_serial_t keyid,
 543			 char __user *buffer,
 544			 size_t buflen)
 545{
 546	struct key *key, *instkey;
 547	key_ref_t key_ref;
 548	char *tmpbuf;
 549	long ret;
 
 550
 551	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_VIEW);
 552	if (IS_ERR(key_ref)) {
 553		/* viewing a key under construction is permitted if we have the
 554		 * authorisation token handy */
 555		if (PTR_ERR(key_ref) == -EACCES) {
 556			instkey = key_get_instantiation_authkey(keyid);
 557			if (!IS_ERR(instkey)) {
 558				key_put(instkey);
 559				key_ref = lookup_user_key(keyid,
 560							  KEY_LOOKUP_PARTIAL,
 561							  0);
 562				if (!IS_ERR(key_ref))
 563					goto okay;
 564			}
 565		}
 566
 567		ret = PTR_ERR(key_ref);
 568		goto error;
 569	}
 570
 571okay:
 572	/* calculate how much description we're going to return */
 573	ret = -ENOMEM;
 574	tmpbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 575	if (!tmpbuf)
 576		goto error2;
 577
 578	key = key_ref_to_ptr(key_ref);
 
 579
 580	ret = snprintf(tmpbuf, PAGE_SIZE - 1,
 581		       "%s;%d;%d;%08x;%s",
 582		       key->type->name,
 583		       from_kuid_munged(current_user_ns(), key->uid),
 584		       from_kgid_munged(current_user_ns(), key->gid),
 585		       key->perm,
 586		       key->description ?: "");
 587
 588	/* include a NUL char at the end of the data */
 589	if (ret > PAGE_SIZE - 1)
 590		ret = PAGE_SIZE - 1;
 591	tmpbuf[ret] = 0;
 592	ret++;
 593
 594	/* consider returning the data */
 595	if (buffer && buflen > 0) {
 596		if (buflen > ret)
 597			buflen = ret;
 598
 599		if (copy_to_user(buffer, tmpbuf, buflen) != 0)
 600			ret = -EFAULT;
 601	}
 602
 603	kfree(tmpbuf);
 604error2:
 605	key_ref_put(key_ref);
 606error:
 607	return ret;
 608}
 609
 610/*
 611 * Search the specified keyring and any keyrings it links to for a matching
 612 * key.  Only keyrings that grant the caller Search permission will be searched
 613 * (this includes the starting keyring).  Only keys with Search permission can
 614 * be found.
 615 *
 616 * If successful, the found key will be linked to the destination keyring if
 617 * supplied and the key has Link permission, and the found key ID will be
 618 * returned.
 619 */
 620long keyctl_keyring_search(key_serial_t ringid,
 621			   const char __user *_type,
 622			   const char __user *_description,
 623			   key_serial_t destringid)
 624{
 625	struct key_type *ktype;
 626	key_ref_t keyring_ref, key_ref, dest_ref;
 627	char type[32], *description;
 628	long ret;
 629
 630	/* pull the type and description into kernel space */
 631	ret = key_get_type_from_user(type, _type, sizeof(type));
 632	if (ret < 0)
 633		goto error;
 634
 635	description = strndup_user(_description, PAGE_SIZE);
 636	if (IS_ERR(description)) {
 637		ret = PTR_ERR(description);
 638		goto error;
 639	}
 640
 641	/* get the keyring at which to begin the search */
 642	keyring_ref = lookup_user_key(ringid, 0, KEY_SEARCH);
 643	if (IS_ERR(keyring_ref)) {
 644		ret = PTR_ERR(keyring_ref);
 645		goto error2;
 646	}
 647
 648	/* get the destination keyring if specified */
 649	dest_ref = NULL;
 650	if (destringid) {
 651		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
 652					   KEY_WRITE);
 653		if (IS_ERR(dest_ref)) {
 654			ret = PTR_ERR(dest_ref);
 655			goto error3;
 656		}
 657	}
 658
 659	/* find the key type */
 660	ktype = key_type_lookup(type);
 661	if (IS_ERR(ktype)) {
 662		ret = PTR_ERR(ktype);
 663		goto error4;
 664	}
 665
 666	/* do the search */
 667	key_ref = keyring_search(keyring_ref, ktype, description);
 668	if (IS_ERR(key_ref)) {
 669		ret = PTR_ERR(key_ref);
 670
 671		/* treat lack or presence of a negative key the same */
 672		if (ret == -EAGAIN)
 673			ret = -ENOKEY;
 674		goto error5;
 675	}
 676
 677	/* link the resulting key to the destination keyring if we can */
 678	if (dest_ref) {
 679		ret = key_permission(key_ref, KEY_LINK);
 680		if (ret < 0)
 681			goto error6;
 682
 683		ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
 684		if (ret < 0)
 685			goto error6;
 686	}
 687
 688	ret = key_ref_to_ptr(key_ref)->serial;
 689
 690error6:
 691	key_ref_put(key_ref);
 692error5:
 693	key_type_put(ktype);
 694error4:
 695	key_ref_put(dest_ref);
 696error3:
 697	key_ref_put(keyring_ref);
 698error2:
 699	kfree(description);
 700error:
 701	return ret;
 702}
 703
 704/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705 * Read a key's payload.
 706 *
 707 * The key must either grant the caller Read permission, or it must grant the
 708 * caller Search permission when searched for from the process keyrings.
 709 *
 710 * If successful, we place up to buflen bytes of data into the buffer, if one
 711 * is provided, and return the amount of data that is available in the key,
 712 * irrespective of how much we copied into the buffer.
 713 */
 714long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
 715{
 716	struct key *key;
 717	key_ref_t key_ref;
 718	long ret;
 
 
 719
 720	/* find the key first */
 721	key_ref = lookup_user_key(keyid, 0, 0);
 722	if (IS_ERR(key_ref)) {
 723		ret = -ENOKEY;
 724		goto error;
 725	}
 726
 727	key = key_ref_to_ptr(key_ref);
 728
 
 
 
 
 729	/* see if we can read it directly */
 730	ret = key_permission(key_ref, KEY_READ);
 731	if (ret == 0)
 732		goto can_read_key;
 733	if (ret != -EACCES)
 734		goto error;
 735
 736	/* we can't; see if it's searchable from this process's keyrings
 737	 * - we automatically take account of the fact that it may be
 738	 *   dangling off an instantiation key
 739	 */
 740	if (!is_key_possessed(key_ref)) {
 741		ret = -EACCES;
 742		goto error2;
 743	}
 744
 745	/* the key is probably readable - now try to read it */
 746can_read_key:
 747	ret = key_validate(key);
 748	if (ret == 0) {
 749		ret = -EOPNOTSUPP;
 750		if (key->type->read) {
 751			/* read the data with the semaphore held (since we
 752			 * might sleep) */
 753			down_read(&key->sem);
 754			ret = key->type->read(key, buffer, buflen);
 755			up_read(&key->sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756		}
 
 
 
 
 757	}
 
 758
 759error2:
 760	key_put(key);
 761error:
 762	return ret;
 763}
 764
 765/*
 766 * Change the ownership of a key
 767 *
 768 * The key must grant the caller Setattr permission for this to work, though
 769 * the key need not be fully instantiated yet.  For the UID to be changed, or
 770 * for the GID to be changed to a group the caller is not a member of, the
 771 * caller must have sysadmin capability.  If either uid or gid is -1 then that
 772 * attribute is not changed.
 773 *
 774 * If the UID is to be changed, the new user must have sufficient quota to
 775 * accept the key.  The quota deduction will be removed from the old user to
 776 * the new user should the attribute be changed.
 777 *
 778 * If successful, 0 will be returned.
 779 */
 780long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
 781{
 782	struct key_user *newowner, *zapowner = NULL;
 783	struct key *key;
 784	key_ref_t key_ref;
 785	long ret;
 786	kuid_t uid;
 787	kgid_t gid;
 
 788
 789	uid = make_kuid(current_user_ns(), user);
 790	gid = make_kgid(current_user_ns(), group);
 791	ret = -EINVAL;
 792	if ((user != (uid_t) -1) && !uid_valid(uid))
 793		goto error;
 794	if ((group != (gid_t) -1) && !gid_valid(gid))
 795		goto error;
 796
 797	ret = 0;
 798	if (user == (uid_t) -1 && group == (gid_t) -1)
 799		goto error;
 800
 801	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
 802				  KEY_SETATTR);
 803	if (IS_ERR(key_ref)) {
 804		ret = PTR_ERR(key_ref);
 805		goto error;
 806	}
 807
 808	key = key_ref_to_ptr(key_ref);
 809
 810	/* make the changes with the locks held to prevent chown/chown races */
 811	ret = -EACCES;
 812	down_write(&key->sem);
 813
 814	if (!capable(CAP_SYS_ADMIN)) {
 
 
 815		/* only the sysadmin can chown a key to some other UID */
 816		if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
 817			goto error_put;
 818
 819		/* only the sysadmin can set the key's GID to a group other
 820		 * than one of those that the current process subscribes to */
 821		if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
 
 
 
 822			goto error_put;
 823	}
 824
 825	/* change the UID */
 826	if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
 827		ret = -ENOMEM;
 828		newowner = key_user_lookup(uid);
 829		if (!newowner)
 830			goto error_put;
 831
 832		/* transfer the quota burden to the new user */
 833		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 834			unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 835				key_quota_root_maxkeys : key_quota_maxkeys;
 836			unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 837				key_quota_root_maxbytes : key_quota_maxbytes;
 838
 839			spin_lock(&newowner->lock);
 840			if (newowner->qnkeys + 1 >= maxkeys ||
 841			    newowner->qnbytes + key->quotalen >= maxbytes ||
 842			    newowner->qnbytes + key->quotalen <
 843			    newowner->qnbytes)
 844				goto quota_overrun;
 845
 846			newowner->qnkeys++;
 847			newowner->qnbytes += key->quotalen;
 848			spin_unlock(&newowner->lock);
 849
 850			spin_lock(&key->user->lock);
 851			key->user->qnkeys--;
 852			key->user->qnbytes -= key->quotalen;
 853			spin_unlock(&key->user->lock);
 854		}
 855
 856		atomic_dec(&key->user->nkeys);
 857		atomic_inc(&newowner->nkeys);
 858
 859		if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 860			atomic_dec(&key->user->nikeys);
 861			atomic_inc(&newowner->nikeys);
 862		}
 863
 864		zapowner = key->user;
 865		key->user = newowner;
 866		key->uid = uid;
 867	}
 868
 869	/* change the GID */
 870	if (group != (gid_t) -1)
 871		key->gid = gid;
 872
 
 873	ret = 0;
 874
 875error_put:
 876	up_write(&key->sem);
 877	key_put(key);
 878	if (zapowner)
 879		key_user_put(zapowner);
 880error:
 881	return ret;
 882
 883quota_overrun:
 884	spin_unlock(&newowner->lock);
 885	zapowner = newowner;
 886	ret = -EDQUOT;
 887	goto error_put;
 888}
 889
 890/*
 891 * Change the permission mask on a key.
 892 *
 893 * The key must grant the caller Setattr permission for this to work, though
 894 * the key need not be fully instantiated yet.  If the caller does not have
 895 * sysadmin capability, it may only change the permission on keys that it owns.
 896 */
 897long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
 898{
 899	struct key *key;
 900	key_ref_t key_ref;
 901	long ret;
 902
 903	ret = -EINVAL;
 904	if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
 905		goto error;
 906
 907	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
 908				  KEY_SETATTR);
 909	if (IS_ERR(key_ref)) {
 910		ret = PTR_ERR(key_ref);
 911		goto error;
 912	}
 913
 914	key = key_ref_to_ptr(key_ref);
 915
 916	/* make the changes with the locks held to prevent chown/chmod races */
 917	ret = -EACCES;
 918	down_write(&key->sem);
 919
 920	/* if we're not the sysadmin, we can only change a key that we own */
 921	if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
 922		key->perm = perm;
 
 923		ret = 0;
 924	}
 925
 926	up_write(&key->sem);
 927	key_put(key);
 928error:
 929	return ret;
 930}
 931
 932/*
 933 * Get the destination keyring for instantiation and check that the caller has
 934 * Write permission on it.
 935 */
 936static long get_instantiation_keyring(key_serial_t ringid,
 937				      struct request_key_auth *rka,
 938				      struct key **_dest_keyring)
 939{
 940	key_ref_t dkref;
 941
 942	*_dest_keyring = NULL;
 943
 944	/* just return a NULL pointer if we weren't asked to make a link */
 945	if (ringid == 0)
 946		return 0;
 947
 948	/* if a specific keyring is nominated by ID, then use that */
 949	if (ringid > 0) {
 950		dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
 951		if (IS_ERR(dkref))
 952			return PTR_ERR(dkref);
 953		*_dest_keyring = key_ref_to_ptr(dkref);
 954		return 0;
 955	}
 956
 957	if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
 958		return -EINVAL;
 959
 960	/* otherwise specify the destination keyring recorded in the
 961	 * authorisation key (any KEY_SPEC_*_KEYRING) */
 962	if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
 963		*_dest_keyring = key_get(rka->dest_keyring);
 964		return 0;
 965	}
 966
 967	return -ENOKEY;
 968}
 969
 970/*
 971 * Change the request_key authorisation key on the current process.
 972 */
 973static int keyctl_change_reqkey_auth(struct key *key)
 974{
 975	struct cred *new;
 976
 977	new = prepare_creds();
 978	if (!new)
 979		return -ENOMEM;
 980
 981	key_put(new->request_key_auth);
 982	new->request_key_auth = key_get(key);
 983
 984	return commit_creds(new);
 985}
 986
 987/*
 988 * Copy the iovec data from userspace
 989 */
 990static long copy_from_user_iovec(void *buffer, const struct iovec *iov,
 991				 unsigned ioc)
 992{
 993	for (; ioc > 0; ioc--) {
 994		if (copy_from_user(buffer, iov->iov_base, iov->iov_len) != 0)
 995			return -EFAULT;
 996		buffer += iov->iov_len;
 997		iov++;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Instantiate a key with the specified payload and link the key into the
1004 * destination keyring if one is given.
1005 *
1006 * The caller must have the appropriate instantiation permit set for this to
1007 * work (see keyctl_assume_authority).  No other permissions are required.
1008 *
1009 * If successful, 0 will be returned.
1010 */
1011long keyctl_instantiate_key_common(key_serial_t id,
1012				   const struct iovec *payload_iov,
1013				   unsigned ioc,
1014				   size_t plen,
1015				   key_serial_t ringid)
1016{
1017	const struct cred *cred = current_cred();
1018	struct request_key_auth *rka;
1019	struct key *instkey, *dest_keyring;
 
1020	void *payload;
1021	long ret;
1022	bool vm = false;
1023
1024	kenter("%d,,%zu,%d", id, plen, ringid);
1025
 
 
 
1026	ret = -EINVAL;
1027	if (plen > 1024 * 1024 - 1)
1028		goto error;
1029
1030	/* the appropriate instantiation authorisation key must have been
1031	 * assumed before calling this */
1032	ret = -EPERM;
1033	instkey = cred->request_key_auth;
1034	if (!instkey)
1035		goto error;
1036
1037	rka = instkey->payload.data;
1038	if (rka->target_key->serial != id)
1039		goto error;
1040
1041	/* pull the payload in if one was supplied */
1042	payload = NULL;
1043
1044	if (payload_iov) {
1045		ret = -ENOMEM;
1046		payload = kmalloc(plen, GFP_KERNEL);
1047		if (!payload) {
1048			if (plen <= PAGE_SIZE)
1049				goto error;
1050			vm = true;
1051			payload = vmalloc(plen);
1052			if (!payload)
1053				goto error;
1054		}
1055
1056		ret = copy_from_user_iovec(payload, payload_iov, ioc);
1057		if (ret < 0)
1058			goto error2;
1059	}
1060
1061	/* find the destination keyring amongst those belonging to the
1062	 * requesting task */
1063	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1064	if (ret < 0)
1065		goto error2;
1066
1067	/* instantiate the key and link it into a keyring */
1068	ret = key_instantiate_and_link(rka->target_key, payload, plen,
1069				       dest_keyring, instkey);
1070
1071	key_put(dest_keyring);
1072
1073	/* discard the assumed authority if it's just been disabled by
1074	 * instantiation of the key */
1075	if (ret == 0)
1076		keyctl_change_reqkey_auth(NULL);
1077
1078error2:
1079	if (!vm)
1080		kfree(payload);
1081	else
1082		vfree(payload);
1083error:
1084	return ret;
1085}
1086
1087/*
1088 * Instantiate a key with the specified payload and link the key into the
1089 * destination keyring if one is given.
1090 *
1091 * The caller must have the appropriate instantiation permit set for this to
1092 * work (see keyctl_assume_authority).  No other permissions are required.
1093 *
1094 * If successful, 0 will be returned.
1095 */
1096long keyctl_instantiate_key(key_serial_t id,
1097			    const void __user *_payload,
1098			    size_t plen,
1099			    key_serial_t ringid)
1100{
1101	if (_payload && plen) {
1102		struct iovec iov[1] = {
1103			[0].iov_base = (void __user *)_payload,
1104			[0].iov_len  = plen
1105		};
 
 
 
1106
1107		return keyctl_instantiate_key_common(id, iov, 1, plen, ringid);
1108	}
1109
1110	return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1111}
1112
1113/*
1114 * Instantiate a key with the specified multipart payload and link the key into
1115 * the destination keyring if one is given.
1116 *
1117 * The caller must have the appropriate instantiation permit set for this to
1118 * work (see keyctl_assume_authority).  No other permissions are required.
1119 *
1120 * If successful, 0 will be returned.
1121 */
1122long keyctl_instantiate_key_iov(key_serial_t id,
1123				const struct iovec __user *_payload_iov,
1124				unsigned ioc,
1125				key_serial_t ringid)
1126{
1127	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
 
1128	long ret;
1129
1130	if (!_payload_iov || !ioc)
1131		goto no_payload;
1132
1133	ret = rw_copy_check_uvector(WRITE, _payload_iov, ioc,
1134				    ARRAY_SIZE(iovstack), iovstack, &iov);
1135	if (ret < 0)
1136		goto err;
1137	if (ret == 0)
1138		goto no_payload_free;
1139
1140	ret = keyctl_instantiate_key_common(id, iov, ioc, ret, ringid);
1141err:
1142	if (iov != iovstack)
1143		kfree(iov);
1144	return ret;
1145
1146no_payload_free:
1147	if (iov != iovstack)
1148		kfree(iov);
1149no_payload:
1150	return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1151}
1152
1153/*
1154 * Negatively instantiate the key with the given timeout (in seconds) and link
1155 * the key into the destination keyring if one is given.
1156 *
1157 * The caller must have the appropriate instantiation permit set for this to
1158 * work (see keyctl_assume_authority).  No other permissions are required.
1159 *
1160 * The key and any links to the key will be automatically garbage collected
1161 * after the timeout expires.
1162 *
1163 * Negative keys are used to rate limit repeated request_key() calls by causing
1164 * them to return -ENOKEY until the negative key expires.
1165 *
1166 * If successful, 0 will be returned.
1167 */
1168long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1169{
1170	return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1171}
1172
1173/*
1174 * Negatively instantiate the key with the given timeout (in seconds) and error
1175 * code and link the key into the destination keyring if one is given.
1176 *
1177 * The caller must have the appropriate instantiation permit set for this to
1178 * work (see keyctl_assume_authority).  No other permissions are required.
1179 *
1180 * The key and any links to the key will be automatically garbage collected
1181 * after the timeout expires.
1182 *
1183 * Negative keys are used to rate limit repeated request_key() calls by causing
1184 * them to return the specified error code until the negative key expires.
1185 *
1186 * If successful, 0 will be returned.
1187 */
1188long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1189		       key_serial_t ringid)
1190{
1191	const struct cred *cred = current_cred();
1192	struct request_key_auth *rka;
1193	struct key *instkey, *dest_keyring;
1194	long ret;
1195
1196	kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1197
1198	/* must be a valid error code and mustn't be a kernel special */
1199	if (error <= 0 ||
1200	    error >= MAX_ERRNO ||
1201	    error == ERESTARTSYS ||
1202	    error == ERESTARTNOINTR ||
1203	    error == ERESTARTNOHAND ||
1204	    error == ERESTART_RESTARTBLOCK)
1205		return -EINVAL;
1206
1207	/* the appropriate instantiation authorisation key must have been
1208	 * assumed before calling this */
1209	ret = -EPERM;
1210	instkey = cred->request_key_auth;
1211	if (!instkey)
1212		goto error;
1213
1214	rka = instkey->payload.data;
1215	if (rka->target_key->serial != id)
1216		goto error;
1217
1218	/* find the destination keyring if present (which must also be
1219	 * writable) */
1220	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1221	if (ret < 0)
1222		goto error;
1223
1224	/* instantiate the key and link it into a keyring */
1225	ret = key_reject_and_link(rka->target_key, timeout, error,
1226				  dest_keyring, instkey);
1227
1228	key_put(dest_keyring);
1229
1230	/* discard the assumed authority if it's just been disabled by
1231	 * instantiation of the key */
1232	if (ret == 0)
1233		keyctl_change_reqkey_auth(NULL);
1234
1235error:
1236	return ret;
1237}
1238
1239/*
1240 * Read or set the default keyring in which request_key() will cache keys and
1241 * return the old setting.
1242 *
1243 * If a process keyring is specified then this will be created if it doesn't
1244 * yet exist.  The old setting will be returned if successful.
1245 */
1246long keyctl_set_reqkey_keyring(int reqkey_defl)
1247{
1248	struct cred *new;
1249	int ret, old_setting;
1250
1251	old_setting = current_cred_xxx(jit_keyring);
1252
1253	if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1254		return old_setting;
1255
1256	new = prepare_creds();
1257	if (!new)
1258		return -ENOMEM;
1259
1260	switch (reqkey_defl) {
1261	case KEY_REQKEY_DEFL_THREAD_KEYRING:
1262		ret = install_thread_keyring_to_cred(new);
1263		if (ret < 0)
1264			goto error;
1265		goto set;
1266
1267	case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1268		ret = install_process_keyring_to_cred(new);
1269		if (ret < 0) {
1270			if (ret != -EEXIST)
1271				goto error;
1272			ret = 0;
1273		}
1274		goto set;
1275
1276	case KEY_REQKEY_DEFL_DEFAULT:
1277	case KEY_REQKEY_DEFL_SESSION_KEYRING:
1278	case KEY_REQKEY_DEFL_USER_KEYRING:
1279	case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1280	case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1281		goto set;
1282
1283	case KEY_REQKEY_DEFL_NO_CHANGE:
1284	case KEY_REQKEY_DEFL_GROUP_KEYRING:
1285	default:
1286		ret = -EINVAL;
1287		goto error;
1288	}
1289
1290set:
1291	new->jit_keyring = reqkey_defl;
1292	commit_creds(new);
1293	return old_setting;
1294error:
1295	abort_creds(new);
1296	return ret;
1297}
1298
1299/*
1300 * Set or clear the timeout on a key.
1301 *
1302 * Either the key must grant the caller Setattr permission or else the caller
1303 * must hold an instantiation authorisation token for the key.
1304 *
1305 * The timeout is either 0 to clear the timeout, or a number of seconds from
1306 * the current time.  The key and any links to the key will be automatically
1307 * garbage collected after the timeout expires.
1308 *
 
 
1309 * If successful, 0 is returned.
1310 */
1311long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1312{
1313	struct key *key, *instkey;
1314	key_ref_t key_ref;
1315	long ret;
1316
1317	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1318				  KEY_SETATTR);
1319	if (IS_ERR(key_ref)) {
1320		/* setting the timeout on a key under construction is permitted
1321		 * if we have the authorisation token handy */
1322		if (PTR_ERR(key_ref) == -EACCES) {
1323			instkey = key_get_instantiation_authkey(id);
1324			if (!IS_ERR(instkey)) {
1325				key_put(instkey);
1326				key_ref = lookup_user_key(id,
1327							  KEY_LOOKUP_PARTIAL,
1328							  0);
1329				if (!IS_ERR(key_ref))
1330					goto okay;
1331			}
1332		}
1333
1334		ret = PTR_ERR(key_ref);
1335		goto error;
1336	}
1337
1338okay:
1339	key = key_ref_to_ptr(key_ref);
1340	key_set_timeout(key, timeout);
 
 
 
 
 
 
1341	key_put(key);
1342
1343	ret = 0;
1344error:
1345	return ret;
1346}
1347
1348/*
1349 * Assume (or clear) the authority to instantiate the specified key.
1350 *
1351 * This sets the authoritative token currently in force for key instantiation.
1352 * This must be done for a key to be instantiated.  It has the effect of making
1353 * available all the keys from the caller of the request_key() that created a
1354 * key to request_key() calls made by the caller of this function.
1355 *
1356 * The caller must have the instantiation key in their process keyrings with a
1357 * Search permission grant available to the caller.
1358 *
1359 * If the ID given is 0, then the setting will be cleared and 0 returned.
1360 *
1361 * If the ID given has a matching an authorisation key, then that key will be
1362 * set and its ID will be returned.  The authorisation key can be read to get
1363 * the callout information passed to request_key().
1364 */
1365long keyctl_assume_authority(key_serial_t id)
1366{
1367	struct key *authkey;
1368	long ret;
1369
1370	/* special key IDs aren't permitted */
1371	ret = -EINVAL;
1372	if (id < 0)
1373		goto error;
1374
1375	/* we divest ourselves of authority if given an ID of 0 */
1376	if (id == 0) {
1377		ret = keyctl_change_reqkey_auth(NULL);
1378		goto error;
1379	}
1380
1381	/* attempt to assume the authority temporarily granted to us whilst we
1382	 * instantiate the specified key
1383	 * - the authorisation key must be in the current task's keyrings
1384	 *   somewhere
1385	 */
1386	authkey = key_get_instantiation_authkey(id);
1387	if (IS_ERR(authkey)) {
1388		ret = PTR_ERR(authkey);
1389		goto error;
1390	}
1391
1392	ret = keyctl_change_reqkey_auth(authkey);
1393	if (ret < 0)
1394		goto error;
1395	key_put(authkey);
1396
1397	ret = authkey->serial;
1398error:
1399	return ret;
1400}
1401
1402/*
1403 * Get a key's the LSM security label.
1404 *
1405 * The key must grant the caller View permission for this to work.
1406 *
1407 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1408 *
1409 * If successful, the amount of information available will be returned,
1410 * irrespective of how much was copied (including the terminal NUL).
1411 */
1412long keyctl_get_security(key_serial_t keyid,
1413			 char __user *buffer,
1414			 size_t buflen)
1415{
1416	struct key *key, *instkey;
1417	key_ref_t key_ref;
1418	char *context;
1419	long ret;
1420
1421	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_VIEW);
1422	if (IS_ERR(key_ref)) {
1423		if (PTR_ERR(key_ref) != -EACCES)
1424			return PTR_ERR(key_ref);
1425
1426		/* viewing a key under construction is also permitted if we
1427		 * have the authorisation token handy */
1428		instkey = key_get_instantiation_authkey(keyid);
1429		if (IS_ERR(instkey))
1430			return PTR_ERR(instkey);
1431		key_put(instkey);
1432
1433		key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
 
1434		if (IS_ERR(key_ref))
1435			return PTR_ERR(key_ref);
1436	}
1437
1438	key = key_ref_to_ptr(key_ref);
1439	ret = security_key_getsecurity(key, &context);
1440	if (ret == 0) {
1441		/* if no information was returned, give userspace an empty
1442		 * string */
1443		ret = 1;
1444		if (buffer && buflen > 0 &&
1445		    copy_to_user(buffer, "", 1) != 0)
1446			ret = -EFAULT;
1447	} else if (ret > 0) {
1448		/* return as much data as there's room for */
1449		if (buffer && buflen > 0) {
1450			if (buflen > ret)
1451				buflen = ret;
1452
1453			if (copy_to_user(buffer, context, buflen) != 0)
1454				ret = -EFAULT;
1455		}
1456
1457		kfree(context);
1458	}
1459
1460	key_ref_put(key_ref);
1461	return ret;
1462}
1463
1464/*
1465 * Attempt to install the calling process's session keyring on the process's
1466 * parent process.
1467 *
1468 * The keyring must exist and must grant the caller LINK permission, and the
1469 * parent process must be single-threaded and must have the same effective
1470 * ownership as this process and mustn't be SUID/SGID.
1471 *
1472 * The keyring will be emplaced on the parent when it next resumes userspace.
1473 *
1474 * If successful, 0 will be returned.
1475 */
1476long keyctl_session_to_parent(void)
1477{
1478	struct task_struct *me, *parent;
1479	const struct cred *mycred, *pcred;
1480	struct callback_head *newwork, *oldwork;
1481	key_ref_t keyring_r;
1482	struct cred *cred;
1483	int ret;
1484
1485	keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_LINK);
1486	if (IS_ERR(keyring_r))
1487		return PTR_ERR(keyring_r);
1488
1489	ret = -ENOMEM;
1490
1491	/* our parent is going to need a new cred struct, a new tgcred struct
1492	 * and new security data, so we allocate them here to prevent ENOMEM in
1493	 * our parent */
1494	cred = cred_alloc_blank();
1495	if (!cred)
1496		goto error_keyring;
1497	newwork = &cred->rcu;
1498
1499	cred->session_keyring = key_ref_to_ptr(keyring_r);
1500	keyring_r = NULL;
1501	init_task_work(newwork, key_change_session_keyring);
1502
1503	me = current;
1504	rcu_read_lock();
1505	write_lock_irq(&tasklist_lock);
1506
1507	ret = -EPERM;
1508	oldwork = NULL;
1509	parent = me->real_parent;
 
1510
1511	/* the parent mustn't be init and mustn't be a kernel thread */
1512	if (parent->pid <= 1 || !parent->mm)
1513		goto unlock;
1514
1515	/* the parent must be single threaded */
1516	if (!thread_group_empty(parent))
1517		goto unlock;
1518
1519	/* the parent and the child must have different session keyrings or
1520	 * there's no point */
1521	mycred = current_cred();
1522	pcred = __task_cred(parent);
1523	if (mycred == pcred ||
1524	    mycred->session_keyring == pcred->session_keyring) {
1525		ret = 0;
1526		goto unlock;
1527	}
1528
1529	/* the parent must have the same effective ownership and mustn't be
1530	 * SUID/SGID */
1531	if (!uid_eq(pcred->uid,	 mycred->euid) ||
1532	    !uid_eq(pcred->euid, mycred->euid) ||
1533	    !uid_eq(pcred->suid, mycred->euid) ||
1534	    !gid_eq(pcred->gid,	 mycred->egid) ||
1535	    !gid_eq(pcred->egid, mycred->egid) ||
1536	    !gid_eq(pcred->sgid, mycred->egid))
1537		goto unlock;
1538
1539	/* the keyrings must have the same UID */
1540	if ((pcred->session_keyring &&
1541	     !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1542	    !uid_eq(mycred->session_keyring->uid, mycred->euid))
1543		goto unlock;
1544
1545	/* cancel an already pending keyring replacement */
1546	oldwork = task_work_cancel(parent, key_change_session_keyring);
1547
1548	/* the replacement session keyring is applied just prior to userspace
1549	 * restarting */
1550	ret = task_work_add(parent, newwork, true);
1551	if (!ret)
1552		newwork = NULL;
1553unlock:
1554	write_unlock_irq(&tasklist_lock);
1555	rcu_read_unlock();
1556	if (oldwork)
1557		put_cred(container_of(oldwork, struct cred, rcu));
1558	if (newwork)
1559		put_cred(cred);
1560	return ret;
1561
1562error_keyring:
1563	key_ref_put(keyring_r);
1564	return ret;
1565}
1566
1567/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568 * The key control system call
1569 */
1570SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1571		unsigned long, arg4, unsigned long, arg5)
1572{
1573	switch (option) {
1574	case KEYCTL_GET_KEYRING_ID:
1575		return keyctl_get_keyring_ID((key_serial_t) arg2,
1576					     (int) arg3);
1577
1578	case KEYCTL_JOIN_SESSION_KEYRING:
1579		return keyctl_join_session_keyring((const char __user *) arg2);
1580
1581	case KEYCTL_UPDATE:
1582		return keyctl_update_key((key_serial_t) arg2,
1583					 (const void __user *) arg3,
1584					 (size_t) arg4);
1585
1586	case KEYCTL_REVOKE:
1587		return keyctl_revoke_key((key_serial_t) arg2);
1588
1589	case KEYCTL_DESCRIBE:
1590		return keyctl_describe_key((key_serial_t) arg2,
1591					   (char __user *) arg3,
1592					   (unsigned) arg4);
1593
1594	case KEYCTL_CLEAR:
1595		return keyctl_keyring_clear((key_serial_t) arg2);
1596
1597	case KEYCTL_LINK:
1598		return keyctl_keyring_link((key_serial_t) arg2,
1599					   (key_serial_t) arg3);
1600
1601	case KEYCTL_UNLINK:
1602		return keyctl_keyring_unlink((key_serial_t) arg2,
1603					     (key_serial_t) arg3);
1604
1605	case KEYCTL_SEARCH:
1606		return keyctl_keyring_search((key_serial_t) arg2,
1607					     (const char __user *) arg3,
1608					     (const char __user *) arg4,
1609					     (key_serial_t) arg5);
1610
1611	case KEYCTL_READ:
1612		return keyctl_read_key((key_serial_t) arg2,
1613				       (char __user *) arg3,
1614				       (size_t) arg4);
1615
1616	case KEYCTL_CHOWN:
1617		return keyctl_chown_key((key_serial_t) arg2,
1618					(uid_t) arg3,
1619					(gid_t) arg4);
1620
1621	case KEYCTL_SETPERM:
1622		return keyctl_setperm_key((key_serial_t) arg2,
1623					  (key_perm_t) arg3);
1624
1625	case KEYCTL_INSTANTIATE:
1626		return keyctl_instantiate_key((key_serial_t) arg2,
1627					      (const void __user *) arg3,
1628					      (size_t) arg4,
1629					      (key_serial_t) arg5);
1630
1631	case KEYCTL_NEGATE:
1632		return keyctl_negate_key((key_serial_t) arg2,
1633					 (unsigned) arg3,
1634					 (key_serial_t) arg4);
1635
1636	case KEYCTL_SET_REQKEY_KEYRING:
1637		return keyctl_set_reqkey_keyring(arg2);
1638
1639	case KEYCTL_SET_TIMEOUT:
1640		return keyctl_set_timeout((key_serial_t) arg2,
1641					  (unsigned) arg3);
1642
1643	case KEYCTL_ASSUME_AUTHORITY:
1644		return keyctl_assume_authority((key_serial_t) arg2);
1645
1646	case KEYCTL_GET_SECURITY:
1647		return keyctl_get_security((key_serial_t) arg2,
1648					   (char __user *) arg3,
1649					   (size_t) arg4);
1650
1651	case KEYCTL_SESSION_TO_PARENT:
1652		return keyctl_session_to_parent();
1653
1654	case KEYCTL_REJECT:
1655		return keyctl_reject_key((key_serial_t) arg2,
1656					 (unsigned) arg3,
1657					 (unsigned) arg4,
1658					 (key_serial_t) arg5);
1659
1660	case KEYCTL_INSTANTIATE_IOV:
1661		return keyctl_instantiate_key_iov(
1662			(key_serial_t) arg2,
1663			(const struct iovec __user *) arg3,
1664			(unsigned) arg4,
1665			(key_serial_t) arg5);
1666
1667	case KEYCTL_INVALIDATE:
1668		return keyctl_invalidate_key((key_serial_t) arg2);
1669
1670	case KEYCTL_GET_PERSISTENT:
1671		return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672
1673	default:
1674		return -EOPNOTSUPP;
1675	}
1676}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Userspace key control operations
   3 *
   4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
 
   8#include <linux/init.h>
   9#include <linux/sched.h>
  10#include <linux/sched/task.h>
  11#include <linux/slab.h>
  12#include <linux/syscalls.h>
  13#include <linux/key.h>
  14#include <linux/keyctl.h>
  15#include <linux/fs.h>
  16#include <linux/capability.h>
  17#include <linux/cred.h>
  18#include <linux/string.h>
  19#include <linux/err.h>
  20#include <linux/vmalloc.h>
  21#include <linux/security.h>
  22#include <linux/uio.h>
  23#include <linux/uaccess.h>
  24#include <keys/request_key_auth-type.h>
  25#include "internal.h"
  26
  27#define KEY_MAX_DESC_SIZE 4096
  28
  29static const unsigned char keyrings_capabilities[2] = {
  30	[0] = (KEYCTL_CAPS0_CAPABILITIES |
  31	       (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)	? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
  32	       (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)	? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
  33	       (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)	? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
  34	       (IS_ENABLED(CONFIG_BIG_KEYS)		? KEYCTL_CAPS0_BIG_KEY : 0) |
  35	       KEYCTL_CAPS0_INVALIDATE |
  36	       KEYCTL_CAPS0_RESTRICT_KEYRING |
  37	       KEYCTL_CAPS0_MOVE
  38	       ),
  39	[1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
  40	       KEYCTL_CAPS1_NS_KEY_TAG |
  41	       (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)	? KEYCTL_CAPS1_NOTIFICATIONS : 0)
  42	       ),
  43};
  44
  45static int key_get_type_from_user(char *type,
  46				  const char __user *_type,
  47				  unsigned len)
  48{
  49	int ret;
  50
  51	ret = strncpy_from_user(type, _type, len);
  52	if (ret < 0)
  53		return ret;
  54	if (ret == 0 || ret >= len)
  55		return -EINVAL;
  56	if (type[0] == '.')
  57		return -EPERM;
  58	type[len - 1] = '\0';
  59	return 0;
  60}
  61
  62/*
  63 * Extract the description of a new key from userspace and either add it as a
  64 * new key to the specified keyring or update a matching key in that keyring.
  65 *
  66 * If the description is NULL or an empty string, the key type is asked to
  67 * generate one from the payload.
  68 *
  69 * The keyring must be writable so that we can attach the key to it.
  70 *
  71 * If successful, the new key's serial number is returned, otherwise an error
  72 * code is returned.
  73 */
  74SYSCALL_DEFINE5(add_key, const char __user *, _type,
  75		const char __user *, _description,
  76		const void __user *, _payload,
  77		size_t, plen,
  78		key_serial_t, ringid)
  79{
  80	key_ref_t keyring_ref, key_ref;
  81	char type[32], *description;
  82	void *payload;
  83	long ret;
 
  84
  85	ret = -EINVAL;
  86	if (plen > 1024 * 1024 - 1)
  87		goto error;
  88
  89	/* draw all the data into kernel space */
  90	ret = key_get_type_from_user(type, _type, sizeof(type));
  91	if (ret < 0)
  92		goto error;
  93
  94	description = NULL;
  95	if (_description) {
  96		description = strndup_user(_description, KEY_MAX_DESC_SIZE);
  97		if (IS_ERR(description)) {
  98			ret = PTR_ERR(description);
  99			goto error;
 100		}
 101		if (!*description) {
 102			kfree(description);
 103			description = NULL;
 104		} else if ((description[0] == '.') &&
 105			   (strncmp(type, "keyring", 7) == 0)) {
 106			ret = -EPERM;
 107			goto error2;
 108		}
 109	}
 110
 111	/* pull the payload in if one was supplied */
 112	payload = NULL;
 113
 114	if (plen) {
 
 115		ret = -ENOMEM;
 116		payload = kvmalloc(plen, GFP_KERNEL);
 117		if (!payload)
 118			goto error2;
 
 
 
 
 
 
 119
 120		ret = -EFAULT;
 121		if (copy_from_user(payload, _payload, plen) != 0)
 122			goto error3;
 123	}
 124
 125	/* find the target keyring (which must be writable) */
 126	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
 127	if (IS_ERR(keyring_ref)) {
 128		ret = PTR_ERR(keyring_ref);
 129		goto error3;
 130	}
 131
 132	/* create or update the requested key and add it to the target
 133	 * keyring */
 134	key_ref = key_create_or_update(keyring_ref, type, description,
 135				       payload, plen, KEY_PERM_UNDEF,
 136				       KEY_ALLOC_IN_QUOTA);
 137	if (!IS_ERR(key_ref)) {
 138		ret = key_ref_to_ptr(key_ref)->serial;
 139		key_ref_put(key_ref);
 140	}
 141	else {
 142		ret = PTR_ERR(key_ref);
 143	}
 144
 145	key_ref_put(keyring_ref);
 146 error3:
 147	kvfree_sensitive(payload, plen);
 
 
 
 148 error2:
 149	kfree(description);
 150 error:
 151	return ret;
 152}
 153
 154/*
 155 * Search the process keyrings and keyring trees linked from those for a
 156 * matching key.  Keyrings must have appropriate Search permission to be
 157 * searched.
 158 *
 159 * If a key is found, it will be attached to the destination keyring if there's
 160 * one specified and the serial number of the key will be returned.
 161 *
 162 * If no key is found, /sbin/request-key will be invoked if _callout_info is
 163 * non-NULL in an attempt to create a key.  The _callout_info string will be
 164 * passed to /sbin/request-key to aid with completing the request.  If the
 165 * _callout_info string is "" then it will be changed to "-".
 166 */
 167SYSCALL_DEFINE4(request_key, const char __user *, _type,
 168		const char __user *, _description,
 169		const char __user *, _callout_info,
 170		key_serial_t, destringid)
 171{
 172	struct key_type *ktype;
 173	struct key *key;
 174	key_ref_t dest_ref;
 175	size_t callout_len;
 176	char type[32], *description, *callout_info;
 177	long ret;
 178
 179	/* pull the type into kernel space */
 180	ret = key_get_type_from_user(type, _type, sizeof(type));
 181	if (ret < 0)
 182		goto error;
 183
 184	/* pull the description into kernel space */
 185	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
 186	if (IS_ERR(description)) {
 187		ret = PTR_ERR(description);
 188		goto error;
 189	}
 190
 191	/* pull the callout info into kernel space */
 192	callout_info = NULL;
 193	callout_len = 0;
 194	if (_callout_info) {
 195		callout_info = strndup_user(_callout_info, PAGE_SIZE);
 196		if (IS_ERR(callout_info)) {
 197			ret = PTR_ERR(callout_info);
 198			goto error2;
 199		}
 200		callout_len = strlen(callout_info);
 201	}
 202
 203	/* get the destination keyring if specified */
 204	dest_ref = NULL;
 205	if (destringid) {
 206		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
 207					   KEY_NEED_WRITE);
 208		if (IS_ERR(dest_ref)) {
 209			ret = PTR_ERR(dest_ref);
 210			goto error3;
 211		}
 212	}
 213
 214	/* find the key type */
 215	ktype = key_type_lookup(type);
 216	if (IS_ERR(ktype)) {
 217		ret = PTR_ERR(ktype);
 218		goto error4;
 219	}
 220
 221	/* do the search */
 222	key = request_key_and_link(ktype, description, NULL, callout_info,
 223				   callout_len, NULL, key_ref_to_ptr(dest_ref),
 224				   KEY_ALLOC_IN_QUOTA);
 225	if (IS_ERR(key)) {
 226		ret = PTR_ERR(key);
 227		goto error5;
 228	}
 229
 230	/* wait for the key to finish being constructed */
 231	ret = wait_for_key_construction(key, 1);
 232	if (ret < 0)
 233		goto error6;
 234
 235	ret = key->serial;
 236
 237error6:
 238 	key_put(key);
 239error5:
 240	key_type_put(ktype);
 241error4:
 242	key_ref_put(dest_ref);
 243error3:
 244	kfree(callout_info);
 245error2:
 246	kfree(description);
 247error:
 248	return ret;
 249}
 250
 251/*
 252 * Get the ID of the specified process keyring.
 253 *
 254 * The requested keyring must have search permission to be found.
 255 *
 256 * If successful, the ID of the requested keyring will be returned.
 257 */
 258long keyctl_get_keyring_ID(key_serial_t id, int create)
 259{
 260	key_ref_t key_ref;
 261	unsigned long lflags;
 262	long ret;
 263
 264	lflags = create ? KEY_LOOKUP_CREATE : 0;
 265	key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
 266	if (IS_ERR(key_ref)) {
 267		ret = PTR_ERR(key_ref);
 268		goto error;
 269	}
 270
 271	ret = key_ref_to_ptr(key_ref)->serial;
 272	key_ref_put(key_ref);
 273error:
 274	return ret;
 275}
 276
 277/*
 278 * Join a (named) session keyring.
 279 *
 280 * Create and join an anonymous session keyring or join a named session
 281 * keyring, creating it if necessary.  A named session keyring must have Search
 282 * permission for it to be joined.  Session keyrings without this permit will
 283 * be skipped over.  It is not permitted for userspace to create or join
 284 * keyrings whose name begin with a dot.
 285 *
 286 * If successful, the ID of the joined session keyring will be returned.
 287 */
 288long keyctl_join_session_keyring(const char __user *_name)
 289{
 290	char *name;
 291	long ret;
 292
 293	/* fetch the name from userspace */
 294	name = NULL;
 295	if (_name) {
 296		name = strndup_user(_name, KEY_MAX_DESC_SIZE);
 297		if (IS_ERR(name)) {
 298			ret = PTR_ERR(name);
 299			goto error;
 300		}
 301
 302		ret = -EPERM;
 303		if (name[0] == '.')
 304			goto error_name;
 305	}
 306
 307	/* join the session */
 308	ret = join_session_keyring(name);
 309error_name:
 310	kfree(name);
 
 311error:
 312	return ret;
 313}
 314
 315/*
 316 * Update a key's data payload from the given data.
 317 *
 318 * The key must grant the caller Write permission and the key type must support
 319 * updating for this to work.  A negative key can be positively instantiated
 320 * with this call.
 321 *
 322 * If successful, 0 will be returned.  If the key type does not support
 323 * updating, then -EOPNOTSUPP will be returned.
 324 */
 325long keyctl_update_key(key_serial_t id,
 326		       const void __user *_payload,
 327		       size_t plen)
 328{
 329	key_ref_t key_ref;
 330	void *payload;
 331	long ret;
 332
 333	ret = -EINVAL;
 334	if (plen > PAGE_SIZE)
 335		goto error;
 336
 337	/* pull the payload in if one was supplied */
 338	payload = NULL;
 339	if (plen) {
 340		ret = -ENOMEM;
 341		payload = kvmalloc(plen, GFP_KERNEL);
 342		if (!payload)
 343			goto error;
 344
 345		ret = -EFAULT;
 346		if (copy_from_user(payload, _payload, plen) != 0)
 347			goto error2;
 348	}
 349
 350	/* find the target key (which must be writable) */
 351	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
 352	if (IS_ERR(key_ref)) {
 353		ret = PTR_ERR(key_ref);
 354		goto error2;
 355	}
 356
 357	/* update the key */
 358	ret = key_update(key_ref, payload, plen);
 359
 360	key_ref_put(key_ref);
 361error2:
 362	kvfree_sensitive(payload, plen);
 363error:
 364	return ret;
 365}
 366
 367/*
 368 * Revoke a key.
 369 *
 370 * The key must be grant the caller Write or Setattr permission for this to
 371 * work.  The key type should give up its quota claim when revoked.  The key
 372 * and any links to the key will be automatically garbage collected after a
 373 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
 374 *
 375 * Keys with KEY_FLAG_KEEP set should not be revoked.
 376 *
 377 * If successful, 0 is returned.
 378 */
 379long keyctl_revoke_key(key_serial_t id)
 380{
 381	key_ref_t key_ref;
 382	struct key *key;
 383	long ret;
 384
 385	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
 386	if (IS_ERR(key_ref)) {
 387		ret = PTR_ERR(key_ref);
 388		if (ret != -EACCES)
 389			goto error;
 390		key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
 391		if (IS_ERR(key_ref)) {
 392			ret = PTR_ERR(key_ref);
 393			goto error;
 394		}
 395	}
 396
 397	key = key_ref_to_ptr(key_ref);
 398	ret = 0;
 399	if (test_bit(KEY_FLAG_KEEP, &key->flags))
 400		ret = -EPERM;
 401	else
 402		key_revoke(key);
 403
 404	key_ref_put(key_ref);
 405error:
 406	return ret;
 407}
 408
 409/*
 410 * Invalidate a key.
 411 *
 412 * The key must be grant the caller Invalidate permission for this to work.
 413 * The key and any links to the key will be automatically garbage collected
 414 * immediately.
 415 *
 416 * Keys with KEY_FLAG_KEEP set should not be invalidated.
 417 *
 418 * If successful, 0 is returned.
 419 */
 420long keyctl_invalidate_key(key_serial_t id)
 421{
 422	key_ref_t key_ref;
 423	struct key *key;
 424	long ret;
 425
 426	kenter("%d", id);
 427
 428	key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
 429	if (IS_ERR(key_ref)) {
 430		ret = PTR_ERR(key_ref);
 431
 432		/* Root is permitted to invalidate certain special keys */
 433		if (capable(CAP_SYS_ADMIN)) {
 434			key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
 435			if (IS_ERR(key_ref))
 436				goto error;
 437			if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
 438				     &key_ref_to_ptr(key_ref)->flags))
 439				goto invalidate;
 440			goto error_put;
 441		}
 442
 443		goto error;
 444	}
 445
 446invalidate:
 447	key = key_ref_to_ptr(key_ref);
 448	ret = 0;
 449	if (test_bit(KEY_FLAG_KEEP, &key->flags))
 450		ret = -EPERM;
 451	else
 452		key_invalidate(key);
 453error_put:
 454	key_ref_put(key_ref);
 455error:
 456	kleave(" = %ld", ret);
 457	return ret;
 458}
 459
 460/*
 461 * Clear the specified keyring, creating an empty process keyring if one of the
 462 * special keyring IDs is used.
 463 *
 464 * The keyring must grant the caller Write permission and not have
 465 * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
 466 */
 467long keyctl_keyring_clear(key_serial_t ringid)
 468{
 469	key_ref_t keyring_ref;
 470	struct key *keyring;
 471	long ret;
 472
 473	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
 474	if (IS_ERR(keyring_ref)) {
 475		ret = PTR_ERR(keyring_ref);
 476
 477		/* Root is permitted to invalidate certain special keyrings */
 478		if (capable(CAP_SYS_ADMIN)) {
 479			keyring_ref = lookup_user_key(ringid, 0,
 480						      KEY_SYSADMIN_OVERRIDE);
 481			if (IS_ERR(keyring_ref))
 482				goto error;
 483			if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
 484				     &key_ref_to_ptr(keyring_ref)->flags))
 485				goto clear;
 486			goto error_put;
 487		}
 488
 489		goto error;
 490	}
 491
 492clear:
 493	keyring = key_ref_to_ptr(keyring_ref);
 494	if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 495		ret = -EPERM;
 496	else
 497		ret = keyring_clear(keyring);
 498error_put:
 499	key_ref_put(keyring_ref);
 500error:
 501	return ret;
 502}
 503
 504/*
 505 * Create a link from a keyring to a key if there's no matching key in the
 506 * keyring, otherwise replace the link to the matching key with a link to the
 507 * new key.
 508 *
 509 * The key must grant the caller Link permission and the keyring must grant
 510 * the caller Write permission.  Furthermore, if an additional link is created,
 511 * the keyring's quota will be extended.
 512 *
 513 * If successful, 0 will be returned.
 514 */
 515long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
 516{
 517	key_ref_t keyring_ref, key_ref;
 518	long ret;
 519
 520	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
 521	if (IS_ERR(keyring_ref)) {
 522		ret = PTR_ERR(keyring_ref);
 523		goto error;
 524	}
 525
 526	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
 527	if (IS_ERR(key_ref)) {
 528		ret = PTR_ERR(key_ref);
 529		goto error2;
 530	}
 531
 532	ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
 533
 534	key_ref_put(key_ref);
 535error2:
 536	key_ref_put(keyring_ref);
 537error:
 538	return ret;
 539}
 540
 541/*
 542 * Unlink a key from a keyring.
 543 *
 544 * The keyring must grant the caller Write permission for this to work; the key
 545 * itself need not grant the caller anything.  If the last link to a key is
 546 * removed then that key will be scheduled for destruction.
 547 *
 548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
 549 *
 550 * If successful, 0 will be returned.
 551 */
 552long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
 553{
 554	key_ref_t keyring_ref, key_ref;
 555	struct key *keyring, *key;
 556	long ret;
 557
 558	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
 559	if (IS_ERR(keyring_ref)) {
 560		ret = PTR_ERR(keyring_ref);
 561		goto error;
 562	}
 563
 564	key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
 565	if (IS_ERR(key_ref)) {
 566		ret = PTR_ERR(key_ref);
 567		goto error2;
 568	}
 569
 570	keyring = key_ref_to_ptr(keyring_ref);
 571	key = key_ref_to_ptr(key_ref);
 572	if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
 573	    test_bit(KEY_FLAG_KEEP, &key->flags))
 574		ret = -EPERM;
 575	else
 576		ret = key_unlink(keyring, key);
 577
 578	key_ref_put(key_ref);
 579error2:
 580	key_ref_put(keyring_ref);
 581error:
 582	return ret;
 583}
 584
 585/*
 586 * Move a link to a key from one keyring to another, displacing any matching
 587 * key from the destination keyring.
 588 *
 589 * The key must grant the caller Link permission and both keyrings must grant
 590 * the caller Write permission.  There must also be a link in the from keyring
 591 * to the key.  If both keyrings are the same, nothing is done.
 592 *
 593 * If successful, 0 will be returned.
 594 */
 595long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
 596			 key_serial_t to_ringid, unsigned int flags)
 597{
 598	key_ref_t key_ref, from_ref, to_ref;
 599	long ret;
 600
 601	if (flags & ~KEYCTL_MOVE_EXCL)
 602		return -EINVAL;
 603
 604	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
 605	if (IS_ERR(key_ref))
 606		return PTR_ERR(key_ref);
 607
 608	from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
 609	if (IS_ERR(from_ref)) {
 610		ret = PTR_ERR(from_ref);
 611		goto error2;
 612	}
 613
 614	to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
 615	if (IS_ERR(to_ref)) {
 616		ret = PTR_ERR(to_ref);
 617		goto error3;
 618	}
 619
 620	ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
 621		       key_ref_to_ptr(to_ref), flags);
 622
 623	key_ref_put(to_ref);
 624error3:
 625	key_ref_put(from_ref);
 626error2:
 627	key_ref_put(key_ref);
 628	return ret;
 629}
 630
 631/*
 632 * Return a description of a key to userspace.
 633 *
 634 * The key must grant the caller View permission for this to work.
 635 *
 636 * If there's a buffer, we place up to buflen bytes of data into it formatted
 637 * in the following way:
 638 *
 639 *	type;uid;gid;perm;description<NUL>
 640 *
 641 * If successful, we return the amount of description available, irrespective
 642 * of how much we may have copied into the buffer.
 643 */
 644long keyctl_describe_key(key_serial_t keyid,
 645			 char __user *buffer,
 646			 size_t buflen)
 647{
 648	struct key *key, *instkey;
 649	key_ref_t key_ref;
 650	char *infobuf;
 651	long ret;
 652	int desclen, infolen;
 653
 654	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
 655	if (IS_ERR(key_ref)) {
 656		/* viewing a key under construction is permitted if we have the
 657		 * authorisation token handy */
 658		if (PTR_ERR(key_ref) == -EACCES) {
 659			instkey = key_get_instantiation_authkey(keyid);
 660			if (!IS_ERR(instkey)) {
 661				key_put(instkey);
 662				key_ref = lookup_user_key(keyid,
 663							  KEY_LOOKUP_PARTIAL,
 664							  KEY_AUTHTOKEN_OVERRIDE);
 665				if (!IS_ERR(key_ref))
 666					goto okay;
 667			}
 668		}
 669
 670		ret = PTR_ERR(key_ref);
 671		goto error;
 672	}
 673
 674okay:
 
 
 
 
 
 
 675	key = key_ref_to_ptr(key_ref);
 676	desclen = strlen(key->description);
 677
 678	/* calculate how much information we're going to return */
 679	ret = -ENOMEM;
 680	infobuf = kasprintf(GFP_KERNEL,
 681			    "%s;%d;%d;%08x;",
 682			    key->type->name,
 683			    from_kuid_munged(current_user_ns(), key->uid),
 684			    from_kgid_munged(current_user_ns(), key->gid),
 685			    key->perm);
 686	if (!infobuf)
 687		goto error2;
 688	infolen = strlen(infobuf);
 689	ret = infolen + desclen + 1;
 
 690
 691	/* consider returning the data */
 692	if (buffer && buflen >= ret) {
 693		if (copy_to_user(buffer, infobuf, infolen) != 0 ||
 694		    copy_to_user(buffer + infolen, key->description,
 695				 desclen + 1) != 0)
 
 696			ret = -EFAULT;
 697	}
 698
 699	kfree(infobuf);
 700error2:
 701	key_ref_put(key_ref);
 702error:
 703	return ret;
 704}
 705
 706/*
 707 * Search the specified keyring and any keyrings it links to for a matching
 708 * key.  Only keyrings that grant the caller Search permission will be searched
 709 * (this includes the starting keyring).  Only keys with Search permission can
 710 * be found.
 711 *
 712 * If successful, the found key will be linked to the destination keyring if
 713 * supplied and the key has Link permission, and the found key ID will be
 714 * returned.
 715 */
 716long keyctl_keyring_search(key_serial_t ringid,
 717			   const char __user *_type,
 718			   const char __user *_description,
 719			   key_serial_t destringid)
 720{
 721	struct key_type *ktype;
 722	key_ref_t keyring_ref, key_ref, dest_ref;
 723	char type[32], *description;
 724	long ret;
 725
 726	/* pull the type and description into kernel space */
 727	ret = key_get_type_from_user(type, _type, sizeof(type));
 728	if (ret < 0)
 729		goto error;
 730
 731	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
 732	if (IS_ERR(description)) {
 733		ret = PTR_ERR(description);
 734		goto error;
 735	}
 736
 737	/* get the keyring at which to begin the search */
 738	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
 739	if (IS_ERR(keyring_ref)) {
 740		ret = PTR_ERR(keyring_ref);
 741		goto error2;
 742	}
 743
 744	/* get the destination keyring if specified */
 745	dest_ref = NULL;
 746	if (destringid) {
 747		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
 748					   KEY_NEED_WRITE);
 749		if (IS_ERR(dest_ref)) {
 750			ret = PTR_ERR(dest_ref);
 751			goto error3;
 752		}
 753	}
 754
 755	/* find the key type */
 756	ktype = key_type_lookup(type);
 757	if (IS_ERR(ktype)) {
 758		ret = PTR_ERR(ktype);
 759		goto error4;
 760	}
 761
 762	/* do the search */
 763	key_ref = keyring_search(keyring_ref, ktype, description, true);
 764	if (IS_ERR(key_ref)) {
 765		ret = PTR_ERR(key_ref);
 766
 767		/* treat lack or presence of a negative key the same */
 768		if (ret == -EAGAIN)
 769			ret = -ENOKEY;
 770		goto error5;
 771	}
 772
 773	/* link the resulting key to the destination keyring if we can */
 774	if (dest_ref) {
 775		ret = key_permission(key_ref, KEY_NEED_LINK);
 776		if (ret < 0)
 777			goto error6;
 778
 779		ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
 780		if (ret < 0)
 781			goto error6;
 782	}
 783
 784	ret = key_ref_to_ptr(key_ref)->serial;
 785
 786error6:
 787	key_ref_put(key_ref);
 788error5:
 789	key_type_put(ktype);
 790error4:
 791	key_ref_put(dest_ref);
 792error3:
 793	key_ref_put(keyring_ref);
 794error2:
 795	kfree(description);
 796error:
 797	return ret;
 798}
 799
 800/*
 801 * Call the read method
 802 */
 803static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
 804{
 805	long ret;
 806
 807	down_read(&key->sem);
 808	ret = key_validate(key);
 809	if (ret == 0)
 810		ret = key->type->read(key, buffer, buflen);
 811	up_read(&key->sem);
 812	return ret;
 813}
 814
 815/*
 816 * Read a key's payload.
 817 *
 818 * The key must either grant the caller Read permission, or it must grant the
 819 * caller Search permission when searched for from the process keyrings.
 820 *
 821 * If successful, we place up to buflen bytes of data into the buffer, if one
 822 * is provided, and return the amount of data that is available in the key,
 823 * irrespective of how much we copied into the buffer.
 824 */
 825long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
 826{
 827	struct key *key;
 828	key_ref_t key_ref;
 829	long ret;
 830	char *key_data = NULL;
 831	size_t key_data_len;
 832
 833	/* find the key first */
 834	key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
 835	if (IS_ERR(key_ref)) {
 836		ret = -ENOKEY;
 837		goto out;
 838	}
 839
 840	key = key_ref_to_ptr(key_ref);
 841
 842	ret = key_read_state(key);
 843	if (ret < 0)
 844		goto key_put_out; /* Negatively instantiated */
 845
 846	/* see if we can read it directly */
 847	ret = key_permission(key_ref, KEY_NEED_READ);
 848	if (ret == 0)
 849		goto can_read_key;
 850	if (ret != -EACCES)
 851		goto key_put_out;
 852
 853	/* we can't; see if it's searchable from this process's keyrings
 854	 * - we automatically take account of the fact that it may be
 855	 *   dangling off an instantiation key
 856	 */
 857	if (!is_key_possessed(key_ref)) {
 858		ret = -EACCES;
 859		goto key_put_out;
 860	}
 861
 862	/* the key is probably readable - now try to read it */
 863can_read_key:
 864	if (!key->type->read) {
 
 865		ret = -EOPNOTSUPP;
 866		goto key_put_out;
 867	}
 868
 869	if (!buffer || !buflen) {
 870		/* Get the key length from the read method */
 871		ret = __keyctl_read_key(key, NULL, 0);
 872		goto key_put_out;
 873	}
 874
 875	/*
 876	 * Read the data with the semaphore held (since we might sleep)
 877	 * to protect against the key being updated or revoked.
 878	 *
 879	 * Allocating a temporary buffer to hold the keys before
 880	 * transferring them to user buffer to avoid potential
 881	 * deadlock involving page fault and mmap_lock.
 882	 *
 883	 * key_data_len = (buflen <= PAGE_SIZE)
 884	 *		? buflen : actual length of key data
 885	 *
 886	 * This prevents allocating arbitrary large buffer which can
 887	 * be much larger than the actual key length. In the latter case,
 888	 * at least 2 passes of this loop is required.
 889	 */
 890	key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
 891	for (;;) {
 892		if (key_data_len) {
 893			key_data = kvmalloc(key_data_len, GFP_KERNEL);
 894			if (!key_data) {
 895				ret = -ENOMEM;
 896				goto key_put_out;
 897			}
 898		}
 899
 900		ret = __keyctl_read_key(key, key_data, key_data_len);
 901
 902		/*
 903		 * Read methods will just return the required length without
 904		 * any copying if the provided length isn't large enough.
 905		 */
 906		if (ret <= 0 || ret > buflen)
 907			break;
 908
 909		/*
 910		 * The key may change (unlikely) in between 2 consecutive
 911		 * __keyctl_read_key() calls. In this case, we reallocate
 912		 * a larger buffer and redo the key read when
 913		 * key_data_len < ret <= buflen.
 914		 */
 915		if (ret > key_data_len) {
 916			if (unlikely(key_data))
 917				kvfree_sensitive(key_data, key_data_len);
 918			key_data_len = ret;
 919			continue;	/* Allocate buffer */
 920		}
 921
 922		if (copy_to_user(buffer, key_data, ret))
 923			ret = -EFAULT;
 924		break;
 925	}
 926	kvfree_sensitive(key_data, key_data_len);
 927
 928key_put_out:
 929	key_put(key);
 930out:
 931	return ret;
 932}
 933
 934/*
 935 * Change the ownership of a key
 936 *
 937 * The key must grant the caller Setattr permission for this to work, though
 938 * the key need not be fully instantiated yet.  For the UID to be changed, or
 939 * for the GID to be changed to a group the caller is not a member of, the
 940 * caller must have sysadmin capability.  If either uid or gid is -1 then that
 941 * attribute is not changed.
 942 *
 943 * If the UID is to be changed, the new user must have sufficient quota to
 944 * accept the key.  The quota deduction will be removed from the old user to
 945 * the new user should the attribute be changed.
 946 *
 947 * If successful, 0 will be returned.
 948 */
 949long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
 950{
 951	struct key_user *newowner, *zapowner = NULL;
 952	struct key *key;
 953	key_ref_t key_ref;
 954	long ret;
 955	kuid_t uid;
 956	kgid_t gid;
 957	unsigned long flags;
 958
 959	uid = make_kuid(current_user_ns(), user);
 960	gid = make_kgid(current_user_ns(), group);
 961	ret = -EINVAL;
 962	if ((user != (uid_t) -1) && !uid_valid(uid))
 963		goto error;
 964	if ((group != (gid_t) -1) && !gid_valid(gid))
 965		goto error;
 966
 967	ret = 0;
 968	if (user == (uid_t) -1 && group == (gid_t) -1)
 969		goto error;
 970
 971	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
 972				  KEY_NEED_SETATTR);
 973	if (IS_ERR(key_ref)) {
 974		ret = PTR_ERR(key_ref);
 975		goto error;
 976	}
 977
 978	key = key_ref_to_ptr(key_ref);
 979
 980	/* make the changes with the locks held to prevent chown/chown races */
 981	ret = -EACCES;
 982	down_write(&key->sem);
 983
 984	{
 985		bool is_privileged_op = false;
 986
 987		/* only the sysadmin can chown a key to some other UID */
 988		if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
 989			is_privileged_op = true;
 990
 991		/* only the sysadmin can set the key's GID to a group other
 992		 * than one of those that the current process subscribes to */
 993		if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
 994			is_privileged_op = true;
 995
 996		if (is_privileged_op && !capable(CAP_SYS_ADMIN))
 997			goto error_put;
 998	}
 999
1000	/* change the UID */
1001	if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
1002		ret = -ENOMEM;
1003		newowner = key_user_lookup(uid);
1004		if (!newowner)
1005			goto error_put;
1006
1007		/* transfer the quota burden to the new user */
1008		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1009			unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1010				key_quota_root_maxkeys : key_quota_maxkeys;
1011			unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1012				key_quota_root_maxbytes : key_quota_maxbytes;
1013
1014			spin_lock_irqsave(&newowner->lock, flags);
1015			if (newowner->qnkeys + 1 > maxkeys ||
1016			    newowner->qnbytes + key->quotalen > maxbytes ||
1017			    newowner->qnbytes + key->quotalen <
1018			    newowner->qnbytes)
1019				goto quota_overrun;
1020
1021			newowner->qnkeys++;
1022			newowner->qnbytes += key->quotalen;
1023			spin_unlock_irqrestore(&newowner->lock, flags);
1024
1025			spin_lock_irqsave(&key->user->lock, flags);
1026			key->user->qnkeys--;
1027			key->user->qnbytes -= key->quotalen;
1028			spin_unlock_irqrestore(&key->user->lock, flags);
1029		}
1030
1031		atomic_dec(&key->user->nkeys);
1032		atomic_inc(&newowner->nkeys);
1033
1034		if (key->state != KEY_IS_UNINSTANTIATED) {
1035			atomic_dec(&key->user->nikeys);
1036			atomic_inc(&newowner->nikeys);
1037		}
1038
1039		zapowner = key->user;
1040		key->user = newowner;
1041		key->uid = uid;
1042	}
1043
1044	/* change the GID */
1045	if (group != (gid_t) -1)
1046		key->gid = gid;
1047
1048	notify_key(key, NOTIFY_KEY_SETATTR, 0);
1049	ret = 0;
1050
1051error_put:
1052	up_write(&key->sem);
1053	key_put(key);
1054	if (zapowner)
1055		key_user_put(zapowner);
1056error:
1057	return ret;
1058
1059quota_overrun:
1060	spin_unlock_irqrestore(&newowner->lock, flags);
1061	zapowner = newowner;
1062	ret = -EDQUOT;
1063	goto error_put;
1064}
1065
1066/*
1067 * Change the permission mask on a key.
1068 *
1069 * The key must grant the caller Setattr permission for this to work, though
1070 * the key need not be fully instantiated yet.  If the caller does not have
1071 * sysadmin capability, it may only change the permission on keys that it owns.
1072 */
1073long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1074{
1075	struct key *key;
1076	key_ref_t key_ref;
1077	long ret;
1078
1079	ret = -EINVAL;
1080	if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1081		goto error;
1082
1083	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1084				  KEY_NEED_SETATTR);
1085	if (IS_ERR(key_ref)) {
1086		ret = PTR_ERR(key_ref);
1087		goto error;
1088	}
1089
1090	key = key_ref_to_ptr(key_ref);
1091
1092	/* make the changes with the locks held to prevent chown/chmod races */
1093	ret = -EACCES;
1094	down_write(&key->sem);
1095
1096	/* if we're not the sysadmin, we can only change a key that we own */
1097	if (uid_eq(key->uid, current_fsuid()) || capable(CAP_SYS_ADMIN)) {
1098		key->perm = perm;
1099		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1100		ret = 0;
1101	}
1102
1103	up_write(&key->sem);
1104	key_put(key);
1105error:
1106	return ret;
1107}
1108
1109/*
1110 * Get the destination keyring for instantiation and check that the caller has
1111 * Write permission on it.
1112 */
1113static long get_instantiation_keyring(key_serial_t ringid,
1114				      struct request_key_auth *rka,
1115				      struct key **_dest_keyring)
1116{
1117	key_ref_t dkref;
1118
1119	*_dest_keyring = NULL;
1120
1121	/* just return a NULL pointer if we weren't asked to make a link */
1122	if (ringid == 0)
1123		return 0;
1124
1125	/* if a specific keyring is nominated by ID, then use that */
1126	if (ringid > 0) {
1127		dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1128		if (IS_ERR(dkref))
1129			return PTR_ERR(dkref);
1130		*_dest_keyring = key_ref_to_ptr(dkref);
1131		return 0;
1132	}
1133
1134	if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1135		return -EINVAL;
1136
1137	/* otherwise specify the destination keyring recorded in the
1138	 * authorisation key (any KEY_SPEC_*_KEYRING) */
1139	if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1140		*_dest_keyring = key_get(rka->dest_keyring);
1141		return 0;
1142	}
1143
1144	return -ENOKEY;
1145}
1146
1147/*
1148 * Change the request_key authorisation key on the current process.
1149 */
1150static int keyctl_change_reqkey_auth(struct key *key)
1151{
1152	struct cred *new;
1153
1154	new = prepare_creds();
1155	if (!new)
1156		return -ENOMEM;
1157
1158	key_put(new->request_key_auth);
1159	new->request_key_auth = key_get(key);
1160
1161	return commit_creds(new);
1162}
1163
1164/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165 * Instantiate a key with the specified payload and link the key into the
1166 * destination keyring if one is given.
1167 *
1168 * The caller must have the appropriate instantiation permit set for this to
1169 * work (see keyctl_assume_authority).  No other permissions are required.
1170 *
1171 * If successful, 0 will be returned.
1172 */
1173static long keyctl_instantiate_key_common(key_serial_t id,
1174				   struct iov_iter *from,
 
 
1175				   key_serial_t ringid)
1176{
1177	const struct cred *cred = current_cred();
1178	struct request_key_auth *rka;
1179	struct key *instkey, *dest_keyring;
1180	size_t plen = from ? iov_iter_count(from) : 0;
1181	void *payload;
1182	long ret;
 
1183
1184	kenter("%d,,%zu,%d", id, plen, ringid);
1185
1186	if (!plen)
1187		from = NULL;
1188
1189	ret = -EINVAL;
1190	if (plen > 1024 * 1024 - 1)
1191		goto error;
1192
1193	/* the appropriate instantiation authorisation key must have been
1194	 * assumed before calling this */
1195	ret = -EPERM;
1196	instkey = cred->request_key_auth;
1197	if (!instkey)
1198		goto error;
1199
1200	rka = instkey->payload.data[0];
1201	if (rka->target_key->serial != id)
1202		goto error;
1203
1204	/* pull the payload in if one was supplied */
1205	payload = NULL;
1206
1207	if (from) {
1208		ret = -ENOMEM;
1209		payload = kvmalloc(plen, GFP_KERNEL);
1210		if (!payload)
1211			goto error;
 
 
 
 
 
 
1212
1213		ret = -EFAULT;
1214		if (!copy_from_iter_full(payload, plen, from))
1215			goto error2;
1216	}
1217
1218	/* find the destination keyring amongst those belonging to the
1219	 * requesting task */
1220	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1221	if (ret < 0)
1222		goto error2;
1223
1224	/* instantiate the key and link it into a keyring */
1225	ret = key_instantiate_and_link(rka->target_key, payload, plen,
1226				       dest_keyring, instkey);
1227
1228	key_put(dest_keyring);
1229
1230	/* discard the assumed authority if it's just been disabled by
1231	 * instantiation of the key */
1232	if (ret == 0)
1233		keyctl_change_reqkey_auth(NULL);
1234
1235error2:
1236	kvfree_sensitive(payload, plen);
 
 
 
1237error:
1238	return ret;
1239}
1240
1241/*
1242 * Instantiate a key with the specified payload and link the key into the
1243 * destination keyring if one is given.
1244 *
1245 * The caller must have the appropriate instantiation permit set for this to
1246 * work (see keyctl_assume_authority).  No other permissions are required.
1247 *
1248 * If successful, 0 will be returned.
1249 */
1250long keyctl_instantiate_key(key_serial_t id,
1251			    const void __user *_payload,
1252			    size_t plen,
1253			    key_serial_t ringid)
1254{
1255	if (_payload && plen) {
1256		struct iov_iter from;
1257		int ret;
1258
1259		ret = import_ubuf(ITER_SOURCE, (void __user *)_payload, plen,
1260				  &from);
1261		if (unlikely(ret))
1262			return ret;
1263
1264		return keyctl_instantiate_key_common(id, &from, ringid);
1265	}
1266
1267	return keyctl_instantiate_key_common(id, NULL, ringid);
1268}
1269
1270/*
1271 * Instantiate a key with the specified multipart payload and link the key into
1272 * the destination keyring if one is given.
1273 *
1274 * The caller must have the appropriate instantiation permit set for this to
1275 * work (see keyctl_assume_authority).  No other permissions are required.
1276 *
1277 * If successful, 0 will be returned.
1278 */
1279long keyctl_instantiate_key_iov(key_serial_t id,
1280				const struct iovec __user *_payload_iov,
1281				unsigned ioc,
1282				key_serial_t ringid)
1283{
1284	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1285	struct iov_iter from;
1286	long ret;
1287
1288	if (!_payload_iov)
1289		ioc = 0;
1290
1291	ret = import_iovec(ITER_SOURCE, _payload_iov, ioc,
1292				    ARRAY_SIZE(iovstack), &iov, &from);
1293	if (ret < 0)
1294		return ret;
1295	ret = keyctl_instantiate_key_common(id, &from, ringid);
1296	kfree(iov);
 
 
 
 
 
1297	return ret;
 
 
 
 
 
 
1298}
1299
1300/*
1301 * Negatively instantiate the key with the given timeout (in seconds) and link
1302 * the key into the destination keyring if one is given.
1303 *
1304 * The caller must have the appropriate instantiation permit set for this to
1305 * work (see keyctl_assume_authority).  No other permissions are required.
1306 *
1307 * The key and any links to the key will be automatically garbage collected
1308 * after the timeout expires.
1309 *
1310 * Negative keys are used to rate limit repeated request_key() calls by causing
1311 * them to return -ENOKEY until the negative key expires.
1312 *
1313 * If successful, 0 will be returned.
1314 */
1315long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1316{
1317	return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1318}
1319
1320/*
1321 * Negatively instantiate the key with the given timeout (in seconds) and error
1322 * code and link the key into the destination keyring if one is given.
1323 *
1324 * The caller must have the appropriate instantiation permit set for this to
1325 * work (see keyctl_assume_authority).  No other permissions are required.
1326 *
1327 * The key and any links to the key will be automatically garbage collected
1328 * after the timeout expires.
1329 *
1330 * Negative keys are used to rate limit repeated request_key() calls by causing
1331 * them to return the specified error code until the negative key expires.
1332 *
1333 * If successful, 0 will be returned.
1334 */
1335long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1336		       key_serial_t ringid)
1337{
1338	const struct cred *cred = current_cred();
1339	struct request_key_auth *rka;
1340	struct key *instkey, *dest_keyring;
1341	long ret;
1342
1343	kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1344
1345	/* must be a valid error code and mustn't be a kernel special */
1346	if (error <= 0 ||
1347	    error >= MAX_ERRNO ||
1348	    error == ERESTARTSYS ||
1349	    error == ERESTARTNOINTR ||
1350	    error == ERESTARTNOHAND ||
1351	    error == ERESTART_RESTARTBLOCK)
1352		return -EINVAL;
1353
1354	/* the appropriate instantiation authorisation key must have been
1355	 * assumed before calling this */
1356	ret = -EPERM;
1357	instkey = cred->request_key_auth;
1358	if (!instkey)
1359		goto error;
1360
1361	rka = instkey->payload.data[0];
1362	if (rka->target_key->serial != id)
1363		goto error;
1364
1365	/* find the destination keyring if present (which must also be
1366	 * writable) */
1367	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1368	if (ret < 0)
1369		goto error;
1370
1371	/* instantiate the key and link it into a keyring */
1372	ret = key_reject_and_link(rka->target_key, timeout, error,
1373				  dest_keyring, instkey);
1374
1375	key_put(dest_keyring);
1376
1377	/* discard the assumed authority if it's just been disabled by
1378	 * instantiation of the key */
1379	if (ret == 0)
1380		keyctl_change_reqkey_auth(NULL);
1381
1382error:
1383	return ret;
1384}
1385
1386/*
1387 * Read or set the default keyring in which request_key() will cache keys and
1388 * return the old setting.
1389 *
1390 * If a thread or process keyring is specified then it will be created if it
1391 * doesn't yet exist.  The old setting will be returned if successful.
1392 */
1393long keyctl_set_reqkey_keyring(int reqkey_defl)
1394{
1395	struct cred *new;
1396	int ret, old_setting;
1397
1398	old_setting = current_cred_xxx(jit_keyring);
1399
1400	if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1401		return old_setting;
1402
1403	new = prepare_creds();
1404	if (!new)
1405		return -ENOMEM;
1406
1407	switch (reqkey_defl) {
1408	case KEY_REQKEY_DEFL_THREAD_KEYRING:
1409		ret = install_thread_keyring_to_cred(new);
1410		if (ret < 0)
1411			goto error;
1412		goto set;
1413
1414	case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1415		ret = install_process_keyring_to_cred(new);
1416		if (ret < 0)
1417			goto error;
 
 
 
1418		goto set;
1419
1420	case KEY_REQKEY_DEFL_DEFAULT:
1421	case KEY_REQKEY_DEFL_SESSION_KEYRING:
1422	case KEY_REQKEY_DEFL_USER_KEYRING:
1423	case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1424	case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1425		goto set;
1426
1427	case KEY_REQKEY_DEFL_NO_CHANGE:
1428	case KEY_REQKEY_DEFL_GROUP_KEYRING:
1429	default:
1430		ret = -EINVAL;
1431		goto error;
1432	}
1433
1434set:
1435	new->jit_keyring = reqkey_defl;
1436	commit_creds(new);
1437	return old_setting;
1438error:
1439	abort_creds(new);
1440	return ret;
1441}
1442
1443/*
1444 * Set or clear the timeout on a key.
1445 *
1446 * Either the key must grant the caller Setattr permission or else the caller
1447 * must hold an instantiation authorisation token for the key.
1448 *
1449 * The timeout is either 0 to clear the timeout, or a number of seconds from
1450 * the current time.  The key and any links to the key will be automatically
1451 * garbage collected after the timeout expires.
1452 *
1453 * Keys with KEY_FLAG_KEEP set should not be timed out.
1454 *
1455 * If successful, 0 is returned.
1456 */
1457long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1458{
1459	struct key *key, *instkey;
1460	key_ref_t key_ref;
1461	long ret;
1462
1463	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1464				  KEY_NEED_SETATTR);
1465	if (IS_ERR(key_ref)) {
1466		/* setting the timeout on a key under construction is permitted
1467		 * if we have the authorisation token handy */
1468		if (PTR_ERR(key_ref) == -EACCES) {
1469			instkey = key_get_instantiation_authkey(id);
1470			if (!IS_ERR(instkey)) {
1471				key_put(instkey);
1472				key_ref = lookup_user_key(id,
1473							  KEY_LOOKUP_PARTIAL,
1474							  KEY_AUTHTOKEN_OVERRIDE);
1475				if (!IS_ERR(key_ref))
1476					goto okay;
1477			}
1478		}
1479
1480		ret = PTR_ERR(key_ref);
1481		goto error;
1482	}
1483
1484okay:
1485	key = key_ref_to_ptr(key_ref);
1486	ret = 0;
1487	if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1488		ret = -EPERM;
1489	} else {
1490		key_set_timeout(key, timeout);
1491		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1492	}
1493	key_put(key);
1494
 
1495error:
1496	return ret;
1497}
1498
1499/*
1500 * Assume (or clear) the authority to instantiate the specified key.
1501 *
1502 * This sets the authoritative token currently in force for key instantiation.
1503 * This must be done for a key to be instantiated.  It has the effect of making
1504 * available all the keys from the caller of the request_key() that created a
1505 * key to request_key() calls made by the caller of this function.
1506 *
1507 * The caller must have the instantiation key in their process keyrings with a
1508 * Search permission grant available to the caller.
1509 *
1510 * If the ID given is 0, then the setting will be cleared and 0 returned.
1511 *
1512 * If the ID given has a matching an authorisation key, then that key will be
1513 * set and its ID will be returned.  The authorisation key can be read to get
1514 * the callout information passed to request_key().
1515 */
1516long keyctl_assume_authority(key_serial_t id)
1517{
1518	struct key *authkey;
1519	long ret;
1520
1521	/* special key IDs aren't permitted */
1522	ret = -EINVAL;
1523	if (id < 0)
1524		goto error;
1525
1526	/* we divest ourselves of authority if given an ID of 0 */
1527	if (id == 0) {
1528		ret = keyctl_change_reqkey_auth(NULL);
1529		goto error;
1530	}
1531
1532	/* attempt to assume the authority temporarily granted to us whilst we
1533	 * instantiate the specified key
1534	 * - the authorisation key must be in the current task's keyrings
1535	 *   somewhere
1536	 */
1537	authkey = key_get_instantiation_authkey(id);
1538	if (IS_ERR(authkey)) {
1539		ret = PTR_ERR(authkey);
1540		goto error;
1541	}
1542
1543	ret = keyctl_change_reqkey_auth(authkey);
1544	if (ret == 0)
1545		ret = authkey->serial;
1546	key_put(authkey);
 
 
1547error:
1548	return ret;
1549}
1550
1551/*
1552 * Get a key's the LSM security label.
1553 *
1554 * The key must grant the caller View permission for this to work.
1555 *
1556 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1557 *
1558 * If successful, the amount of information available will be returned,
1559 * irrespective of how much was copied (including the terminal NUL).
1560 */
1561long keyctl_get_security(key_serial_t keyid,
1562			 char __user *buffer,
1563			 size_t buflen)
1564{
1565	struct key *key, *instkey;
1566	key_ref_t key_ref;
1567	char *context;
1568	long ret;
1569
1570	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1571	if (IS_ERR(key_ref)) {
1572		if (PTR_ERR(key_ref) != -EACCES)
1573			return PTR_ERR(key_ref);
1574
1575		/* viewing a key under construction is also permitted if we
1576		 * have the authorisation token handy */
1577		instkey = key_get_instantiation_authkey(keyid);
1578		if (IS_ERR(instkey))
1579			return PTR_ERR(instkey);
1580		key_put(instkey);
1581
1582		key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
1583					  KEY_AUTHTOKEN_OVERRIDE);
1584		if (IS_ERR(key_ref))
1585			return PTR_ERR(key_ref);
1586	}
1587
1588	key = key_ref_to_ptr(key_ref);
1589	ret = security_key_getsecurity(key, &context);
1590	if (ret == 0) {
1591		/* if no information was returned, give userspace an empty
1592		 * string */
1593		ret = 1;
1594		if (buffer && buflen > 0 &&
1595		    copy_to_user(buffer, "", 1) != 0)
1596			ret = -EFAULT;
1597	} else if (ret > 0) {
1598		/* return as much data as there's room for */
1599		if (buffer && buflen > 0) {
1600			if (buflen > ret)
1601				buflen = ret;
1602
1603			if (copy_to_user(buffer, context, buflen) != 0)
1604				ret = -EFAULT;
1605		}
1606
1607		kfree(context);
1608	}
1609
1610	key_ref_put(key_ref);
1611	return ret;
1612}
1613
1614/*
1615 * Attempt to install the calling process's session keyring on the process's
1616 * parent process.
1617 *
1618 * The keyring must exist and must grant the caller LINK permission, and the
1619 * parent process must be single-threaded and must have the same effective
1620 * ownership as this process and mustn't be SUID/SGID.
1621 *
1622 * The keyring will be emplaced on the parent when it next resumes userspace.
1623 *
1624 * If successful, 0 will be returned.
1625 */
1626long keyctl_session_to_parent(void)
1627{
1628	struct task_struct *me, *parent;
1629	const struct cred *mycred, *pcred;
1630	struct callback_head *newwork, *oldwork;
1631	key_ref_t keyring_r;
1632	struct cred *cred;
1633	int ret;
1634
1635	keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1636	if (IS_ERR(keyring_r))
1637		return PTR_ERR(keyring_r);
1638
1639	ret = -ENOMEM;
1640
1641	/* our parent is going to need a new cred struct, a new tgcred struct
1642	 * and new security data, so we allocate them here to prevent ENOMEM in
1643	 * our parent */
1644	cred = cred_alloc_blank();
1645	if (!cred)
1646		goto error_keyring;
1647	newwork = &cred->rcu;
1648
1649	cred->session_keyring = key_ref_to_ptr(keyring_r);
1650	keyring_r = NULL;
1651	init_task_work(newwork, key_change_session_keyring);
1652
1653	me = current;
1654	rcu_read_lock();
1655	write_lock_irq(&tasklist_lock);
1656
1657	ret = -EPERM;
1658	oldwork = NULL;
1659	parent = rcu_dereference_protected(me->real_parent,
1660					   lockdep_is_held(&tasklist_lock));
1661
1662	/* the parent mustn't be init and mustn't be a kernel thread */
1663	if (parent->pid <= 1 || !parent->mm)
1664		goto unlock;
1665
1666	/* the parent must be single threaded */
1667	if (!thread_group_empty(parent))
1668		goto unlock;
1669
1670	/* the parent and the child must have different session keyrings or
1671	 * there's no point */
1672	mycred = current_cred();
1673	pcred = __task_cred(parent);
1674	if (mycred == pcred ||
1675	    mycred->session_keyring == pcred->session_keyring) {
1676		ret = 0;
1677		goto unlock;
1678	}
1679
1680	/* the parent must have the same effective ownership and mustn't be
1681	 * SUID/SGID */
1682	if (!uid_eq(pcred->uid,	 mycred->euid) ||
1683	    !uid_eq(pcred->euid, mycred->euid) ||
1684	    !uid_eq(pcred->suid, mycred->euid) ||
1685	    !gid_eq(pcred->gid,	 mycred->egid) ||
1686	    !gid_eq(pcred->egid, mycred->egid) ||
1687	    !gid_eq(pcred->sgid, mycred->egid))
1688		goto unlock;
1689
1690	/* the keyrings must have the same UID */
1691	if ((pcred->session_keyring &&
1692	     !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1693	    !uid_eq(mycred->session_keyring->uid, mycred->euid))
1694		goto unlock;
1695
1696	/* cancel an already pending keyring replacement */
1697	oldwork = task_work_cancel_func(parent, key_change_session_keyring);
1698
1699	/* the replacement session keyring is applied just prior to userspace
1700	 * restarting */
1701	ret = task_work_add(parent, newwork, TWA_RESUME);
1702	if (!ret)
1703		newwork = NULL;
1704unlock:
1705	write_unlock_irq(&tasklist_lock);
1706	rcu_read_unlock();
1707	if (oldwork)
1708		put_cred(container_of(oldwork, struct cred, rcu));
1709	if (newwork)
1710		put_cred(cred);
1711	return ret;
1712
1713error_keyring:
1714	key_ref_put(keyring_r);
1715	return ret;
1716}
1717
1718/*
1719 * Apply a restriction to a given keyring.
1720 *
1721 * The caller must have Setattr permission to change keyring restrictions.
1722 *
1723 * The requested type name may be a NULL pointer to reject all attempts
1724 * to link to the keyring.  In this case, _restriction must also be NULL.
1725 * Otherwise, both _type and _restriction must be non-NULL.
1726 *
1727 * Returns 0 if successful.
1728 */
1729long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1730			     const char __user *_restriction)
1731{
1732	key_ref_t key_ref;
1733	char type[32];
1734	char *restriction = NULL;
1735	long ret;
1736
1737	key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1738	if (IS_ERR(key_ref))
1739		return PTR_ERR(key_ref);
1740
1741	ret = -EINVAL;
1742	if (_type) {
1743		if (!_restriction)
1744			goto error;
1745
1746		ret = key_get_type_from_user(type, _type, sizeof(type));
1747		if (ret < 0)
1748			goto error;
1749
1750		restriction = strndup_user(_restriction, PAGE_SIZE);
1751		if (IS_ERR(restriction)) {
1752			ret = PTR_ERR(restriction);
1753			goto error;
1754		}
1755	} else {
1756		if (_restriction)
1757			goto error;
1758	}
1759
1760	ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1761	kfree(restriction);
1762error:
1763	key_ref_put(key_ref);
1764	return ret;
1765}
1766
1767#ifdef CONFIG_KEY_NOTIFICATIONS
1768/*
1769 * Watch for changes to a key.
1770 *
1771 * The caller must have View permission to watch a key or keyring.
1772 */
1773long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1774{
1775	struct watch_queue *wqueue;
1776	struct watch_list *wlist = NULL;
1777	struct watch *watch = NULL;
1778	struct key *key;
1779	key_ref_t key_ref;
1780	long ret;
1781
1782	if (watch_id < -1 || watch_id > 0xff)
1783		return -EINVAL;
1784
1785	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1786	if (IS_ERR(key_ref))
1787		return PTR_ERR(key_ref);
1788	key = key_ref_to_ptr(key_ref);
1789
1790	wqueue = get_watch_queue(watch_queue_fd);
1791	if (IS_ERR(wqueue)) {
1792		ret = PTR_ERR(wqueue);
1793		goto err_key;
1794	}
1795
1796	if (watch_id >= 0) {
1797		ret = -ENOMEM;
1798		if (!key->watchers) {
1799			wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1800			if (!wlist)
1801				goto err_wqueue;
1802			init_watch_list(wlist, NULL);
1803		}
1804
1805		watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1806		if (!watch)
1807			goto err_wlist;
1808
1809		init_watch(watch, wqueue);
1810		watch->id	= key->serial;
1811		watch->info_id	= (u32)watch_id << WATCH_INFO_ID__SHIFT;
1812
1813		ret = security_watch_key(key);
1814		if (ret < 0)
1815			goto err_watch;
1816
1817		down_write(&key->sem);
1818		if (!key->watchers) {
1819			key->watchers = wlist;
1820			wlist = NULL;
1821		}
1822
1823		ret = add_watch_to_object(watch, key->watchers);
1824		up_write(&key->sem);
1825
1826		if (ret == 0)
1827			watch = NULL;
1828	} else {
1829		ret = -EBADSLT;
1830		if (key->watchers) {
1831			down_write(&key->sem);
1832			ret = remove_watch_from_object(key->watchers,
1833						       wqueue, key_serial(key),
1834						       false);
1835			up_write(&key->sem);
1836		}
1837	}
1838
1839err_watch:
1840	kfree(watch);
1841err_wlist:
1842	kfree(wlist);
1843err_wqueue:
1844	put_watch_queue(wqueue);
1845err_key:
1846	key_put(key);
1847	return ret;
1848}
1849#endif /* CONFIG_KEY_NOTIFICATIONS */
1850
1851/*
1852 * Get keyrings subsystem capabilities.
1853 */
1854long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1855{
1856	size_t size = buflen;
1857
1858	if (size > 0) {
1859		if (size > sizeof(keyrings_capabilities))
1860			size = sizeof(keyrings_capabilities);
1861		if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1862			return -EFAULT;
1863		if (size < buflen &&
1864		    clear_user(_buffer + size, buflen - size) != 0)
1865			return -EFAULT;
1866	}
1867
1868	return sizeof(keyrings_capabilities);
1869}
1870
1871/*
1872 * The key control system call
1873 */
1874SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1875		unsigned long, arg4, unsigned long, arg5)
1876{
1877	switch (option) {
1878	case KEYCTL_GET_KEYRING_ID:
1879		return keyctl_get_keyring_ID((key_serial_t) arg2,
1880					     (int) arg3);
1881
1882	case KEYCTL_JOIN_SESSION_KEYRING:
1883		return keyctl_join_session_keyring((const char __user *) arg2);
1884
1885	case KEYCTL_UPDATE:
1886		return keyctl_update_key((key_serial_t) arg2,
1887					 (const void __user *) arg3,
1888					 (size_t) arg4);
1889
1890	case KEYCTL_REVOKE:
1891		return keyctl_revoke_key((key_serial_t) arg2);
1892
1893	case KEYCTL_DESCRIBE:
1894		return keyctl_describe_key((key_serial_t) arg2,
1895					   (char __user *) arg3,
1896					   (unsigned) arg4);
1897
1898	case KEYCTL_CLEAR:
1899		return keyctl_keyring_clear((key_serial_t) arg2);
1900
1901	case KEYCTL_LINK:
1902		return keyctl_keyring_link((key_serial_t) arg2,
1903					   (key_serial_t) arg3);
1904
1905	case KEYCTL_UNLINK:
1906		return keyctl_keyring_unlink((key_serial_t) arg2,
1907					     (key_serial_t) arg3);
1908
1909	case KEYCTL_SEARCH:
1910		return keyctl_keyring_search((key_serial_t) arg2,
1911					     (const char __user *) arg3,
1912					     (const char __user *) arg4,
1913					     (key_serial_t) arg5);
1914
1915	case KEYCTL_READ:
1916		return keyctl_read_key((key_serial_t) arg2,
1917				       (char __user *) arg3,
1918				       (size_t) arg4);
1919
1920	case KEYCTL_CHOWN:
1921		return keyctl_chown_key((key_serial_t) arg2,
1922					(uid_t) arg3,
1923					(gid_t) arg4);
1924
1925	case KEYCTL_SETPERM:
1926		return keyctl_setperm_key((key_serial_t) arg2,
1927					  (key_perm_t) arg3);
1928
1929	case KEYCTL_INSTANTIATE:
1930		return keyctl_instantiate_key((key_serial_t) arg2,
1931					      (const void __user *) arg3,
1932					      (size_t) arg4,
1933					      (key_serial_t) arg5);
1934
1935	case KEYCTL_NEGATE:
1936		return keyctl_negate_key((key_serial_t) arg2,
1937					 (unsigned) arg3,
1938					 (key_serial_t) arg4);
1939
1940	case KEYCTL_SET_REQKEY_KEYRING:
1941		return keyctl_set_reqkey_keyring(arg2);
1942
1943	case KEYCTL_SET_TIMEOUT:
1944		return keyctl_set_timeout((key_serial_t) arg2,
1945					  (unsigned) arg3);
1946
1947	case KEYCTL_ASSUME_AUTHORITY:
1948		return keyctl_assume_authority((key_serial_t) arg2);
1949
1950	case KEYCTL_GET_SECURITY:
1951		return keyctl_get_security((key_serial_t) arg2,
1952					   (char __user *) arg3,
1953					   (size_t) arg4);
1954
1955	case KEYCTL_SESSION_TO_PARENT:
1956		return keyctl_session_to_parent();
1957
1958	case KEYCTL_REJECT:
1959		return keyctl_reject_key((key_serial_t) arg2,
1960					 (unsigned) arg3,
1961					 (unsigned) arg4,
1962					 (key_serial_t) arg5);
1963
1964	case KEYCTL_INSTANTIATE_IOV:
1965		return keyctl_instantiate_key_iov(
1966			(key_serial_t) arg2,
1967			(const struct iovec __user *) arg3,
1968			(unsigned) arg4,
1969			(key_serial_t) arg5);
1970
1971	case KEYCTL_INVALIDATE:
1972		return keyctl_invalidate_key((key_serial_t) arg2);
1973
1974	case KEYCTL_GET_PERSISTENT:
1975		return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1976
1977	case KEYCTL_DH_COMPUTE:
1978		return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1979					 (char __user *) arg3, (size_t) arg4,
1980					 (struct keyctl_kdf_params __user *) arg5);
1981
1982	case KEYCTL_RESTRICT_KEYRING:
1983		return keyctl_restrict_keyring((key_serial_t) arg2,
1984					       (const char __user *) arg3,
1985					       (const char __user *) arg4);
1986
1987	case KEYCTL_PKEY_QUERY:
1988		if (arg3 != 0)
1989			return -EINVAL;
1990		return keyctl_pkey_query((key_serial_t)arg2,
1991					 (const char __user *)arg4,
1992					 (struct keyctl_pkey_query __user *)arg5);
1993
1994	case KEYCTL_PKEY_ENCRYPT:
1995	case KEYCTL_PKEY_DECRYPT:
1996	case KEYCTL_PKEY_SIGN:
1997		return keyctl_pkey_e_d_s(
1998			option,
1999			(const struct keyctl_pkey_params __user *)arg2,
2000			(const char __user *)arg3,
2001			(const void __user *)arg4,
2002			(void __user *)arg5);
2003
2004	case KEYCTL_PKEY_VERIFY:
2005		return keyctl_pkey_verify(
2006			(const struct keyctl_pkey_params __user *)arg2,
2007			(const char __user *)arg3,
2008			(const void __user *)arg4,
2009			(const void __user *)arg5);
2010
2011	case KEYCTL_MOVE:
2012		return keyctl_keyring_move((key_serial_t)arg2,
2013					   (key_serial_t)arg3,
2014					   (key_serial_t)arg4,
2015					   (unsigned int)arg5);
2016
2017	case KEYCTL_CAPABILITIES:
2018		return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2019
2020	case KEYCTL_WATCH_KEY:
2021		return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2022
2023	default:
2024		return -EOPNOTSUPP;
2025	}
2026}