Loading...
1/* Userspace key control operations
2 *
3 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/syscalls.h>
17#include <linux/key.h>
18#include <linux/keyctl.h>
19#include <linux/fs.h>
20#include <linux/capability.h>
21#include <linux/string.h>
22#include <linux/err.h>
23#include <linux/vmalloc.h>
24#include <linux/security.h>
25#include <linux/uio.h>
26#include <asm/uaccess.h>
27#include "internal.h"
28
29static int key_get_type_from_user(char *type,
30 const char __user *_type,
31 unsigned len)
32{
33 int ret;
34
35 ret = strncpy_from_user(type, _type, len);
36 if (ret < 0)
37 return ret;
38 if (ret == 0 || ret >= len)
39 return -EINVAL;
40 if (type[0] == '.')
41 return -EPERM;
42 type[len - 1] = '\0';
43 return 0;
44}
45
46/*
47 * Extract the description of a new key from userspace and either add it as a
48 * new key to the specified keyring or update a matching key in that keyring.
49 *
50 * If the description is NULL or an empty string, the key type is asked to
51 * generate one from the payload.
52 *
53 * The keyring must be writable so that we can attach the key to it.
54 *
55 * If successful, the new key's serial number is returned, otherwise an error
56 * code is returned.
57 */
58SYSCALL_DEFINE5(add_key, const char __user *, _type,
59 const char __user *, _description,
60 const void __user *, _payload,
61 size_t, plen,
62 key_serial_t, ringid)
63{
64 key_ref_t keyring_ref, key_ref;
65 char type[32], *description;
66 void *payload;
67 long ret;
68 bool vm;
69
70 ret = -EINVAL;
71 if (plen > 1024 * 1024 - 1)
72 goto error;
73
74 /* draw all the data into kernel space */
75 ret = key_get_type_from_user(type, _type, sizeof(type));
76 if (ret < 0)
77 goto error;
78
79 description = NULL;
80 if (_description) {
81 description = strndup_user(_description, PAGE_SIZE);
82 if (IS_ERR(description)) {
83 ret = PTR_ERR(description);
84 goto error;
85 }
86 if (!*description) {
87 kfree(description);
88 description = NULL;
89 }
90 }
91
92 /* pull the payload in if one was supplied */
93 payload = NULL;
94
95 vm = false;
96 if (_payload) {
97 ret = -ENOMEM;
98 payload = kmalloc(plen, GFP_KERNEL | __GFP_NOWARN);
99 if (!payload) {
100 if (plen <= PAGE_SIZE)
101 goto error2;
102 vm = true;
103 payload = vmalloc(plen);
104 if (!payload)
105 goto error2;
106 }
107
108 ret = -EFAULT;
109 if (copy_from_user(payload, _payload, plen) != 0)
110 goto error3;
111 }
112
113 /* find the target keyring (which must be writable) */
114 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
115 if (IS_ERR(keyring_ref)) {
116 ret = PTR_ERR(keyring_ref);
117 goto error3;
118 }
119
120 /* create or update the requested key and add it to the target
121 * keyring */
122 key_ref = key_create_or_update(keyring_ref, type, description,
123 payload, plen, KEY_PERM_UNDEF,
124 KEY_ALLOC_IN_QUOTA);
125 if (!IS_ERR(key_ref)) {
126 ret = key_ref_to_ptr(key_ref)->serial;
127 key_ref_put(key_ref);
128 }
129 else {
130 ret = PTR_ERR(key_ref);
131 }
132
133 key_ref_put(keyring_ref);
134 error3:
135 if (!vm)
136 kfree(payload);
137 else
138 vfree(payload);
139 error2:
140 kfree(description);
141 error:
142 return ret;
143}
144
145/*
146 * Search the process keyrings and keyring trees linked from those for a
147 * matching key. Keyrings must have appropriate Search permission to be
148 * searched.
149 *
150 * If a key is found, it will be attached to the destination keyring if there's
151 * one specified and the serial number of the key will be returned.
152 *
153 * If no key is found, /sbin/request-key will be invoked if _callout_info is
154 * non-NULL in an attempt to create a key. The _callout_info string will be
155 * passed to /sbin/request-key to aid with completing the request. If the
156 * _callout_info string is "" then it will be changed to "-".
157 */
158SYSCALL_DEFINE4(request_key, const char __user *, _type,
159 const char __user *, _description,
160 const char __user *, _callout_info,
161 key_serial_t, destringid)
162{
163 struct key_type *ktype;
164 struct key *key;
165 key_ref_t dest_ref;
166 size_t callout_len;
167 char type[32], *description, *callout_info;
168 long ret;
169
170 /* pull the type into kernel space */
171 ret = key_get_type_from_user(type, _type, sizeof(type));
172 if (ret < 0)
173 goto error;
174
175 /* pull the description into kernel space */
176 description = strndup_user(_description, PAGE_SIZE);
177 if (IS_ERR(description)) {
178 ret = PTR_ERR(description);
179 goto error;
180 }
181
182 /* pull the callout info into kernel space */
183 callout_info = NULL;
184 callout_len = 0;
185 if (_callout_info) {
186 callout_info = strndup_user(_callout_info, PAGE_SIZE);
187 if (IS_ERR(callout_info)) {
188 ret = PTR_ERR(callout_info);
189 goto error2;
190 }
191 callout_len = strlen(callout_info);
192 }
193
194 /* get the destination keyring if specified */
195 dest_ref = NULL;
196 if (destringid) {
197 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
198 KEY_WRITE);
199 if (IS_ERR(dest_ref)) {
200 ret = PTR_ERR(dest_ref);
201 goto error3;
202 }
203 }
204
205 /* find the key type */
206 ktype = key_type_lookup(type);
207 if (IS_ERR(ktype)) {
208 ret = PTR_ERR(ktype);
209 goto error4;
210 }
211
212 /* do the search */
213 key = request_key_and_link(ktype, description, callout_info,
214 callout_len, NULL, key_ref_to_ptr(dest_ref),
215 KEY_ALLOC_IN_QUOTA);
216 if (IS_ERR(key)) {
217 ret = PTR_ERR(key);
218 goto error5;
219 }
220
221 /* wait for the key to finish being constructed */
222 ret = wait_for_key_construction(key, 1);
223 if (ret < 0)
224 goto error6;
225
226 ret = key->serial;
227
228error6:
229 key_put(key);
230error5:
231 key_type_put(ktype);
232error4:
233 key_ref_put(dest_ref);
234error3:
235 kfree(callout_info);
236error2:
237 kfree(description);
238error:
239 return ret;
240}
241
242/*
243 * Get the ID of the specified process keyring.
244 *
245 * The requested keyring must have search permission to be found.
246 *
247 * If successful, the ID of the requested keyring will be returned.
248 */
249long keyctl_get_keyring_ID(key_serial_t id, int create)
250{
251 key_ref_t key_ref;
252 unsigned long lflags;
253 long ret;
254
255 lflags = create ? KEY_LOOKUP_CREATE : 0;
256 key_ref = lookup_user_key(id, lflags, KEY_SEARCH);
257 if (IS_ERR(key_ref)) {
258 ret = PTR_ERR(key_ref);
259 goto error;
260 }
261
262 ret = key_ref_to_ptr(key_ref)->serial;
263 key_ref_put(key_ref);
264error:
265 return ret;
266}
267
268/*
269 * Join a (named) session keyring.
270 *
271 * Create and join an anonymous session keyring or join a named session
272 * keyring, creating it if necessary. A named session keyring must have Search
273 * permission for it to be joined. Session keyrings without this permit will
274 * be skipped over.
275 *
276 * If successful, the ID of the joined session keyring will be returned.
277 */
278long keyctl_join_session_keyring(const char __user *_name)
279{
280 char *name;
281 long ret;
282
283 /* fetch the name from userspace */
284 name = NULL;
285 if (_name) {
286 name = strndup_user(_name, PAGE_SIZE);
287 if (IS_ERR(name)) {
288 ret = PTR_ERR(name);
289 goto error;
290 }
291 }
292
293 /* join the session */
294 ret = join_session_keyring(name);
295 kfree(name);
296
297error:
298 return ret;
299}
300
301/*
302 * Update a key's data payload from the given data.
303 *
304 * The key must grant the caller Write permission and the key type must support
305 * updating for this to work. A negative key can be positively instantiated
306 * with this call.
307 *
308 * If successful, 0 will be returned. If the key type does not support
309 * updating, then -EOPNOTSUPP will be returned.
310 */
311long keyctl_update_key(key_serial_t id,
312 const void __user *_payload,
313 size_t plen)
314{
315 key_ref_t key_ref;
316 void *payload;
317 long ret;
318
319 ret = -EINVAL;
320 if (plen > PAGE_SIZE)
321 goto error;
322
323 /* pull the payload in if one was supplied */
324 payload = NULL;
325 if (_payload) {
326 ret = -ENOMEM;
327 payload = kmalloc(plen, GFP_KERNEL);
328 if (!payload)
329 goto error;
330
331 ret = -EFAULT;
332 if (copy_from_user(payload, _payload, plen) != 0)
333 goto error2;
334 }
335
336 /* find the target key (which must be writable) */
337 key_ref = lookup_user_key(id, 0, KEY_WRITE);
338 if (IS_ERR(key_ref)) {
339 ret = PTR_ERR(key_ref);
340 goto error2;
341 }
342
343 /* update the key */
344 ret = key_update(key_ref, payload, plen);
345
346 key_ref_put(key_ref);
347error2:
348 kfree(payload);
349error:
350 return ret;
351}
352
353/*
354 * Revoke a key.
355 *
356 * The key must be grant the caller Write or Setattr permission for this to
357 * work. The key type should give up its quota claim when revoked. The key
358 * and any links to the key will be automatically garbage collected after a
359 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
360 *
361 * If successful, 0 is returned.
362 */
363long keyctl_revoke_key(key_serial_t id)
364{
365 key_ref_t key_ref;
366 long ret;
367
368 key_ref = lookup_user_key(id, 0, KEY_WRITE);
369 if (IS_ERR(key_ref)) {
370 ret = PTR_ERR(key_ref);
371 if (ret != -EACCES)
372 goto error;
373 key_ref = lookup_user_key(id, 0, KEY_SETATTR);
374 if (IS_ERR(key_ref)) {
375 ret = PTR_ERR(key_ref);
376 goto error;
377 }
378 }
379
380 key_revoke(key_ref_to_ptr(key_ref));
381 ret = 0;
382
383 key_ref_put(key_ref);
384error:
385 return ret;
386}
387
388/*
389 * Invalidate a key.
390 *
391 * The key must be grant the caller Invalidate permission for this to work.
392 * The key and any links to the key will be automatically garbage collected
393 * immediately.
394 *
395 * If successful, 0 is returned.
396 */
397long keyctl_invalidate_key(key_serial_t id)
398{
399 key_ref_t key_ref;
400 long ret;
401
402 kenter("%d", id);
403
404 key_ref = lookup_user_key(id, 0, KEY_SEARCH);
405 if (IS_ERR(key_ref)) {
406 ret = PTR_ERR(key_ref);
407 goto error;
408 }
409
410 key_invalidate(key_ref_to_ptr(key_ref));
411 ret = 0;
412
413 key_ref_put(key_ref);
414error:
415 kleave(" = %ld", ret);
416 return ret;
417}
418
419/*
420 * Clear the specified keyring, creating an empty process keyring if one of the
421 * special keyring IDs is used.
422 *
423 * The keyring must grant the caller Write permission for this to work. If
424 * successful, 0 will be returned.
425 */
426long keyctl_keyring_clear(key_serial_t ringid)
427{
428 key_ref_t keyring_ref;
429 long ret;
430
431 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
432 if (IS_ERR(keyring_ref)) {
433 ret = PTR_ERR(keyring_ref);
434
435 /* Root is permitted to invalidate certain special keyrings */
436 if (capable(CAP_SYS_ADMIN)) {
437 keyring_ref = lookup_user_key(ringid, 0, 0);
438 if (IS_ERR(keyring_ref))
439 goto error;
440 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
441 &key_ref_to_ptr(keyring_ref)->flags))
442 goto clear;
443 goto error_put;
444 }
445
446 goto error;
447 }
448
449clear:
450 ret = keyring_clear(key_ref_to_ptr(keyring_ref));
451error_put:
452 key_ref_put(keyring_ref);
453error:
454 return ret;
455}
456
457/*
458 * Create a link from a keyring to a key if there's no matching key in the
459 * keyring, otherwise replace the link to the matching key with a link to the
460 * new key.
461 *
462 * The key must grant the caller Link permission and the the keyring must grant
463 * the caller Write permission. Furthermore, if an additional link is created,
464 * the keyring's quota will be extended.
465 *
466 * If successful, 0 will be returned.
467 */
468long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
469{
470 key_ref_t keyring_ref, key_ref;
471 long ret;
472
473 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
474 if (IS_ERR(keyring_ref)) {
475 ret = PTR_ERR(keyring_ref);
476 goto error;
477 }
478
479 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_LINK);
480 if (IS_ERR(key_ref)) {
481 ret = PTR_ERR(key_ref);
482 goto error2;
483 }
484
485 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
486
487 key_ref_put(key_ref);
488error2:
489 key_ref_put(keyring_ref);
490error:
491 return ret;
492}
493
494/*
495 * Unlink a key from a keyring.
496 *
497 * The keyring must grant the caller Write permission for this to work; the key
498 * itself need not grant the caller anything. If the last link to a key is
499 * removed then that key will be scheduled for destruction.
500 *
501 * If successful, 0 will be returned.
502 */
503long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
504{
505 key_ref_t keyring_ref, key_ref;
506 long ret;
507
508 keyring_ref = lookup_user_key(ringid, 0, KEY_WRITE);
509 if (IS_ERR(keyring_ref)) {
510 ret = PTR_ERR(keyring_ref);
511 goto error;
512 }
513
514 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
515 if (IS_ERR(key_ref)) {
516 ret = PTR_ERR(key_ref);
517 goto error2;
518 }
519
520 ret = key_unlink(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
521
522 key_ref_put(key_ref);
523error2:
524 key_ref_put(keyring_ref);
525error:
526 return ret;
527}
528
529/*
530 * Return a description of a key to userspace.
531 *
532 * The key must grant the caller View permission for this to work.
533 *
534 * If there's a buffer, we place up to buflen bytes of data into it formatted
535 * in the following way:
536 *
537 * type;uid;gid;perm;description<NUL>
538 *
539 * If successful, we return the amount of description available, irrespective
540 * of how much we may have copied into the buffer.
541 */
542long keyctl_describe_key(key_serial_t keyid,
543 char __user *buffer,
544 size_t buflen)
545{
546 struct key *key, *instkey;
547 key_ref_t key_ref;
548 char *tmpbuf;
549 long ret;
550
551 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_VIEW);
552 if (IS_ERR(key_ref)) {
553 /* viewing a key under construction is permitted if we have the
554 * authorisation token handy */
555 if (PTR_ERR(key_ref) == -EACCES) {
556 instkey = key_get_instantiation_authkey(keyid);
557 if (!IS_ERR(instkey)) {
558 key_put(instkey);
559 key_ref = lookup_user_key(keyid,
560 KEY_LOOKUP_PARTIAL,
561 0);
562 if (!IS_ERR(key_ref))
563 goto okay;
564 }
565 }
566
567 ret = PTR_ERR(key_ref);
568 goto error;
569 }
570
571okay:
572 /* calculate how much description we're going to return */
573 ret = -ENOMEM;
574 tmpbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
575 if (!tmpbuf)
576 goto error2;
577
578 key = key_ref_to_ptr(key_ref);
579
580 ret = snprintf(tmpbuf, PAGE_SIZE - 1,
581 "%s;%d;%d;%08x;%s",
582 key->type->name,
583 from_kuid_munged(current_user_ns(), key->uid),
584 from_kgid_munged(current_user_ns(), key->gid),
585 key->perm,
586 key->description ?: "");
587
588 /* include a NUL char at the end of the data */
589 if (ret > PAGE_SIZE - 1)
590 ret = PAGE_SIZE - 1;
591 tmpbuf[ret] = 0;
592 ret++;
593
594 /* consider returning the data */
595 if (buffer && buflen > 0) {
596 if (buflen > ret)
597 buflen = ret;
598
599 if (copy_to_user(buffer, tmpbuf, buflen) != 0)
600 ret = -EFAULT;
601 }
602
603 kfree(tmpbuf);
604error2:
605 key_ref_put(key_ref);
606error:
607 return ret;
608}
609
610/*
611 * Search the specified keyring and any keyrings it links to for a matching
612 * key. Only keyrings that grant the caller Search permission will be searched
613 * (this includes the starting keyring). Only keys with Search permission can
614 * be found.
615 *
616 * If successful, the found key will be linked to the destination keyring if
617 * supplied and the key has Link permission, and the found key ID will be
618 * returned.
619 */
620long keyctl_keyring_search(key_serial_t ringid,
621 const char __user *_type,
622 const char __user *_description,
623 key_serial_t destringid)
624{
625 struct key_type *ktype;
626 key_ref_t keyring_ref, key_ref, dest_ref;
627 char type[32], *description;
628 long ret;
629
630 /* pull the type and description into kernel space */
631 ret = key_get_type_from_user(type, _type, sizeof(type));
632 if (ret < 0)
633 goto error;
634
635 description = strndup_user(_description, PAGE_SIZE);
636 if (IS_ERR(description)) {
637 ret = PTR_ERR(description);
638 goto error;
639 }
640
641 /* get the keyring at which to begin the search */
642 keyring_ref = lookup_user_key(ringid, 0, KEY_SEARCH);
643 if (IS_ERR(keyring_ref)) {
644 ret = PTR_ERR(keyring_ref);
645 goto error2;
646 }
647
648 /* get the destination keyring if specified */
649 dest_ref = NULL;
650 if (destringid) {
651 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
652 KEY_WRITE);
653 if (IS_ERR(dest_ref)) {
654 ret = PTR_ERR(dest_ref);
655 goto error3;
656 }
657 }
658
659 /* find the key type */
660 ktype = key_type_lookup(type);
661 if (IS_ERR(ktype)) {
662 ret = PTR_ERR(ktype);
663 goto error4;
664 }
665
666 /* do the search */
667 key_ref = keyring_search(keyring_ref, ktype, description);
668 if (IS_ERR(key_ref)) {
669 ret = PTR_ERR(key_ref);
670
671 /* treat lack or presence of a negative key the same */
672 if (ret == -EAGAIN)
673 ret = -ENOKEY;
674 goto error5;
675 }
676
677 /* link the resulting key to the destination keyring if we can */
678 if (dest_ref) {
679 ret = key_permission(key_ref, KEY_LINK);
680 if (ret < 0)
681 goto error6;
682
683 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
684 if (ret < 0)
685 goto error6;
686 }
687
688 ret = key_ref_to_ptr(key_ref)->serial;
689
690error6:
691 key_ref_put(key_ref);
692error5:
693 key_type_put(ktype);
694error4:
695 key_ref_put(dest_ref);
696error3:
697 key_ref_put(keyring_ref);
698error2:
699 kfree(description);
700error:
701 return ret;
702}
703
704/*
705 * Read a key's payload.
706 *
707 * The key must either grant the caller Read permission, or it must grant the
708 * caller Search permission when searched for from the process keyrings.
709 *
710 * If successful, we place up to buflen bytes of data into the buffer, if one
711 * is provided, and return the amount of data that is available in the key,
712 * irrespective of how much we copied into the buffer.
713 */
714long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
715{
716 struct key *key;
717 key_ref_t key_ref;
718 long ret;
719
720 /* find the key first */
721 key_ref = lookup_user_key(keyid, 0, 0);
722 if (IS_ERR(key_ref)) {
723 ret = -ENOKEY;
724 goto error;
725 }
726
727 key = key_ref_to_ptr(key_ref);
728
729 /* see if we can read it directly */
730 ret = key_permission(key_ref, KEY_READ);
731 if (ret == 0)
732 goto can_read_key;
733 if (ret != -EACCES)
734 goto error;
735
736 /* we can't; see if it's searchable from this process's keyrings
737 * - we automatically take account of the fact that it may be
738 * dangling off an instantiation key
739 */
740 if (!is_key_possessed(key_ref)) {
741 ret = -EACCES;
742 goto error2;
743 }
744
745 /* the key is probably readable - now try to read it */
746can_read_key:
747 ret = key_validate(key);
748 if (ret == 0) {
749 ret = -EOPNOTSUPP;
750 if (key->type->read) {
751 /* read the data with the semaphore held (since we
752 * might sleep) */
753 down_read(&key->sem);
754 ret = key->type->read(key, buffer, buflen);
755 up_read(&key->sem);
756 }
757 }
758
759error2:
760 key_put(key);
761error:
762 return ret;
763}
764
765/*
766 * Change the ownership of a key
767 *
768 * The key must grant the caller Setattr permission for this to work, though
769 * the key need not be fully instantiated yet. For the UID to be changed, or
770 * for the GID to be changed to a group the caller is not a member of, the
771 * caller must have sysadmin capability. If either uid or gid is -1 then that
772 * attribute is not changed.
773 *
774 * If the UID is to be changed, the new user must have sufficient quota to
775 * accept the key. The quota deduction will be removed from the old user to
776 * the new user should the attribute be changed.
777 *
778 * If successful, 0 will be returned.
779 */
780long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
781{
782 struct key_user *newowner, *zapowner = NULL;
783 struct key *key;
784 key_ref_t key_ref;
785 long ret;
786 kuid_t uid;
787 kgid_t gid;
788
789 uid = make_kuid(current_user_ns(), user);
790 gid = make_kgid(current_user_ns(), group);
791 ret = -EINVAL;
792 if ((user != (uid_t) -1) && !uid_valid(uid))
793 goto error;
794 if ((group != (gid_t) -1) && !gid_valid(gid))
795 goto error;
796
797 ret = 0;
798 if (user == (uid_t) -1 && group == (gid_t) -1)
799 goto error;
800
801 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
802 KEY_SETATTR);
803 if (IS_ERR(key_ref)) {
804 ret = PTR_ERR(key_ref);
805 goto error;
806 }
807
808 key = key_ref_to_ptr(key_ref);
809
810 /* make the changes with the locks held to prevent chown/chown races */
811 ret = -EACCES;
812 down_write(&key->sem);
813
814 if (!capable(CAP_SYS_ADMIN)) {
815 /* only the sysadmin can chown a key to some other UID */
816 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
817 goto error_put;
818
819 /* only the sysadmin can set the key's GID to a group other
820 * than one of those that the current process subscribes to */
821 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
822 goto error_put;
823 }
824
825 /* change the UID */
826 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
827 ret = -ENOMEM;
828 newowner = key_user_lookup(uid);
829 if (!newowner)
830 goto error_put;
831
832 /* transfer the quota burden to the new user */
833 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
834 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
835 key_quota_root_maxkeys : key_quota_maxkeys;
836 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
837 key_quota_root_maxbytes : key_quota_maxbytes;
838
839 spin_lock(&newowner->lock);
840 if (newowner->qnkeys + 1 >= maxkeys ||
841 newowner->qnbytes + key->quotalen >= maxbytes ||
842 newowner->qnbytes + key->quotalen <
843 newowner->qnbytes)
844 goto quota_overrun;
845
846 newowner->qnkeys++;
847 newowner->qnbytes += key->quotalen;
848 spin_unlock(&newowner->lock);
849
850 spin_lock(&key->user->lock);
851 key->user->qnkeys--;
852 key->user->qnbytes -= key->quotalen;
853 spin_unlock(&key->user->lock);
854 }
855
856 atomic_dec(&key->user->nkeys);
857 atomic_inc(&newowner->nkeys);
858
859 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
860 atomic_dec(&key->user->nikeys);
861 atomic_inc(&newowner->nikeys);
862 }
863
864 zapowner = key->user;
865 key->user = newowner;
866 key->uid = uid;
867 }
868
869 /* change the GID */
870 if (group != (gid_t) -1)
871 key->gid = gid;
872
873 ret = 0;
874
875error_put:
876 up_write(&key->sem);
877 key_put(key);
878 if (zapowner)
879 key_user_put(zapowner);
880error:
881 return ret;
882
883quota_overrun:
884 spin_unlock(&newowner->lock);
885 zapowner = newowner;
886 ret = -EDQUOT;
887 goto error_put;
888}
889
890/*
891 * Change the permission mask on a key.
892 *
893 * The key must grant the caller Setattr permission for this to work, though
894 * the key need not be fully instantiated yet. If the caller does not have
895 * sysadmin capability, it may only change the permission on keys that it owns.
896 */
897long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
898{
899 struct key *key;
900 key_ref_t key_ref;
901 long ret;
902
903 ret = -EINVAL;
904 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
905 goto error;
906
907 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
908 KEY_SETATTR);
909 if (IS_ERR(key_ref)) {
910 ret = PTR_ERR(key_ref);
911 goto error;
912 }
913
914 key = key_ref_to_ptr(key_ref);
915
916 /* make the changes with the locks held to prevent chown/chmod races */
917 ret = -EACCES;
918 down_write(&key->sem);
919
920 /* if we're not the sysadmin, we can only change a key that we own */
921 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
922 key->perm = perm;
923 ret = 0;
924 }
925
926 up_write(&key->sem);
927 key_put(key);
928error:
929 return ret;
930}
931
932/*
933 * Get the destination keyring for instantiation and check that the caller has
934 * Write permission on it.
935 */
936static long get_instantiation_keyring(key_serial_t ringid,
937 struct request_key_auth *rka,
938 struct key **_dest_keyring)
939{
940 key_ref_t dkref;
941
942 *_dest_keyring = NULL;
943
944 /* just return a NULL pointer if we weren't asked to make a link */
945 if (ringid == 0)
946 return 0;
947
948 /* if a specific keyring is nominated by ID, then use that */
949 if (ringid > 0) {
950 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_WRITE);
951 if (IS_ERR(dkref))
952 return PTR_ERR(dkref);
953 *_dest_keyring = key_ref_to_ptr(dkref);
954 return 0;
955 }
956
957 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
958 return -EINVAL;
959
960 /* otherwise specify the destination keyring recorded in the
961 * authorisation key (any KEY_SPEC_*_KEYRING) */
962 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
963 *_dest_keyring = key_get(rka->dest_keyring);
964 return 0;
965 }
966
967 return -ENOKEY;
968}
969
970/*
971 * Change the request_key authorisation key on the current process.
972 */
973static int keyctl_change_reqkey_auth(struct key *key)
974{
975 struct cred *new;
976
977 new = prepare_creds();
978 if (!new)
979 return -ENOMEM;
980
981 key_put(new->request_key_auth);
982 new->request_key_auth = key_get(key);
983
984 return commit_creds(new);
985}
986
987/*
988 * Copy the iovec data from userspace
989 */
990static long copy_from_user_iovec(void *buffer, const struct iovec *iov,
991 unsigned ioc)
992{
993 for (; ioc > 0; ioc--) {
994 if (copy_from_user(buffer, iov->iov_base, iov->iov_len) != 0)
995 return -EFAULT;
996 buffer += iov->iov_len;
997 iov++;
998 }
999 return 0;
1000}
1001
1002/*
1003 * Instantiate a key with the specified payload and link the key into the
1004 * destination keyring if one is given.
1005 *
1006 * The caller must have the appropriate instantiation permit set for this to
1007 * work (see keyctl_assume_authority). No other permissions are required.
1008 *
1009 * If successful, 0 will be returned.
1010 */
1011long keyctl_instantiate_key_common(key_serial_t id,
1012 const struct iovec *payload_iov,
1013 unsigned ioc,
1014 size_t plen,
1015 key_serial_t ringid)
1016{
1017 const struct cred *cred = current_cred();
1018 struct request_key_auth *rka;
1019 struct key *instkey, *dest_keyring;
1020 void *payload;
1021 long ret;
1022 bool vm = false;
1023
1024 kenter("%d,,%zu,%d", id, plen, ringid);
1025
1026 ret = -EINVAL;
1027 if (plen > 1024 * 1024 - 1)
1028 goto error;
1029
1030 /* the appropriate instantiation authorisation key must have been
1031 * assumed before calling this */
1032 ret = -EPERM;
1033 instkey = cred->request_key_auth;
1034 if (!instkey)
1035 goto error;
1036
1037 rka = instkey->payload.data;
1038 if (rka->target_key->serial != id)
1039 goto error;
1040
1041 /* pull the payload in if one was supplied */
1042 payload = NULL;
1043
1044 if (payload_iov) {
1045 ret = -ENOMEM;
1046 payload = kmalloc(plen, GFP_KERNEL);
1047 if (!payload) {
1048 if (plen <= PAGE_SIZE)
1049 goto error;
1050 vm = true;
1051 payload = vmalloc(plen);
1052 if (!payload)
1053 goto error;
1054 }
1055
1056 ret = copy_from_user_iovec(payload, payload_iov, ioc);
1057 if (ret < 0)
1058 goto error2;
1059 }
1060
1061 /* find the destination keyring amongst those belonging to the
1062 * requesting task */
1063 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1064 if (ret < 0)
1065 goto error2;
1066
1067 /* instantiate the key and link it into a keyring */
1068 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1069 dest_keyring, instkey);
1070
1071 key_put(dest_keyring);
1072
1073 /* discard the assumed authority if it's just been disabled by
1074 * instantiation of the key */
1075 if (ret == 0)
1076 keyctl_change_reqkey_auth(NULL);
1077
1078error2:
1079 if (!vm)
1080 kfree(payload);
1081 else
1082 vfree(payload);
1083error:
1084 return ret;
1085}
1086
1087/*
1088 * Instantiate a key with the specified payload and link the key into the
1089 * destination keyring if one is given.
1090 *
1091 * The caller must have the appropriate instantiation permit set for this to
1092 * work (see keyctl_assume_authority). No other permissions are required.
1093 *
1094 * If successful, 0 will be returned.
1095 */
1096long keyctl_instantiate_key(key_serial_t id,
1097 const void __user *_payload,
1098 size_t plen,
1099 key_serial_t ringid)
1100{
1101 if (_payload && plen) {
1102 struct iovec iov[1] = {
1103 [0].iov_base = (void __user *)_payload,
1104 [0].iov_len = plen
1105 };
1106
1107 return keyctl_instantiate_key_common(id, iov, 1, plen, ringid);
1108 }
1109
1110 return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1111}
1112
1113/*
1114 * Instantiate a key with the specified multipart payload and link the key into
1115 * the destination keyring if one is given.
1116 *
1117 * The caller must have the appropriate instantiation permit set for this to
1118 * work (see keyctl_assume_authority). No other permissions are required.
1119 *
1120 * If successful, 0 will be returned.
1121 */
1122long keyctl_instantiate_key_iov(key_serial_t id,
1123 const struct iovec __user *_payload_iov,
1124 unsigned ioc,
1125 key_serial_t ringid)
1126{
1127 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1128 long ret;
1129
1130 if (!_payload_iov || !ioc)
1131 goto no_payload;
1132
1133 ret = rw_copy_check_uvector(WRITE, _payload_iov, ioc,
1134 ARRAY_SIZE(iovstack), iovstack, &iov);
1135 if (ret < 0)
1136 goto err;
1137 if (ret == 0)
1138 goto no_payload_free;
1139
1140 ret = keyctl_instantiate_key_common(id, iov, ioc, ret, ringid);
1141err:
1142 if (iov != iovstack)
1143 kfree(iov);
1144 return ret;
1145
1146no_payload_free:
1147 if (iov != iovstack)
1148 kfree(iov);
1149no_payload:
1150 return keyctl_instantiate_key_common(id, NULL, 0, 0, ringid);
1151}
1152
1153/*
1154 * Negatively instantiate the key with the given timeout (in seconds) and link
1155 * the key into the destination keyring if one is given.
1156 *
1157 * The caller must have the appropriate instantiation permit set for this to
1158 * work (see keyctl_assume_authority). No other permissions are required.
1159 *
1160 * The key and any links to the key will be automatically garbage collected
1161 * after the timeout expires.
1162 *
1163 * Negative keys are used to rate limit repeated request_key() calls by causing
1164 * them to return -ENOKEY until the negative key expires.
1165 *
1166 * If successful, 0 will be returned.
1167 */
1168long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1169{
1170 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1171}
1172
1173/*
1174 * Negatively instantiate the key with the given timeout (in seconds) and error
1175 * code and link the key into the destination keyring if one is given.
1176 *
1177 * The caller must have the appropriate instantiation permit set for this to
1178 * work (see keyctl_assume_authority). No other permissions are required.
1179 *
1180 * The key and any links to the key will be automatically garbage collected
1181 * after the timeout expires.
1182 *
1183 * Negative keys are used to rate limit repeated request_key() calls by causing
1184 * them to return the specified error code until the negative key expires.
1185 *
1186 * If successful, 0 will be returned.
1187 */
1188long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1189 key_serial_t ringid)
1190{
1191 const struct cred *cred = current_cred();
1192 struct request_key_auth *rka;
1193 struct key *instkey, *dest_keyring;
1194 long ret;
1195
1196 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1197
1198 /* must be a valid error code and mustn't be a kernel special */
1199 if (error <= 0 ||
1200 error >= MAX_ERRNO ||
1201 error == ERESTARTSYS ||
1202 error == ERESTARTNOINTR ||
1203 error == ERESTARTNOHAND ||
1204 error == ERESTART_RESTARTBLOCK)
1205 return -EINVAL;
1206
1207 /* the appropriate instantiation authorisation key must have been
1208 * assumed before calling this */
1209 ret = -EPERM;
1210 instkey = cred->request_key_auth;
1211 if (!instkey)
1212 goto error;
1213
1214 rka = instkey->payload.data;
1215 if (rka->target_key->serial != id)
1216 goto error;
1217
1218 /* find the destination keyring if present (which must also be
1219 * writable) */
1220 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1221 if (ret < 0)
1222 goto error;
1223
1224 /* instantiate the key and link it into a keyring */
1225 ret = key_reject_and_link(rka->target_key, timeout, error,
1226 dest_keyring, instkey);
1227
1228 key_put(dest_keyring);
1229
1230 /* discard the assumed authority if it's just been disabled by
1231 * instantiation of the key */
1232 if (ret == 0)
1233 keyctl_change_reqkey_auth(NULL);
1234
1235error:
1236 return ret;
1237}
1238
1239/*
1240 * Read or set the default keyring in which request_key() will cache keys and
1241 * return the old setting.
1242 *
1243 * If a process keyring is specified then this will be created if it doesn't
1244 * yet exist. The old setting will be returned if successful.
1245 */
1246long keyctl_set_reqkey_keyring(int reqkey_defl)
1247{
1248 struct cred *new;
1249 int ret, old_setting;
1250
1251 old_setting = current_cred_xxx(jit_keyring);
1252
1253 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1254 return old_setting;
1255
1256 new = prepare_creds();
1257 if (!new)
1258 return -ENOMEM;
1259
1260 switch (reqkey_defl) {
1261 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1262 ret = install_thread_keyring_to_cred(new);
1263 if (ret < 0)
1264 goto error;
1265 goto set;
1266
1267 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1268 ret = install_process_keyring_to_cred(new);
1269 if (ret < 0) {
1270 if (ret != -EEXIST)
1271 goto error;
1272 ret = 0;
1273 }
1274 goto set;
1275
1276 case KEY_REQKEY_DEFL_DEFAULT:
1277 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1278 case KEY_REQKEY_DEFL_USER_KEYRING:
1279 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1280 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1281 goto set;
1282
1283 case KEY_REQKEY_DEFL_NO_CHANGE:
1284 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1285 default:
1286 ret = -EINVAL;
1287 goto error;
1288 }
1289
1290set:
1291 new->jit_keyring = reqkey_defl;
1292 commit_creds(new);
1293 return old_setting;
1294error:
1295 abort_creds(new);
1296 return ret;
1297}
1298
1299/*
1300 * Set or clear the timeout on a key.
1301 *
1302 * Either the key must grant the caller Setattr permission or else the caller
1303 * must hold an instantiation authorisation token for the key.
1304 *
1305 * The timeout is either 0 to clear the timeout, or a number of seconds from
1306 * the current time. The key and any links to the key will be automatically
1307 * garbage collected after the timeout expires.
1308 *
1309 * If successful, 0 is returned.
1310 */
1311long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1312{
1313 struct key *key, *instkey;
1314 key_ref_t key_ref;
1315 long ret;
1316
1317 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1318 KEY_SETATTR);
1319 if (IS_ERR(key_ref)) {
1320 /* setting the timeout on a key under construction is permitted
1321 * if we have the authorisation token handy */
1322 if (PTR_ERR(key_ref) == -EACCES) {
1323 instkey = key_get_instantiation_authkey(id);
1324 if (!IS_ERR(instkey)) {
1325 key_put(instkey);
1326 key_ref = lookup_user_key(id,
1327 KEY_LOOKUP_PARTIAL,
1328 0);
1329 if (!IS_ERR(key_ref))
1330 goto okay;
1331 }
1332 }
1333
1334 ret = PTR_ERR(key_ref);
1335 goto error;
1336 }
1337
1338okay:
1339 key = key_ref_to_ptr(key_ref);
1340 key_set_timeout(key, timeout);
1341 key_put(key);
1342
1343 ret = 0;
1344error:
1345 return ret;
1346}
1347
1348/*
1349 * Assume (or clear) the authority to instantiate the specified key.
1350 *
1351 * This sets the authoritative token currently in force for key instantiation.
1352 * This must be done for a key to be instantiated. It has the effect of making
1353 * available all the keys from the caller of the request_key() that created a
1354 * key to request_key() calls made by the caller of this function.
1355 *
1356 * The caller must have the instantiation key in their process keyrings with a
1357 * Search permission grant available to the caller.
1358 *
1359 * If the ID given is 0, then the setting will be cleared and 0 returned.
1360 *
1361 * If the ID given has a matching an authorisation key, then that key will be
1362 * set and its ID will be returned. The authorisation key can be read to get
1363 * the callout information passed to request_key().
1364 */
1365long keyctl_assume_authority(key_serial_t id)
1366{
1367 struct key *authkey;
1368 long ret;
1369
1370 /* special key IDs aren't permitted */
1371 ret = -EINVAL;
1372 if (id < 0)
1373 goto error;
1374
1375 /* we divest ourselves of authority if given an ID of 0 */
1376 if (id == 0) {
1377 ret = keyctl_change_reqkey_auth(NULL);
1378 goto error;
1379 }
1380
1381 /* attempt to assume the authority temporarily granted to us whilst we
1382 * instantiate the specified key
1383 * - the authorisation key must be in the current task's keyrings
1384 * somewhere
1385 */
1386 authkey = key_get_instantiation_authkey(id);
1387 if (IS_ERR(authkey)) {
1388 ret = PTR_ERR(authkey);
1389 goto error;
1390 }
1391
1392 ret = keyctl_change_reqkey_auth(authkey);
1393 if (ret < 0)
1394 goto error;
1395 key_put(authkey);
1396
1397 ret = authkey->serial;
1398error:
1399 return ret;
1400}
1401
1402/*
1403 * Get a key's the LSM security label.
1404 *
1405 * The key must grant the caller View permission for this to work.
1406 *
1407 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1408 *
1409 * If successful, the amount of information available will be returned,
1410 * irrespective of how much was copied (including the terminal NUL).
1411 */
1412long keyctl_get_security(key_serial_t keyid,
1413 char __user *buffer,
1414 size_t buflen)
1415{
1416 struct key *key, *instkey;
1417 key_ref_t key_ref;
1418 char *context;
1419 long ret;
1420
1421 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_VIEW);
1422 if (IS_ERR(key_ref)) {
1423 if (PTR_ERR(key_ref) != -EACCES)
1424 return PTR_ERR(key_ref);
1425
1426 /* viewing a key under construction is also permitted if we
1427 * have the authorisation token handy */
1428 instkey = key_get_instantiation_authkey(keyid);
1429 if (IS_ERR(instkey))
1430 return PTR_ERR(instkey);
1431 key_put(instkey);
1432
1433 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1434 if (IS_ERR(key_ref))
1435 return PTR_ERR(key_ref);
1436 }
1437
1438 key = key_ref_to_ptr(key_ref);
1439 ret = security_key_getsecurity(key, &context);
1440 if (ret == 0) {
1441 /* if no information was returned, give userspace an empty
1442 * string */
1443 ret = 1;
1444 if (buffer && buflen > 0 &&
1445 copy_to_user(buffer, "", 1) != 0)
1446 ret = -EFAULT;
1447 } else if (ret > 0) {
1448 /* return as much data as there's room for */
1449 if (buffer && buflen > 0) {
1450 if (buflen > ret)
1451 buflen = ret;
1452
1453 if (copy_to_user(buffer, context, buflen) != 0)
1454 ret = -EFAULT;
1455 }
1456
1457 kfree(context);
1458 }
1459
1460 key_ref_put(key_ref);
1461 return ret;
1462}
1463
1464/*
1465 * Attempt to install the calling process's session keyring on the process's
1466 * parent process.
1467 *
1468 * The keyring must exist and must grant the caller LINK permission, and the
1469 * parent process must be single-threaded and must have the same effective
1470 * ownership as this process and mustn't be SUID/SGID.
1471 *
1472 * The keyring will be emplaced on the parent when it next resumes userspace.
1473 *
1474 * If successful, 0 will be returned.
1475 */
1476long keyctl_session_to_parent(void)
1477{
1478 struct task_struct *me, *parent;
1479 const struct cred *mycred, *pcred;
1480 struct callback_head *newwork, *oldwork;
1481 key_ref_t keyring_r;
1482 struct cred *cred;
1483 int ret;
1484
1485 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_LINK);
1486 if (IS_ERR(keyring_r))
1487 return PTR_ERR(keyring_r);
1488
1489 ret = -ENOMEM;
1490
1491 /* our parent is going to need a new cred struct, a new tgcred struct
1492 * and new security data, so we allocate them here to prevent ENOMEM in
1493 * our parent */
1494 cred = cred_alloc_blank();
1495 if (!cred)
1496 goto error_keyring;
1497 newwork = &cred->rcu;
1498
1499 cred->session_keyring = key_ref_to_ptr(keyring_r);
1500 keyring_r = NULL;
1501 init_task_work(newwork, key_change_session_keyring);
1502
1503 me = current;
1504 rcu_read_lock();
1505 write_lock_irq(&tasklist_lock);
1506
1507 ret = -EPERM;
1508 oldwork = NULL;
1509 parent = me->real_parent;
1510
1511 /* the parent mustn't be init and mustn't be a kernel thread */
1512 if (parent->pid <= 1 || !parent->mm)
1513 goto unlock;
1514
1515 /* the parent must be single threaded */
1516 if (!thread_group_empty(parent))
1517 goto unlock;
1518
1519 /* the parent and the child must have different session keyrings or
1520 * there's no point */
1521 mycred = current_cred();
1522 pcred = __task_cred(parent);
1523 if (mycred == pcred ||
1524 mycred->session_keyring == pcred->session_keyring) {
1525 ret = 0;
1526 goto unlock;
1527 }
1528
1529 /* the parent must have the same effective ownership and mustn't be
1530 * SUID/SGID */
1531 if (!uid_eq(pcred->uid, mycred->euid) ||
1532 !uid_eq(pcred->euid, mycred->euid) ||
1533 !uid_eq(pcred->suid, mycred->euid) ||
1534 !gid_eq(pcred->gid, mycred->egid) ||
1535 !gid_eq(pcred->egid, mycred->egid) ||
1536 !gid_eq(pcred->sgid, mycred->egid))
1537 goto unlock;
1538
1539 /* the keyrings must have the same UID */
1540 if ((pcred->session_keyring &&
1541 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1542 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1543 goto unlock;
1544
1545 /* cancel an already pending keyring replacement */
1546 oldwork = task_work_cancel(parent, key_change_session_keyring);
1547
1548 /* the replacement session keyring is applied just prior to userspace
1549 * restarting */
1550 ret = task_work_add(parent, newwork, true);
1551 if (!ret)
1552 newwork = NULL;
1553unlock:
1554 write_unlock_irq(&tasklist_lock);
1555 rcu_read_unlock();
1556 if (oldwork)
1557 put_cred(container_of(oldwork, struct cred, rcu));
1558 if (newwork)
1559 put_cred(cred);
1560 return ret;
1561
1562error_keyring:
1563 key_ref_put(keyring_r);
1564 return ret;
1565}
1566
1567/*
1568 * The key control system call
1569 */
1570SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1571 unsigned long, arg4, unsigned long, arg5)
1572{
1573 switch (option) {
1574 case KEYCTL_GET_KEYRING_ID:
1575 return keyctl_get_keyring_ID((key_serial_t) arg2,
1576 (int) arg3);
1577
1578 case KEYCTL_JOIN_SESSION_KEYRING:
1579 return keyctl_join_session_keyring((const char __user *) arg2);
1580
1581 case KEYCTL_UPDATE:
1582 return keyctl_update_key((key_serial_t) arg2,
1583 (const void __user *) arg3,
1584 (size_t) arg4);
1585
1586 case KEYCTL_REVOKE:
1587 return keyctl_revoke_key((key_serial_t) arg2);
1588
1589 case KEYCTL_DESCRIBE:
1590 return keyctl_describe_key((key_serial_t) arg2,
1591 (char __user *) arg3,
1592 (unsigned) arg4);
1593
1594 case KEYCTL_CLEAR:
1595 return keyctl_keyring_clear((key_serial_t) arg2);
1596
1597 case KEYCTL_LINK:
1598 return keyctl_keyring_link((key_serial_t) arg2,
1599 (key_serial_t) arg3);
1600
1601 case KEYCTL_UNLINK:
1602 return keyctl_keyring_unlink((key_serial_t) arg2,
1603 (key_serial_t) arg3);
1604
1605 case KEYCTL_SEARCH:
1606 return keyctl_keyring_search((key_serial_t) arg2,
1607 (const char __user *) arg3,
1608 (const char __user *) arg4,
1609 (key_serial_t) arg5);
1610
1611 case KEYCTL_READ:
1612 return keyctl_read_key((key_serial_t) arg2,
1613 (char __user *) arg3,
1614 (size_t) arg4);
1615
1616 case KEYCTL_CHOWN:
1617 return keyctl_chown_key((key_serial_t) arg2,
1618 (uid_t) arg3,
1619 (gid_t) arg4);
1620
1621 case KEYCTL_SETPERM:
1622 return keyctl_setperm_key((key_serial_t) arg2,
1623 (key_perm_t) arg3);
1624
1625 case KEYCTL_INSTANTIATE:
1626 return keyctl_instantiate_key((key_serial_t) arg2,
1627 (const void __user *) arg3,
1628 (size_t) arg4,
1629 (key_serial_t) arg5);
1630
1631 case KEYCTL_NEGATE:
1632 return keyctl_negate_key((key_serial_t) arg2,
1633 (unsigned) arg3,
1634 (key_serial_t) arg4);
1635
1636 case KEYCTL_SET_REQKEY_KEYRING:
1637 return keyctl_set_reqkey_keyring(arg2);
1638
1639 case KEYCTL_SET_TIMEOUT:
1640 return keyctl_set_timeout((key_serial_t) arg2,
1641 (unsigned) arg3);
1642
1643 case KEYCTL_ASSUME_AUTHORITY:
1644 return keyctl_assume_authority((key_serial_t) arg2);
1645
1646 case KEYCTL_GET_SECURITY:
1647 return keyctl_get_security((key_serial_t) arg2,
1648 (char __user *) arg3,
1649 (size_t) arg4);
1650
1651 case KEYCTL_SESSION_TO_PARENT:
1652 return keyctl_session_to_parent();
1653
1654 case KEYCTL_REJECT:
1655 return keyctl_reject_key((key_serial_t) arg2,
1656 (unsigned) arg3,
1657 (unsigned) arg4,
1658 (key_serial_t) arg5);
1659
1660 case KEYCTL_INSTANTIATE_IOV:
1661 return keyctl_instantiate_key_iov(
1662 (key_serial_t) arg2,
1663 (const struct iovec __user *) arg3,
1664 (unsigned) arg4,
1665 (key_serial_t) arg5);
1666
1667 case KEYCTL_INVALIDATE:
1668 return keyctl_invalidate_key((key_serial_t) arg2);
1669
1670 case KEYCTL_GET_PERSISTENT:
1671 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1672
1673 default:
1674 return -EOPNOTSUPP;
1675 }
1676}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Userspace key control operations
3 *
4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/init.h>
9#include <linux/sched.h>
10#include <linux/sched/task.h>
11#include <linux/slab.h>
12#include <linux/syscalls.h>
13#include <linux/key.h>
14#include <linux/keyctl.h>
15#include <linux/fs.h>
16#include <linux/capability.h>
17#include <linux/cred.h>
18#include <linux/string.h>
19#include <linux/err.h>
20#include <linux/vmalloc.h>
21#include <linux/security.h>
22#include <linux/uio.h>
23#include <linux/uaccess.h>
24#include <keys/request_key_auth-type.h>
25#include "internal.h"
26
27#define KEY_MAX_DESC_SIZE 4096
28
29static const unsigned char keyrings_capabilities[2] = {
30 [0] = (KEYCTL_CAPS0_CAPABILITIES |
31 (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS) ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
32 (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS) ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
33 (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE) ? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
34 (IS_ENABLED(CONFIG_BIG_KEYS) ? KEYCTL_CAPS0_BIG_KEY : 0) |
35 KEYCTL_CAPS0_INVALIDATE |
36 KEYCTL_CAPS0_RESTRICT_KEYRING |
37 KEYCTL_CAPS0_MOVE
38 ),
39 [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
40 KEYCTL_CAPS1_NS_KEY_TAG |
41 (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS) ? KEYCTL_CAPS1_NOTIFICATIONS : 0)
42 ),
43};
44
45static int key_get_type_from_user(char *type,
46 const char __user *_type,
47 unsigned len)
48{
49 int ret;
50
51 ret = strncpy_from_user(type, _type, len);
52 if (ret < 0)
53 return ret;
54 if (ret == 0 || ret >= len)
55 return -EINVAL;
56 if (type[0] == '.')
57 return -EPERM;
58 type[len - 1] = '\0';
59 return 0;
60}
61
62/*
63 * Extract the description of a new key from userspace and either add it as a
64 * new key to the specified keyring or update a matching key in that keyring.
65 *
66 * If the description is NULL or an empty string, the key type is asked to
67 * generate one from the payload.
68 *
69 * The keyring must be writable so that we can attach the key to it.
70 *
71 * If successful, the new key's serial number is returned, otherwise an error
72 * code is returned.
73 */
74SYSCALL_DEFINE5(add_key, const char __user *, _type,
75 const char __user *, _description,
76 const void __user *, _payload,
77 size_t, plen,
78 key_serial_t, ringid)
79{
80 key_ref_t keyring_ref, key_ref;
81 char type[32], *description;
82 void *payload;
83 long ret;
84
85 ret = -EINVAL;
86 if (plen > 1024 * 1024 - 1)
87 goto error;
88
89 /* draw all the data into kernel space */
90 ret = key_get_type_from_user(type, _type, sizeof(type));
91 if (ret < 0)
92 goto error;
93
94 description = NULL;
95 if (_description) {
96 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
97 if (IS_ERR(description)) {
98 ret = PTR_ERR(description);
99 goto error;
100 }
101 if (!*description) {
102 kfree(description);
103 description = NULL;
104 } else if ((description[0] == '.') &&
105 (strncmp(type, "keyring", 7) == 0)) {
106 ret = -EPERM;
107 goto error2;
108 }
109 }
110
111 /* pull the payload in if one was supplied */
112 payload = NULL;
113
114 if (plen) {
115 ret = -ENOMEM;
116 payload = kvmalloc(plen, GFP_KERNEL);
117 if (!payload)
118 goto error2;
119
120 ret = -EFAULT;
121 if (copy_from_user(payload, _payload, plen) != 0)
122 goto error3;
123 }
124
125 /* find the target keyring (which must be writable) */
126 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
127 if (IS_ERR(keyring_ref)) {
128 ret = PTR_ERR(keyring_ref);
129 goto error3;
130 }
131
132 /* create or update the requested key and add it to the target
133 * keyring */
134 key_ref = key_create_or_update(keyring_ref, type, description,
135 payload, plen, KEY_PERM_UNDEF,
136 KEY_ALLOC_IN_QUOTA);
137 if (!IS_ERR(key_ref)) {
138 ret = key_ref_to_ptr(key_ref)->serial;
139 key_ref_put(key_ref);
140 }
141 else {
142 ret = PTR_ERR(key_ref);
143 }
144
145 key_ref_put(keyring_ref);
146 error3:
147 kvfree_sensitive(payload, plen);
148 error2:
149 kfree(description);
150 error:
151 return ret;
152}
153
154/*
155 * Search the process keyrings and keyring trees linked from those for a
156 * matching key. Keyrings must have appropriate Search permission to be
157 * searched.
158 *
159 * If a key is found, it will be attached to the destination keyring if there's
160 * one specified and the serial number of the key will be returned.
161 *
162 * If no key is found, /sbin/request-key will be invoked if _callout_info is
163 * non-NULL in an attempt to create a key. The _callout_info string will be
164 * passed to /sbin/request-key to aid with completing the request. If the
165 * _callout_info string is "" then it will be changed to "-".
166 */
167SYSCALL_DEFINE4(request_key, const char __user *, _type,
168 const char __user *, _description,
169 const char __user *, _callout_info,
170 key_serial_t, destringid)
171{
172 struct key_type *ktype;
173 struct key *key;
174 key_ref_t dest_ref;
175 size_t callout_len;
176 char type[32], *description, *callout_info;
177 long ret;
178
179 /* pull the type into kernel space */
180 ret = key_get_type_from_user(type, _type, sizeof(type));
181 if (ret < 0)
182 goto error;
183
184 /* pull the description into kernel space */
185 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
186 if (IS_ERR(description)) {
187 ret = PTR_ERR(description);
188 goto error;
189 }
190
191 /* pull the callout info into kernel space */
192 callout_info = NULL;
193 callout_len = 0;
194 if (_callout_info) {
195 callout_info = strndup_user(_callout_info, PAGE_SIZE);
196 if (IS_ERR(callout_info)) {
197 ret = PTR_ERR(callout_info);
198 goto error2;
199 }
200 callout_len = strlen(callout_info);
201 }
202
203 /* get the destination keyring if specified */
204 dest_ref = NULL;
205 if (destringid) {
206 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
207 KEY_NEED_WRITE);
208 if (IS_ERR(dest_ref)) {
209 ret = PTR_ERR(dest_ref);
210 goto error3;
211 }
212 }
213
214 /* find the key type */
215 ktype = key_type_lookup(type);
216 if (IS_ERR(ktype)) {
217 ret = PTR_ERR(ktype);
218 goto error4;
219 }
220
221 /* do the search */
222 key = request_key_and_link(ktype, description, NULL, callout_info,
223 callout_len, NULL, key_ref_to_ptr(dest_ref),
224 KEY_ALLOC_IN_QUOTA);
225 if (IS_ERR(key)) {
226 ret = PTR_ERR(key);
227 goto error5;
228 }
229
230 /* wait for the key to finish being constructed */
231 ret = wait_for_key_construction(key, 1);
232 if (ret < 0)
233 goto error6;
234
235 ret = key->serial;
236
237error6:
238 key_put(key);
239error5:
240 key_type_put(ktype);
241error4:
242 key_ref_put(dest_ref);
243error3:
244 kfree(callout_info);
245error2:
246 kfree(description);
247error:
248 return ret;
249}
250
251/*
252 * Get the ID of the specified process keyring.
253 *
254 * The requested keyring must have search permission to be found.
255 *
256 * If successful, the ID of the requested keyring will be returned.
257 */
258long keyctl_get_keyring_ID(key_serial_t id, int create)
259{
260 key_ref_t key_ref;
261 unsigned long lflags;
262 long ret;
263
264 lflags = create ? KEY_LOOKUP_CREATE : 0;
265 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
266 if (IS_ERR(key_ref)) {
267 ret = PTR_ERR(key_ref);
268 goto error;
269 }
270
271 ret = key_ref_to_ptr(key_ref)->serial;
272 key_ref_put(key_ref);
273error:
274 return ret;
275}
276
277/*
278 * Join a (named) session keyring.
279 *
280 * Create and join an anonymous session keyring or join a named session
281 * keyring, creating it if necessary. A named session keyring must have Search
282 * permission for it to be joined. Session keyrings without this permit will
283 * be skipped over. It is not permitted for userspace to create or join
284 * keyrings whose name begin with a dot.
285 *
286 * If successful, the ID of the joined session keyring will be returned.
287 */
288long keyctl_join_session_keyring(const char __user *_name)
289{
290 char *name;
291 long ret;
292
293 /* fetch the name from userspace */
294 name = NULL;
295 if (_name) {
296 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
297 if (IS_ERR(name)) {
298 ret = PTR_ERR(name);
299 goto error;
300 }
301
302 ret = -EPERM;
303 if (name[0] == '.')
304 goto error_name;
305 }
306
307 /* join the session */
308 ret = join_session_keyring(name);
309error_name:
310 kfree(name);
311error:
312 return ret;
313}
314
315/*
316 * Update a key's data payload from the given data.
317 *
318 * The key must grant the caller Write permission and the key type must support
319 * updating for this to work. A negative key can be positively instantiated
320 * with this call.
321 *
322 * If successful, 0 will be returned. If the key type does not support
323 * updating, then -EOPNOTSUPP will be returned.
324 */
325long keyctl_update_key(key_serial_t id,
326 const void __user *_payload,
327 size_t plen)
328{
329 key_ref_t key_ref;
330 void *payload;
331 long ret;
332
333 ret = -EINVAL;
334 if (plen > PAGE_SIZE)
335 goto error;
336
337 /* pull the payload in if one was supplied */
338 payload = NULL;
339 if (plen) {
340 ret = -ENOMEM;
341 payload = kvmalloc(plen, GFP_KERNEL);
342 if (!payload)
343 goto error;
344
345 ret = -EFAULT;
346 if (copy_from_user(payload, _payload, plen) != 0)
347 goto error2;
348 }
349
350 /* find the target key (which must be writable) */
351 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
352 if (IS_ERR(key_ref)) {
353 ret = PTR_ERR(key_ref);
354 goto error2;
355 }
356
357 /* update the key */
358 ret = key_update(key_ref, payload, plen);
359
360 key_ref_put(key_ref);
361error2:
362 kvfree_sensitive(payload, plen);
363error:
364 return ret;
365}
366
367/*
368 * Revoke a key.
369 *
370 * The key must be grant the caller Write or Setattr permission for this to
371 * work. The key type should give up its quota claim when revoked. The key
372 * and any links to the key will be automatically garbage collected after a
373 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
374 *
375 * Keys with KEY_FLAG_KEEP set should not be revoked.
376 *
377 * If successful, 0 is returned.
378 */
379long keyctl_revoke_key(key_serial_t id)
380{
381 key_ref_t key_ref;
382 struct key *key;
383 long ret;
384
385 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
386 if (IS_ERR(key_ref)) {
387 ret = PTR_ERR(key_ref);
388 if (ret != -EACCES)
389 goto error;
390 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
391 if (IS_ERR(key_ref)) {
392 ret = PTR_ERR(key_ref);
393 goto error;
394 }
395 }
396
397 key = key_ref_to_ptr(key_ref);
398 ret = 0;
399 if (test_bit(KEY_FLAG_KEEP, &key->flags))
400 ret = -EPERM;
401 else
402 key_revoke(key);
403
404 key_ref_put(key_ref);
405error:
406 return ret;
407}
408
409/*
410 * Invalidate a key.
411 *
412 * The key must be grant the caller Invalidate permission for this to work.
413 * The key and any links to the key will be automatically garbage collected
414 * immediately.
415 *
416 * Keys with KEY_FLAG_KEEP set should not be invalidated.
417 *
418 * If successful, 0 is returned.
419 */
420long keyctl_invalidate_key(key_serial_t id)
421{
422 key_ref_t key_ref;
423 struct key *key;
424 long ret;
425
426 kenter("%d", id);
427
428 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
429 if (IS_ERR(key_ref)) {
430 ret = PTR_ERR(key_ref);
431
432 /* Root is permitted to invalidate certain special keys */
433 if (capable(CAP_SYS_ADMIN)) {
434 key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
435 if (IS_ERR(key_ref))
436 goto error;
437 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
438 &key_ref_to_ptr(key_ref)->flags))
439 goto invalidate;
440 goto error_put;
441 }
442
443 goto error;
444 }
445
446invalidate:
447 key = key_ref_to_ptr(key_ref);
448 ret = 0;
449 if (test_bit(KEY_FLAG_KEEP, &key->flags))
450 ret = -EPERM;
451 else
452 key_invalidate(key);
453error_put:
454 key_ref_put(key_ref);
455error:
456 kleave(" = %ld", ret);
457 return ret;
458}
459
460/*
461 * Clear the specified keyring, creating an empty process keyring if one of the
462 * special keyring IDs is used.
463 *
464 * The keyring must grant the caller Write permission and not have
465 * KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned.
466 */
467long keyctl_keyring_clear(key_serial_t ringid)
468{
469 key_ref_t keyring_ref;
470 struct key *keyring;
471 long ret;
472
473 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
474 if (IS_ERR(keyring_ref)) {
475 ret = PTR_ERR(keyring_ref);
476
477 /* Root is permitted to invalidate certain special keyrings */
478 if (capable(CAP_SYS_ADMIN)) {
479 keyring_ref = lookup_user_key(ringid, 0,
480 KEY_SYSADMIN_OVERRIDE);
481 if (IS_ERR(keyring_ref))
482 goto error;
483 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
484 &key_ref_to_ptr(keyring_ref)->flags))
485 goto clear;
486 goto error_put;
487 }
488
489 goto error;
490 }
491
492clear:
493 keyring = key_ref_to_ptr(keyring_ref);
494 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
495 ret = -EPERM;
496 else
497 ret = keyring_clear(keyring);
498error_put:
499 key_ref_put(keyring_ref);
500error:
501 return ret;
502}
503
504/*
505 * Create a link from a keyring to a key if there's no matching key in the
506 * keyring, otherwise replace the link to the matching key with a link to the
507 * new key.
508 *
509 * The key must grant the caller Link permission and the keyring must grant
510 * the caller Write permission. Furthermore, if an additional link is created,
511 * the keyring's quota will be extended.
512 *
513 * If successful, 0 will be returned.
514 */
515long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
516{
517 key_ref_t keyring_ref, key_ref;
518 long ret;
519
520 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
521 if (IS_ERR(keyring_ref)) {
522 ret = PTR_ERR(keyring_ref);
523 goto error;
524 }
525
526 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
527 if (IS_ERR(key_ref)) {
528 ret = PTR_ERR(key_ref);
529 goto error2;
530 }
531
532 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
533
534 key_ref_put(key_ref);
535error2:
536 key_ref_put(keyring_ref);
537error:
538 return ret;
539}
540
541/*
542 * Unlink a key from a keyring.
543 *
544 * The keyring must grant the caller Write permission for this to work; the key
545 * itself need not grant the caller anything. If the last link to a key is
546 * removed then that key will be scheduled for destruction.
547 *
548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
549 *
550 * If successful, 0 will be returned.
551 */
552long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
553{
554 key_ref_t keyring_ref, key_ref;
555 struct key *keyring, *key;
556 long ret;
557
558 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
559 if (IS_ERR(keyring_ref)) {
560 ret = PTR_ERR(keyring_ref);
561 goto error;
562 }
563
564 key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
565 if (IS_ERR(key_ref)) {
566 ret = PTR_ERR(key_ref);
567 goto error2;
568 }
569
570 keyring = key_ref_to_ptr(keyring_ref);
571 key = key_ref_to_ptr(key_ref);
572 if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
573 test_bit(KEY_FLAG_KEEP, &key->flags))
574 ret = -EPERM;
575 else
576 ret = key_unlink(keyring, key);
577
578 key_ref_put(key_ref);
579error2:
580 key_ref_put(keyring_ref);
581error:
582 return ret;
583}
584
585/*
586 * Move a link to a key from one keyring to another, displacing any matching
587 * key from the destination keyring.
588 *
589 * The key must grant the caller Link permission and both keyrings must grant
590 * the caller Write permission. There must also be a link in the from keyring
591 * to the key. If both keyrings are the same, nothing is done.
592 *
593 * If successful, 0 will be returned.
594 */
595long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
596 key_serial_t to_ringid, unsigned int flags)
597{
598 key_ref_t key_ref, from_ref, to_ref;
599 long ret;
600
601 if (flags & ~KEYCTL_MOVE_EXCL)
602 return -EINVAL;
603
604 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
605 if (IS_ERR(key_ref))
606 return PTR_ERR(key_ref);
607
608 from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
609 if (IS_ERR(from_ref)) {
610 ret = PTR_ERR(from_ref);
611 goto error2;
612 }
613
614 to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
615 if (IS_ERR(to_ref)) {
616 ret = PTR_ERR(to_ref);
617 goto error3;
618 }
619
620 ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
621 key_ref_to_ptr(to_ref), flags);
622
623 key_ref_put(to_ref);
624error3:
625 key_ref_put(from_ref);
626error2:
627 key_ref_put(key_ref);
628 return ret;
629}
630
631/*
632 * Return a description of a key to userspace.
633 *
634 * The key must grant the caller View permission for this to work.
635 *
636 * If there's a buffer, we place up to buflen bytes of data into it formatted
637 * in the following way:
638 *
639 * type;uid;gid;perm;description<NUL>
640 *
641 * If successful, we return the amount of description available, irrespective
642 * of how much we may have copied into the buffer.
643 */
644long keyctl_describe_key(key_serial_t keyid,
645 char __user *buffer,
646 size_t buflen)
647{
648 struct key *key, *instkey;
649 key_ref_t key_ref;
650 char *infobuf;
651 long ret;
652 int desclen, infolen;
653
654 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
655 if (IS_ERR(key_ref)) {
656 /* viewing a key under construction is permitted if we have the
657 * authorisation token handy */
658 if (PTR_ERR(key_ref) == -EACCES) {
659 instkey = key_get_instantiation_authkey(keyid);
660 if (!IS_ERR(instkey)) {
661 key_put(instkey);
662 key_ref = lookup_user_key(keyid,
663 KEY_LOOKUP_PARTIAL,
664 KEY_AUTHTOKEN_OVERRIDE);
665 if (!IS_ERR(key_ref))
666 goto okay;
667 }
668 }
669
670 ret = PTR_ERR(key_ref);
671 goto error;
672 }
673
674okay:
675 key = key_ref_to_ptr(key_ref);
676 desclen = strlen(key->description);
677
678 /* calculate how much information we're going to return */
679 ret = -ENOMEM;
680 infobuf = kasprintf(GFP_KERNEL,
681 "%s;%d;%d;%08x;",
682 key->type->name,
683 from_kuid_munged(current_user_ns(), key->uid),
684 from_kgid_munged(current_user_ns(), key->gid),
685 key->perm);
686 if (!infobuf)
687 goto error2;
688 infolen = strlen(infobuf);
689 ret = infolen + desclen + 1;
690
691 /* consider returning the data */
692 if (buffer && buflen >= ret) {
693 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
694 copy_to_user(buffer + infolen, key->description,
695 desclen + 1) != 0)
696 ret = -EFAULT;
697 }
698
699 kfree(infobuf);
700error2:
701 key_ref_put(key_ref);
702error:
703 return ret;
704}
705
706/*
707 * Search the specified keyring and any keyrings it links to for a matching
708 * key. Only keyrings that grant the caller Search permission will be searched
709 * (this includes the starting keyring). Only keys with Search permission can
710 * be found.
711 *
712 * If successful, the found key will be linked to the destination keyring if
713 * supplied and the key has Link permission, and the found key ID will be
714 * returned.
715 */
716long keyctl_keyring_search(key_serial_t ringid,
717 const char __user *_type,
718 const char __user *_description,
719 key_serial_t destringid)
720{
721 struct key_type *ktype;
722 key_ref_t keyring_ref, key_ref, dest_ref;
723 char type[32], *description;
724 long ret;
725
726 /* pull the type and description into kernel space */
727 ret = key_get_type_from_user(type, _type, sizeof(type));
728 if (ret < 0)
729 goto error;
730
731 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
732 if (IS_ERR(description)) {
733 ret = PTR_ERR(description);
734 goto error;
735 }
736
737 /* get the keyring at which to begin the search */
738 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
739 if (IS_ERR(keyring_ref)) {
740 ret = PTR_ERR(keyring_ref);
741 goto error2;
742 }
743
744 /* get the destination keyring if specified */
745 dest_ref = NULL;
746 if (destringid) {
747 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
748 KEY_NEED_WRITE);
749 if (IS_ERR(dest_ref)) {
750 ret = PTR_ERR(dest_ref);
751 goto error3;
752 }
753 }
754
755 /* find the key type */
756 ktype = key_type_lookup(type);
757 if (IS_ERR(ktype)) {
758 ret = PTR_ERR(ktype);
759 goto error4;
760 }
761
762 /* do the search */
763 key_ref = keyring_search(keyring_ref, ktype, description, true);
764 if (IS_ERR(key_ref)) {
765 ret = PTR_ERR(key_ref);
766
767 /* treat lack or presence of a negative key the same */
768 if (ret == -EAGAIN)
769 ret = -ENOKEY;
770 goto error5;
771 }
772
773 /* link the resulting key to the destination keyring if we can */
774 if (dest_ref) {
775 ret = key_permission(key_ref, KEY_NEED_LINK);
776 if (ret < 0)
777 goto error6;
778
779 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
780 if (ret < 0)
781 goto error6;
782 }
783
784 ret = key_ref_to_ptr(key_ref)->serial;
785
786error6:
787 key_ref_put(key_ref);
788error5:
789 key_type_put(ktype);
790error4:
791 key_ref_put(dest_ref);
792error3:
793 key_ref_put(keyring_ref);
794error2:
795 kfree(description);
796error:
797 return ret;
798}
799
800/*
801 * Call the read method
802 */
803static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
804{
805 long ret;
806
807 down_read(&key->sem);
808 ret = key_validate(key);
809 if (ret == 0)
810 ret = key->type->read(key, buffer, buflen);
811 up_read(&key->sem);
812 return ret;
813}
814
815/*
816 * Read a key's payload.
817 *
818 * The key must either grant the caller Read permission, or it must grant the
819 * caller Search permission when searched for from the process keyrings.
820 *
821 * If successful, we place up to buflen bytes of data into the buffer, if one
822 * is provided, and return the amount of data that is available in the key,
823 * irrespective of how much we copied into the buffer.
824 */
825long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
826{
827 struct key *key;
828 key_ref_t key_ref;
829 long ret;
830 char *key_data = NULL;
831 size_t key_data_len;
832
833 /* find the key first */
834 key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
835 if (IS_ERR(key_ref)) {
836 ret = -ENOKEY;
837 goto out;
838 }
839
840 key = key_ref_to_ptr(key_ref);
841
842 ret = key_read_state(key);
843 if (ret < 0)
844 goto key_put_out; /* Negatively instantiated */
845
846 /* see if we can read it directly */
847 ret = key_permission(key_ref, KEY_NEED_READ);
848 if (ret == 0)
849 goto can_read_key;
850 if (ret != -EACCES)
851 goto key_put_out;
852
853 /* we can't; see if it's searchable from this process's keyrings
854 * - we automatically take account of the fact that it may be
855 * dangling off an instantiation key
856 */
857 if (!is_key_possessed(key_ref)) {
858 ret = -EACCES;
859 goto key_put_out;
860 }
861
862 /* the key is probably readable - now try to read it */
863can_read_key:
864 if (!key->type->read) {
865 ret = -EOPNOTSUPP;
866 goto key_put_out;
867 }
868
869 if (!buffer || !buflen) {
870 /* Get the key length from the read method */
871 ret = __keyctl_read_key(key, NULL, 0);
872 goto key_put_out;
873 }
874
875 /*
876 * Read the data with the semaphore held (since we might sleep)
877 * to protect against the key being updated or revoked.
878 *
879 * Allocating a temporary buffer to hold the keys before
880 * transferring them to user buffer to avoid potential
881 * deadlock involving page fault and mmap_lock.
882 *
883 * key_data_len = (buflen <= PAGE_SIZE)
884 * ? buflen : actual length of key data
885 *
886 * This prevents allocating arbitrary large buffer which can
887 * be much larger than the actual key length. In the latter case,
888 * at least 2 passes of this loop is required.
889 */
890 key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
891 for (;;) {
892 if (key_data_len) {
893 key_data = kvmalloc(key_data_len, GFP_KERNEL);
894 if (!key_data) {
895 ret = -ENOMEM;
896 goto key_put_out;
897 }
898 }
899
900 ret = __keyctl_read_key(key, key_data, key_data_len);
901
902 /*
903 * Read methods will just return the required length without
904 * any copying if the provided length isn't large enough.
905 */
906 if (ret <= 0 || ret > buflen)
907 break;
908
909 /*
910 * The key may change (unlikely) in between 2 consecutive
911 * __keyctl_read_key() calls. In this case, we reallocate
912 * a larger buffer and redo the key read when
913 * key_data_len < ret <= buflen.
914 */
915 if (ret > key_data_len) {
916 if (unlikely(key_data))
917 kvfree_sensitive(key_data, key_data_len);
918 key_data_len = ret;
919 continue; /* Allocate buffer */
920 }
921
922 if (copy_to_user(buffer, key_data, ret))
923 ret = -EFAULT;
924 break;
925 }
926 kvfree_sensitive(key_data, key_data_len);
927
928key_put_out:
929 key_put(key);
930out:
931 return ret;
932}
933
934/*
935 * Change the ownership of a key
936 *
937 * The key must grant the caller Setattr permission for this to work, though
938 * the key need not be fully instantiated yet. For the UID to be changed, or
939 * for the GID to be changed to a group the caller is not a member of, the
940 * caller must have sysadmin capability. If either uid or gid is -1 then that
941 * attribute is not changed.
942 *
943 * If the UID is to be changed, the new user must have sufficient quota to
944 * accept the key. The quota deduction will be removed from the old user to
945 * the new user should the attribute be changed.
946 *
947 * If successful, 0 will be returned.
948 */
949long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
950{
951 struct key_user *newowner, *zapowner = NULL;
952 struct key *key;
953 key_ref_t key_ref;
954 long ret;
955 kuid_t uid;
956 kgid_t gid;
957 unsigned long flags;
958
959 uid = make_kuid(current_user_ns(), user);
960 gid = make_kgid(current_user_ns(), group);
961 ret = -EINVAL;
962 if ((user != (uid_t) -1) && !uid_valid(uid))
963 goto error;
964 if ((group != (gid_t) -1) && !gid_valid(gid))
965 goto error;
966
967 ret = 0;
968 if (user == (uid_t) -1 && group == (gid_t) -1)
969 goto error;
970
971 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
972 KEY_NEED_SETATTR);
973 if (IS_ERR(key_ref)) {
974 ret = PTR_ERR(key_ref);
975 goto error;
976 }
977
978 key = key_ref_to_ptr(key_ref);
979
980 /* make the changes with the locks held to prevent chown/chown races */
981 ret = -EACCES;
982 down_write(&key->sem);
983
984 {
985 bool is_privileged_op = false;
986
987 /* only the sysadmin can chown a key to some other UID */
988 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
989 is_privileged_op = true;
990
991 /* only the sysadmin can set the key's GID to a group other
992 * than one of those that the current process subscribes to */
993 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
994 is_privileged_op = true;
995
996 if (is_privileged_op && !capable(CAP_SYS_ADMIN))
997 goto error_put;
998 }
999
1000 /* change the UID */
1001 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
1002 ret = -ENOMEM;
1003 newowner = key_user_lookup(uid);
1004 if (!newowner)
1005 goto error_put;
1006
1007 /* transfer the quota burden to the new user */
1008 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1009 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1010 key_quota_root_maxkeys : key_quota_maxkeys;
1011 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1012 key_quota_root_maxbytes : key_quota_maxbytes;
1013
1014 spin_lock_irqsave(&newowner->lock, flags);
1015 if (newowner->qnkeys + 1 > maxkeys ||
1016 newowner->qnbytes + key->quotalen > maxbytes ||
1017 newowner->qnbytes + key->quotalen <
1018 newowner->qnbytes)
1019 goto quota_overrun;
1020
1021 newowner->qnkeys++;
1022 newowner->qnbytes += key->quotalen;
1023 spin_unlock_irqrestore(&newowner->lock, flags);
1024
1025 spin_lock_irqsave(&key->user->lock, flags);
1026 key->user->qnkeys--;
1027 key->user->qnbytes -= key->quotalen;
1028 spin_unlock_irqrestore(&key->user->lock, flags);
1029 }
1030
1031 atomic_dec(&key->user->nkeys);
1032 atomic_inc(&newowner->nkeys);
1033
1034 if (key->state != KEY_IS_UNINSTANTIATED) {
1035 atomic_dec(&key->user->nikeys);
1036 atomic_inc(&newowner->nikeys);
1037 }
1038
1039 zapowner = key->user;
1040 key->user = newowner;
1041 key->uid = uid;
1042 }
1043
1044 /* change the GID */
1045 if (group != (gid_t) -1)
1046 key->gid = gid;
1047
1048 notify_key(key, NOTIFY_KEY_SETATTR, 0);
1049 ret = 0;
1050
1051error_put:
1052 up_write(&key->sem);
1053 key_put(key);
1054 if (zapowner)
1055 key_user_put(zapowner);
1056error:
1057 return ret;
1058
1059quota_overrun:
1060 spin_unlock_irqrestore(&newowner->lock, flags);
1061 zapowner = newowner;
1062 ret = -EDQUOT;
1063 goto error_put;
1064}
1065
1066/*
1067 * Change the permission mask on a key.
1068 *
1069 * The key must grant the caller Setattr permission for this to work, though
1070 * the key need not be fully instantiated yet. If the caller does not have
1071 * sysadmin capability, it may only change the permission on keys that it owns.
1072 */
1073long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1074{
1075 struct key *key;
1076 key_ref_t key_ref;
1077 long ret;
1078
1079 ret = -EINVAL;
1080 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1081 goto error;
1082
1083 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1084 KEY_NEED_SETATTR);
1085 if (IS_ERR(key_ref)) {
1086 ret = PTR_ERR(key_ref);
1087 goto error;
1088 }
1089
1090 key = key_ref_to_ptr(key_ref);
1091
1092 /* make the changes with the locks held to prevent chown/chmod races */
1093 ret = -EACCES;
1094 down_write(&key->sem);
1095
1096 /* if we're not the sysadmin, we can only change a key that we own */
1097 if (uid_eq(key->uid, current_fsuid()) || capable(CAP_SYS_ADMIN)) {
1098 key->perm = perm;
1099 notify_key(key, NOTIFY_KEY_SETATTR, 0);
1100 ret = 0;
1101 }
1102
1103 up_write(&key->sem);
1104 key_put(key);
1105error:
1106 return ret;
1107}
1108
1109/*
1110 * Get the destination keyring for instantiation and check that the caller has
1111 * Write permission on it.
1112 */
1113static long get_instantiation_keyring(key_serial_t ringid,
1114 struct request_key_auth *rka,
1115 struct key **_dest_keyring)
1116{
1117 key_ref_t dkref;
1118
1119 *_dest_keyring = NULL;
1120
1121 /* just return a NULL pointer if we weren't asked to make a link */
1122 if (ringid == 0)
1123 return 0;
1124
1125 /* if a specific keyring is nominated by ID, then use that */
1126 if (ringid > 0) {
1127 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1128 if (IS_ERR(dkref))
1129 return PTR_ERR(dkref);
1130 *_dest_keyring = key_ref_to_ptr(dkref);
1131 return 0;
1132 }
1133
1134 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1135 return -EINVAL;
1136
1137 /* otherwise specify the destination keyring recorded in the
1138 * authorisation key (any KEY_SPEC_*_KEYRING) */
1139 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1140 *_dest_keyring = key_get(rka->dest_keyring);
1141 return 0;
1142 }
1143
1144 return -ENOKEY;
1145}
1146
1147/*
1148 * Change the request_key authorisation key on the current process.
1149 */
1150static int keyctl_change_reqkey_auth(struct key *key)
1151{
1152 struct cred *new;
1153
1154 new = prepare_creds();
1155 if (!new)
1156 return -ENOMEM;
1157
1158 key_put(new->request_key_auth);
1159 new->request_key_auth = key_get(key);
1160
1161 return commit_creds(new);
1162}
1163
1164/*
1165 * Instantiate a key with the specified payload and link the key into the
1166 * destination keyring if one is given.
1167 *
1168 * The caller must have the appropriate instantiation permit set for this to
1169 * work (see keyctl_assume_authority). No other permissions are required.
1170 *
1171 * If successful, 0 will be returned.
1172 */
1173static long keyctl_instantiate_key_common(key_serial_t id,
1174 struct iov_iter *from,
1175 key_serial_t ringid)
1176{
1177 const struct cred *cred = current_cred();
1178 struct request_key_auth *rka;
1179 struct key *instkey, *dest_keyring;
1180 size_t plen = from ? iov_iter_count(from) : 0;
1181 void *payload;
1182 long ret;
1183
1184 kenter("%d,,%zu,%d", id, plen, ringid);
1185
1186 if (!plen)
1187 from = NULL;
1188
1189 ret = -EINVAL;
1190 if (plen > 1024 * 1024 - 1)
1191 goto error;
1192
1193 /* the appropriate instantiation authorisation key must have been
1194 * assumed before calling this */
1195 ret = -EPERM;
1196 instkey = cred->request_key_auth;
1197 if (!instkey)
1198 goto error;
1199
1200 rka = instkey->payload.data[0];
1201 if (rka->target_key->serial != id)
1202 goto error;
1203
1204 /* pull the payload in if one was supplied */
1205 payload = NULL;
1206
1207 if (from) {
1208 ret = -ENOMEM;
1209 payload = kvmalloc(plen, GFP_KERNEL);
1210 if (!payload)
1211 goto error;
1212
1213 ret = -EFAULT;
1214 if (!copy_from_iter_full(payload, plen, from))
1215 goto error2;
1216 }
1217
1218 /* find the destination keyring amongst those belonging to the
1219 * requesting task */
1220 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1221 if (ret < 0)
1222 goto error2;
1223
1224 /* instantiate the key and link it into a keyring */
1225 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1226 dest_keyring, instkey);
1227
1228 key_put(dest_keyring);
1229
1230 /* discard the assumed authority if it's just been disabled by
1231 * instantiation of the key */
1232 if (ret == 0)
1233 keyctl_change_reqkey_auth(NULL);
1234
1235error2:
1236 kvfree_sensitive(payload, plen);
1237error:
1238 return ret;
1239}
1240
1241/*
1242 * Instantiate a key with the specified payload and link the key into the
1243 * destination keyring if one is given.
1244 *
1245 * The caller must have the appropriate instantiation permit set for this to
1246 * work (see keyctl_assume_authority). No other permissions are required.
1247 *
1248 * If successful, 0 will be returned.
1249 */
1250long keyctl_instantiate_key(key_serial_t id,
1251 const void __user *_payload,
1252 size_t plen,
1253 key_serial_t ringid)
1254{
1255 if (_payload && plen) {
1256 struct iov_iter from;
1257 int ret;
1258
1259 ret = import_ubuf(ITER_SOURCE, (void __user *)_payload, plen,
1260 &from);
1261 if (unlikely(ret))
1262 return ret;
1263
1264 return keyctl_instantiate_key_common(id, &from, ringid);
1265 }
1266
1267 return keyctl_instantiate_key_common(id, NULL, ringid);
1268}
1269
1270/*
1271 * Instantiate a key with the specified multipart payload and link the key into
1272 * the destination keyring if one is given.
1273 *
1274 * The caller must have the appropriate instantiation permit set for this to
1275 * work (see keyctl_assume_authority). No other permissions are required.
1276 *
1277 * If successful, 0 will be returned.
1278 */
1279long keyctl_instantiate_key_iov(key_serial_t id,
1280 const struct iovec __user *_payload_iov,
1281 unsigned ioc,
1282 key_serial_t ringid)
1283{
1284 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1285 struct iov_iter from;
1286 long ret;
1287
1288 if (!_payload_iov)
1289 ioc = 0;
1290
1291 ret = import_iovec(ITER_SOURCE, _payload_iov, ioc,
1292 ARRAY_SIZE(iovstack), &iov, &from);
1293 if (ret < 0)
1294 return ret;
1295 ret = keyctl_instantiate_key_common(id, &from, ringid);
1296 kfree(iov);
1297 return ret;
1298}
1299
1300/*
1301 * Negatively instantiate the key with the given timeout (in seconds) and link
1302 * the key into the destination keyring if one is given.
1303 *
1304 * The caller must have the appropriate instantiation permit set for this to
1305 * work (see keyctl_assume_authority). No other permissions are required.
1306 *
1307 * The key and any links to the key will be automatically garbage collected
1308 * after the timeout expires.
1309 *
1310 * Negative keys are used to rate limit repeated request_key() calls by causing
1311 * them to return -ENOKEY until the negative key expires.
1312 *
1313 * If successful, 0 will be returned.
1314 */
1315long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1316{
1317 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1318}
1319
1320/*
1321 * Negatively instantiate the key with the given timeout (in seconds) and error
1322 * code and link the key into the destination keyring if one is given.
1323 *
1324 * The caller must have the appropriate instantiation permit set for this to
1325 * work (see keyctl_assume_authority). No other permissions are required.
1326 *
1327 * The key and any links to the key will be automatically garbage collected
1328 * after the timeout expires.
1329 *
1330 * Negative keys are used to rate limit repeated request_key() calls by causing
1331 * them to return the specified error code until the negative key expires.
1332 *
1333 * If successful, 0 will be returned.
1334 */
1335long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1336 key_serial_t ringid)
1337{
1338 const struct cred *cred = current_cred();
1339 struct request_key_auth *rka;
1340 struct key *instkey, *dest_keyring;
1341 long ret;
1342
1343 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1344
1345 /* must be a valid error code and mustn't be a kernel special */
1346 if (error <= 0 ||
1347 error >= MAX_ERRNO ||
1348 error == ERESTARTSYS ||
1349 error == ERESTARTNOINTR ||
1350 error == ERESTARTNOHAND ||
1351 error == ERESTART_RESTARTBLOCK)
1352 return -EINVAL;
1353
1354 /* the appropriate instantiation authorisation key must have been
1355 * assumed before calling this */
1356 ret = -EPERM;
1357 instkey = cred->request_key_auth;
1358 if (!instkey)
1359 goto error;
1360
1361 rka = instkey->payload.data[0];
1362 if (rka->target_key->serial != id)
1363 goto error;
1364
1365 /* find the destination keyring if present (which must also be
1366 * writable) */
1367 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1368 if (ret < 0)
1369 goto error;
1370
1371 /* instantiate the key and link it into a keyring */
1372 ret = key_reject_and_link(rka->target_key, timeout, error,
1373 dest_keyring, instkey);
1374
1375 key_put(dest_keyring);
1376
1377 /* discard the assumed authority if it's just been disabled by
1378 * instantiation of the key */
1379 if (ret == 0)
1380 keyctl_change_reqkey_auth(NULL);
1381
1382error:
1383 return ret;
1384}
1385
1386/*
1387 * Read or set the default keyring in which request_key() will cache keys and
1388 * return the old setting.
1389 *
1390 * If a thread or process keyring is specified then it will be created if it
1391 * doesn't yet exist. The old setting will be returned if successful.
1392 */
1393long keyctl_set_reqkey_keyring(int reqkey_defl)
1394{
1395 struct cred *new;
1396 int ret, old_setting;
1397
1398 old_setting = current_cred_xxx(jit_keyring);
1399
1400 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1401 return old_setting;
1402
1403 new = prepare_creds();
1404 if (!new)
1405 return -ENOMEM;
1406
1407 switch (reqkey_defl) {
1408 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1409 ret = install_thread_keyring_to_cred(new);
1410 if (ret < 0)
1411 goto error;
1412 goto set;
1413
1414 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1415 ret = install_process_keyring_to_cred(new);
1416 if (ret < 0)
1417 goto error;
1418 goto set;
1419
1420 case KEY_REQKEY_DEFL_DEFAULT:
1421 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1422 case KEY_REQKEY_DEFL_USER_KEYRING:
1423 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1424 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1425 goto set;
1426
1427 case KEY_REQKEY_DEFL_NO_CHANGE:
1428 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1429 default:
1430 ret = -EINVAL;
1431 goto error;
1432 }
1433
1434set:
1435 new->jit_keyring = reqkey_defl;
1436 commit_creds(new);
1437 return old_setting;
1438error:
1439 abort_creds(new);
1440 return ret;
1441}
1442
1443/*
1444 * Set or clear the timeout on a key.
1445 *
1446 * Either the key must grant the caller Setattr permission or else the caller
1447 * must hold an instantiation authorisation token for the key.
1448 *
1449 * The timeout is either 0 to clear the timeout, or a number of seconds from
1450 * the current time. The key and any links to the key will be automatically
1451 * garbage collected after the timeout expires.
1452 *
1453 * Keys with KEY_FLAG_KEEP set should not be timed out.
1454 *
1455 * If successful, 0 is returned.
1456 */
1457long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1458{
1459 struct key *key, *instkey;
1460 key_ref_t key_ref;
1461 long ret;
1462
1463 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1464 KEY_NEED_SETATTR);
1465 if (IS_ERR(key_ref)) {
1466 /* setting the timeout on a key under construction is permitted
1467 * if we have the authorisation token handy */
1468 if (PTR_ERR(key_ref) == -EACCES) {
1469 instkey = key_get_instantiation_authkey(id);
1470 if (!IS_ERR(instkey)) {
1471 key_put(instkey);
1472 key_ref = lookup_user_key(id,
1473 KEY_LOOKUP_PARTIAL,
1474 KEY_AUTHTOKEN_OVERRIDE);
1475 if (!IS_ERR(key_ref))
1476 goto okay;
1477 }
1478 }
1479
1480 ret = PTR_ERR(key_ref);
1481 goto error;
1482 }
1483
1484okay:
1485 key = key_ref_to_ptr(key_ref);
1486 ret = 0;
1487 if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1488 ret = -EPERM;
1489 } else {
1490 key_set_timeout(key, timeout);
1491 notify_key(key, NOTIFY_KEY_SETATTR, 0);
1492 }
1493 key_put(key);
1494
1495error:
1496 return ret;
1497}
1498
1499/*
1500 * Assume (or clear) the authority to instantiate the specified key.
1501 *
1502 * This sets the authoritative token currently in force for key instantiation.
1503 * This must be done for a key to be instantiated. It has the effect of making
1504 * available all the keys from the caller of the request_key() that created a
1505 * key to request_key() calls made by the caller of this function.
1506 *
1507 * The caller must have the instantiation key in their process keyrings with a
1508 * Search permission grant available to the caller.
1509 *
1510 * If the ID given is 0, then the setting will be cleared and 0 returned.
1511 *
1512 * If the ID given has a matching an authorisation key, then that key will be
1513 * set and its ID will be returned. The authorisation key can be read to get
1514 * the callout information passed to request_key().
1515 */
1516long keyctl_assume_authority(key_serial_t id)
1517{
1518 struct key *authkey;
1519 long ret;
1520
1521 /* special key IDs aren't permitted */
1522 ret = -EINVAL;
1523 if (id < 0)
1524 goto error;
1525
1526 /* we divest ourselves of authority if given an ID of 0 */
1527 if (id == 0) {
1528 ret = keyctl_change_reqkey_auth(NULL);
1529 goto error;
1530 }
1531
1532 /* attempt to assume the authority temporarily granted to us whilst we
1533 * instantiate the specified key
1534 * - the authorisation key must be in the current task's keyrings
1535 * somewhere
1536 */
1537 authkey = key_get_instantiation_authkey(id);
1538 if (IS_ERR(authkey)) {
1539 ret = PTR_ERR(authkey);
1540 goto error;
1541 }
1542
1543 ret = keyctl_change_reqkey_auth(authkey);
1544 if (ret == 0)
1545 ret = authkey->serial;
1546 key_put(authkey);
1547error:
1548 return ret;
1549}
1550
1551/*
1552 * Get a key's the LSM security label.
1553 *
1554 * The key must grant the caller View permission for this to work.
1555 *
1556 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1557 *
1558 * If successful, the amount of information available will be returned,
1559 * irrespective of how much was copied (including the terminal NUL).
1560 */
1561long keyctl_get_security(key_serial_t keyid,
1562 char __user *buffer,
1563 size_t buflen)
1564{
1565 struct key *key, *instkey;
1566 key_ref_t key_ref;
1567 char *context;
1568 long ret;
1569
1570 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1571 if (IS_ERR(key_ref)) {
1572 if (PTR_ERR(key_ref) != -EACCES)
1573 return PTR_ERR(key_ref);
1574
1575 /* viewing a key under construction is also permitted if we
1576 * have the authorisation token handy */
1577 instkey = key_get_instantiation_authkey(keyid);
1578 if (IS_ERR(instkey))
1579 return PTR_ERR(instkey);
1580 key_put(instkey);
1581
1582 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
1583 KEY_AUTHTOKEN_OVERRIDE);
1584 if (IS_ERR(key_ref))
1585 return PTR_ERR(key_ref);
1586 }
1587
1588 key = key_ref_to_ptr(key_ref);
1589 ret = security_key_getsecurity(key, &context);
1590 if (ret == 0) {
1591 /* if no information was returned, give userspace an empty
1592 * string */
1593 ret = 1;
1594 if (buffer && buflen > 0 &&
1595 copy_to_user(buffer, "", 1) != 0)
1596 ret = -EFAULT;
1597 } else if (ret > 0) {
1598 /* return as much data as there's room for */
1599 if (buffer && buflen > 0) {
1600 if (buflen > ret)
1601 buflen = ret;
1602
1603 if (copy_to_user(buffer, context, buflen) != 0)
1604 ret = -EFAULT;
1605 }
1606
1607 kfree(context);
1608 }
1609
1610 key_ref_put(key_ref);
1611 return ret;
1612}
1613
1614/*
1615 * Attempt to install the calling process's session keyring on the process's
1616 * parent process.
1617 *
1618 * The keyring must exist and must grant the caller LINK permission, and the
1619 * parent process must be single-threaded and must have the same effective
1620 * ownership as this process and mustn't be SUID/SGID.
1621 *
1622 * The keyring will be emplaced on the parent when it next resumes userspace.
1623 *
1624 * If successful, 0 will be returned.
1625 */
1626long keyctl_session_to_parent(void)
1627{
1628 struct task_struct *me, *parent;
1629 const struct cred *mycred, *pcred;
1630 struct callback_head *newwork, *oldwork;
1631 key_ref_t keyring_r;
1632 struct cred *cred;
1633 int ret;
1634
1635 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1636 if (IS_ERR(keyring_r))
1637 return PTR_ERR(keyring_r);
1638
1639 ret = -ENOMEM;
1640
1641 /* our parent is going to need a new cred struct, a new tgcred struct
1642 * and new security data, so we allocate them here to prevent ENOMEM in
1643 * our parent */
1644 cred = cred_alloc_blank();
1645 if (!cred)
1646 goto error_keyring;
1647 newwork = &cred->rcu;
1648
1649 cred->session_keyring = key_ref_to_ptr(keyring_r);
1650 keyring_r = NULL;
1651 init_task_work(newwork, key_change_session_keyring);
1652
1653 me = current;
1654 rcu_read_lock();
1655 write_lock_irq(&tasklist_lock);
1656
1657 ret = -EPERM;
1658 oldwork = NULL;
1659 parent = rcu_dereference_protected(me->real_parent,
1660 lockdep_is_held(&tasklist_lock));
1661
1662 /* the parent mustn't be init and mustn't be a kernel thread */
1663 if (parent->pid <= 1 || !parent->mm)
1664 goto unlock;
1665
1666 /* the parent must be single threaded */
1667 if (!thread_group_empty(parent))
1668 goto unlock;
1669
1670 /* the parent and the child must have different session keyrings or
1671 * there's no point */
1672 mycred = current_cred();
1673 pcred = __task_cred(parent);
1674 if (mycred == pcred ||
1675 mycred->session_keyring == pcred->session_keyring) {
1676 ret = 0;
1677 goto unlock;
1678 }
1679
1680 /* the parent must have the same effective ownership and mustn't be
1681 * SUID/SGID */
1682 if (!uid_eq(pcred->uid, mycred->euid) ||
1683 !uid_eq(pcred->euid, mycred->euid) ||
1684 !uid_eq(pcred->suid, mycred->euid) ||
1685 !gid_eq(pcred->gid, mycred->egid) ||
1686 !gid_eq(pcred->egid, mycred->egid) ||
1687 !gid_eq(pcred->sgid, mycred->egid))
1688 goto unlock;
1689
1690 /* the keyrings must have the same UID */
1691 if ((pcred->session_keyring &&
1692 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1693 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1694 goto unlock;
1695
1696 /* cancel an already pending keyring replacement */
1697 oldwork = task_work_cancel_func(parent, key_change_session_keyring);
1698
1699 /* the replacement session keyring is applied just prior to userspace
1700 * restarting */
1701 ret = task_work_add(parent, newwork, TWA_RESUME);
1702 if (!ret)
1703 newwork = NULL;
1704unlock:
1705 write_unlock_irq(&tasklist_lock);
1706 rcu_read_unlock();
1707 if (oldwork)
1708 put_cred(container_of(oldwork, struct cred, rcu));
1709 if (newwork)
1710 put_cred(cred);
1711 return ret;
1712
1713error_keyring:
1714 key_ref_put(keyring_r);
1715 return ret;
1716}
1717
1718/*
1719 * Apply a restriction to a given keyring.
1720 *
1721 * The caller must have Setattr permission to change keyring restrictions.
1722 *
1723 * The requested type name may be a NULL pointer to reject all attempts
1724 * to link to the keyring. In this case, _restriction must also be NULL.
1725 * Otherwise, both _type and _restriction must be non-NULL.
1726 *
1727 * Returns 0 if successful.
1728 */
1729long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1730 const char __user *_restriction)
1731{
1732 key_ref_t key_ref;
1733 char type[32];
1734 char *restriction = NULL;
1735 long ret;
1736
1737 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1738 if (IS_ERR(key_ref))
1739 return PTR_ERR(key_ref);
1740
1741 ret = -EINVAL;
1742 if (_type) {
1743 if (!_restriction)
1744 goto error;
1745
1746 ret = key_get_type_from_user(type, _type, sizeof(type));
1747 if (ret < 0)
1748 goto error;
1749
1750 restriction = strndup_user(_restriction, PAGE_SIZE);
1751 if (IS_ERR(restriction)) {
1752 ret = PTR_ERR(restriction);
1753 goto error;
1754 }
1755 } else {
1756 if (_restriction)
1757 goto error;
1758 }
1759
1760 ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1761 kfree(restriction);
1762error:
1763 key_ref_put(key_ref);
1764 return ret;
1765}
1766
1767#ifdef CONFIG_KEY_NOTIFICATIONS
1768/*
1769 * Watch for changes to a key.
1770 *
1771 * The caller must have View permission to watch a key or keyring.
1772 */
1773long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1774{
1775 struct watch_queue *wqueue;
1776 struct watch_list *wlist = NULL;
1777 struct watch *watch = NULL;
1778 struct key *key;
1779 key_ref_t key_ref;
1780 long ret;
1781
1782 if (watch_id < -1 || watch_id > 0xff)
1783 return -EINVAL;
1784
1785 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1786 if (IS_ERR(key_ref))
1787 return PTR_ERR(key_ref);
1788 key = key_ref_to_ptr(key_ref);
1789
1790 wqueue = get_watch_queue(watch_queue_fd);
1791 if (IS_ERR(wqueue)) {
1792 ret = PTR_ERR(wqueue);
1793 goto err_key;
1794 }
1795
1796 if (watch_id >= 0) {
1797 ret = -ENOMEM;
1798 if (!key->watchers) {
1799 wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1800 if (!wlist)
1801 goto err_wqueue;
1802 init_watch_list(wlist, NULL);
1803 }
1804
1805 watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1806 if (!watch)
1807 goto err_wlist;
1808
1809 init_watch(watch, wqueue);
1810 watch->id = key->serial;
1811 watch->info_id = (u32)watch_id << WATCH_INFO_ID__SHIFT;
1812
1813 ret = security_watch_key(key);
1814 if (ret < 0)
1815 goto err_watch;
1816
1817 down_write(&key->sem);
1818 if (!key->watchers) {
1819 key->watchers = wlist;
1820 wlist = NULL;
1821 }
1822
1823 ret = add_watch_to_object(watch, key->watchers);
1824 up_write(&key->sem);
1825
1826 if (ret == 0)
1827 watch = NULL;
1828 } else {
1829 ret = -EBADSLT;
1830 if (key->watchers) {
1831 down_write(&key->sem);
1832 ret = remove_watch_from_object(key->watchers,
1833 wqueue, key_serial(key),
1834 false);
1835 up_write(&key->sem);
1836 }
1837 }
1838
1839err_watch:
1840 kfree(watch);
1841err_wlist:
1842 kfree(wlist);
1843err_wqueue:
1844 put_watch_queue(wqueue);
1845err_key:
1846 key_put(key);
1847 return ret;
1848}
1849#endif /* CONFIG_KEY_NOTIFICATIONS */
1850
1851/*
1852 * Get keyrings subsystem capabilities.
1853 */
1854long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1855{
1856 size_t size = buflen;
1857
1858 if (size > 0) {
1859 if (size > sizeof(keyrings_capabilities))
1860 size = sizeof(keyrings_capabilities);
1861 if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1862 return -EFAULT;
1863 if (size < buflen &&
1864 clear_user(_buffer + size, buflen - size) != 0)
1865 return -EFAULT;
1866 }
1867
1868 return sizeof(keyrings_capabilities);
1869}
1870
1871/*
1872 * The key control system call
1873 */
1874SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1875 unsigned long, arg4, unsigned long, arg5)
1876{
1877 switch (option) {
1878 case KEYCTL_GET_KEYRING_ID:
1879 return keyctl_get_keyring_ID((key_serial_t) arg2,
1880 (int) arg3);
1881
1882 case KEYCTL_JOIN_SESSION_KEYRING:
1883 return keyctl_join_session_keyring((const char __user *) arg2);
1884
1885 case KEYCTL_UPDATE:
1886 return keyctl_update_key((key_serial_t) arg2,
1887 (const void __user *) arg3,
1888 (size_t) arg4);
1889
1890 case KEYCTL_REVOKE:
1891 return keyctl_revoke_key((key_serial_t) arg2);
1892
1893 case KEYCTL_DESCRIBE:
1894 return keyctl_describe_key((key_serial_t) arg2,
1895 (char __user *) arg3,
1896 (unsigned) arg4);
1897
1898 case KEYCTL_CLEAR:
1899 return keyctl_keyring_clear((key_serial_t) arg2);
1900
1901 case KEYCTL_LINK:
1902 return keyctl_keyring_link((key_serial_t) arg2,
1903 (key_serial_t) arg3);
1904
1905 case KEYCTL_UNLINK:
1906 return keyctl_keyring_unlink((key_serial_t) arg2,
1907 (key_serial_t) arg3);
1908
1909 case KEYCTL_SEARCH:
1910 return keyctl_keyring_search((key_serial_t) arg2,
1911 (const char __user *) arg3,
1912 (const char __user *) arg4,
1913 (key_serial_t) arg5);
1914
1915 case KEYCTL_READ:
1916 return keyctl_read_key((key_serial_t) arg2,
1917 (char __user *) arg3,
1918 (size_t) arg4);
1919
1920 case KEYCTL_CHOWN:
1921 return keyctl_chown_key((key_serial_t) arg2,
1922 (uid_t) arg3,
1923 (gid_t) arg4);
1924
1925 case KEYCTL_SETPERM:
1926 return keyctl_setperm_key((key_serial_t) arg2,
1927 (key_perm_t) arg3);
1928
1929 case KEYCTL_INSTANTIATE:
1930 return keyctl_instantiate_key((key_serial_t) arg2,
1931 (const void __user *) arg3,
1932 (size_t) arg4,
1933 (key_serial_t) arg5);
1934
1935 case KEYCTL_NEGATE:
1936 return keyctl_negate_key((key_serial_t) arg2,
1937 (unsigned) arg3,
1938 (key_serial_t) arg4);
1939
1940 case KEYCTL_SET_REQKEY_KEYRING:
1941 return keyctl_set_reqkey_keyring(arg2);
1942
1943 case KEYCTL_SET_TIMEOUT:
1944 return keyctl_set_timeout((key_serial_t) arg2,
1945 (unsigned) arg3);
1946
1947 case KEYCTL_ASSUME_AUTHORITY:
1948 return keyctl_assume_authority((key_serial_t) arg2);
1949
1950 case KEYCTL_GET_SECURITY:
1951 return keyctl_get_security((key_serial_t) arg2,
1952 (char __user *) arg3,
1953 (size_t) arg4);
1954
1955 case KEYCTL_SESSION_TO_PARENT:
1956 return keyctl_session_to_parent();
1957
1958 case KEYCTL_REJECT:
1959 return keyctl_reject_key((key_serial_t) arg2,
1960 (unsigned) arg3,
1961 (unsigned) arg4,
1962 (key_serial_t) arg5);
1963
1964 case KEYCTL_INSTANTIATE_IOV:
1965 return keyctl_instantiate_key_iov(
1966 (key_serial_t) arg2,
1967 (const struct iovec __user *) arg3,
1968 (unsigned) arg4,
1969 (key_serial_t) arg5);
1970
1971 case KEYCTL_INVALIDATE:
1972 return keyctl_invalidate_key((key_serial_t) arg2);
1973
1974 case KEYCTL_GET_PERSISTENT:
1975 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1976
1977 case KEYCTL_DH_COMPUTE:
1978 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1979 (char __user *) arg3, (size_t) arg4,
1980 (struct keyctl_kdf_params __user *) arg5);
1981
1982 case KEYCTL_RESTRICT_KEYRING:
1983 return keyctl_restrict_keyring((key_serial_t) arg2,
1984 (const char __user *) arg3,
1985 (const char __user *) arg4);
1986
1987 case KEYCTL_PKEY_QUERY:
1988 if (arg3 != 0)
1989 return -EINVAL;
1990 return keyctl_pkey_query((key_serial_t)arg2,
1991 (const char __user *)arg4,
1992 (struct keyctl_pkey_query __user *)arg5);
1993
1994 case KEYCTL_PKEY_ENCRYPT:
1995 case KEYCTL_PKEY_DECRYPT:
1996 case KEYCTL_PKEY_SIGN:
1997 return keyctl_pkey_e_d_s(
1998 option,
1999 (const struct keyctl_pkey_params __user *)arg2,
2000 (const char __user *)arg3,
2001 (const void __user *)arg4,
2002 (void __user *)arg5);
2003
2004 case KEYCTL_PKEY_VERIFY:
2005 return keyctl_pkey_verify(
2006 (const struct keyctl_pkey_params __user *)arg2,
2007 (const char __user *)arg3,
2008 (const void __user *)arg4,
2009 (const void __user *)arg5);
2010
2011 case KEYCTL_MOVE:
2012 return keyctl_keyring_move((key_serial_t)arg2,
2013 (key_serial_t)arg3,
2014 (key_serial_t)arg4,
2015 (unsigned int)arg5);
2016
2017 case KEYCTL_CAPABILITIES:
2018 return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2019
2020 case KEYCTL_WATCH_KEY:
2021 return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2022
2023 default:
2024 return -EOPNOTSUPP;
2025 }
2026}